WO2022152300A1 - 一种激光投影装置 - Google Patents

一种激光投影装置 Download PDF

Info

Publication number
WO2022152300A1
WO2022152300A1 PCT/CN2022/072365 CN2022072365W WO2022152300A1 WO 2022152300 A1 WO2022152300 A1 WO 2022152300A1 CN 2022072365 W CN2022072365 W CN 2022072365W WO 2022152300 A1 WO2022152300 A1 WO 2022152300A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
light source
fan
casing
lens
Prior art date
Application number
PCT/CN2022/072365
Other languages
English (en)
French (fr)
Inventor
崔雷
邢哲
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Priority to CN202280009436.XA priority Critical patent/CN116710841A/zh
Publication of WO2022152300A1 publication Critical patent/WO2022152300A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating

Definitions

  • the present application relates to the technical field of projection equipment, and in particular, to a laser projection device.
  • the laser projection device uses a high-power laser to convert electrical energy into light energy, and the generated laser beam is projected onto the screen through a series of integrated functions of the optical system, circuit system, lighting system, and lens system to form a projection image.
  • the laser projection device includes a laser, an optical machine, and a lens.
  • the laser converts electrical energy into light energy to generate a laser beam. During the process of converting electrical energy into light energy, a large amount of heat is also generated.
  • the heat flux density in the laser projection device is The largest, making the laser the main heat source in the whole machine, the heat energy needs to be dissipated in time to ensure the efficient luminous efficiency, reliability and life of the laser;
  • the optical machine includes a light modulation chip, and the light modulation chip is an electronic device, such as DMD Chip (Digital Micromirror Device), DMD chip modulates the illumination beam emitted by the laser into a modulated beam with image information, the DMD chip will also generate more heat during operation, and the working performance will also be affected by temperature
  • DMD Chip Digital Micromirror Device
  • the lens contains multiple sets of precise optical lenses, which are packaged in a relatively closed lens barrel structure.
  • the lens is vulnerable to the environment of the whole machine.
  • the projection screen of the laser projection device becomes blurred.
  • the embodiment of the present application provides a laser projection device, which adopts the following technical solutions:
  • a laser projection device includes a casing, and the casing is installed with: a light source assembly, the light source assembly is used to provide an illumination beam to an optomechanical assembly; a lens assembly, the lens assembly is used to output the output of the optomechanical assembly.
  • Image beam projection imaging; an optomechanical assembly, the optomechanical assembly is connected between the light source assembly and the optical path of the lens assembly, and is used to modulate the illumination beam provided by the light source assembly to generate an image beam; wherein, the The opto-mechanical component is located in an area of the housing close to the first side and is arranged along the extension direction of the first side, and the light source component is located on the side of the opto-mechanical component that is close to the second side of the housing , the lens assembly is located on the side of the optomechanical assembly close to the third side of the casing, the second side is opposite to the third side, and both intersect with the first side; the first fan an assembly, the first fan assembly is used to introduce air into the casing from the first side to form a cooling air
  • FIG. 1 is one of the three-dimensional schematic diagrams of the laser projection device according to the embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a U-shaped distribution of a light source assembly, an optomechanical assembly, and a lens assembly in a laser projection device according to an embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of an L-shaped distribution of a light source assembly, an optomechanical assembly, and a lens assembly in the laser projection device according to the embodiment of the present application;
  • FIG. 4 is one of the schematic structural diagrams of the laser projection device and the projection screen according to the embodiment of the present application.
  • FIG. 5 is the second structural schematic diagram of the laser projection device and the projection screen according to the embodiment of the present application.
  • FIG. 6 is a schematic diagram of the wind direction of the laser projection device according to the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a laser projection device according to an embodiment of the present application.
  • FIG. 8 is one of the exploded views of some components in the laser projection device according to the embodiment of the present application.
  • FIG. 9 is the second exploded view of some components in the laser projection device according to the embodiment of the present application.
  • FIG. 10 is a schematic diagram of the heat dissipation of the light source assembly and the laser radiator in the laser projection device according to the embodiment of the present application;
  • FIG. 11 is a schematic diagram of the heat dissipation of the optomechanical component and the DMD radiator in the laser projection device according to the embodiment of the application;
  • FIG. 12 is a schematic diagram of heat dissipation of the heat insulating member and the lens assembly in the laser projection device according to the embodiment of the present application;
  • FIG. 13 is a schematic structural diagram of some components in the laser projection device according to the embodiment of the present application.
  • 15 is the third schematic three-dimensional schematic diagram of the laser projection device according to the embodiment of the present application.
  • 16 is one of the structural schematic diagrams in which the laser radiator, the light source assembly, the optomechanical assembly and the lens assembly are arranged in a U shape in the laser projection device according to the embodiment of the present application;
  • FIG. 17 is the second schematic diagram of the structure in which the laser heat sink, the light source assembly, the optomechanical assembly and the lens assembly are arranged in a U shape in the laser projection device according to the embodiment of the present application.
  • 1000-laser projection device 2000-projection screen, 1-housing, 11-base plate, 12-heating holes, 2-laser radiator, 3-DMD radiator, 100-light source assembly, 200-optical-mechanical assembly, 300- Lens assembly, 400 - circuit board, 500 - first fan assembly, 600 - second fan assembly, 700 - third fan assembly, 800 - air guide fan, 900 - heat shield.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be a mechanical connection; it can be a direct connection, or an indirect connection through an intermediate medium, and it can be the internal communication of two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be a mechanical connection; it can be a direct connection, or an indirect connection through an intermediate medium, and it can be the internal communication of two elements.
  • an embodiment of the present application provides a laser projection device including a casing, and the casing is installed with: a light source assembly, the light source assembly is used to provide an illumination beam to the optomechanical assembly; a lens assembly, the lens assembly is used for Projecting the image beam output by the optical-mechanical component into an image; the optical-mechanical component, the optical-mechanical component is connected between the light source component and the optical path of the lens component, and is used for the illumination beam provided by the light source component Modulation to generate an image beam; wherein, the optical-mechanical component is located in an area of the casing close to the first side and is arranged along the extension direction of the first side, and the light source component is located in the optical-mechanical component close to the casing one side of the second side of the body, the lens assembly is located on the side of the optomechanical assembly close to the third side of the casing, the second side is opposite to the third side and both are opposite to the The first side intersects; the first fan assembly, the first fan assembly is used to introduce air into the casing from the
  • the light source assembly is parallel to the lens assembly, and the optomechanical assembly is vertically arranged on the same side of the light source assembly and the lens assembly to form a U-shaped arrangement; or, the The lens assembly and the optical-mechanical assembly are sequentially connected and arranged, and are perpendicular to the light source assembly in an L-shaped arrangement.
  • the light source assembly is parallel to the lens assembly, and the optomechanical assembly is vertically arranged on the same side of the light source assembly and the lens assembly to form a U-shaped arrangement; or, the The lens assembly and the optomechanical assembly are arranged side by side, and are perpendicular to the light source assembly in an L-shaped arrangement.
  • the first fan assembly is located between the opto-mechanical assembly and the first side of the casing, and the air inlet side of the first fan assembly faces the casing On the first side of the first fan assembly, the air outlet side of the first fan assembly faces the area on the opto-mechanical assembly close to the light source assembly.
  • the air guide member is a guide fan installed at the opto-mechanical assembly, and the air inlet direction of the air guide fan is perpendicular to the air outlet direction of the first fan assembly intersect, and the air outlet side of the guide fan faces the lens assembly.
  • a second fan assembly is further installed in the casing, the second fan assembly is located between the light source assembly and the second side of the casing, and is used for all The heat dissipation airflow at the light source assembly is extracted.
  • a third fan assembly is further installed in the casing, the third fan assembly is located between the lens assembly and the third side of the casing, and is used for all The cooling airflow at the lens assembly is extracted.
  • a heat shield is further installed in the casing, and the heat shield is used to isolate the heat dissipation airflow with a temperature higher than that of the lens assembly in the casing from blowing to the lens assembly.
  • the heat insulating member is a partition plate disposed between the light source assembly and the lens assembly.
  • the upper edge of the heat insulating member is in sealing connection with the top plate of the housing, and the lower edge of the heat insulating member is sealingly connected with the bottom plate of the housing.
  • a plurality of circuit boards are further installed in the housing, and the plurality of circuit boards and the light source assembly are respectively located on two sides of the lens assembly.
  • a plurality of the circuit boards are located between the lens assembly and the air intake side of the third fan assembly.
  • the light source assembly and the opto-mechanical assembly are arranged side by side and are both perpendicular to the lens assembly; a laser radiator is also installed in the housing, and the laser radiator is located in the The light source assembly is arranged in parallel with the lens assembly, so that the laser heat sink, the light source assembly, the optomechanical assembly and the lens assembly are arranged in a U shape.
  • the casing is a rectangular parallelepiped, the lens assembly and the light source assembly are arranged along the short side of the casing, and the optomechanical assembly is along the length of the casing.
  • the first side is the first long side of the casing that is close to the optomechanical component, and the second side and the third side are the two short sides of the casing. side;
  • the first fan assembly includes an air intake fan, the second fan assembly and the third fan assembly each include two air outlet fans, and the two air outlet fans in the second fan assembly
  • the second side of the housing is arranged at intervals, the two air outlet fans in the third fan assembly are arranged at intervals along the third side of the housing, and the air inlet fans and the four air outlet fans are both Axial fan.
  • the lens in the lens assembly is an ultra-short-focus projection lens.
  • the first fan assembly and the air guide are activated, and the cold air outside the casing passes through the first side of the casing under the action of the first fan assembly.
  • part of the cooling airflow is directed to the light source assembly to exchange heat with it, and the heat generated by the light source assembly is taken away by this part of the cooling airflow and is led out through the second side of the shell to achieve heat dissipation to the light source assembly;
  • Another part of the cooling airflow in the body is guided to the optical-mechanical assembly and the lens assembly by the deflector. Heat dissipation of optomechanical components and lens components.
  • the heat dissipation path can guide a part of the heat dissipation airflow in the casing to the light source independently component, and it is directly exported after heat dissipation, and the heat-dissipating airflow after heat exchange with the light source component is directly led out of the housing, reducing the heat impact of the light source component on the optomechanical component and the lens component; another part of the heat-dissipating airflow in the housing is guided Opto-mechanical components that generate less heat and lens components that do not generate heat themselves, this heat dissipation path design reasonably distributes the flow direction of the cooling airflow, so that the mutual heat effect between the light source component, the optical-mechanical component and the lens component is small.
  • the light source assembly, the optomechanical assembly and the lens assembly all have good heat dissipation effects
  • the laser projection device 1000 includes a housing 1 of the whole machine, and the shape of the housing 1 can be various, such as a cube, a rectangular parallelepiped, a rectangular parallelepiped with rounded corners, and the like.
  • the casing 1 shown in FIG. 1 is a rectangular parallelepiped, and the casing 1 is provided with a first side 101 , a second side 102 , a third side 103 and a fourth side 104 , wherein the first side 101 and the fourth side 104 are opposite to each other and They are the two long sides of the casing 1 respectively, the second side 102 and the third side 103 are opposite and are respectively the two short sides of the casing 1 .
  • the laser projection device 1000 of the embodiment of the present application further includes a light source assembly 100 , an optomechanical assembly 200 and a lens assembly 300 assembled in the housing 1 , the light source assembly 100 , the optomechanical assembly 200 and the lens
  • the three optical components of the assembly 300 are sequentially connected along the propagation direction of the light beam, that is, the optomechanical assembly 200 connects the light source assembly 100 with the lens assembly 300, and the light source assembly 100, the optomechanical assembly 200 and the lens assembly 300 each have a corresponding housing for wrapping , to support the optical components and make each optical part meet certain sealing or airtight requirements.
  • the arrows in FIG. 2 show the propagation directions of light beams in the three optical components of the laser projection device 1000 , the light source assembly 100 , the optomechanical assembly 200 and the lens assembly 300 .
  • the optical-mechanical assembly 200 and the lens assembly 300 are arranged side by side and along the first direction of the whole machine.
  • the first direction may be the width direction of the whole machine, or according to the usage mode, the first direction is opposite to the viewing direction of the user.
  • the above-mentioned light source assembly 100 is located in the space enclosed by the optical-mechanical assembly 200, the lens assembly 300 and a part of the whole casing 1, and the light source assembly 100 is arranged along the second direction, and the second direction is perpendicular to the first direction, that is, the light source assembly 100,
  • the optomechanical assembly 200 and the lens assembly 300 are arranged in an "L" shape.
  • the light source assembly 100 is arranged along the short side direction of the “L” shape
  • the long side direction of the “L” shape is The width direction of the casing 1
  • the short side direction of the “L” shape is the length direction of the casing 1
  • the optomechanical assembly 200 is located in the area of the casing 1 close to the first side 101
  • the light source assembly 100 is located close to the optomechanical assembly 200.
  • the lens assembly 300 is located on one side of the second side 102 of the housing 1 .
  • the light source assembly 100 and the lens assembly 300 may also be arranged in parallel along a first direction, and the first direction may be the width direction of the whole machine, or the length direction of the whole machine.
  • the light source assembly 100 is parallel to the lens assembly 300, and the optomechanical assembly 200 is located on the same side of the light source assembly 100 and the lens assembly 300, and is arranged along the second direction, and the second direction is perpendicular to the first direction, that is, the light source assembly 100, the optomechanical assembly 200 and the lens assembly 300 are arranged in a "U" shape, for example, the light source assembly 100 and the lens assembly 300 shown in FIG.
  • the light source assembly 100 is located in the area of the housing 1 close to the first side 101 , the light source assembly 100 is located on the side of the optomechanical assembly 200 close to the second side 102 of the housing 1 , and the lens assembly 300 is located on the third side of the optomechanical assembly 200 close to the housing 1 103 side.
  • the light source assembly 100 may include at least one laser, and the light source assembly 100 is configured to emit laser light of at least one color.
  • the lasers may include red lasers, blue lasers and green lasers.
  • the red lasers emit red lasers
  • the blue lasers emit blue-green lasers
  • the green lasers emit green lasers.
  • the light source assembly 100 can also be a single-color laser light source or a two-color laser light source.
  • the light source assembly 100 has a first light outlet, and the surface where the first light outlet is located is the connection surface with the optomechanical assembly 200 .
  • the optomechanical assembly 200 has a light entrance port and a second light exit port, wherein the light entrance port of the optomechanical assembly 200 is connected to the first light exit port of the light source assembly 100 , the second light outlet of the optomechanical assembly 200 is connected to the lens assembly 300 .
  • the above-mentioned optical-mechanical assembly 200 is used to modulate the light beam to generate an image beam when irradiated by the light beam emitted by the light source assembly 100, wherein the above-mentioned optical-mechanical assembly 200 comprises a DMD chip (Digital Micromirror Device, digital micro mirror element), and the DMD chip is an optical semiconductor Modules, DMD chips process and project light digitally.
  • DMD chip Digital Micromirror Device, digital micro mirror element
  • the DMD chip is an optical semiconductor Modules, DMD chips process and project light digitally.
  • the above-mentioned lens assembly 300 is used to project the image beam output by the optical-mechanical assembly 200 onto the projection screen 2000, as shown in FIG. 4 and FIG. 5;
  • the light entrance and the second light exit of the optomechanical assembly 200 are usually located on different sides of the optomechanical assembly 200 in a vertical relationship.
  • the vertical at the point is the vertical in the spatial position relationship, and the different sides may be different sides of the cuboid optomechanical assembly 200, or may be different sides of an irregular three-dimensional structure.
  • the light entrance and the second light exit of the optomechanical assembly 200 are usually located on different sides of the optomechanical assembly 200 in a parallel relationship.
  • the parallel at the point is the parallel in the spatial positional relationship, and the different sides may be different sides of the cuboid optomechanical assembly 200, or may be different sides of the irregular three-dimensional structure.
  • the above solutions in which the light source assembly 100, the optomechanical assembly 200 and the lens assembly 300 are arranged in an "L" shape or in a "U” shape can make the light source assembly 100 and the lens assembly 300 spaced apart, and are beneficial to other components in the housing 1.
  • the design and installation of the components make the structure design of the laser projection device 1000 reasonable and compact.
  • a plurality of circuit boards 400 are arranged in the space enclosed by the optical-mechanical assembly 200, the lens assembly 300 and the casing 1 of another part of the whole machine.
  • the plurality of circuit boards 400 are electrically connected to the light source assembly 100, and the plurality of circuit boards 400 and the light source assembly 100 are located on two sides of the lens assembly 300, respectively.
  • the multiple circuit boards 400 include power supply boards, TV boards, control boards, display boards, etc.
  • the multiple circuit boards 400 can be stacked parallel to the bottom plate 11 of the casing 1 , or can also be partially along the bottom plate 11 of the entire machine casing 1 . Placed, and a part is vertically arranged along the side plate of the whole casing 1 .
  • the plurality of circuit boards 400 are arranged in a concentrated manner, and are arranged along the length direction of the whole machine together with the aforementioned optical parts.
  • the space enclosed by the lens assembly 300 and the casing 1 of another part of the whole machine is provided with the above-mentioned multiple circuit boards 400 , and the multiple circuit boards 400 and the light source assembly 100 are respectively located on both sides of the lens assembly 300 .
  • the plurality of circuit boards 400 can be stacked parallel to the bottom plate 11 of the casing 1 , or can be partially placed along the bottom plate 11 of the entire casing 1 , and some can be vertically disposed along the side plates of the entire casing 1 .
  • the plurality of circuit boards 400 are arranged in a concentrated manner, and are arranged along the length direction of the whole machine together with the aforementioned optical parts.
  • the light source assembly 100 Since the light source assembly 100 will generate a large amount of heat during operation, it will have a greater impact on the lens assembly 300, especially the solution shown in FIG.
  • the distance between the assembly 100 and the lens assembly 300 is relatively short, and the light source assembly 100 may easily cause the lens assembly 300 to overheat, so that the projection image of the laser projection device 1000 may easily become blurred. Therefore, referring to FIG. 1 , FIG. 6 and FIG.
  • the laser projection device 1000 in the embodiment of the present application further includes a first fan assembly 500 and an air guide, and the first fan assembly 500 is used to guide air from the first side 101 into the casing A cooling airflow is formed in the body 1 , and the cooling airflow is blown toward the light source assembly 100 and then led out through the second side 102 of the housing 1 .
  • the cold air outside the casing 1 enters the casing 1 through the first side 101 of the casing 1 under the action of the first fan assembly 500 to form a cooling airflow, and part of the heat is dissipated.
  • the air flow is guided to the light source assembly 100 to exchange heat with it, and the heat generated by the light source assembly 100 is taken away by the part of the heat dissipation air flow and exported through the second side 102 of the housing 1, thereby realizing the heat dissipation of the light source assembly 100;
  • Another part of the heat dissipation airflow is guided to the optomechanical assembly 200 and the lens assembly 300 by the air guide.
  • the heat generated by the optomechanical assembly 200 and the heat of the lens assembly 300 are taken away by this part of the heat dissipation airflow, and then pass through the third side of the housing 1. 103 is exported to realize the heat dissipation of the optomechanical assembly 200 and the lens assembly 300 .
  • the heat dissipation path can dissipate a part of the casing 1
  • the radiating airflow is directed to the light source assembly 100 separately, and is directly exported after heat dissipation, and the radiating airflow after heat exchange with the light source assembly is directly led out of the casing, reducing the thermal influence of the light source assembly 100 on the optomechanical assembly 200 and the lens assembly 300;
  • Another part of the heat dissipation airflow in the housing 1 is directed to the optomechanical assembly 200 that produces less heat and the lens assembly 300 that does not generate heat itself.
  • the influence of the mutual heat between the assembly 200 and the lens assembly 300 is small, and the heat dissipation effect on the light source assembly 100, the optomechanical assembly 200 and the lens assembly 300 is relatively good, which reduces the temperature of the lens assembly 300 caused by the light source assembly 100 being too high.
  • the projected image of the laser projector 1000 is easily blurred.
  • the first fan assembly 500 can be arranged at different positions in the housing 1 .
  • the first fan assembly 500 is located between the optomechanical assembly 200 and the first side 101 of the casing 1 , and the air inlet side of the first fan assembly 500 faces the casing 1
  • the air outlet side of the first fan assembly 500 faces the area of the optomechanical assembly 200 that is close to the light source assembly 100. This solution can direct more heat dissipation airflow in the housing 1 to the light source assembly 100.
  • the first fan assembly 500 is located between the first side 101 of the casing 1 and the light source assembly 100 , and the air inlet side of the first fan assembly 500 faces the first side 101 of the casing 1 , the air outlet side of the first fan assembly 500 faces the light source assembly 100 , and all the outlet air of the first fan assembly 500 is directed to the light source assembly 100 .
  • the deflector is a deflector
  • the deflector is installed at the DMD chip in the optomechanical assembly 200
  • the deflector is bent so as to be able to dissipate the heat dissipation airflow in the housing 1 .
  • the curved surface structures of the light guide assembly 200 and the lens assembly 300 are relatively simple in structure.
  • the air guide member is an air guide fan 800
  • the air guide fan 800 is installed at the opto-mechanical assembly 200 (specifically, at the DMD chip, and the heat near the DMD chip is relatively high).
  • the air inlet direction of the air guide fan 800 is perpendicular to the air outlet direction of the first fan assembly 500, and the air outlet side of the air guide fan 800 faces the lens assembly 300, that is, the air guide fan 800 can speed up the air flow of the first fan assembly 500.
  • Part of the air is directed towards the optomechanical assembly 200 and the lens assembly 300, and the air guide fan 800 accelerates the heat dissipation of the DMD chip, ensuring that the amount of cool air blowing to the optomechanical assembly 200 and the lens assembly 300 is sufficient, so that the DMD chip and the lens assembly 300 are cooled.
  • the cooling effect is better.
  • a second fan assembly 600 is also installed in the casing 1 in the embodiment of the present application, and the second fan assembly 600 is located between the light source assembly 100 and the second side 102 of the casing 1 ,
  • the second fan assembly 600 is used to draw out the heat dissipation airflow at the light source assembly 100 , which can increase the flow rate of the heat dissipation airflow at the light source assembly 100 , thereby improving the heat dissipation effect on the light source assembly 600 .
  • a third fan assembly 700 is also installed in the casing 1 in the embodiment of the present application, and the third fan assembly 700 is located between the lens assembly 300 and the third side 103 of the casing 1 , In addition, it is used to extract the heat dissipation airflow from the lens assembly 300 , which can increase the flow rate of the heat dissipation airflow near the lens assembly 300 , thereby improving the heat dissipation effect on the light source assembly 600 .
  • the above-mentioned housing 1 is provided with a plurality of heat dissipation holes 12.
  • the plurality of heat dissipation holes 12 are divided into a first part, a second part and a third part.
  • the first part is disposed close to the air inlet side of the first fan assembly
  • the second part of the plurality of heat dissipation holes 12 is disposed close to the air outlet side of the second fan assembly 600
  • the third part of the plurality of heat dissipation holes 12 is disposed close to the third
  • the fan assembly 700 is disposed on the air outlet side. All other areas on the housing 1 are sealed.
  • the housing 1 in the embodiment of the present application is further provided with a heat insulating member 900 , and the heat insulating member 900 is used to isolate the heat dissipation airflow whose temperature is higher than that of the lens assembly 300 in the housing 1 from blowing to the lens assembly 300 .
  • the heat insulating member 900 is used to isolate the heat dissipation airflow whose temperature is higher than that of the lens assembly 300 in the housing 1 from blowing to the lens assembly 300 . 1.
  • the heat shield 900 After heat exchange with other components (such as the light source assembly 100, the optomechanical assembly 200, etc.), the heat dissipation airflow with a temperature higher than that of the lens assembly 300 will be blocked by the heat shield 900, reducing the heat exchange between other components and the lens assembly 300. , thereby reducing the thermal influence of the housing 1 and other components on the lens assembly 300 , so that the temperature of the lens assembly 300 is lower, thereby ensuring a clear and stable projection image of the whole machine.
  • the light source assembly 100 , the optomechanical assembly 200 and the lens assembly 300 are arranged in a “U” shape, and the above-mentioned heat insulating member 900 may be
  • the partition plate disposed between the lens assembly 300 and the light source assembly 100 has a relatively simple structure.
  • the above-mentioned heat insulating member 900 can also be a wind shielding plate covering the lens assembly 300 .
  • the upper edge of the heat insulator 900 is connected to the top plate of the housing 1
  • the lower edge of the heat insulator 900 is connected to the bottom plate 11 of the housing 1
  • the upper edge of the heat insulator 900 is connected to the bottom plate 11 of the housing 1.
  • the lower edge of the heat insulating member 900 are connected with the inner wall of the housing 1 , so as to avoid the flow of air volume between the light source assembly 100 and the lens assembly 300 .
  • the heat insulating member 900 is made of a heat insulating material, so that it has a good heat insulating effect, and can further reduce the thermal influence of the light source assembly 100 on the lens assembly 300 .
  • the above-mentioned heat insulating member 900 can be made of metal or hard plastic, so that the heat insulating member 900 has a good heat insulating effect.
  • the insulator 900 and the inner wall of the housing 1 can be A sealing member is arranged between the sealing members, and the sealing member can seal the upper edge of the heat insulation member 900 with the inner wall of the top plate of the housing 1, and the lower edge of the heat insulation member 900 and the inner wall of the bottom plate 11 of the housing 1. Sealing connection, so that the light source assembly The wind isolation effect between 100 and the lens assembly 300 is better.
  • the above-mentioned seal may be a sealing tampon.
  • the above-mentioned heat shield 900 needs to have a gap between the lens assembly 300 and the light source assembly 100 to avoid the influence of the heat shield 900 on the lens assembly 300 and the light source assembly 100.
  • the light source assemblies 100 are arranged at intervals.
  • the gap between the heat insulating member 900 and the light source assembly 100, the heat insulating member 900 are all designed to be larger than 2 mm.
  • the thickness of the thermal insulation member 900 is 1-3 mm, for example, the thickness of the heat insulating member 900 is 2 mm, which can ensure that the installation of other components is not affected, and the heat insulating effect is good.
  • the plurality of circuit boards 400 in the embodiment of the present application are located between the lens assembly 300 and the air inlet side of the third fan assembly 700 , and the third fan assembly 700 can also draw the heat dissipation airflow from the lens assembly 300 to between the plurality of circuit boards 400 , and then extract the heat dissipation air between the plurality of circuit boards 400, and finally lead the heat dissipation air out of the casing 1.
  • the third fan assembly 700 can promote the forced heat exchange between the plurality of circuit boards 400 and the heat dissipation air flow.
  • the temperature of the heat dissipation air flow from the lens assembly 300 is relatively low, and the heat dissipation air flow is used to dissipate heat from the plurality of circuit boards 400, and fewer fans can be used to dissipate heat from the various components in the housing 1, which not only ensures the heat dissipation of multiple circuit boards 400 The heat dissipation effect of the circuit board 400 is improved, and the cost is reduced.
  • the above-mentioned multiple circuit boards 400 are stacked and arranged in parallel, and the plane where the circuit boards 400 are located is parallel to the air intake direction of the third fan assembly 700 .
  • the resistance is small, so that the third fan assembly 700 can smoothly bring out the high temperature cooling airflow between the circuit boards 400 in a sweeping manner, and the effect of simultaneously cooling multiple circuit boards 400 is good.
  • the plurality of circuit boards 400 in FIG. 15 are arranged parallel to the bottom plate 11 of the housing 1 .
  • the light source assembly 100 is located on the left side of the casing 1, the lens assembly 300 is located on the right side of the casing 1, and the plurality of circuit boards 400 are located on the right side of the lens assembly 300;
  • the positions can also be interchanged, that is, the light source assembly 100 is located on the right side of the casing 1, and the lens assembly 300 is located on the left side of the casing 1.
  • the plurality of circuit boards 400 are also adjusted to the left side in the casing 1. , to ensure that the plurality of circuit boards 400 are always located on the side of the lens assembly 300 away from the light source assembly 100 .
  • the numbers of the first fan assembly 500 , the second fan assembly 600 , the third fan assembly 700 and the air guide fan 800 in the embodiment of the present application are not limited.
  • the first fan assembly 500 in FIG. 15 includes one intake fan, the second fan assembly 600 and the third fan assembly 700 each include two outlet fans, and the two outlet fans in the second fan assembly 600 are located along the casing.
  • the second side of the third fan assembly 700 is arranged at intervals along the third side of the casing, and the two outlet fans in the third fan assembly 700 are arranged at intervals along the third side of the casing.
  • the fans are all axial flow fans.
  • the two air intake fans in the first fan assembly 500, the two air outlet fans in the second fan assembly 600, the two air outlet fans in the third fan assembly 700, and the air guide fan 800 are all axial flow fans.
  • the guide fan 800 , the air inlet fan and the four air outlet fans are all arranged perpendicular to the bottom plate 11 of the casing 1 , and the structure is relatively simple and the installation is relatively convenient.
  • the heat generated by the light source assembly 100 needs a special heat sink for processing, especially the red laser in the light source assembly 100. If the heat of the red laser cannot be dissipated in time during operation, its luminous efficiency will be seriously affected.
  • the laser projection device 1000 of the embodiment of the present application further includes a laser heat sink 2, the laser heat sink 2 is located between the light source assembly 100 and the second fan assembly 600, and the laser heat sink 2 can be specially used for heat dissipation of the light source assembly 100, so that the light source The heat dissipation effect of the assembly 100 is better.
  • the laser projection device 1000 shown in FIGS. 8 , 9 and 15 is installed with a laser heat sink 2 including a first heat pipe, a first heat-conducting metal block and a first heat-dissipating fin, and the first heat-conducting metal block and the light source assembly
  • the laser in 100 is attached, the first heat-conducting metal block transfers the heat of the light source assembly 100 to the first heat pipe, the first heat pipe transfers the heat to the first heat dissipation fin, and the light source assembly 100 is cooled by the convection effect of the second fan assembly 600.
  • the heat is conducted out of the casing 1, and the heat dissipation of the light source assembly 100 is realized, and the heat dissipation effect is good.
  • the laser projection device 1000 in the embodiment of the present application further includes a DMD heat sink 3 installed at the DMD chip.
  • the DMD The heat sink 3 is specially used to dissipate heat for the DMD chip, so that the heat dissipation effect for the DMD chip is better.
  • the DMD heat sink 3 shown in FIGS. 8 , 9 and 14 includes a second heat-conducting metal block and a second heat-dissipating fin, the second heat-conducting metal block is attached to the DMD chip, and the second heat-conducting metal block transfers the heat of the DMD To the second heat dissipation fin, the heat of the DMD is transferred to the circuit board 400 by the air volume of the air guide fan 800, and then brought to the outside of the casing 1 by the third fan assembly 700, which has a better heat dissipation effect.
  • the light source assembly 100 and the optomechanical assembly 200 are arranged side by side and perpendicular to the lens assembly 300; the laser heat sink 3 is located at the light source assembly 100 and is opposite to the lens assembly 300 to dissipate heat from the laser
  • the device 3 , the light source assembly 100 , the optomechanical assembly 200 and the lens assembly 300 are arranged in a U shape, as shown in FIG. 16 and FIG. 17 .
  • Option A is a heat dissipation structure with the heat insulator 900 , the first fan assembly 500 , the guide fan 800 , the second fan assembly 600 and the third fan assembly 700 shown in FIG. 15
  • the solution B is the heat dissipation structure shown in FIG.
  • the solution C is the heat dissipation structure with the air guide fan 800, the second fan assembly 600 and the third fan assembly 700 shown in FIG. 15.
  • the third fan assembly 700 is used as an air intake fan
  • the second fan assembly 600 is used as an air outlet fan
  • the wind direction of the second fan assembly 600, the air guide fan 800 and the third fan assembly 700 is from right to left
  • the test ambient temperature is set to 25 °C
  • the first fan assembly 500, the guide fan 800, the second fan assembly 600 and the third fan assembly 700 are all 1500 RPM (Revolutions Per Minute, revolutions per minute).
  • the test results are as follows:
  • Scheme A can keep the temperature of each lens in the light source assembly 100 and the lens assembly 300 at a low level at the same time, and the heat dissipation effect of the whole machine is better;
  • Scheme B removes the lens assembly 300 and the light source assembly 100.
  • the temperature of each lens in the lens assembly 300 is relatively high, but the temperature of the light source assembly 100 can be kept at a low level, and only the heat dissipation effect of the light source assembly 100 is better;
  • the heat element 900 is installed, and the wind direction in the housing 1 is set to be from the circuit board 400 to the light source assembly 100.
  • the temperature of each lens in the lens assembly 300 is relatively low, but the temperature of the light source assembly 100 is relatively high, which only has a heat dissipation effect on the lens assembly 300. better.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种激光投影装置(1000),涉及投影设备技术领域,用于解决相关散热方案对激光器、光机和镜头的散热效果不佳的问题。激光投影装置(1000)包括壳体(1),壳体(1)内安装有光源组件(100)、光机组件(200)、镜头组件(300)、第一风扇组件(500)及导流件,光机组件(200)连接在光源组件(100)和镜头组件(300)的光路之间;光机组件(200)位于壳体(1)内靠近第一侧(101)的区域、且沿第一侧(101)的延伸方向设置,光源组件(100)位于光机组件(200)靠近壳体(1)的第二侧(102)的一侧,镜头组件(300)位于光机组件(200)靠近壳体(1)的第三侧(103)的一侧,第二侧(102)与第三侧(103)相对、且均与第一侧(101)相交;第一风扇组件(500)用于将空气从第一侧(101)导入壳体(1)内形成散热气流,散热气流吹向光源组件(100)后经壳体(1)的第二侧(102)导出;导流件用于散热气流导向光机组件(200)和镜头组件(300)后,经壳体(1)的第三侧(103)导出。

Description

一种激光投影装置
相关申请的交叉引用
本申请要求在2021年1月18日提交中国专利局、申请号为202110064668.2,发明名称为一种激光投影装置的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及投影设备技术领域,尤其涉及一种激光投影装置。
背景技术
激光投影装置采用高功率的激光器将电能转换为光能,产生的激光光束通过光学系统、电路系统、照明系统、镜头系统一系列综合作用投影到屏幕上,形成投影画面。
激光投影装置包括激光器、光机和镜头,其中,激光器通过将电能转换为光能,从而产生激光光束,在电能转换为光能的过程中还会产生大量热量,其热流密度在激光投影装置中最大,使得激光器为整机中最主要的热源,该热能需要及时的散去,以保证激光器高效的发光效率、可靠性和寿命;光机包括光调制芯片,光调制芯片为电子器件,比如DMD芯片(Digital Micromirror Device,数字微镜元件),DMD芯片将激光器发出的照明光束调制成带有图像信息的调制光束,DMD芯片在工作时也会产生较多的热量,并且工作性能也会受到温度的影像;虽然镜头本身并不产生热量,但是激光器产生的高能量的激光最终需要通过镜头进行投射,镜头相当于始终暴露在高能量的光束之下,根据光调制芯片的工作原理,比如DMD的OFF状态的光可能有部分会达到镜头壳体上,从而也带来温升,镜头中包含多组精密的光学镜片,封装在相对封闭的镜筒结构内,一方面镜头容易受到整机环境中其他部件热量的影响,尤其是激光器的影响,另一方面,自身结构原因也导致散热困难的问题,从而出现“温漂”现象,也就是镜头中一些镜片出现面型变形、聚焦清晰度下降,进而激光投影装置的投影画面变得模糊不清。为了满足设备中热源或核心工作部件的散热需求,通常需要在多个位置设置多组风扇,但是这不仅带来部件的增加,需要调整整机排布布局,也会导致不同风扇在高速旋转时的噪声问题,因此从散热效率上并不经济,也带来了用户使用体验的降低。而随着激光投影设备部件摆放的紧凑化或追求体积的小型化,上述激光投影设备中各热源或核心工作部件的散热问题就更为突出。
发明内容
本申请实施例提供一种激光投影装置,采用如下技术方案:
一种激光投影装置包括壳体,所述壳体内安装有:光源组件,所述光源组件用于向光机组件提供照明光束;镜头组件,所述镜头组件用于将所述光机组件输出的影像光束投射 成像;光机组件,所述光机组件连接在所述光源组件和所述镜头组件的光路之间、且用于将所述光源组件提供的照明光束调制生成影像光束;其中,所述光机组件位于所述壳体内靠近第一侧的区域、且沿所述第一侧的延伸方向设置,所述光源组件位于所述光机组件靠近所述壳体的第二侧的一侧,所述镜头组件位于所述光机组件靠近所述壳体的第三侧的一侧,所述第二侧与所述第三侧相对、且均与所述第一侧相交;第一风扇组件,所述第一风扇组件用于将空气从第一侧导入所述壳体内形成散热气流,并所述散热气流吹向所述光源组件后经所述壳体的第二侧导出;导流件,所述导流件用于将所述散热气流导向所述光机组件和所述镜头组件后,经所述壳体的第三侧导出。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例激光投影装置的立体示意图之一;
图2为本申请实施例激光投影装置中光源组件、光机组件及镜头组件呈U形分布的结构示意图;
图3为本申请实施例激光投影装置中光源组件、光机组件及镜头组件呈L形分布的结构示意图;
图4为本申请实施例激光投影装置和投影屏幕的结构示意图之一;
图5为本申请实施例激光投影装置和投影屏幕的结构示意图之二;
图6为本申请实施例激光投影装置的风向示意图;
图7为本申请实施例激光投影装置的结构示意图;
图8为本申请实施例激光投影装置中部分部件的爆炸图之一;
图9为本申请实施例激光投影装置中部分部件的爆炸图之二;
图10为本申请实施例激光投影装置中光源组件和激光器散热器的散热示意图;
图11为本申请实施例激光投影装置中光机组件和DMD散热器的散热示意图;
图12为本申请实施例激光投影装置中隔热件和镜头组件的散热示意图;
图13为本申请实施例激光投影装置中部分部件的结构示意图;
图14为本申请实施例激光投影装置的立体示意图之二;
图15为本申请实施例激光投影装置的立体示意图之三;
图16为本申请实施例激光投影装置中激光器散热器、光源组件、光机组件及镜头组件呈U形排列的结构示意图之一;
图17为本申请实施例激光投影装置中激光器散热器、光源组件、光机组件及镜头组件呈U形排列的结构示意图之二。
附图标记:
1000-激光投影装置,2000-投影屏幕,1-壳体,11-底板,12-散热孔,2-激光器散热器,3-DMD散热器,100-光源组件,200-光机组件,300-镜头组件,400-电路板,500-第一风扇组件,600-第二风扇组件,700-第三风扇组件,800-导风风扇,900-隔热件。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本申请的描述中,“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
首先,本申请实施例提供了一种激光投影装置包括壳体,所述壳体内安装有:光源组件,所述光源组件用于向光机组件提供照明光束;镜头组件,所述镜头组件用于将所述光机组件输出的影像光束投射成像;光机组件,所述光机组件连接在所述光源组件和所述镜头组件的光路之间、且用于将所述光源组件提供的照明光束调制生成影像光束;其中,所述光机组件位于所述壳体内靠近第一侧的区域、且沿所述第一侧的延伸方向设置,所述光源组件位于所述光机组件靠近所述壳体的第二侧的一侧,所述镜头组件位于所述光机组件靠近所述壳体的第三侧的一侧,所述第二侧与所述第三侧相对、且均与所述第一侧相交;第一风扇组件,所述第一风扇组件用于将空气从第一侧导入所述壳体内形成散热气流,并所述散热气流吹向所述光源组件后经所述壳体的第二侧导出;导流件,所述导流件用于将所述散热气流导向所述光机组件和所述镜头组件后,经所述壳体的第三侧导出。
在本申请一些可能的实施例中,所述光源组件与所述镜头组件平行,所述光机组件 垂直设置在所述光源组件和所述镜头组件的同一侧以呈U形排列;或,所述镜头组件和所述光机组件依次连接设置、且与所述光源组件垂直以呈L形排列。
在本申请一些可能的实施例中,所述光源组件与所述镜头组件平行,所述光机组件垂直设置在所述光源组件和所述镜头组件的同一侧以呈U形排列;或,所述镜头组件和所述光机组件并排设置、且与所述光源组件垂直以呈L形排列。
在本申请一些可能的实施例中,所述第一风扇组件位于所述光机组件与所述壳体的第一侧之间,且所述第一风扇组件的进风侧朝向所述壳体的第一侧,所述第一风扇组件的出风侧朝向所述光机组件上靠近所述光源组件的区域。
在本申请一些可能的实施例中,所述导流件为安装在所述光机组件处的导流风扇,所述导流风扇的进风方向与所述第一风扇组件的出风方向垂直相交,且所述导流风扇的出风侧朝向所述镜头组件。
在本申请一些可能的实施例中,所述壳体内还安装有第二风扇组件,所述第二风扇组件位于所述光源组件与所述壳体的第二侧之间、且用于将所述光源组件处的散热气流抽出。
在本申请一些可能的实施例中,所述壳体内还安装有第三风扇组件,所述第三风扇组件位于所述镜头组件与所述壳体的第三侧之间、且用于将所述镜头组件处的散热气流抽出。
在本申请一些可能的实施例中,所述壳体内还安装有隔热件,所述隔热件用于隔离所述壳体内温度高于所述镜头组件的散热气流吹向所述镜头组件。
在本申请一些可能的实施例中,所述隔热件为设置在所述光源组件与所述镜头组件之间的隔板。
在本申请一些可能的实施例中,所述隔热件的上边沿与所述壳体的顶板密封连接,所述隔热件的下边沿与所述壳体的底板密封连接。
在本申请一些可能的实施例中,所述壳体内还安装有多个电路板,多个所述电路板和所述光源组件分别位于所述镜头组件的两侧。
在本申请一些可能的实施例中,多个所述电路板均位于所述镜头组件与所述第三风扇组件的进风侧之间。
在本申请一些可能的实施例中,所述光源组件和所述光机组件并排设置、且均与所述镜头组件垂直;所述壳体内还安装有激光器散热器,所述激光器散热器位于所述光源组件处、且与所述镜头组件平行设置,以使所述激光器散热器、所述光源组件、所述光机组件及所述镜头组件呈U形排列。
在本申请一些可能的实施例中,所述壳体为长方体,所述镜头组件和所述光源组件均沿所述壳体的短边方向设置,所述光机组件沿所述壳体的长边方向设置,所述第一侧为所述壳体上靠近所述光机组件的第一长边侧,所述第二侧和所述第三侧分别为所述壳体的两个短边侧;所述第一风扇组件包括一个进风风扇,所述第二风扇组件和所述第三风扇组件均包括两个出风风扇,所述第二风扇组件中的两个出风风扇沿所述壳体的第二侧间隔设置,所述第三风扇组件中的两个出风风扇沿所述壳体的第三侧间隔设置,所述进风风扇和四个所述出风风扇均为轴流风扇。
在本申请一些可能的实施例中,所述镜头组件中的镜头为超短焦投影镜头。
相较于相关技术,本申请实施例提供的激光投影装置运行时,第一风扇组件和导流件启动,壳体外部的冷空气在第一风扇组件的作用下,经壳体的第一侧进入壳体内形成散热气流,部分散热气流被导向光源组件处与其换热,光源组件产生的热量被该部分散热气流带走并经壳体的第二侧导出,实现了对光源组件的散热;壳体内的另一部分散热气流被导流件导向光机组件和镜头组件,光机组件产生的热量和镜头组件的热量均被该部分散热气流带走,之后再经壳体的第三侧导出,实现对光机组件和镜头组件的散热。由于本申请实施例中第一风扇组件和导流件使壳体内的散热路径呈树杈形,如“Y”形或“丄”形,该散热路径能够将壳体内的一部分散热气流单独导向光源组件,并对其进行散热之后直接导出,与光源组件换热后的散热气流直接被导出壳体外,减少了光源组件对光机组件和镜头组件的热量影响;壳体内的另一部分散热气流被导向产热量较少的光机组件和自身不产生热量的镜头组件,这种散热路径设计合理分配了散热气流的流向,使得光源组件、光机组件和镜头组件之间相互热量的影响较小,对光源组件、光机组件和镜头组件的散热效果均较好,减少了因光源组件使得镜头组件温度过高而导致的激光投影装置的投影画面容易模糊不清的问题。
参照图1,本申请实施例的激光投影装置1000包括整机的壳体1,壳体1的形状可为多种,如正方体、长方体、带有圆角的长方体等。图1中示出的壳体1为长方体,壳体1设有第一侧101、第二侧102、第三侧103及第四侧104,其中,第一侧101和第四侧104相对且分别为壳体1的两个长边侧,第二侧102和第三侧103相对且分别为壳体1的两个短边侧。
参照图2,按照光学功能部分,本申请实施例的激光投影装置1000还包括装配于壳体1内的光源组件100、光机组件200及镜头组件300,光源组件100、光机组件200和镜头组件300这3个光学部件沿光束的传播方向依次连接,即光机组件200将光源组件100与镜头组件300连接,光源组件100、光机组件200和镜头组件300各自具有对应的壳体进行包裹,以对光学部件进行支撑,并使得各个光学部分达到一定的密封或气密要 求。
图2中的箭头示出了激光投影装置1000中光源组件100、光机组件200和镜头组件300这3个光学部件中光束的传播方向。
其中,光机组件200和镜头组件300并排且沿着整机的第一方向设置,比如第一方向可以为整机的宽度方向,或者按照使用方式,第一方向与用户观看的方向相对。上述光源组件100位于光机组件200、镜头组件300和一部分整机壳体1围合的空间内,且光源组件100沿第二方向设置,第二方向与第一方向垂直,即光源组件100、光机组件200和镜头组件300呈“L”形排列。例如,图3所示的光机组件200和镜头组件300沿“L”形的长边方向排列设置,光源组件100沿“L”形的短边方向设置,“L”形的长边方向为壳体1的宽度方向,“L”形的短边方向为壳体1的长度方向,且光机组件200位于壳体1内靠近第一侧101的区域,光源组件100位于光机组件200靠近壳体1的第二侧102的一侧,镜头组件300位于光机组件200靠近壳体1的第三侧103的一侧。
在一些实施例中,光源组件100与镜头组件300还可沿第一方向平行设置,第一方向可以为整机的宽度方向,也可以为整机的长度方向。光源组件100与镜头组件300平行,光机组件200位于光源组件100和镜头组件300的同一侧、且沿第二方向设置,第二方向与第一方向垂直,即光源组件100、光机组件200和镜头组件300呈“U”形排列,例如,图2所示的光源组件100和镜头组件300沿整机的宽度方向设置,光机组件200沿整机的长度方向设置,且光机组件200位于壳体1内靠近第一侧101的区域,光源组件100位于光机组件200靠近壳体1的第二侧102的一侧,镜头组件300位于光机组件200靠近壳体1的第三侧103的一侧。
在本申请的示例中,光源组件100可以包括至少一个激光器,光源组件100用于发射至少一种颜色的激光。激光器可包括红色激光器、蓝色激光器和绿色激光器,红色激光器发出红色激光,蓝色激光器发出蓝色绿色,绿色激光器发出绿色激光,光源组件100用于提供激光投影装置1000所需的光源。当然,光源组件100也可为单色激光光源或双色激光光源。具体地,光源组件100具有第一出光口,该第一出光口所在的面即为与光机组件200的连接面,通过将两者连接,实现光源组件100为光机组件200提供照明光束。
需要说明的是,根据光机组件200内部照明光路的设计,光机组件200具有入光口和第二出光口,其中,光机组件200的入光口与光源组件100的第一出光口连接,光机组件200的第二出光口与镜头组件300连接。
上述光机组件200用于受到光源组件100出射的光束照射时,将光束调制生成影像光束,其中,上述光机组件200包括DMD芯片(Digital Micromirror Device,数字微镜 元件),DMD芯片为光学半导体模块,DMD芯片以数字方式对光进行处理和投影。
上述镜头组件300用于将光机组件200输出的影像光束投射至投影屏幕2000上,如图4和图5所示;上述镜头组件300中的镜头可采用超短焦投影镜头。
对于光源组件100、光机组件200和镜头组件300呈“L”形排列的方案,光机组件200的入光口和第二出光口通常位于光机组件200呈垂直关系的不同侧面上,此处的垂直是空间位置关系上的垂直,不同的侧面可以是长方体光机组件200的不同侧面,也可以是不规则立体结构的不同侧面。
对于光源组件100、光机组件200和镜头组件300呈“U”形排列的方案,光机组件200的入光口和第二出光口通常位于光机组件200呈平行关系的不同侧面上,此处的平行是空间位置关系上的平行,不同的侧面可以是长方体光机组件200的不同侧面,也可以是不规则立体结构的不同侧面。
上述光源组件100、光机组件200和镜头组件300呈“L”形排列或呈“U”形排列的方案均能够使光源组件100与镜头组件300间隔设置,并且有利于壳体1内的其他部件的设计安装,使激光投影装置1000结构设计合理且紧凑。
图2中光机组件200、镜头组件300和另一部分整机的壳体1围合的空间内设有多个电路板400,多个电路板400与光源组件100电连接,且多个电路板400和光源组件100分别位于镜头组件300的两侧。多个电路板400包括电源板、TV板、控制板、显示板等,多个电路板400可以平行于壳体1的底板11层叠设置,或者也可以一部分沿着整机壳体1的底板11放置,一部分沿整机壳体1的侧板竖直设置。多个电路板400呈集中设置,与前述的光学部分沿着整机的长度方向设置。
图1和图2中镜头组件300与另一部分整机的壳体1围合的空间内设有上述多个电路板400,多个电路板400和光源组件100分别位于镜头组件300的两侧。多个电路板400可以平行于壳体1的底板11层叠设置,或者也可以一部分沿着整机壳体1的底板11放置,一部分沿整机壳体1的侧板竖直设置。多个电路板400呈集中设置,与前述的光学部分沿着整机的长度方向设置。
由于光源组件100在工作时会产生大量热量,对镜头组件300产生较大影响,尤其是图2示出的光源组件100、光机组件200和镜头组件300呈“U”形排列的方案,光源组件100与镜头组件300的距离较近,光源组件100容易使得镜头组件300容易温度过高,从而激光投影装置1000的投影画面容易变得模糊不清。因此,参照图1、图6和图7,本申请实施例中的激光投影装置1000还包括第一风扇组件500和导流件,第一风扇组件500用于将空气从第一侧101导入壳体1内形成散热气流,散热气流吹向光源组件100后经壳体1的第二侧102导出,导流件用于散热气流导向光机组件200和镜头组件 300后,经壳体1的第三侧103导出。
当第一风扇组件500和导流件运行时,壳体1外部的冷空气在第一风扇组件500的作用下,经壳体1的第一侧101进入壳体1内形成散热气流,部分散热气流被导向光源组件100处与其换热,光源组件100产生的热量被该部分散热气流带走并经壳体1的第二侧102导出,实现了对光源组件100的散热;壳体1内的另一部分散热气流被导流件导向光机组件200和镜头组件300,光机组件200产生的热量和镜头组件300的热量均被该部分散热气流带走,之后再经壳体1的第三侧103导出,实现对光机组件200和镜头组件300的散热。由于本申请实施例中第一风扇组件500和导流件使壳体1内的散热路径呈树杈形,如“Y”形或“丄”形,该散热路径能够将壳体1内的一部分散热气流单独导向光源组件100,并对其进行散热之后直接导出,与光源组件换热后的散热气流直接被导出壳体外,减少了光源组件100对光机组件200和镜头组件300的热量影响;壳体1内的另一部分散热气流被导向产热量较少的光机组件200和自身不产生热量的镜头组件300,这种散热路径设计合理分配了散热气流的流量,使得光源组件100、光机组件200和镜头组件300之间相互热量的影响较小,对光源组件100、光机组件200和镜头组件300的散热效果均较好,减少了因光源组件100使得镜头组件300温度过高而导致的激光投影装置1000的投影画面容易模糊不清的问题。
根据光源组件100、光机组件200和镜头组件300不同的排列方式,可将第一风扇组件500可设置在壳体1内的不同位置。例如,参照图1、图6、图8至图9,第一风扇组件500位于光机组件200和壳体1的第一侧101之间,第一风扇组件500的进风侧朝向壳体1的第一侧101,第一风扇组件500的出风侧朝向光机组件200靠近光源组件100的区域,该方案能够将壳体1内更多的散热气流导向光源组件100处,对光源组件100中激光器的散热效果较好;又如,第一风扇组件500位于壳体1的第一侧101与光源组件100之间,第一风扇组件500的进风侧朝向壳体1的第一侧101,第一风扇组件500的出风侧朝向光源组件100,第一风扇组件500所有的出风均被导向光源组件100。
上述导流件的设计方案有多种,如导流件为导流板,导流板安装在光机组件200中的DMD芯片处,导流板弯折为能够将壳体1内的散热气流导向光机组件200和镜头组件300的曲面结构,其结构较简单。又如,参照图1、图11、图14和图15,导流件为导风风扇800,导风风扇800安装在光机组件200处(具体为DMD芯片处,DMD芯片附近的热量较高),导流风扇800的进风方向与第一风扇组件500的出风方向垂直相交,导风风扇800的出风侧朝向镜头组件300,即导风风扇800能够加快将第一风扇组件500的部分出风导向光机组件200和镜头组件300,导风风扇800加快了DMD芯片的散热,保证了吹向光机组件200、镜头组件300的凉风量足够,使得对DMD芯片和镜头组件 300的散热效果较好。
参照图1、图6及图10,本申请实施例中的壳体1内还安装有第二风扇组件600,第二风扇组件600位于光源组件100与壳体1的第二侧102之间,且第二风扇组件600用于将光源组件100处的散热气流抽出,能够提高光源组件100处散热气流的流速,从而提高了对光源组件600的散热效果。
参照图1、图6及图12,本申请实施例中的壳体1内还安装有第三风扇组件700,第三风扇组件700位于镜头组件300与壳体1的第三侧103之间、且用于将镜头组件300处的散热气流抽出,能够提高镜头组件300附近的散热气流流速,从而提高对光源组件600的散热效果。
需要说明的是,上述壳体1上开设有多个散热孔12,按照分布区域的不同,多个散热孔12被分为第一部分、第二部分和第三部分,多个散热孔12中的第一部分靠近所述第一风扇组件的进风侧设置,多个散热孔12中的第二部分靠近第二风扇组件600的出风侧设置,多个散热孔12中的第三部分靠近第三风扇组件700的出风侧设置。壳体1上其他区域均密封设置。
参照图13,本申请实施例中的壳体1内还安装有隔热件900,隔热件900用于隔离壳体1内温度高于镜头组件300的散热气流吹向镜头组件300,壳体1内与其他部件(如光源组件100、光机组件200等)换热后温度高于镜头组件300的散热气流会被隔热件900阻挡,减少了其他部件与镜头组件300之间的热交换,从而减少了壳体1内与其他部件对镜头组件300的热量影响,使得镜头组件300的温度较低,从而保证整机的投影画面清晰稳定。
由于壳体1内光源组件100的热量较高,因此,在本申请的一些实施例中,光源组件100、光机组件200和镜头组件300呈“U”形排列,上述隔热件900可为设置在镜头组件300与光源组件100之间的隔板,结构较简单。当然,上述隔热件900也可为罩设在镜头组件300上的隔风罩板。
对于上述隔热件900为隔板的方案,隔热件900的上边沿与壳体1的顶板连接,隔热件900的下边沿与壳体1的底板11连接,隔热件900的上边沿和隔热件900的下边沿均与壳体1的内壁连接,避免了光源组件100和镜头组件300之间的风量流动。
并且,隔热件900采用隔热材料制作,使其具有良好的隔热效果,能够进一步减少光源组件100对镜头组件300的热量影响。上述隔热件900可采用金属或硬质塑料制作,使得隔热件900具有良好的隔热效果。
需要说明的是,为了进一步避免隔热件900的上边沿或隔热件900的下边沿与壳体1的内壁之间的连接处出现漏风问题,可在隔热件900与壳体1的内壁之间设置密封件, 密封件能够将隔热件900的上边沿与壳体1的顶板内壁密封连接、以及将隔热件900的下边沿与壳体1的底板11内壁密封连接,使得光源组件100与镜头组件300之间的隔风效果较好。例如,上述密封件可为密封棉条。
上述隔热件900需与镜头组件300、光源组件100之间均具有间隙,以避免隔热件900对镜头组件300、光源组件100的影响,本申请实施例中的隔热件900与镜头组件300、光源组件100均间隔设置。
基于以上,考虑到激光投影装置1000中壳体1内各部件的安装较紧凑,在满足其他部件安装要求的基础上,可将隔热件900与光源组件100之间的间隙、隔热件900与镜头组件300之间的间隙均设计为大于2mm。
对于隔热件900为隔板的方案,若隔热件900的厚度过小,隔热效果较差;若隔热件900的厚度过大,会影响其他部件的安装并提高了成本。因此,本申请实施例中隔热件900的厚度为1~3mm,如隔热件900的厚度为2mm,能够在保证不影响其他部件安装的基础上,隔热效果较好。
本申请实施例中的多个电路板400位于镜头组件300和第三风扇组件700的进风侧之间,第三风扇组件700还能够将镜头组件300处的散热气流抽至多个电路板400间,再将多个电路板400间的散热气流抽出,最后将散热气流导出壳体1外,第三风扇组件700能够促进多个电路板400与散热气流强制换热,由于镜头组件300处的热量较低,从镜头组件300导出的散热气流温度较低,利用该散热气流对多个电路板400进行散热,能够采用较少的风扇对壳体1内各个部件进行散热,不仅能够保证对多个电路板400的散热效果,而且降低了成本。
需要说明的是,上述多个电路板400均层叠平行设置,电路板400所在的平面与第三风扇组件700的进风方向平行,第三风扇组件700在多个电路板400间抽取散热气流时,阻力小,使得第三风扇组件700能够以扫掠方式将电路板400间温度较高的一起散热气流顺利带出,对多个电路板400同时散热的效果均较好。图15中的多个电路板400均平行于壳体1的底板11设置。
图15中光源组件100位于壳体1内的左侧,镜头组件300位于壳体1内的右侧,多个电路板400位于镜头组件300的右侧;当然,光源组件100和镜头组件300的位置也可互换,即光源组件100位于壳体1内的右侧,镜头组件300位于壳体1内的左侧,相应地,将多个电路板400也调整至壳体1内的左侧,保证多个电路板400始终位于镜头组件300远离光源组件100的一侧。
本申请实施例中的第一风扇组件500、第二风扇组件600、第三风扇组件700及导风风扇800的数量均不做限制。
图15中的第一风扇组件500包括1个进风风扇,第二风扇组件600和第三风扇组件700均包括两个出风风扇,第二风扇组件600中的两个出风风扇沿壳体的第二侧间隔设置,第三风扇组件700中的两个出风风扇沿壳体的第三侧间隔设置,导风风扇800也为一个,导流风扇800、进风风扇和四个出风风扇均为轴流风扇。
上述第一风扇组件500中的两个进风风扇、第二风扇组件600中的两个出风风扇、第三风扇组件700中的两个出风风扇及导风风扇800均为轴流风扇,且导流风扇800、进风风扇和四个出风风扇均垂直于壳体1的底板11设置,其结构较简单,安装较方便。
上述光源组件100产生的热量需要专门的散热器进行处理,尤其是光源组件100中的红色激光器,红色激光器在工作过程中的热量若不能及时散失,则会严重影响其发光效率。本申请实施例的激光投影装置1000还包括激光器散热器2,激光器散热器2位于光源组件100与第二风扇组件600之间,激光器散热器2能够专门用于对光源组件100的散热,使得光源组件100的散热效果较好。
图8、图9和图15中示出了的激光投影装置1000中安装有包括第一热管、第一导热金属块和第一散热翅片的激光器散热器2,第一导热金属块与光源组件100中的激光器贴合,第一导热金属块将光源组件100的热量传递到第一热管,第一热管将热量传递到第一散热翅片,利用第二风扇组件600的对流作用将光源组件100的热量导出壳体1,实现了对光源组件100的散热,散热效果较好。
由于上述光机组件200中的DMD芯片在工作过程中,也会产生较多的热量,所以,在本申请实施例中的激光投影装置1000还包括安装在DMD芯片处的DMD散热器3,DMD散热器3专门用于对DMD芯片进行散热,使得对DMD芯片的散热效果较好。
图8、图9和图14中示出的DMD散热器3包括第二导热金属块和第二散热翅片,第二导热金属块与DMD芯片贴合,第二导热金属块将DMD的热量传递到第二散热翅片,利用导风风扇800的风量将DMD的热量传递到电路板400处,再由第三风扇组件700带到壳体1的外部,其散热效果较好。
对于激光投影装置1000为超短焦投影装置,光源组件100和光机组件200并排设置、且与镜头组件300垂直;激光器散热器3位于光源组件100处、且与镜头组件300相对,以使激光器散热器3、光源组件100、光机组件200及镜头组件300呈U形排列,如图16和图17所示。
为了进一步说明本申请技术方案的散热效果,基于图15中所示的激光投影装置1000中光源组件100、光机组件200和镜头组件300呈“U”形排列的方案,进行对比测试,其中,方案A为具有图15中所示的隔热件900、第一风扇组件500、导风风扇800、第二风扇组件600及第三风扇组件700的散热结构,方案B为具有图15中所示的导风风 扇800、第二风扇组件600及第三风扇组件700的散热结构,第二风扇组件600作为进风风扇,第三风扇组件700作为出风风扇,且第二风扇组件600、导风风扇800及第三风扇组件700的风向为从左到右,方案C为具有图15中所示的导风风扇800、第二风扇组件600及第三风扇组件700的散热结构,第三风扇组件700作为进风风扇,第二风扇组件600作为出风风扇,且第二风扇组件600、导风风扇800及第三风扇组件700的风向为从右到左,设置测试的环境温度为25℃,第一风扇组件500、导风风扇800、第二风扇组件600及第三风扇组件700均为1500RPM(Revolutions Per Minute,转每分),测试结果如下:
Figure PCTCN2022072365-appb-000001
表1对比测试结果
从表1可知,方案A能够同时将光源组件100和镜头组件300中各个镜片的温度保持在较低水平,整机的散热效果较好;方案B去掉了镜头组件300与光源组件100之间的隔热件900,镜头组件300中各个镜片温度均较高,但光源组件100的温度可保持在较低水平,仅对光源组件100的散热效果较好;方案C去掉了镜头组件300上的隔热件900,并将壳体1内的风向设置为从电路板400到光源组件100,镜头组件300中各个镜片温度较低,但是光源组件100的温度较高,仅对镜头组件300的散热效果较好。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种激光投影装置,其特征在于,包括壳体,所述壳体内安装有:
    光源组件,所述光源组件用于向光机组件提供照明光束;
    镜头组件,所述镜头组件用于将所述光机组件输出的影像光束投射成像;
    光机组件,所述光机组件连接在所述光源组件和所述镜头组件的光路之间、且用于将所述光源组件提供的照明光束调制生成影像光束;其中,所述光机组件位于所述壳体内靠近第一侧的区域、且沿所述第一侧的延伸方向设置,所述光源组件位于所述光机组件靠近所述壳体的第二侧的一侧,所述镜头组件位于所述光机组件靠近所述壳体的第三侧的一侧,所述第二侧与所述第三侧相对、且均与所述第一侧相交;
    第一风扇组件,所述第一风扇组件用于将空气从第一侧导入所述壳体内形成散热气流,所述散热气流吹向所述光源组件后经所述壳体的第二侧导出;
    导流件,所述导流件用于将所述散热气流导向所述光机组件和所述镜头组件后,经所述壳体的第三侧导出。
  2. 根据权利要求1所述的激光投影装置,其特征在于,所述光源组件与所述镜头组件平行,所述光机组件垂直设置在所述光源组件和所述镜头组件的同一侧以呈U形排列;
    或,所述镜头组件和所述光机组件并排设置、且与所述光源组件垂直以呈L形排列。
  3. 根据权利要求2所述的激光投影装置,其特征在于,所述第一风扇组件位于所述光机组件与所述壳体的第一侧之间,且所述第一风扇组件的进风侧朝向所述壳体的第一侧,所述第一风扇组件的出风侧朝向所述光机组件上靠近所述光源组件的区域。
  4. 根据权利要求3所述的激光投影装置,其特征在于,所述导流件为安装在所述光机组件处的导流风扇,所述导流风扇的进风方向与所述第一风扇组件的出风方向垂直相交,且所述导流风扇的出风侧朝向所述镜头组件。
  5. 根据权利要求1所述的激光投影装置,其特征在于,所述壳体内还安装有:
    第二风扇组件,所述第二风扇组件位于所述光源组件与所述壳体的第二侧之间、且用于将所述光源组件处的散热气流抽出。
  6. 根据权利要求5所述的激光投影装置,其特征在于,所述壳体内还安装有:
    第三风扇组件,所述第三风扇组件位于所述镜头组件与所述壳体的第三侧之间、且用于将所述镜头组件处的散热气流抽出。
  7. 根据权利要求1~6中任一项所述的激光投影装置,其特征在于,所述壳体内还安装有:
    隔热件,所述隔热件用于隔离所述壳体内温度高于所述镜头组件的散热气流吹向所述镜头组件。
  8. 根据权利要求7所述的激光投影装置,其特征在于,所述隔热件为设置在所述光源组件与所述镜头组件之间的隔板。
  9. 根据权利要求8所述的激光投影装置,其特征在于,所述隔热件的上边沿与所述壳体的顶板密封连接,所述隔热件的下边沿与所述壳体的底板密封连接。
  10. 根据权利要求6所述的激光投影装置,其特征在于,所述壳体内还安装有:
    多个电路板,多个所述电路板和所述光源组件分别位于所述镜头组件的两侧。
  11. 根据权利要求10所述的激光投影装置,其特征在于,多个所述电路板均位于所述镜头组件与所述第三风扇组件的进风侧之间。
  12. 根据权利要求1~6中任一项所述的激光投影装置,其特征在于,所述光源组件和所述光机组件并排设置、且均与所述镜头组件垂直;
    所述壳体内还安装有激光器散热器,所述激光器散热器位于所述光源组件处、且与所述镜头组件平行设置,以使所述激光器散热器、所述光源组件、所述光机组件及所述镜头组件呈U形排列。
  13. 根据权利要求6所述的激光投影装置,其特征在于,所述壳体为长方体,所述镜头组件和所述光源组件均沿所述壳体的短边方向设置,所述光机组件沿所述壳体的长边方向设置,所述第一侧为所述壳体上靠近所述光机组件的第一长边侧,所述第二侧和所述第三侧分别为所述壳体的两个短边侧;
    所述第一风扇组件包括一个进风风扇,所述第二风扇组件和所述第三风扇组件均包括两个出风风扇,所述第二风扇组件中的两个出风风扇沿所述壳体的第二侧间隔设置,所述第三风扇组件中的两个出风风扇沿所述壳体的第三侧间隔设置,所述进风风扇和四个所述出风风扇均为轴流风扇。
  14. 根据权利要求1~6中任一项所述的激光投影装置,其特征在于,所述镜头组件中的镜头为超短焦投影镜头。
PCT/CN2022/072365 2021-01-18 2022-01-17 一种激光投影装置 WO2022152300A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280009436.XA CN116710841A (zh) 2021-01-18 2022-01-17 一种激光投影装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110064668.2 2021-01-18
CN202110064668.2A CN112835251A (zh) 2021-01-18 2021-01-18 一种激光投影装置

Publications (1)

Publication Number Publication Date
WO2022152300A1 true WO2022152300A1 (zh) 2022-07-21

Family

ID=75928697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072365 WO2022152300A1 (zh) 2021-01-18 2022-01-17 一种激光投影装置

Country Status (2)

Country Link
CN (2) CN112835251A (zh)
WO (1) WO2022152300A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230004075A1 (en) * 2021-07-02 2023-01-05 Coretronic Corporation Projection apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112835251A (zh) * 2021-01-18 2021-05-25 青岛海信激光显示股份有限公司 一种激光投影装置
CN115016209B (zh) * 2022-04-18 2023-12-12 峰米(重庆)创新科技有限公司 散热结构及投影机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101008775A (zh) * 2006-01-24 2007-08-01 上海信诚至典网络技术有限公司 防尘单镜头投影机
JP2012189836A (ja) * 2011-03-11 2012-10-04 Canon Inc 投影装置
CN103499909A (zh) * 2013-09-25 2014-01-08 苏州佳世达光电有限公司 一种投影装置
CN103713450A (zh) * 2012-09-28 2014-04-09 中强光电股份有限公司 投影装置
CN104049443A (zh) * 2014-07-11 2014-09-17 苏州佳世达光电有限公司 投影机
CN112835251A (zh) * 2021-01-18 2021-05-25 青岛海信激光显示股份有限公司 一种激光投影装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101008776A (zh) * 2006-01-24 2007-08-01 上海信诚至典网络技术有限公司 防尘三镜头投影机
TWI581048B (zh) * 2015-08-04 2017-05-01 中強光電股份有限公司 投影裝置
CN112114476B (zh) * 2019-06-20 2022-08-30 青岛海信激光显示股份有限公司 激光投影设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101008775A (zh) * 2006-01-24 2007-08-01 上海信诚至典网络技术有限公司 防尘单镜头投影机
JP2012189836A (ja) * 2011-03-11 2012-10-04 Canon Inc 投影装置
CN103713450A (zh) * 2012-09-28 2014-04-09 中强光电股份有限公司 投影装置
CN103499909A (zh) * 2013-09-25 2014-01-08 苏州佳世达光电有限公司 一种投影装置
CN104049443A (zh) * 2014-07-11 2014-09-17 苏州佳世达光电有限公司 投影机
CN112835251A (zh) * 2021-01-18 2021-05-25 青岛海信激光显示股份有限公司 一种激光投影装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230004075A1 (en) * 2021-07-02 2023-01-05 Coretronic Corporation Projection apparatus
US11892762B2 (en) * 2021-07-02 2024-02-06 Coretronic Corporation Projection apparatus

Also Published As

Publication number Publication date
CN112835251A (zh) 2021-05-25
CN116710841A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
WO2022152300A1 (zh) 一种激光投影装置
JP4172503B2 (ja) 冷却装置、およびプロジェクタ
JP2005345569A (ja) 投射型画像表示装置
US11009782B2 (en) Projection-type display device
JP4046119B2 (ja) 照明装置、プロジェクタ
JP2012053318A (ja) 画像表示装置
CN110687739A (zh) 激光投影设备
WO2019225679A1 (ja) 電子機器およびプロジェクタ
JP5383030B2 (ja) プロジェクター
CN112114476A (zh) 激光投影设备
JP2006208488A (ja) リアプロジェクタ
CN112526806A (zh) 激光投影设备
CN110750027A (zh) 投影仪
WO2018032856A1 (zh) 投影装置及其散热系统
CN112782916A (zh) 一种带有垂直式散热的全封闭光机及其投影机
CN112835252A (zh) 一种激光投影装置
CN213750639U (zh) 一种散热结构及投影装置
JP2014187502A (ja) 電子装置
US6808296B2 (en) Cooling apparatus for optical engine assembly
JP2011155549A (ja) 冷却構造
CN114114802A (zh) 投影设备
CN213069416U (zh) 一种激光液晶显示器循环散热结构
CN217467453U (zh) 投影系统及投影设备
CN219872093U (zh) 激光投影设备及激光投影系统
CN211528892U (zh) 一种投影仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739175

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280009436.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22739175

Country of ref document: EP

Kind code of ref document: A1