WO2022153369A1 - 移動体 - Google Patents

移動体 Download PDF

Info

Publication number
WO2022153369A1
WO2022153369A1 PCT/JP2021/000709 JP2021000709W WO2022153369A1 WO 2022153369 A1 WO2022153369 A1 WO 2022153369A1 JP 2021000709 W JP2021000709 W JP 2021000709W WO 2022153369 A1 WO2022153369 A1 WO 2022153369A1
Authority
WO
WIPO (PCT)
Prior art keywords
sail
moving body
mast
main support
hull
Prior art date
Application number
PCT/JP2021/000709
Other languages
English (en)
French (fr)
Inventor
恒毅 野間
航 末田
Original Assignee
エバーブルーテクノロジーズ株式会社
シンガポール国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エバーブルーテクノロジーズ株式会社, シンガポール国立大学 filed Critical エバーブルーテクノロジーズ株式会社
Priority to PCT/JP2021/000709 priority Critical patent/WO2022153369A1/ja
Priority to JP2022574887A priority patent/JPWO2022153369A1/ja
Publication of WO2022153369A1 publication Critical patent/WO2022153369A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H9/00Marine propulsion provided directly by wind power
    • B63H9/04Marine propulsion provided directly by wind power using sails or like wind-catching surfaces
    • B63H9/08Connections of sails to masts, spars, or the like
    • B63H9/10Running rigging, e.g. reefing equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C35/00Flying-boats; Seaplanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C37/00Convertible aircraft

Definitions

  • This disclosure relates to moving objects.
  • Patent Document 1 discloses a seaplane that can fly in the air by means of main wings and the like provided on the left and right sides of the fuselage, and can float on the water by floats provided at the lower part of the fuselage. This seaplane can accelerate forward by driving the propeller while floating on the water.
  • This seaplane is equipped with a hydrofoil below the fuselage, and when traveling on the water, the lift generated by the hydrofoil can lift the fuselage from the surface of the water.
  • the moving body according to the present disclosure aims to make it possible to reach the target water area quickly and to suppress the amount of energy required for navigation in the target water area.
  • the moving body (100) is a moving body (100) capable of flying in the air and navigating on water, and is provided on the hull portion (1) and above the hull portion (1).
  • the sailing portion (2) is provided with a sailing portion (2), and the sailing portion (2) has a sail (60) that receives wind during navigation and a mast (50) that supports the sail (60).
  • 50) has a deployment mechanism (E) that changes the deployment rate of the sail (60).
  • the moving body (100) can fly in the air, it can navigate on the water by receiving the wind with the sail (60) supported by the mast (50). Moreover, since the deployment rate of the sail (60) can be changed by the deployment mechanism (E) of the mast (50) of the moving body (100), the sail (60) is preferably deployed during flight and navigation, for example. Can be a rate.
  • the mast (50) may be in a state of being erected above the hull portion (1) at both the time of flight and the time of navigation. According to this, when switching between flight and navigation (that is, at the time of leaving or landing), it is not necessary to perform an operation such as installing or retracting the mast (50). Further, since a mechanism for performing an operation such as installation or storage of the mast (50) is not required, the sailing portion (2) can have a simple structure.
  • the mast (50) has a main support column (51), and the deployment mechanism (E) is wound with a sail (60) by the main support column (51).
  • the unfolding rate of the sail (60) may be changed by taking and rewinding.
  • the function of the deployment mechanism (E) can be realized by a simple structure.
  • the deployment mechanism (E) is a rotary drive unit (54) that rotates the main support column (51) around the axis on which the main support column (51) extends. And a winch (55) that generates tension in the sail (60) in the direction in which the sail (60) is deployed, and a rotary drive unit (54) that generates tension in the sail (60) by the winch (55).
  • the unfolding rate of the sail (60) may be changed by performing at least one of winding and rewinding of the sail (60). According to this, the function of the deployment mechanism (E) described above can be concretely realized.
  • the sail (60) is wound or rewound in a state where tension is generated by the winch (55), it is possible to suppress the occurrence of a problem such as the sail (60) becoming entangled.
  • the mast (50) may include a fixing mechanism for fixing the sail (60) in a wound state. According to this, it is possible to prevent the sail (60) in the wound state from unraveling and spreading.
  • the mast (50) has a pair of auxiliary support columns (52) connected to the main support column (51) at the upper end portion, and the main support column (51). ) And each of the pair of auxiliary support columns (52) may be connected to the hull portion (1) at the lower end portion. According to this, since the triangular pyramid-shaped truss structure is formed by the main support column and the pair of auxiliary support columns, the strength of the mast can be improved.
  • the hull portion (1) is provided on the fuselage (10) extending in the front-rear direction of the hull portion (1) and on the left and right sides of the hull (10). It may have a pair of fixed wings (20). According to this, in the moving body (100) as a fixed-wing aircraft, the above-mentioned actions and effects can be suitably exhibited.
  • the moving body (100) may include a control unit (4) that controls the operation of the mast (50). According to this, the operation of the mast (50) can be controlled by the control unit (4), and the flight and navigation of the moving body (100) can be suitably controlled. In particular, when the operation of the mast (50) is automatically controlled by the control unit (4), the moving body (100) can be autopiloted.
  • the moving body (100) includes a wind direction detecting unit (3) for detecting the wind direction with respect to the moving body (100), and the control unit (4) is detected by the wind direction detecting unit (3).
  • the operation of the mast (50) may be controlled based on the wind direction. According to this, by controlling the operation of the mast (50) based on the wind direction with respect to the moving body (100), the navigation of the moving body (100) can be controlled more preferably.
  • the moving body according to the present disclosure can quickly reach the target water area and can suppress the amount of energy required for navigation in the target water area.
  • FIG. 1 is a perspective view showing a state in which a moving body according to the present embodiment has a sail unfolded.
  • FIG. 2 is a perspective view showing a state in which the moving body stores the sail.
  • FIG. 3 is a plan view showing a state in which the moving body stores the sail.
  • FIG. 4 is a diagram showing a winch that controls the operation of the sail.
  • FIG. 1 is a perspective view showing a state in which the moving body 100 according to the present embodiment unfolds the sail 60.
  • FIG. 2 is a perspective view showing a state in which the moving body 100 stores the sail 60.
  • FIG. 3 is a plan view showing a state in which the moving body 100 stores the sail 60.
  • the moving body 100 is a device configured to be capable of flying in the air and navigable on water (that is, for both water and air).
  • the moving body 100 is an unmanned aerial vehicle on which no crew is on board, and is capable of flying in the air and navigating on the water by autopilot.
  • the moving body 100 is configured as a fixed-wing aircraft capable of deploying sails on the upper part. More specifically, the moving body 100 can fly in the air as a fixed-wing aircraft in the state where the sail is retracted, and can sail (that is, sail) on the water as a sailing ship in the state where the sail is deployed.
  • the moving body 100 includes a hull unit 1, a sailing unit 2, a wind direction detecting unit 3, and a control unit 4.
  • the hull part 1 is a hull part as a fixed-wing aircraft and a hull part as a sailing ship in the moving body 100.
  • the hull portion 1 is configured to float on the water so that the moving body 100 can navigate on the water. That is, the hull portion 1 is configured to be relatively lightweight as a whole, and generates sufficient buoyancy to withstand the weight of the moving body 100.
  • the hull portion 1 has a fuselage 10, a pair of main wings (fixed wings) 20, a tail wing 30, and a propeller 40.
  • the fuselage 10 is the main part of the hull part 1 and extends in the front-rear direction of the hull part 1.
  • the fuselage 10 has a streamlined shape in the front-rear direction of the hull portion 1, and once the diameter is increased from the front end toward the rear, the diameter is further reduced toward the rear.
  • the fuselage 10 itself functions as a float when the hull portion 1 floats on the water.
  • a pair of keels 11 extending along the front-rear direction of the hull portion 1 are provided on the lower side (that is, the bottom surface side) of the fuselage 10.
  • the fuselage 10 includes a pair of keels 11 underneath.
  • the pair of keels 11 have fin-like shapes arranged side by side on the left and right sides, and suppress the lateral flow of the moving body 100 during navigation.
  • the pair of keels 11 include a weight at the tip end portion (that is, the lower end portion) and function as a ballast.
  • Each keel 11 extends vertically below the waterline during navigation. Specifically, each keel 11 extends below the bottom 1a of the hull 1. Each keel 11 is in a state of being erected on the lower side of the hull portion 1 (for example, the bottom portion 1a of the hull portion 1) during both flight and navigation.
  • the waterline is the height (line) at which the water surface is located on the outer surface of the moving body 100 when the moving body 100 is floated on the water.
  • the pair of main wings 20 is a wing portion as a fixed-wing aircraft, and generates lift when the moving body 100 flies in the air.
  • a pair of main wings 20 are provided on the left and right sides of the fuselage 10, respectively.
  • the pair of main wings 20 are configured as so-called delta wings.
  • the pair of main wings 20 is not limited to the delta wing, and may be various types of wings such as a tapered wing, a swept wing, and a forward wing.
  • Each main wing 20 includes a horizontal portion 21 extending substantially horizontally, and an inclined portion 22 inclined downward from the horizontal portion 21 from the tip of the horizontal portion (that is, the left end of the left wing and the right end of the right wing). At least a part of each wing 20 may be submerged when the hull 1 floats on the water and function as a float (that is, buoyancy may be generated).
  • the inclined portion 22 may function as a float, and in addition to the inclined portion 22, a part of the tip side of the horizontal portion 21 may function as a float, and the inclined portion 22 and the horizontal portion may function.
  • the entire 21 may function as a float.
  • each main wing 20 includes a movable flap 23 at the trailing edge of the horizontal portion 21.
  • the flap 23 increases or decreases the lift generated by each main wing 20 by rotating the trailing edge side around the central axis extending in the left-right direction of the hull portion 1 at the leading edge portion of the flap 23.
  • the tail wing 30 is provided at the rear of the moving body 100, and is a wing for stabilizing the body when the hull part 1 as a fixed-wing aircraft flies in the air.
  • the tail 30 includes a vertical stabilizer 30V and a horizontal stabilizer 30H.
  • the vertical stabilizer 30V is a wing that is erected substantially vertically toward the upper part of the fuselage 10 and extends along the front-rear direction of the hull portion 1.
  • the vertical stabilizer 30V includes a flight ladder 31 and a navigation ladder 32.
  • the horizontal stabilizer 30H is a wing erected substantially horizontally from the substantially central portion of the vertical stabilizer 30V in the vertical direction to the left and right.
  • the horizontal stabilizer 30H includes an elevator 33.
  • the flight ladder 31 is a rudder that adjusts the traveling direction of the moving body 100 during flight.
  • the flight ladder 31 is provided at the trailing edge of the vertical stabilizer 30V.
  • the flight ladder 31 controls the yawing behavior of the moving body 100 during flight by rotating the trailing edge side around the central axis extending in the vertical direction of the hull 1 at the leading edge of the flight ladder 31.
  • the navigation ladder 32 is a rudder that adjusts the traveling direction of the moving body 100 during navigation.
  • the navigation ladder 32 is provided below the flight ladder 31 in the trailing edge of the vertical stabilizer 30V.
  • the navigation rudder 32 controls the yawing behavior of the moving body 100 during navigation by rotating the trailing edge side around the central axis extending in the vertical direction of the hull portion 1 at the leading edge portion of the navigation ladder 32.
  • the navigation ladder 32 is connected to the flight ladder 31 and operates as one.
  • the navigation ladder 32 is configured to have a shape in which the flight ladder 31 is extended downward.
  • the navigation ladder 32 extends below the waterline at the time of navigation. Specifically, the navigation ladder 32 extends below the bottom portion 1a of the hull portion 1. More specifically, each of the navigation ladder 32 and the pair of keels 11 extends downward so that the lower ends thereof are at the same positions in the vertical direction of the hull portion 1. That is, each of the navigation ladder 32 and the pair of keels 11 extends downward from the bottom 1a of the hull portion 1 to the same distance. As a result, the hull portion 1 takes a substantially horizontal posture when it is placed on land with each of the navigation ladder 32 and the pair of keels 11 as legs.
  • the elevator 33 is an elevator (ladder) that adjusts the traveling direction of the moving body 100 during flight.
  • the elevator 33 is provided at the trailing edge of the horizontal stabilizer 30H.
  • the elevator 33 pitches the moving body 100 during flight (that is, nose raising and model) by rotating the trailing edge side around the central axis extending in the left-right direction of the hull portion 1 at the leading edge portion of the elevator 33. Control the behavior of lowering).
  • the propeller 40 is a rotary wing that generates a propulsive force that advances the moving body 100.
  • the propeller 40 generates propulsive force by rotating a plurality of blades (here, two blades) around the central axis extending in the front-rear direction of the hull portion 1.
  • the propeller 40 is fixed to the tail wing 30.
  • the propeller 40 is provided in front of the tail wing 30 so that the central axis of the propeller 40 is along the line segment where the vertical tail wing 30V of the tail wing 30 and the horizontal stabilizer 30H intersect.
  • the propeller 40 is provided behind the sailing portion 2 described later at a position that does not interfere with the mast 50 and the sail 60 of the sailing portion 2.
  • the sailing unit 2 is a mechanism for receiving a wind and obtaining propulsive force in the moving body 100 as a sailing ship. That is, the sailing unit 2 is a mechanism for deploying the sail so that the moving body 100 can sail (that is, sail) on the water as a sailing ship.
  • the sailing portion 2 is provided on the upper side of the hull portion 1.
  • the sailing portion 2 has a mast 50 and a sail 60.
  • the mast 50 is a structure that is erected on the upper side of the hull portion 1 and supports the sail 60.
  • the mast 50 is in a state of being erected above the hull portion 1 during both flight and navigation of the moving body 100.
  • the mast 50 can expand and store the sail 60 by changing the expansion rate of the sail 60.
  • the "sail expansion rate" is an index value indicating the degree to which the sail 60 is expanded. In the following description, it is assumed that the sail 60 is completely unfolded when the unfolding rate of the sail 60 is 100%. On the other hand, when the expansion rate of the sail 60 is 0%, it is assumed that the sail 60 is completely stored.
  • the mast 50 can have the sail unfolding rate in any state between 100% and 0%.
  • the mast 50 has a main support column 51, a pair of auxiliary support columns 52, a binding portion 53, a deployment mechanism E, and a fixing mechanism (not shown).
  • Each of the main support pillar 51 and the pair of sub support pillars 52 is a rod (pillar) configured in a long cylindrical shape.
  • Each of the main support column 51 and the pair of auxiliary support columns 52 is formed of, for example, an aluminum pipe.
  • the main support pillar 51 constitutes a so-called forestay, and each of the pair of auxiliary support pillars 52 supports the main support pillar 51.
  • Each of the main support column 51 and the pair of auxiliary support columns 52 is bound by a binding portion 53 at the upper end portion.
  • the main support column 51 and the pair of auxiliary support columns 52 have a triangular pyramid shape.
  • the pair of auxiliary support columns 52 are connected to the main support column 51 at the upper end portion.
  • the binding portion 53 is formed with three recesses into which the upper ends of the main support pillar 51 and the pair of auxiliary support pillars 52 are fitted. As a result, the binding portion 53 holds each of the main support pillar 51 and the pair of auxiliary support pillars 52 at the upper end portion. Of the three recesses formed in the binding portion 53, the two recesses (sub-recesses) into which the sub-support columns 52 are fitted may hold the sub-support columns 52 so as not to rotate. On the other hand, of the three recesses formed in the binding portion 53, one recess (main recess) into which the main support pillar 51 is fitted holds the main support pillar 51 rotatably.
  • the main recess may rotatably hold the main support pillar 51 by loosely fitting the main support pillar 51.
  • the main recess may rotatably hold the main support pillar 51 by holding the main support pillar 51 with a bearing.
  • Each of the main support pillar 51 and the pair of sub support pillars 52 is connected to the hull portion 1 at the lower end portion.
  • the main support pillar 51 is connected to a substantially central portion on the upper surface side of the fuselage 10 of the hull portion 1 at the lower end portion.
  • each of the pair of auxiliary support columns 52 is connected to each of the pair of main wings 20 of the hull portion 1 at the lower end portion.
  • each sub-support column 52 is connected to a substantially central portion on the upper surface side of each main wing 20. Therefore, the propeller 40 is located between the pair of auxiliary support columns 52, and as a result, each auxiliary support column 52 does not interfere with the propeller 40.
  • Deployment mechanism E is a mechanism that changes the deployment rate of the sail 60.
  • the unfolding mechanism E changes the unfolding rate of the sail 60 by winding and rewinding the sail 60 by the main support pillar 51.
  • the deploying mechanism E winds the sail 60 around the main support pillar 51 by rotating the main support pillar 51.
  • the deployment mechanism E reduces the deployment rate of the sail 60 (that is, retracts the sail 60 by winding the sail 60). It reduces the air resistance acting on the sail 60 during flight.
  • the deployment mechanism E increases the deployment rate of the sail 60 (that is, deploys the sail 60 by rewinding the sail 60). Increases the air resistance (or lift for sailing) acting on the sail 60 during navigation.
  • the deployment mechanism E includes a rotary drive unit 54 and a winch 55.
  • the rotation drive unit 54 is a fura mechanism that rotates the main support pillar 51 around the axis on which the main support pillar 51 extends.
  • the rotary drive unit 54 may transmit the rotary drive force of the drive motor to the main support column 51 to rotate the main support column 51 around the axis.
  • FIG. 4 is a diagram showing a winch 55 that controls the operation of the sail 60.
  • the winch 55 is a mechanism for generating tension in the sail 60 in the direction in which the sail 60 is deployed.
  • the winch 55 may generate tension in the sail 60 by being driven so as to wind up a string (rope) connected to an end portion of the sail 60 opposite to the main support pillar 51, for example.
  • the deployment mechanism E causes the winch 55 to generate tension in the sail 60, and the rotary drive unit 54 performs at least one of winding and rewinding of the sail 60. Change the deployment rate of the sail 60.
  • the winch 55 shown in FIG. 4 includes a string guide portion 56 that guides the string wound by the winch 55.
  • the string guide portion 56 is a mechanism for adjusting the extending direction of the string so that the string extends from the winch 55 toward the sail 60 at a suitable angle.
  • the string guide portion 56 is not shown in FIGS. 1 to 3.
  • the fixing mechanism is a mechanism for fixing the sail 60 in a state of being wound by the unfolding mechanism E.
  • the fixing mechanism prevents the end of the sail 60 on the side opposite to the main support pillar 51 from being separated from the main support pillar 51 (or that the end moves irregularly (ramp) in response to wind or the like). It is a mechanism for suppressing).
  • the fixing mechanism may generate an urging force that urges the end portion toward the main support column 51.
  • the fixing mechanism may suppress the movement of the end portion of the sail 60 by the winch 55 of the deploying mechanism E pulling the end portion of the sail 60 through the string (that is, by applying tension).
  • the fixing mechanism may fix the sail 60 to the main support column 51 when the moving body 100 flies in the air as a fixed-wing aircraft. Further, the fixing mechanism may release the fixing of the sail 60 when the moving body 100 is about to start sailing on the water as a sailing ship.
  • the sail 60 is a sail (seat) that receives the wind during navigation.
  • the sail 60 includes a substantially triangular canvas 61.
  • One side of the canvas 61 extends along the main support pillar 51 and is connected to the main support pillar 51.
  • the sail 60 also includes a boom 62 and a batten (not shown).
  • the boom 62 is a rod-shaped member extending along the bottom side of the canvas 61 (one side not along the main support pillar 51) to which the canvas 61 is connected.
  • the boom 62 is attached to the main support column 51 by, for example, an elastic resin joint part.
  • the boom 62 defines the orientation of the canvas 61 by rotating around the main support pillar 51 within the movable range of the joint parts with the main support pillar 51 as the central axis.
  • the boom 62 is connected to the winch 55 via a string (rope) at the end (tip) side opposite to the end (base end) on the main support pillar 51 side. Then, the winch 55 feeds and pulls back the string to define the rotatable range (angle range) of the boom 62.
  • the batten is a member attached to the canvas 61 to adjust the rigidity of the canvas 61.
  • the battens are formed of, for example, flexible members, and when the main support column 51 is rotated by the deployment mechanism E and the canvas 61 is wound, the battens are wound around the main support column 51 together with the canvas 61. You may.
  • the wind direction detection unit 3 is a wind direction meter that detects the wind direction with respect to the moving body 100, for example, a weather vane.
  • the wind direction detecting unit 3 is provided on the upper surface of the fuselage 10.
  • the wind direction detection unit 3 acquires the wind direction with respect to the moving body 100 as electronic data, and outputs the acquired electronic data regarding the wind direction to the control unit 4.
  • the control unit 4 is a controller that controls the operation of each part of the moving body 100.
  • the control unit 4 is physically configured as a control arithmetic unit, and can exchange information between the storage device and the input / output device.
  • the control unit 4 is composed of, for example, a CPU (Central Processing Unit) or the like, and executes arithmetic processing and controls a storage device and an input / output device.
  • the storage device includes, for example, a main storage device and an auxiliary storage device.
  • the main storage device is composed of, for example, a RAM (Random Access Memory).
  • the auxiliary storage device is composed of, for example, a ROM (Read Only Memory).
  • the input / output device includes, for example, an input device for inputting data from the outside and transmitting the data to the storage device, and for example, an output device for outputting the calculation result calculated by the control calculation unit and stored in the storage device to the outside.
  • the control unit 4 executes a predetermined process by, for example, reading a program stored in the ROM into the RAM and executing the program read in the RAM.
  • the control unit 4 may be configured as a controller that controls the operation of each unit of the moving body 100, and may have a configuration different from the above-described configuration.
  • control unit 4 controls, for example, the operations of the flight ladder 31 and the navigation ladder 32.
  • the control unit 4 may control the operations of the flight ladder 31 and the navigation ladder 32 based on the wind direction detected by the wind direction detection unit 3.
  • the control unit 4 controls the operation of the mast 50, for example.
  • the control unit 4 may control the operation of the mast 50 based on the wind direction detected by the wind direction detection unit 3.
  • the control unit 4 may control the winch 55 of the mast 50.
  • control unit 4 may control the operation of the flap 23, the elevator 33, the rotation drive unit 54, the fixing mechanism, and the like.
  • the moving body 100 is a moving body 100 capable of flying in the air and navigating on the water, and includes a hull portion 1 and a sailing portion 2 provided on the upper side of the hull portion 1.
  • the sailing portion 2 has a sail 60 that receives wind during navigation and a mast 50 that supports the sail 60, and the mast 50 has a deployment mechanism E that changes the deployment rate of the sail 60.
  • the moving body 100 can fly in the air, it can navigate on the water by receiving the wind with the sail 60 supported by the mast 50.
  • the deployment rate of the sail 60 can be changed by the deployment mechanism E of the mast 50, the sail 60 can be set to a suitable deployment rate, for example, during flight and navigation.
  • the mast 50 is in a state of being erected above the hull portion 1 during both flight and navigation. According to this, when switching between flight and navigation (that is, at the time of taking off or landing on the water), it is not necessary to perform an operation such as installing or retracting the mast 50. Further, since a mechanism for performing an operation such as installation or storage of the mast 50 is not required, the sailing portion 2 can have a simple structure.
  • the mast 50 has a main support pillar 51, and the deployment mechanism E changes the deployment rate of the sail 60 by winding and rewinding the sail 60 by the main support pillar 51.
  • the function of the deployment mechanism E can be realized by a simple structure.
  • the deployment mechanism E has a rotation drive unit 54 that rotates the main support column 51 around the axis on which the main support column 51 extends, and a winch that generates tension in the sail 60 in the direction in which the sail 60 is deployed. 55, and the unfolding rate of the sail 60 is changed by at least one of winding and rewinding of the sail 60 by the rotary drive unit 54 while generating tension in the sail 60 by the winch 55.
  • the function of the deployment mechanism E described above can be concretely realized.
  • the sail 60 is wound or rewound while tension is generated by the winch 55, it is possible to suppress the occurrence of problems such as the sail 60 being entangled.
  • the mast 50 includes a fixing mechanism for fixing the sail 60 in a wound state. According to this, it is possible to prevent the sail 60 in the wound state from unraveling and spreading.
  • the mast 50 has a pair of auxiliary support columns 52 connected to the main support column 51 at the upper end, and each of the main support column 51 and the pair of auxiliary support columns 52 has a hull portion at the lower end. It is connected with 1. According to this, since the triangular pyramid-shaped truss structure is formed by the main support column and the pair of auxiliary support columns, the strength of the mast can be improved.
  • the hull portion 1 has a fuselage 10 extending in the front-rear direction of the hull portion 1 and a pair of fixed wings 20 provided on the left and right sides of the fuselage 10. According to this, in the moving body 100 as a fixed-wing aircraft, the above-mentioned actions and effects can be suitably exhibited.
  • the moving body 100 includes a control unit 4 that controls the operation of the mast 50. According to this, the operation of the mast 50 can be controlled by the control unit 4, and the flight and navigation of the moving body 100 can be suitably controlled. In particular, when the operation of the mast 50 is automatically controlled by the control unit 4, the moving body 100 can be automatically operated.
  • the moving body 100 includes a wind direction detecting unit 3 that detects the wind direction with respect to the moving body 100, and the control unit 4 controls the operation of the mast 50 based on the wind direction detected by the wind direction detecting unit 3. According to this, by controlling the operation of the mast 50 based on the wind direction with respect to the moving body 100, the navigation of the moving body 100 can be controlled more preferably.
  • each of the navigation ladder 32 and the pair of keels 11 may include wheels at the lower end. According to this, the hull portion 1 can be easily moved even on land. Further, the wheels may be connected to a drive source and can be rotationally driven. According to this, the hull portion 1 can be self-propelled on land.
  • each keel 11 is in a state of being erected under the hull portion 1 during both flight and navigation.
  • each keel 11 may be in a state of being erected under the hull portion 1 at least when the moving body 100 is navigating. That is, each keel 11 may be in a state of being stored in the hull portion 1 during flight, and may be in a state of being erected under the hull portion 1 during navigation.
  • each keel 11 is on the tip side (ie, hull) around the central axis of the base end of the keel 11 (ie, the upper end of the keel 11 in a state of being erected below the hull 1).
  • the lower end side of the keel 11 in a state of being erected under the portion 1 may rotate and be stored in a storage chamber (not shown) formed in the bottom portion 1a of the hull portion 1. According to this, it is easy to generate a suitable air flow around the hull portion 1 during flight.
  • the navigation ladder 32 is connected to the flight ladder 31 and operates as one.
  • the navigation ladder 32 is separated from the flight ladder 31 and may operate as a separate body. According to this, the navigation ladder 32 can be optimized for navigation and the flight ladder 31 can be optimized for flight.
  • the moving body 100 is an unmanned aerial vehicle.
  • the moving body 100 may be a manned aircraft on which an occupant can board.
  • the moving body 100 is capable of flying in the air and navigating on the water by autopilot, it may be remotely controlled by an operator or directly operated by an occupant.
  • the body 10 includes a pair of keels 11 arranged side by side on the left and right sides.
  • the fuselage 10 may include a single keel (or centerboard) instead of the pair of keels 11 described above.
  • the mast 50 is in a state of being erected on the upper side of the hull portion 1 during both flight and navigation of the moving body 100.
  • the mast 50 may be in a state of being erected above the hull portion 1 at least when the moving body 100 is navigating. That is, the mast 50 is not erected on the upper side of the hull portion 1 during flight (for example, is laid down along the fuselage 10 or is stored inside the fuselage 10). It may be in a state of being erected on the upper side of the hull portion 1 at the time of navigation.
  • the mast 50 can set the expansion rate of the sail 60 to an arbitrary state between 100% and 0%.
  • the mast 50 may only be able to set the sail 60 deployment rate to either 100% or 0%.
  • the mast 50 may be able to bring the sail 60 into a plurality of states including 100% and 0% (eg, three states of 100%, 50%, and 0%).
  • the moving body 100 includes a deployment mechanism E that winds and rewinds the sail 60 by the main support pillar 51, and a boom 62 that is connected to the canvas 61 and defines the direction of the canvas 61. It has both.
  • the moving body 100 may include only one of these deployment mechanisms E and the boom 62. That is, the moving body 100 may not be provided with the boom 62 when the deploying mechanism E is provided, and conversely, the moving body 100 may not be provided with the deploying mechanism E when the boom 62 is provided.
  • the structure can be simplified and the reliability of the operation of each mechanism can be improved.

Abstract

本発明の課題は、目的水域まで速やかに到達可能とし、且つ、目的水域での航行に要するエネルギー量を抑制することである。移動体100は、空中を飛行可能且つ水上を航行可能である。移動体100は、船体部1と、船体部1の上側に設けられた帆装部2と、を備えている。帆装部2は、航行時に風を受けるセイル60と、セイル60を支持するマスト50と、を有している。マスト50は、セイル60の展開率を変更する展開機構Eを有している。

Description

移動体
 本開示は、移動体に関する。
 空中を飛行可能且つ水上を航行可能な移動体が知られている。一般に水上を航行するよりも空中を飛行する方が高速での移動が容易であることから、このような移動体によれば、空中を飛行して目的水域まで短時間で到達し、その後、水上を航行して任務を遂行することができる。例えば特許文献1には、胴体の左右に設けられた主翼等によって空中を飛行可能であるとともに、胴体の下部に設けられたフロートによって水上に浮遊可能な水上飛行機が開示されている。この水上飛行機は、水上に浮遊している状態でプロペラを駆動することにより、前方に向けて加速することができる。この水上飛行機は、胴体の下方に水中翼を備えており、水上を進行する際に、当該水中翼が発生させる揚力によって胴体を水面から浮き上がらせることができる。
特開2018-167792号公報
 上述した水上飛行機のような移動体では、水上を航行するために例えばプロペラを駆動して推進力を発生させる必要がある。このため、プロペラを駆動するための燃料(エネルギー)が大量に消費されることとなる。
 そこで、本開示に係る移動体は、目的水域まで速やかに到達可能とし、且つ、目的水域での航行に要するエネルギー量を抑制することを目的とする。
 本開示の一態様に係る移動体(100)は、空中を飛行可能且つ水上を航行可能な移動体(100)であって、船体部(1)と、船体部(1)の上側に設けられた帆装部(2)と、を備え、帆装部(2)は、航行時に風を受けるセイル(60)と、セイル(60)を支持するマスト(50)と、を有し、マスト(50)は、セイル(60)の展開率を変更する展開機構(E)を有する。
 これによれば、移動体(100)は、空中を飛行可能である一方で、マスト(50)により支持されたセイル(60)で風を受けることにより、水上を航行可能である。しかも、移動体(100)は、マスト(50)の展開機構(E)によりセイル(60)の展開率を変更することができるため、例えば飛行時及び航行時においてセイル(60)を好適な展開率とすることができる。
 本開示の一態様に係る移動体(100)では、マスト(50)は、飛行時及び航行時のいずれにおいても、船体部(1)の上側に立設された状態とされていてもよい。これによれば、飛行と航行とを切替える際(すなわち、離水時又は着水時)に、例えばマスト(50)の設置又は格納といった動作を行う必要がない。また、マスト(50)の設置又は格納といった動作を行うための機構が不要となるため、帆装部(2)を簡便な構造とすることができる。
 本開示の一態様に係る移動体(100)では、マスト(50)は、主支持柱(51)を有し、展開機構(E)は、主支持柱(51)によりセイル(60)の巻取り及び巻戻しを行うことで、セイル(60)の展開率を変更してもよい。これによれば、簡便な構造により、展開機構(E)の機能を実現することができる。
 本開示の一態様に係る移動体(100)では、展開機構(E)は、主支持柱(51)が延在する軸線回りに当該主支持柱(51)を回転させる回転駆動部(54)と、セイル(60)を展開させる向きにセイル(60)に張力を発生させるウインチ(55)と、を含み、ウインチ(55)によりセイル(60)に張力を発生させつつ回転駆動部(54)によりセイル(60)の巻取り及び巻戻しの少なくともいずれかを行うことで、セイル(60)の展開率を変更してもよい。これによれば、上述した展開機構(E)の機能を具体的に実現することができる。特に、ウインチ(55)により張力を発生させた状態でセイル(60)の巻取り又は巻戻しを行うため、例えばセイル(60)が絡まるといった不具合の発生を抑制することができる。
 本開示の一態様に係る移動体(100)では、マスト(50)は、巻取りを行った状態でセイル(60)を固定する固定機構を含んでいてもよい。これによれば、巻取りを行った状態のセイル(60)が解けて広がってしまうことを抑制することができる。
 本開示の一態様に係る移動体(100)では、マスト(50)は、上端部において主支持柱(51)と連結された一対の副支持柱(52)を有し、主支持柱(51)及び一対の副支持柱(52)のそれぞれは、下端部において船体部(1)と連結されていてもよい。これによれば、主支持柱及び一対の副支持柱によって三角錐状のトラス構造を形成するため、マストの強度を向上させることができる。
 本開示の一態様に係る移動体(100)では、船体部(1)は、当該船体部(1)の前後方向に延在する胴体(10)と、胴体(10)の左右に設けられた一対の固定翼(20)と、を有していてもよい。これによれば、固定翼機としての移動体(100)において、上述した作用及び効果を好適に奏することができる。
 本開示の一態様に係る移動体(100)は、マスト(50)の動作を制御する制御部(4)を備えていてもよい。これによれば、制御部(4)によりマスト(50)の動作を制御して、移動体(100)の飛行及び航行を好適に制御することができる。特に、制御部(4)によりマスト(50)の動作を自動制御する場合には、移動体(100)の自動操縦が可能となる。
 本開示の一態様に係る移動体(100)は、当該移動体(100)に対する風向を検出する風向検出部(3)を備え、制御部(4)は、風向検出部(3)により検出された風向に基づいて、マスト(50)の動作を制御してもよい。これによれば、移動体(100)に対する風向に基づいてマスト(50)の動作を制御することにより、移動体(100)の航行をより好適に制御することができる。
 なお、上記の括弧内の符号は、後述する実施形態における構成要素の符号を本開示の一例として示したものであって、本開示を実施形態の態様に限定するものではない。
 このように、本開示に係る移動体は、目的水域まで速やかに到達可能とし、且つ、目的水域での航行に要するエネルギー量を抑制することができる。
図1は、本実施形態に係る移動体がセイルを展開した状態を示す斜視図である。 図2は、移動体がセイルを格納した状態を示す斜視図である。 図3は、移動体がセイルを格納した状態を示す平面図である。 図4は、セイルの動作を制御するウインチを示す図である。
 以下、図面を参照して例示的な実施形態について説明する。なお、各図における同一又は相当部分には同一符号を付し、重複する説明を省略する。
[移動体の構成]
 図1は、本実施形態に係る移動体100がセイル60を展開した状態を示す斜視図である。図2は、移動体100がセイル60を格納した状態を示す斜視図である。図3は、移動体100がセイル60を格納した状態を示す平面図である。図1~図3に示されるように、移動体100は、空中を飛行可能且つ水上を航行可能(すなわち、水空両用)に構成された装置である。
 移動体100は、乗員が搭乗しない無人機であり、自動操縦により空中を飛行可能且つ水上を航行可能とされている。移動体100は、上部に帆を展開可能な固定翼機として構成されている。より詳細には、移動体100は、帆を格納した状態では固定翼機として空中を飛行することができるとともに、帆を展開した状態では帆船として水上を航行(すなわち、帆走)することができる。移動体100は、船体部1、帆装部2、風向検出部3、及び制御部4を備えている。
 船体部1は、移動体100において、固定翼機としての機体部分であり、且つ、帆船としての船体部分である。船体部1は、移動体100が水上を航行可能とするために、水上に浮かぶように構成されている。すなわち、船体部1は、全体として比較的軽量に構成され、移動体100の重量に抗し得るだけの十分な浮力を生じる。船体部1は、胴体10、一対の主翼(固定翼)20、尾翼30、及びプロペラ40を有している。
 胴体10は、船体部1の主体部分であり、船体部1の前後方向に延在している。胴体10は、船体部1の前後方向に関して流線型をなしており、前端から後方に向かうにつれて一旦拡径した後、更に後方に向かうにつれて縮径している。胴体10は、船体部1が水上に浮かぶ際に、胴体10自体がフロートとして機能する。
 胴体10の下側(すなわち、底面側)には、船体部1の前後方向に沿って延びる一対のキール11が設けられている。換言すると、胴体10は、その下側に、一対のキール11を含んでいる。一対のキール11は、左右に並設されたフィン状を呈し、航行時における移動体100の横流れを抑制する。また、一対のキール11は、その先端部(すなわち、下端部)に錘を含んでおりバラストとして機能する。一対のキール11としていわゆるツインキール形式が採用されることにより、既存のヨットに用いられる部品を流用(又は、一部流用)可能となるとともに、移動体100を地面に載置(保管)する場合又は移動体100を緊急着陸させる場合等に当該移動体100を自立させることが可能となっている。
 各キール11は、上下方向において、航行時における喫水線よりも下方まで延びている。具体的には、各キール11は、船体部1の底部1aよりも下方まで延びている。各キール11は、飛行時及び航行時のいずれにおいても、船体部1の下側(例えば、船体部1の底部1a)に立設された状態とされている。なお、喫水線とは、移動体100が水上に浮かべられた場合に、移動体100の外面において水面が位置する高さ(線)である。
 一対の主翼20は、固定翼機としての翼部分であり、移動体100が空中を飛行する際に揚力を発生させる。一対の主翼20は、胴体10の左右にそれぞれ設けられている。一対の主翼20は、いわゆるデルタ翼として構成されている。なお、一対の主翼20は、デルタ翼に限らず、テーパー翼、後退翼、及び前進翼といった種々の形態の翼であってもよい。
 各主翼20は、略水平に延在する水平部21、及び、水平部の先端(すなわち、左翼の左端及び右翼の右端)から水平部21よりも下方に傾斜する傾斜部22を含んでいる。各主翼20の少なくとも一部は、船体部1が水上に浮かぶ際に水中に没し、フロートとして機能してもよい(すなわち、浮力を生じさせてもよい。)。例えば、各主翼20のうち、傾斜部22がフロートとして機能してもよく、傾斜部22に加えて水平部21の先端側の一部がフロートとして機能してもよく、傾斜部22及び水平部21の全体がフロートとして機能してもよい。
 また、各主翼20は、水平部21の後縁部に可動式のフラップ23を含んでいる。フラップ23は、当該フラップ23の前縁部において船体部1の左右方向に延びる中心軸線回りに、後縁側を回動させることにより、各主翼20により発生する揚力を増減させる。
 尾翼30は、移動体100の後部に設けられ、固定翼機としての船体部1が空中を飛行する際に機体を安定させるための翼である。尾翼30は、垂直尾翼30V及び水平尾翼30Hを含んでいる。垂直尾翼30Vは、胴体10の上方に向かって略垂直に立設され、船体部1の前後方向に沿って延びる翼である。垂直尾翼30Vは、飛行ラダー31及び航行ラダー32を含んでいる。水平尾翼30Hは、垂直尾翼30Vの上下方向における略中央部から左右に向かって略水平に立設された翼である。水平尾翼30Hは、エレベータ33を含んでいる。
 飛行ラダー31は、飛行時における移動体100の進行方向を調整する方向舵(ラダー)である。飛行ラダー31は、垂直尾翼30Vの後縁部に設けられている。飛行ラダー31は、当該飛行ラダー31の前縁部において船体部1の上下方向に延びる中心軸線回りに、後縁側を回動させることにより、飛行時における移動体100のヨーイングの挙動を制御する。
 航行ラダー32は、航行時における移動体100の進行方向を調整する舵(ラダー)である。航行ラダー32は、垂直尾翼30Vの後縁部のうち、飛行ラダー31よりも下方に設けられている。航行ラダー32は、当該航行ラダー32の前縁部において船体部1の上下方向に延びる中心軸線回りに、後縁側を回動させることにより、航行時における移動体100のヨーイングの挙動を制御する。航行ラダー32は、飛行ラダー31と連結されており一体として動作する。ここでは、航行ラダー32は、飛行ラダー31を下方に延長した形状に構成されている。
 航行ラダー32は、航行時における喫水線よりも下方まで延びている。具体的には、航行ラダー32は、船体部1の底部1aよりも下方まで延びている。より具体的には、航行ラダー32及び一対のキール11のそれぞれは、船体部1の上下方向において下端部が同等の位置となるように下方に延びている。つまり、航行ラダー32及び一対のキール11のそれぞれは、船体部1の底部1aからの下方に向かって同程度の距離まで延在している。これにより、船体部1は、航行ラダー32及び一対のキール11のそれぞれを脚として陸上に載置された場合に、略水平の姿勢をとることとなる。
 エレベータ33は、飛行時における移動体100の進行方向を調整する昇降舵(ラダー)である。エレベータ33は、水平尾翼30Hの後縁部に設けられている。エレベータ33は、当該エレベータ33の前縁部において船体部1の左右方向に延びる中心軸線回りに、後縁側を回動させることにより、飛行時における移動体100のピッチング(すなわち、機首上げ及び機種下げ)の挙動を制御する。
 プロペラ40は、移動体100を前進させる推進力を発生させる回転翼である。プロペラ40は、船体部1の前後方向に延びる中心軸線回りに、複数枚(ここでは、2枚)の羽根を回転させることにより、推進力を発生させる。プロペラ40は、尾翼30に固定されている。具体的には、プロペラ40は、尾翼30の前方に、尾翼30の垂直尾翼30Vと水平尾翼30Hとの交差する線分に当該プロペラ40の中心軸線が沿うように、設けられている。プロペラ40は、後述する帆装部2の後方に、帆装部2のマスト50及びセイル60と干渉しない位置に設けられている。
 帆装部2は、帆船としての移動体100において、風を受けて推進力を得るための機構である。つまり、帆装部2は、帆を展開することで、移動体100を帆船として水上を航行(すなわち、帆走)可能とするための機構である。帆装部2は、船体部1の上側に設けられている。帆装部2は、マスト50及びセイル60を有している。
 マスト50は、船体部1の上側に立設され、セイル60を支持する構造体である。マスト50は、移動体100の飛行時及び航行時のいずれにおいても、船体部1の上側に立設された状態とされている。マスト50は、セイル60の展開率を変更することにより、セイル60を展開及び格納することができる。「セイルの展開率」とは、セイル60が展開されている程度を示す指標値である。以下の説明では、セイル60の展開率が100%である場合に、セイル60が完全に展開されているものとする。一方、セイル60の展開率が0%である場合に、60が完全に格納されているものとする。マスト50は、セイルの展開率を100%から0%までの間の任意の状態とすることができる。マスト50は、主支持柱51、一対の副支持柱52、結束部53、展開機構E、及び固定機構(不図示)を有している。
 主支持柱51及び一対の副支持柱52のそれぞれは、長尺筒状に構成された竿(柱)である。主支持柱51及び一対の副支持柱52のそれぞれは、例えばアルミ管によって形成されている。主支持柱51は、いわゆるフォアステイを構成し、一対の副支持柱52のそれぞれは主支持柱51を支持している。主支持柱51及び一対の副支持柱52のそれぞれは、上端部において結束部53により結束されている。これにより、主支持柱51及び一対の副支持柱52は、三角錐状をなしている。換言すると、一対の副支持柱52は、上端部において主支持柱51と連結されている。
 結束部53には、主支持柱51及び一対の副支持柱52のそれぞれの上端部が嵌入される3つの凹部が形成されている。これにより、結束部53は、主支持柱51及び一対の副支持柱52のそれぞれを上端部において保持する。結束部53に形成される3つの凹部のうち、各副支持柱52が嵌入される2つの凹部(副凹部)は、各副支持柱52を回転不能に保持してもよい。一方、結束部53に形成される3つの凹部のうち、主支持柱51が嵌入される1つの凹部(主凹部)は、主支持柱51を回転自在に保持する。例えば、主凹部は、主支持柱51が遊嵌されることで、主支持柱51を回転自在に保持してもよい。あるいは、主凹部は、主支持柱51を軸受により保持することで、主支持柱51を回転自在に保持してもよい。
 主支持柱51及び一対の副支持柱52のそれぞれは、下端部において船体部1と連結されている。具体的には、主支持柱51は、下端部において船体部1の胴体10の上面側の略中央部と連結されている。一方、一対の副支持柱52のそれぞれは、下端部において船体部1の一対の主翼20のそれぞれと連結されている。より具体的には、各副支持柱52は、各主翼20の上面側の略中央部と連結されている。このため、一対の副支持柱52の間にプロペラ40が位置することとなり、その結果、各副支持柱52はプロペラ40と干渉しない。
 展開機構Eは、セイル60の展開率を変更する機構である。展開機構Eは、主支持柱51によりセイル60の巻取り及び巻戻しを行うことで、セイル60の展開率を変更する。具体的には、例えばセイル60の巻取りに際して、展開機構Eは、主支持柱51を回転させることにより主支持柱51の周囲にセイル60を巻き付ける。展開機構Eは、移動体100が固定翼機として空中を飛行する際には、セイル60の展開率を低下させて(すなわち、セイル60の巻取りを行うことでセイル60を格納して)、飛行時にセイル60に作用する空気抵抗を低減させる。一方、展開機構Eは、移動体100が帆船として水上を航行する際には、セイル60の展開率を増大させて(すなわち、セイル60の巻戻しを行うことでセイル60を展開して)、航行時にセイル60に作用する空気抵抗(或いは、帆走のための揚力)を増大させる。展開機構Eは、回転駆動部54及びウインチ55を含んでいる。
 回転駆動部54は、主支持柱51が延在する軸線回りに当該主支持柱51を回転させるファーラ機構である。回転駆動部54は、例えば駆動モータの回転駆動力を主支持柱51に伝達し、主支持柱51を軸線回りに回転させてもよい。図4は、セイル60の動作を制御するウインチ55を示す図である。図4に示されるように、ウインチ55は、セイル60を展開させる向きにセイル60に張力を発生させる機構である。ウインチ55は、例えばセイル60の主支持柱51とは反対側の端部に接続された紐(ロープ)を巻取るように駆動されることで、セイル60に張力を発生させてもよい。これら回転駆動部54及びウインチ55を用いて、展開機構Eは、ウインチ55によりセイル60に張力を発生させつつ回転駆動部54によりセイル60の巻取り及び巻戻しの少なくともいずれかを行うことで、セイル60の展開率を変更する。なお、図4に示されるウインチ55は、当該ウインチ55により巻き取られる紐を案内する紐案内部56を含んでいる。紐案内部56は、ウインチ55からセイル60に向かって好適な角度で紐が延びるように、紐の延在方向を調整する機構である。紐案内部56は、図1~図3においては図示を省略されている。
 固定機構は、展開機構Eにより巻取りを行った状態でセイル60を固定する機構である。固定機構は、セイル60の主支持柱51とは反対側の端部が主支持柱51から離間しないように(又は、当該端部が風等を受けて不規則に動くこと(暴れること)を抑制するように)するための機構である。固定機構は、当該端部を主支持柱51に向かって付勢する付勢力を発生させてもよい。あるいは、固定機構は、展開機構Eのウインチ55が紐を介してセイル60の端部を引っ張ることにより(つまり、テンションをかけることにより)、当該端部の動きを抑制してもよい。固定機構は、移動体100が固定翼機として空中を飛行するときに、セイル60を主支持柱51に固定してもよい。また、固定機構は、移動体100が帆船として水上を航行し始めようとするときに、セイル60の固定を解除してもよい。
 図1~図3に戻り、セイル60は、航行時に風を受ける帆(シート)である。セイル60は、略三角形の帆布61を含んでいる。帆布61の1辺は、主支持柱51に沿って延在し、主支持柱51に連結されている。展開機構Eが主支持柱51によりセイル60の巻取りを行う際には、この連結された1辺が巻取りの起点とされる。また、セイル60は、ブーム62及びバテン(不図示)を含んでいる。
 ブーム62は、帆布61の底辺(主支持柱51に沿わない1辺)に沿って延在して帆布61が連結された棒状部材である。ブーム62は、主支持柱51に対して、例えば弾性を有する樹脂製のジョイントパーツによって取り付けられている。ブーム62は、主支持柱51を中心軸線としてジョイントパーツの可動範囲内で主支持柱51回りに回動することで、帆布61の向きを規定する。ブーム62は、主支持柱51側の端部(基端部)とは反対側の端部(先端部)側において、紐(ロープ)を介してウインチ55と接続されている。そして、ウインチ55が紐を繰出し及び繰戻しすることで、ブーム62の回動可能範囲(角度範囲)が規定される。その結果、航行時に風を受けたセイル60の向きが制御可能となる。バテンは、帆布61に取り付けられて帆布61の剛性を調整する部材である。バテンは、例えば、可撓性を有する部材によって形成され、展開機構Eにより主支持柱51が回転させられて帆布61が巻き取られる際に、帆布61とともに主支持柱51の周囲に巻き取られてもよい。
 風向検出部3は、移動体100に対する風向を検出する風向計であり、例えば風見である。風向検出部3は、胴体10の上面に設けられている。なお、風向検出部3は、移動体100に対する風向を電子データとして取得し、取得した風向に関する電子データを制御部4に出力する。
 制御部4は、移動体100の各部の動作を制御するコントローラである。制御部4は、物理的には制御演算装置として構成され、記憶装置及び入出力装置との間で情報の授受が可能である。制御部4は、例えばCPU(Central Processing Unit)等により構成されており、演算処理を実行するとともに記憶装置及び入出力装置の制御を行う。記憶装置は、例えば主記憶装置及び補助記憶装置を有している。主記憶装置は、例えばRAM(Random Access Memory)により構成されている。また、補助記憶装置は、例えばROM(Read Only Memory)により構成されている。入出力装置は、例えば外部からデータを入力されて記憶装置に送信する入力装置、及び、例えば制御演算部により演算されて記憶装置に記憶された演算結果を外部に出力する出力装置を有している。制御部4は、例えば、ROMに記憶されているプログラムをRAMに読み込ませ、RAMに読み込まれたプログラムを実行することにより、所定の処理を実行する。なお、制御部4は、移動体100の各部の動作を制御するコントローラとして構成されていればよく、上述した構成とは異なる構成を備えていてもよい。
 より詳細には、制御部4は、例えば飛行ラダー31及び航行ラダー32の動作を制御する。この場合、制御部4は、風向検出部3により検出された風向に基づいて、飛行ラダー31及び航行ラダー32の動作を制御してもよい。また、制御部4は、例えばマスト50の動作を制御する。この場合、制御部4は、風向検出部3により検出された風向に基づいて、マスト50の動作を制御してもよい。具体的には、制御部4は、マスト50のウインチ55を制御してもよい。なお、上述したものの他に、制御部4は、フラップ23、エレベータ33、回転駆動部54、及び固定機構等の動作を制御してもよい。
[作用及び効果]
 以上説明したように、移動体100は、空中を飛行可能且つ水上を航行可能な移動体100であって、船体部1と、船体部1の上側に設けられた帆装部2と、を備え、帆装部2は、航行時に風を受けるセイル60と、セイル60を支持するマスト50と、を有し、マスト50は、セイル60の展開率を変更する展開機構Eを有する。
 これによれば、移動体100は、空中を飛行可能である一方で、マスト50により支持されたセイル60で風を受けることにより、水上を航行可能である。しかも、移動体100は、マスト50の展開機構Eによりセイル60の展開率を変更することができるため、例えば飛行時及び航行時においてセイル60を好適な展開率とすることができる。
 移動体100では、マスト50は、飛行時及び航行時のいずれにおいても、船体部1の上側に立設された状態とされる。これによれば、飛行と航行とを切替える際(すなわち、離水時又は着水時)に、例えばマスト50の設置又は格納といった動作を行う必要がない。また、マスト50の設置又は格納といった動作を行うための機構が不要となるため、帆装部2を簡便な構造とすることができる。
 移動体100では、マスト50は、主支持柱51を有し、展開機構Eは、主支持柱51によりセイル60の巻取り及び巻戻しを行うことで、セイル60の展開率を変更する。これによれば、簡便な構造により、展開機構Eの機能を実現することができる。
 移動体100では、展開機構Eは、主支持柱51が延在する軸線回りに当該主支持柱51を回転させる回転駆動部54と、セイル60を展開させる向きにセイル60に張力を発生させるウインチ55と、を含み、ウインチ55によりセイル60に張力を発生させつつ回転駆動部54によりセイル60の巻取り及び巻戻しの少なくともいずれかを行うことで、セイル60の展開率を変更する。これによれば、上述した展開機構Eの機能を具体的に実現することができる。特に、ウインチ55により張力を発生させた状態でセイル60の巻取り又は巻戻しを行うため、例えばセイル60が絡まるといった不具合の発生を抑制することができる。
 移動体100では、マスト50は、巻取りを行った状態でセイル60を固定する固定機構を含んでいる。これによれば、巻取りを行った状態のセイル60が解けて広がってしまうことを抑制することができる。
 移動体100では、マスト50は、上端部において主支持柱51と連結された一対の副支持柱52を有し、主支持柱51及び一対の副支持柱52のそれぞれは、下端部において船体部1と連結されている。これによれば、主支持柱及び一対の副支持柱によって三角錐状のトラス構造を形成するため、マストの強度を向上させることができる。
 移動体100では、船体部1は、当該船体部1の前後方向に延在する胴体10と、胴体10の左右に設けられた一対の固定翼20と、を有している。これによれば、固定翼機としての移動体100において、上述した作用及び効果を好適に奏することができる。
 移動体100は、マスト50の動作を制御する制御部4を備えている。これによれば、制御部4によりマスト50の動作を制御して、移動体100の飛行及び航行を好適に制御することができる。特に、制御部4によりマスト50の動作を自動制御する場合には、移動体100の自動操縦が可能となる。
 移動体100は、当該移動体100に対する風向を検出する風向検出部3を備え、制御部4は、風向検出部3により検出された風向に基づいて、マスト50の動作を制御する。これによれば、移動体100に対する風向に基づいてマスト50の動作を制御することにより、移動体100の航行をより好適に制御することができる。
[変形形態]
 上述した実施形態は、当業者の知識に基づいて変更又は改良が施された様々な形態により実施可能である。
 例えば、上述した実施形態においては、航行ラダー32及び一対のキール11のそれぞれの下端部に、別途の構造物等は設けられていない。しかし、航行ラダー32及び一対のキール11のそれぞれの下端部には、車輪(不図示)が設けられていてもよい。換言すると、航行ラダー32及び一対のキール11のそれぞれは、下端部に車輪を含んでいてもよい。これによれば、船体部1を陸上でも容易に移動させることができる。また、車輪は、駆動源に接続されており回転駆動可能であってもよい。これによれば、船体部1を陸上で自走させることができる。
 また、上述した実施形態においては、各キール11は、飛行時及び航行時のいずれにおいても、船体部1の下側に立設された状態とされている。しかし、各キール11は、少なくとも移動体100の航行時において船体部1の下側に立設された状態とされていればよい。すなわち、各キール11は、飛行時においては、船体部1に格納された状態とされており、航行時においては、船体部1の下側に立設された状態とされていてもよい。一例として、各キール11は、当該キール11の基端部(すなわち、船体部1の下側に立設された状態における当該キール11の上端部)の中心軸線回りに先端部側(すなわち、船体部1の下側に立設された状態における当該キール11の下端部側)が回動して、船体部1の底部1aに形成された格納室(不図示)内に格納されてもよい。これによれば、飛行時において、船体部1の周囲に好適な気流を発生させやすい。
 また、上述した実施形態においては、航行ラダー32は、飛行ラダー31と連結されており一体として動作する。しかし、航行ラダー32は、飛行ラダー31と分離されており別体として動作してもよい。これによれば、航行ラダー32を航行に最適化するとともに、飛行ラダー31を飛行に最適化することができる。
 また、上述した実施形態においては、移動体100は無人機である。しかし、移動体100は、乗員が搭乗可能な有人機であってもよい。また、移動体100は、自動操縦により空中を飛行可能及び水上を航行可能とされているが、オペレータによる遠隔操作又は乗員による直接操作が可能であってもよい。
 また、上述した実施形態においては、胴体10は、左右に並設された一対のキール11を含んでいる。しかし、胴体10は、上述した一対のキール11に代えて、単一のキール(又は、センターボード)を含んでいてもよい。
 また、上述した実施形態においては、マスト50は、移動体100の飛行時及び航行時のいずれにおいても、船体部1の上側に立設された状態とされている。しかし、マスト50は、少なくとも移動体100の航行時において船体部1の上側に立設された状態とされていればよい。すなわち、マスト50は、飛行時においては、船体部1の上側に立設されていない状態(例えば、胴体10に沿うように倒された状態、又は、胴体10の内部に格納された状態)とされており、航行時においては、船体部1の上側に立設された状態とされていてもよい。
 また、上述した実施形態においては、マスト50は、セイル60の展開率を100%から0%までの間の任意の状態とすることができる。しかし、マスト50は、セイル60の展開率を100%又は0%のいずれかの状態にのみすることができてもよい。あるいは、マスト50は、セイル60の展開率を100%及び0%を含む複数の状態(例えば、100%、50%、及び0%の3つの状態)にすることができてもよい。
 また、上述した実施形態においては、移動体100は、主支持柱51によりセイル60の巻取り及び巻戻しを行う展開機構Eと、帆布61に連結されて帆布61の向きを規定するブーム62と、の両方を備えている。しかし、移動体100は、これら展開機構Eとブーム62とのいずれか一方のみを備えていてもよい。すなわち、移動体100は、展開機構Eを備えている場合にはブーム62を備えていなくてもよく、逆に、ブーム62を備えている場合には展開機構Eを備えていなくてもよい。これにより、例えば、構造の簡便化、及び、各機構の動作の信頼性向上を図り得る。

Claims (9)

  1.  空中を飛行可能且つ水上を航行可能な移動体であって、
     船体部と、
     前記船体部の上側に設けられた帆装部と、を備え、
     前記帆装部は、
      航行時に風を受けるセイルと、
      前記セイルを支持するマストと、を有し、
     前記マストは、前記セイルの展開率を変更する展開機構を有する、移動体。
  2.  前記マストは、飛行時及び航行時のいずれにおいても、前記船体部の上側に立設された状態とされている、請求項1に記載の移動体。
  3.  前記マストは、主支持柱を有し、
     前記展開機構は、前記主支持柱により前記セイルの巻取り及び巻戻しを行うことで、前記セイルの展開率を変更する、請求項1又は2に記載の移動体。
  4.  前記展開機構は、
      前記主支持柱が延在する軸線回りに当該主支持柱を回転させる回転駆動部と、
      前記セイルを展開させる向きに前記セイルに張力を発生させるウインチと、を含み、
      前記ウインチにより前記セイルに張力を発生させつつ前記回転駆動部により前記セイルの巻取り及び巻戻しの少なくともいずれかを行うことで、前記セイルの展開率を変更する、請求項3に記載の移動体。
  5.  前記マストは、巻取りを行った状態で前記セイルを固定する固定機構を含む、請求項3又は4に記載の移動体。
  6.  前記マストは、上端部において前記主支持柱と連結された一対の副支持柱を有し、
     前記主支持柱及び一対の前記副支持柱のそれぞれは、下端部において前記船体部と連結されている、請求項3~5のいずれか一項に記載の移動体。
  7.  前記船体部は、
      当該船体部の前後方向に延在する胴体と、
      前記胴体の左右に設けられた一対の固定翼と、を有する、請求項1~6のいずれか一項に記載の移動体。
  8.  前記マストの動作を制御する制御部を備える、請求項1~7のいずれか一項に記載の移動体。
  9.  当該移動体に対する風向を検出する風向検出部を備え、
     前記制御部は、前記風向検出部により検出された前記風向に基づいて、前記マストの動作を制御する、請求項8に記載の移動体。
PCT/JP2021/000709 2021-01-12 2021-01-12 移動体 WO2022153369A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/000709 WO2022153369A1 (ja) 2021-01-12 2021-01-12 移動体
JP2022574887A JPWO2022153369A1 (ja) 2021-01-12 2021-01-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/000709 WO2022153369A1 (ja) 2021-01-12 2021-01-12 移動体

Publications (1)

Publication Number Publication Date
WO2022153369A1 true WO2022153369A1 (ja) 2022-07-21

Family

ID=82447027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000709 WO2022153369A1 (ja) 2021-01-12 2021-01-12 移動体

Country Status (2)

Country Link
JP (1) JPWO2022153369A1 (ja)
WO (1) WO2022153369A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220242181A1 (en) * 2017-11-03 2022-08-04 Yanjun Che Triphibian Vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB241514A (en) * 1924-10-15 1926-02-18 Rohrbach Metall Flugzeugbau Ge Improvements in or relating to seaplanes
US3749042A (en) * 1971-11-09 1973-07-31 P Jackson Furling and unfurling of sails
JPS6042196A (ja) * 1983-05-03 1985-03-06 ハルトム−ト・ベルトホルト・シユウアイツ 帆船
JPH03114993A (ja) * 1989-07-04 1991-05-16 Saiz Manuel Munoz 船舶の推進装置
JP3044927U (ja) * 1997-06-30 1998-01-23 昌弘 雛元 セイルロール式マスト
JP2004026066A (ja) * 2002-06-27 2004-01-29 Sumitomo Heavy Ind Ltd 帆装商船
US20100121506A1 (en) * 2008-11-11 2010-05-13 Michele Cazzaro Apparatus and method for automatically adjusting the sail surface exposed to the wind
JP2016512802A (ja) * 2013-03-18 2016-05-09 オートノーマス マリーン システムズ インコーポレーテッドAutonomous Marine Systems, Inc. 海洋モニタリングのための自律式セイルボート

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB241514A (en) * 1924-10-15 1926-02-18 Rohrbach Metall Flugzeugbau Ge Improvements in or relating to seaplanes
US3749042A (en) * 1971-11-09 1973-07-31 P Jackson Furling and unfurling of sails
JPS6042196A (ja) * 1983-05-03 1985-03-06 ハルトム−ト・ベルトホルト・シユウアイツ 帆船
JPH03114993A (ja) * 1989-07-04 1991-05-16 Saiz Manuel Munoz 船舶の推進装置
JP3044927U (ja) * 1997-06-30 1998-01-23 昌弘 雛元 セイルロール式マスト
JP2004026066A (ja) * 2002-06-27 2004-01-29 Sumitomo Heavy Ind Ltd 帆装商船
US20100121506A1 (en) * 2008-11-11 2010-05-13 Michele Cazzaro Apparatus and method for automatically adjusting the sail surface exposed to the wind
JP2016512802A (ja) * 2013-03-18 2016-05-09 オートノーマス マリーン システムズ インコーポレーテッドAutonomous Marine Systems, Inc. 海洋モニタリングのための自律式セイルボート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HANG, L. C. ET AL.: "Key technologies and industrial application prospects of amphibian aircraft", ACTA AERONAUTICA ET ASTRONAUTICA SINICA, vol. 40, no. 1, 25 January 2019 (2019-01-25), pages 522708, DOI: 10.7527/S1000-6893.2018.22708 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220242181A1 (en) * 2017-11-03 2022-08-04 Yanjun Che Triphibian Vehicle

Also Published As

Publication number Publication date
JPWO2022153369A1 (ja) 2022-07-21

Similar Documents

Publication Publication Date Title
JP4691551B2 (ja) 風力船舶での飛行する凧タイプの風を受ける要素の配置システム
US7866271B2 (en) Placement system for a flying kite-type wind-attacked element in a wind-powered watercraft
KR101206747B1 (ko) 풍력 구동 유닛으로서 자유비행 카이트식 수풍 부재를포함하는 선박
KR101206748B1 (ko) 풍력선의 자유비행 카이트식 수풍 부재를 위한 포지셔닝장치
US6918346B2 (en) Marine craft towed by a kite-type canopy
JP2002519236A (ja) バルーンの飛翔経路制御システム
US7093803B2 (en) Apparatus and method for aerodynamic wing
US3966143A (en) Self-launching glider
WO2022153369A1 (ja) 移動体
JPS58128995A (ja) 帆舟および帆船の推進装置
US6732670B2 (en) Sailing craft
AU2010306461B2 (en) Airship
WO2022153368A1 (ja) 移動体
SI23103A (sl) Naprava za premikanje po vodi in/ali po zraku in/ali po kopnem
US11713100B2 (en) Rotatable hull and multidirectional vessel
US4945845A (en) High-speed sailing craft
GB2440320A (en) Amphibious gyroplane
WO1998017530A1 (en) Pilotable flying craft
US9487269B1 (en) Aerodynamically buoyant vehicle
CN117377617A (zh) 风帆推进装置、风帆推进的交通工具
WO2010079365A2 (en) Kite deployment system
AU752459B2 (en) Sailing craft
WO2004067378A1 (en) Sailing craft
Vestum Wind Powered Marine Vehicle-A Concept Study
WO2001096176A1 (en) Sailing craft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919265

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022574887

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919265

Country of ref document: EP

Kind code of ref document: A1