WO2022156075A1 - 一种可铸旋和锻旋加工的汽车轮毂铝合金、制备方法、汽车轮毂及其制备方法 - Google Patents

一种可铸旋和锻旋加工的汽车轮毂铝合金、制备方法、汽车轮毂及其制备方法 Download PDF

Info

Publication number
WO2022156075A1
WO2022156075A1 PCT/CN2021/086780 CN2021086780W WO2022156075A1 WO 2022156075 A1 WO2022156075 A1 WO 2022156075A1 CN 2021086780 W CN2021086780 W CN 2021086780W WO 2022156075 A1 WO2022156075 A1 WO 2022156075A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
wheel hub
spun
automobile wheel
cast
Prior art date
Application number
PCT/CN2021/086780
Other languages
English (en)
French (fr)
Inventor
王宏明
李桂荣
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to GB2305926.4A priority Critical patent/GB2614215B/en
Publication of WO2022156075A1 publication Critical patent/WO2022156075A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/04Centrifugal casting; Casting by using centrifugal force of shallow solid or hollow bodies, e.g. wheels or rings, in moulds rotating around their axis of symmetry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/34Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tyres; for rims
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the invention belongs to the technical field of aluminum alloy preparation, and in particular relates to an automobile wheel hub aluminum alloy that can be cast-spun and forged-spun and a preparation method thereof.
  • lightweight aluminum alloy materials are more used to replace heavy-duty materials such as steel with high specific gravity.
  • the all-aluminum body and aluminum alloy wheels of high-end cars require aluminum alloys to be lightweight. At the same time, it must have higher strength, toughness, corrosion resistance, fatigue resistance and other properties, as well as very good deformation processing performance; wheel hubs are an indispensable key component of automobiles, and more than 80% of automobiles are made of aluminum alloys.
  • wheel hubs are an indispensable key component of automobiles, and more than 80% of automobiles are made of aluminum alloys.
  • the performance of the current aluminum alloy wheels needs to be improved urgently. It needs to start from two aspects, one is the optimization of aluminum alloy materials; the other is the continuous optimization of the processing methods of the wheel hubs.
  • A356 to cast aluminum alloys
  • aluminum alloy wheels through the casting and spinning process.
  • the advantage of this method is that it is simple and easy to control, but the performance of the wheel is special
  • the impact toughness is very low, the toughness of the finished wheel is poor, and the elongation rate is generally about 2%, which is the bottleneck that A356 aluminum alloy material is difficult to overcome;
  • the second is to use 6061 aluminum alloy and process it into wheels by forging and spinning.
  • the performance is high, especially the elongation rate is significantly improved, but the forging process is complex, the technical difficulty is high, and the yield is low. It is difficult to overcome the current problems simply by relying on process optimization, and the problem must be solved from the fundamentals of the material.
  • a new type of aluminum alloy is urgently needed, which can have both the superior properties of cast aluminum alloy and deformed aluminum alloy, and is also suitable for more flexible deformation processing and heat treatment methods.
  • the spinning method is processed into an aluminum alloy wheel hub, and the forging and spinning method can also be used to produce an aluminum alloy wheel hub to meet the needs of the current traditional aluminum alloy wheel hub production line.
  • the present invention proposes an aluminum alloy that has both the properties of the cast aluminum alloy and the deformed aluminum alloy, and can meet the casting and spinning process and forging process of the aluminum alloy wheel hub.
  • An aluminum alloy with two processing methods of the spinning process is proposed, and a high-performance wheel hub and a preparation method can be produced by using the casting and spinning method or the forging and spinning method.
  • An aluminum alloy for automobile wheel hubs that can be cast-spun and forged-spun, characterized in that the composition of the alloy in mass percentages is: Si 3.0-4.0%, Mg 2.0-2.5%, Mn 0.5-1.0%, Zr 0.10-0.50 %, Cr 0.05-0.1%, Cu 0.5-0.8%, Fe 0.1-0.2%, Zn 0.1-0.3%, Ti 0.10-0.20%, B 0.01-0.05%, Y 0.05-0.1%, Er 0.1-0.2%, Sr 0.02 ⁇ 0.05%, the balance is Al.
  • the described preparation method of the aluminum alloy for automobile wheel hubs that can be cast-spun and forged-spun is characterized in that, comprises the following steps:
  • step 2) Refining: adjust the temperature of the aluminum alloy melt obtained in step 1) to 710-730° C., add a refining agent through argon powder spraying and stir, and carry out refining treatment, refining time is 25 minutes, and slag is removed after refining;
  • step 3) Forming: the aluminum alloy melt obtained in step 3) is formed by low-pressure casting or semi-solid forging.
  • the low-pressure casting molding is performed at 680-700° C., and the pressure range of the low-pressure casting cavity is 500-1000 mBar
  • the semi-solid forging is forging at 580-640 °C.
  • the refining agent added in the step 2) is: 35-40% of the basic components in mass percentage, 10%-15% of cryolite, 18%-25% of hexachloroethane, 15% ⁇ 20% sodium chlorosilicate, 6% rare earth fluoride CeF 3 and 4% rare earth fluoride NaYF 4 , wherein the basic components are 50wt% NaCl+50wt% KCl, and the amount of refining agent added is aluminum alloy melt 0.1 to 0.15% of the weight.
  • the rushing speed of argon is 25ml/s.
  • the covering agent is a sodium-free covering agent, and the addition amount is 0.1% of the weight of the aluminum alloy melt.
  • the method for preparing an automobile wheel hub based on the method for preparing an aluminum alloy for an automobile wheel hub that can be cast and spun is characterized in that in the step 4) forming a wheel blank, and then subjecting the wheel blank to a solution heat treatment Afterwards, the formed hub is processed by spinning or forging forming, and the obtained formed hub is directly punched, then subjected to heat treatment and then cleaned and polished to obtain a finished hub.
  • the wheel hub when the wheel blank is formed by the method of low pressure casting, after the solution treatment, the wheel hub is processed by the method of spinning; when the method of semi-solid forging is adopted to form the wheel.
  • the wheel blank is processed, it is processed into a wheel hub by forging and spinning after solution treatment.
  • solution treatment is a solution treatment at 400-420°C.
  • the automobile wheel hub prepared by the preparation method of the automobile wheel hub is characterized in that: the residual gas impurity content in the automobile wheel hub is less than 0.1vol.%, the gas content of the melt is less than 0.1mL/100gAl, and the density reaches 2.75 g/cm 3 or more, the tensile strength is greater than 320MPa, the yield strength is greater than 280MPa, the elongation is greater than 6%, and the microhardness is greater than 88HV.
  • the aluminum alloy of the present invention is optimized to match the alloy composition. After solution treatment, the silicon precipitation phase and the strengthening phases such as Mg 2 Si and Al 2 Cu can be completely dissolved, the material has low deformation resistance and the best plastic workability. This method provides the best choice for the production line of aluminum alloy wheel processing enterprises using different processing methods.
  • the surface metal of the cast and forged parts of the present invention has a large degree of undercooling, fast solidification and fine grains, so the surface of the casting and forging parts has the effect of fine-grain strengthening;
  • the alloy density is significantly improved, and the specific strength is also significantly improved, so that the produced aluminum alloy wheel blank can meet the production requirements of subsequent spinning deformation processing and forging deformation processing.
  • the refining agent designed by the present invention which is sprayed with argon at the same time, has excellent degassing and impurity removal effects while not reacting with the aluminum alloy, and the spraying of argon is based on the diffusion of the solvent.
  • the principle of adsorption and dissolution takes away a large amount of hydrogen, which plays the role of double degassing and slag removal.
  • the main performance index of the aluminum alloy of the present invention after being processed into a wheel hub meets the performance index requirements of a high-performance aluminum alloy wheel hub.
  • Fig. 1 is the microstructure diagram of the scanning electron microscope after T6 heat treatment of the light-weight automobile wheel aluminum alloy obtained in Example 1 of the present invention
  • Fig. 2 is the microstructure diagram of the scanning electron microscope after T6 heat treatment of the lightweight automobile wheel aluminum alloy obtained in Example 2 of the present invention
  • FIG. 3 is a scanning electron microscope microstructure diagram of the aluminum alloy wheel prepared by the comparative example after T6 heat treatment.
  • Refining adjust the temperature of the aluminum alloy melt obtained in step 1) to 730° C., add 0.15% refining agent by argon powder spraying and carry out stirring for refining treatment, the added refining agent is: 40% basic Component (50wt%NaCl+50wt%KCl), 10% Cryolite, 20% Hexachloroethane in the range, 20% Sodium Chlorosilicate, 6% Rare Earth Fluoride CeF 3 and 4% Rare Earth Fluorine Compound NaYF 4 , in which the basic components are 50wt%NaCl+50wt%KCl; the amount of refining agent added is 0.10% of the weight of the molten aluminum; the rushing speed of argon is 25ml/s, the refining time is 25min, and the slag is removed after refining.
  • the basic Component 50wt%NaCl+50wt%KCl
  • 10% Cryolite 20% Hexachloroethane in the range, 20%
  • step 4) Forming: the aluminum alloy melt obtained in step 3) is further formed into a wheel blank, and the wheel blank forming process is as follows: at 700° C., a low-pressure casting molding method is used to obtain the wheel blank, and the pressure range of the low-pressure casting cavity is: 500-1000mBar.
  • step 5) Processing the wheel blank into a wheel hub: the wheel blank in step 4) is processed into a wheel hub after solution heat treatment.
  • the aluminum alloy wheel hub obtained in the above steps is subjected to high temperature punching, heat treatment, and cleaning and polishing to obtain a finished wheel hub.
  • the residual gas impurity content in the material of the finished aluminum alloy wheel hub is 0.1 vol.%, and the gas (hydrogen) content of the melt is low.
  • the pinhole level is about 2 times lower than that of traditional cast aluminum alloy wheels, and the density reaches 2.75g/cm 3 .
  • the tensile strength is 326MPa
  • the yield strength is greater than 287MPa
  • the elongation is greater than 6.2%.
  • Microhardness 89HV Microhardness 89HV.
  • Fig. 1 is the microstructure diagram of the scanning electron microscope obtained in Example 1 of the present invention after the lightweight automobile wheel aluminum alloy is subjected to T6 heat treatment.
  • step (2) Refining: the temperature of the aluminum alloy melt obtained in step (1) is adjusted to 730° C., 0.15% of refining agent is added by argon gas spraying and stirring is performed to carry out refining treatment, and the added refining agent is the same as that in Example 1.
  • the refining agent used in the argon gas is charged at a speed of 22ml/s, the refining time is 25min, and the slag is removed after refining;
  • step 4) Forming: the aluminum alloy melt obtained in step 3) is further formed into a wheel blank, and the wheel blank forming process is as follows: the wheel blank forming process is: adopting a semi-solid forging method at 580-640 ° C to obtain the wheel blank .
  • the wheel blank is processed into a wheel hub: the wheel blank in step 4) is processed into a wheel hub after solution heat treatment.
  • the aluminum alloy wheel hub prepared in the above steps is subjected to high temperature punching, heat treatment, and cleaning and polishing to obtain a finished wheel hub.
  • the residual gas impurity content in the material of the finished aluminum alloy wheel hub is 0.08 vol.%, and the gas (hydrogen) content of the melt is low.
  • the porosity level is about 2 times lower than that of traditional cast aluminum alloy wheels, and the density reaches 2.78g/cm 3 .
  • the tensile strength is 330MPa
  • the yield strength is greater than 290MPa
  • the elongation is 6.7%.
  • Microhardness 90HV Microhardness 90HV.
  • Fig. 2 is the microstructure diagram of the scanning electron microscope obtained in Example 2 of the present invention after T6 heat treatment of the lightweight automobile wheel aluminum alloy.
  • FIG. 3 is a scanning electron microscope microstructure diagram of the aluminum alloy wheel hub prepared by the comparative example after T6 heat treatment. . According to the comparison of the scanning electron micrographs Fig. 1 and Fig. 2 obtained in Examples 1 and 2 and the microstructure photograph obtained by the comparative example Fig.
  • the alloy and the processing method of the present invention make the silicon phase evenly distributed along the grain boundary in the In the sample, the T6 heat treatment makes the crystalline silicon spheroidized, and the uniform and fine spherical particles or ellipsoid particles are dispersed around the grain boundary, the structure is dense, and the Mg 2 Si is completely dissolved in the matrix ⁇ -Al; In terms of microstructure, the tissue density of Example 1 and Example 2 is significantly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)

Abstract

一种可铸旋和锻旋加工的汽车轮毂铝合金、制备方法、汽车轮毂及其制备方法,该铝合金的成分以质量百分数计为:Si 3.0~4.0%、Mg 2.0~2.5%、Mn 0.5~1.0%、Zr 0.10~0.50%、Cr 0.05-0.1%、Cu 0.5%~0.8%、Zn 0.1~0.3%、Ti 0.10~0.20%、B 0.01~0.05%、Y 0.05~0.1%、Er 0.1~0.2%、Sr 0.02~0.05%,余量为Al;制备方法主要包括熔化合金化、精炼、铸造、热处理及变形加工等步骤;该铝合金具有合金化简单,可用于铸旋工艺也可以用于锻旋工艺制备高性能的铝合金轮毂。

Description

一种可铸旋和锻旋加工的汽车轮毂铝合金、制备方法、汽车轮毂及其制备方法 技术领域
本发明属于铝合金制备技术领域,具体涉及到一种可铸旋和锻旋加工的汽车轮毂铝合金及其制备方法。
背景技术
随着汽车轻量化要求的不断提高,轻量化的铝合金材料更多的用于替代比重较高的钢铁等大比重材料,高端轿车的全铝车身、铝合金轮毂等部件要求铝合金自身轻量化的同时,要有更高的强韧性、耐腐蚀、耐疲劳等性能,还要有非常好的变形加工性能;轮毂是汽车不可或缺的关键部件,80%以上的汽车都在采用铝合金材质的轮毂,但目前的铝合金轮毂的性能急需要提升,需要从两个方面入手,一是铝合金材质的优化;二是轮毂加工方法的不断优化。
当前,用于铝合金轮毂的材料及加工方法主要有两个主流选择,一是采用A356铸造铝合金,通过铸旋工艺生产铝合金轮毂,这种方法的优势在于简单易控制,但轮毂性能特别是冲击韧性很低,成品车轮的韧性差,延长率普遍在2%左右,这是A356铝合金材质难以克服的瓶颈;二是采用6061铝合金,用锻旋方法加工成车轮,这种车轮的性能较高,特别是延伸率显著提高,但锻旋工艺复杂,技术难度大,成材率低,单纯依靠工艺优化,难以克服目前的问题,也要从材质的根本上去解决问题。
在铝合金轮毂加工领域,急需一种新型的铝合金,这种铝合金能兼具铸造铝合金和变形铝合金的优越性能,同时又适用于更灵活的变形加工和热处理方法,实现既可以铸旋方法加工成铝合金轮毂,也可以采用锻旋方法生产铝合金轮毂,以满足目前传统铝合金车轮轮毂产线的需求。
发明内容
本发明针对目前铝合金轮毂用铝合金变形加工适应性差和由于材质原因导致的性能不高问题,提出一种兼具铸造铝合金和变形铝合金性能,又能满足铝合金轮毂铸旋工艺和锻旋工艺两种加工方法的铝合金,以及提出一种可采用铸旋方法,也可以采用锻旋方法生产高性能车轮轮毂及制备方法。
为实现上述发明目的,本发明采用的技术方案为:
一种可铸旋和锻旋加工的汽车轮毂铝合金,其特征在于,合金的成分以质量百分数计为:Si  3.0~4.0%、Mg 2.0~2.5%、Mn 0.5~1.0%、Zr 0.10~0.50%、Cr 0.05-0.1%、Cu 0.5~0.8%、Fe 0.1~0.2%、Zn 0.1~0.3%、Ti 0.10~0.20%、B 0.01~0.05%、Y 0.05~0.1%、Er 0.1~0.2%、Sr 0.02~0.05%,余量为Al。
所述的可铸旋和锻旋加工的汽车轮毂铝合金的制备方法,其特征在于,包括以下步骤:
1)熔炼:Al料熔化后,先加入硅锭,待其熔化后将含Al、Mn、Cu、Cr、Mg、Zn、Fe元素的金属材料加入炉内熔化,熔炼温度740~750℃,时间100min,机械打渣后依次加入Zr、Ti、B、Y、Er、Sr的合金,继续熔炼30min,待合金元素全部熔化后,机械搅拌,扒渣取样,微调成分后得到铝合金熔液;
2)精炼:将步骤1)制得的铝合金熔液的温度调整至710~730℃,通过氩气喷粉加入精炼剂并搅拌,进行精炼处理,精炼时间25min,精炼后扒渣;
3)静置:将精炼后的铝合金熔液添加覆盖剂,静置30min,静置调整温度为700~710℃;
4)成型:将步骤3)制得的铝合金熔液采用低压铸造成型或半固态锻造成型的方法成型。
进一步地,所述可铸旋和锻旋加工的汽车轮毂铝合金的制备方法中:步骤4)中所述低压铸造成型是在680~700℃、低压铸造型腔的压力范围为500-1000mBar的条件下铸造成型;所述半固态锻造成型是在580~640℃下锻造成型。
进一步地,所述步骤2)中加入的精炼剂为:以质量百分数计的35~40%的基本组元、10%~15%的冰晶石、18%~25%的六氯乙烷、15~20%的氯硅酸钠、6%的稀土氟化物CeF 3和4%的稀土氟化物NaYF 4,其中基本组元为50wt%NaCl+50wt%KCl,精炼剂的加入量为铝合金熔液重量的0.1~0.15%。
进一步地,所述步骤2)中氩气的冲入速度为25ml/s。
进一步地,所述步骤3)中覆盖剂为无钠覆盖剂,加入量为铝合金熔液重量的0.1%。
基于所述的可铸旋和锻旋加工的汽车轮毂铝合金的制备方法制备的汽车轮毂的方法,其特征在于,所述步骤4)成型为轮胚,再将所述轮胚经固溶热处理后,通过旋压成形或者锻压成形的方法加工获得成形轮毂,得到的成形轮毂直接进行冲孔,然后进行热处理后再经清洗、抛光制得成品轮毂。
进一步地,所述汽车轮毂的制备方法中:当采用低压铸造成型的方法成型轮胚时,在固溶处理后,采用旋压成形的方法加工成轮毂;当采用半固态锻造成型的方法成型轮胚时,在固溶处理后,采用锻旋成形的方法加工成轮毂。
进一步地,所述固溶处理是在400-420℃进行固溶处理。
所述汽车轮毂的制备方法所制备的汽车轮毂,其特征在于:所述汽车轮毂中残余气杂含量为低于0.1vol.%,熔体的气体含量低于0.1mL/100gAl,致密度达到2.75g/cm 3以上,抗拉强度大于320MPa,屈服强度大于280MPa,延伸率大于6%,显微硬度大于88HV。
本发明的主要优势:
(1)本发明的铝合金相对于传统的用于铸旋轮毂的A356铝合金和锻旋轮毂的6061铝合金而言,通过合金成分的最优化匹配,这种铝合金在400-420℃下固溶处理后,硅析出相和Mg 2Si及Al 2Cu等强化相可完全溶解,材料变形抗力低,塑性加工性最佳,既可以通过铸旋方法加工铝合金轮毂,也可以通过锻旋方法加工铝合金轮毂,这对铝合金轮毂加工企业采用不同加工方法的产线提供了最佳选择。
(2)本发明的铸旋件和锻旋件的表面金属过冷度较大、凝固较快、晶粒较为细小,因此铸锻件表面起到细晶强化的效果;这种复合成形后的铝合金密度比普通的铸造铝合金有了明显提升,比强度也有显著改善,使得生产出来的铝合金轮胚可以满足后续旋压变形加工又可以满足锻压变形加工的生产要求。
(3)本发明设计的随氩气同时喷入的精炼剂,在不与铝合金发生反应的同时,还具有效果极好的除气除杂的效果,并且氩气的喷入,根据溶剂扩散、吸附、溶解原理带走大量的氢气,起到双重除气除渣的作用。
(4)本发明的铝合金经加工成轮毂后的主要性能指标满足高性能铝合金轮毂的性能指标需求,表1为A356、6061和本专利发明的三种铝合金经过同样的铸旋方式和热处理所生产的轮毂在抗拉强度、屈服强度和延伸率方面的性能比较,结果显示本专利发明的铝合金所生产的轮毂在各个方面都有较大提高,可实现车轮的轻量化和高强韧。
表1.
  抗拉强度/MPa 屈服强度/MPa 延伸率
A356 273 245 4.5%
6061 283 261 6.1%
本发明铝合金 326 290 6.5%
附图说明
图1为本发明实施例1所得到轻量化汽车轮毂铝合金经T6热处理后的扫描电子显微镜的微观组织图;
图2为本发明实施例2所得到轻量化汽车轮毂铝合金经T6热处理后的扫描电子显微镜的微观组织图;
图3为对比例制备的铝合金轮毂经T6热处理后的扫描电子显微镜的微观组织图。
具体实施方式
实施例1
1)熔炼:Al料熔化后,先加入硅锭,待其熔化后,按照质量百分比Si 3.5%、Mg 2.25%、Mn 0.75%、Zr 0.3%、Cr 0.075%、Cu 0.65%、Zn 0.2%、Fe 0.15%、Ti 0.15%、B 0.03%、Y 0.075%、Er 0.15%、Sr 0.035%,余量为Al,将含Al、Mn、Cu、Cr、Mg、Zn、Fe元素的金属材料加入炉内熔化,熔炼温度750℃,时间100min,机械打渣后依次加入Zr、Ti、B、Y、Er、Sr的合金,时间30min,待合金元素全部熔化后,机械搅拌,扒渣取样,微调成分后得到铝合金熔液。
2)精炼:将步骤1)制得的铝合金熔液的温度调整至730℃,通过氩气喷粉加入0.15%的精炼剂并且进行搅拌进行精炼处理,加入的精炼剂为:40%的基本组元(50wt%NaCl+50wt%KCl),10%的冰晶石、20%范围内的六氯乙烷、20%的氯硅酸钠、6%的稀土氟化物CeF 3和4%的稀土氟化物NaYF 4,其中基本组元为50wt%NaCl+50wt%KCl;精炼剂的加入量为铝液重量的0.10%;氩气的冲入速度为25ml/s,精炼时间25min,精炼后扒渣。
3)静置:将精炼后的铝合金熔液添加无钠覆盖剂,加入量为0.1%,静置30min,静置调整温度为710℃。
4)成型:将步骤3)制得的铝合金熔液进一步成型成轮胚,轮胚成型过程为:在700℃下采用低压铸造成型方法制得轮胚,低压铸造型腔的压力范围为500-1000mBar。
5)轮胚加工成轮毂:将步骤4)的轮胚经固溶热处理后,加工成轮毂,轮胚在400-420℃固溶处理后,采用旋压成形的方法加工成轮毂。
上述步骤制得的铝合金轮毂,经高温冲孔后,进行热处理后清洗抛光制得成品轮毂,成品铝合金轮毂材质中残余气杂含量为0.1vol.%,熔体的气体(氢气)含量低于0.1mL/100gAl,针孔度级别比传统铸造铝合金轮毂降低了约2倍,致密度达到2.75g/cm 3,机械性能方面,抗拉强度326MPa,屈服强度大于287MPa,延伸率大于6.2%,显微硬度89HV。
图1为本发明实施例1所得到轻量化汽车轮毂铝合金经T6热处理后的扫描电子显微镜的微观组织图。
实施例2
1)熔炼:Al料熔化后,先加入硅锭,待其熔化后,按照质量百分比Si 4.0%、Mg 2.5%、Mn 1.0%、Zr 0.50%、Cr 0.1%、Cu 0.8%、Zn 0.3%、Fe 0.13%、Ti 0.20%、B 0.05%、Y  0.1%、Er 0.2%、Sr 0.05%,余量为Al,将含Al、Mn、Cu、Cr、Mg、Zn、Fe元素的金属材料加入炉内熔化,熔炼温度745℃,时间100min,机械打渣后依次加入Zr、Ti、B、Y、Er、Sr的合金,时间30min,待合金元素全部熔化后,机械搅拌,扒渣取样,微调成分后得到铝合金熔液;
2)精炼:将步骤(1)制得的铝合金熔液的温度调整至730℃,通过氩气喷粉加入0.15%的精炼剂并且进行搅拌进行精炼处理,所加入的精炼剂同实施例1中采用的精炼剂,氩气的冲入速度为22ml/s,精炼时间25min,精炼后扒渣;
3)静置:将精炼后的铝合金熔液添加无钠覆盖剂,加入量为0.1%,静置30min,静置调整温度为710℃;
4)成型:将步骤3)制得的铝合金熔液进一步成型成轮胚,轮胚成型过程为:轮胚成型过程为:在580~640℃下采用半固态锻造成型的方法制得轮胚。
5)轮胚加工成轮毂:将步骤4)的轮胚经固溶热处理后,加工成轮毂,轮胚在400-420℃固溶处理后,采用锻旋成型的方法加工成轮毂。
上述步骤制得的铝合金轮毂,经高温冲孔后,进行热处理后清洗抛光制得成品轮毂,成品铝合金轮毂材质中残余气杂含量为0.08vol.%,熔体的气体(氢气)含量低于0.08mL/100gAl,孔度级别比传统铸造铝合金轮毂降低了约2倍,致密度达到2.78g/cm 3,机械性能方面,抗拉强度330MPa,屈服强度大于290MPa,延伸率6.7%,显微硬度90HV。
图2为本发明实施例2所得到轻量化汽车轮毂铝合金经T6热处理后的扫描电子显微镜的微观组织图。
为说明本发明的优点,对比了用A356铝合金采用传统重力铸造方法制备的铝合金轮毂,作为对比例,图3为对比例制备的铝合金轮毂经T6热处理后的扫描电子显微镜的微观组织图。根据实例1、2所得到的扫描电子显微镜照片图1、图2和对比例得到的显微组织照片图3比较,可以看出本发明的合金及加工方法使得硅相均匀地沿晶界分布于试样中,T6热处理使结晶硅球化,以均匀细小的球形颗粒或椭球型的颗粒弥散分布于晶界周围,组织致密,Mg 2Si完全溶解于基体α-Al中;与对比例相比,在显微组织方面,实施例1和实施例2的组织致密度明显提高。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (10)

  1. 一种可铸旋和锻旋加工的汽车轮毂铝合金,其特征在于,合金的成分以质量百分数计为:Si 3.0~4.0%、Mg 2.0~2.5%、Mn 0.5~1.0%、Zr 0.10~0.50%、Cr 0.05-0.1%、Cu 0.5~0.8%、Fe 0.1~0.2%、Zn 0.1~0.3%、Ti 0.10~0.20%、B 0.01~0.05%、Y 0.05~0.1%、Er 0.1~0.2%、Sr 0.02~0.05%,余量为Al。
  2. 权利要求1所述的可铸旋和锻旋加工的汽车轮毂铝合金的制备方法,其特征在于,包括以下步骤:
    1)熔炼:Al料熔化后,先加入硅锭,待其熔化后将含Al、Mn、Cu、Cr、Mg、Zn、Fe元素的金属材料加入炉内熔化,熔炼温度740~750℃,时间100min,机械打渣后依次加入Zr、Ti、B、Y、Er、Sr的合金,继续熔炼30min,待合金元素全部熔化后,机械搅拌,扒渣取样,微调成分后得到铝合金熔液;
    2)精炼:将步骤1)制得的铝合金熔液的温度调整至710~730℃,通过氩气喷粉加入精炼剂并搅拌,进行精炼处理,精炼时间25min,精炼后扒渣;
    3)静置:将精炼后的铝合金熔液添加覆盖剂,静置30min,静置调整温度为700~710℃;
    4)成型:将步骤3)制得的铝合金熔液采用低压铸造成型或半固态锻造成型的方法成型。
  3. 根据权利要求2所述可铸旋和锻旋加工的汽车轮毂铝合金的制备方法,其特征在于:步骤4)中所述低压铸造成型是在680~700℃、低压铸造型腔的压力范围为500-1000mBar的条件下铸造成型;所述半固态锻造成型是在580~640℃下锻造成型。
  4. 根据权利要求2所述可铸旋和锻旋加工的汽车轮毂铝合金的制备方法,其特征在于:所述步骤2)中加入的精炼剂为:以质量百分数计的35~40%的基本组元、10%~15%的冰晶石、18%~25%的六氯乙烷、15~20%的氯硅酸钠、6%的稀土氟化物CeF 3和4%的稀土氟化物NaYF 4,其中基本组元为50wt%NaCl+50wt%KCl,精炼剂的加入量为铝合金熔液重量的0.1~0.15%。
  5. 根据权利要求2所述可铸旋和锻旋加工的汽车轮毂铝合金的制备方法,其特征在于:所述步骤2)中氩气的冲入速度为25ml/s。
  6. 根据权利要求2所述的可铸旋和锻旋加工的汽车轮毂铝合金的制备方法,其特征在于:所述步骤3)中覆盖剂为无钠覆盖剂,加入量为铝合金熔液重量的0.1%。
  7. 基于权利要求2所述的可铸旋和锻旋加工的汽车轮毂铝合金的制备方法制备的汽车轮毂的方法,其特征在于,所述步骤4)成型为轮胚,再将所述轮胚经固溶热处理后,通过旋压成形或者锻压成形的方法加工获得成形轮毂,得到的成形轮毂直接进行冲孔,然后进行热处理后再经清洗、抛光制得成品轮毂。
  8. 根据权利要求7所述汽车轮毂的制备方法,其特征在于:当采用低压铸造成型的方法成型轮胚时,在固溶处理后,采用旋压成形的方法加工成轮毂;当采用半固态锻造成型的方法成型轮胚时,在固溶处理后,采用锻旋成形的方法加工成轮毂。
  9. 根据权利要求7所述汽车轮毂的制备方法,其特征在于:所述固溶处理是在400-420℃进行固溶处理。
  10. 根据权利要求7-9所述汽车轮毂的制备方法所制备的汽车轮毂,其特征在于:所述汽车轮毂中残余气杂含量为低于0.1vol.%,熔体的气体含量低于0.1mL/100gAl,致密度达到2.75g/cm 3以上,抗拉强度大于320MPa,屈服强度大于280MPa,延伸率大于6%,显微硬度大于88HV。
PCT/CN2021/086780 2021-01-19 2021-04-13 一种可铸旋和锻旋加工的汽车轮毂铝合金、制备方法、汽车轮毂及其制备方法 WO2022156075A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2305926.4A GB2614215B (en) 2021-01-19 2021-04-13 Manufacturing method of automobile wheel hub aluminium alloy capable of undergoing casting and spinning, and forging and spinning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110069706.3A CN112921215B (zh) 2021-01-19 2021-01-19 一种可铸旋和锻旋加工的汽车轮毂铝合金、制备方法、汽车轮毂及其制备方法
CN202110069706.3 2021-01-19

Publications (1)

Publication Number Publication Date
WO2022156075A1 true WO2022156075A1 (zh) 2022-07-28

Family

ID=76163540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086780 WO2022156075A1 (zh) 2021-01-19 2021-04-13 一种可铸旋和锻旋加工的汽车轮毂铝合金、制备方法、汽车轮毂及其制备方法

Country Status (3)

Country Link
CN (1) CN112921215B (zh)
GB (1) GB2614215B (zh)
WO (1) WO2022156075A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115476070A (zh) * 2022-10-11 2022-12-16 佛山桃园先进制造研究院 一种铝锌合金焊丝及其制备方法
CN115572870A (zh) * 2022-10-25 2023-01-06 祁阳宏泰铝业有限公司 一种增强型606x系铝合金及其制备和型材加工方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572871B (zh) * 2022-10-31 2023-09-15 山东骏程金属科技有限公司 商用铝合金锻造车轮及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69601183T2 (de) * 1995-02-27 1999-07-15 The Furukawa Electric Co., Ltd., Tokio/Tokyo Aluminium-Druckgusslegierung mit ausgezeichneter Festigkeit und Zähigkeit, Verfahren zur Herstellung derselben und Radscheibe
CN1555423A (zh) * 2001-07-25 2004-12-15 �Ѻ͵繤��ʽ���� 切削性优异的铝合金和铝合金材及其制造方法
CN102312135A (zh) * 2010-06-30 2012-01-11 通用汽车环球科技运作有限责任公司 改进的铸造铝合金
CN105506411A (zh) * 2015-12-18 2016-04-20 百色学院 一种轮毂专用铝合金锭及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010047838A1 (en) * 2000-03-28 2001-12-06 Segal Vladimir M. Methods of forming aluminum-comprising physical vapor deposition targets; sputtered films; and target constructions
CN103695738B (zh) * 2013-08-14 2016-08-10 秦皇岛开发区美铝合金有限公司 锻旋d061轮型汽车轮毂专用铝合金铸棒生产工艺
CN103481029B (zh) * 2013-09-16 2016-01-20 浙江巨科铝业股份有限公司 一种锻旋铝合金轮毂的制备方法
US9834828B2 (en) * 2014-04-30 2017-12-05 GM Global Technology Operations LLC Cast aluminum alloy components
CN104128743A (zh) * 2014-06-16 2014-11-05 内蒙古华唐都瑞轮毂有限公司 铝合金轮毂的低压铸旋短流程工艺
CN105695813B (zh) * 2016-01-27 2018-08-28 广西平果铝合金精密铸件有限公司 一种汽车轮毂专用铝合金锭及其制备方法
CN105483468A (zh) * 2016-02-01 2016-04-13 东莞品派实业投资有限公司 一种锻造汽车铝合金轮毂所使用的专用铝合金的生产方法
CN105648285B (zh) * 2016-02-01 2017-05-03 广东迪生力汽配股份有限公司 一种铸造铝合金轮毂的配方
CN106166595A (zh) * 2016-03-16 2016-11-30 上海运良锻压机床有限公司 汽车铝合金轮毂锻旋方法
CN106367646B (zh) * 2016-08-30 2017-11-10 江苏亚太安信达铝业有限公司 一种用于坦克轮毂的高强度铝合金及其制备方法
CN108220711A (zh) * 2016-12-14 2018-06-29 罗琼 锻旋轮毂专用锻造铝合金的制备方法
CN107557621A (zh) * 2017-08-31 2018-01-09 国网河南省电力公司西峡县供电公司 一种适用于架空输电线路的铝合金导线及其制备方法
CN109136670B (zh) * 2018-08-21 2019-11-26 中南大学 一种6xxx系铝合金及其制备方法
CN111996422A (zh) * 2020-08-26 2020-11-27 烟台市鼎润铝业有限公司 一种高性能汽车轮毂用铝合金锭及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69601183T2 (de) * 1995-02-27 1999-07-15 The Furukawa Electric Co., Ltd., Tokio/Tokyo Aluminium-Druckgusslegierung mit ausgezeichneter Festigkeit und Zähigkeit, Verfahren zur Herstellung derselben und Radscheibe
CN1555423A (zh) * 2001-07-25 2004-12-15 �Ѻ͵繤��ʽ���� 切削性优异的铝合金和铝合金材及其制造方法
CN102312135A (zh) * 2010-06-30 2012-01-11 通用汽车环球科技运作有限责任公司 改进的铸造铝合金
CN105506411A (zh) * 2015-12-18 2016-04-20 百色学院 一种轮毂专用铝合金锭及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115476070A (zh) * 2022-10-11 2022-12-16 佛山桃园先进制造研究院 一种铝锌合金焊丝及其制备方法
CN115572870A (zh) * 2022-10-25 2023-01-06 祁阳宏泰铝业有限公司 一种增强型606x系铝合金及其制备和型材加工方法

Also Published As

Publication number Publication date
GB2614215B (en) 2023-11-01
GB2614215A (en) 2023-06-28
GB202305926D0 (en) 2023-06-07
CN112921215B (zh) 2022-02-15
CN112921215A (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
WO2022156075A1 (zh) 一种可铸旋和锻旋加工的汽车轮毂铝合金、制备方法、汽车轮毂及其制备方法
WO2020113713A1 (zh) 一种高强韧铸造铝硅合金及其制备方法和应用
CN112095031B (zh) 轮毂用高强高韧a356.2铝基复合材料的制备方法
CN114411020A (zh) 一种非热处理强化高强高韧压铸铝硅合金及其制备方法
CN115287506B (zh) 一种可免热处理高强韧铸造铝合金和制备方法及应用
CN109439976A (zh) 一种复合变质剂及铸造铝硅合金的复合变质方法
CN112680615B (zh) 高强韧压铸铝合金材料的制备方法、热处理方法和压铸方法
CN108251714A (zh) 一种挤压铸造高强韧铝合金及其挤压铸造方法
JP2002294383A (ja) 塑性加工用アルミニウム合金鋳塊、塑性加工用アルミニウム合金鋳塊の製造方法、アルミニウム合金塑性加工品の製造方法およびアルミニウム合金塑性加工品
CN114959377A (zh) 超高强韧可变形加工的铸造铝合金及制备方法
CN110218917B (zh) 一种含稀土元素的合金铝棒及其制备工艺
CN107937764A (zh) 一种液态模锻高强韧铝合金及其液态模锻方法
CN113832369B (zh) 增材制造的具有超高屈服强度和高塑性的亚稳态β钛合金
CN110218914A (zh) 一种高强耐磨的铸造铝硅合金及其铸造方法
CN112522557B (zh) 一种高强韧压铸铝合金材料
CN116005050B (zh) 铝镁硅合金及其制备方法
JPH11246925A (ja) 高靱性アルミニウム合金鋳物およびその製造方法
CN105838937A (zh) 一种具有高力学性能的Al-Si-Mg-Sr-Sc-Ti铸造合金及其制备方法
JP3037926B2 (ja) アルミホイール鋳造用アルミニウム合金
JP2021070871A (ja) アルミニウム合金鍛造品およびその製造方法
CN105483472A (zh) 一种铸造轮毂用铝合金锭及其制备方法
JP2002060881A (ja) 鋳造鍛造用アルミニウム合金及び鋳造鍛造材の製造方法
US20230095748A1 (en) Low carbon footprint aluminum casting component
JP2005082865A (ja) ダイカスト用非熱処理アルミニウム合金、同合金を用いたダイカスト製品および同製品の製造方法
JPH11293430A (ja) 高靱性アルミニウム合金鋳物の製造方法およびそれにより得られる高靱性アルミニウム合金鋳物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202305926

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210413

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920462

Country of ref document: EP

Kind code of ref document: A1