WO2022154007A1 - 電池モジュール及び電池モジュールの製造方法 - Google Patents

電池モジュール及び電池モジュールの製造方法 Download PDF

Info

Publication number
WO2022154007A1
WO2022154007A1 PCT/JP2022/000705 JP2022000705W WO2022154007A1 WO 2022154007 A1 WO2022154007 A1 WO 2022154007A1 JP 2022000705 W JP2022000705 W JP 2022000705W WO 2022154007 A1 WO2022154007 A1 WO 2022154007A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage detection
electrode leads
cell group
lead
negative electrode
Prior art date
Application number
PCT/JP2022/000705
Other languages
English (en)
French (fr)
Inventor
貴美 井澤
裕介 辻
昌之 中井
康宏 柳原
竜一 雨谷
猛 岩田
裕太 本橋
正保 太田
俊明 大類
慎司 石松
Original Assignee
株式会社エンビジョンAescジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンビジョンAescジャパン filed Critical 株式会社エンビジョンAescジャパン
Priority to CN202280009681.0A priority Critical patent/CN116711127A/zh
Priority to EP22739412.9A priority patent/EP4280342A1/en
Priority to JP2022575603A priority patent/JPWO2022154007A1/ja
Publication of WO2022154007A1 publication Critical patent/WO2022154007A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module and a method for manufacturing a battery module.
  • a battery module such as a lithium ion secondary battery includes a plurality of stacked battery cells.
  • a plurality of battery cells are electrically connected to each other by a positive electrode lead and a negative electrode lead drawn from the battery cell.
  • a plurality of battery cells connected in parallel may be connected in series to another plurality of battery cells connected in parallel.
  • Patent Document 1 describes an example of a battery module.
  • the positive electrode lead and the negative electrode lead of each battery cell are electrically connected via a bus bar.
  • Patent Document 2 describes an example of a method for manufacturing a battery module.
  • the positive electrode lead of a single battery cell and the negative electrode lead of another single battery cell are bonded by ultrasonic bonding. Further, the lead portion is folded back between different battery cells.
  • multiple battery cells connected in parallel may be connected in series to other multiple battery cells connected in parallel.
  • a conductive member such as a bus bar
  • a conductive member such as a bus bar
  • the structure for connecting a plurality of battery cells connected in parallel to a plurality of battery cells connected in parallel in series can be complicated.
  • An example of an object of the present invention is to simplify a structure for connecting a plurality of battery cells connected in parallel to a plurality of battery cells connected in parallel in series. Other objects of the invention will become apparent from the description herein.
  • One aspect of the present invention is A plurality of positive electrode leads provided in a plurality of first battery cells and bundled with each other, A plurality of negative electrode leads provided in a plurality of second battery cells and bundled with each other, With At least a part of the plurality of positive electrode leads and at least a part of the plurality of negative electrode leads are joined to each other.
  • the plurality of positive electrode leads and the plurality of negative electrode leads are obtained from one of the plurality of first battery cells and the plurality of second battery cells, the at least a part of the plurality of positive electrode leads and the at least of the plurality of negative electrode leads. It is a battery module that is folded back to the other of the plurality of first battery cells and the plurality of second battery cells via a part thereof.
  • Another aspect of the present invention is At least a part of a plurality of positive electrode leads provided in a plurality of first battery cells and bundled with each other and at least a part of a plurality of negative electrode leads provided in a plurality of second battery cells and bundled with each other are joined to each other.
  • the plurality of positive electrode leads and the plurality of negative electrode leads are subjected to at least a part of the plurality of positive electrode leads and at least the at least of the plurality of negative electrode leads.
  • a and B are substantially equal not only that A and B are exactly equal, but also that, for example, A is 90% or more and 110% or less of B, or B is A. It means that it is 90% or more and 110% or less of.
  • FIG. 1 is a front exploded perspective view of the battery module 10 according to the embodiment.
  • FIG. 2 is a rear perspective view of the battery module 10 according to the embodiment.
  • FIG. 3 is a side view of a part of the plurality of battery cells 100 according to the embodiment.
  • the first direction X is a direction parallel to the longitudinal direction of the battery cell 100.
  • the second direction Y is orthogonal to the first direction X and is parallel to the thickness direction of the battery cell 100.
  • the third direction Z is orthogonal to both the first direction X and the second direction Y, and is a direction parallel to the lateral direction of the battery cell 100.
  • the arrow indicating the first direction X, the second direction Y, or the third direction Z is a positive direction in which the direction from the base end to the tip of the arrow is the direction indicated by the arrow, and the direction from the tip end to the base end of the arrow. Indicates that the direction toward is a negative direction in the direction indicated by the arrow.
  • the white circles with black dots indicating the first direction X, the second direction Y, or the third direction Z are the positive directions in the direction indicated by the white circles with black dots from the front to the back of the paper surface, and from the back to the front of the paper surface. Indicates that the direction toward is the negative direction of the direction indicated by the white circle with black dots. The same applies to the subsequent figures of FIGS. 1 to 3.
  • the positive direction of the first direction X is parallel to the direction from the front surface to the rear surface of the battery module 10, and the negative direction of the first direction X is from the rear surface to the front surface of the battery module 10. It is in the direction of going.
  • the positive direction of the second direction Y is parallel to the direction from right to left when viewed from the front surface of the battery module 10, and the negative direction of the second direction Y is left when viewed from the front surface of the battery module 10. It is parallel to the direction from to the right.
  • the positive direction of the third direction Z is parallel to the direction from the bottom to the top in the vertical direction
  • the negative direction of the third direction Z is parallel to the direction from the top to the bottom in the vertical direction.
  • the relationship between the first direction X, the second direction Y, the third direction Z, and the vertical direction is not limited to the above-mentioned example.
  • the relationship between the first direction X, the second direction Y, the third direction Z, and the vertical direction differs depending on the arrangement of the battery modules 10.
  • the battery module 10 may be arranged so that the first direction X or the second direction Y is parallel to the vertical direction.
  • the battery module 10 will be described with reference to FIGS. 1 to 3.
  • the battery module 10 includes a plurality of battery cells 100, an accommodating body 200, a first voltage detection device 30, and a second voltage detection device 50.
  • the first voltage detection device 30 includes a first holding body 300, a plurality of first voltage detection units 410, and a plurality of first voltage detection lines 420.
  • the second voltage detection device 50 includes a second holding body 500, a plurality of second voltage detection units 610, and a plurality of second voltage detection lines 620.
  • the plurality of battery cells 100 are stacked in the second direction Y.
  • Each battery cell 100 has an exterior material 102.
  • Each battery cell 100 is provided with a positive electrode lead 110 and a negative electrode lead 120.
  • the exterior material 102 contains a positive electrode, a negative electrode, and a separator (not shown) together with an electrolytic solution (not shown).
  • the positive electrode, the negative electrode, and the separator are laminated in the exterior material 102 in the second direction Y.
  • the positive electrode, the negative electrode and the separator may be wound in the exterior material 102.
  • the positive electrode lead 110 is pulled out from one end of the exterior material 102 on the positive direction side and the negative direction side of the first direction X.
  • the positive electrode lead 110 is electrically connected to the positive electrode in the exterior material 102.
  • the positive electrode lead 110 is made of a metal such as aluminum.
  • the negative electrode lead 120 is pulled out from the other ends of the exterior material 102 on the positive direction side and the negative direction side of the first direction X.
  • the negative electrode lead 120 is electrically connected to the negative electrode in the exterior material 102.
  • the negative electrode lead 120 is made of a metal different from the metal constituting the positive electrode lead 110, for example, copper.
  • the plurality of battery cells 100 stacked in the second direction Y include a plurality of cell groups 100G stacked in the second direction Y.
  • Each cell group 100G includes a plurality of battery cells 100 connected in parallel adjacent to each other in the second direction Y.
  • the plurality of cell groups 100G are from the cell group 100G located at the negative end of the second direction Y of the plurality of cell groups 100G to the positive end of the second direction Y of the plurality of cell groups 100G. It is connected in series over the cell group 100G located in the section.
  • FIG. 3 shows the negative end of the first cell group 100Ga and the second cell group 100Gb of the plurality of cell groups 100G in the first direction X.
  • the first cell group 100Ga includes a plurality of battery cells 100 connected in parallel adjacent to each other in the second direction Y, that is, a plurality of first battery cells 100a.
  • the second cell group 100Gb includes a plurality of battery cells 100 connected in parallel adjacent to each other in the second direction Y, that is, a plurality of second battery cells 100b.
  • the first cell group 100Ga is provided with a plurality of positive electrode leads 110 bundled with each other.
  • the second cell group 100Gb is provided with a plurality of negative electrode leads 120 bundled with each other.
  • the plurality of positive electrode leads 110 of the first cell group 100Ga and the plurality of positive electrode leads 110 of the second cell group 100Gb are directed to opposite sides with respect to the first direction X.
  • the plurality of negative electrode leads 120 (not shown in FIG. 3) of the first cell group 100Ga and the plurality of negative electrode leads 120 of the second cell group 100Gb are directed to opposite sides with respect to the first direction X.
  • At least a part of the plurality of positive electrode leads 110 of the first cell group 100Ga, specifically the tip portion, and at least a part of the plurality of negative electrode leads 120 of the second cell group 100Gb, specifically, the tip portion are joined to each other.
  • the plurality of positive electrode leads 110 of the first cell group 100Ga and the plurality of negative electrode leads 120 of the second cell group 100Gb are the plurality of positive electrode leads of the first cell group 100Ga from one of the first cell group 100Ga and the second cell group 100Gb. It is folded back to the first cell group 100Ga and the second cell group 100Gb via the at least part of 110 and the plurality of negative electrode leads 120 of the second cell group 100Gb.
  • the first cell group 100Ga and the second cell group 100Gb can be electrically connected without using a conductive member such as a bus bar.
  • the structure for connecting the first cell group 100Ga and the second cell group 100Gb in series can be simplified as compared with the case where a conductive member such as a bus bar is used.
  • the lead portion 150 including the plurality of positive electrode leads 110 of the first cell group 100Ga and the plurality of negative electrode leads 120 of the second cell group 100Gb includes the first region 152, the second region 154, and the third region 156.
  • the lead portion 150 is folded back between different battery cells 100, specifically, between the first cell group 100Ga and the second cell group 100Gb.
  • the first region 152 is a region in which the distance between the plurality of positive electrode leads 110 of the first cell group 100Ga in the second direction Y decreases as the distance from the first cell group 100Ga increases.
  • the second region 154 is a region in which the distance between the plurality of negative electrode leads 120 of the second cell group 100 Gb in the second direction Y decreases as the distance from the second cell group 100 Gb increases.
  • the third region 156 is located between the first region 152 and the second region 154, and a plurality of positive electrode leads 110 of the first cell group 100Ga and a plurality of negative electrode leads 120 bundled with each other are
  • the lengths up to the first bent portion 158a between the two are substantially equal. In this case, it is possible to suppress the occurrence of bending of one of the two positive electrode leads 110 as compared with the case where the lengths of the two positive electrode leads 110 are different from each other.
  • the lengths of the two positive electrode leads 110 may be different from each other.
  • the second region 154 and the third region 156 The lengths up to the second bent portion 158b between the two are substantially equal. In this case, it is possible to suppress the occurrence of bending of one of the two negative electrode leads 120 as compared with the case where the lengths of the two negative electrode leads 120 are different from each other.
  • the lengths of the two negative electrode leads 120 may be different from each other.
  • the third region 156 between the first bent portion 158a and the second bent portion 158b is flat in parallel with the second direction Y and the third direction Z.
  • the third region 156 may be non-flat, such as curved.
  • the battery module 10 will be described with reference to FIGS. 1 to 3 again.
  • the plurality of positive electrode leads 110 and the plurality of negative electrode leads 120 are located on the negative direction side of the first direction X with respect to the plurality of positive electrode leads 110.
  • each lead portion 150 is not limited to the examples shown in FIGS. 1 and 2.
  • each lead portion 150 located on the negative direction side of the first direction X of the plurality of cell groups 100G stacked in the second direction Y will be referred to as a first lead portion 150a, if necessary.
  • each lead portion 150 located on the positive direction side of the first direction X of the plurality of cell groups 100G stacked in the second direction Y is referred to as a second lead portion 150b.
  • the accommodating body 200 accommodates a plurality of cell groups 100G stacked in the second direction Y.
  • the accommodating body 200 has a first cover member 210, a second cover member 220, a third cover member 230, and a fourth cover member 240.
  • the first cover member 210 covers the negative direction side of the second direction Y of the plurality of cell groups 100G laminated in the second direction Y.
  • the second cover member 220 covers the positive direction side of the second direction Y of the plurality of cell groups 100G laminated in the second direction Y.
  • the third cover member 230 covers the negative direction side of the third direction Z of the plurality of cell groups 100G stacked in the second direction Y.
  • the fourth cover member 240 covers the positive direction side of the third direction Z of the plurality of cell groups 100G stacked in the second direction Y.
  • the accommodating body 200 has a fifth cover member (not shown) that covers the negative direction side of the first direction X of the plurality of cell groups 100G stacked in the second direction Y and the first holding body 300. ing.
  • the accommodating body 200 has a sixth cover member (not shown) that covers the positive direction side of the first direction X and the second holding body 500 of the plurality of cell groups 100G stacked in the second direction Y. ing.
  • the fifth cover member is removed.
  • the sixth cover member is removed.
  • the first holding body 300 is attached to the negative direction side of the first direction X of the housing body 200.
  • the first holding body 300 has a first mounting body 310, a second mounting body 320, and a third mounting body 330.
  • the first mounting body 310 and the second mounting body 320 extend in parallel with the third direction Z.
  • the third mounting body 330 extends the side of the plurality of first lead portions 150a on the positive direction side of the third direction Z between the first mounting body 310 and the second mounting body 320 in parallel with the second direction Y. is doing.
  • the end portion of the third mounting body 330 on the negative direction side in the second direction Y is connected to the end portion of the first mounting body 310 on the positive direction side in the third direction Z.
  • the end of the third mounting body 330 on the positive direction side in the second direction Y is connected to the end portion of the second mounting body 320 on the positive direction side in the third direction Z.
  • the first mounting body 310 has a first alignment portion 352 that enters the first guide portion 252 provided on the first cover member 210.
  • the second mounting body 320 has a second alignment portion 354 that enters the second guide portion 254 provided on the second cover member 220.
  • Each of the first guide portion 252 and the second guide portion 254 defines a recess that opens upward.
  • the first alignment portion 352 enters the recess defined in the first guide portion 252 from above the first guide portion 252.
  • the second alignment portion 354 enters the recess defined in the second guide portion 254 from above the second guide portion 254.
  • the first alignment portion 352 and the second alignment portion 354 enter the recess defined in the first guide portion 252 and the recess defined in the second guide portion 254, respectively, so that the first holding portion 200 is held first.
  • Body 300 is aligned.
  • the first alignment portion 352 may define a concave portion into which the convex portion provided in the first guide portion 252 enters.
  • the second alignment portion 354 may define a concave portion into which the convex portion provided in the second guide portion 254 enters.
  • the first bus bar 314 provided on the first mounting body 310 is located at the negative end of the plurality of cell groups 100G stacked in the second direction Y on the negative direction side of the second direction Y. It is electrically connected to the positive electrode lead 110 drawn out on the negative side of the first direction X of the cell group 100G.
  • the first bus bar 314 is made of, for example, copper or aluminum.
  • the second bus bar 324 provided on the second mounting body 320 is located at the end of the plurality of cell groups 100G stacked in the second direction Y on the positive direction side of the second direction Y. It is electrically connected to the negative electrode lead 120 drawn out on the negative side of the first direction X of the above.
  • the second bus bar 324 is made of, for example, copper or aluminum.
  • the first bus bar 314 has a substantially L-shape when viewed from the first direction X.
  • the first bus bar 314 extends in the third direction Z and is electrically connected to the positive electrode lead 110, and the portion extending in the third direction Z from the upper end to the second direction Y. It includes a part that extends in the positive direction.
  • the upper surface of the portion of the first bus bar 314 extending in the second direction Y is a plane substantially perpendicular to the third direction Z.
  • the portion of the first bus bar 314 extending in the second direction Y is a terminal for connecting to an external device.
  • the first bus bar 314 is compared with the case where the portion extending in the second direction Y is not provided. 1
  • the bus bar 314 can be easily connected to an external device.
  • the second bus bar 324 is substantially L-shaped when viewed from the first direction X.
  • the second bus bar 324 extends in the third direction Z and is electrically connected to the negative electrode lead 120, and the portion extending in the third direction Z from the upper end to the second direction Y. It includes a part that extends in the negative direction.
  • the upper surface of the portion of the second bus bar 324 extending in the second direction Y is a plane substantially perpendicular to the third direction Z.
  • the portion of the second bus bar 324 extending in the second direction Y is a terminal for connecting to an external device.
  • the bus bar 324 can be easily connected to an external device.
  • the tip of the positive electrode lead 110 pulled out to the negative direction side of the first direction X of the cell group 100G located at the end on the negative direction side of the second direction Y of the plurality of cell groups 100G is in the first direction X. On the other hand, it is not bent in a substantially orthogonal direction and extends in the negative direction of the first direction X. Further, the tip of the positive electrode lead 110 is joined to the surface of the first bus bar 314 extending in the third direction Z on the negative direction side of the second direction Y. However, the tip of the positive electrode lead 110 may be joined to the surface of the first bus bar 314 extending in the third direction Z on the positive direction side of the second direction Y.
  • the tip of the negative electrode lead 120 drawn out to the negative direction side of the first direction X of the cell group 100G located at the end of the plurality of cell groups 100G on the positive direction side of the second direction Y is the first. It is not bent in a direction substantially orthogonal to the one direction X and extends in the negative direction of the first direction X. Further, the tip of the negative electrode lead 120 is joined to the surface of the second bus bar 324 on the positive direction side of the second direction Y of the portion extending in the third direction Z. However, the tip of the negative electrode lead 120 may be joined to the surface on the negative direction side of the second direction Y of the portion extending in the third direction Z of the second bus bar 324.
  • the volume energy density as a portion accommodating the plurality of cell groups 100G is increased without increasing the length dimension of the plurality of cell groups 100G in the second direction Y. It is preferable because it can be made high.
  • the directions of the tip of the positive electrode lead 110 and the tip of the negative electrode lead 120 in the first direction X may be reversed.
  • the 100G negative electrode lead 120 may be pulled out to the positive side of the first direction X.
  • the second mounting body 320 may not be provided.
  • the cell group 100G located at the end of the plurality of cell groups 100G stacked in the second direction Y on the positive direction side of the second direction Y is pulled out to the positive direction side of the first direction X of the cell group 100G.
  • a second bus bar 324 provided at a corner on the positive direction side of the first direction X and the positive direction side of the second direction Y of the housing body 200 may be electrically connected to the negative electrode lead 120.
  • the third mounting body 330 has a second connecting portion 356 that mechanically connects to the first connecting portion 256 provided on the fourth cover member 240.
  • the second connection portion 356 has a convex portion that enters the recess defined in the first connection portion 256.
  • the convex portion provided in the second connecting portion 356 is mechanically connected to the concave portion defined in the first connecting portion 256 by, for example, a snap fit.
  • the first holding body 300 is attached to the housing body 200.
  • the second connecting portion 356 may define a concave portion into which the convex portion provided in the first connecting portion 256 enters.
  • Each of the plurality of first voltage detection units 410 is provided for each of the plurality of first lead units 150a.
  • the first voltage detection device 30 detects the voltage of the plurality of first lead units 150a by the plurality of first voltage detection units 410.
  • the first voltage detection unit 410 has a chip shape.
  • Each first voltage detection unit 410 is electrically connected to at least one of a plurality of positive electrode leads 110 and a plurality of negative electrode leads 120 in each first lead unit 150a.
  • Each first voltage detection unit 410 is joined to a plurality of positive electrode leads 110 and a plurality of negative electrode leads 120 in the first lead unit 150a by, for example, laser welding.
  • the first voltage detection unit 410 is held by the first holding body 300.
  • the first holding body 300 has a first holding portion 302 provided on the third mounting body 330.
  • the first holding unit 302 holds a protrusion provided at the end of the first voltage detecting unit 410 in the third direction Z. Therefore, the first voltage detection unit 410 can be arranged at an appropriate position with respect to the first lead unit 150a in a state where the first holding body 300 is attached to the housing body 200. Further, with the first holding body 300 attached to the accommodating body 200, the first voltage detecting unit 410 is located on the opposite side of the first lead unit 150a from the side where the cell group 100G is located.
  • the first voltage detection unit 410 can be laser welded to the first lead portion 150a by irradiating the first voltage detection unit 410 with a laser from the side opposite to the side where the first lead portion 150a is located. can. Therefore, for example, it is easier to weld the first voltage detection unit 410 to the first lead unit 150a as compared with the case where the first voltage detection unit 410 is located between the first lead unit 150a and the cell group 100G. It becomes.
  • the first voltage detection unit 410 is provided on a flat portion of the first lead unit 150a parallel to the second direction Y and the third direction Z. In this case, as compared with the case where the first voltage detection unit 410 is provided in a non-flat portion such as a bent portion of the first lead portion 150a, or when the entire first lead portion 150a is curved, as compared with the case where the first lead portion 150a is provided. It is easy to join the first voltage detection unit 410 to the first lead unit 150a.
  • the first voltage detection unit 410 may be movable toward at least one of a direction approaching the first lead unit 150a and a direction away from the first lead unit 150a. In this case, by moving the first voltage detection unit 410 in the first direction X, the first voltage detection unit 410 can be arranged at an appropriate position in the first direction X with respect to the first lead unit 150a.
  • the first voltage detection unit 410 includes, for example, a portion of the first lead unit 150a that contacts the first voltage detection unit 410, that is, the same material as the material contained in the negative electrode lead 120.
  • the material contained in the first voltage detection unit 410 is more likely to be bonded to the negative electrode lead 120 than in the case where the material contained in the first voltage detection unit 410 is different from the material contained in the negative electrode lead 120. ..
  • the first voltage detection line 420 is, for example, a wire harness.
  • the first voltage detection line 420 is electrically connected to the first voltage detection unit 410. Further, the first voltage detection line 420 is supported by the first holding body 300.
  • the first holding body 300 has a second holding portion 304 provided on the third mounting body 330.
  • the second holding portion 304 defines a groove for routing the first voltage detection line 420 along the second direction Y.
  • the second holding unit 304 holds the first voltage detection line 420 by this groove. Therefore, the first voltage detection line 420 can be routed along the third mounting body 330 without being physically suspended. Therefore, the first voltage detection line 420 can be stably routed as compared with the case where the first voltage detection line 420 is physically suspended.
  • the first voltage detection line 420 may be physically suspended.
  • the first holding body 300 holds the first voltage detection unit 410 and the first voltage detection line 420.
  • the first voltage detection unit 410 and the first voltage detection line 420 are integrated.
  • the first voltage detecting unit 410 can be arranged at an appropriate position with respect to the first lead unit 150a. In this case, it becomes easier to connect the first voltage detection unit 410 to the individual first lead unit 150a as compared with the case where the lead wire is connected to the individual first lead unit 150a. Therefore, the voltage of the first lead portion 150a can be easily detected as compared with the case where the lead wires are connected to the individual first lead portions 150a.
  • the second holding body 500 is attached to the positive direction side of the first direction X of the housing body 200. At least a part of the second holding body 500 extends laterally on the positive side of the third direction Z of the plurality of second lead portions 150b.
  • the second holding body 500 is mechanically connected to the housing 200 by, for example, a snap fit, in the same manner as the first holding body 300.
  • Each of the plurality of second voltage detection units 610 is provided for each of the plurality of second lead units 150b.
  • the second voltage detection device 50 detects the voltage of the plurality of second lead units 150b by the plurality of second voltage detection units 610.
  • the second voltage detection unit 610 has a chip shape.
  • Each second voltage detection unit 610 is electrically connected to at least one of a plurality of positive electrode leads 110 and a plurality of negative electrode leads 120 in each second lead unit 150b.
  • Each second voltage detection unit 610 is joined to a plurality of positive electrode leads 110 and a plurality of negative electrode leads 120 in the second lead unit 150b by, for example, laser welding.
  • the second voltage detection unit 610 is held by the second holder 500.
  • the second holding body 500 has a third holding portion 502.
  • the third holding unit 502 holds a protrusion provided at the end of the second voltage detecting unit 610 in the third direction Z. Therefore, the second voltage detection unit 610 can be arranged at an appropriate position with respect to the second lead unit 150b in a state where the second holding body 500 is attached to the housing body 200. Further, with the second holding body 500 attached to the accommodating body 200, the second voltage detecting unit 610 is located on the side opposite to the side where the cell group 100G is located with respect to the second lead unit 150b.
  • the second voltage detection unit 610 can be laser welded to the second lead portion 150b by irradiating the second voltage detection unit 610 with a laser from the side opposite to the side where the second lead portion 150b is located. can. Therefore, for example, it is easier to weld the second voltage detection unit 610 to the second lead portion 150b as compared with the case where the second voltage detection unit 610 is located between the second lead portion 150b and the cell group 100G. It becomes.
  • the second voltage detection unit 610 is provided on a flat portion of the second lead unit 150b parallel to the second direction Y and the third direction Z. In this case, as compared with the case where the second voltage detection unit 610 is provided in a non-flat portion such as a bent portion of the second lead portion 150b, or when the entire second lead portion 150b is curved, It is easy to join the second voltage detection unit 610 to the second lead unit 150b.
  • the second voltage detection unit 610 may be movable in at least one direction toward the second lead unit 150b and away from the second lead unit 150b. In this case, by moving the second voltage detection unit 610 in the first direction X, the second voltage detection unit 610 can be arranged at an appropriate position in the first direction X with respect to the second lead unit 150b.
  • the second voltage detection unit 610 includes, for example, a portion of the second lead unit 150b that contacts the second voltage detection unit 610, that is, the same material as the material contained in the positive electrode lead 110.
  • the material contained in the second voltage detection unit 610 is more likely to be bonded to the positive electrode lead 110 than in the case where the material contained in the second voltage detection unit 610 is different from the material contained in the positive electrode lead 110. ..
  • the material contained in the second voltage detection unit 610 may be the same as the material contained in the first voltage detection unit 410. In this case, it is not necessary to use different materials for the first voltage detection unit 410 and the second voltage detection unit 610. On the other hand, when the material contained in the second voltage detection unit 610 is the same as the material contained in the first voltage detection unit 410, the material contained in the second voltage detection unit 610 and the second voltage of the second lead unit 150b The portion in contact with the detection unit 610, that is, the material contained in the positive electrode lead 110 may be different.
  • the second voltage detection unit 610 of the second lead portion 150b is in the first direction X.
  • a plurality of positive electrode leads 110 may be cut out at a portion overlapping with the negative electrode lead 120 so that the second voltage detection unit 610 is laser welded to the negative electrode lead 120.
  • the plurality of positive electrode leads 110 and the plurality of negative electrode leads 120 of each of the second lead units 150b are mutually exclusive.
  • the plurality of negative electrode leads 120 may be located on the positive side of the first direction X with respect to the plurality of positive electrode leads 110.
  • the material contained in the second voltage detection unit 610 and the portion of the second lead unit 150b that contacts the second voltage detection unit 610, that is, the material contained in the negative electrode lead 120 may be the same. can.
  • the plurality of positive electrode leads 110 are on the positive side of the first direction X with respect to the plurality of negative electrode leads 120. It is not necessary to cut out a plurality of positive electrode leads 110 as compared with the case where the positive electrode leads 110 are located at, and it is easy to laser weld the second voltage detection unit 610 to the negative electrode leads 120 from the positive direction side of the first direction X. can do.
  • the second voltage detection line 620 is, for example, a wire harness.
  • the second voltage detection line 620 is electrically connected to the second voltage detection unit 610. Further, the second voltage detection line 620 is held by the second holding body 500.
  • the second holding body 500 has a fourth holding portion 504.
  • the fourth holding portion 504 defines a groove for routing the second voltage detection line 620 along the second direction Y.
  • the fourth holding unit 504 holds the second voltage detection line 620 by this groove. Therefore, the second voltage detection line 620 can be routed along the second holding body 500 without being physically suspended. Therefore, the second voltage detection unit 610 can be stably routed as compared with the case where the second voltage detection unit 610 is physically suspended.
  • the second voltage detection unit 610 may be in a physically floating state.
  • the second holding body 500 holds the second voltage detection unit 610 and the second voltage detection line 620.
  • the second voltage detection unit 610 and the second voltage detection line 620 are integrated.
  • the second voltage detecting unit 610 can be arranged at an appropriate position with respect to the second lead unit 150b. In this case, it becomes easier to connect the second voltage detection unit 610 to the individual second lead portions 150b as compared with the case where the lead wires are connected to the individual second lead portions 150b. Therefore, the voltage of the second lead portion 150b can be easily detected as compared with the case where the lead wire is connected to each of the second lead portions 150b.
  • the battery module 10 is manufactured as follows.
  • the positive direction of the second direction Y is parallel to the direction from the bottom to the top in the vertical direction.
  • the negative direction of the second direction Y is parallel to the vertical direction from top to bottom.
  • the first direction X and the third direction Z are parallel to each other in the horizontal direction orthogonal to the vertical direction. The same applies to FIGS. 9 to 10 described later.
  • a cell group 100G having a plurality of battery cells 100 is formed.
  • the first tape 132 is provided on the negative direction side of the first direction X on the upper surface of the battery cell 100 located below the two battery cells 100.
  • the second tape 134 is provided on the positive direction side of the first direction X on the upper surface of the battery cell 100 located below the two battery cells 100.
  • a compression pad 136 is provided on the upper surface of the battery cell 100 located below the two battery cells 100 via the first tape 132.
  • another battery cell 100 is provided on the battery cell 100 located below the two battery cells 100 via the second tape 134 and the compression pad 136. In this way, the cell group 100G is formed.
  • the method for forming the cell group 100G is not limited to the example shown in FIG.
  • a plurality of cell groups 100G are arranged in a row along the first direction X so that the thickness direction of each cell group 100G, that is, the second direction Y is parallel to the vertical direction. Line up.
  • the plurality of positive electrode leads 110 of each cell group 100G are directed to the positive direction side of the first direction X.
  • the plurality of negative electrode leads 120 of each cell group 100G are directed to the negative direction side of the first direction X.
  • the plurality of positive electrode leads 110 and the plurality of negative electrode leads 120 overlap in the second direction Y so that the plurality of positive electrode leads 110 are located above the plurality of negative electrode leads 120. There is.
  • the first cell group 100Ga, the second cell group 100Gb, the third cell group 100Gc, and the fourth cell group 100Gd are arranged in this order from the positive direction to the negative direction of the first direction X. There is. Further, the plurality of cell groups 100G are moved from the negative direction of the first direction X to the positive direction by a moving mechanism such as a conveyor.
  • laser irradiation is performed from above the plurality of positive electrode leads 110 and the plurality of negative electrode leads 120 to obtain at least a part of the plurality of positive electrode leads 110 and at least a part of the plurality of negative electrode leads 120.
  • Laser welded In this way, at least a portion of the plurality of positive electrode leads 110 and at least a portion of the plurality of negative electrode leads 120 are joined to each other.
  • a lead portion 150 including a plurality of positive electrode leads 110 and a plurality of negative electrode leads 120 joined to each other is formed.
  • the time for bonding the plurality of positive electrode leads 110 and the plurality of negative electrode leads 120 can be shortened as compared with the case where other methods such as ultrasonic bonding are used.
  • the plurality of positive electrode leads 110 and the plurality of negative electrode leads 120 may be bonded by a method different from laser welding, for example, ultrasonic bonding.
  • the laser in laser welding, the laser is irradiated while wobbling.
  • the size of the intermetallic compound at the interface between the positive electrode lead 110 and the negative electrode lead 120 is finely adjusted as compared with the case where the laser is irradiated without wobbling, for example, linearly.
  • the positive electrode lead 110 and the negative electrode lead 120 can be joined with high strength.
  • the laser may irradiate, for example, linearly without wobbling.
  • the positive electrode lead 110 and the negative electrode lead 120 are welded before laminating the plurality of cell groups 100G or before bending the lead portion 150, the positive electrode is used after laminating the plurality of cell groups 100G or after bending the lead portion 150.
  • the positive electrode lead 110 and the negative electrode lead 120 may be welded after laminating a plurality of cell groups 100G or after bending the lead portion 150.
  • the lead portion 150 between the second cell group 100Gb and the third cell group 100Gc is moved upward with respect to the first cell group 100Ga and the fourth cell group 100Gd. Further, the lead portion 150 between the second cell group 100 Gb and the third cell group 100 Gc is applied from one of the second cell group 100 Gb and the third cell group 100 Gc to the other of the second cell group 100 Gb and the third cell group 100 Gc. Fold it so that it folds back.
  • the lead portion 150 between the second cell group 100 Gb and the third cell group 100 Gc is moved toward the positive direction of the first direction X. Further, the lead portion 150 between the first cell group 100Ga and the second cell group 100Gb is applied from one of the first cell group 100Ga and the second cell group 100Gb to the other of the first cell group 100Ga and the second cell group 100Gb. Fold it so that it folds back. In this way, the first cell group 100Ga, the second cell group 100Gb, and the third cell group 100Gc are stacked in order from the negative direction of the second direction Y to the positive direction.
  • a clamp can be used to bend the lead portion 150 between adjacent cell groups 100G.
  • the clamp by adjusting the clamp appropriately, the third region 156 of the lead portion 150 can be flattened as shown in FIG.
  • a predetermined number of cell groups 100G are laminated from the negative direction of the second direction Y to the positive direction.
  • a first cover member 210 is provided on the negative direction side of the second direction Y of the plurality of cell groups 100G stacked in the second direction Y, and a plurality of cells stacked in the second direction Y are provided.
  • the second cover member 220 is provided on the positive side of the cell group 100G in the second direction Y.
  • the plurality of cell groups 100G stacked in the second direction Y are compressed in the second direction Y by the first cover member 210 and the second cover member 220.
  • the length of the plurality of cell groups 100G stacked in the second direction Y in the second direction Y is adjusted to a desired length.
  • the third cover member 230 is provided on the negative direction side of the third direction Z of the plurality of cell groups 100G stacked in the second direction Y. Further, the fourth cover member 240 is provided on the positive direction side of the third direction Z of the cell group 100G laminated in the second direction Y.
  • the first holding body 300 to which the plurality of first voltage detection units 410 and the plurality of first voltage detection lines 420 are attached is attached to the accommodating body 200.
  • the second holding body 500 to which the plurality of second voltage detection units 610 and the plurality of second voltage detection lines 620 are attached is attached to the accommodating body 200.
  • each first voltage detection unit 410 is joined to each first lead unit 150a by, for example, laser welding.
  • each second voltage detection unit 610 is joined to each second lead portion 150b by, for example, laser welding.
  • a fifth cover member (not shown) is provided on the negative direction side of the first direction X of the plurality of cell groups 100G stacked in the second direction Y.
  • a sixth cover member (not shown) is provided on the positive direction side of the first direction X of the plurality of cell groups 100G stacked in the second direction Y.
  • the battery module 10 is manufactured.
  • FIG. 9 is a diagram for explaining a first example of a method of stacking a plurality of cell groups 100G.
  • the first jig 910 is used to stack the first cell group 100Ga, the second cell group 100Gb, and the third cell group 100Gc.
  • the first jig 910 has a rotating portion 912, a first engaging portion 914, and a second engaging portion 916.
  • the first engaging portion 914 is located on the positive side of the first direction X with respect to the rotating portion 912.
  • the second engaging portion 916 is rotatable along the circumference centered on the rotating portion 912 with the distance between the rotating portion 912 and the first engaging portion 914 as a radius. Further, the second engaging portion 916 can be engaged with the first engaging portion 914 from above the first engaging portion 914.
  • the first cell group 100Ga is fixed between the rotating portion 912 and the first engaging portion 914.
  • the second cell group 100 Gb is fixed between the rotating portion 912 and the second engaging portion 916.
  • the lead portion 150 between the first cell group 100Ga and the second cell group 100Gb is folded back, and the second cell group 100Gb and the third cell group 100Gb are folded back.
  • the lead portion 150 between the cell group 100 Gc and the cell group 100 Gc is folded back. In this way, the first cell group 100Ga, the second cell group 100Gb, and the third cell group 100Gc are laminated in the second direction Y.
  • the first jig 910 When the first jig 910 is used, it becomes easier to align and stack a plurality of cell groups 100G in the first direction X as compared with the case where the first jig 910 is not used.
  • FIG. 10 is a diagram for explaining a second example of a method of stacking a plurality of cell groups 100G.
  • a plurality of cell groups 100G are laminated in the second direction Y by using the second jig 920.
  • the second jig 920 has a first guide member 922 and a second guide member 924.
  • the first guide member 922 is provided on the negative direction side of the third direction Z of the plurality of cell groups 100G.
  • the first guide member 922 extends parallel to the second direction Y.
  • the second guide member 924 is provided on the positive direction side of the third direction Z of the plurality of cell groups 100G.
  • the second guide member 924 extends parallel to the second direction Y. Therefore, the plurality of cell groups 100G are laminated between the first guide member 922 and the second guide member 924 along the first guide member 922 and the second guide member 924.
  • the second jig 920 When the second jig 920 is used, it becomes easier to align and stack a plurality of cell groups 100G in the third direction Z as compared with the case where the second jig 920 is not used.
  • the battery module 10 is manufactured as follows.
  • the positive direction of the third direction Z is parallel to the direction from the bottom to the top in the vertical direction.
  • the negative direction of the third direction Z is parallel to the vertical direction from top to bottom.
  • the first direction X and the second direction Y are parallel to each other in the horizontal direction orthogonal to the vertical direction.
  • the first cell group 100Ga, the second cell group 100Gb, the third cell group 100Gc, and the fourth cell group 100Gd are arranged in the lateral direction of each cell group 100G, that is, the third direction Z. Arrange them in a row along the first direction X so that they are parallel to the vertical direction.
  • the lead portion 150 between the first cell group 100Ga and the second cell group 100Gb is folded back, and the first cell group 100Ga is placed on the positive direction side of the second cell group 100Gb in the second direction Y. Rotate towards. As a result, the first cell group 100Ga and the second cell group 100Gb are laminated in the second direction Y.
  • the lead portion 150 between the second cell group 100 Gb and the third cell group 100 Gc is folded back, and the first cell group 100 Ga and the second cell group 100 Gb are the second of the third cell group 100 Gc. Rotate toward the negative side of the direction Y. As a result, the first cell group 100Ga, the second cell group 100Gb, and the third cell group 100Gc are laminated in the second direction Y.
  • each cell group 100G can be aligned in the third direction Z by the own weight of each cell group 100G, and a plurality of cell groups 100G can be stacked in the second direction Y.
  • the number of cell groups 100G to be joined in advance is not limited to this, and may be two or three or more.
  • the first cell group 100Ga and the second cell group 100Gb are joined in a row along the first direction X, and the lead portion 150 between the first cell group 100Ga and the second cell group 100Gb is folded back.
  • the 3rd cell group 100Gc is placed on the 1st cell group 100Ga from the positive direction side of the 1st direction X or the negative direction side of the 1st direction X. Alternatively, it may be joined to the second cell group 100 Gb.
  • the folded lead portion 150 between the first cell group 100Ga and the second cell group 100Gb stacked in the second direction Y is positioned on either the positive direction side of the first direction X or the negative direction side of the first direction X.
  • the first cell group 100Ga and the second cell group 100Gb can be arranged in either the positive direction of the first direction X or the negative direction of the first direction X.
  • the cell group 100G laminated in the second direction Y will be referred to as a laminated cell group 100G, if necessary.
  • the cell group 100G to be laminated next with respect to the laminated cell group 100G is arranged on the positive direction side of the first direction X or the negative direction side of the first direction X of the laminated cell group 100G.
  • the cell group 100G to be laminated next to the laminated cell group 100G is always joined to the laminated cell group 100G from either the positive direction side of the first direction X or the negative direction side of the first direction X of the laminated cell group 100G. Then, these cell groups 100G can be laminated in the second direction Y.
  • whether the cell group 100G to be laminated next with respect to the laminated cell group 100G is arranged in the second direction Y on the positive direction side of the first direction X of the laminated cell group 100G or on the negative direction side of the first direction X.
  • the laminated cell group 100G is alternately arranged from the positive direction side of the first direction X and the negative direction side of the first direction X of the laminated cell group 100G.
  • FIG. 14 is a front perspective view of a part of the battery module 10A according to the first modification.
  • the battery module 10A according to the first modification is the same as the battery module 10 according to the embodiment except for the following points.
  • the first holding portion 302A of the first voltage detecting device 30A has a first convex portion 302Aa provided on the negative direction side of the first direction X of the first holding body 300A.
  • the first convex portion 302Aa penetrates the first voltage detection portion 410A in the first direction X.
  • the first convex portion 302Aa is, for example, a pin.
  • the first voltage detection unit 410A is movable in the first direction X along the first convex portion 302Aa. As a result, the first voltage detection unit 410A is movable toward at least one of the direction toward the first lead unit 150a and the direction away from the first lead unit 150a. Therefore, when the first voltage detection unit 410A is joined to the first lead unit 150a, the first voltage detection unit 410A can be moved to an appropriate position in the first direction X with respect to the first lead unit 150a.
  • the width of the end of the first convex portion 302Aa on the negative direction side of the first direction X is wider than the width of the through hole provided in the portion of the first voltage detecting portion 410A through which the first convex portion 302Aa penetrates. There is. Therefore, the first voltage detection unit 410A is prevented from coming off from the first convex portion 302Aa.
  • the first voltage detection line 420A is connected to the end of the first voltage detection unit 410A on the positive direction side of the third direction Z.
  • the first voltage detection line 420A is held by the first holding body 300A.
  • FIG. 15 is an exploded perspective view of the first voltage detection device 30B according to the second modification.
  • FIG. 16 is a front perspective view of a part of the first voltage detection device 30B according to the second modification.
  • the first voltage detection device 30B according to the second modification is the same as the first voltage detection device 30 according to the embodiment except for the following points.
  • the first voltage detection device 30B includes a first holding body 300B, a plurality of first voltage detection units 410B, and a plurality of first voltage detection lines 420B.
  • the first holding body 300B has a first mounting body 310B, a second mounting body 320B, and a third mounting body 330B.
  • the first mounting body 310B includes the first protector 312B, the first bus bar 314B, the first screw 316B and the first protector cover 318B.
  • a first voltage detection line 420B is attached to the first bus bar 314B by a first screw 316B. At least a part of the first screw 316B may reach the first protector 312B so that both the first screw 316B and the first bus bar 314B are attached to the first protector 312B.
  • the first protector cover 318B covers the surface of the first bus bar 314B on the positive direction side in the third direction Z.
  • the first protector cover 318B includes not only the surface of the first bus bar 314B on the positive direction side of the third direction Z, but also at least a part of the first bus bar 314B on the negative direction side of the second direction Y and the first bus bar 314B. At least a part of the negative direction side of the first direction X may be covered.
  • the second mounting body 320B includes a second protector 322B, a second bus bar 324B, a second screw 326B, and a second protector cover 328B.
  • a first voltage detection line 420B is attached to the second bus bar 324B by a second screw 326B. At least a part of the second screw 326B may reach the second protector 322B so that the second screw 326B and the second bus bar 324B are both attached to the second protector 322B.
  • the second protector cover 328B covers the surface of the second bus bar 324B on the positive direction side in the third direction Z.
  • the second protector cover 328B includes not only the surface of the second bus bar 324B on the positive direction side of the third direction Z, but also at least a part of the second bus bar 324B on the positive direction side of the second direction Y and the second bus bar 324B. At least a part of the negative direction side of the first direction X may be covered.
  • the third mounting body 330B can be separated into a plurality of stretched bodies 332B along the second direction Y.
  • the adjacent stretched bodies 332B are mechanically connected by a connecting body 334B. That is, the third mounting body 330B has a plurality of portions connected to each other, that is, a plurality of stretched bodies 332B.
  • Each of the plurality of stretched bodies 332B has at least one, for example, a plurality of first holding portions 302B.
  • the stretched body included in the third attachment body 330B depends on the total number of the plurality of lead portions 150 arranged in the first direction X. By adjusting the number of 332B, the length of the first voltage detection device 30B in the second direction Y can be adjusted.
  • the third mounting body 330B is provided with a plurality of wall portions 340B according to the plurality of first voltage detection portions 410B.
  • the wall portion 340B is on the side opposite to the side where the first voltage detection unit 410B is located with respect to the first lead portion 150a. To position.
  • the first lead portion 150a and the first voltage detection portion 410B are irradiated by irradiating the laser from the side opposite to the side where the wall portion 340B is located with respect to the first voltage detection unit 410B.
  • the first voltage detection unit 410B is located with respect to the wall portion 340B. It is also possible to prevent the first voltage detection unit 410B from being damaged due to contact of a jig, a facility, a transport container, a packing material, or the like with the first voltage detection unit 410B from the opposite side.
  • the first holding portion 302B provided on the third mounting body 330B includes a first convex portion 302Ba and two second convex portions 302Bb.
  • the first convex portion 302Ba according to the second modification penetrates the first voltage detection unit 410B in the first direction X. Therefore, similarly to the first voltage detection unit 410A according to the first modification, the first voltage detection unit 410B according to the second modification is movable in the first direction X along the first convex portion 302Ba.
  • the two second convex portions 302Bb are located on both sides of the first voltage detection unit 410B in the second direction Y.
  • the second convex portion 302Bb may not be provided on both sides of the first voltage detection unit 410B in the second direction Y, and the first voltage detection unit 410B may be on the positive direction side and the negative direction side of the second direction Y. It may be located on only one side.
  • the first voltage detection line 420B is connected to the end of the first voltage detection unit 410B on the positive direction side of the third direction Z.
  • the first voltage detection line 420B is held by a groove defined by a second holding portion 304B provided on the third mounting body 330B.
  • two battery cells 100 connected in parallel are connected in series with another two battery cells 100 connected in parallel.
  • three or more battery cells 100 connected in parallel may be connected in series with another three or more battery cells 100 connected in parallel.
  • a plurality of battery cells 100 and a plurality of other batteries connected in series such as connecting two battery cells 100 connected in parallel to another three battery cells 100 connected in parallel in series.
  • Each number of cells 100 may be different from each other.
  • the lead portions 150 folded back between the cell groups 100G adjacent to the second direction Y are provided alternately in the positive direction of the first direction X and the negative direction of the first direction X.
  • the stacking method is not limited to the embodiment.
  • the first voltage detection device 30 and the second voltage detection device 50 are used to detect the voltage of the lead portion 150 including the plurality of positive electrode leads 110 and the plurality of negative electrode leads 120.
  • the first voltage detection device 30 and the second voltage detection device 50 can also be used to detect the voltage of the lead portion 150 including the single positive electrode lead 110 and the single negative electrode lead 120.
  • Battery module 10 Battery module 10A Battery module 30 1st voltage detection device 30A 1st voltage detection device 30B 1st voltage detection device 50 2nd voltage detection device 100 Battery cell 100G Cell group 100Ga 1st cell group 100Gb 2nd cell group 100Gc 3rd cell Group 100Gd 4th cell group 100a 1st battery cell 100b 2nd battery cell 102 Exterior material 110 Positive lead 120 Negative lead 132 1st tape 134 2nd tape 136 Compression pad 150 Lead part 150a 1st lead part 150b 2nd lead part 152 1st region 154 2nd region 156 3rd region 158a 1st bent portion 158b 2nd bent portion 200 Accommodating body 210 1st cover member 220 2nd cover member 230 3rd cover member 240 4th cover member 252 1st guide portion 254 2nd guide part 256 1st connection part 258 Mounting hole 300 1st holding body 300A 1st holding body 300B 1st holding body 302 1st holding part 302A 1st holding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

正極リード(110)の少なくとも一部分と、負極リード(120)の少なくとも一部分と、が互いに接合されている。複数の正極リード(110)及び複数の負極リード(120)は、複数の第1電池セル(100a)及び複数の第2電池セル(100b)の一方から、複数の正極リード(110)の上記少なくとも一部分及び複数の負極リード(120)の上記少なくとも一部分を経由して、複数の第1電池セル(100a)及び複数の第2電池セル(100b)の他方にかけて折り返されている。

Description

電池モジュール及び電池モジュールの製造方法
 本発明は、電池モジュール及び電池モジュールの製造方法に関する。
 リチウムイオン二次電池等の電池モジュールは、積層された複数の電池セルを備えている。このような電池モジュールでは、電池セルから引き出された正極リード及び負極リードによって複数の電池セルが電気的に互いに接続されている。また、並列に接続された複数の電池セルを他の並列に接続された複数の電池セルに直列に接続させることがある。
 特許文献1には、電池モジュールの一例について記載されている。この例では、各電池セルの正極リード及び負極リードがバスバーを介して電気的に接続されている。
 特許文献2には、電池モジュールの製造方法の一例について記載されている。この例では、単一の電池セルの正極リードと、他の単一の電池セルの負極リードと、が超音波接合によって接合されている。また、異なる電池セルの間でリード部が折り返されている。
特表2020-524375号公報 特開2018-152223号公報
 並列に接続された複数の電池セルを他の並列に接続された複数の電池セルに直列に接続させる場合がある。この場合、例えば特許文献1に記載されているように、バスバー等の導電部材を介して複数の正極リード及び複数の負極リードを電気的に接続するとき、バスバー等の導電部材が必要になる。しかしながら、このような導電部材が必要な場合、並列に接続された複数の電池セルを他の並列に接続された複数の電池セルに直列に接続させるための構造が複雑になり得る。
 本発明の目的の一例は、並列に接続された複数の電池セルを他の並列に接続された複数の電池セルに直列に接続させるための構造を簡易にすることにある。本発明の他の目的は、本明細書の記載から明らかになるであろう。
 本発明の一態様は、
 複数の第1電池セルに設けられ、互いに束ねられた複数の正極リードと、
 複数の第2電池セルに設けられ、互いに束ねられた複数の負極リードと、
を備え、
 前記複数の正極リードの少なくとも一部分と、前記複数の負極リードの少なくとも一部分と、が互いに接合されており、
 前記複数の正極リード及び前記複数の負極リードは、前記複数の第1電池セル及び前記複数の第2電池セルの一方から、前記複数の正極リードの前記少なくとも一部分及び前記複数の負極リードの前記少なくとも一部分を経由して、前記複数の第1電池セル及び前記複数の第2電池セルの他方にかけて折り返されている、電池モジュールである。
 本発明の他の一態様は、
 複数の第1電池セルに設けられ、互いに束ねられた複数の正極リードの少なくとも一部分と、複数の第2電池セルに設けられ、互いに束ねられた複数の負極リードの少なくとも一部分と、を互いに接合する工程と、
 前記複数の正極リード及び前記複数の負極リードを、前記複数の第1電池セル及び前記複数の第2電池セルの一方から、前記複数の正極リードの前記少なくとも一部分及び前記複数の負極リードの前記少なくとも一部分を経由して、前記複数の第1電池セル及び前記複数の第2電池セルの他方にかけて折り返す工程と、
を備える、電池モジュールの製造方法である。
 本発明の上記態様によれば、並列に接続された複数の電池セルを他の並列に接続された複数の電池セルに直列に接続させるための構造を簡易にすることができる。
実施形態に係る電池モジュールの前方分解斜視図である。 実施形態に係る電池モジュールの後方斜視図である。 実施形態に係る複数の電池セルの一部分の側面図である。 実施形態に係る電池モジュールの製造方法の第1例を説明するための図である。 実施形態に係る電池モジュールの製造方法の第1例を説明するための図である。 実施形態に係る電池モジュールの製造方法の第1例を説明するための図である。 実施形態に係る電池モジュールの製造方法の第1例を説明するための図である。 実施形態に係る電池モジュールの製造方法の第1例を説明するための図である。 複数のセル群を積層する方法の第1例を説明するための図である。 複数のセル群を積層する方法の第2例を説明するための図である。 実施形態に係る電池モジュールの製造方法の第2例を説明するための図である。 実施形態に係る電池モジュールの製造方法の第2例を説明するための図である。 実施形態に係る電池モジュールの製造方法の第2例を説明するための図である。 変形例1に係る電池モジュールの一部分の前面斜視図である。 変形例2に係る第1電圧検出装置の分解斜視図である。 変形例2に係る第1電圧検出装置の一部分の前面斜視図である。
 以下、本発明の実施形態及び変形例について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 本明細書において、「第1」、「第2」、「第3」等の序数詞は、特に断りのない限り、同様の名称が付された構成を単に区別するために付されたものであり、構成の特定の特徴(例えば、順番又は重要度)を意味するものではない。
 本明細書において、AとBとが実質的に等しいとは、AとBとが厳密に等しいことだけでなく、例えば、AがBの90%以上110%以下であること、又はBがAの90%以上110%以下であることを意味する。
 図1は、実施形態に係る電池モジュール10の前方分解斜視図である。図2は、実施形態に係る電池モジュール10の後方斜視図である。図3は、実施形態に係る複数の電池セル100の一部分の側面図である。
 図1~図3において、第1方向Xは、電池セル100の長手方向に平行な方向である。第2方向Yは、第1方向Xに直交しており、電池セル100の厚さ方向に平行な方向である。第3方向Zは、第1方向X及び第2方向Yの双方に直交しており、電池セル100の短手方向に平行な方向である。第1方向X、第2方向Y又は第3方向Zを示す矢印は、当該矢印の基端から先端に向かう方向が当該矢印によって示される方向の正方向であり、かつ当該矢印の先端から基端に向かう方向が当該矢印によって示される方向の負方向であることを示す。第1方向X、第2方向Y又は第3方向Zを示す黒点付き白丸は、紙面の手前から奥に向かう方向が当該黒点付き白丸によって示される方向の正方向であり、かつ紙面の奥から手前に向かう方向が当該黒点付き白丸によって示される方向の負方向であることを示す。図1~図3の後続の図についても同様である。
 図1~図3において、第1方向Xの正方向は、電池モジュール10の前面から後面に向かう方向に平行になっており、第1方向Xの負方向は、電池モジュール10の後面から前面に向かう方向になっている。また、第2方向Yの正方向は、電池モジュール10の前面から見て右から左に向かう方向に平行になっており、第2方向Yの負方向は、電池モジュール10の前面から見て左から右に向かう方向に平行になっている。また、第3方向Zの正方向は、鉛直方向の下から上に向かう方向に平行になっており、第3方向Zの負方向は、鉛直方向の上から下に向かう方向に平行となっている。なお、第1方向X、第2方向Y、第3方向Z及び鉛直方向の関係は、上述した例に限定されない。第1方向X、第2方向Y、第3方向Z及び鉛直方向の関係は、電池モジュール10の配置に応じて異なる。例えば、第1方向X又は第2方向Yが鉛直方向に平行になるように電池モジュール10は配置されていてもよい。
 図1~図3を参照して、電池モジュール10について説明する。
 電池モジュール10は、複数の電池セル100、収容体200、第1電圧検出装置30及び第2電圧検出装置50を備えている。第1電圧検出装置30は、第1保持体300、複数の第1電圧検出部410及び複数の第1電圧検出線420を有している。第2電圧検出装置50は、第2保持体500、複数の第2電圧検出部610及び複数の第2電圧検出線620を備えている。
 複数の電池セル100は、第2方向Yに積層されている。各電池セル100は、外装材102を有している。各電池セル100には、正極リード110及び負極リード120が設けられている。
 外装材102は、不図示の正極電極、負極電極及びセパレータを不図示の電解液とともに収容している。一例において、正極電極、負極電極及びセパレータは、外装材102内で第2方向Yに積層されている。或いは、正極電極、負極電極及びセパレータは、外装材102内で巻回されていてもよい。
 正極リード110は、外装材102の第1方向Xの正方向側及び負方向側の一端から引き出されている。正極リード110は、外装材102内の正極電極に電気的に接続されている。一例において、正極リード110は、アルミニウム等の金属によって構成されている。
 負極リード120は、外装材102の第1方向Xの正方向側及び負方向側の他端から引き出されている。負極リード120は、外装材102内の負極電極に電気的に接続されている。一例において、負極リード120は、正極リード110を構成する金属と異なる金属、例えば銅によって構成されている。
 第2方向Yに積層された複数の電池セル100は、第2方向Yに積層された複数のセル群100Gを含んでいる。各セル群100Gは、第2方向Yに隣り合う並列に接続された複数の電池セル100を含んでいる。複数のセル群100Gは、複数のセル群100Gのうち第2方向Yの負方向側の端部に位置するセル群100Gから、複数のセル群100Gのうち第2方向Yの正方向側の端部に位置するセル群100Gにかけて、直列に接続されている。
 図3を用いて、セル群100Gの詳細について説明する。図3は、複数のセル群100Gのうちの第1セル群100Ga及び第2セル群100Gbの第1方向Xの負方向側の端部を示している。
 第1セル群100Gaは、第2方向Yに隣り合う並列に接続された複数の電池セル100、すなわち、複数の第1電池セル100aを含んでいる。第2セル群100Gbは、第2方向Yに隣り合う並列に接続された複数の電池セル100、すなわち、複数の第2電池セル100bを含んでいる。
 第1セル群100Gaには、互いに束ねられた複数の正極リード110が設けられている。第2セル群100Gbには、互いに束ねられた複数の負極リード120が設けられている。第1セル群100Gaの複数の正極リード110と、第2セル群100Gbの図3に不図示の複数の正極リード110と、は第1方向Xに関して互いに反対側に向けられている。第1セル群100Gaの図3に不図示の複数の負極リード120と、第2セル群100Gbの複数の負極リード120と、は第1方向Xに関して互いに反対側に向けられている。
 第1セル群100Gaの複数の正極リード110の少なくとも一部分、具体的には先端部分と、第2セル群100Gbの複数の負極リード120の少なくとも一部分、具体的には先端部分と、は互いに接合されている。第1セル群100Gaの複数の正極リード110及び第2セル群100Gbの複数の負極リード120は、第1セル群100Ga及び第2セル群100Gbの一方から、第1セル群100Gaの複数の正極リード110の上記少なくとも一部分及び第2セル群100Gbの複数の負極リード120の上記少なくとも一部分を経由して、第1セル群100Ga及び第2セル群100Gbにかけて折り返されている。したがって、バスバー等の導電部材を介することなく、第1セル群100Gaと第2セル群100Gbとを電気的に接続することができる。この場合、バスバー等の導電部材が用いられる場合と比較して、第1セル群100Gaと第2セル群100Gbとを直列に接続するための構造を簡易にすることができる。
 第1セル群100Gaの複数の正極リード110及び第2セル群100Gbの複数の負極リード120を含むリード部150は、第1領域152、第2領域154及び第3領域156を含んでいる。リード部150は、異なる電池セル100の間で、具体的には、第1セル群100Gaと第2セル群100Gbとの間で折り返されている。第1領域152は、第1セル群100Gaの複数の正極リード110間の第2方向Yにおける距離が第1セル群100Gaから離れるにつれて減少している領域である。第2領域154は、第2セル群100Gbの複数の負極リード120間の第2方向Yにおける距離が第2セル群100Gbから離れるにつれて減少している領域である。第3領域156は、第1領域152と第2領域154との間にあって、第1セル群100Gaの複数の正極リード110と、互いに束ねられた複数の負極リード120と、が互いに接合されている領域である。
 図3に示すように、第1セル群100Gaの複数の正極リード110のうちの第2方向Yの両端に位置する2つの正極リード110の外装材102から第1領域152と第3領域156との間の第1屈曲部158aまでの長さが実質的に等しくなっている。この場合、上記2つの正極リード110の上記長さが互いに異なる場合と比較して、上記2つの正極リード110の一方の撓みの発生を抑制することができる。なお、上記2つの正極リード110の上記長さは互いに異なっていてもよい。
 図3に示すように、第2セル群100Gbの複数の負極リード120のうちの第2方向Yの両端に位置する2つの負極リード120の外装材102から第2領域154と第3領域156との間の第2屈曲部158bまでの長さが実質的に等しくなっている。この場合、上記2つの負極リード120の上記長さが互いに異なる場合と比較して、当該2つの負極リード120の一方の撓みの発生を抑制することができる。なお、上記2つの負極リード120の上記長さは互いに異なっていてもよい。
 図3に示すように、第1屈曲部158aと第2屈曲部158bとの間の第3領域156は、第2方向Y及び第3方向Zに平行に平坦となっている。この場合、第3領域156が湾曲している等、非平坦である場合と比較して、後述する第1電圧検出部410又は第2電圧検出部610を第3領域156に接合させやすくなる。なお、第3領域156は、湾曲している等、非平坦であってもよい。
 図1~図3を再び参照して、電池モジュール10について説明する。
 図1に示すように、第2方向Yに積層された複数のセル群100Gの第1方向Xの負方向側に位置する各リード部150のうち複数の正極リード110及び複数の負極リード120が互いに接合している領域では、複数の負極リード120が複数の正極リード110よりも第1方向Xの負方向側に位置している。また、図2に示すように、第2方向Yに積層された複数のセル群100Gの第1方向Xの正方向側に位置する各リード部150のうち複数の正極リード110及び複数の負極リード120が互いに接合している領域では、複数の正極リード110が複数の負極リード120よりも第1方向Xの正方向側に位置している。ただし、各リード部150の構造は、図1及び図2に示す例に限定されない。
 以下、必要に応じて、第2方向Yに積層された複数のセル群100Gの第1方向Xの負方向側に位置する各リード部150を第1リード部150aという。また、第2方向Yに積層された複数のセル群100Gの第1方向Xの正方向側に位置する各リード部150を第2リード部150bという。
 収容体200は、第2方向Yに積層された複数のセル群100Gを収容している。収容体200は、第1カバー部材210、第2カバー部材220、第3カバー部材230及び第4カバー部材240を有している。第1カバー部材210は、第2方向Yに積層された複数のセル群100Gの第2方向Yの負方向側を覆っている。第2カバー部材220は、第2方向Yに積層された複数のセル群100Gの第2方向Yの正方向側を覆っている。第3カバー部材230は、第2方向Yに積層された複数のセル群100Gの第3方向Zの負方向側を覆っている。第4カバー部材240は、第2方向Yに積層された複数のセル群100Gの第3方向Zの正方向側を覆っている。また、収容体200は、第2方向Yに積層された複数のセル群100Gの第1方向Xの負方向側と、第1保持体300と、を覆う不図示の第5カバー部材を有している。さらに、収容体200は、第2方向Yに積層された複数のセル群100Gの第1方向Xの正方向側と、第2保持体500と、を覆う不図示の第6カバー部材を有している。図1に示す例では、第5カバー部材が取り除かれている。また、図2に示す例では、第6カバー部材が取り除かれている。
 第1保持体300は、収容体200の第1方向Xの負方向側に取り付けられている。第1保持体300は、第1取付体310、第2取付体320及び第3取付体330を有している。本実施形態では、第1取付体310及び第2取付体320は、第3方向Zに平行に延伸している。第3取付体330は、第1取付体310と第2取付体320との間で複数の第1リード部150aの第3方向Zの正方向側の側方を第2方向Yに平行に延伸している。第3取付体330の第2方向Yの負方向側の端部は、第1取付体310の第3方向Zの正方向側の端部に接続されている。第3取付体330の第2方向Yの正方向側の端部は、第2取付体320の第3方向Zの正方向側の端部に接続されている。
 第1取付体310は、第1カバー部材210に設けられた第1案内部252に入り込む第1位置合わせ部352を有している。また、第2取付体320は、第2カバー部材220に設けられた第2案内部254に入り込む第2位置合わせ部354を有している。第1案内部252及び第2案内部254の各々は、上方に向けて開口した凹部を画定している。第1位置合わせ部352は、第1案内部252の上方から、第1案内部252に画定された凹部に入り込む。第2位置合わせ部354は、第2案内部254の上方から、第2案内部254に画定された凹部に入り込む。第1位置合わせ部352及び第2位置合わせ部354がそれぞれ第1案内部252に画定された凹部及び第2案内部254に画定された凹部に入り込むことで、収容体200に対して第1保持体300が位置合わせされる。なお、第1位置合わせ部352は、第1案内部252に設けられた凸部が入り込む凹部を画定していてもよい。また、第2位置合わせ部354は、第2案内部254に設けられた凸部が入り込む凹部を画定していてもよい。
 本実施形態では、第1取付体310に設けられた第1バスバー314が、第2方向Yに積層された複数のセル群100Gのうちの第2方向Yの負方向側の端部に位置するセル群100Gの第1方向Xの負方向側に引き出された正極リード110に電気的に接続されている。第1バスバー314は、例えば、銅又はアルミニウムからなっている。また、第2取付体320に設けられた第2バスバー324が、第2方向Yに積層された複数のセル群100Gのうちの第2方向Yの正方向側の端部に位置するセル群100Gの第1方向Xの負方向側に引き出された負極リード120に電気的に接続されている。第2バスバー324は、例えば、銅又はアルミニウムからなっている。
 具体的には、第1方向Xから見て、第1バスバー314は、実質的にL字形状となっている。これによって、第1バスバー314は、第3方向Zに延在して上記正極リード110に電気的に接続された部分と、第3方向Zに延在した当該部分の上端から第2方向Yの正方向に向けて延在した部分と、を含んでいる。第1バスバー314の第2方向Yに延在した部分の上面は、第3方向Zに対して実質的に垂直な面となっている。第1バスバー314の第2方向Yに延在した部分は、外部機器と接続するためのターミナルとなっている。このため、第1バスバー314の第2方向Yに延在した部分が設けられている場合、第1バスバー314の第2方向Yに延在した部分が設けられていない場合と比較して、第1バスバー314を外部機器に接続しやすくすることができる。
 同様にして、第1方向Xから見て、第2バスバー324は、実質的にL字形状となっている。これによって、第2バスバー324は、第3方向Zに延在して上記負極リード120に電気的に接続された部分と、第3方向Zに延在した当該部分の上端から第2方向Yの負方向に向けて延在した部分と、を含んでいる。第2バスバー324の第2方向Yに延在した部分の上面は、第3方向Zに対して実質的に垂直な面となっている。第2バスバー324の第2方向Yに延在した部分は、外部機器と接続するためのターミナルとなっている。このため、第2バスバー324の第2方向Yに延在した部分が設けられている場合、第2バスバー324の第2方向Yに延在した部分が設けられていない場合と比較して、第2バスバー324を外部機器に接続しやすくすることができる。
 複数のセル群100Gのうちの第2方向Yの負方向側の端部に位置するセル群100Gの第1方向Xの負方向側に引き出された正極リード110の先端は、第1方向Xに対して略直交方向には折り曲げられず第1方向Xの負方向に延在している。また、当該正極リード110の先端は、第1バスバー314の第3方向Zに延在した部分の第2方向Yの負方向側の面と接合されている。ただし、当該正極リード110の先端は、第1バスバー314の第3方向Zに延在した部分の第2方向Yの正方向側の面と接合されていてもよい。同様にして、複数のセル群100Gのうちの第2方向Yの正方向側の端部に位置するセル群100Gの第1方向Xの負方向側に引き出された負極リード120の先端は、第1方向Xに対して略直交方向には折り曲げられず第1方向Xの負方向に延在している。また、当該負極リード120の先端は、第2バスバー324の第3方向Zに延在した部分の第2方向Yの正方向側の面と接合されている。ただし、当該負極リード120の先端は、第2バスバー324の第3方向Zに延在した部分の第2方向Yの負方向側の面と接合されていてもよい。この構成は、複数のセル群100Gの第2方向Yの長さ寸法を大きくせずに、複数のセル群100Gを収容する部分としての体積エネルギー密度、すなわち、電池モジュール10としての体積エネルギー密度を高くできるため、好ましい。なお、セル群100Gの積層数によっては、上記正極リード110の先端や上記負極リード120の先端の第1方向Xの向きは反転することがある。
 第2方向Yに積層された複数のセル群100Gの総数によっては、第2方向Yに積層された複数のセル群100Gのうちの第2方向Yの正方向側の端部に位置するセル群100Gの負極リード120が第1方向Xの正方向側に引き出されることがある。この場合、第2取付体320は設けられていなくてもよい。また、この場合、第2方向Yに積層された複数のセル群100Gのうちの第2方向Yの正方向側の端部に位置するセル群100Gの第1方向Xの正方向側に引き出された負極リード120には、収容体200の第1方向Xの正方向側かつ第2方向Yの正方向側の角に設けられた第2バスバー324を電気的に接続させてもよい。
 第3取付体330は、第4カバー部材240に設けられた第1接続部256に機械的に接続する第2接続部356を有している。本実施形態では、第2接続部356は、第1接続部256に画定された凹部に入り込む凸部を有している。第2接続部356に設けられた凸部は、例えば、スナップフィットによって、第1接続部256に画定された凹部に機械的に接続される。このようにして、第1保持体300が収容体200に取り付けられる。また、第3取付体330に取り付けられた位置決めピン358を第4カバー部材240に設けられた取付孔258に挿入することで、第1保持体300を収容体200にさらに強固に固定することができる。なお、第2接続部356は、第1接続部256に設けられた凸部が入り込む凹部を画定していてもよい。
 複数の第1電圧検出部410の各々は、複数の第1リード部150aの各々に対して設けられている。第1電圧検出装置30は、複数の第1電圧検出部410によって複数の第1リード部150aの電圧を検出する。第1電圧検出部410は、チップ形状となっている。各第1電圧検出部410は、各第1リード部150aにおける複数の正極リード110及び複数の負極リード120の少なくとも一方に電気的に接続されている。各第1電圧検出部410は、第1リード部150aにおける複数の正極リード110及び複数の負極リード120に、例えばレーザ溶接によって、接合されている。
 第1電圧検出部410は、第1保持体300によって保持されている。具体的には、第1保持体300は、第3取付体330に設けられた第1保持部302を有している。第1保持部302は、第1電圧検出部410の第3方向Zの端部に設けられた突起を保持している。したがって、第1保持体300が収容体200に取り付けられた状態で、第1電圧検出部410を第1リード部150aに対して適当な位置に配置することができる。また、第1保持体300が収容体200に取り付けられた状態で、第1電圧検出部410は、第1リード部150aに対してセル群100Gが位置する側の反対側に位置している。この場合、第1電圧検出部410に対して第1リード部150aが位置する側の反対側からレーザを照射することで、第1電圧検出部410を第1リード部150aにレーザ溶接することができる。したがって、例えば、第1電圧検出部410が第1リード部150aとセル群100Gとの間に位置する場合と比較して、第1電圧検出部410を第1リード部150aに溶接することが容易となる。
 第1電圧検出部410は、第1リード部150aのうち第2方向Y及び第3方向Zに平行な平坦な部分に設けられている。この場合、第1電圧検出部410が第1リード部150aの折れ曲がり部等の非平坦な部分に設けられている場合や、第1リード部150aの全体が湾曲している場合と比較して、第1電圧検出部410を第1リード部150aに接合させやすくなっている。
 第1電圧検出部410は、第1リード部150aに近づく方向及び第1リード部150aから離れる方向の少なくとも一方に向けて可動になっていてもよい。この場合、第1電圧検出部410を第1方向Xに移動させることで、第1電圧検出部410を第1リード部150aに対して第1方向Xにおいて適切な位置に配置することができる。
 一例において、第1電圧検出部410は、例えば、第1リード部150aのうち第1電圧検出部410に接触する部分、すなわち、負極リード120に含まれる材料と同じ材料を含んでいる。この例においては、第1電圧検出部410に含まれる材料が負極リード120に含まれる材料と異なる場合と比較して、第1電圧検出部410に含まれる材料が負極リード120に接合させやすくなる。
 第1電圧検出線420は、例えば、ワイヤーハーネスである。第1電圧検出線420は、第1電圧検出部410に電気的に接続されている。また、第1電圧検出線420は、第1保持体300によって支持されている。具体的には、第1保持体300は、第3取付体330に設けられた第2保持部304を有している。第2保持部304は、第2方向Yに沿って第1電圧検出線420を引き回すための溝を画定している。第2保持部304は、この溝によって第1電圧検出線420を保持している。したがって、第1電圧検出線420を物理的に浮遊させることなく、第3取付体330に沿って引き回すことができる。このため、第1電圧検出線420が物理的に浮遊している場合と比較して、第1電圧検出線420を安定して引き回すことができる。なお、第1電圧検出線420は物理的に浮遊した状態になっていてもよい。
 本実施形態においては、第1保持体300が第1電圧検出部410及び第1電圧検出線420を保持している。これによって、第1電圧検出部410及び第1電圧検出線420は一体となっている。また、第1保持体300を収容体200に取り付けることで、第1電圧検出部410を第1リード部150aに対して適当な位置に配置することができる。この場合、リード線を個々の第1リード部150aに接続させる場合と比較して、第1電圧検出部410を個々の第1リード部150aに接続させることが容易となる。したがって、リード線を個々の第1リード部150aに接続させる場合と比較して、第1リード部150aの電圧を簡易に検出することができる。
 第2保持体500は、収容体200の第1方向Xの正方向側に取り付けられている。第2保持体500の少なくとも一部分は、複数の第2リード部150bの第3方向Zの正方向側の側方を延伸している。第2保持体500は、第1保持体300と同様にして、例えばスナップフィットによって、収容体200に機械的に接続されている。
 複数の第2電圧検出部610の各々は、複数の第2リード部150bの各々に対して設けられている。第2電圧検出装置50は、複数の第2電圧検出部610によって複数の第2リード部150bの電圧を検出する。第2電圧検出部610は、チップ形状となっている。各第2電圧検出部610は、各第2リード部150bにおける複数の正極リード110及び複数の負極リード120の少なくとも一方に電気的に接続されている。各第2電圧検出部610は、第2リード部150bにおける複数の正極リード110及び複数の負極リード120に、例えばレーザ溶接によって、接合されている。
 第2電圧検出部610は、第2保持体500によって保持されている。具体的には、第2保持体500は、第3保持部502を有している。第3保持部502は、第2電圧検出部610の第3方向Zの端部に設けられた突起を保持している。したがって、第2保持体500が収容体200に取り付けられた状態で、第2電圧検出部610を第2リード部150bに対して適当な位置に配置することができる。また、第2保持体500が収容体200に取り付けられた状態で、第2電圧検出部610は、第2リード部150bに対してセル群100Gが位置する側の反対側に位置している。この場合、第2電圧検出部610に対して第2リード部150bが位置する側の反対側からレーザを照射することで、第2電圧検出部610を第2リード部150bにレーザ溶接することができる。したがって、例えば、第2電圧検出部610が第2リード部150bとセル群100Gとの間に位置する場合と比較して、第2電圧検出部610を第2リード部150bに溶接することが容易となる。
 第2電圧検出部610は、第2リード部150bのうち第2方向Y及び第3方向Zに平行な平坦な部分に設けられている。この場合、第2電圧検出部610が第2リード部150bの折れ曲がり部等の非平坦な部分に設けられている場合や、第2リード部150bの全体が湾曲している場合と比較して、第2電圧検出部610を第2リード部150bに接合させやすくなっている。
 第2電圧検出部610は、第2リード部150bに近づく方向及び第2リード部150bから離れる方向の少なくとも一方に向けて可動になっていてもよい。この場合、第2電圧検出部610を第1方向Xに移動させることで、第2電圧検出部610を第2リード部150bに対して第1方向Xにおいて適切な位置に配置することができる。
 一例において、第2電圧検出部610は、例えば、第2リード部150bのうち第2電圧検出部610に接触する部分、すなわち、正極リード110に含まれる材料と同じ材料を含んでいる。この例においては、第2電圧検出部610に含まれる材料が正極リード110に含まれる材料と異なる場合と比較して、第2電圧検出部610に含まれる材料が正極リード110に接合させやすくなる。
 第2電圧検出部610に含まれる材料は、第1電圧検出部410に含まれる材料と同一であってもよい。この場合、第1電圧検出部410と第2電圧検出部610とで異なる材料を用いる必要がなくなる。一方、第2電圧検出部610に含まれる材料が第1電圧検出部410に含まれる材料と同一の場合、第2電圧検出部610に含まれる材料と、第2リード部150bのうち第2電圧検出部610に接触する部分、すなわち、正極リード110に含まれる材料と、が異なることがある。この場合において、第1方向Xの正方向側から第2電圧検出部610を正極リード110にレーザ溶接することが難しい場合、第2リード部150bのうち第1方向Xに第2電圧検出部610と重なる部分において複数の正極リード110を切り欠き、第2電圧検出部610が負極リード120にレーザ溶接されるようにしてもよい。
 なお、第2電圧検出部610に含まれる材料が第1電圧検出部410に含まれる材料と同一である場合、各第2リード部150bのうち複数の正極リード110及び複数の負極リード120が互いに接合している領域では、複数の負極リード120が複数の正極リード110よりも第1方向Xの正方向側に位置していてもよい。この場合、第2電圧検出部610に含まれる材料と、第2リード部150bのうち第2電圧検出部610に接触する部分、すなわち、負極リード120に含まれる材料と、を同一にすることができる。したがって、各第2リード部150bのうち複数の正極リード110及び複数の負極リード120が互いに接合している領域において複数の正極リード110が複数の負極リード120よりも第1方向Xの正方向側に位置している場合と比較して、複数の正極リード110を切り欠く必要がなくなり、第1方向Xの正方向側から第2電圧検出部610を負極リード120にレーザ溶接することを容易にすることができる。
 第2電圧検出線620は、例えば、ワイヤーハーネスである。第2電圧検出線620は、第2電圧検出部610に電気的に接続されている。また、第2電圧検出線620は、第2保持体500によって保持されている。具体的には、第2保持体500は、第4保持部504を有している。第4保持部504は、第2方向Yに沿って第2電圧検出線620を引き回すための溝を画定している。第4保持部504は、この溝によって第2電圧検出線620を保持している。したがって、第2電圧検出線620を物理的に浮遊させることなく、第2保持体500に沿って引き回すことができる。このため、第2電圧検出部610が物理的に浮遊している場合と比較して、第2電圧検出部610を安定して引き回すことができる。なお、第2電圧検出部610は物理的に浮遊した状態になっていてもよい。
 本実施形態においては、第2保持体500が第2電圧検出部610及び第2電圧検出線620を保持している。これによって、第2電圧検出部610及び第2電圧検出線620は一体となっている。また、第2保持体500を収容体200に取り付けることで、第2電圧検出部610を第2リード部150bに対して適当な位置に配置することができる。この場合、リード線を個々の第2リード部150bに接続させる場合と比較して、第2電圧検出部610を個々の第2リード部150bに接続させることが容易となる。したがって、リード線を個々の第2リード部150bに接続させる場合と比較して、第2リード部150bの電圧を簡易に検出することができる。
 図4~図8は、実施形態に係る電池モジュール10の製造方法の第1例を説明するための図である。電池モジュール10は、以下のようにして製造される。
 図4~図8において、第2方向Yの正方向は、鉛直方向の下から上に向かう方向に平行になっている。第2方向Yの負方向は、鉛直方向の上から下に向かう方向に平行になっている。第1方向X及び第3方向Zは、鉛直方向に直交する水平方向に平行になっている。後述する図9~図10においても同様である。
 まず、図4に示すように、複数の電池セル100を有するセル群100Gを形成する。具体的には、2つの電池セル100のうち下方に位置する電池セル100の上面の第1方向Xの負方向側に第1テープ132を設ける。また、2つの電池セル100のうち下方に位置する電池セル100の上面の第1方向Xの正方向側に第2テープ134を設ける。また、2つの電池セル100のうち下方に位置する電池セル100の上面上に第1テープ132を介して圧縮パッド136を設ける。次いで、2つの電池セル100のうち下方に位置する電池セル100上に第2テープ134及び圧縮パッド136を介して他の電池セル100を設ける。このようにして、セル群100Gが形成される。なお、セル群100Gの形成方法は、図4に示した例に限定されない。
 次いで、図5に示すように、複数のセル群100Gを、各セル群100Gの厚さ方向、すなわち、第2方向Yが鉛直方向に平行になるように、第1方向Xに沿って一列に並べる。各セル群100Gの複数の正極リード110は、第1方向Xの正方向側に向けられている。また、各セル群100Gの複数の負極リード120は、第1方向Xの負方向側に向けられている。さらに、隣り合うセル群100Gの間において、複数の正極リード110が複数の負極リード120の上方に位置するように、複数の正極リード110と複数の負極リード120とが第2方向Yに重なり合っている。図5に示す例では、第1方向Xの正方向から負方向に向けて、第1セル群100Ga、第2セル群100Gb、第3セル群100Gc及び第4セル群100Gdがこの順で並んでいる。また、複数のセル群100Gは、第1方向Xの負方向から正方向に向けて、コンベア等の移動機構によって、移動している。
 次いで、隣り合うセル群100Gの間において、複数の正極リード110及び複数の負極リード120の上方からレーザを照射して、複数の正極リード110の少なくとも一部分と、複数の負極リード120の少なくとも一部分と、をレーザ溶接する。このようにして、複数の正極リード110の少なくとも一部分と、複数の負極リード120の少なくとも一部分と、が互いに接合される。これによって、互いに接合された複数の正極リード110及び複数の負極リード120を含むリード部150が形成される。レーザ溶接が用いられる場合、超音波接合等の他の方法が用いられる場合と比較して、複数の正極リード110と複数の負極リード120とを接合するための時間を短くすることができる。なお、複数の正極リード110と複数の負極リード120とは、レーザ溶接と異なる方法、例えば、超音波接合によって接合されてもよい。
 一例において、レーザ溶接においては、レーザをウォブリングさせながら照射する。レーザをウォブリングさせた場合、レーザをウォブリングさせずに例えば直線状に照射した場合と比較して、正極リード110と負極リード120との間の異種材料の界面の金属間化合物のサイズを微小に調整することが容易となり、正極リード110と負極リード120とを高強度に接合することができる。なお、レーザは、ウォブリングさせずに例えば直線状に照射してもよい。また、複数のセル群100Gを積層する前又はリード部150を折り曲げる前に正極リード110と負極リード120とを溶接する場合、複数のセル群100Gを積層した後又はリード部150を折り曲げた後に正極リード110と負極リード120とを溶接する場合と比較して、正極リード110と負極リード120とを溶接する前に正極リード110と負極リード120と重ね合わせた際の正極リード110と負極リード120との間の隙間の大きさの調整が容易となる。なお、正極リード110と負極リード120は、複数のセル群100Gを積層した後又はリード部150を折り曲げた後に溶接されてもよい。
 次いで、図6に示すように、第2セル群100Gbと第3セル群100Gcとの間のリード部150を第1セル群100Ga及び第4セル群100Gdに対して上方に向けて移動させる。また、第2セル群100Gbと第3セル群100Gcとの間のリード部150を、第2セル群100Gb及び第3セル群100Gcの一方から第2セル群100Gb及び第3セル群100Gcの他方にかけて折り返すように、折り曲げる。
 次いで、図7に示すように、第2セル群100Gbと第3セル群100Gcとの間のリード部150を第1方向Xの正方向に向けて移動させる。また、第1セル群100Gaと第2セル群100Gbとの間のリード部150を、第1セル群100Ga及び第2セル群100Gbの一方から第1セル群100Ga及び第2セル群100Gbの他方にかけて折り返すように、折り曲げる。このようにして、第1セル群100Ga、第2セル群100Gb及び第3セル群100Gcが第2方向Yの負方向から正方向に向けて順に積層する。
 図6及び図7に示す例では、例えばクランプを用いて、隣り合うセル群100Gの間のリード部150を折り曲げることができる。この場合、クランプを適当に調整することで、図3に示したように、リード部150の第3領域156を平坦にすることができる。
 図5~図7に示した工程を適当な回数実施することで、所定の数のセル群100Gを第2方向Yの負方向から正方向に向けて積層する。
 次いで、図8に示すように、第2方向Yに積層された複数のセル群100Gの第2方向Yの負方向側に第1カバー部材210を設け、第2方向Yに積層された複数のセル群100Gの第2方向Yの正方向側に第2カバー部材220を設ける。次いで、第2方向Yに積層された複数のセル群100Gを第1カバー部材210及び第2カバー部材220によって第2方向Yに圧縮する。これによって、第2方向Yに積層された複数のセル群100Gの第2方向Yの長さを所望の長さに調整する。
 次いで、第2方向Yに積層された複数のセル群100Gの第3方向Zの負方向側に第3カバー部材230を設ける。また、第2方向Yに積層されたセル群100Gの第3方向Zの正方向側に第4カバー部材240を設ける。次いで、複数の第1電圧検出部410及び複数の第1電圧検出線420が取り付けられた第1保持体300を収容体200に取り付ける。また、複数の第2電圧検出部610及び複数の第2電圧検出線620が取り付けられた第2保持体500を収容体200に取り付ける。次いで、各第1電圧検出部410を例えばレーザ溶接によって各第1リード部150aに接合する。また、各第2電圧検出部610を例えばレーザ溶接によって各第2リード部150bに接合する。次いで、第2方向Yに積層された複数のセル群100Gの第1方向Xの負方向側に不図示の第5カバー部材を設ける。また、第2方向Yに積層された複数のセル群100Gの第1方向Xの正方向側に不図示の第6カバー部材を設ける。
 このようにして、電池モジュール10が製造される。
 図9は、複数のセル群100Gを積層する方法の第1例を説明するための図である。
 図9に示す例では、第1治具910を用いて、第1セル群100Ga、第2セル群100Gb及び第3セル群100Gcを積層している。第1治具910は、回転部912、第1係合部914及び第2係合部916を有している。第1係合部914は、回転部912に対して第1方向Xの正方向側に位置している。第2係合部916は、回転部912及び第1係合部914間の距離を半径として回転部912を中心とする円周に沿って回転可能になっている。また、第2係合部916は、第1係合部914の上方から第1係合部914に係合可能になっている。
 第1セル群100Gaは、回転部912と第1係合部914との間に固定されている。第2セル群100Gbは、回転部912と第2係合部916との間に固定されている。この状態で、第2係合部916を回転部912に関して回転させることで、第1セル群100Gaと第2セル群100Gbとの間のリード部150を折り返すとともに、第2セル群100Gbと第3セル群100Gcとの間のリード部150を折り返す。このようにして、第1セル群100Ga、第2セル群100Gb及び第3セル群100Gcが第2方向Yに積層される。
 第1治具910を用いる場合、第1治具910を用いない場合と比較して、複数のセル群100Gを第1方向Xに揃えて積層することが容易となる。
 図10は、複数のセル群100Gを積層する方法の第2例を説明するための図である。
 図10に示す例では、第2治具920を用いて、複数のセル群100Gを第2方向Yに積層している。第2治具920は、第1案内部材922及び第2案内部材924を有している。第1案内部材922は、複数のセル群100Gの第3方向Zの負方向側に設けられている。第1案内部材922は、第2方向Yに平行に延伸している。第2案内部材924は、複数のセル群100Gの第3方向Zの正方向側に設けられている。第2案内部材924は、第2方向Yに平行に延伸している。したがって、複数のセル群100Gは、第1案内部材922と第2案内部材924との間で第1案内部材922及び第2案内部材924に沿って積層される。
 第2治具920を用いる場合、第2治具920を用いない場合と比較して、複数のセル群100Gを第3方向Zに揃えて積層することが容易となる。
 図11~図13は、実施形態に係る電池モジュール10の製造方法の第2例を説明するための図である。電池モジュール10は、以下のようにして製造される。
 図11~図13において、第3方向Zの正方向は、鉛直方向の下から上に向かう方向に平行になっている。第3方向Zの負方向は、鉛直方向の上から下に向かう方向に平行になっている。第1方向X及び第2方向Yは、鉛直方向に直交する水平方向に平行になっている。
 まず、図11に示すように、第1セル群100Ga、第2セル群100Gb、第3セル群100Gc及び第4セル群100Gdを、各セル群100Gの短手方向、すなわち、第3方向Zが鉛直方向に平行になるように、第1方向Xに沿って一列に並べる。
 次いで、図12に示すように、第1セル群100Gaと第2セル群100Gbの間のリード部150を折り返して、第1セル群100Gaを第2セル群100Gbの第2方向Yの正方向側に向けて回転させる。これによって、第1セル群100Ga及び第2セル群100Gbが第2方向Yに積層される。
 次いで、図13に示すように、第2セル群100Gbと第3セル群100Gcの間のリード部150を折り返して、第1セル群100Ga及び第2セル群100Gbを第3セル群100Gcの第2方向Yの負方向側に向けて回転させる。これによって、第1セル群100Ga、第2セル群100Gb及び第3セル群100Gcが第2方向Yに積層される。
 図11~図13に示した例においては、各セル群100Gの自重によって各セル群100Gを第3方向Zに揃えて複数のセル群100Gを第2方向Yに積層することができる。
 図11~図13に示した第2例では、図11に示す段階において、4つのセル群100Gが予め第1方向Xに沿って一列に接合されている。しかしながら、予め接合されるセル群100Gの数はこれに限られず、2つ又は3つ以上であってもよい。例えば、第1セル群100Gaと第2セル群100Gbとを第1方向Xに沿って一列に接合して、第1セル群100Gaと第2セル群100Gbとの間のリード部150を折り返して第1セル群100Gaと第2セル群100Gbとを第2方向Yに積層した後、第3セル群100Gcを第1方向Xの正方向側又は第1方向Xの負方向側から第1セル群100Ga又は第2セル群100Gbに接合してもよい。第2方向Yに積層された第1セル群100Gaと第2セル群100Gbとの間の折り返したリード部150を第1方向Xの正方向側及び第1方向Xの負方向側のいずれに位置させるかによって、第2方向Yに積層された第1セル群100Ga及び第2セル群100Gbに対して次に第2方向Yに積層する第3セル群100Gcは、第2方向Yに積層された第1セル群100Ga及び第2セル群100Gbの第1方向Xの正方向にも第1方向Xの負方向にも配置することができる。以下、必要に応じて、第2方向Yに積層されたセル群100Gを積層セル群100Gという。
 上述した事項より、積層セル群100Gに対して次に積層するセル群100Gを積層セル群100Gの第1方向Xの正方向側及び第1方向Xの負方向側のいずれに配置するかによって、積層セル群100Gに対して次に積層するセル群100Gを、積層セル群100Gの常に第1方向Xの正方向側及び第1方向Xの負方向側のいずれか一方から積層セル群100Gに接合して、これらのセル群100Gを第2方向Yに積層することができる。或いは、積層セル群100Gに対して次に積層するセル群100Gを第2方向Yに積層セル群100Gの第1方向Xの正方向側及び第1方向Xの負方向側のいずれに配置するかによって、積層セル群100Gに対して次のセル群100Gを積層する度に、積層セル群100Gの第1方向Xの正方向側及び第1方向Xの負方向側から交互に積層セル群100Gに接合して、これらのセル群100Gを第2方向Yに積層することができる。
 図14は、変形例1に係る電池モジュール10Aの一部分の前面斜視図である。変形例1に係る電池モジュール10Aは、以下の点を除いて、実施形態に係る電池モジュール10と同様である。
 第1電圧検出装置30Aの第1保持部302Aは、第1保持体300Aの第1方向Xの負方向側に設けられた第1凸部302Aaを有している。第1凸部302Aaは、第1電圧検出部410Aを第1方向Xに貫通している。第1凸部302Aaは、例えばピンである。第1電圧検出部410Aは、第1凸部302Aaに沿って第1方向Xに可動になっている。これによって、第1電圧検出部410Aは、第1リード部150aに近づく方向及び第1リード部150aから離れる方向の少なくとも一方に向けて可動になっている。このため、第1電圧検出部410Aを第1リード部150aに接合させる場合、第1電圧検出部410Aを第1リード部150aに対して第1方向Xの適当な位置に移動させることができる。
 第1凸部302Aaの第1方向Xの負方向側の端部の幅は、第1電圧検出部410Aのうち第1凸部302Aaが貫通する部分に設けられた貫通孔の幅より広くなっている。したがって、第1電圧検出部410Aが第1凸部302Aaから抜けないようになっている。
 第1電圧検出部410Aの第3方向Zの正方向側の端部には、第1電圧検出線420Aが接続されている。第1電圧検出線420Aは、第1保持体300Aによって保持されている。
 図15は、変形例2に係る第1電圧検出装置30Bの分解斜視図である。図16は、変形例2に係る第1電圧検出装置30Bの一部分の前面斜視図である。変形例2に係る第1電圧検出装置30Bは、以下の点を除いて、実施形態に係る第1電圧検出装置30と同様である。
 第1電圧検出装置30Bは、第1保持体300B、複数の第1電圧検出部410B及び複数の第1電圧検出線420Bを備えている。第1保持体300Bは、第1取付体310B、第2取付体320B及び第3取付体330Bを有している。
 第1取付体310Bは、第1プロテクタ312B、第1バスバー314B、第1ビス316B及び第1プロテクタカバー318Bを含んでいる。第1バスバー314Bには、第1ビス316Bによって第1電圧検出線420Bが取り付けられている。なお、第1ビス316Bの少なくとも一部分は、第1ビス316B及び第1バスバー314Bがともに第1プロテクタ312Bに取り付けられるように、第1プロテクタ312Bに達していてもよい。第1プロテクタカバー318Bは、第1バスバー314Bの第3方向Zの正方向側の面を覆っている。なお、第1プロテクタカバー318Bは、第1バスバー314Bの第3方向Zの正方向側の面だけでなく、第1バスバー314Bの第2方向Yの負方向側の少なくとも一部や第1バスバー314Bの第1方向Xの負方向側の少なくとも一部を覆っていてもよい。
 第2取付体320Bは、第2プロテクタ322B、第2バスバー324B、第2ビス326B及び第2プロテクタカバー328Bを含んでいる。第2バスバー324Bには、第2ビス326Bによって第1電圧検出線420Bが取り付けられている。なお、第2ビス326Bの少なくとも一部分は、第2ビス326B及び第2バスバー324Bがともに第2プロテクタ322Bに取り付けられるように、第2プロテクタ322Bに達していてもよい。第2プロテクタカバー328Bは、第2バスバー324Bの第3方向Zの正方向側の面を覆っている。なお、第2プロテクタカバー328Bは、第2バスバー324Bの第3方向Zの正方向側の面だけでなく、第2バスバー324Bの第2方向Yの正方向側の少なくとも一部や第2バスバー324Bの第1方向Xの負方向側の少なくとも一部を覆っていてもよい。
 第3取付体330Bは、第2方向Yに沿って複数の延伸体332Bに分離可能になっている。隣り合う延伸体332Bは、接続体334Bによって機械的に接続されている。すなわち、第3取付体330Bは、互いに接続された複数の部分、すなわち、複数の延伸体332Bを有している。複数の延伸体332Bの各々は、少なくとも1つの、例えば複数の第1保持部302Bを有している。この場合、図1に示すように第1電圧検出装置30Bを収容体200に取り付ける場合、第1方向Xに並ぶ複数のリード部150の総数に応じて、第3取付体330Bに含まれる延伸体332Bの数を調整することで、第1電圧検出装置30Bの第2方向Yの長さを調整することができる。
 第3取付体330Bには、複数の第1電圧検出部410Bに応じて複数の壁部340Bが設けられている。図1に示したように第1電圧検出装置30Bが収容体200に取り付けられた場合、壁部340Bは、第1リード部150aに対して第1電圧検出部410Bが位置する側の反対側に位置する。このように壁部340Bを配置することによって、第1電圧検出部410Bに対して壁部340Bが位置する側の反対側からレーザを照射することで第1リード部150aと第1電圧検出部410Bとをレーザ溶接する際、レーザが第1リード部150aを貫通した場合でも、レーザが壁部340Bに照射されることで、レーザがセル群100Gに照射されることを防ぐことができる。また、第1電圧検出部410Bが第1保持部302Bに保持された状態で第1電圧検出装置30Bが組立、搬送等される場合、壁部340Bに対して第1電圧検出部410Bが位置する側の反対側から第1電圧検出部410Bに治工具、設備、搬送容器、梱包材等が接触するなどして第1電圧検出部410Bが破損することを防ぐこともできる。
 第3取付体330Bに設けられた第1保持部302Bは、第1凸部302Baと、2つの第2凸部302Bbと、を含んでいる。
 変形例1に係る第1凸部302Aaと同様にして、変形例2に係る第1凸部302Baは、第1電圧検出部410Bを第1方向Xに貫通している。したがって、変形例1に係る第1電圧検出部410Aと同様にして、変形例2に係る第1電圧検出部410Bは、第1凸部302Baに沿って第1方向Xに可動になっている。
 2つの第2凸部302Bbは、第1電圧検出部410Bの第2方向Yの両側に位置している。なお、第2凸部302Bbは、第1電圧検出部410Bの第2方向Yの両側に設けられていなくてもよく、第1電圧検出部410Bの第2方向Yの正方向側及び負方向側の一方のみに位置していてもよい。第1電圧検出部410Bの第2方向Yの両側の少なくとも一方に第2凸部302Bbが設けられることによって、第1電圧検出部410Bの第2方向Yの位置合わせや第1電圧検出部410Bの回転を防ぐことが可能になっている。
 第1電圧検出部410Bの第3方向Zの正方向側の端部には、第1電圧検出線420Bが接続されている。第1電圧検出線420Bは、第3取付体330Bに設けられた第2保持部304Bによって画定された溝によって保持されている。
 以上、図面を参照して本発明の実施形態及び変形例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 例えば、実施形態では、並列に接続された2つの電池セル100を他の並列に接続された他の2つの電池セル100に直列に接続している。しかしながら、並列に接続された3つ以上の電池セル100を他の並列に接続された他の3つ以上の電池セル100に直列に接続してもよい。また、並列に接続された2つの電池セル100を他の並列に接続された他の3つの電池セル100に直列に接続する等、直列に接続される複数の電池セル100及び複数の他の電池セル100の各々の数は互いに異なっていてもよい。
 また、複数のセル群100Gの積層方法も、第2方向Yに隣り合うセル群100Gの間で折り返されるリード部150が第1方向Xの正方向及び第1方向Xの負方向の交互に設けられるように複数のセル群100Gが第2方向Yに積層されるものであれば、実施形態の積層方法に限定されない。
 また、実施形態では、第1電圧検出装置30及び第2電圧検出装置50は、複数の正極リード110及び複数の負極リード120を含むリード部150の電圧を検出するために用いられている。しかしながら、第1電圧検出装置30及び第2電圧検出装置50は、単一の正極リード110及び単一の負極リード120を含むリード部150の電圧を検出するためにも用いることができる。
 この出願は、2021年1月15日に出願された日本出願特願2021-004739号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10 電池モジュール
10A 電池モジュール
30 第1電圧検出装置
30A 第1電圧検出装置
30B 第1電圧検出装置
50 第2電圧検出装置
100 電池セル
100G セル群
100Ga 第1セル群
100Gb 第2セル群
100Gc 第3セル群
100Gd 第4セル群
100a 第1電池セル
100b 第2電池セル
102 外装材
110 正極リード
120 負極リード
132 第1テープ
134 第2テープ
136 圧縮パッド
150 リード部
150a 第1リード部
150b 第2リード部
152 第1領域
154 第2領域
156 第3領域
158a 第1屈曲部
158b 第2屈曲部
200 収容体
210 第1カバー部材
220 第2カバー部材
230 第3カバー部材
240 第4カバー部材
252 第1案内部
254 第2案内部
256 第1接続部
258 取付孔
300 第1保持体
300A 第1保持体
300B 第1保持体
302 第1保持部
302A 第1保持部
302Aa 第1凸部
302B 第1保持部
302Ba 第1凸部
302Bb 第2凸部
304 第2保持部
304B 第2保持部
310 第1取付体
310B 第1取付体
312B 第1プロテクタ
314 第1バスバー
314B 第1バスバー
316B 第1ビス
318B 第1プロテクタカバー
320 第2取付体
320B 第2取付体
322B 第2プロテクタ
324 第2バスバー
324B 第2バスバー
326B 第2ビス
328B 第2プロテクタカバー
330 第3取付体
330B 第3取付体
332B 延伸体
334B 接続体
340B 壁部
352 第1位置合わせ部
354 第2位置合わせ部
356 第2接続部
358 位置決めピン
410 第1電圧検出部
410A 第1電圧検出部
410B 第1電圧検出部
420 第1電圧検出線
420A 第1電圧検出線
420B 第1電圧検出線
500 第2保持体
502 第3保持部
504 第4保持部
610 第2電圧検出部
620 第2電圧検出線
910 第1治具
912 回転部
914 第1係合部
916 第2係合部
920 第2治具
922 第1案内部材
924 第2案内部材
X 第1方向
Y 第2方向
Z 第3方向

Claims (7)

  1.  複数の第1電池セルに設けられ、互いに束ねられた複数の正極リードと、
     複数の第2電池セルに設けられ、互いに束ねられた複数の負極リードと、
    を備え、
     前記複数の正極リードの少なくとも一部分と、前記複数の負極リードの少なくとも一部分と、が互いに接合されており、
     前記複数の正極リード及び前記複数の負極リードは、前記複数の第1電池セル及び前記複数の第2電池セルの一方から、前記複数の正極リードの前記少なくとも一部分及び前記複数の負極リードの前記少なくとも一部分を経由して、前記複数の第1電池セル及び前記複数の第2電池セルの他方にかけて折り返されている、電池モジュール。
  2.  請求項1に記載の電池モジュールにおいて、
     前記複数の正極リードの前記少なくとも一部分と、前記複数の負極リードの前記少なくとも一部分と、が互いにレーザ溶接されている、電池モジュール。
  3.  請求項1又は2に記載の電池モジュールにおいて、
     前記複数の第1電池セル及び前記複数の第2電池セルを収容する収容体と、
     前記収容体に取り付けられた保持体と、
     前記複数の正極リード及び前記複数の負極リードの少なくとも一方に接続された電圧検出部と、
    をさらに備え、
     前記電圧検出部が前記保持体に保持されている、電池モジュール。
  4.  請求項3に記載の電池モジュールにおいて、
     前記電圧検出部は、前記複数の正極リード及び前記複数の負極リードに対して前記複数の第1電池セル及び前記複数の第2電池セルが位置する側の反対側に位置している、電池モジュール。
  5.  請求項3又は4に記載の電池モジュールにおいて、
     前記電圧検出部に接続された電圧検出線をさらに備え、
     前記電圧検出線が前記保持体に保持されている、電池モジュール。
  6.  複数の第1電池セルに設けられ、互いに束ねられた複数の正極リードの少なくとも一部分と、複数の第2電池セルに設けられ、互いに束ねられた複数の負極リードの少なくとも一部分と、を互いに接合する工程と、
     前記複数の正極リード及び前記複数の負極リードを、前記複数の第1電池セル及び前記複数の第2電池セルの一方から、前記複数の正極リードの前記少なくとも一部分及び前記複数の負極リードの前記少なくとも一部分を経由して、前記複数の第1電池セル及び前記複数の第2電池セルの他方にかけて折り返す工程と、
    を備える、電池モジュールの製造方法。
  7.  請求項6に記載の電池モジュールの製造方法において、
     前記複数の正極リードの前記少なくとも一部分と前記複数の負極リードの前記少なくとも一部分とを互いに接合する工程は、前記複数の正極リードの前記少なくとも一部分と前記複数の負極リードの前記少なくとも一部分とをレーザ溶接する工程を有する、電池モジュールの製造方法。
PCT/JP2022/000705 2021-01-15 2022-01-12 電池モジュール及び電池モジュールの製造方法 WO2022154007A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280009681.0A CN116711127A (zh) 2021-01-15 2022-01-12 电池模块以及电池模块的制造方法
EP22739412.9A EP4280342A1 (en) 2021-01-15 2022-01-12 Battery module, and method for manufacturing battery module
JP2022575603A JPWO2022154007A1 (ja) 2021-01-15 2022-01-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-004739 2021-01-15
JP2021004739 2021-01-15

Publications (1)

Publication Number Publication Date
WO2022154007A1 true WO2022154007A1 (ja) 2022-07-21

Family

ID=82446267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000705 WO2022154007A1 (ja) 2021-01-15 2022-01-12 電池モジュール及び電池モジュールの製造方法

Country Status (4)

Country Link
EP (1) EP4280342A1 (ja)
JP (1) JPWO2022154007A1 (ja)
CN (1) CN116711127A (ja)
WO (1) WO2022154007A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079481A (ja) * 2002-08-22 2004-03-11 Nissan Motor Co Ltd 積層型電池、組電池、電池モジュール並びに電気自動車
US20110195285A1 (en) * 2006-03-06 2011-08-11 Lg Chem, Ltd. Voltage sensing member and battery module employed with the same
KR20120108260A (ko) * 2011-03-23 2012-10-05 주식회사 엘지화학 안전성이 향상된 전지팩
JP2013519214A (ja) * 2010-02-09 2013-05-23 エルジー・ケム・リミテッド 改善された溶接信頼性を有するバッテリーモジュールとこれを採用したバッテリーパック
DE102013016617A1 (de) * 2013-10-08 2015-04-09 Daimler Ag Batterie mit einer Vielzahl von Batterieeinzelzellen
US20150380779A1 (en) * 2013-03-19 2015-12-31 Lg Chem, Ltd. Voltage sensing member and battery module employed with the same
WO2016020999A1 (ja) * 2014-08-06 2016-02-11 日産自動車株式会社 組電池およびタブ接合方法
JP2018152223A (ja) 2017-03-13 2018-09-27 Necエナジーデバイス株式会社 組電池の製造方法及び製造装置
JP2020524375A (ja) 2018-03-30 2020-08-13 エルジー・ケム・リミテッド 組立性が向上したバスバーフレームを備えたバッテリーモジュール
JP2021004739A (ja) 2019-06-25 2021-01-14 正毅 千葉 検出デバイスおよび検出システム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079481A (ja) * 2002-08-22 2004-03-11 Nissan Motor Co Ltd 積層型電池、組電池、電池モジュール並びに電気自動車
US20110195285A1 (en) * 2006-03-06 2011-08-11 Lg Chem, Ltd. Voltage sensing member and battery module employed with the same
JP2013519214A (ja) * 2010-02-09 2013-05-23 エルジー・ケム・リミテッド 改善された溶接信頼性を有するバッテリーモジュールとこれを採用したバッテリーパック
KR20120108260A (ko) * 2011-03-23 2012-10-05 주식회사 엘지화학 안전성이 향상된 전지팩
US20150380779A1 (en) * 2013-03-19 2015-12-31 Lg Chem, Ltd. Voltage sensing member and battery module employed with the same
DE102013016617A1 (de) * 2013-10-08 2015-04-09 Daimler Ag Batterie mit einer Vielzahl von Batterieeinzelzellen
WO2016020999A1 (ja) * 2014-08-06 2016-02-11 日産自動車株式会社 組電池およびタブ接合方法
JP2018152223A (ja) 2017-03-13 2018-09-27 Necエナジーデバイス株式会社 組電池の製造方法及び製造装置
JP2020524375A (ja) 2018-03-30 2020-08-13 エルジー・ケム・リミテッド 組立性が向上したバスバーフレームを備えたバッテリーモジュール
JP2021004739A (ja) 2019-06-25 2021-01-14 正毅 千葉 検出デバイスおよび検出システム

Also Published As

Publication number Publication date
JPWO2022154007A1 (ja) 2022-07-21
CN116711127A (zh) 2023-09-05
EP4280342A1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
WO2022154008A1 (ja) 電圧検出装置及び電池モジュール
CN108604658B (zh) 电源装置、车辆、汇流条以及电池单元的电连接方法
JP4829587B2 (ja) 電気デバイス集合体及びその製造方法
US10553840B2 (en) Manufacturing method and manufacturing device for battery pack
US7736796B2 (en) Battery pack
CN110140235B (zh) 电池模块以及包括该电池模块的电池组和车辆
CN110087825B (zh) 激光焊接夹具和包含该激光焊接夹具的激光焊接设备
JP7154636B2 (ja) バスバーフレーム組み立て方法
KR101609425B1 (ko) 매거진을 이용한 전극조립체의 제조방법
JP6380005B2 (ja) 組電池及びその製造方法
CN110326130B (zh) 具有改善的电极接片焊接特性的电极及包括该电极的二次电池
US11050107B2 (en) Method for assembling battery pack, and battery pack
JP2018533820A (ja) リード溶接装置、該リード溶接装置によって製造されるバッテリーモジュール及び該バッテリーモジュールを含むバッテリーパック
US10418602B2 (en) Battery pack
WO2006109610A1 (ja) 電気デバイス集合体の製造方法および電気デバイス集合体
CN106953060A (zh) 汇流条模块和汇流条模块制造方法
WO2022154007A1 (ja) 電池モジュール及び電池モジュールの製造方法
EP3866254A1 (en) Secondary battery having improved current-collecting structure
CN213717029U (zh) 一种极耳、电芯及电芯模组
JP7161041B2 (ja) バッテリーセルの電極リード仮付け溶接治具
JP2019091563A (ja) 蓄電素子
JP2023513072A (ja) ビジョンを用いた電池モジュール組立装置及びこれを用いた組立方法
JP2022528553A (ja) 溶接性の向上した電池セル及びその加工装置
CN111864128A (zh) 电池组
US20230344090A1 (en) Battery module and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022575603

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280009681.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022739412

Country of ref document: EP

Effective date: 20230816