WO2022152995A1 - Materiau composite thermoplastique pour structures tubulaires composites - Google Patents

Materiau composite thermoplastique pour structures tubulaires composites Download PDF

Info

Publication number
WO2022152995A1
WO2022152995A1 PCT/FR2022/050027 FR2022050027W WO2022152995A1 WO 2022152995 A1 WO2022152995 A1 WO 2022152995A1 FR 2022050027 W FR2022050027 W FR 2022050027W WO 2022152995 A1 WO2022152995 A1 WO 2022152995A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
material according
vdf
oxide
equal
Prior art date
Application number
PCT/FR2022/050027
Other languages
English (en)
Inventor
Jérôme RONDIN
Cyrille Mathieu
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to JP2023541986A priority Critical patent/JP2024503841A/ja
Priority to US18/270,000 priority patent/US20240066827A1/en
Priority to CN202280009597.9A priority patent/CN116723937A/zh
Priority to EP22702751.3A priority patent/EP4277785A1/fr
Publication of WO2022152995A1 publication Critical patent/WO2022152995A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/12Mixture of at least two particles made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/30Particles characterised by physical dimension
    • B32B2264/303Average diameter greater than 1µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/737Dimensions, e.g. volume or area
    • B32B2307/7375Linear, e.g. length, distance or width
    • B32B2307/7376Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to the field of the transport of fluids for underwater oil exploitation, or "offshore" in English. More particularly, the invention relates to a composition comprising at least one fluoropolymer and at least one high density filler. The invention also relates to a thermoplastic composite tubular structure which comprises at least one outer layer consisting of said composition. The invention also relates to the method of manufacturing said composition, as well as to its applications as an outer layer for weighting thermoplastic composite tubes transporting fluids in the context of oil and gas exploration and exploitation.
  • the oil and gas industry mainly distinguishes between two types of tubes: a first type to transport oil or gas from the level of the sea floor to the central well: these are the tubes called flow lines or "flow-lines” in English, and a second type for raising the oil or gas from the central well at the bottom of the sea to the floating platform on the surface: these are the riser tubes or "risers" in English English.
  • thermoplastic composite tubular structures or “Thermoplastic Composite Pipes” (TCP) in English.
  • Thermoplastic composite pipes use thermoplastic composite materials instead of steel to provide strength and rigidity to pipelines. These structures are composed of an internal polymeric coating aimed at ensuring watertightness and chemical resistance, a polymer layer reinforced with continuous fibers (glass, aramid, carbon, etc.) for mechanical strength, as well as an outer protective sheath.
  • TCP offers a combination of high strength, flexibility and ease of termination, giving it the best qualities of conventional (strong but rigid) metal tubing and flexible tubing made from unbonded layers of helically applied metal wires and extruded thermoplastics (flexible but heavy, and very expensive to finish on site).
  • Steel pipes comprising a layer acting as ballast, said layer being able to be located inside or outside the pipe, are known.
  • Document FR 3007033 describes a composition of composite material for the neutralization of at least one acid compound from among carbon dioxide CO2 and hydrogen sulphide H2S, said composition comprising a mixture of a polymer material with a determined quantity of chemically active with said acid compound so as to irreversibly neutralize the corrosive effects of said acid compounds.
  • the mass fraction of said chemically active products is between 4 and 40%, since, as indicated on page 14, 1.6-9, filler contents greater than 40% reduce the mechanical properties of composite materials.
  • Document US 4606378 describes a subsea pipe comprising a steel pipe provided with a continuous weight coating in the form of a relatively thick layer of a composite material consisting of granules of a relatively heavy material embedded in a matrix plastic, said composite material being covered with a plastic tube.
  • Said plastic matrix consists of a thermosetting resin such as epoxy, polyurethane or acrylic resin, while the heavy material incorporated in the plastic resin consists of a heavy metal ore, for example an iron ore such as magnetite or hematite, in the form of particles or granules.
  • a composite material consisting of 85 to 95% by weight of magnetite in a matrix of 5 to 15% by weight of epoxy resin.
  • thermoplastic composite pipes TCP
  • TCP thermoplastic composite pipes
  • the invention relates firstly to a composite material consisting of a thermoplastic fluorinated polymer matrix in which are incorporated particles of at least one inorganic filler compatible with said fluorinated polymer, said particles having a density of at least 3 g/ cm 3 , preferably at least 4 g/cm 3 , advantageously at least 5 g/cm 3 , the mass content of fillers being greater than 40% and ranging up to 70%, said particles having a defined size by a D50 of less than 20 im and by a D90 of less than 50 Lim.
  • said fluorinated polymer is chosen from homopolymers of vinylidene fluoride (PVDF) and copolymers of vinylidene fluoride and at least one other comonomer, and mixtures thereof.
  • PVDF vinylidene fluoride
  • copolymers of vinylidene fluoride and at least one other comonomer and mixtures thereof.
  • said fluorinated polymer is a mixture of a PVDF homopolymer and a copolymer of vinylidene difluoride (VDF) and hexafluoropropylene (HFP).
  • said fluorinated polymer is a mixture of two VDF-HFP copolymers having different HFP levels.
  • said filler is chosen from metal oxides such as iron(II) oxide (FeO), iron(III) oxide (Fc2O>), iron(II, III) oxide ) (Fe3O4 or FeO-Fe2O3), zinc oxide (ZnO), copper(I) oxide (Cu2O), copper(II) oxide (CuO), lead(II) oxide (PbO), nickel(II) oxide (NiO), aluminum(III) oxide (Al2O3), mixtures of these oxides and associated mineral compounds that may contain these metal oxides: magnetite, hematite, cuprite ...
  • metal oxides such as iron(II) oxide (FeO), iron(III) oxide (Fc2O>), iron(II, III) oxide ) (Fe3O4 or FeO-Fe2O3), zinc oxide (ZnO), copper(I) oxide (Cu2
  • said composite material contains from 50% up to 60% by weight of said filler.
  • the invention also relates to a process for manufacturing said composite material, said process comprising a step of mixing the fluoropolymer and the inorganic filler, described above, in the molten state.
  • Said method also comprises a step of extruding said composite material in the form of a tube or sheath intended to cover a thermoplastic composite tubular structure in order to weigh it down and thus allow it to be used in petroleum exploration and exploitation applications. and gas.
  • the invention also aims to provide thermoplastic composite pipes (TCP) comprising at least one outer layer consisting of said composite material.
  • TCP thermoplastic composite pipes
  • the invention makes it possible to overcome the drawbacks of the state of the art.
  • the invention provides a fluoropolymer-based composite material incorporating high density fillers to form a high density composition, greater than that of the fluoropolymer (for example, the density of PVDF is 1.78 g/cm 3 ), and greater than or equal to 2.15 g/cm 3 , preferably greater than or equal to 2.3 g/cm 3 , advantageously greater than or equal to 2.5 g/cm 3 , which makes it possible to manufacture a layer which, alone or with others, will subsequently cover a thermoplastic composite tubular structure (TCP) in order to weigh down the entire structure.
  • TCP thermoplastic composite tubular structure
  • Figure 1 includes images representing the external and internal appearance of extruded strips of VDF-HFP copolymers containing 50 or 60% by weight of magnetite.
  • the invention relates to a composite material consisting of a thermoplastic fluorinated polymer matrix in which are incorporated particles of at least one inorganic filler compatible with said fluorinated polymer, said particles having a density of at least 3 g/cm 3 , preferably at least 4 g/cm 3 , advantageously at least 5 g/cm 3 , the mass content of fillers being greater than 40% and ranging up to 70%, said particles having a size defined by a D50 less than 20 iim and by a D90 less than 50 Lim.
  • said composite material comprises the following characteristics, possibly combined.
  • thermoplastic is meant here a non-elastomeric polymer.
  • An elastomeric polymer is defined as being a polymer which can be stretched, at room temperature, to twice its initial length and which, after stress release, quickly returns to its initial length, within 10%, as indicated by the ASTM in Special Technical Publication No. 184.
  • the fluorinated polymer contains in its chain at least one monomer chosen from compounds containing a vinyl group capable of opening to polymerize and which contains, directly attached to this vinyl group, at least one fluorine atom, a fluoroalkyl group or a fluoroalkoxy group.
  • the fluoropolymer is chosen from homopolymers of vinylidene fluoride (PVDF) and copolymers of vinylidene fluoride and at least one other comonomer, and mixtures thereof.
  • said comonomer is a fluorinated comonomer chosen from: hexafluoropropylene (HFP), perfluoro (methylvinyl) ether (PMVE), perfluoro (ethylvinyl) ether (PEVE), perfluoro (propylvinyl) ether (PPVE ), tetrafluoroethylene (TFE), perfluorobutylethylene (PFBE), chlorotrifluoroethylene (CTFE), fluoroethylenepropylene (FEP) and trifluoroethylene.
  • HFP hexafluoropropylene
  • PMVE perfluoro (methylvinyl) ether
  • PEVE perfluoro (ethylvinyl) ether
  • PPVE perfluoro (propylvinyl) ether
  • TFE tetrafluoroethylene
  • PFBE perfluorobutylethylene
  • CTFE chlorotrifluoroethylene
  • FEP fluoroethylene
  • the comonomer is HFP.
  • the copolymer comprises only VDF and HFP.
  • these copolymers contain at least 50% by mass of VDF, advantageously at least 75% by mass of VDF and preferably at least 80% by mass of VDF.
  • the VDF-HFP copolymer has a mass content of HFP greater than 10%, preferably greater than 15%. This makes it possible to lower the flexural modulus of the coating, which considerably increases the flexibility properties of the article according to the invention.
  • said VDF-HFP copolymer is a random copolymer.
  • This type of copolymer has the advantage of having a homogeneous distribution of the comonomer along the vinylidene fluoride chains.
  • said VDF-HFP copolymer is a so-called “heterogeneous” copolymer, which is characterized by a non-homogeneous distribution of the comonomer along the VDF chains, due to the synthesis process described by the applicant, for example in the US 6,187,885.
  • a heterogeneous copolymer has two (or more) distinct phases, with a phase rich in P VDF and a phase of copolymer rich in HFP comonomer.
  • the heterogeneous copolymer consists of discontinuous, discrete and individual copolymer domains of comonomer-rich phase, which are homogeneously distributed in a continuous PVDF-rich phase. We then speak of a non-continuous structure.
  • the heterogeneous copolymer is a copolymer having two (or more) continuous phases which are intimately linked together and cannot be physically separated. We then speak of a co-continuous structure.
  • the heterogeneous copolymer can be made by forming an initial polymer that is rich in VDF monomer units, generally greater than 90 wt% VDF, preferably greater than 95 wt%, and in a preferred embodiment, a PVDF homopolymer, then adding a co-monomer to the reactor well into the polymerization to produce a copolymer.
  • VDF-rich polymer and copolymer will form distinct phases resulting in an intimate heterogeneous copolymer.
  • said fluorinated polymer is chosen from: i. a PVDF homopolymer; ii. a mixture of two PVDF homopolymers having different viscosities, or different molar masses, or different architectures, for example different degrees of branching; iii. a copolymer comprising vinylidene fluoride (VDF) units and one or more types of comonomer units compatible with vinylidene fluoride (hereinafter referred to as "VDF copolymer”); iv. a blend of a PVDF homopolymer and a VDF copolymer; v. a blend of two VDF copolymers.
  • VDF vinylidene fluoride
  • the fluorinated polymers used in the invention can be obtained by known polymerization methods such as polymerization in solution, in emulsion or in suspension. According to one embodiment, they are prepared by an emulsion polymerization process in the absence of fluorinated surfactant.
  • said filler is chosen from metal oxides such as iron(II) oxide (FeO), iron(III) oxide (Fc2O>), iron(II, III) oxide ) (FesCL or FeO-Fe2O3), zinc oxide (ZnO), copper(I) oxide (Cu2O), copper(II) oxide (CuO), lead(II) oxide (PbO), nickel(II) oxide (NiO), aluminum(III) oxide (Al2O3), mixtures of these oxides and associated mineral compounds that may contain these metal oxides: magnetite, hematite, cuprite ...
  • metal oxides such as iron(II) oxide (FeO), iron(III) oxide (Fc2O>), iron(II, III) oxide ) (FesCL or FeO-Fe2O3), zinc oxide (ZnO), copper(I) oxide (Cu2O), copper(II) oxide (CuO), lead(II) oxide (PbO), nickel(II) oxide (Ni
  • All these compounds have a density of at least 3 g/cm 3 , preferably of at least 4 g/cm 3 , advantageously greater than 5 g/cm 3 , measured according to the ASTM D792 standard.
  • the mass content of fillers varies from 50% up to 60%.
  • the filler particles have a size defined by a D50 of less than 10 ⁇ m and by a D90 of less than 15 Lim.
  • the inorganic fillers incorporated into the composite material according to the invention must be thermally stable up to 300°C. This thermal stability is measured by thermogravimetric analysis (TGA) under air or nitrogen flow. These fillers must be compatible with the fluoropolymer matrix. By “compatible” is meant here the ability of these inorganic fillers not to cause degradation of said matrix, in particular by means of a dehydrofluorination reaction.
  • inorganic fillers can be incorporated directly into a fluorinated matrix.
  • certain fillers such as titanium dioxide can catalyze a dehydrofluorination reaction of the fluorinated matrix, leading to a degradation of the mechanical properties (chain scission) and release of HF.
  • any new charge is thus tested according to a safety protocol: a) mixture in the molten state of fluoropolymer and charge for 10 min at 230°C, b) measurement of mass loss by thermogravimetric analysis (isothermal for Ih at 250°C).
  • the metal oxide is magnetite (FesCfi), which has a density of 5.2 g/cm 3 at 20°C.
  • the composite material obtained has a density greater than 2.15 g/cm 3 , preferably greater than or equal to 2.3 g/cm 3 , advantageously greater than or equal to 2.5 g/cm 3 .
  • the composite material is non-porous, that is to say that it has no porosity visible by means of an optical microscope.
  • the composite material according to the invention has a ductile behavior even at -20° C., its deformation at the threshold being greater than 5%, measured according to the ASTM D638 standard.
  • the invention also relates to a process for manufacturing said composite material, said process comprising a step of mixing the fluoropolymer and the inorganic filler, described above, in the molten state.
  • this step is carried out using co-rotating twin-screw extruders, co-kneaders or internal mixers.
  • fillers are preferably used in the form of particles whose size distribution is defined by the diameters D50 and D90.
  • the D50 is the volume median diameter which is the particle size value that divides the population of particles examined exactly in half.
  • the D90 is the median diameter by volume for which 90% of the population analyzed is below this value. These diameters are measured according to the ISO 9276 standard. In the present invention, a Malvern INSITEC particle size analyzer is used, and the measurement is made dry by laser diffraction on the load.
  • the D50 is less than 20 Lim, preferably less than 10 Lim, while the D90 is less than 50 Lim, preferably less than 15 Lim.
  • the D50 is greater than or equal to I Lim, and the D90 is greater than or equal to 5 Lim.
  • These composite materials can then be used to cover a TCP structure by extrusion in order to weigh it down, in the context of oil and gas exploration and exploitation.
  • the weighted polymer sheath is obtained by extruding said composite material in the form of a tube or sheath.
  • This sheath is used to cover a TCP structure transporting fluids in the context of oil and gas exploration and exploitation, while maintaining the key properties of the fluoropolymer, such as temperature resistance or chemical resistance.
  • the composite material according to the invention is sufficiently flexible so that the TCP can be rolled up, even at low temperatures.
  • the invention also relates to a thermoplastic composite tubular structure comprising: an internal polymer layer, a polymer laminate reinforced with continuous fibers, chosen from among glass, aramid and carbon fibers, an external protective coating, the whole being surrounded by at least one outer polymer layer made from the composite material described above.
  • said at least one outer layer has a thickness of at least 5 mm, preferably at least 10 mm and a density greater than or equal to 2.15 g/cm 3 , preferably greater than or equal to 2.3 g/cm 3 , advantageously greater than or equal to 2.5 g/cm 3 .
  • This sheath covers a thermoplastic composite tubular structure in order to weigh it down and thus allow it to be used in oil and gas exploration and exploitation applications.
  • PVDF-1 VDF-10% mass HFP copolymer having a mass melt flow index (MFR) of 4 at 230°C under a weight of 12.5 kg, and a viscosity in the molten state (230 °C, 100s 1 ) of 2350 Pa.s,
  • PVDF-2 VDF-10% mass HFP copolymer having a mass melt flow index (MFR) of 8 at 230°C under a weight of 3.8 kg, and a viscosity in the molten state (230 °C, 100s 1 ) of 1000 Pa.s,
  • PVDF-3 VDF-copolymer 18% by mass of HFP having a mass melt flow index (MFR) of 13 at 230°C under a weight of 3.8 kg, a viscosity in the molten state (230° C, 100s 1 ) of 800 Pa.s.
  • the melt index was measured using a plastometer at a temperature of 230°C according to ISO 1133-1.
  • the melt viscosity was measured using a rheometer equipped with a capillary die at a temperature of 230°C according to the ISO 11443 standard.
  • the PVDF + Magnetite compositions are produced by mixing in the molten state on a Buss® co-kneader (diameter of 46 mm, L/D ratio of 15, flow rate of 20 kg/h, temperature of 220°C).
  • the compositions thus produced are then extruded in the form of a strip 4 mm thick using a single-screw extruder (diameter of 30 mm, L/D ratio of 25, flow rate of 20 kg/h, temperature of 220° C. ) fitted with a 150mm wide flat die.
  • the density measurements are carried out on granules according to the ASTM D792 standard according to the vertical thrust method. in tension
  • Test temperature -20°C.
  • thermal flowmeter FAM 50, TA Instruments
  • HFM guarded fluxmeter method
  • the attached Figure 1 illustrates the effect of the particle size distribution of magnetite in a PVDF-3 matrix on the external and core appearance of extruded strips 4 mm thick.
  • composition D the incorporation of this Magnetite 2 up to 60% by weight (composition D) also makes it possible to achieve a density of 2.8 g/cm 3 , without visible defect in appearance.
  • Composition E (PVDF-2 + 50wt% Magnetite 2) does not make it possible to obtain a deformation at the minimum threshold of 5% at -20°C.
  • compositions A to D containing PVDF-3 the following results are observed: at 50% by weight (compositions A and B), the two qualities of magnetite make it possible to obtain a density of 2.5 g/cm 3 . However, the choice of Magnetite 2 clearly improves the yield and fracture strain properties, measured at -20°C.
  • composition D comprising 60% by weight of Magnetite 2
  • a density of 2.8 g/cm 3 is reached, while retaining a deformation at the threshold at -20°C greater than 5% at -20°C, thus good extrusion quality visible in Figure 1.
  • composition C comprising 60% by weight of Magnetite 1
  • necking and premature rupture of the samples are observed during the tensile test at ⁇ 20° C., which reflects an inhomogeneity in the dispersion of the material. This dispersion inhomogeneity is also visible in Figure 1. [Table 1]
  • Composition F comprising a PVDF-1 which is more viscous than PVDF-3 and 50% by weight of Magnetite 2 also makes it possible to achieve a density of 2.5 g/cm 3 , as well as a higher threshold deformation at -20°C at 5%.
  • Magnetite 2 For the same level of magnetite (50% by weight), an increase in thermal conductivity is observed with Magnetite 2, which can be linked to a better dispersion of Magnetite 2 in the volume of the material, and therefore to its distribution of smaller particle size.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

L'invention concerne une composition comprenant au moins un polymère fluoré et au moins une charge de masse volumique élevée. L'invention concerne aussi une structure tubulaire composite thermoplastique qui comprend au moins une couche externe consistant en ladite composition. L'invention a trait également au procédé de fabrication de ladite composition, ainsi qu'à ses applications en tant que couche externe pour alourdir des tubes composites thermoplastiques transportant des fluides dans le cadre de l'exploration et de l'exploitation pétrolière et gazière.

Description

MATERIAU COMPOSITE THERMOPLASTIQUE POUR STRUCTURES TUBUEAIRES COMPOSITES
DOMAINE DE L'INVENTION
La présente invention concerne le domaine du transport des fluides pour l’exploitation pétrolière sous-marine, ou « offshore » en langue anglaise. Plus particulièrement, l’invention se rapporte à une composition comprenant au moins un polymère fluoré et au moins une charge de masse volumique élevée. L’invention concerne aussi une structure tubulaire composite thermoplastique qui comprend au moins une couche externe consistant en ladite composition. L’invention a trait également au procédé de fabrication de ladite composition, ainsi qu’à ses applications en tant que couche externe pour alourdir des tubes composites thermoplastiques transportant des fluides dans le cadre de l’exploration et de l’exploitation pétrolière et gazière.
ARRIERE-PLAN TECHNIQUE
Pour exploiter et acheminer le pétrole off-shore, industrie pétrolière et gazière distingue principalement deux types de tubes : un premier type pour transporter le pétrole ou le gaz du niveau du sol marin jusqu’au puits central : ce sont les tubes dits lignes de flux ou « flow-lines » en langue anglaise, et un deuxième type pour remonter le pétrole ou le gaz du puits central au fond de la mer jusqu’à la plateforme flottante en surface : ce sont les tubes de montée ou « risers » en langue anglaise.
Les technologies utilisées pour la fabrication de ces tuyaux sont soit des tubes rigides en métal, soit des tubes dits « flexibles ». Pour les pipelines destinés au transport de fluides et de gaz, l’acier a longtemps été le matériau de choix, notamment en mer. Le métal, moins cher, est cependant plus difficile à mettre en place et sensible à la corrosion et à la fatigue, tandis que le flexible, composé de plusieurs couches (à la fois polymériques et métalliques) est plus simple d’installation mais plus cher en coût de matière première.
Dans les deux cas, une problématique liée au poids de ces structures émerge car, avec des champs de plus en plus profonds, les tuyaux de plus en plus longs arrivent à la limite de supporter leur propre poids : il faut donc alléger ces structures. Pour répondre à cette problématique d’allègement, mais aussi de coût et de facilité d’installation, une nouvelle technologie composite sans métal émerge : les structures tubulaires composites thermoplastiques ou « Thermoplastic Composite Pipes » (TCP) en langue anglaise.
Les tuyaux composites thermoplastiques utilisent des matériaux composites thermoplastiques au lieu de l'acier pour assurer la résistance et la rigidité des pipelines. Ces structures sont composées d’un revêtement polymérique interne visant à assurer l’étanchéité et la résistance chimique, d’une couche en polymère renforcé avec des fibres continues (verre, aramide, carbone. ..) pour la tenue mécanique, ainsi que d’une gaine externe de protection.
Le TCP offre une combinaison de résistance élevée, de flexibilité et de facilité de terminaison, ce qui lui confère les meilleures qualités des tuyaux métalliques conventionnels (solides mais rigides) et des tuyaux flexibles fabriqués à partir de couches non liées de fils métalliques appliqués en hélice et de thermoplastiques extradés (flexibles mais lourds, et très coûteux à terminer sur place).
Cependant, dans certains cas, ces structures sont même trop légères pour être stables sous l’eau : il faut donc les alourdir.
Des tuyaux en acier comprenant une couche jouant le rôle de lest, ladite couche pouvant être située à l’intérieur ou à l’extérieur du tuyau, sont connus.
Le document FR 3007033 décrit une composition de matériau composite pour la neutralisation d'au moins un composé acide parmi le dioxyde de carbone CO2 et l'hydrogène sulfuré H2S, ladite composition comprenant un mélange d’un matériau polymère avec une quantité déterminée de produits chimiquement actifs avec ledit composé acide de façon à neutraliser irréversiblement les effets corrosifs desdits composés acides. Cependant, la fraction massique desdits produits chimiquement actifs est comprise entre 4 et 40 %, car, comme indiqué à la page 14, 1. 6-9, des teneurs en charges supérieures à 40% diminuent les propriétés mécaniques des matériaux composites.
Le document US 4606378 décrit une conduite sous-marine comprenant un tuyau en acier muni d'un revêtement de poids continu sous la forme d'une couche relativement épaisse d'un matériau composite constitué de granulés d’un matériau relativement lourd noyés dans une matrice plastique, ledit matériau composite étant recouvert d’un tube en plastique. Ladite matrice plastique est constituée d'une résine thermodurcissable telle que l'époxy, le polyuréthane ou la résine acrylique, tandis que le matériau lourd incorporé dans la résine plastique est constitué d'un minerai de métal lourd, par exemple un minerai de fer tel que la magnétite ou l’hématite, sous forme de particules ou de granulés. Selon ce document, des résultats favorables ont été obtenus en utilisant un matériau composite constitué de 85 à 95 % en poids de magnétite dans une matrice de 5 à 15 % en poids de résine époxy.
Cependant, cette approche visant les tuyaux en acier ne peut convenir aux tuyaux composites thermoplastiques.
Il existe donc un besoin de mettre au point un nouveau matériau composite pour fabriquer une couche apte à lester efficacement des tuyaux composites thermoplastiques (TCP). Il faut également que ledit matériau puisse être mis en œuvre par extrusion, afin de recouvrir une structure TCP. Par ailleurs, il est nécessaire que cette gaine polymérique soit homogène et sans défaut de surface. Cette couche doit également être suffisamment souple pour que le TCP puisse être enroulé, même à basses températures.
Il a maintenant été trouvé qu’une gaine polymérique contenant un polymère thermoplastique et des charges alourdissantes, et recouvrant une structure tubulaire composite thermoplastique afin d’alourdir l’ensemble de la structure, résout efficacement l’ensemble de ces problèmes.
RESUME DE L’INVENTION
L’invention concerne en premier lieu un matériau composite consistant en une matrice en polymère fluoré thermoplastique dans laquelle sont incorporées des particules d’au moins une charge inorganique compatible avec ledit polymère fluoré, lesdites particules ayant une masse volumique d’au moins 3 g/cm3, de préférence d’au moins 4 g/cm3, avantageusement d’au moins 5 g/cm3, la teneur massique en charges étant supérieure à 40% et allant jusqu’à 70%, lesdites particules ayant une taille définie par un D50 inférieur à 20 iim et par un D90 inférieur à 50 Lim.
Selon un mode de réalisation, ledit polymère fluoré est choisi parmi les homopolymères de fluorure de vinylidène (PVDF) et les copolymères de fluorure de vinylidène et d’au moins un autre comonomère, et leurs mélanges.
Selon un mode de réalisation, ledit polymère fluoré est un mélange d’un PVDF homopolymère et un copolymère de difluorure de vinylidène (VDF) et d’hexafluoropropylène (HFP).
Selon un mode de réalisation, ledit polymère fluoré est un mélange de deux copolymères de VDF-HFP ayant des taux d’HFP différents. Selon un mode de réalisation, ladite charge est choisie parmi les oxydes métalliques tels que l’oxyde de fer(II) (FeO), l’oxyde de fer(III) (Fc2O>), l’oxyde de fer(II, III) (Fe3Û4 ou FeO-Fe2O3), l’oxyde de zinc (ZnO), l’oxyde de cuivre(I) (Cu2Û), l’oxyde de cuivre(II) (CuO), l’oxyde de plomb(II) (PbO), l’oxyde de nickel(II) (NiO), l’oxyde d’aluminium(III) (AI2O3), les mélange de ces oxydes et les composés minéraux associés pouvant contenir ces oxydes métalliques : magnétite, hématite, cuprite...
Selon un mode de réalisation, ledit matériau composite contient de 50% jusqu’à 60% en poids de ladite charge.
L’invention concerne également un procédé de fabrication dudit matériau composite, ledit procédé comprenant une étape de mélange du polymère fluoré et de la charge inorganique, décrits ci-dessus, à l’état fondu. Ledit procédé comprend également une étape d'extrusion dudit matériau composite sous forme de tube ou gaine destinée à recouvrir une structure tubulaire composite thermoplastique afin de l’alourdir et lui permettre ainsi d’être utilisée dans des applications d’exploration et d’exploitation pétrolière et gazière.
L’invention vise également à fournir des tuyaux composites thermoplastiques (TCP) comprenant au moins une couche externe consistant en ledit matériau composite.
La présente invention permet de surmonter les inconvénients de l’état de la technique. En particulier, l’invention fournit un matériau composite à base de polymère fluoré incorporant des charges de masse volumique élevée, pour former une composition de forte masse volumique, supérieure à celle du polymère fluoré (à titre d’exemple, la masse volumique du PVDF est de 1,78 g/cm3), et supérieure ou égale à 2,15 g/cm3, de préférence supérieure ou égale à 2,3 g/cm3, avantageusement supérieure ou égale à 2,5 g/cm3, qui permet d’en fabriquer une couche qui, seule ou à plusieurs, recouvrira par la suite une structure tubulaire composite thermoplastique (TCP) afin d’alourdir l’ensemble de la structure.
FIGURE
La Figure 1 comprend des images représentant l’aspect externe et à cœur de bandes extradées de copolymères VDF-HFP contenant 50 ou 60% en poids de magnétite.
DESCRIPTION DE MODES DE REALISATION DE L’INVENTION
L’invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit. Selon un premier aspect, l’invention concerne un matériau composite consistant en une matrice en polymère fluoré thermoplastique dans laquelle sont incorporées des particules d’au moins une charge inorganique compatible avec ledit polymère fluoré, lesdites particules ayant une masse volumique d’au moins 3 g/cm3, de préférence d’au moins 4 g/cm3, avantageusement d’au moins 5 g/cm3, la teneur massique en charges étant supérieure à 40% et allant jusqu’à 70%, lesdites particules ayant une taille définie par un D50 inférieur à 20 iim et par un D90 inférieur à 50 Lim.
Selon diverses réalisations, ledit matériau composite comprend les caractères suivants, le cas échéant combinés.
Par « thermoplastique », on entend ici un polymère non élastomérique. Un polymère élastomérique est défini comme étant un polymère qui peut être étiré, à température ambiante, à deux fois sa longueur initiale et qui, après relâchement des contraintes, reprend rapidement sa longueur initiale, à 10 % près, comme indiqué par l’ASTM dans la Special Technical Publication n°184.
Le polymère fluoré contient dans sa chaîne au moins un monomère choisi parmi les composés contenant un groupe vinyle capable de s'ouvrir pour se polymériser et qui contient, directement attaché à ce groupe vinyle, au moins un atome de fluor, un groupe fluoroalkyle ou un groupe fluoroalkoxy.
Selon un mode de réalisation, le polymère fluoré est choisi parmi les homopolymères de fluorure de vinylidène (PVDF) et les copolymères de fluorure de vinylidène et d’au moins un autre comonomère, et leurs mélanges. Selon un mode de réalisation le comonomère du VDF est choisi parmi le fluorure de vinyle, le trifluoroéthylène (VF3), le chlorotrifluoroéthylène (CTFE), le 1,2- difluoroéthylène, tétrafluoroéthylène (TFE), l’hexafluoropropylène (HFP), les perfluoro(alky vinyl) éthers tels que le perfluoro(méthylvinyl)éther (PMVE), le perfluoro(éthylvinyl)éther (PEVE), le perfluoro(propylvinyl)éther (PPVE), le perfluoro(l,3-dioxozole); le perfluoro(2,2diméthyl-l,3dioxole) (PDD), le produit de formule CF2=CFOCF2CF(CF3)OCF2CF2X dans laquelle X est SO2F, CO2H, CH2OH; CH2OCN ou CH2OPO3H, le produit de formule CF2=CFOCF2CF2SO2F; le produit de formule F(CF2)nCH2OCF=CF2 dans laquelle n est 1,2, 3, 4 ou 5, le produit de formule RICH2OCF=CF2 dans laquelle Ri est l'hydrogène ou F(CF2)z et z vaut 1, 2, 3, ou 4; le produit de formule R3OCF=CH2 dans laquelle R3 est F(CF2)z et z vaut 1 , 2, 3, ou 4 ou encore le perfluorobutyléthylène (PFBE), le fluoroéthylènepropylène (FEP), le 3,3,3-trifluoropropène, le 2 trifluoromethyl-3,3,3- trifluoro-l-propène, le 2,3,3,3-tetrafluoropropène ou HFO-1234yf, le E-l,3,3,3-tetrafluoropropène ouHFO-1234zeE, le Z-l,3,3,3-tetrafluoropropène ouHFO-1234zeZ, le 1,1,2,3-tetrafluoropropene ou HFO-1234yc, lel,2,3,3-tetrafluoropropène ou HFO-1234ye, le 1,1,3,3-tetrafluoropropène ou HFO-1234zc, le chlorotetrafluoropropène ou HCFO-1224, les chlorotrifluoropropènes (notamment le 2-chloro-3,3,3-trifluoropropcnc), le 1 -chloro-2-fluoroéthylène, les trifluoropropènes (notamment le 3,3,3-trifluoropropène), les pentafluoropropènes (notamment le 1,1,3,3,3-pentafluoropropène ou le 1 ,2,3,3, 3-pentafluoropropène), le l-chloro-2,2- difluoroethylène, le l-bromo-2,2-difluoroethylène, et le bromotrifluoroéthylène. Le copolymère peut aussi comprendre des monomères non fluorés tels que l’éthylène.
Selon un mode de réalisation, ledit comonomère est un comonomère fluoré choisi parmi : l'hexafluoropropylène (HFP), le perfluoro(méthylvinyl)éther (PMVE), le perfluoro(éthylvinyl)éther (PEVE), le perfluoro(propylvinyl)éther (PPVE), le tétrafluoroéthylène (TFE), le perfluorobutyléthylène (PFBE), le chlorotrifluoroéthylène (CTFE), le fluoroethylènepropylène (FEP) et le trifluoroéthylène. Le copolymère peut également être un terpolymère.
Selon un mode de réalisation, le comonomère est l'HFP. De préférence, le copolymère ne comprend que du VDF et de l’HFP. De préférence, ces copolymères contiennent au moins 50% en masse de VDF, avantageusement au moins 75% en masse de VDF et de préférence au moins 80% en masse de VDF.
Selon un mode de réalisation, le copolymère VDF-HFP présente un taux massique d’HFP supérieur à 10%, de préférence supérieur à 15%. Ceci permet d’abaisser le module de flexion du revêtement, ce qui augmente considérablement les propriétés de souplesse de l’article selon l’invention.
Selon un mode de réalisation, ledit copolymère VDF-HFP est un copolymère statistique. Ce type de copolymère présente l’avantage de présenter une répartition homogène du comonomère le long des chaînes de fluorure de vinylidène.
Selon un mode de réalisation, ledit copolymère VDF-HFP est un copolymère dit «hétérogène», qui se caractérise par une distribution non-homogène du comonomère le long des chaînes de VDF, due au procédé de synthèse décrit par la demanderesse par exemple dans le document US 6,187,885. Un copolymère hétérogène possède deux (ou plusieurs) phases distinctes, avec une phase riche en P VDF et une phase de copolymère riche en comonomère HFP.
Selon un mode de réalisation, le copolymère hétérogène est constitué de domaines copolymères discontinus, discrets et individuels de phase riche en comonomère, qui sont distribués de manière homogène dans une phase continue riche en PVDF. On parle alors d'une structure non- continue. Selon un autre mode de réalisation, le copolymère hétérogène est un copolymère ayant deux (ou plus) phases continues qui sont intimement liées entre elles et ne peuvent être physiquement séparées. On parle alors d’une structure co-continue.
Le copolymère hétérogène peut être fabriqué en formant un polymère initial qui est riche en unités monomères VDF, généralement supérieur à 90% en poids de VDF, de préférence supérieur à 95% en poids, et dans une mode de réalisation préféré, un homopolymère PVDF, puis en ajoutant un co-monomère dans le réacteur à un point bien avancé de la polymérisation pour produire un copolymère. Le polymère et le copolymère riches en VDF formeront des phases distinctes, ce qui donnera un copolymère hétérogène intime.
Selon un mode de réalisation, ledit polymère fluoré est choisi parmi : i. un PVDF homopolymère ; ii. un mélange de deux PVDF homopolymères présentant des viscosités différentes, ou des masses molaires différentes, ou des architectures différentes, par exemple des degrés de branchement différents ; iii. un copolymère comprenant des unités de fluorure de vinylidène (VDF) et un ou plusieurs types d’unités de co-monomères compatibles avec le fluorure de vinylidène (appelé ci- après « copolymère de VDF »); iv. un mélange d’un PVDF homopolymère et d’un copolymère de VDF; v. un mélange de deux copolymères de VDF.
Les polymères fluorés utilisés dans l’invention peuvent être obtenus par des méthodes de polymérisation connues comme la polymérisation en solution, en émulsion ou en suspension. Selon un mode de réalisation, ils sont préparés par un procédé de polymérisation en émulsion en l’absence d’agent tensioactif fluoré.
Selon un mode de réalisation, ladite charge est choisie parmi les oxydes métalliques tels que l’oxyde de fer(II) (FeO), l’oxyde de fer(III) (Fc2O>), l’oxyde de fer(II, III) (FesCL ou FeO-Fe2O3), l’oxyde de zinc (ZnO), l’oxyde de cuivre(I) (Cu2Û), l’oxyde de cuivre(II) (CuO), l’oxyde de plomb(II) (PbO), l’oxyde de nickel(II) (NiO), l’oxyde d’aluminium(III) (AI2O3), les mélange de ces oxydes et les composés minéraux associés pouvant contenir ces oxydes métalliques : magnétite, hématite, cuprite...
Tous ces composés ont une masse volumique d’au moins 3 g/cm3, de préférence d’au moins 4 g/cm3, avantageusement supérieure à 5 g/cm3, mesurée selon la norme ASTM D792.
Selon un mode de réalisation, la teneur massique en charges varie de 50% jusqu’à 60%.
Selon un mode de réalisation, les particules de charge ont une taille définie par un D50 inférieur à 10 11m et par un D90 inférieur à 15 Lim. Les charges inorganiques incorporées dans le matériau composite selon l’invention doivent être stables thermiquement jusqu’à 300°C. Cette stabilité thermique est mesurée par analyse thermogravimétrique (ATG) sous flux d’air ou azote. Ces charges doivent être compatibles avec la matrice de polymère fluoré. Par « compatible » on entend ici la capacité de ces charges inorganiques de ne pas provoquer une dégradation de ladite matrice, notamment par le biais d’une réaction de déshydrofluoration.
Toutes les charges inorganiques ne peuvent pas être incorporés directement dans une matrice fluorée. Par exemple, certaines charges comme le dioxyde de titane peuvent catalyser une réaction de déshydrofluoration de la matrice fluorée, conduisant à une dégradation des propriétés mécaniques (scission de chaînes) et libération d’HF. Pour vérifier cela, toute nouvelle charge est ainsi testée selon un protocole de sécurisation : a) mélange à l’état fondu de polymère fluoré et charge pendant 10min à 230°C, b) mesure de perte de masse par analyse thermogravimétrique (isotherme pendant Ih à 250°C).
Si aucun signe anormal (fumée, bulles) n’est observé à Tissue de l’étape 1, et qu’aucune perte de masse anormale n’est détectée par analyse thermogravimétrique à Tissue de ce protocole (on considère une perte de masse acceptable inférieure à 0,5%), alors il est considéré que la charge est compatible avec la matrice fluorée.
Selon un mode de réalisation, l’oxyde métallique est la magnétite (FesCfi), qui présente une masse volumique de 5,2 g/cm3 à 20°C.
Le matériau composite obtenu a une masse volumique supérieure à 2,15 g/cm3, de préférence supérieure ou égale à 2,3 g/cm3, avantageusement supérieure ou égale à 2,5 g/cm3.
Par ailleurs, le matériau composite est non-poreux, c’est-à-dire qu’il ne possède aucune porosité visible au moyen d’un microscope optique.
Avantageusement, le matériau composite selon l’invention possède un comportement ductile même à -20°C, sa déformation au seuil étant supérieure à 5%, mesurée selon la norme ASTM D638.
L’invention concerne également un procédé de fabrication dudit matériau composite, ledit procédé comprenant une étape de mélange du polymère fluoré et de la charge inorganique, décrits ci-dessus, à l’état fondu. Selon un mode de réalisation, cette étape est effectuée au moyen d’extrudeuses bi-vis co-rotatives, de comalaxeurs ou de mélangeurs internes.
Ce procédé permet une répartition homogène des charges dans le matrice de polymère fluoré. Il a été découvert qu'au-dessus d'une valeur de granulométrie, la répartition de la charge dans la matrice polymère n’est plus suffisamment homogène pour assurer l’absence de cavités et de défauts de surface. En conséquence, selon l'invention, on met en œuvre de préférence des charges sous forme de particules dont la distribution de taille est définie par les diamètres D50 et D90.
Le D50 est le diamètre médian en volume qui correspond à la valeur de la taille de particule qui divise la population de particules examinées exactement en deux. Le D90 est le diamètre médian en volume pour lequel 90% de la population analysée est inférieur à cette valeur. Ces diamètres sont mesurés selon la norme ISO 9276. Dans la présente invention on utilise un granulomètre Malvern INSITEC, et la mesure est faite en voie sèche par diffraction laser sur la charge.
Le D50 est inférieur à 20 Lim, de préférence inférieur à 10 Lim, alors que le D90 est inférieur à 50 Lim, de préférence inférieur à 15 Lim.
Le D50 est supérieur ou égal à I Lim, et le D90 est supérieur ou égal à 5 Lim.
Ces matériaux composites peuvent alors être utilisés pour recouvrir par extrusion une structure TCP dans le but de l’alourdir, dans le cadre de l’exploration et de l’exploitation pétrolière et gazière.
La gaine polymérique alourdie est quant à elle obtenue par extrusion dudit matériau composite sous forme de tube ou gaine. Cette gaine sert à recouvrir une structure TCP transportant des fluides dans le cadre de l’exploration et de l’exploitation pétrolière et gazière, tout en conservant les propriétés clés du polymère fluoré, telles la tenue en température ou la résistance chimique.
Le matériau composite selon l’invention est suffisamment souple pour que le TCP puisse être enroulé, même à basses températures. L’utilisation d’un copolymère ou d’un mélange de copolymère à base de VDE en tant que matrice, permet d’obtenir un matériau plus souple et ductile à basses températures.
L’invention concerne également une structure tubulaire composite thermoplastique comprenant : une couche polymère interne, un laminé en polymère renforcé avec des fibres continues, choisies parmi les fibres de verre, aramide, et carbone, un revêtement externe de protection, le tout étant entouré d’au moins une couche externe polymère réalisée à partir du matériau composite décrit ci-dessus. Avantageusement, ladite au moins une couche externe présente une épaisseur d’au moins 5 mm, préférentiellement d’au moins 10 mm et une masse volumique supérieure ou égale à 2,15 g/cm3, de préférence supérieure ou égale à 2,3 g/cm3, avantageusement supérieure ou égale à 2,5 g/cm3.
Cette gaine recouvre une structure tubulaire composite thermoplastique afin de l’alourdir et lui permettre ainsi d’être utilisée dans des applications d’exploration et d’exploitation pétrolière et gazière.
EXEMPLES
Les exemples suivants illustrent l'invention sans la limiter.
Matériaux :
Une étude comparative a été réalisée afin d’étudier l’influence de différents polymères fluorés :
• PVDF-1 : copolymère VDF-10% massique d’HFP présentant un indice de fluidité à chaud en masse (MFR) de 4 à 230°C sous un poids de 12,5kg, et une viscosité à l’état fondu (230°C, 100s 1) de 2350 Pa.s,
• PVDF-2 : copolymère VDF-10% massique d’HFP présentant un indice de fluidité à chaud en masse (MFR) de 8 à 230°C sous un poids de 3,8kg, et une viscosité à l’état fondu (230°C, 100s 1) de 1000 Pa.s,
• PVDF-3 : copolymère VDF- 18% massique d’HFP présentant un indice de fluidité à chaud en masse (MFR) de 13 à 230°C sous un poids de 3,8kg, une viscosité à l’état fondu (230°C, 100s 1) de 800 Pa.s.
L’indice de fluidité à chaud a été mesuré au moyen d’un plastomètre à une température de 230°C selon la norme ISO 1133-1.
La viscosité à l’état fondu a été mesurée au moyen d’un rhéomètre équipé d’une filière capillaire à une température de 230°C selon la norme ISO 11443.
Deux grades de magnétite possédant des distributions de taille de particules différentes ont été évalués à différents taux (50 et 60% en poids) et mélangés à l’état fondu avec les polymères fluorés :
• Magnétite 1 : D50 = 16 pm & D90 = 50 pm
• Magnétite 2 : D50 = 7 pm & D90 = 13 pm
Ces 2 grades de Magnétite sont fournis par LKAB Minerais. Réalisation des compositions PVDF + Magnétite :
Les compositions PVDF + Magnétite sont réalisées par mélange à l’état fondu sur un comalaxeur Buss® (diamètre de 46 mm, rapport L/D de 15, débit de 20 kg/h, température de 220°C). Les compositions ainsi réalisés sont ensuite extradées sous forme de bande de 4 mm d’épaisseur à l’aide d’une extrudeuse monovis (diamètre de 30 mm, rapport L/D de 25, débit de 20kg/h, température de 220°C) équipée d’une filière plate de largeur 150mm.
Mesure de la masse
Figure imgf000012_0001
Les mesures de masse volumique sont réalisées sur granulés suivant la norme ASTM D792 d'après la méthode de poussée verticale.
Figure imgf000012_0002
en traction
Les propriétés mécaniques sont obtenues selon les conditions suivantes :
Eprouvettes découpées dans les bandes extradées selon la norme ASTM D638 Type 4
Dynamomètre MTS 810# 1
Vitesse de déformation : 50 mm/min
Mesure de la déformation par extensomètre mécanique 0-100%
Cellule de charge : 25KN
Aucun conditionnement au préalables des éprouvettes Température de test : -20°C.
Mesure de la conductivité
Figure imgf000012_0003
La mesure de la conductivité thermique est effectuée à l’aide d’un débitmètre thermique (FOX 50, TA Instruments) selon la méthode fluxmètre gardé (HFM) décrite dans la norme ASTM El 530.
1 : Homogénéité de dispersion de la
Figure imgf000012_0004
PVDF+Magnétite extrudées sous forme de bande
La Figure 1 annexée illustre l’effet de la distribution de taille de particule de la Magnétite dans une matrice de PVDF-3 sur l’aspect externe et à cœur de bandes extrudées de 4 mm d’épaisseur. Composition A : PVDF-3 + 50wt% Magnétite 1, p = 2,5 g/cm3 Composition B : PVDF-3 + 50wt% Magnétite 2, p = 2,53 g/cm3 Composition C : PVDF-3 + 60wt% Magnétite 1, p = 2,75 g/cm3 Composition D : PVDF-3 + 60wt% Magnétite 2, p = 2,8 g/cm3 (où « p » est la masse volumique). La diminution de la taille des particules de magnétite améliore considérablement la dispersion de la charge dans le PVDF-3, ce qui a une incidence directe sur la qualité d’extrusion de la composition, à savoir une absence de porosité visible à cœur du matériau et un aspect externe plus lisse obtenu pour les compositions B & D comprenant la Magnétite 2 (D90 =l 3um). L’incorporation de cette Magnétite 2 jusqu’à 60% en poids (composition D) permet également d’atteindre une masse volumique de 2,8 g/cm3, sans défaut d’aspect visible.
A l’opposé, la composition C comprenant 60% en poids de Magnétite 1 (D90=50pm), présente des porosités visibles à cœur du matériau ainsi qu’un aspect externe rugueux avec de nombreux défauts de surface.
Exemple 2 : Propriétés mécaniques de compositions PVDF + Magnétite
Les résultats obtenus sont présentés dans le Tableau 1. Les pourcentages indiqués sont massiques, « s » représente l’écart-type de mesure obtenus sur 3 échantillons testés.
La composition E (PVDF-2 + 50wt% Magnétite 2) ne permet pas d’obtenir une déformation au seuil minimale de 5% à -20°C.
Pour les compositions A à D contenant du PVDF-3 on observe les résultats suivants: à 50% en poids (compositions A et B), les deux qualités de magnétite permettent d’obtenir une masse volumique de 2,5 g/cm3. Cependant, le choix de la Magnétite 2 améliore nettement les propriétés de déformation au seuil et à la rupture, mesurées à -20°C.
Pour la composition D comprenant 60% en poids de Magnétite 2, on atteint une masse volumique de 2,8 g/cm3, tout en conservant une déformation au seuil à -20°C supérieure à 5% à -20°C, ainsi qu’une bonne qualité d’extrusion visible sur la Figure 1.
A l’opposé, pour la composition C comprenant 60% en poids de Magnétite 1, on observe une striction et une rupture prématuré des échantillons lors du test de traction à -20°C, ce qui traduit une inhomogénéité de dispersion du matériau. Cette inhomogénéité de dispersion est également visible sur la Figure 1. [Tableau 1]
Figure imgf000014_0001
La composition F comprenant un PVDF-1 plus visqueux que le PVDF-3 et 50% en poids de Magnétite 2 permet également d’atteindre une densité de 2.5 g/cm3, ainsi qu’une déformation au seuil à -20°C supérieure à 5%.
Exemple 3 : Mesures de la conductivité thermique de compositions PVDF + Magnétite
Une étude de la conductivité thermique des compositions A, B et D a également confirmé l’importance de la distribution de taille de particules de la charge magnétite. Les résultats sont présentés dans le Tableau 2.
Pour un même taux de magnétite (50% en poids), on observe une augmentation de la conductivité thermique avec la Magnétite 2, qui peut être reliée à une meilleure dispersion de la Magnétite 2 dans le volume du matériau, et donc à sa distribution de taille de particules plus faible.
[Tableau 2]
Figure imgf000014_0002

Claims

REVENDICATIONS Matériau composite consistant en une matrice en polymère fluoré thermoplastique dans laquelle sont incorporées des particules d’au moins une charge inorganique compatible avec ledit polymère fluoré, lesdites particules ayant une masse volumique d’au moins 3 g/cm3, de préférence d’au moins 4 g/cm3, avantageusement d’au moins 5 g/cm3, la teneur massique en charges étant supérieure à 40% et allant jusqu’à 70%, lesdites particules ayant une taille définie par un D50 inférieur à 20 iim et supérieur ou égal à 1 Lim, et par un D90 inférieur à 50 Lim et supérieur ou égal à 5 Lim. Matériau composite selon la revendication 1 , dans lequel ledit polymère fluoré est choisi parmi les homopolymères de fluorure de vinylidène (PVDF) et les copolymères comprenant des unités de fluorure de vinylidène (VDF) et un ou plusieurs types d’unités de co-monomères compatibles avec le fluorure de vinylidène, et leurs mélanges. Matériau composite selon l’une des revendications 1 et 2, dans lequel ledit polymère fluoré est choisi parmi: un PVDF homopolymère ; un mélange de deux PVDF homopolymères présentant des viscosités différentes, ou des masses molaires différentes, ou des architectures différentes, par exemple des degrés de branchement différents ; un copolymère comprenant des unités de VDF et un ou plusieurs types d’unités de comonomères; un mélange d’un PVDF homopolymère et d’un copolymère de VDF; un mélange de deux copolymères de VDF. Matériau composite selon l’une des revendications 2 ou 3, dans lequel ledit comonomère compatible avec le VDF est choisi parmi : l'hexafluoropropylène, le perfluoro(méthylvinyl)éther, le perfluoro(éthylvinyl)éther, le perfluoro(propylvinyl)éther, le tétrafluoroéthylène, le perfluorobutyléthylène, le chlorotrifluoroéthylène, le fluoroethylènepropylène et le trifluoroéthylène.
5. Matériau composite selon l’une des revendications 2 à 4, dans lequel ledit comonomère est l'hexafluoropropylène, le copolymère VDF-HFP présentant un taux massique d’HFP supérieur à 10%, de préférence supérieur à 15%.
6. Matériau composite selon l’une des revendications 1 à 5, dans lequel ladite charge est choisie parmi les oxydes métalliques tels que l’oxyde de fer(II), l’oxyde de fer(III), l’oxyde de fer(II, III), l’oxyde de zinc, l’oxyde de cuivre(I), l’oxyde de cuivre(II), l’oxyde de plomb (II), l’oxyde de nickel(II), l’oxyde d’aluminium(III), les mélange de ces oxydes et les composés minéraux associés pouvant contenir ces oxydes métalliques.
7. Matériau composite selon l’une des revendications 1 à 6, ayant une masse volumique supérieure ou égale à 2,15 g/cm3, de préférence supérieure ou égale à 2,3 g/cm3, avantageusement supérieure ou égale à 2,5 g/cm3.
8. Matériau composite selon l’une des revendications 1 à 7, les particules de la charge ont une taille définie par un D50 inférieur à 10 pm et par un D90 inférieur à 15 pm.
9. Matériau composite selon l’une des revendications 1 à 8, dans lequel ladite charge est la magnétite.
10. Matériau composite selon l’une des revendications 1 à 9, ledit matériau étant non-poreux.
11. Procédé de fabrication du matériau composite selon l’une des revendications 1 à 10, ledit procédé comprenant une étape de mélange du polymère fluoré et de la charge inorganique à l’état fondu.
12. Procédé selon la revendication 11, comprenant également une étape d’extrusion dudit matériau composite sous forme de tube ou gaine.
13. Structure tubulaire composite thermoplastique comprenant : une couche polymère interne, un laminé en polymère renforcé avec des fibres continues, un revêtement externe de protection, 16 l’ensemble de ces couches étant entouré d’au moins une couche externe réalisée à partir du matériau composite selon l’une des revendications 1 à 10. Structure tubulaire composite thermoplastique selon la revendication 13, dans laquelle ladite au moins une couche externe présente une épaisseur d’au moins 5 mm, préférentiellement d’au moins 10 mm, et une masse volumique supérieure ou égale à 2,15 g/cm3, de préférence supérieure ou égale à 2,3 g/cm3, avantageusement supérieure ou égale à 2,5 g/cm3.
PCT/FR2022/050027 2021-01-12 2022-01-06 Materiau composite thermoplastique pour structures tubulaires composites WO2022152995A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023541986A JP2024503841A (ja) 2021-01-12 2022-01-06 複合管状構造体用の熱可塑性複合材料
US18/270,000 US20240066827A1 (en) 2021-01-12 2022-01-06 Composite thermoplastic material for composite tubular structures
CN202280009597.9A CN116723937A (zh) 2021-01-12 2022-01-06 用于复合管结构体的复合热塑性材料
EP22702751.3A EP4277785A1 (fr) 2021-01-12 2022-01-06 Materiau composite thermoplastique pour structures tubulaires composites

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2100233A FR3118774B1 (fr) 2021-01-12 2021-01-12 Materiau composite thermoplastique pour structures tubulaires composites
FRFR2100233 2021-01-12

Publications (1)

Publication Number Publication Date
WO2022152995A1 true WO2022152995A1 (fr) 2022-07-21

Family

ID=74871616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/050027 WO2022152995A1 (fr) 2021-01-12 2022-01-06 Materiau composite thermoplastique pour structures tubulaires composites

Country Status (6)

Country Link
US (1) US20240066827A1 (fr)
EP (1) EP4277785A1 (fr)
JP (1) JP2024503841A (fr)
CN (1) CN116723937A (fr)
FR (1) FR3118774B1 (fr)
WO (1) WO2022152995A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606378A (en) 1981-04-07 1986-08-19 Meyer Erik B Weightcoated subsea pipeline section
US6187885B1 (en) 1990-05-10 2001-02-13 Atofina Chemicals, Inc. Copolymers of vinylidene fluoride and hexafluoropropylene and process for preparing the same
FR2987667A1 (fr) * 2012-03-01 2013-09-06 Technip France Structure tubulaire flexible d'exploitation petroliere a haute tenue
FR3007033A1 (fr) 2013-06-13 2014-12-19 IFP Energies Nouvelles Composition de materiau composite pour neutraliser des composes acides et conduite comprenant une gaine realisee avec une telle composition
CN108342036A (zh) * 2018-03-26 2018-07-31 南昌航空大学 一种磁性Mxenes聚合物复合吸波材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606378A (en) 1981-04-07 1986-08-19 Meyer Erik B Weightcoated subsea pipeline section
US6187885B1 (en) 1990-05-10 2001-02-13 Atofina Chemicals, Inc. Copolymers of vinylidene fluoride and hexafluoropropylene and process for preparing the same
FR2987667A1 (fr) * 2012-03-01 2013-09-06 Technip France Structure tubulaire flexible d'exploitation petroliere a haute tenue
FR3007033A1 (fr) 2013-06-13 2014-12-19 IFP Energies Nouvelles Composition de materiau composite pour neutraliser des composes acides et conduite comprenant une gaine realisee avec une telle composition
CN108342036A (zh) * 2018-03-26 2018-07-31 南昌航空大学 一种磁性Mxenes聚合物复合吸波材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GÓMEZ-TENA M P ET AL: "RELATIONSHIP BETWEEN THE SPECIFIC SURFACE AREA PARAMETERS DETERMINED USING DIFFERENT ANALYTICAL TECHNIQUES", PROCEEDINGS OF THE XIII WORLD CONGRESS ON CERAMIC TILE QUALITY (QUALICER 2014), 17 February 2014 (2014-02-17), pages 1 - 10, XP055824481 *

Also Published As

Publication number Publication date
US20240066827A1 (en) 2024-02-29
FR3118774A1 (fr) 2022-07-15
CN116723937A (zh) 2023-09-08
JP2024503841A (ja) 2024-01-29
FR3118774B1 (fr) 2024-03-01
EP4277785A1 (fr) 2023-11-22

Similar Documents

Publication Publication Date Title
EP2296871B2 (fr) Conduite avec gaine a permeabilite reduite aux composes acides
CA2735847C (fr) Procede de determination de la tenue a la fatigue d'une composition polymerique
FR3010082A1 (fr) Procede de preparation d'une composition de polymeres fluores reticules
JP5680845B2 (ja) 押出可能なフルオロポリマーブレンド
CA2865480C (fr) Composition de polyfluorure de vinylidene
EP3041898A1 (fr) Composition de polymeres fluores thermoplastiques pour les tubes off-shore
EP2928946B1 (fr) Perfluoropolymères façonnables à l'état fondu et ayant des propriétés thermiques et mécaniques améliorées après un traitement à la chaleur
FR2935706A1 (fr) Composition fluoree pour tuyau offshore
CA2420419A1 (fr) Compositions a base de polyfluorure de vinylidene
EP2013271A1 (fr) Composition conductrice a base de pvdf
US10400097B2 (en) Fluorinated polymer composition
WO2022152995A1 (fr) Materiau composite thermoplastique pour structures tubulaires composites
JP2009001595A (ja) フッ素樹脂成形体
EP3439870A1 (fr) Conduite sous-marine comprenant une gaine comprenant un copolymère bloc du polypropylène
RU2597273C2 (ru) Способ футеровки металлических трубопроводов
EP3887441B1 (fr) Compositions polymères comprenant des polymères de vdf et du graphite
FR2964173A1 (fr) Structure tubulaire flexible comprenant une couche d'un compose polymerique fluore

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22702751

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023011096

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 18270000

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280009597.9

Country of ref document: CN

Ref document number: 2023541986

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 112023011096

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230606

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022702751

Country of ref document: EP

Effective date: 20230814