WO2022156320A1 - 一种铁络合物催化剂催化烯烃的不对称氢化反应制备手性烷基化合物的方法 - Google Patents

一种铁络合物催化剂催化烯烃的不对称氢化反应制备手性烷基化合物的方法 Download PDF

Info

Publication number
WO2022156320A1
WO2022156320A1 PCT/CN2021/130103 CN2021130103W WO2022156320A1 WO 2022156320 A1 WO2022156320 A1 WO 2022156320A1 CN 2021130103 W CN2021130103 W CN 2021130103W WO 2022156320 A1 WO2022156320 A1 WO 2022156320A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
group
alkyl
formula
phenyl
Prior art date
Application number
PCT/CN2021/130103
Other languages
English (en)
French (fr)
Inventor
陆展
陆鹏
任翔
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2022156320A1 publication Critical patent/WO2022156320A1/zh
Priority to US18/210,771 priority Critical patent/US20240174588A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/20Preparation of ethers by reactions not forming ether-oxygen bonds by hydrogenation of carbon-to-carbon double or triple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/01Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis
    • C07C37/055Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis the substituted group being bound to oxygen, e.g. ether group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/09Geometrical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides

Definitions

  • the method relates to a method for preparing a chiral alkyl compound by asymmetric hydrogenation of 1,1-disubstituted olefin catalyzed by an iminoquinoline oxazoline (8-OIQ) iron complex catalyst, especially by the The method can prepare optically active chiral drug molecule intermediates through simple reactions.
  • Chirality is a fundamental property of nature, and the "thalidomide event" has made people gradually realize the importance of chirality.
  • Asymmetric catalytic hydrogenation of alkenes is one of the most effective methods to obtain chiral compounds due to its atom economy, simple operation, high reactivity, and environmental friendliness. It has been widely used in industrial production. Knowles and Noyori shared the Nobel Prize in Chemistry in 2001. [a) Knowles, W.S. Angew. Chem. Int. Ed. 2002, 41, 1998; b) Noyori, R. Angew. Chem. Int. Ed. 2002, 41, 2008.]
  • the core of the asymmetric hydrogenation of olefins is metal and chiral ligands.
  • the noble metals are dominated by rhodium, ruthenium, iridium, etc.
  • the chiral ligands are DIPAMA bisphosphine ligands, BINAP bisphosphine ligands, Duphos bisphosphine ligands, Chiral spirocyclic nitrogen-phosphorus ligands, phosphine oxazoline ligands and other bidentate phosphine-containing ligands are mainly [a) Knowles, WS; Sabacaky, MJ; et al.J.Am.Chem.Soc.1975, 97, 2567; b) Miyashita, A.; Yasuda, A.; Takaya, A.; et al.
  • iron-catalyzed asymmetric hydrogenation of olefins has the following challenges.
  • metallic iron has variable valence states (-2 to +5 valence), and it is challenging to design suitable ligands to stabilize the metallic valence state of iron.
  • the present invention catalyzes the asymmetric hydrogenation reaction of simple 1,1-disubstituted alkenes through a catalyst formed by complexing an iminoquinoline oxazoline nitrogen-containing tridentate ligand (8-OIQ) with an inexpensive metal iron constructed by the research group. Good conversion rate and enantioselectivity can be obtained.
  • This method has a wide range of application substrates and good functional group tolerance.
  • stereospecific hydrogenation of 1,1-disubstituted alkenes and keep the double bonds of other small sterically hindered trisubstituted alkenes stable.
  • Useful drug molecule intermediates can also be easily synthesized by this method.
  • a method for preparing a chiral alkyl compound by the asymmetric hydrogenation of an iron complex catalyst catalyzed by an olefin is: using the disubstituted olefin shown in formula I as a raw material, using normal pressure hydrogen as a hydrogen source, FeX 2 -8-OIQ complex as catalyst, silane compound and acetonitrile as cocatalyst, under the action of reducing agent, react for 12-24 hours to obtain the chiral alkyl compound shown in formula II;
  • reaction formula of the present invention can be represented by the following formula:
  • R 1 is optionally selected from a C 2 -C 8 alkyl group, a naphthyl group, a group shown in formula III, or a C 4 -C 10 N, O-containing heterocyclic aryl group;
  • the H on the C 2 -C 8 alkyl group is not substituted or is substituted by one or more substituents A, which are phenyl, naphthyl, heterocyclic aryl or Substituted phenyl group;
  • the heterocyclic aryl group is indolyl, pyridyl, pyrrolyl, thienyl or furyl group;
  • the substituted phenyl group refers to benzene in which H on the phenyl group is substituted by one or more substituents B base, the substituent B is a C 1 -C 3 alkyl group, a C 1 -C 3 alkoxy group, a halogen or a C 1 -C 3 alkylthio group;
  • the C 4 -C 10 N, O-containing heterocyclic aryl group is pyridyl, pyrrolyl, indolylbenzobisoxazolyl, benzoxazolyl or furanyl, preferably Pyridyl, indolyl or benzobisoxazolyl;
  • the H on the naphthyl group, the C 4 -C 10 N, O-containing heterocyclic aryl group is not substituted or is substituted by more than one substituent C, and the substituent C is C 1 -C 3 alkyl or C 1 -C 3 alkoxy;
  • R 4 , R 5 , R 6 , R 7 , R 8 are optionally selected from H, halogen, C 1 -C 2 alkyl, C 1 - C 3 alkoxy, benzyloxy, C 1 -C 3 alkylthio, tert-butyldimethylsiloxy, trifluoromethyl, dimethylamino, pinacol boronate, dextrolone Any one of brainoxy, citronelloloxy, mentholoxy and geranioloxy, when R 4 , R 5 , R 6 , R 7 and R 8 are all H, as shown in formula III is phenyl; the halogen is F or Cl.
  • R 2 is optionally selected from C 1 -C 8 alkyl, C 2 -C 8 alkenyl, phenyl or benzyl; the C 1 -C 8 alkyl, C 2 - The H on the C 8 alkenyl group is unsubstituted or substituted by one or more substituents D, which are phenyl, substituted phenyl, C 1 -C 3 amino or 1,3-dioxo Pentacyclyl.
  • R 1 and R 2 are connected to form a ring to form a C 9 -C 12 benzocycloalkyl; the H on the benzocycloalkyl is not substituted or is replaced by more than one Substituent E is substituted, and the substituent E is a C 1 -C 3 alkyl group, a C 1 -C 3 alkoxy group or a halogen; preferably, R 1 and R 2 are connected to form benzocycloheptane.
  • the R 1 and R 2 are different substituents.
  • R 1 is preferably C 2 -C 8 alkyl, naphthyl, 6-methoxynaphthyl, pyridyl, 2-methoxypyridyl, indolyl, N-methylindolyl , benzobisoxazolyl or a group represented by formula III.
  • R 1 when R 1 is a C 2 -C 8 alkyl group, the H on the C 2 -C 8 alkyl group is substituted by a substituent A, and R 1 can be represented as R A -(CH 2 ) n , n is an integer of 2 to 8, RA is a substituent A on the carbon chain, and RA is preferably a phenyl group, a naphthyl group or a p-methoxyphenyl group.
  • the group represented by the formula III is preferably a phenyl group or a substituted phenyl group with 1-2 substituents, and the substituent on the substituted phenyl group is preferably a halogen, C 1 -C 2 alkyl, C 1 -C 3 alkoxy, benzyloxy, C 1 -C 3 alkylthio, tert-butyldimethylsiloxy, trifluoromethyl, dimethylamino, pinacol boronate, d-borneoloxy, citronellyloxy, mentholoxy or geranioloxy.
  • R 2 is preferably a C 2 -C 6 alkyl group, a C 2 -C 6 alkenyl group, a phenyl group or a benzyl group; the H on the C 2 -C 6 alkyl group is not substituted or is substituted by a D group Substituted, when R 2 is a C 2 -C 6 alkyl group, and H on the alkyl group is substituted with a substituent D, R 2 can be represented as R D -(CH 2 ) m -, where m is an integer of 2 to 6, The substituent D is preferably phenyl, C1 - C3 amino, 4-methoxyphenyl or 1,3-dioxolane.
  • the silane compound is phenylsilane (PhSiH 3 ) or n-octadecylsilane (nC 18 H 37 SiH 3 ).
  • an organic solvent is added in the synthetic method of the present invention, and the organic solvent is benzene, carbon tetrachloride, toluene, tetrahydrofuran, ether, dichloromethane, acetonitrile, dioxane, petroleum Any one of ether, cyclohexane, n-hexane, ethyl acetate, chloroform, and N,N-diformamide, preferably toluene.
  • the amount of the organic solvent used is generally 1-10 mL/mmol in terms of the amount of the disubstituted olefin represented by formula I.
  • the reducing agent of the present invention is sodium triethylborohydride, sodium trisec-butylborohydride, lithium triethylborohydride, sodium tert-butoxide, potassium tert-butoxide, lithium tert-butoxide, sodium tert-pentoxide, sodium ethoxide , any one of sodium methoxide, potassium methoxide, preferably sodium triethyl borohydride, sodium tert-butoxide, sodium ethoxide or sodium methoxide, more preferably sodium triethyl borohydride.
  • normal pressure hydrogen is used as the hydrogen source, and a hydrogen balloon can be inserted into the reaction flask.
  • the ratio of the amount of the disubstituted olefin represented by the formula I, FeX 2 -8-OIQ complex, silane compound, acetonitrile, and reducing agent in the present invention is 1:0.00001-0.1: 0.02-0.2:0.1-0.3:0.06-0.3, preferably 1:0.001-0.05:0.2:0.2:0.15.
  • reaction temperature of the present invention is 0°C to room temperature.
  • the obtained crude product is subjected to post-processing to obtain the chiral alkyl compound represented by formula II, and the post-processing means include thin layer chromatography, column chromatography or vacuum distillation, preferably column chromatography.
  • the catalyst FeX 2 -8-OIQ complex (8-OIQ: 8-oxazoline iminoquinoline ligand) used in the present invention is an optically pure compound represented by formula IV or its enantiomer or racemate , in formula IV, R 9 is unsubstituted or C 1 -C 12 alkyl substituted by 1-2 C 1 -C 4 alkoxy groups, unsubstituted or substituted by 1-3 substituents a C 5 -C 12 cycloalkyl, or unsubstituted or aryl a substituted by 1-4 substituents b; the aryl a is benzyl, phenyl or naphthyl; the substitution Base a is C 1 -C 4 alkyl or C 1 -C 4 alkoxy; the substituent b is C 1 -C 4 alkyl, C 1 -C 4 alkoxy, C 1 -C 4 fluoroalkane group, C 1 -C 4 fluoroalkoxy, F
  • R 10 is H, C 1 -C 12 alkyl unsubstituted or substituted with 1-2 C 1 -C 4 alkoxy groups, C 5 unsubstituted or substituted with 1-3 substituents a ⁇ C 12 cycloalkyl, or unsubstituted or aryl b substituted by 1-3 substituents b; the aryl b is phenyl or naphthyl; the substituent a is C 1 - C 4 alkyl or C 1 -C 4 alkoxy; the substituent b is C 1 -C 4 alkyl, C 1 -C 4 alkoxy, C 1 -C 4 fluoroalkyl, C 1 -C 4 fluoroalkoxy, F or Cl;
  • R 11 , R 12 , R 13 , R 14 , R 15 are each independently H, C 1 -C 12 alkyl, C 1 -C 4 fluoroalkoxy, F, Cl, nitro or unsubstituted or C5-C12 cycloalkyl substituted by 1-3 substituents a;
  • R 16 and R 17 are each independently H, unsubstituted or C 1 -C 12 alkyl substituted with 1-2 C 1 -C 4 alkoxy groups, unsubstituted or substituted with 1-3 groups a substituted C 5 -C 12 cycloalkyl group, or an unsubstituted or aryl group a substituted with 1-3 substituents b;
  • R 18 is unsubstituted or C 1 -C 12 alkyl substituted with 1-2 C 1 -C 4 alkoxy groups, C 5 -C unsubstituted or substituted with 1-3 substituents a 12 cycloalkyl, or unsubstituted or aryl a substituted by 1-3 substituents b;
  • X is any one of F, Cl, Br, I, OAc, and CF 3 SO 3 , preferably Cl or Br.
  • the catalyst FeX 2 -8-OIQ complex is preferably a compound represented by formula IV, in formula IV, preferably R 11 , R 12 , R 13 , R 14 , R 15 , R 16 and R 17 are all H; preferably R 10 is C 1 -C 4 alkyl or diphenylmethine; preferably R 9 is C 1 -C 4 alkyl, benzyl, phenyl or 2,6-diisopropylbenzene group; preferably R 18 is C 1 -C 4 alkyl, benzyl or phenyl; X is Cl or Br.
  • chiral FeX 2 -8-OIQ complex used is preferably as shown in formula IV-1 or formula IV-2
  • the compound shown in the formula IV can be prepared by the following method:
  • the chiral iminoquinoline-containing oxazoline compound represented by formula (1) and ferrous salt FeX 2 are reacted in an organic solvent for 1 to 10 hours to obtain the metal complex represented by formula IV ;
  • Described organic solvent is tetrahydrofuran or 2-methyltetrahydrofuran;
  • R 9 to R 18 and * are as described above.
  • the ratio of the amount of the chiral iminoquinoline-containing oxazoline compound represented by the formula (1) to the ferrous salt FeX 2 is 2.2-0.9:1, preferably 1.1-0.9:1, more preferably 1.1 ⁇ 1:1.
  • the synthesis of the metal compound represented by the formula IV can be carried out at a low or high temperature, for example, at a temperature of -20-150°C, preferably at a normal temperature.
  • the chiral imino-quinoline-containing oxazoline compound shown in the raw material formula (1) can be prepared by the following method:
  • the ratio of the substance amount of the 2-acyl-8-bromoquinoline compound shown in formula (2) to the amine compound shown in formula (3) is 1:1-10, 1:1-5 is preferable, and 1:1-2 is more preferable.
  • the step (a) is carried out under the action of a catalyst, the catalyst is a protonic acid or a molecular sieve, preferably p-toluenesulfonic acid, and the amount of the catalyst is 2-acyl-8 shown in formula (2). - 1 to 5% of the substance amount of the bromoquinoline compound.
  • the reaction solvent of the step (a) is an organic solvent, preferably toluene, benzene or xylene, more preferably toluene.
  • the reaction of the step (a) needs to be heated to reflux, the water separator is separated from the water, and the reaction is carried out, and the reaction time is 15-30 hours.
  • Step (b) is a coupling reaction catalyzed by transition metal Ru, Rh, Pd, Ir inorganic salts, organic phosphine ligands, and inorganic bases.
  • the step (b) is carried out under the catalysis of transition metal inorganic salts, organic phosphine ligands and inorganic bases.
  • the transition metal inorganic salts refer to inorganic salts of Ru, Rh, Pd and Ir, preferably palladium acetate.
  • the inorganic base is preferably lithium tert-butoxide; the organic phosphine ligand is preferably 1,2-bis(diphenylphosphine)ethane.
  • the ratio of the amount of the compound represented by the formula (4), the oxazoline compound represented by the formula (5), the transition metal inorganic salt, the organic phosphine ligand, and the inorganic base is: 1:1-5:0.01-1:0.02-2:2-10, preferably 1:1-3:0.01-0.1:0.02-0.1:2-4.
  • step (b) carry out in an organic solvent
  • the organic solvent is benzene, carbon tetrachloride, petroleum ether, tetrahydrofuran, dimethylformamide, diethyl ether, dichloromethane, chloroform, toluene, Any of xylene, cyclohexane, n-hexane, n-heptane, dioxane, and acetonitrile, preferably dioxane.
  • the reaction temperature is -0°C to 150°C, preferably heated to reflux for reaction, and the reaction time is 1 hour to 48 hours.
  • the method of the invention provides an effective catalyst, which is composed of FeX 2 -8-OIQ complex, especially chiral FeX 2 -8-OIQ complex, silane compound and acetonitrile as co-catalyst, which is composed of 1,1-di
  • an effective catalyst which is composed of FeX 2 -8-OIQ complex, especially chiral FeX 2 -8-OIQ complex, silane compound and acetonitrile as co-catalyst, which is composed of 1,1-di
  • the method is suitable for many different types of alkenes, the alkene substrate synthesis method is simple, and the method of the invention has mild reaction conditions, simple operation and high atom economy.
  • the reaction does not require the addition of any other toxic transition metal (such as ruthenium, rhodium, palladium, etc.) salts, and has great practical application value in the synthesis of drugs and materials.
  • the present invention utilizes a large sterically hindered catalyst to carry out selective catalytic hydrogenation of polyolefin feedstocks.
  • the conversion rate of the reaction of the present invention is also good, generally reaching >99%, and the enantiomeric selectivity is also relatively high, generally 70% to 99%.
  • Figure 1 is a single crystal structure diagram of the compound represented by the catalyst formula IV-2.
  • Figure 2 is a single crystal structure diagram of the compound represented by the asymmetric hydrogenation product II-3 of Example 2.
  • the catalyst used in the examples is as follows, the compound represented by formula IV-1 is referred to as FeCl 2 -8-OIQ for short.
  • the metal complex is preferably used in an amount of 0.001-10 mol%, more preferably 0.1-5 mol%.
  • the catalyst synthesis route is as follows:
  • the specific synthesis steps of the catalyst are as follows, the amine compound shown in the formula (3) is commercially available, and the 2-acyl-8-bromoquinoline compound shown in the formula (2) is according to the literature (K. E. Pump, AEPazio, K. Prepared by L. Cavallo, C. Slugovc Beilstein J. Org. Chem. 2015, 11, 1458.).
  • the oxazoline compound represented by the formula (5) was prepared according to the literature (J. Chen, T. Xi, Z. Lu Org. Chem. Front., 2018, 5, 247.).
  • Example 1 Asymmetric Hydrogenation of 1,1-Disubstituted Olefins Catalyzed by Chiral FeX 2 -8-OIQ Complexes
  • reaction conditions are olefin (0.5mmol), hydrogen balloon, silane (20mol%), acetonitrile (20mol%), catalyst (5mol%), reducing agent sodium triethylborohydride (15mol%), toluene 1mL, at room temperature ( rt) or 0°C for 12 hours.
  • Product identification and yield were detected by H NMR using an internal standard method (trimethylphenylsilane). The cee value was detected by gas chromatography (chiral B-DM column).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种铁络合物催化剂催化烯烃的不对称氢化反应制备手性烷基化合物的方法:以式I所示的二取代烯烃为原料,以常压氢气作为氢源,FeX 2-8-OIQ络合物为催化剂,以硅烷类化合物、乙腈为助催化剂,在还原剂的作用下,反应12-24小时制得式II所示的手性烷基化合物。本发明方法反应条件温和,操作简便,原子经济性高。另外,反应无需其他任何的有毒过渡金属(如钌、铑、钯等)盐类的加入,在药物和材料合成上具有较大的实际应用价值。且反应的转化率也较好,一般均可达到>99%,对映体选择性也较高,一般为70%~99%。

Description

一种铁络合物催化剂催化烯烃的不对称氢化反应制备手性烷基化合物的方法 技术领域
本方法涉及一种亚胺喹啉噁唑啉(8-OIQ)铁络合物催化剂催化的1,1-二取代烯烃的不对称氢化反应来制备手性烷基化合物的方法,尤其是通过该方法可以经简单的反应制备具有光学活性的手性药物分子中间体。
背景技术
手性是自然界的一种基本属性,“沙利度胺事件”使人们逐渐认识到了手性的重要性。烯烃的不对称催化氢化反应由于具有原子经济性,操作简单,反应活性高,环境友好等优点,是最有效的获得手性化合物的方法之一,在手性药物、天然产物的合成、农药分子的工业化生产中已有广泛的应用。Knowles和Noyori等人也因此于2001年分享了诺贝尔化学奖。[a)Knowles,W.S.Angew.Chem.Int.Ed.2002,41,1998;b)Noyori,R.Angew.Chem.Int.Ed.2002,41,2008.]
烯烃不对称氢化反应的核心是金属与手性配体,其中,贵金属以铑钌铱等占主导地位,手性配体以DIPAMA双膦配体、BINAP双膦配体、Duphos双膦配体、手性螺环类氮磷配体、膦氧噁唑啉配体等双齿含膦配体为主[a)Knowles,W.S.;Sabacaky,M.J.;et al.J.Am.Chem.Soc.1975,97,2567;b)Miyashita,A.;Yasuda,A.;Takaya,A.;et al.J.Am.Chem.Soc.1980,102,7932;c)Noyori,R.;Ohta,M.,Hsiao,Y.;et al.J.Am.Chem.Soc.1986,108,7117;d)Burk,M.J.Acc.Chem.Res.2000,33,363;e)Xie,J.H.;Wang,L.X.;Fu,Y.;et al.J.Am.Chem.Soc.2003,125,4404;f)Tolstoy,P.;Engman,M.;Paptchikhine,A.;Bergquist,J.;Church,T.L.;Leung,A.W.-M.;Andersson,P.G.;J.Am.Chem.Soc.2009,131,8855.;g)Kaiser,S.;Smidt,S.P.;Pfaltz,A.Angew.Chem.Int.Ed.2006,45,5194.;h)Biosca,M.;Magre,M.;Pàmies,O.;Di6guez,M.;ACS Catal.2018,8,10316.;i)Perry,M.C.;Cui,X.H.;Powell,M.T.;Hou,D.-R.;Reibenspies,J.H.;Burgess,K.J.Am.Chem.Soc.2003,125,113.]。然而由于贵金属具有储量稀少,价格昂贵,具有较高的毒性等特点,因此发展地球丰产金属及其催化剂来替代贵金属近年来受到越来越多的关注。 地球丰产金属具有廉价易得,储量丰富,对环境友好等优点,其中金属铁在地壳中是储量第二大金属元素,廉价金属铁具有良好的生物兼容性,比如人体内的血红蛋白中就含有金属铁来负责人体内的氧气的传输作用。因此发展廉价金属铁及其催化剂用于烯烃的不对称氢化反应具有重要价值。但是,目前已报道的铁催化的烯烃的氢化反应均为外消旋化反应。[a)Bart,S.C.;Lobkovsky,E.;Chirik,P.J.J.Am.Chem.Soc.2004,126,13794-13807;b)Hoyt,J.M.;Shevlin,M.;Margulieux,G.W.;Krska,S.W.;Tudge,M.T.;Chirik,P.J.Organometallics 2014,33,5781-5790.c)Chirik,P.J.Acc.Chem.Res.2015,48,1687.d)Guo,N.;Hu,M.-Y.;Feng,W.;Zhu,S.-F.Org.Chem.Front.,2015,2,692-696;e)Frank,D.J.;Guiet,L.;
Figure PCTCN2021130103-appb-000001
A.;Murphy,E.;Thomas,S.P.RSC Adv.2013,3,25698.f)E.J.Daida and J.C.Peters,Inorg.Chem.,2004,43,7474.g)Sunada,Y.;Ogushi,H.;Yamamoto,T.;Uto,S.;Sawano,M.;Tahara,A.;Tanaka,H.;Shiota,Y.;Yoshizawa,K.;Nagashima,H.J.Am.Chem.Soc.,2018,140,4119-4134.]。根据文献调研与资料的查询,铁催化的烯烃的不对称氢化反应具有以下挑战性。第一,金属铁具有多变的价态(-2 to+5价),设计合适的配体稳定铁的金属价态具有挑战性。第二,铁与配体配位后,在活化试剂作用下,金属容易与配体发生解离,导致烯烃的氢化发生背景反应,得到外消旋化产物。[Hoyt,J.M.;Shevlin,M.;Margulieux,G.W.;Krska,S.W.;Tudge,M.T.;Chirik,P.J.Organometallics 2014,33,5781.]
2016年,浙江大学的陆展课题组利用亚胺吡啶噁唑啉手性配体(OIP)与廉价金属钴成功的实现了1,1-二芳基烯烃的不对称氢化反应,[Chen,J.-H.;Chen,C.-H.;Ji,C.-L.;Lu,Z.Org.Lett.2016,18,1594.]。其后又尝试使用OIP铁催化剂来催化1,1-二取代烯烃的不对称氢化反应,可惜的是,反应的产率较低且有大量的异构化现象发生。因此,发展新型铁催化剂催化简单烯烃的不对称氢化反应具有重要意义。
发明内容
本发明通过课题组构建的亚胺喹啉噁唑啉含氮三齿配体(8-OIQ)与廉价金属铁络合形成的催化剂催化简单1,1-二取代烯烃的不对称氢化反应,可以获得很好的转化率与对映体选择性,本方法的应用底物范围广,具有很好的官能团容忍性,此外通过调节催化剂的位阻可以立体专一性的氢化1,1-二取代烯烃且保持其他 小位阻三取代烯烃双键保持稳定。通过该方法也可以简单的合成有用的药物分子中间体。
本发明是通过以下技术方案来实现的:
一种铁络合物催化剂催化烯烃的不对称氢化反应制备手性烷基化合物的方法,所述方法为:以式I所示的二取代烯烃为原料,以常压氢气作为氢源,FeX 2-8-OIQ络合物为催化剂,以硅烷类化合物、乙腈为助催化剂,在还原剂的作用下,反应12-24小时制得式II所示的手性烷基化合物;
Figure PCTCN2021130103-appb-000002
式II中,*代表手性碳原子。
本发明的反应式可用下式表示:
Figure PCTCN2021130103-appb-000003
式I或式II中,R 1任选自C 2-C 8的烷基、萘基、式III所示的基团或C 4~C 10的含N、O的杂环芳基;
所述R 1中,所述C 2-C 8的烷基上的H不被取代或被1个以上的取代基A取代,所述取代基A为苯基、萘基、杂环芳基或取代苯基;所述杂环芳基为吲哚基、吡啶基、吡咯基、噻吩基或呋喃基;所述取代苯基是指苯基上的H被1个以上的取代基B取代的苯基,所述取代基B为C 1-C 3的烷基、C 1-C 3的烷氧基、卤素或C 1-C 3的烷硫基;
所述R 1中,所述C 4~C 10的含N、O的杂环芳基为吡啶基、吡咯基、吲哚基苯并二恶唑基、苯并噁唑基或呋喃基,优选吡啶基、吲哚基或苯并二恶唑基;
所述R 1中,所述的萘基、C 4~C 10的含N、O的杂环芳基上的H不被取代或被1个以上的取代基C取代,所述取代基C为C 1-C 3的烷基或C 1-C 3的烷氧基;
Figure PCTCN2021130103-appb-000004
所述R 1中,所述式III所示的基团中,R 4、R 5、R 6、R 7、R 8任选自H、卤素、C 1-C 2的烷基、C 1-C 3的烷氧基、苄氧基、C 1-C 3的烷硫基、叔丁基二甲基硅氧基、三氟甲基、二甲氨基、频哪醇硼酯基、右旋龙脑氧基、香茅醇氧基、薄荷醇氧基或香叶醇氧基中的任意一种,R 4、R 5、R 6、R 7、R 8全为H时,式III所示即为苯基;所述卤素为F或Cl。
式I或式II中,R 2任选自C 1-C 8的烷基、C 2-C 8的烯基、苯基或苄基;所述C 1-C 8的烷基、C 2-C 8的烯基的上的H不被取代或被1个以上的取代基D取代,所述取代基D为苯基、取代苯基、C 1-C 3的氨基或1,3-二氧戊环基。
或者式I或式II中,R 1和R 2连接成环,形成C 9-C 12的苯并环烷基;所述苯并环烷基上的H不被取代或被被1个以上的取代基E取代,所述取代基E为C 1-C 3的烷基、C 1-C 3的烷氧基或卤素;优选的,R 1和R 2连接成苯并环庚烷。
所述R 1和R 2是不相同的取代基。
进一步,所述R 1优选为C 2-C 8的烷基、萘基、6-甲氧基萘基、吡啶基、2-甲氧基吡啶基、吲哚基、N-甲基吲哚基、苯并二恶唑基或式III所示的基团。
所述R 1中,R 1为C 2-C 8的烷基时,所述C 2-C 8的烷基上的H被取代基A取代,R 1可以表示为R A-(CH 2) n,n为2~8的整数,R A为碳链上的取代基A,R A优选为苯基、萘基或对甲氧基苯基。
所述R 1中,所述式III所示的基团优选为苯基或有1-2个取代基的取代苯基,所述取代苯基上的取代基优选为卤素、C 1-C 2的烷基、C 1-C 3的烷氧基、苄氧基、C 1-C 3的烷硫基、叔丁基二甲基硅氧基、三氟甲基、二甲氨基、频哪醇硼酯基、右旋龙脑氧基、香茅醇氧基、薄荷醇氧基或香叶醇氧基。
R 2优选为C 2-C 6的烷基、C 2-C 6的烯基、苯基或苄基;所述C 2-C 6的烷基的上的H不被取代或被取代基D取代,R 2为C 2-C 6的烷基,且烷基上的H被取代基D取代时,R 2可以表示为R D-(CH 2) m-,m为2~6的整数,所述取代基D优选为苯基、C 1-C 3的氨基、4-甲氧基苯基或1,3-二氧戊环基。
本发明方法中,所述的硅烷类化合物为苯硅烷(PhSiH 3)或正十八烷基硅烷(n-C 18H 37SiH 3)。
作为进一步地改进,本发明所述的所述合成方法中加入有机溶剂,所述的有机溶剂是苯、四氯化碳、甲苯、四氢呋喃、乙醚、二氯甲烷、乙腈、二氧六环、 石油醚、环己烷、正己烷、乙酸乙酯、三氯甲烷、N,N-二甲酰胺中的任意一种,优选为甲苯。
所述有机溶剂的用量一般以式I所示的二取代烯烃的物质的量计为1~10mL/mmol。
本发明的还原剂为三乙基硼氢化钠、三仲丁基硼氢化钠、三乙基硼氢化锂、叔丁醇钠、叔丁醇钾、叔丁醇锂、叔戊醇钠、乙醇钠、甲醇钠、甲醇钾中的任意一种,优选三乙基硼氢化钠、叔丁醇钠、乙醇钠或甲醇钠,更优选为三乙基硼氢化钠。
本发明以常压氢气作为氢源,在反应瓶上插入氢气球即可。
作为进一步地改进,本发明所述的式I所示的二取代烯烃、FeX 2-8-OIQ络合物、硅烷类化合物、乙腈,还原剂的物质的量之比为1∶0.00001-0.1∶0.02-0.2∶0.1-0.3∶0.06-0.3,优选为1∶0.001~0.05∶0.2∶0.2∶0.15。
作为进一步地改进,本发明反应温度为0℃~室温。
作为进一步地改进,本发明反应结束后,所得粗产物经过后处理制得式II所示的手性烷基化合物,所述后处理手段包括薄层层析、柱层析或减压蒸馏,优选柱层析。
本发明所用的催化剂FeX 2-8-OIQ络合物(8-OIQ:8-噁唑啉亚胺喹啉配体)为光学纯的式IV所示的化合物或其对映体或消旋体,式IV中,R 9是未被取代的或被1-2个C 1-C 4烷氧基取代的C 1-C 12烷基、未被取代的或被1-3个取代基a取代的C 5~C 12的环烷基、或是未被取代的或被1-4个取代基b取代的芳基a;所述芳基a为苄基、苯基或萘基;所述取代基a为C 1-C 4烷基或C 1-C 4烷氧基;所述取代基b为C 1-C 4烷基、C 1-C 4烷氧基、C 1-C 4氟烷基、C 1-C 4氟烷氧基、F或Cl;
R 10是H、未被取代的或被1-2个C 1-C 4烷氧基取代的C 1-C 12烷基、未被取代的或被1-3个取代基a取代的C 5~C 12的环烷基、或是未被取代的或被1-3个取代基b取代的芳基b;所述芳基b为苯基或萘基;所述取代基a为C 1-C 4烷基或C 1-C 4烷氧基;所述取代基b为C 1-C 4烷基、C 1-C 4烷氧基、C 1-C 4氟烷基、C 1-C 4氟烷氧基、F或Cl;
R 11、R 12、R 13、R 14、R 15各自独立为H、C 1-C 12烷基、C 1-C 4氟烷氧基、F、Cl、硝基或是未被取代的或被1-3个取代基a取代的C5~C12的环烷基;
R 16、R 17各自独立为H、未被取代的或被1-2个C 1-C 4烷氧基取代的C 1-C 12烷基、未被取代的或被1-3个取代基a取代的C 5~C 12的环烷基、或是未被取代的或被1-3个取代基b取代的芳基a;
R 18是未被取代的或被1-2个C 1-C 4烷氧基取代的C 1-C 12烷基、未被取代的或被1-3个取代基a取代的C 5~C 12的环烷基、或是未被取代的或被1-3个取代基b取代的芳基a;
式IV中,*代表手性碳原子。
Figure PCTCN2021130103-appb-000005
X为F、Cl、Br、I、OAc、CF 3SO 3中的任意一种,优选为Cl或Br。
进一步,所述催化剂FeX 2-8-OIQ络合物优选为式IV所示的化合物,式IV中,优选R 11、R 12、R 13、R 14、R 15、R 16、R 17均为H;优选R 10为C 1-C 4的烷基或二苯基次甲基;优选R 9为C 1-C 4的烷基、苄基、苯基或2,6-二异丙基苯基;优选R 18为C 1-C 4的烷基、苄基或苯基;X为Cl或Br。
更进一步,所用的手性FeX 2-8-OIQ络合物优选如式IV-1或式IV-2所示
Figure PCTCN2021130103-appb-000006
本发明中,所述式IV所示的化合物可通过以下方法制得:
氮气保护下,式(1)所示的手性含亚胺喹啉噁唑啉类化合物和亚铁盐FeX 2在有机溶剂中反应1~10小时,制得式IV所示的金属络合物;所述有机溶剂为四氢呋喃或2-甲基四氢呋喃;
Figure PCTCN2021130103-appb-000007
式(1)中的R 9~R 18,*均如前所述。
所述式(1)所示的手性含亚胺喹啉噁唑啉类化合物和亚铁盐FeX 2的物质的量之比为2.2~0.9∶1,优选1.1~0.9∶1,更优选1.1~1∶1。
式IV所示的金属化合物的合成可以在低的或高的温度下进行,例如-20-150℃温度,优选常温下进行即可。
原料式(1)所示的手性含亚胺喹啉噁唑啉类化合物可按以下方法制备:
(a)、式(2)所示的2-酰基-8-溴喹啉类化合物与式(3)所示的胺类化合物在催化剂的作用下进行缩合反应,制得式(4)所示的化合物;
(b)、氮气保护下,式(4)所示的化合物与式(5)所示的噁唑啉类化合物在过渡金属无机盐和有机膦配体、无机碱催化下进行偶联反应,制得式(1)所示的手性含亚胺喹啉噁唑啉类化合物。
Figure PCTCN2021130103-appb-000008
R 9~R 18,*如前所述。
所述步骤(a)中,式(2)所示的2-酰基-8-溴喹啉类化合物与式(3)所示的胺类化合物的物质的量之比为1∶1-10,优选1∶1~5,更优选1∶1~2。
所述步骤(a)在催化剂的作用下进行,所述催化剂为为质子酸或分子筛,优选对甲苯磺酸,所述催化剂的物质的量用量为式(2)所示的2-酰基-8-溴喹啉类化合物的物质的量的1~5%。
所述步骤(a)的反应溶剂为有机溶剂,优选为甲苯、苯或二甲苯,更优选为甲苯。
所述步骤(a)的反应需要加热至回流,分水器分水,进行反应,反应时间为15~30小时。
步骤(b)为过渡金属Ru、Rh、Pd、Ir无机盐和有机膦配体、无机碱催化的偶联反应。
所述的步骤(b)在过渡金属无机盐、有机膦配体、无机碱催化下进行,所述过渡金属无机盐是指Ru、Rh、Pd、Ir的无机盐,优选醋酸钯。所述无机碱优选为叔丁醇锂;所述有机膦配体优选1,2-双(二苯基膦)乙烷。
所述的步骤(b)中,式(4)所示的化合物、式(5)所示的噁唑啉类化合物、过渡金属无机盐、有机膦配体,无机碱的物质的量之比为1∶1-5∶0.01-1∶0.02-2∶2-10,优选为1∶1~3∶0.01-0.1∶0.02-0.1∶2-4。
所述的步骤(b)中在有机溶剂中进行,所述的有机溶剂为苯、四氯化碳、石油醚、四氢呋喃、二甲基甲酰胺、乙醚、二氯甲烷、三氯甲烷、甲苯、二甲苯、环己烷、正己烷、正庚烷、二氧六环、乙腈中的任意一种,优选为二氧六环。所述的反应温度-0℃至150℃,优选加热至回流进行反应,反应时间为1小时到48小时。
本发明方法提供了一种有效的由FeX 2-8-OIQ络合物尤其是手性FeX 2-8-OIQ络合物为催化剂,硅烷类化合物,乙腈为助催化剂,由1,1-二取代烯烃和常压氢气高对映体选择性的合成光学活性的烷烃类化合物的方法。
与现有不对称氢化反应方法相比,该方法适用于多种不同类型的烯烃,烯烃的底物合成方法简便,本发明方法反应条件温和,操作简便,原子经济性高。另外,反应无需其他任何的有毒过渡金属(如钌、铑、钯等)盐类的加入,在药物和材料合成上具有较大的实际应用价值。本发明利用大位阻的催化剂,可以对多烯烃原料进行选择性的催化氢化。本发明反应的转化率也较好,一般均可达到>99%,对映体选择性也较高,一般为70%~99%。
附图说明
图1催化剂式IV-2所示化合物的的单晶结构图。
图2实施例不对称氢化产物II-3所示化合物的单晶结构图。
具体实施方式
下面通过具体实施例对本发明的技术方案作进一步地具体说明,但本发明的保护范围不限于此。
实施例中所用的催化剂如下所示,式IV-1所示的化合物,简称FeCl 2-8-OIQ。
金属络合物优选使用量为0.001-10mol%,更优选0.1-5mol%。
式IV-2的单晶结构如图1所示,CCDC号:2011869。
催化剂合成路线如下:
Figure PCTCN2021130103-appb-000009
催化剂具体合成步骤如下,式(3)所示的胺类化合物是市售可得的,式(2)所示的2-酰基-8-溴喹啉类化合物依照文献(K.
Figure PCTCN2021130103-appb-000010
E.Pump,A.E.Pazio,K.
Figure PCTCN2021130103-appb-000011
L.Cavallo,C.Slugovc Beilstein J.Org.Chem.2015,11,1458.)制备。式(5)所示的噁唑啉类化合物依照文献(J.Chen,T.Xi,Z.Lu Org.Chem.Front.,2018,5,247.)制备。
8-溴-2乙酰基喹啉(2)的制备
在氮气保护下,250mL三口烧瓶内加入8-溴-甲酰基喹啉(6.9451g,29.3mmol,1.0equiv)与乙醚(147ml)中,在0℃下滴加甲基溴化镁(3M in hex 12.7mL 1.3equiv),滴加完毕后,反应回到室温,搅拌12h,加入10mL饱和氯化铵溶液,15mL乙醚进行萃取三次,10mL饱和食盐水洗涤,无水硫酸钠干燥1-2小时。反应液浓缩后,加入100mL二氯甲烷,22.31g PDC(重铬酸吡啶鎓58.8mmol,2.0equiv)和PDC等质量的硅胶(23.10g)。室温下搅拌过夜。反应完毕后过滤除去固体, 用二氯甲烷进行洗涤,反应液浓缩后得到黄色固体,通过柱层析进行分离,得到白色固体8-溴-2-乙酰基喹啉4.3615g(17.4mmol,59%产率)。
1H NMR(400MHz,CDCl 3)δ8.07-7.99(m,2H),7.93(d,J=8.0Hz,1H),7.65-7.58(m,1H),7.56(d,J=8.8Hz,1H),2.96(s,3H);与[S.Nagy,L.N.Winslow,S.Mihan;L.Lukesova,E.Nifant′ev,P.V.Ivchenko,V.Bagrov,US Patent 2012/0016092 2012.]所报道的产物数据相符。
8-溴-2-亚胺喹啉(4)-S的制备
2,6-二异丙基苯胺(4.2516g,24mmol,1.2equiv)与8-溴-2-乙酰基喹啉(5.0g,20mmol,1.0equiv)溶于50mL甲苯中,对甲苯磺酸一水合物(0.0761g,0.40mmol,2mol%)催化,加热回流分水反应24h,乙醇重结晶得到7.3078g(17.9mmol,90%产率)8-溴-2-亚胺喹啉(4)-S。IR(neat):2959,2924,1696,1643,1493,1462,1362cm -1;1H NMR:(400.0MHz,CDCl3)δ8.60(d,J=8.8Hz,1H),8.24(d,J=8.4Hz,1H),8.10(d,J=7.2Hz,1H),7.86(d,J=8.0Hz,1H),7.46(dd,J=8.0,7.6Hz,1H),7.22-7.17(m,2H),7.15-7.10(m,1H),2.80-2.72(m,2H),2.43(s,3H),1.17(d,J=3.2Hz,6H),1.15(d,J=3.2Hz,6H);13C NMR:(100.6MHz,CDCl3)δ167.3,156.5,146.5,144.3,136.6,135.5,133.1,130.0,127.8,127.4,125.9,123.7,123.0,119.4,28.3,23.2,22.8,16.9;HRMS(ESI)calculated for[C23H26BrN2]+(M+H+),requires m/z 409.1279,found m/z 409.1290.
配体L的合成
氮气保护下,(4)-S(1.0213g,2.52mmol,1equiv)与(S)-异丙基噁唑啉环(0.3821g,3.375mmol,1.35equiv)在15mL 1,4-二氧六环中,醋酸钯(0.0281g,0.0125mmol,5mol%),1,2-双(二苯基膦)乙烷(0.0558g,0.14mmol,5.6mol%),叔丁醇锂(0.4005g,5mmol,2equiv),随后冷冻,抽气,熔化循环操作3次,补上氮气后升温至沸腾,反应41h,得到0.8456g(1.9mmol,76%产率)含亚胺喹啉噁唑啉亚胺喹啉噁唑啉的化合物L。
(2)催化剂的合成:
N 2条件下,在一个干燥的50mL大肚反应瓶中,加入(0.95eq.)的无水氯化亚铁,加入0.1M的干燥四氢呋喃溶液,搅拌,然后将制备好的8-OIQ配体(1.0eq.)用少量四氢呋喃溶解,加入反应瓶中,室温条件下搅拌3-4小时。反应结束,旋 干溶剂,用干燥的Et 2O洗涤三次,用真空油泵抽干,得到棕色固体粉末状产物IV-1。式IV-2的合成则将异丙基噁唑啉环改为叔丁基噁唑啉环配体,无水氯化亚铁改为无水溴化亚铁即可。
Figure PCTCN2021130103-appb-000012
实施例1:手性FeX 2-8-OIQ络合物催化的1,1-二取代烯烃的不对称氢化反应
标准条件:
室温下,在一个干燥的反应试管中加入(手性)FeCl 2-8-OIQ(IV-1)络合物(0.025mmol),烯烃(0.5mmol),n-C 18H 37SiH 3(0.10mmol),乙腈(0.10mmol),甲苯(1mL),插入H 2气球,三乙基硼氢化钠(0.075mmol),然后在室温或0℃下搅拌24小时后柱层析分离得到产物。
II-1:(R)-1-(仲丁基)-4-甲氧基苯
(R)-1-(sec-butyl)-4-methoxybenzene
Figure PCTCN2021130103-appb-000013
(m,1H),1.61-1.49(m,2H),1.21(d,J=7.2Hz,3H),0.81(t,J=7.6Hz,3H).
II-2:(R)-1-(苄氧基)-4-(仲丁基)苯
(R)-1-(benzyloxy)-4-(sec-butyl)benzene
Figure PCTCN2021130103-appb-000014
1H NMR:(400.0MHz,CDCl 3)δ7.45-7.30(m,5H),7.10(d,J=8.8Hz,2H),6.91(d,J=8.4Hz,2H),5.04(s,2H),2.59-2.51(m,1H),1.60-1.52(m,2H),1.21(d,J=6.8Hz,3H),0.82(t,J=7.2Hz,3H); 13C NMR:(100.0MHz,CDCl 3)δ156.9,140.1,137.3,128.5,127.9,127.8,127.5,114.5,70.0,40.8,31.3,22.0, 12.2;HRMS(EI)calculated for[C 17H 20O] +requires m/z 240.1514,found m/z 240.1516.
II-3:(R)-2-(4-(仲丁基)苯基)-4,4,5,5-四甲基-1,3,2-二氧杂硼烷
(R)-2-(4-(sec-butyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane
Figure PCTCN2021130103-appb-000015
2H),7.19(d,J=8.0Hz,2H),2.65-2.55(m,1H),1.65-1.55(m,2H),1.33(s,12H),1.23(d,J=6.8Hz,3H),0.81(t,J=7.6Hz,3H); 13C NMR:(100.0MHz,CDCl 3)δ151.1,134.8,126.5,83.6,41.9,31.0,24.8,21.7,12.2;HRMS(EI)calculated for[C 16H 25O 2B] +requires m/z 260.1948,found m/z 260.1949.该产物在0℃是固体,单晶决定了绝对构型,结构图在附件图2,CCDC号:2055703。
II-4:(R)-(4-(仲丁基)苯基)(甲基)硫烷
(R)-(4-(sec-butyl)phenyl)(methyl)sulfane
Figure PCTCN2021130103-appb-000016
1458,1144cm -11H NMR:(400.0MHz,CDCl 3)δ7.21(d,J=8.0Hz,2H),8.3(d,J=8.0Hz,2H),2.60-2.51(m,1H),2.47(s,3H),1.61-1.54(m,2H),1.21(d,J=6.8Hz,3H),0.81(t,J=7.6Hz,3H); 13C NMR:(100.6MHz,CDCl 3)δ144.9,135.0,127.6,127.1,41.2,31.1,21.8,16.3,12.2;HRMS(EI)calculated for[C 11H 16S]+requires m/z 180.0973,found m/z 180.0974.
II-5:(R)-5-(仲丁基)苯并[d][1,3]二恶唑
(R)-5-(sec-butyl)benzo[d][1,3]dioxole
Figure PCTCN2021130103-appb-000017
(m,1H),2.32(s,3H),1.61-1.52(m,2H),1.22(d,J=6.8Hz,3H),0.82(t,J=7.2Hz,3H).IR(neat):2961,2927,1487,1440,1249cm -11H NMR:(400.0MHz,CDCl 3)δ6.73(d,J=8.0Hz,1H),6.68(s,1H),6.62(d,J=8.0Hz,1H),5.92(s,2H),2.57-2.47(m,1H),1.60-1.48(m,2H),1.19(d,J=6.8Hz,3H),0.81(t,J=7.2Hz,3H); 13C NMR:(100.0MHz,CDCl 3)δ147.5,145.4,141.7,119.9,107.9, 107.2,100.7,41.5,31.3,22.1,12.2;HRMS(EI)calculated for[C 11H 14O 2] +requires m/z 178.0994,found m/z 178.0992.
II-6:(R)-1-(仲丁基)-4-氟苯
(R)-1-(sec-butyl)-4-fluorobenzene
Figure PCTCN2021130103-appb-000018
2H),7.00-6.92(m,2H),2.63-2.53(m,1H),1.61-1.51(m,2H),1.21(d,J=6.8Hz,3H),0.80(t,J=7.2Hz,3H); 13C NMR:(100.6MHz,CDCl 3)δ161.1(d,J=241.3Hz),143.2(d,J=2.9Hz),128.3(d,J=7.3Hz),114.9(d,J=20.4Hz),41.0,31.3,22.0,12.1; 19F NMR:(376MHz,CDCl 3)δ-118.1.
II-7:(R)-1-(仲丁基)-4-氯苯
(R)-1-(sec-butyl)-4-chlorobenzene
Figure PCTCN2021130103-appb-000019
2H),7.10(d,J=8.4Hz,2H),2.61-2.53(m,1H),1.62-1.51(m,2H),1.21(d,J=6.8Hz,3H),0.80(t,J=7.2Hz,3H); 13C NMR:(100.6MHz,CDCl 3)δ146.1,131.3,128.4,128.3,41.1,31.1,21.8,12.1;HRMS(EI)calculated for[C 10H 13Cl] +requires m/z 168.0706,found m/z 168.0706.
II-8:(R)-1-(仲丁基)-3-甲氧基苯
(R)-1-(sec-butyl)-3-methoxybenzene
Figure PCTCN2021130103-appb-000020
1261cm -11H NMR:(400.0MHz,CDCl 3)δ7.21(t,J=7.8Hz,1H),6.79-6.72(m,3H),3.80(s,3H),2.61-2.52(m,1H),1.64-1.00(m,2H),1.23(d,J=6.8Hz,3H),0.83(t,J=7.2Hz,3H); 13C NMR:(100.0MHz,CDCl 3)δ159.6,149.5,129.1,119.5,113.0,110.7,55.1,41.7,31.1,21.8,12.2;HRMS(EI)calculated for[C 11H 16O] +requires m/z 164.1201,found m/z 164.1203.
II-9:(R)-1-(仲丁基)-2-甲氧基苯
(R)-1-(sec-butyl)-2-methoxybenzene
Figure PCTCN2021130103-appb-000021
2H),3.81(s,3H),3.16-3.04(m,1H),1.70-1.54(m,2H),1.19(d,J=6.8Hz,3H),0.84(t,J=6.8Hz,3H); 13C NMR:(100.6MHz,CDCl 3)δ157.1,135.9,126.7,126.4,120.5,110.4,55.3,33.4,29.8,20.4,12.1;HRMS(EI)calculated for[C 11H 16O] +requires m/z 164.1201,found m/z 164.1202.
II-10:(R)-5-(仲丁基)-1-甲基-1H-吲哚
(R)-5-(sec-butyl)-1-methyl-1H-indole
Figure PCTCN2021130103-appb-000022
1H),7.07(d,J=7.6Hz,1H),7.01(d,J=2.8Hz,1H),6.42(d,J=2.8Hz,1H),3.77(s,3H),2.74-2.63(m,1H),1.71-1.59(m,2H),1.29(d,J=6.8Hz,3H),0.83(t,J=7.2Hz,3H); 13C NMR:(100.0MHz,CDCl 3)δ138.6,135.4,128.7,128.5,121.1,118.6,108.8,100.5,41.7,32.7,31.6,22.6,12.4;HRMS(EI)calculated for[C 13H 17N] +requires m/z 187.1361,found m/z 187.1362.
II-11:(R)-1-(己-2-基)-4-甲氧基苯
(R)-1-(hexan-2-yl)-4-methoxybenzene
Figure PCTCN2021130103-appb-000023
1247cm -11H NMR:(400.0MHz,CDCl 3)δ7.10(d,J=8.8Hz,2H),6.83(d,J=8.8Hz,2H),3.79(s,3H),2.67-2.57(s,1H),1.56-1.48(m,2H),1.34-1.07(m,7H),0.85(t,J=6.8Hz,3H); 13C NMR:(100.0MHz,CDCl 3)δ157.6,140.1,127.8,113.6,55.2,39.0,38.3,29.9,22.8,22.5,14.0;HRMS(EI)calculated for [C 13H 20O] +requires m/z 192.1514,found m/z 192.1514.
II-12:(R)-1-(庚-2-基)-4-甲氧基苯
(R)-1-(heptan-2-yl)-4-methoxybenzene
油状液体,>99%转化率,Optical Rotation:[α] 20 D=-26.7(c
Figure PCTCN2021130103-appb-000024
0.75,CHCl 3).94.8%ee,IR(neat):2923,2854,1612,1512,1461, 1375cm -11H NMR:(400.0MHz,CDCl 3)δ7.09(d,J=8.8Hz,2H),6.83(d,J=8.4Hz,2H),3.79(s,3H),2.67-2.57(m,1H),1.55-1.47(m,2H),1.30-1.10(m,9H),0.85(t,J=6.4Hz,3H); 13C NMR:(100.0MHz,CDCl 3)δ157.6,140.1,127.7,113.6,55.1,39.0,38.6,31.9,27.4,22.6,22.5,14.1;HRMS(EI)calculated for[C 14H 22O] +requires m/z 206.1671,found m/z 206.1672.
II-13:(R)-1-甲氧基-4-(辛烷-2-基)苯
(R)-1-methoxy-4-(octan-2-yl)benzene
Figure PCTCN2021130103-appb-000025
1375cm -11H NMR:(400.0MHz,CDCl 3)δ7.09(d,J=8.8Hz,2H),6.83(d,J=8.4Hz,2H),3.79(s,3H),2.67-2.57(m,lH),1.56-1.48(m,2H),1.30-1.10(m,11H),0.85(t,J=6.4Hz,3H); 13C NMR:(100.0MHz,CDCl 3)δ157.6,140.1,127.7,113.6,55.1,39.1,38.6,31.8,29.4,27.7,22.6,22.5,14.1;HRMS(EI)calculated for[C 15H 24O] +requires m/z 220.1827,found m/z 220.1826.
II-14:(R)-N,N-二甲基-4-(对甲苯基)戊基-1-胺
(R)-N,N-dimethyl-4-(p-tolyl)pentan-1-amine
Figure PCTCN2021130103-appb-000026
1515,1374cm -11H NMR:(400.0MHz,CDCl 3)δ7.12-7.04(m,4H),2.70-2.59(m,1H),2.31(s,3H),2.25-2.14(m,8H),1.61-1.52(m,2H),1.47-1.28(m,2H),1.23(d,J=6.8Hz,3H); 13C NMR:(100.0MHz,CDCl 3)δ144.4,135.2,128.9,126.8,59.8,45.4,39.5,36.1,25.8,22.4,20.9;HRMS(EI)calculated for[C 14H 23N] +requires m/z 205.1830,found m/z 205.1832.
II-15:(R)-丙烷-1,2-二基二苯
(R)-propane-1,2-diyldibenzene
Figure PCTCN2021130103-appb-000027
(d,J=6.8Hz,3H); 13C NMR:(100.0MHz,CDCl 3)δ147.0,140.8,129.1,128.3,128.1,127.0,126.0,125.8,45.0,41.8,21.1.
II-16:(1R,3R)-3-(4-((R)-仲丁基)苯氧基)-1,7,7-三甲基双环[2.2.1]庚烷(1R,3R)-3-(4-((R)-sec-butyl)phenoxy)-1,7,7-trimethylbicyclo[2.2.1]heptane
Figure PCTCN2021130103-appb-000028
CDCl 3)δ7.06(d,J=8.8Hz,2H),6.76(d,J=8.8Hz,2H),4.32-4.25(m,1H),2.58-2.47(m,1H),2.40-2.30(m,1H),2.29-2.18(m,1H),1.81-1.69(m,2H),1.61-1.50(m,2H),1.23-1.37(m,2H),1.20(d,J=7.2Hz,3H)1.13(dd,J=13.2,,3.2Hz,1H),0.97-0.88(m,9H),0.81(t,J=7.2Hz,3H); 13C NMR:(100.0MHz,CDCl 3)δ157.2,139.2,127.7,115.1,82.7,49.5,47.5,45.2,40.8,36.9,31.3,27.9,26.8,22.0,19.7,19.0,13.8,12.3.HRRMS(EI)calculated for[C 20H 30O] +requires m/z 286.2297,found m/z 286.2297.
II-17:(R,E)-1-(仲丁基)-4-((3,7-二甲基辛基-2,6-二烯-1-基)氧基)苯(R,E)-1-(sec-butyl)-4-((3,7-dimethylocta-2,6-dien-1-yk)oxy)benzene
Figure PCTCN2021130103-appb-000029
1H NMR:(400.0MHz,CDCl 3)δ7.08(d,J=8.8Hz,2H),6.85(d,J=8.4Hz,2H),5.50(t,J=6.8Hz,1H),5.10(t,J=5.2Hz,1H),4.51(d,J=6.8Hz,2H),2.59-2.48(m,1H),2.18-2.04(m,4H),1.73(s,3H),1.68(s,3H),1.58(s,3H),1.57-1.51(m,2H),1.21(d,J=6.8Hz,3H),0.81(t,J=7.6Hz,3H); 13C NMR:(100.0MHz,CDCl 3)δ157.0,140.8,139.6,131.7,127.8,123.8,119.8,114.4,64.8,40.8,39.5,31.3,26.3,25.6,22.0,17.6,16.6,12.2.HRMS(EI)calculated for[C 20H 30O] +requires m/z 286.2297,found m/z 286.2298.
II-18:(R)-2-(3-(3-(3-甲氧基-4-甲基苯基)丁基)-1,3-二氧戊环
(R)-2-(3-(3-methoxy-4-methylphenyl)butyl)-1,3-dioxolane
Figure PCTCN2021130103-appb-000030
1582,1462,1256cm-1; 1H NMR:(400.0MHz,CDCl 3)δ7.03(d,J=7.6Hz,1H),6.71-6.63(m,2H),4.81(t,J=4.8Hz,1H),4.01-3.79(m, 7H),2.71-2.59(m,1H),2.17(s,3H),1.73-1.49(m,4H),1.25(d,J=7.2Hz,3H);13C NMR:(100.0MHz,CDCl3)δ157.6,146.1,130.4,124.0,118.6,108.8,104.6,64.8,55.2,39.9,32.4,32.1,22.4,15.8;HRMS(EI)calculated for[C 15H 22O 3]+requires m/z 250.1569,found m/z 250.1569.
II-19:(R)-5-甲基-6,7,8,9-四氢-5H-苯并[7]环庚烷
(R)-5-methyl-6,7,8,9-tetrahydro-5H-benzo[7]annulene
Figure PCTCN2021130103-appb-000031
1H),1.86-1.68(m,3H),1.51-1.30(m,5H); 13C NMR:(100.0MHz,CDCl 3)δ146.5,142.8,129.2,126.0,125.6,125.2,37.7,36.1,36.0,30.1,27.8,20.4.
II-20:(R)-1-(3,4-二甲基戊基)-4-甲氧基苯
(R)-1-(3,4-dimethylpentyl)-4-methoxybenzene
Figure PCTCN2021130103-appb-000032
1.69-1.56(m,2H),1.44-1.25(m,2H),0.93-0.77(m,9H).
实施例2使用大位阻催化剂FeCl2-8-OIQ(tBu噁唑环)选择性的氢化1,1-二取代烯烃
Figure PCTCN2021130103-appb-000033
室温下,在一干燥的反应试管中加入(手性)FeCl 2-8-OIQ络合物(0.025mmol),烯烃(0.5mmol),n-C 18H 37SiH 3(0.10mmol),CH 3CN(0.10mmol),甲苯(1mL),插入H 2气球,三乙基硼氢化钠(0.075mmol),然后在室温或0℃下搅拌12小时后柱层析分离得到产物。油状液体,>99%转化率,Optical Rotation:[α] 20 D= -32.5(c 1.75,CHCl 3).93%ee.得到的产物经过简单的脱甲基得到天然产物(R)-xanthorrhizol.
实施例3药物分子中间体的合成
Figure PCTCN2021130103-appb-000034
在20mL反应管中,加入实施例中II-18(0.0404g,0.14mmol),加入冰醋酸(6mL),水(2mL)。加热到60℃搅拌2h。冷却到室温,加入氢氧化钠溶液调节PH=7,加入乙酸乙酯萃取(3 x 10mL),无水硫酸钠干燥,旋干,通过柱层析(PE/EtOAc(30/1))得到目标化合物(0.0286g,88%yield)。无色液体,Optical Rotation:[α] 20 D=-33.9(c 0.91,CHCl 3).96%ee, 1H NMR:(400.0MHz,CDCl 3)δ9.68(t,J=1.6Hz,1H),7.14-7.03(m,4H),2.75-2.63(m,1H),2.39-2.24(m,2H),1.99-1.79(m,2H),1.26(d,J=7.2Hz,3H); 13C NMR:(100.6MHz,CDCl 3)δ202.4,142.9,135.7,129.1,126.8,42.1,38.8,30.3,22.3,20.9.(化合物数据与文献一致:Song,S.;Zhu,S.-F.;Yang,S.;Li,S.;Zhou,Q.-L.Angew.Chem.Int.Ed.2012,51,2708.)根据已知文献即可进一步反应获得(R)-curcumene。
实施例4多种催化剂催化性能和反应条件对比实验
Figure PCTCN2021130103-appb-000035
Figure PCTCN2021130103-appb-000036
Figure PCTCN2021130103-appb-000037
a反应条件为烯烃(0.5mmol),氢气球,硅烷(20mol%),乙腈(20mol%),催化剂(5mol%),还原剂三乙基硼氢化钠(15mol%),甲苯1mL,在室温(rt)或0℃反应12小时。 b产物鉴定和产率由核磁氢谱采用内标法(三甲基苯硅烷)检测。 cee值由气湘色谱(手性B-DM柱)检测。

Claims (10)

  1. 一种铁络合物催化剂催化烯烃的不对称氢化反应制备手性烷基化合物的方法,其特征在于所述方法为:以式I所示的二取代烯烃为原料,以常压氢气作为氢源,FeX 2-8-OIQ络合物为催化剂,以硅烷类化合物、乙腈为助催化剂,在还原剂的作用下,反应12-24小时制得式II所示的手性烷基化合物;
    Figure PCTCN2021130103-appb-100001
    式II中,*代表手性碳原子;
    式I或式II中,R 1为C 2-C 8的烷基、萘基、式III所示的基团或C 4~C 10的含N、O的杂环芳基;
    所述R 1中,所述C 2-C 8的烷基上的H不被取代或被1个以上的取代基A取代,所述取代基A为苯基、萘基、杂环芳基或取代苯基;所述杂环芳基为吲哚基、吡啶基、吡咯基、噻吩基或呋喃基;所述取代苯基是指苯基上的H被1个以上的取代基B取代的苯基,所述取代基B为C 1-C 3的烷基、C 1-C 3的烷氧基、卤素或C 1-C 3的烷硫基;
    所述R 1中,所述C 4~C 10的含N、O的杂环芳基为吡啶基、吡咯基、吲哚基苯并二恶唑基、苯并噁唑基或呋喃基;
    所述R 1中,所述的萘基、C 4~C 10的含N、O的杂环芳基上的H不被取代或被1个以上的取代基C取代,所述取代基C为C 1-C 3的烷基或C 1-C 3的烷氧基;
    Figure PCTCN2021130103-appb-100002
    所述R 1中,所述式III所示的基团中,R 4、R 5、R 6、R 7、R 8任选自H、卤素、C 1-C 2的烷基、C 1-C 3的烷氧基、苄氧基、C 1-C 3的烷硫基、叔丁基二甲基硅氧基、三氟甲基、二甲氨基、频哪醇硼酯基、右旋龙脑氧基、香茅醇氧基、薄荷醇氧基或香叶醇氧基中的任意一种,R 4、R 5、R 6、R 7、R 8全为H时,式III所示即为苯基;所述卤素为F或Cl;
    式I或式II中,R 2为C 1-C 8的烷基、C 2-C 8的烯基、苯基或苄基;所述C 1-C 8的烷基、C 2-C 8的烯基的上的H不被取代或被1个以上的取代基D取代,所述取代基D为苯基、取代苯基、C 1-C 3的氨基或1,3-二氧戊环基;
    或者式I或式II中,R 1和R 2连接成环,形成C 9-C 12的苯并环烷基;所述苯并环烷基上的H不被取代或被被1个以上的取代基E取代,所述取代基E为C 1-C 3的烷基、C 1-C 3的烷氧基或卤素;
    所述R 1和R 2是不相同的取代基。
  2. 如权利要求1所述的方法,其特征在于所述R 1为C 2-C 8的烷基、萘基、6-甲氧基萘基、吡啶基、2-甲氧基吡啶基、吲哚基、N-甲基吲哚基、苯并二恶唑基或式III所示的基团;
    所述R 1中,R 1为C 2-C 8的烷基时,所述C 2-C 8的烷基上的H被取代基A取代,R 1表示为R A—(CH 2) n—,n为2~8的整数,R A为碳链上的取代基A,R A为苯基、萘基或对甲氧基苯基;
    所述R 1中,所述式III所示的基团为苯基或有1-2个取代基的取代苯基,所述取代苯基上的取代基为卤素、C 1-C 2的烷基、C 1-C 3的烷氧基、苄氧基、C 1-C 3的烷硫基、叔丁基二甲基硅氧基、三氟甲基、二甲氨基、频哪醇硼酯基、右旋龙脑氧基、香茅醇氧基、薄荷醇氧基或香叶醇氧基;
    R 2为C 2-C 6的烷基、C 2-C 6的烯基、苯基或苄基;所述C 2-C 6的烷基的上的H不被取代或被取代基D取代,R 2为C 2-C 6的烷基,且烷基上的H被取代基D取代时,R 2可以表示为R D—(CH 2) m—,m为2~6的整数,所述取代基D为苯基、C 1-C 3的氨基、4-甲氧基苯基或1,3-二氧戊环基。
  3. 如权利要求1或2所述的方法,其特征在于所用的催化剂FeX 2-8-OIQ络合物为光学纯的式IV所示的化合物或其对映体或消旋体,
    Figure PCTCN2021130103-appb-100003
    式IV中,R 9是未被取代的或被1-2个C 1-C 4烷氧基取代的C 1-C 12烷基、未被取代的或被1-3个取代基a取代的C 5~C 12的环烷基、或是未被取代的或被1-4个取代基b取代的芳基a;所述芳基a为苄基、苯基或萘基;所述取代基a为C 1-C 4烷基或C 1-C 4烷氧基;所述取代基b为C 1-C 4烷基、C 1-C 4烷氧基、C 1-C 4氟烷基、C 1-C 4氟烷氧基、F或Cl;
    R 10是H、未被取代的或被1-2个C 1-C 4烷氧基取代的C 1-C 12烷基、未被取代的或被1-3个取代基a取代的C 5~C 12的环烷基、或是未被取代的或被1-3个取代基b取代的芳基b;所述芳基b为苯基或萘基;所述取代基a为C 1-C 4烷基或C 1-C 4烷氧基;所述取代基b为C 1-C 4烷基、C 1-C 4烷氧基、C 1-C 4氟烷基、C 1-C 4氟烷氧基、F或Cl;
    R 11、R 12、R 13、R 14、R 15各自独立为H、C 1-C 12烷基、C 1-C 4氟烷氧基、F、Cl、硝基或是未被取代的或被1-3个取代基a取代的C5~C12的环烷基;
    R 16、R 17各自独立为H、未被取代的或被1-2个C 1-C 4烷氧基取代的C 1-C 12烷基、未被取代的或被1-3个取代基a取代的C 5~C 12的环烷基、或是未被取代的或被1-3个取代基b取代的芳基a;
    R 18是未被取代的或被1-2个C 1-C 4烷氧基取代的C 1-C 12烷基、未被取代的或被1-3个取代基a取代的C 5~C 12的环烷基、或是未被取代的或被1-3个取代基b取代的芳基a;
    式IV中,*代表手性碳原子;
    X为F、Cl、Br、I、OAc、CF 3SO 3中的任意一种。
  4. 如权利要求3所述的方法,其特征在于所述催化剂FeX 2-8-OIQ络合物为式IV所示的化合物,式IV中,R 11、R 12、R 13、R 14、R 15、R 16、R 17均为H;R 10为C 1-C 4的烷基或二苯基次甲基;R 9为C 1-C 4的烷基、苄基、苯基或2,6-二异丙基苯基;R 18为C 1-C 4的烷基、苄基或苯基;X为Cl或Br。
  5. 如权利要求3所述的方法,其特征在于所述FeX 2-8-OIQ络合物如式IV-1或式IV-2所示
    Figure PCTCN2021130103-appb-100004
  6. 如权利要求1或2所述的方法,其特征在于所述的硅烷类化合物为苯硅烷或正十八烷基硅烷。
  7. 如权利要求1或2所述的方法,其特征在于所述方法中加入有机溶剂,所述的有机溶剂是苯、四氯化碳、甲苯、四氢呋喃、乙醚、二氯甲烷、乙腈、二氧六环、石油醚、环己烷、正己烷、乙酸乙酯、三氯甲烷、N,N-二甲酰胺中的任意一种。
  8. 如权利要求1或2所述的方法,其特征在于所述还原剂为三乙基硼氢化钠、三仲丁基硼氢化钠、三乙基硼氢化锂、叔丁醇钠、叔丁醇钾、叔丁醇锂、叔戊醇钠、乙醇钠、甲醇钠、甲醇钾中的任意一种。
  9. 如权利要求1或2所述的方法,其特征在于所述的式I所示的二取代烯烃、FeX 2-8-OIQ络合物、硅烷类化合物、乙腈,还原剂的物质的量之比为1:0.00001-0.1:0.02-0.2:0.1-0.3:0.06-0.3。
  10. 如权利要求1或2所述的方法,其特征在于反应的温度为0℃~室温。
PCT/CN2021/130103 2021-01-22 2021-11-11 一种铁络合物催化剂催化烯烃的不对称氢化反应制备手性烷基化合物的方法 WO2022156320A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/210,771 US20240174588A1 (en) 2021-01-22 2023-06-16 Method for preparing chiral alkyl compounds by asymmetric hydrogenation of olefins catalyzed by iron complex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110092710.1A CN112851479B (zh) 2021-01-22 2021-01-22 一种铁络合物催化剂催化烯烃的不对称氢化反应制备手性烷基化合物的方法
CN202110092710.1 2021-01-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/210,771 Continuation US20240174588A1 (en) 2021-01-22 2023-06-16 Method for preparing chiral alkyl compounds by asymmetric hydrogenation of olefins catalyzed by iron complex

Publications (1)

Publication Number Publication Date
WO2022156320A1 true WO2022156320A1 (zh) 2022-07-28

Family

ID=76008221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130103 WO2022156320A1 (zh) 2021-01-22 2021-11-11 一种铁络合物催化剂催化烯烃的不对称氢化反应制备手性烷基化合物的方法

Country Status (3)

Country Link
US (1) US20240174588A1 (zh)
CN (1) CN112851479B (zh)
WO (1) WO2022156320A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112851479B (zh) * 2021-01-22 2022-05-13 浙江大学 一种铁络合物催化剂催化烯烃的不对称氢化反应制备手性烷基化合物的方法
CN114989137B (zh) * 2022-06-24 2024-03-01 浙江大学 一种手性含亚胺喹啉咪唑啉类化合物及其金属络合物以及制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104478919A (zh) * 2014-11-18 2015-04-01 浙江大学 一种合成手性硅烷化合物的方法
CN105461508A (zh) * 2015-11-19 2016-04-06 浙江大学 一种合成手性1,1-二芳基乙烷类化合物的方法
US20160176908A1 (en) * 2013-06-12 2016-06-23 Arizona Board Of Regents On Behalf Of Arizona State University First-row transition metal hydrogenation and hydrosilylation catalysts
CN110655456A (zh) * 2019-09-16 2020-01-07 浙江大学 一种e/z混合或单一构型的三取代烯烃的不对称催化氢化制备手性烷基化合物的方法
CN112851479A (zh) * 2021-01-22 2021-05-28 浙江大学 一种铁络合物催化剂催化烯烃的不对称氢化反应制备手性烷基化合物的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108440591B (zh) * 2018-03-20 2021-03-05 浙江大学 一种手性二氢硅烷化合物的合成方法
CN109503645B (zh) * 2018-11-19 2021-08-03 浙江大学 一种含有四个硅氢键的手性偕二硅基烷烃化合物及其合成方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160176908A1 (en) * 2013-06-12 2016-06-23 Arizona Board Of Regents On Behalf Of Arizona State University First-row transition metal hydrogenation and hydrosilylation catalysts
CN104478919A (zh) * 2014-11-18 2015-04-01 浙江大学 一种合成手性硅烷化合物的方法
CN105461508A (zh) * 2015-11-19 2016-04-06 浙江大学 一种合成手性1,1-二芳基乙烷类化合物的方法
CN110655456A (zh) * 2019-09-16 2020-01-07 浙江大学 一种e/z混合或单一构型的三取代烯烃的不对称催化氢化制备手性烷基化合物的方法
CN112851479A (zh) * 2021-01-22 2021-05-28 浙江大学 一种铁络合物催化剂催化烯烃的不对称氢化反应制备手性烷基化合物的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHIRIK PAUL J.: "Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands", ACCOUNTS OF CHEMICAL RESEARCH, ACS , WASHINGTON , DC, US, vol. 48, no. 6, 16 June 2015 (2015-06-16), US , pages 1687 - 1695, XP055953194, ISSN: 0001-4842, DOI: 10.1021/acs.accounts.5b00134 *
GUO NA, HU MENG-YANG, FENG YE, ZHU SHOU-FEI: "Highly efficient and practical hydrogenation of olefins catalyzed by in situ generated iron complex catalysts", ORGANIC CHEMISTRY FRONTIERS, vol. 2, no. 6, 1 January 2015 (2015-01-01), pages 692 - 696, XP055953191, DOI: 10.1039/C5QO00064E *
LU PENG, REN XIANG, XU HAOFENG, LU DONGPO, SUN YUFENG, LU ZHAN: "Iron-Catalyzed Highly Enantioselective Hydrogenation of Alkenes", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 143, no. 32, 18 August 2021 (2021-08-18), pages 12433 - 12438, XP055953190, ISSN: 0002-7863, DOI: 10.1021/jacs.1c04773 *

Also Published As

Publication number Publication date
US20240174588A1 (en) 2024-05-30
CN112851479A (zh) 2021-05-28
CN112851479B (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2022156320A1 (zh) 一种铁络合物催化剂催化烯烃的不对称氢化反应制备手性烷基化合物的方法
Fossey et al. Synthesis of 2, 6-Bis (2-oxazolinyl) phenylplatinum (II) NCN Pincer Complexes by Direct Cyclometalation. Catalysts for Carbon− Carbon Bond Formation
Wang et al. Synthesis of 3-indolylglycine derivatives via dinuclear zinc catalytic asymmetric Friedel–Crafts alkylation reaction
US7589218B2 (en) Chiral spiro compounds and their use in asymmetric catalytic reactions
Lu et al. Highly enantioselective catalytic alkynylation of ketones–A convenient approach to optically active propargylic alcohols
Sekine et al. Enantioselective Functionalization of Difluorocyclopropenes Catalyzed by Chiral Copper Complexes: Proposal for Chiral gem-Dimethyl and tert-Butyl Analogues
CN105384731B (zh) 一种手性含胺甲基吡啶噁唑啉的化合物及其制备方法
Lu et al. Dipeptide-derived multifunctional phosphonium salt as a catalyst to synthesize highly functionalized chiral cyclopentanes
Fan et al. Air-Stable Half-Sandwich Iridium Complexes as Aerobic Oxidation Catalysts for Imine Synthesis
Chen et al. Pyridyl-substituted indenyl ruthenium complexes: synthesis, structures, and reactivities
CN101402582A (zh) 一种具有光学活性的α-羟基-β-氨基酸的合成方法
Zhi et al. Palladium-Catalyzed Diastereoselective Synthesis of 3-Arylbutanoic Acid Derivatives
Yang et al. Synthesis of novel chiral tridentate aminophenol ligands for enantioselective addition of diethylzinc to aldehydes
CN110655456B (zh) 一种e/z混合或单一构型的三取代烯烃的不对称催化氢化制备手性烷基化合物的方法
Dong et al. Rhodium‐Catalyzed Asymmetric Nitroallylation of Arylmetallics with Cyclic Nitroallyl Acetates and Applications in Organic Synthesis
Zhang et al. Synthesis of new chiral cis‐3‐hydroxyazetidines and their application in diethylzinc addition to aldehydes
Yang et al. Enantioselective addition of phenylacetylene to aldehydes catalyzed by 1, 3-aminophenol ligand
Xu et al. Highly enantioselective addition of methyl propiolate to aldehydes catalyzed by a titanium (IV) complex of a β-hydroxy amide
JP2012210623A (ja) 金属触媒、及び光学活性α−アミノ酸誘導体の製造方法
Drabina et al. Synthesis, copper (II) complexes and catalytic activity of substituted 6-(1, 3-oxazolin-2-yl) pyridine-2-carboxylates
JP5585979B2 (ja) 光学活性シアノヒドリン化合物類およびその製造方法
CN112824375B (zh) 一种钯催化亚胺不对称氢化制备手性胺化合物的方法
JP5266495B2 (ja) シアノ化触媒及びそれを用いた光学活性シアンヒドリン化合物類の製造方法
US20180327343A1 (en) Compositions and methods for preparing beta,gamma-unsaturated acids
Xu et al. Chiral aminonaphthol‐catalyzed enantioselective carbonyl addition of diethylzinc to aromatic aldehydes high‐throughput screened by CD‐HPLC analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920696

Country of ref document: EP

Kind code of ref document: A1