WO2022153718A1 - アンモニア分解装置 - Google Patents
アンモニア分解装置 Download PDFInfo
- Publication number
- WO2022153718A1 WO2022153718A1 PCT/JP2021/044811 JP2021044811W WO2022153718A1 WO 2022153718 A1 WO2022153718 A1 WO 2022153718A1 JP 2021044811 W JP2021044811 W JP 2021044811W WO 2022153718 A1 WO2022153718 A1 WO 2022153718A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ammonia
- gas
- reactor
- catalyst
- raw material
- Prior art date
Links
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 title claims abstract description 261
- 229910021529 ammonia Inorganic materials 0.000 title claims abstract description 121
- 238000000354 decomposition reaction Methods 0.000 title claims abstract description 70
- 239000007789 gas Substances 0.000 claims abstract description 160
- 239000003054 catalyst Substances 0.000 claims abstract description 44
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000001257 hydrogen Substances 0.000 claims abstract description 26
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 25
- 238000010438 heat treatment Methods 0.000 claims abstract description 23
- 239000011819 refractory material Substances 0.000 claims abstract description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 12
- 239000002994 raw material Substances 0.000 claims description 36
- 238000010790 dilution Methods 0.000 claims description 12
- 239000012895 dilution Substances 0.000 claims description 12
- 239000000567 combustion gas Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 abstract description 17
- 238000004064 recycling Methods 0.000 description 21
- 238000011144 upstream manufacturing Methods 0.000 description 16
- 238000007865 diluting Methods 0.000 description 14
- 238000011084 recovery Methods 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 238000005121 nitriding Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000011449 brick Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 238000000629 steam reforming Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000001833 catalytic reforming Methods 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0278—Feeding reactive fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0285—Heating or cooling the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/04—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
- B01J8/0496—Heating or cooling the reactor
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
- C01B3/047—Decomposition of ammonia
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H3/00—Air heaters
- F24H3/006—Air heaters using fluid fuel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00504—Controlling the temperature by means of a burner
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0266—Processes for making hydrogen or synthesis gas containing a decomposition step
- C01B2203/0277—Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/042—Purification by adsorption on solids
- C01B2203/043—Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/14—Details of the flowsheet
- C01B2203/148—Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Definitions
- the present disclosure relates to an ammonia decomposition apparatus.
- This application claims priority based on Japanese Patent Application No. 2021-004363 filed with the Japan Patent Office on January 14, 2021, and the contents thereof are incorporated herein by reference.
- Patent Document 1 describes an ammonia decomposition device that decomposes ammonia into hydrogen and nitrogen by heating the catalyst layer from the outside while allowing ammonia to pass through.
- ammonia reacts with the iron-based material to nitrid the iron-based material.
- the mechanical strength is reduced. Then, for example, when the pipe filled with the catalyst is made of an iron-based material, the mechanical strength of the pipe may decrease, which may lead to breakage of the pipe.
- At least one embodiment of the present disclosure is an object of providing an ammonia decomposition apparatus capable of suppressing nitriding of a material of a reactor in which ammonia is decomposed.
- the ammonia decomposition apparatus includes a reactor filled with a catalyst for a decomposition reaction that decomposes ammonia as a raw material into hydrogen and nitrogen, and before the raw material flows into the catalyst.
- the reactor is provided with a diluting gas supply line for supplying the diluting gas so that the diluting gas having a lower ammonia concentration than the raw material and the raw material are mixed, and the inner surface of the reactor is covered with a fireproof material.
- the catalyst is filled on the side opposite to the inner surface of the fireproof material, and the diluting gas supply line is provided with a temperature raising device for raising the temperature of the diluting gas.
- the concentration of ammonia in the reactor is reduced by the diluting gas, and the refractory material suppresses the transfer of heat to the outer wall of the reactor, thus forming a reactor in which ammonia is decomposed. It is possible to suppress the nitriding of the material to be used.
- ammonia decomposition apparatus according to the embodiment of the present disclosure will be described with reference to the drawings.
- Such an embodiment shows one aspect of the present disclosure, does not limit the disclosure, and can be arbitrarily modified within the scope of the technical idea of the present disclosure.
- the ammonia decomposition apparatus 1 is an apparatus that decomposes ammonia as a raw material into hydrogen and nitrogen by the reaction represented by the following reaction formula (1).
- the ammonia decomposition apparatus 1 includes a reactor 2 filled with a catalyst 3 for an ammonia decomposition reaction represented by the reaction formula (1). 2NH 3 ⁇ N 2 + 3H 2 ... (1)
- a raw material supply line 4 for supplying raw materials to the reactor is connected to the reactor 2.
- the raw material supply line 4 is provided with an evaporator 5 that evaporates liquid ammonia supplied from a storage facility (not shown) that stores liquid ammonia and evaporates it into gaseous ammonia.
- a storage facility not shown
- an outflow gas line 6 through which the outflow gas flowing out from the reactor 2 flows is connected to the reactor 2.
- the effluent gas contains nitrogen, hydrogen, and unreacted ammonia.
- the other end of the outflow gas line 6 is connected to the ammonia recovery device 7.
- the configuration of the ammonia recovery device 7 is not particularly limited, and may be, for example, a water scrubber, a pressure fluctuation adsorption (PSA) device, or the like.
- the outflow gas line 6 is provided with a cooler 8 for cooling the outflow gas on the upstream side of the ammonia recovery device 7.
- the cooler 8 may be, for example, a heat exchanger that exchanges heat between the liquid ammonia before flowing into the evaporator 5 and the outflow gas. According to this configuration, since the effluent gas is cooled and the temperature of the liquid ammonia is raised, it is possible to reduce the energy for raising the temperature of the liquid ammonia in the evaporator 5.
- a recovered ammonia line 9 is provided in order to return the liquid ammonia recovered by the ammonia recovery device 7 to the raw material supply line 4 on the upstream side of the evaporator 5.
- One end of a refined decomposition gas line 10 for supplying the refined decomposition gas generated by removing ammonia from the effluent gas by the ammonia recovery device 7 to a decomposition gas consuming facility such as a hydrogen station is connected to the ammonia recovery device 7.
- An outflow gas recycling line 11 is provided in which one end is connected to the refined decomposition gas line 10 and the other end is connected to the reactor 2.
- the outflow gas recycling line 11 is provided with a compressor 12 and a heater 41 which is a heating device for raising the temperature of the outflow gas flowing through the outflow gas recycling line 11.
- the heater 41 may be a heat exchanger that exchanges heat between a heating medium such as steam and an outflow gas, or in a so-called heating furnace such as a steam reforming furnace for natural gas, a combustion flame or a combustion gas.
- the pipe through which the outflow gas recycling line 11 passes may be directly heated from the outside by the heat of the above.
- the inner surface 2a of the reactor 2 is covered with the refractory material 44.
- the catalyst 3 is filled on the side opposite to the inner surface 2a of the refractory material 44.
- As the refractory material 44 bricks, refractory bricks, refractory cement and the like can be used.
- an upstream space 42 and a downstream space 43 are configured on the upstream side and the downstream side of the catalyst 3, respectively.
- the raw material supply line 4 and the outflow gas recycling line 11 of the reactor 2 are connected to the reactor 2 so as to communicate with the upstream space 42, and the outflow gas line 6 is connected to the reactor 2 so as to communicate with the downstream space 43. There is.
- the outflow gas flows into the upstream space 42 in a state of being heated by the heater 41 when flowing through the outflow gas recycling line 11.
- the reactor 2 is provided with a device for heating the catalyst 3 by adjusting the heating of the outflow gas in the heater 41 so that the temperature of the mixed gas in the upstream space 42 becomes a temperature at which the activity of the catalyst 3 becomes sufficient. No need.
- the heating control of the outflow gas in the heater 41 is preferably such that the temperature of the crude decomposition gas that has passed through the catalyst 3 and has flowed out to the downstream space 43 is 300 to 700 ° C, preferably 400 to 600 ° C.
- the mixed gas passes through the catalyst 3, at least a part of ammonia in the mixed gas is decomposed into hydrogen and nitrogen by causing a decomposition reaction of ammonia represented by the reaction formula (1) by the catalytic action of the catalyst 3. Then, it flows out from the catalyst 3 to the downstream space 43 as a crude decomposition gas.
- the crude decomposition gas flows out from the downstream space 43 as an outflow gas and flows through the outflow gas line 6.
- the outflow gas flowing through the outflow gas line 6 flows into the ammonia recovery device 7 after being cooled by the cooler 8.
- ammonia recovery device 7 ammonia is recovered from the effluent gas, and the refined decomposition gas containing hydrogen, nitrogen, a small amount of unrecovered ammonia, and a small amount of water when the ammonia recovery device 7 is a water scrubber is refined and decomposed.
- the ammonia supplied to the decomposed gas consumption facility via the gas line 10 and recovered is supplied to the raw material supply line 4 on the upstream side of the evaporator 5 via the recovered ammonia line 9. A part of the refined decomposition gas flows into the outflow gas recycling line 11.
- the outflow gas that has flowed into the outflow gas recycling line 11 is boosted by the compressor 12, heated in the heater 41 as described above, and flows into the upstream space 42 of the reactor 2.
- the ammonia gas and the outflow gas are mixed in the upstream space 42, but when the ammonia gas is 100% ammonia, the outflow gas contains hydrogen and nitrogen in addition to ammonia, so the former Since the latter ammonia concentration is lower than the ammonia concentration of the above, the ammonia concentration in the mixed gas of the ammonia gas and the outflow gas is lower than the ammonia concentration of the ammonia gas supplied as a raw material. That is, the outflow gas flowing into the upstream space 42 via the outflow gas recycling line 11 functions as a diluting gas for diluting the ammonia gas flowing into the upstream space 42.
- the ammonia concentration in the reactor 2 is the outflow gas. It is lowered by the outflow gas supplied through the recycling line 11, and the refractory material 44 suppresses the transfer of heat to the outer wall of the reactor 2, and the temperature of the outer wall of the reactor 2 is adjusted to the upstream space 42, the catalyst 3, and the downstream. Since the temperature can be kept sufficiently lower than that of the space 43, the nitriding of the material constituting the reactor 2 can be suppressed.
- the catalyst 3 is heated by the heat of the outflow gas heated by the heater 41, it is possible to eliminate the need for an apparatus for heating the catalyst 3. Further, since it is not necessary to heat the catalyst 3 with a heating medium, a flow path through which the heating medium flows is not required in the reactor 2. Therefore, since the catalyst 3 can be filled in the reactor 2 without using the catalyst accommodating portion for accommodating the catalyst 3, the catalyst is compared with the case where the catalyst 3 is filled in the reactor 2 using the catalyst accommodating portion. Since the filling amount is large, the size of the reactor 2 can be reduced.
- the purified decomposition gas flowing out from the ammonia recovery device 7 is used as the diluting gas, but the present invention is not limited to this embodiment.
- the outflow gas before flowing into the ammonia recovery device 7 may be used as a dilution gas. Since the refined decomposition gas is also a gas obtained by recovering ammonia from the effluent gas, it can be said that the effluent gas has flowed out from the reactor 2.
- the liquid ammonia having a concentration of 100% stored in a storage facility (not shown) is evaporated to the gaseous ammonia in the evaporator 5, but the liquid ammonia having a concentration of 100% is supplied to the evaporator 5.
- the main component mixed with a small amount of the mixture may supply the liquid of ammonia to the evaporator 5.
- the ammonia decomposition device according to the second embodiment is a modification of the configuration of the temperature raising device with respect to the first embodiment.
- the same reference numerals as those of the constituent requirements of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
- the outflow gas recycling line 11 is provided as a temperature raising device for raising the temperature of the outflow gas flowing through the outflow gas recycling line 11.
- a combustor 51 for burning the flowing outflow gas is provided in the outflow gas recycling line 11.
- a compressor 52 for supplying air to the combustor 51 communicates with the combustor 51.
- Other configurations are the same as those in the first embodiment.
- the combustor 51 is for burning the outflow gas, but the combustor 51 is not limited to this embodiment.
- an ammonia combustor is provided in which a part of the liquid ammonia flowing through the raw material supply line 4 is extracted and the extracted ammonia is burned, and the combustion gas from the ammonia combustor is sent to the outflow gas recycling line 11. It may be configured to supply. Even with this configuration, the temperature of the effluent gas flowing through the effluent gas recycling line 11 can be raised by the heat of the combustion gas.
- the outflow gas recycling line 11 is connected to the reactor 2 without being connected to the raw material supply line 4.
- the temperature of the outflow gas flowing through the outflow gas recycling line 11 is raised. Therefore, if the raised outflow gas is supplied to the raw material supply line 4, it becomes ammonia gas in the raw material supply line 4. This is because the ammonia gas rises due to the heat of the effluent gas before it is sufficiently mixed with the effluent gas, and the material constituting the raw material supply line 4 may be nitrided.
- the diluting gas is the effluent gas (crude decomposition gas or refined decomposition gas) that has flowed out from the reactor 2, but is not limited to the effluent gas.
- a dilution gas different from the outflow gas may be prepared separately, and a dilution gas supply line for communicating the dilution gas supply source with the reactor 2 or the raw material supply line 4 may be provided.
- the effluent gas recycling line 11 constitutes the dilution gas supply line.
- Nitrogen gas and hydrogen gas can be used as the diluting gas other than the effluent gas, and hydrogen gas from the hydrogen pipeline may be used as the hydrogen gas.
- hydrogen-containing gas obtained by steam reforming methane and methanol (2) coal gasification gas, (3) blast furnace gas, (4) coke furnace gas, (5) the above (5) 1)-(4) gas with hydrogen increased by aqueous gas shift reaction, (6) gas with carbon dioxide removed from the above-mentioned (5) gas, (7) water content from the above-mentioned (6) gas (8) Hydrogen-containing gas obtained by catalytic reforming of naphtha, (9) Hydrogen-containing gas obtained by electrolysis of water, (10) Hydrogen-containing gas obtained by thermal decomposition reaction of methane.
- a gas containing hydrogen produced in another hydrogen production process such as a gas
- a gas can be used.
- external ammonia decomposition such as hydrogen-containing gas obtained from an external plant that thermally decomposes ammonia and hydrogen-containing gas obtained from an external plant that decomposes ammonia by the autothermal method.
- a hydrogen-containing gas obtained in the process can be used.
- the ammonia decomposition apparatus is A reactor (2) filled with a catalyst (3) for a decomposition reaction that decomposes ammonia, which is a raw material, into hydrogen and nitrogen.
- a dilution gas supply line (11) for supplying the diluted gas so that the diluted gas having a lower ammonia concentration than the raw material and the raw material are mixed before the raw material flows into the catalyst (3).
- the inner surface (2a) of the reactor (2) is covered with the refractory material (44), and the catalyst (3) is filled on the side opposite to the inner surface (2a) with respect to the refractory material (44).
- the diluted gas supply line (11) is provided with a temperature raising device (heater 41 / combustor 51) for raising the temperature of the diluted gas.
- the concentration of ammonia in the reactor is reduced by the diluting gas, and the refractory material suppresses the transfer of heat to the outer wall of the reactor, thus forming a reactor in which ammonia is decomposed. It is possible to suppress the nitriding of the material to be used. Further, since the catalyst is heated by the heat of the diluted gas raised by the temperature raising device, it is possible to eliminate the need for a device for heating the catalyst. Further, since it is not necessary to heat the catalyst with a heating medium, a flow path through which the heating medium flows is not required in the reactor. Therefore, since the catalyst can be filled in the reactor without using the catalyst accommodating portion for accommodating the catalyst, the catalyst filling amount is larger than that in the case of filling the reactor in the reactor using the catalyst accommodating portion. Therefore, the size of the reactor can be reduced.
- the ammonia decomposition device is the ammonia decomposition device of [1].
- the diluted gas is a part of the outflow gas flowing out from the reactor (2).
- the operating cost of the ammonia decomposition device can be reduced as compared with the case where the diluted gas is separately prepared.
- the ammonia decomposition device is the ammonia decomposition device of [1] or [2].
- the heating device is a heating furnace (heater 41). According to such a configuration, the same effect as that obtained from the configuration of the above [1] can be obtained.
- the ammonia decomposition device is the ammonia decomposition device of [1] or [2].
- the heating device is a heat exchanger (heater 41). According to such a configuration, the same effect as that obtained from the configuration of the above [1] can be obtained.
- the ammonia decomposition device is the ammonia decomposition device of [1] or [2].
- the temperature raising device is a combustor (51) that burns the diluted gas. According to such a configuration, the same effect as that obtained from the configuration of the above [1] can be obtained.
- the ammonia decomposition device is the ammonia decomposition device of [1] or [2].
- the temperature raising device is an ammonia combustor that burns a part of the raw material, and is configured so that the combustion gas from the ammonia combustor is supplied to the diluted gas supply line (11). According to such a configuration, the same effect as that obtained from the configuration of the above [1] can be obtained.
- the ammonia decomposition apparatus is the ammonia decomposition apparatus of [1] to [6].
- the downstream end of the diluent gas supply line (11) is connected to the reactor (2).
- the heat causes the ammonia to react with the material of the raw material supply line, and the raw material The material of the supply line may be nitrided.
- the ammonia and the diluting gas flow into the reactor separately, the possibility that the material of the raw material supply line is nitrided can be reduced.
- Ammonia decomposition device Reactor 2a (reactor) inner surface 2b Connection part 3 Catalyst 4 Raw material supply line 6 Outflow gas line 11 Outflow gas recycling line (diluted gas supply line) 26 Catalyst accommodating part 26a Accommodating pipe (catalyst accommodating part) 26c (the other end (communication part) of the accommodating pipe) 41 Heater (heating device) 44 Refractory material 51 Combustor (heating device)
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
Abstract
Description
本願は、2021年1月14日に日本国特許庁に出願された特願2021-004363号に基づき優先権を主張し、その内容をここに援用する。
<本開示の実施形態1に係るアンモニア分解装置の構成>
図1に示されるように、本開示の実施形態1に係るアンモニア分解装置1は、原料であるアンモニアを、下記反応式(1)で示される反応によって水素と窒素とに分解する装置である。アンモニア分解装置1は、反応式(1)で示されるアンモニアの分解反応の触媒3が充填された反応器2を備えている。
2NH3→N2+3H2 ・・・(1)
次に、図1を参照しながら本開示の実施形態1に係るアンモニア分解装置1の動作を説明する。原料供給ライン4を流通する液体アンモニアが蒸発器5において蒸発されてアンモニアガスとなって、反応器2の上流空間42に流入する。後述するように、水素と窒素とアンモニアとを含む流出ガスの一部も、流出ガスリサイクルライン11を介して上流空間42に流入する。上流空間42においてアンモニアガスと流出ガスとが混合されて混合ガスとなる。流出ガスは流出ガスリサイクルライン11を流通する際に加熱器41において加熱された状態で上流空間42に流入する。上流空間42において混合ガスの温度が、触媒3の活性が十分となる温度になるように、加熱器41における流出ガスの加熱を調節することにより、触媒3を加熱する装置を反応器2に設ける必要がなくなる。加熱器41における流出ガスの加熱調節は、触媒3を通過して下流空間43へ流出した粗分解ガスの温度が300~700℃、好ましくは400~600℃となるようにすることが好ましい。
実施形態1では、希釈ガスとして、アンモニア回収装置7から流出した精製分解ガスを使用しているが、この形態に限定するものではない。アンモニア回収装置7に流入する前の流出ガスを希釈ガスとして使用してもよい。精製分解ガスも流出ガスからアンモニアを回収したガスであるので、反応器2から流出した流出ガスであると言える。また、実施形態1では、図示しない貯蔵設備に貯蔵された濃度100%の液体アンモニアを蒸発器5において気体のアンモニアに蒸発させていたが、濃度100%の液体アンモニアを蒸発器5に供給することに限定するものではなく、少量の混合物が混合した主成分がアンモニアの液体を蒸発器5に供給するようにしてもよい。
次に、実施形態2に係るアンモニア分解装置について説明する。実施形態2に係るアンモニア分解装置は、実施形態1に対して、昇温装置の構成を変更したものである。尚、実施形態2において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
図2に示されるように、本開示の実施形態2に係るアンモニア分解装置1には、流出ガスリサイクルライン11を流通する流出ガスを昇温するための昇温装置として、流出ガスリサイクルライン11を流通する流出ガスを燃焼させる燃焼器51が流出ガスリサイクルライン11に設けられている。燃焼器51には、燃焼器51に空気を供給するための圧縮機52が連通している。その他の構成は実施形態1と同じである。
次に、図2を参照しながら本開示の実施形態2に係るアンモニア分解装置1の動作を説明する。燃焼器51において、圧縮機52から供給された空気によって、流出ガスリサイクルライン11を流通する流出ガス中の水素及びアンモニアが燃焼されて流出ガスが昇温されること以外の動作は、実施形態1と同じである。燃焼器51における流出ガスの昇温調節も、実施形態1と同様に、粗分解ガスの温度が300~700℃、好ましくは400~600℃となるようにすることが好ましい。
実施形態2では、燃焼器51は流出ガスを燃焼させるためのものであるが、この形態に限定するものではない。燃焼器51に代えて、原料供給ライン4を流通する液体アンモニアの一部を抜き出して、抜き出したアンモニアを燃焼させるアンモニア燃焼器を設け、このアンモニア燃焼器からの燃焼ガスを流出ガスリサイクルライン11に供給するように構成してもよい。この構成でも、燃焼ガスの熱により、流出ガスリサイクルライン11を流通する流出ガスを昇温することができる。
実施形態1及び2では、流出ガスリサイクルライン11を原料供給ライン4に接続させずに、反応器2に接続させる構成が好ましい。実施形態1及び2では、流出ガスリサイクルライン11を流通する流出ガスが昇温されるので、昇温した流出ガスを原料供給ライン4に供給してしまうと、原料供給ライン4内においてアンモニアガスと流出ガスとが十分混合する前に流出ガスの熱でアンモニアガスが昇温してしまい、原料供給ライン4を構成する材料が窒化してしまうおそれがあるからである。
原料であるアンモニアを水素と窒素とに分解する分解反応の触媒(3)が充填された反応器(2)と、
前記原料が前記触媒(3)に流入する前に、アンモニア濃度が前記原料よりも低い希釈ガスと前記原料とが混合するように、前記希釈ガスを供給するための希釈ガス供給ライン(11)と
を備え、
前記反応器(2)の内面(2a)が耐火材(44)で覆われ、該耐火材(44)に対して前記内面(2a)と反対側に前記触媒(3)が充填され、
前記希釈ガス供給ライン(11)には、前記希釈ガスを昇温させる昇温装置(加熱器41/燃焼器51)が設けられている。
前記希釈ガスは、前記反応器(2)から流出した流出ガスの一部である。
前記昇温装置は加熱炉(加熱器41)である。
このような構成によれば、上記[1]の構成から得られる作用効果と同じ作用効果を得ることができる。
前記昇温装置は熱交換器(加熱器41)である。
このような構成によれば、上記[1]の構成から得られる作用効果と同じ作用効果を得ることができる。
前記昇温装置は、前記希釈ガスを燃焼させる燃焼器(51)である。
このような構成によれば、上記[1]の構成から得られる作用効果と同じ作用効果を得ることができる。
前記昇温装置は、前記原料の一部を燃焼させるアンモニア燃焼器であり、該アンモニア燃焼器からの燃焼ガスが前記希釈ガス供給ライン(11)に供給されるように構成されている。
このような構成によれば、上記[1]の構成から得られる作用効果と同じ作用効果を得ることができる。
前記希釈ガス供給ライン(11)の下流端は前記反応器(2)に接続されている。
2 反応器
2a (反応器の)内面
2b 接続部分
3 触媒
4 原料供給ライン
6 流出ガスライン
11 流出ガスリサイクルライン(希釈ガス供給ライン)
26 触媒収容部
26a 収容管(触媒収容部)
26c (収容管の)他端(連通部分)
41 加熱器(昇温装置)
44 耐火材
51 燃焼器(昇温装置)
Claims (7)
- 原料であるアンモニアを水素と窒素とに分解する分解反応の触媒が充填された反応器と、
前記原料が前記触媒に流入する前に、アンモニア濃度が前記原料よりも低い希釈ガスと前記原料とが混合するように、前記希釈ガスを供給するための希釈ガス供給ラインと
を備え、
前記反応器の内面が耐火材で覆われ、該耐火材に対して前記内面と反対側に前記触媒が充填され、
前記希釈ガス供給ラインには、前記希釈ガスを昇温させる昇温装置が設けられているアンモニア分解装置。 - 前記希釈ガスは、前記反応器から流出した流出ガスの一部である、請求項1に記載のアンモニア分解装置。
- 前記昇温装置は加熱炉である、請求項1または2に記載のアンモニア分解装置。
- 前記昇温装置は熱交換器である、請求項1または2に記載のアンモニア分解装置。
- 前記昇温装置は、前記希釈ガスを燃焼させる燃焼器である、請求項1または2に記載のアンモニア分解装置。
- 前記昇温装置は、前記原料の一部を燃焼させるアンモニア燃焼器であり、該アンモニア燃焼器からの燃焼ガスが前記希釈ガス供給ラインに供給されるように構成されている、請求項1または2に記載のアンモニア分解装置。
- 前記希釈ガス供給ラインの下流端は前記反応器に接続されている、請求項1~6のいずれか一項に記載のアンモニア分解装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21919607.8A EP4257541A1 (en) | 2021-01-14 | 2021-12-07 | Ammonia decomposition apparatus |
CA3206821A CA3206821A1 (en) | 2021-01-14 | 2021-12-07 | Ammonia decomposition system |
US18/271,703 US20240316519A1 (en) | 2021-01-14 | 2021-12-07 | Ammonia decomposition system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-004363 | 2021-01-14 | ||
JP2021004363A JP7319499B2 (ja) | 2021-01-14 | 2021-01-14 | アンモニア分解装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022153718A1 true WO2022153718A1 (ja) | 2022-07-21 |
Family
ID=82448383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/044811 WO2022153718A1 (ja) | 2021-01-14 | 2021-12-07 | アンモニア分解装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240316519A1 (ja) |
EP (1) | EP4257541A1 (ja) |
JP (1) | JP7319499B2 (ja) |
CA (1) | CA3206821A1 (ja) |
WO (1) | WO2022153718A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11697108B2 (en) | 2021-06-11 | 2023-07-11 | Amogy Inc. | Systems and methods for processing ammonia |
US11724245B2 (en) | 2021-08-13 | 2023-08-15 | Amogy Inc. | Integrated heat exchanger reactors for renewable fuel delivery systems |
US11764381B2 (en) | 2021-08-17 | 2023-09-19 | Amogy Inc. | Systems and methods for processing hydrogen |
US11795055B1 (en) | 2022-10-21 | 2023-10-24 | Amogy Inc. | Systems and methods for processing ammonia |
US11834334B1 (en) | 2022-10-06 | 2023-12-05 | Amogy Inc. | Systems and methods of processing ammonia |
US11834985B2 (en) | 2021-05-14 | 2023-12-05 | Amogy Inc. | Systems and methods for processing ammonia |
US11866328B1 (en) | 2022-10-21 | 2024-01-09 | Amogy Inc. | Systems and methods for processing ammonia |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015059075A (ja) * | 2013-09-20 | 2015-03-30 | 株式会社日本触媒 | アンモニア分解による水素製造システム |
JP2018096616A (ja) * | 2016-12-13 | 2018-06-21 | 三菱日立パワーシステムズ株式会社 | 火力発電プラント、ボイラ及びボイラの改造方法 |
JP2019167265A (ja) | 2018-03-23 | 2019-10-03 | 三菱重工エンジニアリング株式会社 | アンモニア分解装置 |
JP2019189467A (ja) * | 2018-04-18 | 2019-10-31 | 三菱重工エンジニアリング株式会社 | アンモニア分解システム及びアンモニア分解方法 |
CN111957270A (zh) * | 2020-09-03 | 2020-11-20 | 福州大学化肥催化剂国家工程研究中心 | 一种氨分解制氢系统及加氢站系统 |
JP2021004363A (ja) | 2015-06-02 | 2021-01-14 | デクセリアルズ株式会社 | 接着剤組成物 |
-
2021
- 2021-01-14 JP JP2021004363A patent/JP7319499B2/ja active Active
- 2021-12-07 EP EP21919607.8A patent/EP4257541A1/en active Pending
- 2021-12-07 CA CA3206821A patent/CA3206821A1/en active Pending
- 2021-12-07 US US18/271,703 patent/US20240316519A1/en active Pending
- 2021-12-07 WO PCT/JP2021/044811 patent/WO2022153718A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015059075A (ja) * | 2013-09-20 | 2015-03-30 | 株式会社日本触媒 | アンモニア分解による水素製造システム |
JP2021004363A (ja) | 2015-06-02 | 2021-01-14 | デクセリアルズ株式会社 | 接着剤組成物 |
JP2018096616A (ja) * | 2016-12-13 | 2018-06-21 | 三菱日立パワーシステムズ株式会社 | 火力発電プラント、ボイラ及びボイラの改造方法 |
JP2019167265A (ja) | 2018-03-23 | 2019-10-03 | 三菱重工エンジニアリング株式会社 | アンモニア分解装置 |
JP2019189467A (ja) * | 2018-04-18 | 2019-10-31 | 三菱重工エンジニアリング株式会社 | アンモニア分解システム及びアンモニア分解方法 |
CN111957270A (zh) * | 2020-09-03 | 2020-11-20 | 福州大学化肥催化剂国家工程研究中心 | 一种氨分解制氢系统及加氢站系统 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12000333B2 (en) | 2021-05-14 | 2024-06-04 | AMOGY, Inc. | Systems and methods for processing ammonia |
US11994062B2 (en) | 2021-05-14 | 2024-05-28 | AMOGY, Inc. | Systems and methods for processing ammonia |
US11994061B2 (en) | 2021-05-14 | 2024-05-28 | Amogy Inc. | Methods for reforming ammonia |
US11834985B2 (en) | 2021-05-14 | 2023-12-05 | Amogy Inc. | Systems and methods for processing ammonia |
US11697108B2 (en) | 2021-06-11 | 2023-07-11 | Amogy Inc. | Systems and methods for processing ammonia |
US12097482B2 (en) | 2021-06-11 | 2024-09-24 | AMOGY, Inc. | Systems and methods for processing ammonia |
US11724245B2 (en) | 2021-08-13 | 2023-08-15 | Amogy Inc. | Integrated heat exchanger reactors for renewable fuel delivery systems |
US11843149B2 (en) | 2021-08-17 | 2023-12-12 | Amogy Inc. | Systems and methods for processing hydrogen |
US11769893B2 (en) | 2021-08-17 | 2023-09-26 | Amogy Inc. | Systems and methods for processing hydrogen |
US11764381B2 (en) | 2021-08-17 | 2023-09-19 | Amogy Inc. | Systems and methods for processing hydrogen |
US11840447B1 (en) | 2022-10-06 | 2023-12-12 | Amogy Inc. | Systems and methods of processing ammonia |
US11912574B1 (en) | 2022-10-06 | 2024-02-27 | Amogy Inc. | Methods for reforming ammonia |
US11975968B2 (en) | 2022-10-06 | 2024-05-07 | AMOGY, Inc. | Systems and methods of processing ammonia |
US11834334B1 (en) | 2022-10-06 | 2023-12-05 | Amogy Inc. | Systems and methods of processing ammonia |
US11866328B1 (en) | 2022-10-21 | 2024-01-09 | Amogy Inc. | Systems and methods for processing ammonia |
US11795055B1 (en) | 2022-10-21 | 2023-10-24 | Amogy Inc. | Systems and methods for processing ammonia |
Also Published As
Publication number | Publication date |
---|---|
CA3206821A1 (en) | 2022-07-21 |
US20240316519A1 (en) | 2024-09-26 |
JP2022109042A (ja) | 2022-07-27 |
EP4257541A1 (en) | 2023-10-11 |
JP7319499B2 (ja) | 2023-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022153718A1 (ja) | アンモニア分解装置 | |
WO2022153720A1 (ja) | アンモニア分解装置 | |
WO2022153719A1 (ja) | アンモニア分解装置 | |
JP5919393B2 (ja) | 二酸化炭素の一酸化炭素への変換方法及び装置 | |
CN105377798B (zh) | 使用基于氧转运膜的重整系统生产甲醇的方法和系统 | |
EP2421941B1 (en) | Method for sequestering carbon dioxide from a spent gas | |
CN108699612B (zh) | 向高炉炉身部供给含氢气的还原气体的方法 | |
KR20210103677A (ko) | 수소 개질 시스템 | |
EP1180495B1 (en) | Method of manufacturing synthesis gas | |
JPH0218303A (ja) | 炭化水素の改質反応器および改質方法 | |
US8771638B2 (en) | Method and apparatus for sequestering carbon dioxide from a spent gas | |
US20130116347A1 (en) | Systems and methods for the use of fischer-tropsch tail gas in a gas to liquid process | |
KR101684484B1 (ko) | 용융슬래그로부터 회수한 현열의 활용을 극대화한 개질 촉매반응 공정 및 설비 | |
WO2024157838A1 (ja) | アンモニア分解装置 | |
US20240018614A1 (en) | Method for operating a blast furnace installation | |
JP2023550808A (ja) | 水蒸気改質プラントの窒素酸化物排出を最小化するための方法及びその水蒸気改質プラント | |
JP2024522088A (ja) | 高炉設備の運転方法 | |
EA045314B1 (ru) | Способ эксплуатации установки доменной печи | |
KR20240151804A (ko) | 연료 가스로서 수소-질소 혼합물을 사용하는 연소 프로세스 | |
WO2024170712A1 (en) | A process for production of hydrogen gas | |
CN117342524A (zh) | 一种氨自热分解制氢的系统、方法及应用 | |
JPH0331411A (ja) | 還元性ガスの製造方法 | |
JP2008169049A (ja) | 高一酸化炭素濃度浸炭ガスの製造方法及び製造装置 | |
JPS6081002A (ja) | 吸熱型ガス変成方法およびその装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21919607 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3206821 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18271703 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2021919607 Country of ref document: EP Effective date: 20230707 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |