WO2022152214A1 - 一种有机化合物、组合物及其在有机电子器件中的应用 - Google Patents

一种有机化合物、组合物及其在有机电子器件中的应用 Download PDF

Info

Publication number
WO2022152214A1
WO2022152214A1 PCT/CN2022/071815 CN2022071815W WO2022152214A1 WO 2022152214 A1 WO2022152214 A1 WO 2022152214A1 CN 2022071815 W CN2022071815 W CN 2022071815W WO 2022152214 A1 WO2022152214 A1 WO 2022152214A1
Authority
WO
WIPO (PCT)
Prior art keywords
groups
group
organic
atoms
ring
Prior art date
Application number
PCT/CN2022/071815
Other languages
English (en)
French (fr)
Inventor
文磊
陈怀俊
潘君友
Original Assignee
浙江光昊光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江光昊光电科技有限公司 filed Critical 浙江光昊光电科技有限公司
Priority to CN202280010086.9A priority Critical patent/CN116829676A/zh
Publication of WO2022152214A1 publication Critical patent/WO2022152214A1/zh
Priority to US18/351,664 priority patent/US20230357169A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/22Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to two ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/44Radicals substituted by doubly-bound oxygen, sulfur, or nitrogen atoms, or by two such atoms singly-bound to the same carbon atom
    • C07D213/53Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/26Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the technical field of organic electroluminescence, in particular to an organic compound, a high polymer, a mixture, a composition and an organic electronic device comprising the same.
  • OLEDs Organic light-emitting diodes
  • the phenomenon of organic electroluminescence refers to the phenomenon of using organic substances to convert electrical energy into light energy.
  • An organic electroluminescence element utilizing an organic electroluminescence phenomenon generally has a positive electrode and a negative electrode and a structure including an organic substance layer therebetween.
  • the organic substance layer has a multi-layer structure, and each layer contains different organic substances. Specifically, it may include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • this organic electroluminescence element when a voltage is applied between the two electrodes, holes are injected into the organic layer from the positive electrode, and electrons are injected into the organic layer from the negative electrode.
  • This organic electroluminescence element has the characteristics of self-luminescence, high brightness, high efficiency, low driving voltage, wide viewing angle, high contrast ratio, and high responsiveness.
  • the luminescent material is the most important factor in determining the efficiency of OLED devices.
  • the light-emitting layer of organic electroluminescent elements usually uses a mixed system of host material/dopant as the light-emitting material, which can improve color purity, light-emitting efficiency and stability.
  • the choice of host material is critical because the host material greatly affects the efficiency and stability of OLED devices.
  • the host material should have suitable molecular weight for deposition under vacuum, and also need to have high glass transition temperature and thermal decomposition temperature to ensure thermal stability, high electrochemical stability to ensure long service life, easy to use An amorphous thin film is formed, which has a good interface effect with the adjacent functional layer materials, and is not easy to cause molecular motion.
  • the material is required to have good carrier transport capability and a suitable triplet energy level to ensure that the energy can be effectively transferred to the guest material during the luminescence process, thereby achieving high efficiency.
  • the red light host reported so far is usually a macro-conjugated aromatic ring, such as the fused ring carbazole derivatives reported in WO2012169821, WO2012165844, and WO2016013817, but there is still a problem of low device efficiency.
  • the structure of azaheptacarbazole was recently reported in CN110872300, which discloses compounds linked to aromatic groups, but the device efficiency is still low.
  • the purpose of the present invention is to provide an organic compound, a composition and its application in an organic electronic device, in order to solve the problems of the efficiency and lifespan of the existing OLED.
  • X 1 to X 13 independently represent CR 1 , and when the adjacent X is CR 1 , they can be fused to form a ring;
  • ETU is a structure represented by general formula (I-1) or (I-2);
  • A is a C6-C30 aromatic ring or a C5-C30 heteroaromatic ring or a combination thereof;
  • Y 1 to Y 6 are independently represented as N or CR 2 , and at least one of Y 1 to Y 3 is N, and at least one of Y 4 to Y 6 is N;
  • L is a linking group, selected from single bond, C6-C60 arylene group, fluorenylene group, C2-C60 heteroaromatic group, C3-C60 aliphatic ring, C6-C60 aromatic ring fused ring groups, and combinations of these groups;
  • Ar 1 and Ar 2 are independently selected from substituted or unsubstituted aromatic groups or heteroaromatic groups having 5 to 40 ring atoms, or aryloxy or heteroaryloxy groups having 5 to 40 ring atoms group, or a combination of these groups, wherein one or more of the Ar 1 , Ar 2 groups may form a monocyclic or polycyclic aliphatic or aromatic ring system with each other and/or the ring to which the groups are bonded.
  • a high polymer comprising at least one repeating unit, wherein the repeating unit comprises the structure corresponding to the above-mentioned organic compound.
  • a composition comprising at least one organic compound or mixture as described above, and at least one organic solvent.
  • An organic electronic device comprising a functional layer, the functional layer comprising one of the above organic compounds or polymers or mixtures.
  • organic compounds of the present invention in OLEDs, especially as light-emitting layer materials, can provide better device performance.
  • the possible reasons for this are as follows, but not limited thereto, the organic compounds of the present invention have relatively balanced carrier transport, and improve the efficiency and lifetime of related materials and devices.
  • the present invention provides a class of organic compounds, mixtures and compositions comprising the same, and uses thereof.
  • the present invention will be described in further detail below. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
  • compositions and printing inks, or inks have the same meaning and are interchangeable between them.
  • host material In the present invention, host material, matrix material, Host or Matrix material have the same meaning and can be interchanged among them.
  • substituted means that a hydrogen atom in a substituted group is replaced by a substituent.
  • the "number of ring atoms” means the number of atoms constituting the ring itself of a structural compound (eg, a monocyclic compound, a condensed ring compound, a crosslinked compound, a carbocyclic compound, and a heterocyclic compound) in which atoms are bonded to form a ring.
  • the number of atoms in an atom When the ring is substituted with a substituent, the atoms contained in the substituent are not included in the ring-forming atoms.
  • the energy level structure of the organic material the singlet energy level E S1 , the triplet energy level E T , HOMO, and LUMO play a key role. The determination of these energy levels is described below.
  • HOMO and LUMO energy levels can be measured by the photoelectric effect, such as XPS (X-ray Photoelectron Spectroscopy) and UPS (Ultraviolet Photoelectron Spectroscopy) or by Cyclic Voltammetry (hereafter CV).
  • XPS X-ray Photoelectron Spectroscopy
  • UPS Ultraviolet Photoelectron Spectroscopy
  • CV Cyclic Voltammetry
  • the singlet energy level E S1 of the organic material can be determined by luminescence spectroscopy, and the triplet energy level E T1 can be measured by low temperature time-resolved luminescence spectroscopy.
  • E S1 and E T1 can also be obtained by quantum simulation calculation (eg, by Time-dependent DFT), such as by commercial software Gaussian 03W (Gaussian Inc.), the specific simulation method can be found in WO2011141110 or as described in the examples below.
  • ⁇ E ST is defined as (E S1 -E T1 ).
  • the absolute values of HOMO, LUMO, E S1 , E T1 depend on the measurement method or calculation method used, and even for the same method, different evaluation methods, such as the starting point and the peak point on the CV curve, may give different HOMO/LUMO value. Therefore, reasonably meaningful comparisons should be made using the same measurement method and the same evaluation method.
  • the values of HOMO, LUMO, E S1 , and E T1 are based on the simulation of Time-dependent DFT, but do not affect the application of other measurement or calculation methods.
  • (HOMO-1) is defined as the second highest occupied orbital energy level, (HOMO-2) as the third highest occupied orbital energy level, and so on.
  • (LUMO+1) is defined as the second lowest unoccupied orbital energy level, (LUMO+2) as the third lowest occupied orbital energy level, and so on.
  • the present invention relates to an organic compound having the structure shown in general formula (I):
  • X 1 to X 13 are independently represented as CR 1 , and when the adjacent X is CR 1 , they can be fused to form a ring;
  • ETU has the structure shown in general formula (I-1) or (I-2);
  • Ring A is a C6-C30 aromatic ring or a C5-C30 heteroaromatic ring or a combination thereof;
  • Y 1 -Y 6 are independently represented as N or CR 2 , and among Y 1 -Y 3 At least one of Y 4 to Y 6 is N, and at least one of Y 4 to Y 6 is N;
  • R 1 to R 2 are substituents, which may be the same or different in each occurrence, H, D, having 1 to 20 C A straight-chain alkyl, alkoxy or thioalkoxy group of atoms, or a branched or cyclic alkyl, alkoxy or thioalkoxy group having 3 to 20 C atoms, or Silyl groups, or substituted keto groups with 1 to 20 C atoms, or alkoxycarbonyl groups with 2 to 20 C atoms, or aryloxy groups with 7 to 20 C atoms carbonyl group, cyano group (-CN), carbamo group (-CN),
  • each occurrence of R 1 to R 2 is independently selected from H, D, cyano, straight-chain alkyl having 1-18 C atoms, or branching having 3-18 C atoms Chain or cyclic alkyl, alkoxy, thioalkoxy or silyl groups, or substituted or unsubstituted aromatic, heteroaromatic, aryloxy or heterocyclic groups having 5 to 30 ring atoms Aryloxy; in a more preferred embodiment, each occurrence of R 1 to R 2 is independently selected from D, a straight-chain alkyl group with 1 to 12 C atoms, or a substituted or substituted with 5 to 20 ring atoms.
  • each occurrence of R 1 to R 4 is independently selected from D and has 1 to 6 C atoms A straight-chain alkyl group, or a substituted or unsubstituted aromatic group, heteroaromatic group, aryloxy group or heteroaryloxy group with 5 to 15 ring atoms.
  • each occurrence of R 1 to R 2 may be fully deuterated or partially deuterated, respectively.
  • the general formula (I) is selected from the structures represented by the following general formula (II-1) or general formula (II-2):
  • adjacent R 1 can be fused to form a ring.
  • the ETU in general formula (I) is selected from the following groups:
  • Z 1 -Z 2 are independently selected from S, O, CR 117 R 118 or NR 119 ;
  • R 101 -R 119 are substituents, and the meanings are the same as the aforementioned R 1 ;
  • ETU is selected from the following groups:
  • Ar 1 to Ar 2 or L of the organic compound are the same or different, and are selected from one or a combination of the following structural groups:
  • V can be independently selected from CR 3 or N when it appears multiple times.
  • Ar 11 , Ar 12 are independently selected from substituted or unsubstituted aryl groups having 5 to 40 ring atoms group or heteroaromatic group, or an aryloxy or heteroaryloxy group having 5 to 40 ring atoms, or a combination of these groups;
  • R 3 to R 8 are substituents, and in each occurrence, may be selected identically or differently from H, D, straight-chain alkyl, alkoxy or thioalkoxy groups having 1 to 20 C atoms, or branched or cyclic groups having 3 to 20 C atoms
  • An alkyl, alkoxy or thioalkoxy group is either a silyl group, or a substituted keto group having 1 to 20 C atoms, or an alkoxy group having 2 to 20 C atoms
  • each occurrence of R 3 to R 8 is independently selected from D, cyano, straight-chain alkyl groups having 1 to 18 C atoms, or branched or cyclic alkyl groups having 3 to 18 C atoms. , alkoxy, thioalkoxy or silyl group, or a substituted or unsubstituted aromatic group, heteroaromatic group, aryloxy group or heteroaryloxy group having 5 to 30 ring atoms;
  • R 5 -R 7 at each occurrence are identically or differently selected from D, a straight-chain alkyl group having 1 to 12 C atoms, or a substituted or unsubstituted aromatic group having 5 to 20 ring atoms group, heteroaromatic group, aryloxy group or heteroaryloxy group; in the most preferred embodiment, R 5 -R 7 at each occurrence are identically or differently selected from D, having 1 to 6 C atoms A straight-chain alkyl group, or a substituted or
  • L is biphenyl, or a structure in which one or more carbon atoms are replaced by N atoms.
  • L is benzene, or a structure in which one or more carbon atoms are replaced by N atoms.
  • L is preferably selected from a combination comprising one or more of the following chemical formula structures, wherein the H on the ring can be arbitrarily substituted:
  • the above-mentioned organic compound, wherein L can comprise the structure shown in the following chemical formula, wherein the H on the ring can be arbitrarily substituted:
  • Each occurrence of Ar 1 and Ar 2 is selected from substituted or unsubstituted aromatic, heteroaromatic, aryloxy or heteroaryloxy groups having 5 to 40 ring atoms, or a combination of these systems, wherein One or more Ar 1 , Ar 2 groups form polycyclic aliphatic or aromatic ring systems with each other and/or the ring to which they are bonded.
  • Ar may be selected from deuterated or undeuterated substituted or unsubstituted aromatic or heteroaromatic ring systems having 5 to 20 ring atoms, or deuterated or undeuterated aryloxy or heteroaryloxy groups having 5 to 20 ring atoms, or a combination of these systems, in which one or more Ar 1 , Ar 2 groups can form a monolithic Cyclic or polycyclic aliphatic or aromatic ring systems.
  • Ar may be selected from deuterated or undeuterated substituted or unsubstituted aromatic or heteroaromatic groups having 5 to 15 ring atoms, or deuterated or undeuterated Substituted aryloxy or heteroaryloxy groups having 5 to 15 ring atoms, or a combination of these systems, in which one or more Ar 1 , Ar 2 groups may form with each other and/or the ring to which they are bonded Monocyclic or polycyclic aliphatic or aromatic ring systems.
  • Ar is selected from benzene, naphthalene, phenanthrene, triphenylene, biphenyl, terphenyl, or one or more carbon atoms in these structures are substituted with N atoms.
  • aromatic group refers to a hydrocarbon group containing at least one aromatic ring, including monocyclic groups and polycyclic ring systems.
  • Heteroaromatic group refers to a hydrocarbon group (containing a heteroatom) containing at least one aromatic heterocyclic ring, including monocyclic groups and polycyclic ring systems. These polycyclic rings may have two or more rings in which two carbon atoms are shared by two adjacent rings, ie, fused rings. At least one of these polycyclic ring species is aromatic or heteroaromatic.
  • aromatic or heteroaromatic groups not only include systems of aromatic or heteroaromatic groups, but also in which multiple aromatic or heteroaromatic groups may also be interrupted by short non-aromatic units (such as C, N, O, Si, S or P atoms). Therefore, systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diarylether, etc., are also considered aromatic groups for the purpose of the invention.
  • aromatic groups are: benzene, naphthalene, anthracene, phenanthrene, perylene, tetracene, pyrene, benzopyrene, triphenylene, acenaphthene, fluorene, and derivatives thereof.
  • heteroaromatic groups are: furan, benzofuran, thiophene, benzothiophene, pyrrole, pyrazole, triazole, imidazole, oxazole, oxadiazole, thiazole, tetrazole, indole, carbazole , pyrroloimidazole, pyrrolopyrrole, thienopyrrole, thienothiophene, furopyrrole, furofuran, thienofuran, benzisoxazole, benzisothiazole, benzimidazole, pyridine, pyrazine, pyridine oxazine, pyrimidine, triazine, quinoline, isoquinoline, naphthalene, quinoxaline, phenanthridine, primary pyridine, quinazoline, quinazolinone, and derivatives thereof.
  • the organic compound according to the invention has an electron transport function.
  • the above-mentioned organic compounds, Ar 1 and/or Ar 2 contain an electron withdrawing group or are substituted with an electron withdrawing group.
  • Suitable electron withdrawing groups can be selected from F, cyano or one of the following groups:
  • n is 1, 2 or 3;
  • X 1 -X 8 are selected from CR 5 or N, and at least one of them is N; at the same time, R 5 in any two adjacent positions can be monocyclic or polycyclic aliphatic or Aromatic ring system;
  • R 1 -R 12 have the same meanings as the above R 1 .
  • the above-mentioned organic compound, the electron withdrawing group is selected from the combination of one or more of the following groups:
  • the organic compounds according to the present invention have a small singlet-triplet energy level difference, generally ⁇ E st ⁇ 0.3 eV, preferably ⁇ E st ⁇ 0.2 eV, more preferably ⁇ E st ⁇ 0.2 eV 0.15eV, preferably ⁇ E st ⁇ 0.10eV.
  • organic compounds represented by the general formulae (I-1) and (I-2) according to the present invention are listed below, but are not limited thereto.
  • the organic compound according to the present invention has a glass transition temperature Tg ⁇ 100°C, in a preferred embodiment, its Tg ⁇ 120°C, in a more preferred embodiment, its Tg ⁇ 140°C, in a more preferred embodiment, its Tg ⁇ 160°C, and in a most preferred embodiment, its Tg ⁇ 180°C.
  • the organic compound according to the invention is partially deuterated, preferably 10% of the H is deuterated, more preferably 20% of the H is deuterated, very preferably 30% of the H is deuterated H is deuterated, preferably 40% of the H is deuterated.
  • the organic compound according to the present invention is a small molecule material.
  • the organic compounds according to the invention are used in vapor-depositable OLED devices.
  • the organic compounds according to the invention have a molecular weight ⁇ 1000 g/mol, preferably ⁇ 900 g/mol, very preferably ⁇ 850 g/mol, more preferably ⁇ 800 g/mol, most preferably ⁇ 700 g/mol.
  • the present invention also relates to a process for the synthesis of organic compounds according to the general formula (I), wherein the reaction is carried out using starting materials containing reactive groups. These reactive materials contain at least one leaving group, for example, bromine, iodine, boronic acid or boronic acid ester.
  • Suitable reactions to form C-C linkages are well known to those skilled in the art and described in the literature, particularly suitable and preferred coupling reactions are SUZUKI, STILLE and HECK coupling reactions.
  • the present invention also relates to a high polymer comprising at least one repeating unit, wherein at least one repeating unit comprises the structure represented by the general formula (I).
  • the polymer is a non-conjugated polymer, wherein the structural unit represented by general formula (I) is on the side chain.
  • the polymer is a conjugated polymer.
  • small molecule refers to molecules that are not polymers, oligomers, dendrimers, or blends. In particular, there are no repeating structures in small molecules. The molecular weight of the small molecule is ⁇ 3000 g/mol, preferably ⁇ 2000 g/mol, most preferably ⁇ 1500 g/mol.
  • High polymer namely Polymer, includes homopolymer (homopolymer), copolymer (copolymer), mosaic copolymer (block copolymer).
  • high polymers also include dendrimers.
  • dendrimers please refer to [Dendrimers and Dendrons, Wiley-VCH Verlag GmbH & Co. KGaA, 2002, Ed. George R. Newkome, Charles N. Moorefield, Fritz Vogtle.].
  • Conjugated polymer is a high polymer, its main chain backbone is mainly composed of sp2 hybrid orbital of C atom, famous examples are: polyacetylene and poly(phenylene vinylene), its main chain
  • the C atoms on the main chain can also be replaced by other non-C atoms, and when the sp2 hybridization on the main chain is interrupted by some natural defects, it is still considered as a conjugated polymer.
  • the conjugated polymer in the present invention also includes arylamine, aryl phosphine and other heteroaromatics (heteroarmotics), organometallic complexes on the main chain. )Wait.
  • the synthetic method of the high polymer is selected from SUZUKI-, YAMAMOTO-, STILLE-, NIGESHI-, KUMADA-, HECK-, SONOGASHIRA-, HIYAMA-, FUKUYAMA-, HARTWIG-BUCHWALD- and ULLMAN.
  • the polymer according to the present invention has a glass transition temperature (Tg) ⁇ 100°C, preferably ⁇ 120° C, more preferably ⁇ 140° C, more preferably ⁇ 160° C, and most preferably is ⁇ 180°C.
  • Tg glass transition temperature
  • its molecular weight distribution (PDI) value ranges preferably from 1 to 5; more preferably from 1 to 4; more preferably from 1 to 3, more preferably from 1 ⁇ 2, most preferably 1 to 1.5.
  • the weight average molecular weight (Mw) of the polymer according to the present invention is preferably 10,000 to 1,000,000; more preferably 50,000 to 500,000; more preferably 100,000 to 40,000 10,000, more preferably 150,000 to 300,000, and most preferably 200,000 to 250,000.
  • the present invention also provides a mixture comprising an organic compound H1 and an organic compound H2, wherein the organic compound H1 is an organic compound according to the present invention, the organic compound H2 is another organic functional material, and H2 can be selected from a hole injection material (HIM ), hole transport material (HTM), p-dopant, electron transport material (ETM), electron injection material (EIM), electron blocking material (EBM), hole blocking material (HBM), light emitting material (Emitter), host Materials (Host) and organic dyes.
  • HIM hole injection material
  • HTM hole transport material
  • ETM electron transport material
  • EIM electron injection material
  • EBM electron blocking material
  • HBM hole blocking material
  • Emitter light emitting material
  • host Materials Host
  • organic dyes organic dyes
  • the mixture comprises at least one organic compound or polymer according to the invention and a hole transport material (HTM).
  • HTM hole transport material
  • the mixture comprises at least one organic compound or polymer according to the present invention and a luminescent material, the luminescent material is selected from singlet emitters (fluorescence emitters) ), triplet emitters (phosphorescent emitters) or TADF emitters.
  • the mixture comprises at least one organic compound or polymer according to the present invention and a fluorescent emitter, wherein the weight percent of the fluorescent emitter is ⁇ 10wt%, preferably ⁇ 9wt%, more preferably ⁇ 8wt%, particularly preferably ⁇ 7wt%, most preferably ⁇ 5wt%.
  • the mixture comprises at least one organic compound or polymer according to the present invention and a phosphorescent emitter, wherein the weight percentage of the phosphorescent emitter is ⁇ 20 wt%, preferably is ⁇ 15 wt %, more preferably ⁇ 10 wt %.
  • the mixture comprises at least one organic compound or high polymer according to the present invention, and a TADF material; wherein the function of the TADF material is preferably: 1) and according to The organic compound of the present invention forms a co-host material in a weight ratio of from 1:6 to 6:1; 2) forms an Exciplex with the organic compound according to the present invention, or is used as an auxiliary luminophore, wherein the weight of the TADF material is The percentage is ⁇ 15 wt%, preferably ⁇ 10 wt%, more preferably ⁇ 8 wt%.
  • the mixture comprises at least one organic compound or polymer according to the present invention and an organic compound H2 (another organic functional material).
  • a mixture can be used as a phosphorescent mixed host material, and can further comprise a phosphorescent emitter, wherein the weight percentage of the phosphorescent emitter is ⁇ 20 wt%, preferably ⁇ 15 wt%, more preferably ⁇ 10 wt%.
  • the organic compound H2 has hole transport properties.
  • the organic compound H2 has both hole transport properties and electron transport properties.
  • the molar ratio of organic compound H1 to organic compound H2 ranges from 1:9 to 9:1.
  • the molar ratio of the organic compound H1 to the organic compound H2 is in the range of 3:7 to 7:3.
  • the molar ratio of organic compound H1 to organic compound H2 is in the range of 4:6 to 6:4.
  • the molar ratio of organic compound H1 to organic compound H2 is 5:5.
  • the organic compound H2 is selected from the compounds represented by the following general formula (II):
  • B represents a substituted or unsubstituted alkyl group with 1 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group with 3 to 30 carbon atoms, or a substituted or unsubstituted aromatic group with 5 to 60 ring atoms or a heteroaromatic group;
  • the electron-rich (or electron-donating) group D in the general formula (II) contains any of the following groups:
  • Ar 3 represents an aromatic group or a heteroaromatic group with 5-40 ring atoms
  • Z 2 and Z 3 are not single bonds at the same time
  • R 13 -R 25 have the same meanings as R 1 .
  • the electron-rich (or electron-donating) group D contained in the general formula (II) contains any of the following groups:
  • R 13 , R 19 , R 20 and R 25 are as described above.
  • s is any integer of 1-4; in more preferred embodiments, s is any integer of 1-3; in the most preferred embodiment, s is 1 or 2 .
  • H2 is selected from one of the following structural formulas:
  • H1 and/or H2 have a higher triplet energy level T1, generally T1 ⁇ 2.2eV, preferably T1 ⁇ 2.3eV, more preferably T1 ⁇ 2.4eV , more preferably T1 ⁇ 2.5eV, and optimally T1 ⁇ 2.6eV.
  • the organic mixture wherein H1 and H2 form a type II heterojunction structure ie, the highest occupied orbital energy level (HOMO) of H1 is lower than the HOMO of H2, and the lowest unoccupied orbital of H1
  • the energy level (LUMO) is lower than that of H2.
  • the mixture min((LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1)) ⁇ min(ET(H1),ET(H2)) +0.1eV, where LUMO(H1), HOMO(H1) and ET(H1) are the lowest unoccupied orbital of H1, the highest occupied orbital, the triplet energy level, LUMO(H2), HOMO(H2) and ET( H2) are the lowest unoccupied orbital, the highest occupied orbital, and the triplet energy level of H2, respectively.
  • the mixture min((LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1)) ⁇ min(ET(H1),ET(H2)).
  • the mixture min((LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1)) ⁇ min(ET(H1),ET(H2)) -0.05eV.
  • the mixture min((LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1)) ⁇ min(ET(H1),ET(H2) )-0.1eV.
  • the mixture min((LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1)) ⁇ min(ET(H1),ET(H2)) -0.15eV.
  • the mixture min((LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1)) ⁇ min(ET(H1),ET(H2)) -0.2eV;
  • the mixture according to the present invention wherein at least one of H1 and H2, preferably H1, is ((LUMO+1)-LUMO) ⁇ 0.1 eV, preferably ⁇ 0.15 eV, more Preferably ⁇ 0.20 eV, more preferably ⁇ 0.25 eV, most preferably ⁇ 0.30 eV.
  • the mixture according to the invention wherein at least one of H1 and H2, preferably H2, is (HOMO-(HOMO-1)) ⁇ 0.2 eV, preferably ⁇ 0.25 eV, More preferably ⁇ 0.30 eV, more preferably ⁇ 0.35 eV, most preferably ⁇ 0.40 eV.
  • the organic mixture wherein the organic compound H1 and the organic compound H2 form a type I heterojunction structure, that is, the highest occupied orbital energy level (HOMO) of H1 is higher than the HOMO of H2, and the lowest molecular weight of H1
  • the occupied orbital energy level (LUMO) is lower than the LUMO of H2; more preferably, the organic compound H1 is an organic compound according to the present invention, and its ⁇ E st ⁇ 0.3eV, preferably ⁇ E st ⁇ 0.2eV, more Preferably ⁇ E st ⁇ 0.15 eV, more preferably ⁇ E st ⁇ 0.10 eV.
  • One object of the present invention is to provide a material solution for vapor deposition OLEDs.
  • the mixtures according to the invention are used in evaporative OLED devices.
  • H1 and H2 in the organic compounds or mixtures according to the invention have a molecular weight of ⁇ 1000 g/mol, preferably ⁇ 900 g/mol, very preferably ⁇ 850 g/mol, more preferably ⁇ 800 g/mol, most preferably ⁇ 700 g/mol mol.
  • the difference between the molecular weights of H1 and H2 is no more than 100 Daltons; the preferred molecular weight difference is no more than 60 Daltons; the more preferred molecular weight difference is no more than 30 Daltons.
  • the sublimation temperature difference of H1 and H2 is no more than 30K; the preferred sublimation temperature difference is no more than 20K; the more preferred sublimation temperature difference is no more than 10K.
  • Another object of the present invention is to provide a material solution for printing OLEDs.
  • organic compounds H1 and organic compounds H2 in the organic compounds or mixtures according to the invention at least one and preferably both, have a molecular weight of ⁇ 700 g/mol, preferably ⁇ 800 g/mol, very preferably ⁇ 900 g /mol, more preferably ⁇ 1000 g/mol, most preferably ⁇ 1100 g/mol.
  • the two host materials are required to have similar chemical properties or physical properties, such as molecular weight and sublimation temperature.
  • chemical properties or physical properties such as molecular weight and sublimation temperature.
  • the present inventors found that in solution-processed OLEDs, two host materials with different properties may improve film-forming properties and thus enhance device performance. Said properties, in addition to molecular weight, sublimation temperature, can also be other, such as glass transition temperature, different molecular volumes, etc.
  • preferred embodiments of the mixtures according to the invention are:
  • the difference between the molecular weights of H1 and H2 is ⁇ 120 g/mol, preferably ⁇ 140 g/mol, more preferably ⁇ 160 g/mol, and most preferably ⁇ 180 g/mol.
  • the difference between the sublimation temperatures of H1 and H2 is ⁇ 60K, preferably ⁇ 70K, more preferably ⁇ 75K, and most preferably ⁇ 80K.
  • the difference between the glass transition temperatures of H1 and H2 is ⁇ 20K, preferably ⁇ 30K, more preferably ⁇ 40K, most preferably ⁇ 45K.
  • the difference in molecular volume of H1 and H2 is ⁇ 20%, preferably ⁇ 30%, more preferably ⁇ 40%, and most preferably ⁇ 45%.
  • the organic compound H1 and the organic compound H2 at least one, preferably both, have a solubility in toluene of ⁇ 2 mg/ml at 25°C, preferably > 3 mg/ml, more preferably > 4 mg/ml, most preferably > 5 mg/ml.
  • the molar ratio of organic compound H1 and organic compound H2 is from 2:8 to 8:2; the preferred molar ratio is 3:7 to 7:3; more preferred The molar ratio is 4:6 to 6:4.
  • HTM HTM
  • phosphorescent emitters phosphorescent host materials
  • TADF emitters Some detailed descriptions (but not limited to) of HTM, phosphorescent emitters, phosphorescent host materials and TADF emitters are given below.
  • triplet host materials are not particularly limited, and any metal complex or organic compound may be used as the host as long as its triplet energy level is higher than that of an emitter, especially a triplet emitter or a phosphorescent emitter , examples of metal complexes that can be used as triplet hosts include, but are not limited to, the following general structures:
  • M3 is a metal
  • (Y 3 -Y 4 ) is a bidentate ligand, Y 3 and Y 4 are independently selected from C, N, O, P and S;
  • L is an auxiliary ligand;
  • r2 is an integer, Its value ranges from 1 to the maximum coordination number of this metal.
  • the metal complexes useful as triplet hosts are of the form:
  • (O-N) is a bidentate ligand in which the metal is coordinated to O and N atoms, and r2 is an integer ranging from 1 to the maximum coordination number for this metal.
  • M3 can be selected from Ir and P.
  • organic compounds that can serve as triplet hosts are selected from compounds containing cyclic aromatic hydrocarbon groups, such as benzene, biphenyl, triphenylbenzene, benzofluorene; compounds containing aromatic heterocyclic groups, such as dibenzothiophene, Dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, dibenzocarbazole, indolecarbazole, pyridine indole, pyrrole dipyridine, Pyrazoles, imidazoles, triazoles, oxazoles, thiazoles, oxadiazoles, oxtriazoles, dioxazoles, thiadiazoles, pyridines, pyridazine, pyrimidines, pyrazines, triazines, oxazines, oxthiazines , ox
  • the triplet host material can be selected from compounds comprising at least one of the following groups:
  • X 9 is selected from CR 33 R 34 or NR 35 ; Y is selected from CR 36 R 37 or NR 38 or O or S; R 26 to R 38 have the same meanings as the above R 1 .
  • n2 is selected from any integer of 1-3, X 1 to X 8 have the same meanings as above, and Ar 4 to Ar 6 have the same meanings as Ar 1 above.
  • triplet host materials examples include:
  • Triplet emitters are also called phosphorescent emitters.
  • the triplet emitter is a metal complex having the general formula M(L)n, wherein M is a metal atom, each occurrence of L, which may be the same or different, is an organic ligand , which is bonded or coordinated to the metal atom M through one or more positions, and n is an integer greater than 1, preferably 1, 2, 3, 4, 5 or 6.
  • the metal complexes are attached to a polymer through one or more sites, preferably through organic ligands.
  • the metal atom M is selected from transition metal elements or lanthanides or actinides, preferably Ir, Pt, Pd, Au, Rh, Ru, Os, Sm, Eu, Gd, Tb, Dy , Re, Cu or Ag, especially Os, Ir, Ru, Rh, Re, Pd, Au or Pt.
  • the triplet emitter contains chelating ligands, ie ligands, that coordinate to the metal through at least two binding sites, and it is particularly preferred that the triplet emitter contains two or three identical or different doublet Dentate or polydentate ligands. Chelating ligands are beneficial to improve the stability of metal complexes.
  • organic ligands may be selected from phenylpyridine derivatives, 7,8-benzoquinoline derivatives, 2(2-thienyl)pyridine derivatives, 2(1-naphthyl)pyridine derivatives, or 2-benzene quinoline derivatives. All of these organic ligands may be substituted, eg by fluorine or trifluoromethyl.
  • the auxiliary ligand may preferably be selected from acetone acetate or picric acid.
  • metal complexes useful as triplet emitters are in the form:
  • M is a metal, selected from transition metal elements or lanthanide or actinide elements, especially Ir, Pt, Au.
  • Ar 7 may be the same or different at each occurrence, and is a cyclic group containing at least one donor atom, that is, an atom with a lone pair of electrons, such as nitrogen or phosphorus, through which the cyclic group is coordinated to the metal Connection;
  • Ar 8 can be the same or different each time it appears, and is a cyclic group, which contains at least one C atom, through which the cyclic group is connected to the metal;
  • Ar 7 and Ar 8 are covalently bonded to each other.
  • each occurrence of L' can be the same or different, and is a bidentate chelating auxiliary ligand, preferably is a monoanionic bidentate chelating ligand; q1 may be 0, 1, 2 or 3, preferably 2 or 3; q2 may be 0, 1, 2 or 3, preferably 1 or 0.
  • triplet emitter materials and their applications can be found in the following patent documents and documents: WO 200070655, WO 200141512, WO 200202714, WO 200215645, EP 1191613, EP 1191612, EP 1191614, WO 2005033244, WO 2005019373 /0258742,WO 2009146770,WO 2010015307,WO 2010031485,WO 2010054731,WO 2010054728,WO 2010086089,WO 2010099852,WO 2010102709,US 20070087219 A1,US 20090061681 A1,US 20010053462 A1,Baldo,Thompson et al.Nature 403,(2000 ), 750-753, US 20090061681 A1, US 20090061681 A1, Adachi et al.Appl.Phys.Lett.78(2001), 1622-1624, J.Kido et al.Appl.Phys.Lett.65(1994), 2124, Kido
  • triplet emitters Some examples of suitable triplet emitters are listed below:
  • Such materials generally have a small singlet-triplet energy level difference ( ⁇ Est), and triplet excitons can be transformed into singlet excitons through inverse intersystem crossing to emit light. This can take full advantage of the singlet and triplet excitons formed under electrical excitation. The internal quantum efficiency of the device can reach 100%. At the same time, the material has a controllable structure, stable properties, cheap price and no need for precious metals, and has broad application prospects in the field of OLED.
  • ⁇ Est singlet-triplet energy level difference
  • the TADF material needs to have a small singlet-triplet energy level difference, preferably ⁇ Est ⁇ 0.3eV, next best is ⁇ Est ⁇ 0.2eV, and most preferably ⁇ Est ⁇ 0.1eV.
  • the TADF material has a relatively small ⁇ Est, and in another preferred embodiment, the TADF has a relatively good fluorescence quantum efficiency.
  • TADF luminescent materials can be found in the following patent documents: CN103483332(A), TW201309696(A), TW201309778(A), TW201343874(A), TW201350558(A), US20120217869(A1), WO2013133359(A1), WO2013154 A1), Adachi, et.al.Adv.Mater., 21, 2009, 4802, Adachi, et.al.Appl.Phys.Lett., 98, 2011, 083302, Adachi, et.al.Appl.Phys.Lett ., 101, 2012, 093306, Adachi, et. al. Chem.
  • TADF luminescent materials Some examples of suitable TADF luminescent materials are listed below:
  • Suitable organic HTM materials can optionally contain compounds containing the following structural units: phthalocyanines, porphyrins, amines, aromatic amines, biphenyl-type triarylamines, thiophenes, thiophenes, pyrroles, anilines, carbazoles, indanazonium fluorenes, and their derivatives.
  • cyclic aromatic amine derivative compounds useful as HTMs include, but are not limited to, the following general structures:
  • Each of Ar 1 to Ar 9 can be independently selected from cyclic aromatic hydrocarbon compounds, such as benzene, biphenyl, triphenyl, benzo, naphthalene, anthracene, phenarene, phenanthrene, fluorene, pyrene, quinone, perylene, azulene; aromatic Heterocyclic compounds such as dibenzothiophene, dibenzofuran, furan, thiophene, benzofuran, benzothiophene, carbazole, pyrazole, imidazole, triazole, isoxazole, thiazole, oxadiazole, oxazole Triazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxthiazine, oxadiazine, indole, benzimidazole, indazo
  • Ar 1 to Ar 9 can be further substituted, and the substituents can be selected from hydrogen, deuterium, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl.
  • Ar 1 to Ar 9 can be independently selected from groups comprising the following structural units:
  • n is an integer from 1 to 20; X 11 to X 18 are CH or N; Ar 10 is as defined as Ar 1 .
  • cyclic aromatic amine derivative compounds can be found in US3567450, US4720432, US5061569, US3615404 and US5061569.
  • the present invention further relates to a composition or ink comprising an organic compound or mixture as described in any of the above, and at least one organic solvent.
  • the viscosity and surface tension of the ink are important parameters.
  • the surface tension parameters of suitable inks are suitable for specific substrates and specific printing methods.
  • the ink according to the present invention has a surface tension in the range of about 19 dyne/cm to 50 dyne/cm at operating temperature or at 25°C; more preferably in the range of 22 dyne/cm to 35 dyne/cm; most preferably is in the range of 25dyne/cm to 33dyne/cm.
  • the viscosity of the ink according to the present invention at operating temperature or 25°C is about 1 cps to 100 cps; preferably 1 cps to 50 cps; more preferably 1.5 cps to 20 cps; most The good is in the 4.0cps to 20cps range.
  • Compositions so formulated will facilitate ink jet printing.
  • the viscosity can be adjusted by different methods, such as by suitable solvent selection and concentration of functional materials in the ink.
  • the ink containing the metal organic complex or high polymer according to the present invention it is convenient for people to adjust the printing ink in an appropriate range according to the printing method used.
  • the weight ratio of the functional material contained in the composition according to the present invention is in the range of 0.3% to 30% by weight, preferably in the range of 0.5% to 20% by weight, more preferably in the range of 0.5% to 15% by weight, and even better It is in the range of 0.5% to 10% by weight, and preferably in the range of 1% to 5% by weight.
  • the at least one organic solvent is selected from aromatic or heteroaromatic, ester, aromatic ketone or aromatic ether, aliphatic ketone or aliphatic ether, alicyclic or olefin Compounds, or borate or phosphate compounds, or a mixture of two or more solvents.
  • the at least one organic solvent is selected from aromatic or heteroaromatic-based solvents.
  • aromatic or heteroaromatic based solvents suitable for the present invention are, but are not limited to: p-diisopropylbenzene, pentylbenzene, tetrahydronaphthalene, cyclohexylbenzene, chloronaphthalene, 1,4-dimethylnaphthalene , 3-isopropylbiphenyl, p-methylcumene, dipentylbenzene, tripentylbenzene, pentyltoluene, o-diethylbenzene, m-diethylbenzene, p-diethylbenzene, 1,2,3,4 -Tetratoluene, 1,2,3,5-tetratoluene, 1,2,4,5-tetratoluene, butylbenzene, dodecylbenzene, dihexylbenzene, dibutylbenzene, p-diisopropylbenzene
  • aromatic ketone-based solvents suitable for the present invention are, but are not limited to: 1-tetralone, 2-tetralone, 2-(phenylepoxy)tetralone, 6-(methoxy) tetralone base) tetralone, acetophenone, propiophenone, benzophenone, and their derivatives, such as 4-methylacetophenone, 3-methylacetophenone, 2-methylacetophenone, 4-methyl propiophenone, 3-methyl propiophenone, 2-methyl propiophenone, etc.
  • aromatic ether based solvents suitable for the present invention are, but are not limited to: 3-phenoxytoluene, butoxybenzene, p-anisaldehyde dimethylacetal, tetrahydro-2-phenoxy-2H -pyran, 1,2-dimethoxy-4-(1-propenyl)benzene, 1,4-benzodioxane, 1,3-dipropylbenzene, 2,5-dimethoxy Toluene, 4-Ethyl ether, 1,3-dipropoxybenzene, 1,2,4-trimethoxybenzene, 4-(1-propenyl)-1,2-dimethoxybenzene, 1, 3-dimethoxybenzene, glycidyl phenyl ether, dibenzyl ether, 4-tert-butyl anisole, trans-p-propenyl anisole, 1,2-dimethoxybenzene, 1-methyl Oxynaphthalene, diphenyl ether,
  • the at least one organic solvent can be selected from: aliphatic ketones, for example, 2-nonanone, 3-nonanone, 5-nonanone, 2 - Decanone, 2,5-hexanedione, 2,6,8-trimethyl-4-nonanone, fenone, phorone, isophorone, di-n-amyl ketone, etc.; or aliphatic ethers , for example, amyl ether, hexyl ether, dioctyl ether, ethylene glycol dibutyl ether, diethylene glycol diethyl ether, diethylene glycol butyl methyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, Triethylene glycol ethyl methyl ether, triethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, etc.
  • aliphatic ketones for example, 2-nonan
  • the at least one organic solvent may be selected from ester-based solvents: alkyl octanoate, alkyl sebacate, alkyl stearate, benzene Alkyl formate, alkyl phenylacetate, alkyl cinnamate, alkyl oxalate, alkyl maleate, alkyl lactone, alkyl oleate, etc.
  • ester-based solvents alkyl octanoate, alkyl sebacate, alkyl stearate, benzene Alkyl formate, alkyl phenylacetate, alkyl cinnamate, alkyl oxalate, alkyl maleate, alkyl lactone, alkyl oleate, etc.
  • ester-based solvents alkyl octanoate, alkyl sebacate, alkyl stearate, benzene Alkyl formate, alkyl phenylacetate, alkyl cin
  • Said solvent can be used alone or as a mixture of two or more organic solvents.
  • a composition according to the present invention comprises an organic compound or mixture as described in any one of the above, and at least one organic solvent, and may further comprise another organic solvent, another Examples of organic solvents include (but are not limited to): methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, toluene , o-xylene, m-xylene, p-xylene, 1,4 dioxane, acetone, methyl ethyl ketone, 1,2 dichloroethane, 3-phenoxytoluene, 1,1, 1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydronaphthalene
  • organic solvents
  • the present invention also relates to the use of the composition as a printing ink in the preparation of organic electronic devices, a preparation method by printing or coating is particularly preferred.
  • suitable printing or coating techniques include, but are not limited to, ink jet printing, typography, screen printing, dip coating, spin coating, knife coating, roll printing, twist roll printing, lithography, flexo printing Printing, rotary printing, spraying, brushing or pad printing, slit extrusion coating, etc.
  • Preferred are gravure printing, screen printing and inkjet printing.
  • Gravure printing, ink jet printing will be applied in embodiments of the present invention.
  • the solution or suspension may additionally include one or more components such as surface active compounds, lubricants, wetting agents, dispersing agents, hydrophobic agents, binders, etc., to adjust viscosity, film-forming properties, improve adhesion, and the like.
  • a functional layer is formed with a thickness of 5nm-1000nm.
  • the present invention also relates to the use of organic compounds or mixtures as described above in organic electronic devices.
  • the present invention further relates to an organic electronic device comprising an organic compound or polymer or mixture as described above.
  • the organic electronic device can be selected from, but not limited to, organic light emitting diodes (OLED), organic photovoltaic cells (OPV), organic light emitting cells (OLEEC), organic field effect transistors (OFET), organic light emitting field effect transistors, organic Lasers, organic spintronic devices, photodiodes, organic sensors and organic plasmon emission diodes (Organic Plasmon Emitting Diode), etc., especially preferred are organic electroluminescent devices, such as OLED, OLEEC, organic light-emitting field effect transistors.
  • the organic electronic device is an organic electroluminescent device comprising at least one light-emitting layer comprising an organic compound or mixture as described above.
  • organic electroluminescent device especially OLED, it includes a substrate, an anode, at least one light-emitting layer, and a cathode.
  • the substrate can be opaque or transparent.
  • a transparent substrate can be used to fabricate a transparent light-emitting device. See, eg, Bulovic et al. Nature 1996, 380, p29, and Gu et al., Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor wafer or glass.
  • Preferably the substrate has a smooth surface. Substrates free of surface defects are particularly desirable.
  • the substrate is flexible, optionally a polymer film or plastic, with a glass transition temperature Tg above 150°C, preferably above 200°C, more preferably above 250°C, most preferably over 300°C. Examples of suitable flexible substrates are poly(ethylene terephthalate) (PET) and polyethylene glycol (2,6-naphthalene) (PEN).
  • the anode may comprise a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into the hole injection layer (HIL) or hole transport layer (HTL) or light emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • the absolute value of the difference between the work function of the anode and the HOMO level or valence band level of the luminophore in the light-emitting layer or the p-type semiconductor material as HIL or HTL or electron blocking layer (EBL) It is less than 0.5eV, preferably less than 0.3eV, most preferably less than 0.2eV.
  • anode materials include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum doped zinc oxide (AZO), and the like.
  • suitable anode materials are known and can be readily selected for use by one of ordinary skill in the art.
  • the anode material may be deposited using any suitable technique, such as a suitable physical vapor deposition method, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the anode is pattern-structured. Patterned ITO conductive substrates are commercially available and can be used to fabricate devices according to the present invention.
  • the cathode may include a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the emissive layer.
  • the work function of the cathode and the LUMO level of the emitter in the light-emitting layer or the n-type semiconductor material as electron injection layer (EIL) or electron transport layer (ETL) or hole blocking layer (HBL)
  • the absolute value of the difference in conduction band level is less than 0.5eV, preferably less than 0.3eV, most preferably less than 0.2eV.
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the absolute value of the difference in conduction band level is less than 0.5eV, preferably less than 0.3eV, most preferably less than 0.2eV.
  • all materials that can be used as cathodes for OLEDs are possible as cathode materials for the devices of the invention.
  • cathode materials include, but are not limited to, Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloys, BaF2/Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, and the like.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition method, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • OLEDs can also contain other functional layers such as hole injection layer (HIL), hole transport layer (HTL), electron blocking layer (EBL), electron injection layer (EIL), electron transport layer (ETL), hole blocking layer (HBL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the light-emitting layer thereof comprises the organic compound or mixture of the present invention.
  • the light-emitting layer in the organic electroluminescent device, can be formed by one of the following methods:
  • H1 and H2 are deposited by vacuum evaporation as two separate sources, respectively.
  • composition is deposited by a solution processing method, especially a printing method.
  • the light-emitting wavelength is between 300 and 1000 nm, preferably between 350 and 900 nm, more preferably between 400 and 800 nm.
  • the present invention also relates to the application of the organic electroluminescent device according to the present invention in various electronic devices, including but not limited to, display devices, lighting devices, light sources, sensors and the like.
  • the intermediate 7c of (14.9g, 30mmol) and 100mL N,N-dimethylformamide were added to the 250mL single-neck flask, and the N,N-dimethylformamide solution of 30mmol NBS was added dropwise under ice bath, and stirred in the dark.
  • the reaction was completed for 12 hours, the reaction solution was poured into 300 mL of water, suction filtered, and the filter residue was recrystallized to obtain 17.3 g of intermediate 7d with a yield of 90%.
  • intermediate intermediate 7d (34.4 g, 20 mmol), intermediate compound 7e (11.5 g, 20 mmol), tetrakis(triphenylphosphonium)palladium (0.7 g, 0.6 mmol) and tetrabutyl bromide
  • Ammonium (3.2g, 10mmol) and sodium hydroxide (1.6g, 40mmol) were successively added to a 500mL three-necked flask, then 200mL of toluene and 50mL of deionized water were injected into the flask and evacuated and replaced with nitrogen three times, heated to 110°C for reflux reaction for 12
  • the solvent was removed by rotary evaporation, then the product was dissolved in dichloromethane and extracted three times with saturated brine.
  • the preparation process of the above-mentioned OLED device will be described in detail below through specific examples.
  • the structure of the red OLED device is: ITO/HI/HI-1/HT-2/EML/ET: Liq/Liq/Al.
  • ITO indium tin oxide
  • conductive glass substrates use various solvents (such as one or more of chloroform, acetone or isopropanol) to clean, and then perform ultraviolet ozone treatment.
  • HI (30nm), HT-1 (60nm), HT-2 (10nm), host material: 3% RD (40nm), ET: Liq (50:50; 30nm), Liq (1nm), Al (100nm) ) was thermally evaporated in high vacuum (1 ⁇ 10 -6 mbar); the ITO substrate was moved into a vacuum vapor deposition equipment, and under high vacuum (1 ⁇ 10 -6 mbar), a resistance heating evaporation source was used A HI layer with a thickness of 30 nm was formed, and HT-1 with a thickness of 60 nm and an HT-2 layer with a thickness of 10 nm were sequentially formed by heating on the HI layer.
  • comp-1 was placed in one evaporation unit, and compound RD was placed in another evaporation unit as a dopant to vaporize the material at different rates so that the weight ratio of comp-1:Dopant was 100:3, and the A 40 nm light-emitting layer was formed on the transport layer.
  • ET and LiQ were placed in different evaporation units to be co-deposited at a ratio of 50% by weight, respectively, to form a 30 nm electron transport layer on the light-emitting layer, and then 1 nm of LiQ was deposited on the electron transport layer as an electron injection layer. , and finally deposit an Al cathode with a thickness of 100 nm on the electron injection layer.
  • Device Examples 2-11 were implemented in the same way as Device Example 1, except that comp-1 was replaced with comp-2 to comp-6 and a different co-host.
  • the co-host means that the two compounds are placed in different evaporation units respectively to control the weight ratio of the materials.
  • the current-voltage and luminescence (IVL) characteristics of red OLED devices were characterized by characterizing the device while recording important parameters such as efficiency, lifetime, and driving voltage.
  • the performance of the red OLED devices is summarized in Table 1. where the lifetime is a value relative to the comparative example.
  • the luminous efficiency and lifespan of the device examples 1-11 are significantly improved.
  • the introduction of nitrogen heterocycle can enhance the electron transport ability of the material and improve the carrier balance, thereby achieving the improvement of device efficiency and lifetime. It can be seen that the OLED device prepared by using the organic compound of the present invention has greatly improved luminous efficiency and lifetime.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

公开了一种有机化合物、混合物、组合物及其在有机电子器件中的应用,特别是在有机电致发光二极管中的应用。还公开了包含有按照本发明的有机化合物的有机电子器件,特别是有机电致发光二极管,其制备方法及其在显示及照明技术中的应用。通过器件结构优化,可达到较佳的器件性能,特别是可实现高性能的OLED器件,对全彩显示和照明应用提供了较好的材料和制备技术选项。

Description

一种有机化合物、组合物及其在有机电子器件中的应用 技术领域
本发明涉及有机电致发光技术领域,特别是涉及一种有机化合物、高聚物、混合物、组合物及包含其的有机电子器件。
背景技术
由于有机半导体材料在合成上具有多样性、制造成本相对较低和优良的光学与电学性能,有机发光二极管(OLED)在光电器件(例如平板显示器和照明)的应用方面具有很大的潜力。
有机电致发光现象是指利用有机物质将电能转化为光能的现象。利用有机电致发光现象的有机电致发光元件通常具有正极与负极以及在它们中间包含有机物层的结构。为了提高有机电致发光元件的效率与寿命,有机物层具有多层结构,每一层包含有不同的有机物质。具体的,可以包括空穴注入层、空穴传输层、发光层、电子传输层、电子注入层等。在这种有机电致发光元件中,在两个电极之间施加电压,则由正极向有机物层注入空穴,由负极向有机物层注入电子,当注入的空穴与电子相遇时形成激子,该激子跃迁回基态时发出光。这种有机电致发光元件具有自发光、高亮度、高效率、低驱动电压、广视角、高对比度、高响应性等特性。
理论和实验都已证明发光材料是决定OLED器件效率最为重要的因素。目前有机电致发光元件发光层通常使用主体材料/掺杂剂的混合体系作为发光材料,可以改进色彩纯度、发光效率以及稳定性。一般来说,使用主体材料/掺杂剂体系,主体材料的选择至关重要,因为主体材料极大地影响OLED器件的效率及稳定性。优选的,主体材料应具有合适的分子量以便在真空下沉积,同时还需要具有较高的玻璃化转变温度和热分解温度以保证热稳定性,高的电化学稳定性以保证长使用寿命,容易形成非晶态薄膜,与相邻功能层材料有良好的界面作用,不易发生分子运动。
尤其作为红光主体材料,要求材料有良好的载流子传输能力且具有合适的三线态能级,确保发光过程中能量可以有效转移到的客体材料,从而实现较高的效率。目前报道的红光主体通常为大共轭体系芳香环,如WO2012169821、WO2012165844、WO2016013817报道的稠环并咔唑衍生物,尚存在器件效率偏低的问题。最近CN110872300报道的氮杂七元咔唑结构,其公开了与芳香基团连接的化合物,但器件效率依然较低。
上述报道的化合物存在器件效率偏低,稳定性不佳的问题,同时忽视器件中主体材料载流子传输的平衡问题。经过本申请人的深入研究发现,采用大共轭芳香体系连接氮杂吸电子结构单元,可以显著提升器件效率,同时搭配合适的p型材料,可以进一步改善载流子传输平衡。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种有机化合物、组合物及其有机电子器件中的应用,旨在解决现有OLED的效率和寿命的问题。
本发明的技术方案如下:
一种有机化合物,具有如通式(I)所示的结构:
Figure PCTCN2022071815-appb-000001
其中:
X 1~X 13独立表示CR 1,且相邻的X为CR 1时可稠合成环;
ETU为通式(I-1)或(I-2)所示的结构;
Figure PCTCN2022071815-appb-000002
“*”表示连接L的位点;
A为C6-C30的芳香环或C5-C30杂芳香环或其组合;
Y 1~Y 6独立表示为N或CR 2,且Y 1~Y 3中至少有一个为N,Y 4~Y 6中至少有一个为N;
R 1~R 2是取代基,在每次出现时,可以相同或不同地是,H、D,或具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH 2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF 3基团,Cl,Br,F,可交联的基团,或具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些基团的组合;
L为连接基团,选自单键,C6-C60的亚芳基,亚芴基,C2-C60的杂芳香基团,C3-C60的脂肪族环,C6-C60的芳香族环的稠环基,以及这些基团的组合;
Ar 1、Ar 2分别独立选自具有5至40个环原子的取代或未取代的芳香基团或杂芳香基团,或是具有5至40个环原子的芳氧基或杂芳氧基基团,或这些基团的组合,其中一个或多个Ar 1、Ar 2基团可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
一种高聚物,包含至少一个重复单元,所述重复单元包含上述的有机化合物对应的结构。
一种混合物,至少包含有机化合物H1和有机化合物H2,所述有机化合物H1选自上述的有机化合物或高聚物,所述有机化合物H2是另一种有机功能材料,且选自空穴注入材料,空穴传输材料,电子传输材料,电子注入材料,电子阻挡材料,空穴阻挡材料,发光材料,主体材料和有机染料中的一种或多种。
一种组合物,所述组合物包含至少一种上述的有机化合物或混合物,及至少一种有机溶剂。
一种有机电子器件,所述有机电子器件包含功能层,所述功能层包含一种上述的有机化合物或高聚物或混合物。
有益效果:将本发明的有机化合物用于OLED中,特别是作为发光层材料,能提供较优器件性能。其可能的原因如下,但不限于此,本发明的有机化合物具有较平衡的载流子传输,提高相关材料和器件的效率和寿命。
具体实施方式
本发明提供一类有机化合物,包含其的混合物和组合物及其应用。为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明中,组合物和印刷油墨,或油墨具有相同的含义,它们之间可以互换。
在本发明中,主体材料,基质材料,Host或Matrix材料具有相同的含义,它们之间可以互换。
在本发明中,“取代”表示被取代基中的氢原子被取代基所取代。
在本发明中,“环原子数”表示原子键合成环状而得到的结构化合物(例如,单环化合物、 稠环化合物、交联化合物、碳环化合物、杂环化合物)的构成该环自身的原子之中的原子数。该环被取代基所取代时,取代基所包含的原子不包括在成环原子内。关于以下所述的“环原子数”,在没有特别说明的条件下也是同样的。例如,苯环的环原子数为6,萘环的环原子数为10,噻吩基的环原子数为5。
在本发明实施例中,有机材料的能级结构,单线态能级E S1、三线态能级E T、HOMO、LUMO起着关键的作用。以下对这些能级的确定做一介绍。
HOMO和LUMO能级可以通过光电效应进行测量,例如XPS(X射线光电子光谱法)和UPS(紫外光电子能谱)或通过循环伏安法(以下简称CV)。最近,量子化学方法,例如密度泛函理论(以下简称DFT),也成为行之有效的计算分子轨道能级的方法。
有机材料的单线态能级E S1可通过发光光谱来确定,三线态能级E T1可通过低温时间分辨发光光谱来测量。E S1和E T1还可以通过量子模拟计算(如通过Time-dependent DFT)得到,如通过商业软件Gaussian 03W(Gaussian Inc.),具体的模拟方法可参见WO2011141110或如下在实施例中所述。ΔE ST定义为(E S1-E T1)。
应该注意,HOMO、LUMO、E S1、E T1的绝对值取决于所用的测量方法或计算方法,甚至对于相同的方法,不同评价的方法,例如在CV曲线上起始点和峰点可给出不同的HOMO/LUMO值。因此,合理有意义的比较应该用相同的测量方法和相同的评价方法进行。本发明实施例的描述中,HOMO、LUMO、E S1、E T1的值是基于Time-dependent DFT的模拟,但不影响其他测量或计算方法的应用。
在发明中,(HOMO-1)定义为第二高的占有轨道能级,(HOMO-2)为第三高的占有轨道能级,以此类推。(LUMO+1)定义为第二低的未占有轨道能级,(LUMO+2)为第三低的占有轨道能级,以此类推。
本发明涉及一种有机化合物,具有如通式(I)所示的结构:
Figure PCTCN2022071815-appb-000003
其中:X 1~X 13独立表示为CR 1,且相邻的X为CR 1时可稠合成环;
ETU为具有通式(I-1)或(I-2)所示的结构;
Figure PCTCN2022071815-appb-000004
“*”表示连接L的位点;环A为C6-C30的芳香环或C5-C30杂芳香环或其组合;Y 1~Y 6独立表示为N或CR 2,且Y 1~Y 3中至少有一个为N,Y 4~Y 6中至少有一个为N;R 1~R 2是取代基,在每次出现时,可以相同或不同地是,H、D、具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH 2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异 氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF 3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些基团的组合;L为连接基团,选自单键,C6-C60的亚芳基,亚芴基,C2-C60的杂芳香基团,C3-C60的脂肪族环,C6-C60的芳香族环的稠环基,以及这些基团的组合;Ar 1、Ar 2分别独立选自具有5至40个环原子的取代或未取代的芳香基团或杂芳香基团,或是具有5至40个环原子的芳氧基或杂芳氧基基团,或这些基团的组合,其中一个或多个Ar 1、Ar 2基团可以彼此和/或与其键合的环形成单环或多环的脂族或芳族环系。
在一些优选的实施例中,R 1~R 2每次出现分别独立选自H、D、氰基、具有1~18个C原子的直链烷基,或具有3~18个C原子的支链或环状的烷基、烷氧基、硫代烷氧基或甲硅烷基,或具有5~30个环原子的取代或未取代的芳香基团、杂芳香基团、芳氧基或杂芳氧基;在更加优选的实施例中,R 1~R 2每次出现分别独立选自D、具有1~12个C原子的直链烷基,或具有5~20个环原子的取代或未取代的芳香基团、杂芳香基团、芳氧基或杂芳氧基;在最为优选的实施例中,R 1~R 4每次出现分别独立选自D、具有1~6个C原子的直链烷基,或具有5~15个环原子的取代或未取代的芳香基团、杂芳香基团、芳氧基或杂芳氧基。
在一些优选的实施例中,R 1~R 2每次出现时,可分别全部氘化或部分氘化。
在一些优选的实施例中,通式(I)选自如下通式(II-1)或通式(II-2)所示的结构:
Figure PCTCN2022071815-appb-000005
其中各符号的含义如上所述。
在一些优选的实施例中,通式(II-1)或(II-2)中,相邻的R 1可稠合成环。
在一些优选的实施例中,通式(I)中的ETU选自下列基团:
Figure PCTCN2022071815-appb-000006
其中,Z 1-Z 2分别独立选自S,O,CR 117R 118或NR 119;R 101-R 119是取代基,含义同前述R 1;“*”表示连接L的位点;o,p,t,r为0-4的任一整数;q为0-6的任一整数;m,n分别独立选自0或1,且m+n=1;符号的含义如上所述。
在一些优选的实施例中,ETU选自下列基团:
Figure PCTCN2022071815-appb-000007
其中,各符号的含义如上所述。
在一些优选的实施例中,所述有机化合物的Ar 1~Ar 2或L相同或不同的选自选自如下结构基团中的一种或它们中的组合:
Figure PCTCN2022071815-appb-000008
其中:V在多次出现时,可相互独立选自CR 3或者N。W选自CR 4R 5,SiR 6R 7,NR 8,C(=O),S或O;Ar 11、Ar 12分别独立选自具有5至40个环原子的取代或未取代的芳香基团或杂芳香基团,或是具有5至40个环原子的芳氧基或杂芳氧基基团,或这些基团的组合;R 3~R 8是取代基,在每次出现时,可以相同或不同地选自H、D、具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH 2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF 3基团,Cl,Br,F,可交联的基团,或者具有5至40个环原子的取代或未取代的芳香基团或杂芳香基团,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些基团的组合;其中一个或多个R 3、R 4、R 5、R 6、R 7、R 8基团可以彼此和/或与其键合的基团形成环系。
优选地,R 3~R 8每次出现分别独立选自D、氰基、具有1~18个C原子的直链烷基,或具有3~18个C原子的支链或环状的烷基、烷氧基、硫代烷氧基或甲硅烷基,或具有5~30个环原子的取代或未取代的芳香基团、杂芳香基团、芳氧基或杂芳氧基;在更加优选的实施例中,R 5-R 7每次出现时相同或不同地选自D、具有1~12个C原子的直链烷基,或具有5~20个环原子的取代或未取代的芳香基团、杂芳香基团、芳氧基或杂芳氧基;在最为优选的实施例中,R 5-R 7每次出现时相同或不同地选自D、具有1~6个C原子的直链烷基,或具有5~15个环原子的取代或未取代的芳香基团、杂芳香基团、芳氧基或杂芳氧基。
在一个优先的实施例中,L是二联苯,或其中的一个或多个碳原子被N原子取代的结构。
在另一个优先的实施例中,L是苯,或其中的一个或多个碳原子被N原子取代的结构。
在一些更加优选的实施例中,上述有机化合物中,L优选自包含如下化学式结构中的一个或多个的组合,其中环上的H可以被任意取代:
Figure PCTCN2022071815-appb-000009
在一些最为优选的实施例中,上述的有机化合物,其中L可包含如下化学式所示的结构,其中环上的H可以被任意取代:
Figure PCTCN2022071815-appb-000010
Ar 1、Ar 2每次出现选自具有5~40个环原子的取代或未取代的芳香基团、杂芳香基团、芳氧 基或杂芳氧基基团,或这些体系的组合,其中一个或多个Ar 1、Ar 2基团彼此和/或与其键合的环形成多环的脂族或芳族环系。
在一些较为优先的实施例中,Ar可选自氘代或未氘代的具有5至20个环原子的取代或未取代的芳族或杂芳族环系,或是氘代或未氘代的具有5至20个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,其中一个或多个Ar 1、Ar 2基团可以彼此和/或与其键合的环形成单环或多环的脂族或芳族环系。
在一些更为优先的实施例中,Ar可选自氘代或未氘代的具有5至15个环原子的取代或未取代的芳香基团或杂芳香基团,或是氘代或未氘代的具有5至15个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,其中一个或多个Ar 1、Ar 2基团可以彼此和/或与其键合的环形成单环或多环的脂族或芳族环系。
在另一些优先的实施例中,Ar选自苯、萘、菲、苯并菲、二联苯、三联苯,或这些结构中的一个或多个碳原子被N原子取代。
在本发明中,“芳香基团”指至少包含一个芳环的烃基,包括单环基团和多环的环系统。“杂芳香基团”指包含至少一个芳杂环的烃基(含有杂原子),包括单环基团和多环的环系统。这些多环的环可以具有两个或多个环,其中两个碳原子被两个相邻的环共用,即稠环。多环的这些环种,至少一个是芳香族的或芳杂族的。对于本发明的目的,芳香基团或杂芳香基团不仅包括芳香基或芳杂基的体系,而且,其中多个芳香基或芳杂基也可以被短的非芳族单元间断(如C、N、O、Si、S或P原子)。因此,比如9,9'-螺二芴,9,9-二芳基芴,三芳胺,二芳基醚等体系,对于该发明目的同样认为是芳香基团。
具体地,芳香基团的例子有:苯、萘、蒽、菲、二萘嵌苯、并四苯、芘、苯并芘、三亚苯、苊、芴、及其衍生物。
具体地,杂芳香基团的例子有:呋喃、苯并呋喃、噻吩、苯并噻吩、吡咯、吡唑、三唑、咪唑、噁唑、噁二唑、噻唑、四唑、吲哚、咔唑、吡咯并咪唑、吡咯并吡咯、噻吩并吡咯、噻吩并噻吩、呋喃并吡咯、呋喃并呋喃、噻吩并呋喃、苯并异噁唑、苯并异噻唑、苯并咪唑、吡啶、吡嗪、哒嗪、嘧啶、三嗪、喹啉、异喹啉、邻二氮萘、喹喔啉、菲啶、伯啶、喹唑啉、喹唑啉酮、及其衍生物。
在特别优选的实施例中,按照本发明的有机化合物具有电子传输功能。
在某些优选的实施例中,上述的有机化合物,Ar 1和/或Ar 2包含一吸电子基团或被吸电子基团所取代。合适的吸电子基团可选自F、氰基或如下基团中的一种:
Figure PCTCN2022071815-appb-000011
其中,n为1、2或3;X 1-X 8选于CR 5或N,并且至少有一个是N;同时任意两个相邻位置的R 5可以成单环或多环的脂族或芳族环系;M 1、M 2、M 3分别独立表示N(R 6)、C(R 7) 2、Si(R 8) 2、O、C=N(R 9)、C=C(R 10) 2、P(R 11)、P(=O)R 12、S、S=O、SO 2或无;R 1-R 12的含义同上述R 1
在另一些优选的实施例中,上述的有机化合物,所述吸电子基团选自如下基团中的一种或多种的组合:
Figure PCTCN2022071815-appb-000012
在某些优选的实施方案中,按照本发明的有机化合物具有较小的单线态-三线态能级差,一般是ΔE st≤0.3eV,较好是ΔE st≤0.2eV,更好是ΔE st≤0.15eV,最好是ΔE st≤0.10eV。
下面列出按照本发明的通式(I-1)和(I-2)所示的有机化合物的具体例子,但并不限定于此。
Figure PCTCN2022071815-appb-000013
Figure PCTCN2022071815-appb-000014
Figure PCTCN2022071815-appb-000015
在一个优选的实施例中,按照本发明的有机化合物,其玻璃化温度Tg≥100℃,在一个优选的实施例中,其Tg≥120℃,在一个较为优选的实施例中,其Tg≥140℃,在一个更为优选的 实施例中,其Tg≥160℃,在一个最为优选的实施例中,其Tg≥180℃。
在一个较为优选的实施例中,按照本发明的有机化合物,是部分被氘代,较好是10%的H被氘代,更好是20%的H被氘代,很好是30%的H被氘代,最好是40%的H被氘代。
在一个优选的实施例中,按照本发明的有机化合物是一种小分子材料。
在一个优选的实施方案中,按照本发明的有机化合物用于蒸镀性OLED器件。用于这个目的,按照本发明的有机化合物,其分子量≤1000g/mol,优选≤900g/mol,很优选≤850g/mol,更优选≤800g/mol,最优选≤700g/mol。
本发明还涉及一种按照通式(I)的有机化合物的合成方法,其中使用含有活性基团的原料进行反应。这些活性原料包含至少一种离去基团,例如,溴,碘,硼酸或硼酸酯。形成C-C连接的适当的反应是本领域技术人员熟知的并描述于文献中,特别适当和优选的偶联反应是SUZUKI,STILLE和HECK偶联反应。
本发明还涉及一种高聚物,包含至少一个重复单元,其中至少有一个重复单元包含有如通式(I)所示的结构。在某些实施例中,所述的高聚物是非共轭高聚物,其中如通式(I)所示的结构单元在侧链上。在另一个优选的实施例中,所述的高聚物是共轭高聚物。本文中所定义的术语“小分子”是指不是聚合物,低聚物,树枝状聚合物,或共混物的分子。特别是,小分子中没有重复结构。小分子的分子量≤3000g/mol,较好是≤2000g/mol,最好是≤1500g/mol。
高聚物,即Polymer,包括均聚物(homopolymer),共聚物(copolymer),镶嵌共聚物(block copolymer)。另外在本发明中,高聚物也包括树状物(dendrimer),有关树状物的合成及应用请参见[Dendrimers and Dendrons,Wiley-VCH Verlag GmbH&Co.KGaA,2002,Ed.George R.Newkome,Charles N.Moorefield,Fritz Vogtle.]。
共轭高聚物(conjugated polymer)是一高聚物,它的主链backbone主要是由C原子的sp2杂化轨道构成,著名的例子有:聚乙炔polyacetylene和poly(phenylene vinylene),其主链上的C原子的也可以被其他非C原子取代,而且当主链上的sp2杂化被一些自然的缺陷打断时,仍然被认为是共轭高聚物。另外在本发明中共轭高聚物也包括主链上包含有芳基胺(aryl amine)、芳基磷化氢(aryl phosphine)及其他杂环芳烃(heteroarmotics)、有机金属络合物(organometallic complexes)等。
在一个优选的实施例中,其中的高聚物的合成方法选自SUZUKI-,YAMAMOTO-,STILLE-,NIGESHI-,KUMADA-,HECK-,SONOGASHIRA-,HIYAMA-,FUKUYAMA-,HARTWIG-BUCHWALD-和ULLMAN。
在一个优先的实施例中,按照本发明的高聚物,其玻璃化温度(Tg)≥100℃,优选为≥120℃,更优为≥140℃,更更优为≥160℃,最优为≥180℃。
在一个优先的实施例中,按照本发明的高聚物,其分子量分布(PDI)取值范围优选为1~5;较优选为1~4;更优选为1~3,更更优选为1~2,最优选为1~1.5。
在一个优先的实施例中,按照本发明的高聚物,其重均分子量(Mw)取值范围优选为1万~100万;较优选为5万~50万;更优选为10万~40万,更更优选为15万~30万,最优选为20万~25万。
本发明还提供一种混合物,包含有机化合物H1和有机化合物H2,其中有机化合物H1是按照本发明的有机化合物,有机化合物H2是另一种有机功能材料,H2可选于空穴注入材料(HIM),空穴传输材料(HTM),p-dopant,电子传输材料(ETM),电子注入材料(EIM),电子阻挡材料(EBM),空穴阻挡材料(HBM),发光材料(Emitter),主体材料(Host)和有机染料。例如在US2017092880A1,US2018006247A1和EP3301097A2中对各种有机功能材料有详细的描述,特此将此3篇专利文件中的全部内容并入本文作为参考。
在一个优选的实施例中,所述的混合物,包含至少一种按照本发明的有机化合物或高聚物和一种空穴传输材料(HTM)。
在一个较优选的实施例中,所述的混合物,包含至少一种按照本发明的有机化合物或高聚物和一种发光材料,所述的发光材料选自单重态发光体(荧光发光体),三重态发光体(磷光发光体)或TADF发光体。
在某些实施例中,所述的混合物,包含至少一种按照本发明的有机化合物或高聚物和一种荧光发光体,其中所述的荧光发光体重量百分比为≤10wt%,较好是≤9wt%,更好是≤8wt%,特别好是≤7wt%,最好是≤5wt%。
在一个优选的实施例中,所述的混合物,包含至少一种按照本发明的有机化合物或高聚物和一种磷光发光体,其中所述的磷光发光体重量百分比为≤20wt%,较好是≤15wt%,更好是≤10wt%。
在另一个更优选的实施例中,所述的一种混合物,包含少一种按照本发明的有机化合物或高聚物,和一种TADF材料;其中TADF材料的功能优选为:1)与按照本发明的有机化合物形成共主体材料,其间的重量比从1:6到6:1;2)与按照本发明的有机化合物形成Exciplex,或用作辅助发光体,其中所述的TADF材料的重量百分比为≤15wt%,较好是≤10wt%,更好是≤8wt%。
在一个特别优选的实施例中,所述的混合物,包含至少一种按照本发明的有机化合物或高聚物和有机化合物H2(另一种有机功能材料)。这样的混合物可以作为磷光混合主体材料,可以进一步包含一磷光发光体,其中所述的磷光发光体重量百分比为≤20wt%,较好是≤15wt%,更好是≤10wt%。
下面对所述的包含有机化合物H1和有机化合物H2的混合物作为磷光混合主体材料做一详细的说明。
在一个优先的实施例中,有机化合物H2具有空穴传输特性。
更为优选的,有机化合物H2具有空穴传输特性的同时也具有电子传输特性。
一般的,有机化合物H1与有机化合物H2的摩尔比范围为1:9至9:1。
优选地,有机化合物H1与有机化合物H2的摩尔比范围为3:7至7:3。
更优地,有机化合物H1与有机化合物H2的摩尔比范围为4:6至6:4。
最优地,有机化合物H1与有机化合物H2的摩尔比为5:5。
在一个优先的实施例中,所述的一种混合物,有机化合物H2选自如下通式(II)所示的化合物:
Figure PCTCN2022071815-appb-000016
其中,B表示取代或未取代的碳原子数1~30的烷基、取代或未取代的碳原子数3~30的环烷基、取代或未取代的环原子数为5~60芳香基团或杂芳香基团;D为富电子基团;s为1-6的任一整数。
在某些优选的实施例中,通式(II)中的富电子(或供电子)基团D,包含有如下任一基团:
Figure PCTCN2022071815-appb-000017
其中,Ar 3表示环原子数为5~40的芳香基团或杂芳香基团;Z 1、Z 2、Z 3分别独立选自单键、CR 5R 6、SiR 7R 8、NR 9、O、C(=O)、S、S=O或SO 2,且Z 2和Z 3不同时为单键;R 13-R 25含义同R 1
在一些更加优选的实施例中,通式(II)中包含的富电子(或供电子)基团D,包含有如下任一基团:
Figure PCTCN2022071815-appb-000018
R 13、R 19、R 20、R 25的含义如上所述。
在某些优选的实施例中,s为1-4的任一整数;在更加优选的实施例中,s为1-3的任一整数;在最为优选的实施例中,s为1或2。
在一些较为优先的实施例中,按照本发明的混合物,其中H2选自如下结构式中的一个:
Figure PCTCN2022071815-appb-000019
其中,B的含义如上所述,Ar 101的含义与Ar 1相同。
某些实施例中,按照本发明的混合物中,H1和/或H2具有较高的三线态能级T1,一般是T1≥2.2eV,较优是T1≥2.3eV,更优是T1≥2.4eV,更更优是T1≥2.5eV,最优是T1≥2.6eV。
在某些优先的实施方案中,所述的有机混合物,其中H1和H2形成II型异质结结构,即H1的最高占有轨道能级(HOMO)低于H2的HOMO,H1的最低未占有轨道能级(LUMO)低于于H2的LUMO。
在一个更加优先的实施方案中,所述的混合物,min((LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1))≤min(ET(H1),ET(H2))+0.1eV,其中LUMO(H1),HOMO(H1)及ET(H1)分别是H1的最低未占有轨道,最高占有轨道,三线态的能级,LUMO(H2),HOMO(H2)及ET(H2)分别是H2的最低未占有轨道,最高占有轨道,三线态的能级。
在一个优先的实施例中,所述的混合物,min((LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1))≤min(ET(H1),ET(H2))。
在一个较为优先的实施例中,所述的混合物,min((LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1))≤min(ET(H1),ET(H2))-0.05eV。
在一个更为优先的实施例中,所述的混合物,min((LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1))≤min(ET(H1),ET(H2))-0.1eV。
在一个非常优先的实施例中,所述的混合物,min((LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1))≤min(ET(H1),ET(H2))-0.15eV。
在一个最为优先的实施例中,所述的混合物,min((LUMO(H1)-HOMO(H2),LUMO(H2)-HOMO(H1))≤min(ET(H1),ET(H2))-0.2eV;
下面举例按照通式(II)所示的有机化合物H2的具体例子,但并不限定于:
Figure PCTCN2022071815-appb-000020
Figure PCTCN2022071815-appb-000021
Figure PCTCN2022071815-appb-000022
在一个较为优先的实施例中,按照本发明的混合物,其中H1和H2中至少有一个,优先是H1,其((LUMO+1)-LUMO)≥0.1eV,较好是≥0.15eV,更好是≥0.20eV,更更好是≥0.25eV,最好是≥0.30eV。
在另一个较为优先的实施例中,按照本发明的混合物,其中H1和H2中至少有一个,优先是H2,其(HOMO-(HOMO-1))≥0.2eV,较好是≥0.25eV,更好是≥0.30eV,更更好是≥0.35eV,最好是≥0.40eV。
在某些实施方案中,所述的有机混合物,其中有机化合物H1和有机化合物H2形成I型异质结结构,即H1的最高占有轨道能级(HOMO)高于H2的HOMO,H1的最低未占有轨道能级(LUMO)低于于H2的LUMO;较为优先的,所述的有机化合物H1是按照本发明的有机化合物,而且其ΔE st≤0.3eV,较好是ΔE st≤0.2eV,更好是ΔE st≤0.15eV,最好是ΔE st≤0.10eV。
本发明的一个目的是为蒸镀型OLED提供材料解决方案。
在一个优选的实施方案中,按照本发明的混合物用于蒸镀性OLED器件。用于这个目的,按照本发明的有机化合物或混合物中H1和H2,其分子量≤1000g/mol,优选≤900g/mol,很优选≤850g/mol,更优选≤800g/mol,最优选≤700g/mol。
在一个优选的实施例中,所述的混合物,其中H1和H2的分子量的差不超过100Dalton;优选的分子量的差不超过60Dalton;更加优选的分子量的差不超过30Dalton。
在另一个优选的实施例中,所述的混合物,其中H1和H2的升华温度的差不超过30K;优选的升华温度的差不超过20K;更加优选的升华温度的差不超过10K。
本发明的另一个目的是为印刷OLED提供材料解决方案。
用于这个目的,按照本发明的有机化合物或混合物中的有机化合物H1和有机化合物H2,至少有一个较好是两个都,其分子量≥700g/mol,优选≥800g/mol,很优选≥900g/mol,更优选≥1000g/mol,最优选≥1100g/mol。
蒸镀型OLED中的以Premix形式的共主体中,要求两个主体材料具有类似的化学性质或物性,如分子量,升华温度。本发明发现,在溶液加工OLED中,两个具有不同性质的主体材料可能会提高成膜性能,从而提高器件的性能。所述的性质,除了分子量,升华温度外,还可以是其他的,如玻璃化温度,不同的分子体积等。从而印刷OLED,按照本发明的混合物的优先实施方案有:
1)H1和H2的分子量的差≥120g/mol,较好为≥140g/mol,更好为≥160g/mol,最好为≥180g/mol。
2)H1和H2的升华温度的差≥60K,较好为≥70K,更好为≥75K,最好为≥80K。
3)H1和H2的玻璃化温度的差≥20K,较好为≥30K,更好为≥40K,最好为≥45K。
4)H1和H2的分子体积的差≥20%,较好为≥30%,更好为≥40%,最好为≥45%。
在另一些实施例中,按照本发明的有机化合物或混合物中有机化合物H1和有机化合物H2,至少有一个较好是两个都,在25℃时,在甲苯中的溶解度≥2mg/ml,优选≥3mg/ml,更优选≥4mg/ml,最优选≥5mg/ml。
在一个优选的实施例中,所述的混合物,其中有机化合物H1和有机化合物H2的摩尔比为从2:8到8:2;优选的摩尔比为3:7到7:3;更加优选的摩尔比为4:6到6:4。
下面对HTM,磷光发光体,磷光主体材料和TADF发光体作一些详细的描述(但不限于此)
1.三重态主体材料(Triplet Host):
三重态主体材料的例子并不受特别的限制,任何金属络合物或有机化合物都可能被用作为主体,只要其三重态能级比发光体,特别是三重态发光体或磷光发光体更高,可用作三重态主体(Host)的金属络合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2022071815-appb-000023
M3是一金属;(Y 3-Y 4)是一两齿配体,Y 3和Y 4独立地选自C,N,O,P和S;L是一个辅助配体;r2是一整数,其值从1到此金属的最大配位数。
在一个优先的实施方案中,可用作三重态主体的金属络合物有如下形式:
Figure PCTCN2022071815-appb-000024
(O-N)是一两齿配体,其中金属与O和N原子配位,r2是一整数,其值从1到此金属的最大配位数。
在某一个实施方案中,M3可选Ir和P。
可作为三重态主体的有机化合物的例子选自包含有环芳香烃基的化合物,例如苯、联苯、三苯基苯、苯并芴;包含有芳香杂环基的化合物,如二苯并噻吩、二苯并呋喃、二苯并硒吩、呋喃、噻吩、苯并呋喃、苯并噻吩、苯并硒吩、咔唑、二苯并咔唑,吲哚咔唑、吡啶吲哚、吡咯二吡啶、吡唑、咪唑、三唑类、恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪类、恶嗪、恶噻嗪、恶二嗪、吲哚、苯并咪唑、吲唑、恶唑、二苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、邻二氮杂萘、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、苯并呋喃吡啶、呋喃并吡啶、苯并噻吩吡啶、噻吩吡啶、苯并硒吩吡啶和硒吩苯并二吡啶;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团。
在一个优先的实施方案中,三重态主体材料可选于包含至少一个以下基团的化合物:
Figure PCTCN2022071815-appb-000025
X 9选于CR 33R 34或NR 35;Y选自CR 36R 37或NR 38或O或S;R 26-R 38的含义同上述R 1。n2选自1-3的任一整数,X 1–X 8的含义同上所述,Ar 4~Ar 6的含义同上所述的Ar 1
在下面列出合适的三重态主体材料的例子但不局限于:
Figure PCTCN2022071815-appb-000026
Figure PCTCN2022071815-appb-000027
2.三重态发光体(Triplet Emitter)
三重态发光体也称磷光发光体。在一个优先的实施方案中,三重态发光体是有通式M(L)n的金属络合物,其中M是一金属原子,L每次出现时可以是相同或不同,是一有机配体,它通过一个或多个位置键接或配位连接到金属原子M上,n是一个大于1的整数,较好选是1,2,3,4,5或6。可选地,这些金属络合物通过一个或多个位置联接到一个聚合物上,最好是通过有机配体。
在一个优先的实施方案中,金属原子M选于过渡金属元素或镧系元素或锕系元素,优先选择Ir,Pt,Pd,Au,Rh,Ru,Os,Sm,Eu,Gd,Tb,Dy,Re,Cu或Ag,特别优先选择Os,Ir,Ru,Rh,Re,Pd,Au或Pt。
优先地,三重态发光体包含有螯合配体,即配体,通过至少两个结合点与金属配位,特别优先考虑的是三重态发光体包含有两个或三个相同或不同的双齿或多齿配体。螯合配体有利于提高金属络合物的稳定性。
有机配体的例子可选自苯基吡啶衍生物,7,8-苯并喹啉衍生物,2(2-噻吩基)吡啶衍生物,2(1-萘基)吡啶衍生物,或2苯基喹啉衍生物。所有这些有机配体都可能被取代,例如被含氟或三氟甲基取代。辅助配体可优先选自乙酸丙酮或苦味酸。
在一个优先的实施方案中,可用作三重态发光体的金属络合物有如下形式:
Figure PCTCN2022071815-appb-000028
其中M是一金属,选于过渡金属元素或镧系或锕系元素,特别优先的是Ir,Pt,Au。
Ar 7每次出现时可以是相同或不同,是一个环状基团,其中至少包含有一个施主原子,即有一孤对电子的原子,如氮或磷,通过它环状基团与金属配位连接;Ar 8每次出现时可以是相同或不同,是一个环状基团,其中至少包含有一个C原子,通过它环状基团与金属连接;Ar 7和Ar 8由共价键联接在一起,可各自携带一个或多个取代基团,它们也可再通过取代基团联接在一起;L'每次出现时可以是相同或不同,是一个双齿螯合的辅助配体,最好是单阴离子双齿螯合配体;q1可以是0,1,2或3,优先地是2或3;q2可以是0,1,2或3,优先地是1或0。
一些三重态发光体的材料极其应用的例子可在下述专利文件和文献中找到:WO 200070655,WO 200141512,WO 200202714,WO 200215645,EP 1191613,EP 1191612,EP 1191614,WO 2005033244,WO 2005019373,US 2005/0258742,WO 2009146770,WO 2010015307,WO 2010031485,WO 2010054731,WO 2010054728,WO 2010086089,WO 2010099852,WO 2010102709,US 20070087219 A1,US 20090061681 A1,US 20010053462 A1,Baldo,Thompson et al.Nature 403,(2000),750-753,US 20090061681 A1,US 20090061681 A1,Adachi et al.Appl.Phys.Lett.78(2001),1622-1624,J.Kido et al.Appl.Phys.Lett.65(1994),2124,Kido et al.Chem.Lett.657,1990,US 2007/0252517 A1,Johnson et al.,JACS 105,1983,1795,Wrighton,JACS 96,1974,998,Ma et al.,Synth.Metals 94,1998,245,US 6824895,US 7029766,US 6835469,US 6830828,US 20010053462 A1,WO 2007095118 A1,US 2012004407A1,WO 2012007088A1,WO2012007087A1,WO 2012007086A1,US 2008027220A1,WO 2011157339A1,CN 102282150A,WO 2009118087A1,WO 2013107487A1,WO 2013094620A1,WO 2013174471A1,WO 2014031977A1,WO 2014112450A1,WO 2014007565A1,WO 2014038456A1,WO 2014024131A1,WO 2014008982A1,WO2014023377A1。特此将上述列出的专利文件和文献中的全部内容并入本文作为参考。
在下面列出一些合适的三重态发光体的例子:
Figure PCTCN2022071815-appb-000029
Figure PCTCN2022071815-appb-000030
3.TADF材料
传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间穿越,可以有效利用电激发形成的单线态激子和三线态激子发光,使器件的内量子效率达到100%。但磷光材料昂贵,材料稳定性差,器件效率滚降严重等问题限制了其在OLED中的应用。热激活延迟荧光发光材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级差(ΔEst),三线态激子可以通过反系间穿越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子。器件内量子效率可达到100%。同时材料结构可控,性质稳定,价格便宜无需要贵金属,在OLED领域的应用前景广阔。
TADF材料需要具有较小的单线态-三线态能级差,较好是ΔEst<0.3eV,次好是ΔEst<0.2eV,最好是ΔEst<0.1eV。在一个优先的实施方案中,TADF材料有比较小的ΔEst,在另一个优先的实施方案中,TADF有较好的荧光量子效率。一些TADF发光的材料可在下述专利文件中找到:CN103483332(A),TW201309696(A),TW201309778(A),TW201343874(A),TW201350558(A),US20120217869(A1),WO2013133359(A1),WO2013154064(A1),Adachi,et.al.Adv.Mater.,21,2009,4802,Adachi,et.al.Appl.Phys.Lett.,98,2011,083302,Adachi,et.al.Appl.Phys.Lett.,101,2012,093306,Adachi,et.al.Chem.Commun.,48,2012,11392,Adachi,et.al.NaturePhotonics,6,2012,253,Adachi,et.al.Nature,492,2012,234,Adachi,et.al.J.Am.Chem.Soc,134,2012,14706,Adachi,et.al.Angew.Chem.Int.Ed,51,2012,11311,Adachi,et.al.Chem.Commun.,48,2012,9580,Adachi,et.al.Chem.Commun.,48,2013,10385,Adachi,et.al.Adv.Mater.,25,2013,3319,Adachi,et.al.Adv.Mater.,25,2013,3707,Adachi,et.al.Chem.Mater.,25,2013,3038,Adachi,et.al.Chem.Mater.,25,2013,3766,Adachi,et.al.J.Mater.Chem.C.,1,2013,4599,Adachi,et.al.J.Phys.Chem.A.,117,2013,5607,特此将上述列出的专利或文章文件中的全部内容并入本文作为参考。
在下面列出一些合适的TADF发光材料的例子:
Figure PCTCN2022071815-appb-000031
Figure PCTCN2022071815-appb-000032
Figure PCTCN2022071815-appb-000033
4.HTM
合适的有机HTM材料可选包含有如下结构单元的化合物:酞菁、卟啉、胺、芳香胺、联苯类三芳胺、噻吩、并噻吩、吡咯、苯胺、咔唑、氮茚并氮芴及它们的衍生物。
可用作HTM的环芳香胺衍生化合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2022071815-appb-000034
每个Ar 1~Ar 9可独立选自环芳香烃化合物,如苯、联苯、三苯基、苯并、萘、蒽、非那烯、菲、芴、芘、屈、苝、薁;芳香杂环化合物,如二苯并噻吩、二苯并呋喃、呋喃、噻吩、苯并呋喃、苯并噻吩、咔唑、吡唑、咪唑、三氮唑、异恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪、恶嗪、恶噻嗪、恶二嗪、吲哚、苯并咪唑、吲唑、吲哚嗪、苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、邻二氮(杂)萘、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、二苯并硒吩、苯并硒吩、苯并呋喃吡啶、吲哚咔唑、吡啶吲哚、吡咯二吡啶、呋喃二吡啶、苯并噻吩吡啶、噻吩吡啶、苯并硒吩吡啶和硒吩二吡啶;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团。其中,Ar 1~Ar 9可以进一步被取代,取代基可选为氢、氘、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基。
在一个方面,Ar 1~Ar 9可独立选自包含如下结构单元的基团:
Figure PCTCN2022071815-appb-000035
n是1到20的整数;X 11到X 18是CH或N;Ar 10定义同Ar 1
环芳香胺衍生化合物的另外的例子可参见US3567450,US4720432,US5061569,US3615404和US5061569。
在下面列出合适的可作为HTM化合物的例子:
Figure PCTCN2022071815-appb-000036
本发明进一步涉及一种组合物或油墨,包含如上任一项所述的有机化合物或混合物,及至少一种有机溶剂。
用于印刷工艺时,油墨的粘度,表面张力是重要的参数。合适的油墨的表面张力参数适合于特定的基板和特定的印刷方法。
在一个优选的实施例中,按照本发明的油墨在工作温度或在25℃下的表面张力约在19dyne/cm到50dyne/cm范围;更好是在22dyne/cm到35dyne/cm范围;最好是在25dyne/cm到33dyne/cm范围。
在另一个优选的实施例中,按照本发明的油墨在工作温度或25℃下的粘度约在1cps到100cps范围;较好是在1cps到50cps范围;更好是在1.5cps到20cps范围;最好是在4.0cps到20cps范围。如此配制的组合物将便于喷墨印刷。
粘度可以通过不同的方法调节,如通过合适的溶剂选取和油墨中功能材料的浓度。按照本发明的包含有所述地金属有机配合物或高聚物的油墨可方便人们将印刷油墨按照所用的印刷方法在适当的范围调节。一般地,按照本发明的组合物包含的功能材料的重量比为0.3%~30wt%范围,较好的为0.5%~20wt%范围,更好的为0.5%~15wt%范围,更更好的为0.5%~10wt%范围,最好的为1%~5wt%范围。
按照本发明的一种组合物,所述的至少一种有机溶剂选自芳族或杂芳族、酯、芳族酮或芳族醚、脂肪族酮或脂肪族醚、脂环族或烯烃类化合物,或硼酸酯或磷酸酯类化合物,或两种及两种以上溶剂的混合物。
在一个优选的实施例中,按照本发明的一种组合物,所述的至少一种有机溶剂选自基于芳族或杂芳族的溶剂。
适合本发明的基于芳族或杂芳族溶剂的例子有,但不限制于:对二异丙基苯、戊苯、四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、三戊苯、戊基甲苯、邻二乙苯、间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、二己基苯、二丁基苯、对二异丙基苯、环己基苯、苄基丁基苯、二甲基萘、3-异丙基联苯、对甲基异丙苯、1-甲基萘、1,2,4-三氯苯、4,4-二氟二苯甲烷、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、2-苯基吡啶、3-苯基吡啶、N-甲基二苯胺、4-异丙基联苯、二氯二苯甲烷、4-(3-苯基丙基)吡啶、苯甲酸苄酯、1,1-双(3,4-二甲基苯基)乙烷、2-异丙基萘、喹啉、异喹啉、2-呋喃甲酸甲酯、2-呋喃甲酸乙酯等。
适合本发明的基于芳族酮溶剂的例子有,但不限制于:1-四氢萘酮,2-四氢萘酮,2-(苯基环氧)四氢萘酮,6-(甲氧基)四氢萘酮,苯乙酮、苯丙酮、二苯甲酮、及它们的衍生物,如4-甲基苯乙酮、3-甲基苯乙酮、2-甲基苯乙酮、4-甲基苯丙酮、3-甲基苯丙酮、2-甲基苯丙酮等。
适合本发明的基于芳族醚溶剂的例子有,但不限制于:3-苯氧基甲苯、丁氧基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,4-苯并二噁烷、1,3-二丙基苯、2,5-二甲氧基甲苯、4-乙基本乙醚、1,3-二丙氧基苯、1,2,4-三甲氧基苯、4-(1-丙烯基)-1,2-二甲氧基苯、1,3-二甲氧基苯、缩水甘油基苯基醚、二苄基醚、4-叔丁基茴香醚、反式-对丙烯基茴香醚、1,2-二甲氧基苯、1-甲氧基萘、二苯醚、2-苯氧基甲醚、2-苯氧基四氢呋喃、乙基-2-萘基醚。
在一些优选的实施例中,按照本发明的组合物,所述的至少一种的有机溶剂可选自:脂肪族酮,例如,2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、2,6,8-三甲基-4-壬酮、葑酮、佛尔酮、异佛尔酮、二正戊基酮等;或脂肪族醚,例如,戊醚、己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚等。
在另一些优选的实施例中,按照本发明的组合物,所述的至少一种的有机溶剂可选自基于 酯的溶剂:辛酸烷酯、癸二酸烷酯、硬脂酸烷酯、苯甲酸烷酯、苯乙酸烷酯、肉桂酸烷酯、草酸烷酯、马来酸烷酯、烷内酯、油酸烷酯等。特别优选辛酸辛酯、癸二酸二乙酯、邻苯二甲酸二烯丙酯、异壬酸异壬酯。
所述的溶剂可以是单独使用,也可以是作为两种或多种有机溶剂的混合物使用。
在某些优选的实施例中,按照本发明的一种组合物,包含如上任一项所述的有机化合物或混合物,及至少一种有机溶剂,还可进一步包含另一种有机溶剂,另一种有机溶剂的例子,包括(但不限于):甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或它们的混合物。
本发明还涉及所述的一种组合物作为印刷油墨在制备有机电子器件时的用途,特别优选的是通过打印或涂布的制备方法。
其中,适合的打印或涂布技术包括(但不限于)喷墨打印,活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。首选的是凹版印刷,丝网印刷及喷墨印刷。凹版印刷,喷墨印刷将在本发明的实施例中应用。溶液或悬浮液可以另外包括一个或多个组份例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。有关打印技术,及其对有关溶液的相关要求,如溶剂及浓度,粘度等,的详细信息请参见Helmut Kipphan主编的《印刷媒体手册:技术和生产方法》(Handbook of Print Media:Technologies and Production Methods),ISBN 3-540-67326-1。
如上所述的制备方法,形成的一功能层,其厚度在5nm-1000nm。
本发明还涉及如上所述有机化合物或混合物在有机电子器件中的应用。
本发明进一步涉及一种有机电子器件,包含一种如上所述的有机化合物或高聚物或混合物。
所述的有机电子器件可选于,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,光电二极管,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别优选的是有机电致发光器件,如OLED,OLEEC,有机发光场效应管。
在某些特别优先的实施例中,所述有机电子器件为有机电致发光器件,其中至少包含有一发光层,所述的发光层包含一种如上所述的有机化合物或混合物。
在以上所述的有机电致发光器件,特别是OLED中,包括一基片,一阳极,至少一发光层,一阴极。
基片可以是不透明或透明。一个透明的基板可以用来制造一个透明的发光元器件。例如可参见,Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基片可以是刚性的或弹性的。基片可以是塑料,金属,半导体晶片或玻璃。最好是基片有一个平滑的表面。无表面缺陷的基板是特别理想的选择。在一个优选的实施例中,基片是柔性的,可选于聚合物薄膜或塑料,其玻璃化温度Tg为150℃以上,较好是超过200℃,更好是超过250℃,最好是超过300℃。合适的柔性基板的例子有聚(对苯二甲酸乙二醇酯)(PET)和聚乙二醇(2,6-萘)(PEN)。
阳极可包括一导电金属或金属氧化物,或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在一个优选的实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料的例子包括但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合 适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极可包括一导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个优选的实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包括但不限于:Al、Au、Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。
OLED还可以包含其他功能层,如空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)。适合用于这些功能层中的材料在上面及在WO2010135519A1、US20090134784A1和WO2011110277A1中有详细的描述,特此将此3篇专利文件中的全部内容并入本文作为参考。
在一个优选的实施例中,按照本发明的有机电致发光器件中,其发光层包含本发明的有机化合物或混合物。
在另一个优选的实施例中,所述的有机电致发光器件,其中的发光层可由如下方法中一种形成:
(1)包含有H1和H2的混合物是作为一个源通过真空蒸镀的方法沉积而成。
(2)H1和H2是分别作为单独的两个源通过真空蒸镀的方法沉积而成。
(3)利用所述的组合物通过溶液加工的方法,特别是打印的方法沉积而成。
按照本发明的发光器件,其发光波长在300到1000nm之间,较好的是在350到900nm之间,更好的是在400到800nm之间。
本发明还涉及按照本发明的有机电致发光器件在各种电子设备中的应用,包含但不限于,显示设备,照明设备,光源,传感器等等。
下面将结合优选实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
具体实施例
1.化合物的合成
Figure PCTCN2022071815-appb-000037
Comp-1的合成:
氮气气氛下,将化合物1a(20.2g,68.4mmol)、化合物1b(13.1g,68.4mmol)、醋酸钯(0.77g,3.4mmol)、S-Phos(0.77g,1.9mmol)和叔丁醇钠(7.9g,82mmol)依次加入到500mL三口瓶中,再将200mL干燥的甲苯加入,抽真空氮气置换三次后加热110℃搅拌反应6小时,结束反应,将反应液旋转蒸发除去溶剂,用二氯甲烷溶解水洗三次,合并有机相经硅胶柱层析分离纯化(淋洗剂石油醚:二氯甲烷=10:1),得到24g中间体1c,产率75%。
将中间体1c(21g,44.9mmol)、碳酸铯(29.3g,89.9mmol)、双(三环己基膦)二氯化钯(1.7g,2.2mmol)、特戊酸(9.18g,89.9mmol)和100mL N,N-二甲基乙酰胺加入250mL三口烧瓶中,抽真空氮气置换三次后升温至140℃搅拌反应12小时,结束反应,加水稀释后抽滤,固体经硅胶柱层析分离纯化(淋洗剂石油醚:二氯甲烷=20:1),得到16.1g中间体1d,产率93%。
将中间体1d(14.9g,38.6mmol)和350mL亚磷酸三乙酯加入到500mL三口烧瓶中,抽真空氮气置换三次后升温至150℃搅拌反应12小时,结束反应,减压蒸馏除去溶剂,用二氯甲烷和去离子水萃取多次,合并有机相经硅胶柱层析分离纯化(淋洗剂石油醚:二氯甲烷=4:1),得到10.9g中间体1e,产率79.8%。
氮气气氛下,将化合物1e(10g,28.2mmol)、化合物1f(11g,28.2mmol)、碳酸铯(11g,33.8mmol)和碘化亚铜(0.5g,2.8mmol)依次加入到250mL的三口瓶中,再将100mL干燥的甲苯加入,抽真空氮气置换三次后加热110℃搅拌反应6小时,结束反应,将反应液旋转蒸发除去溶剂,用二氯甲烷溶解水洗三次,合并有机相经硅胶柱层析分离纯化(淋洗剂石油醚:二氯甲烷=20:1),得到14g固体粉末,产率75%。
Figure PCTCN2022071815-appb-000038
Comp-2的合成:
氮气气氛下,将化合物1e(10g,28.2mmol)、化合物2a(8g,28.2mmol)、碳酸铯(11g,33.8mmol)和碘化亚铜(0.5g,2.8mmol)依次加入到250mL的三口瓶中,再将100mL干燥的甲苯加入,抽真空氮气置换三次后加热110℃搅拌反应6小时,结束反应,将反应液旋转蒸发除去溶剂,用二氯甲烷溶解水洗三次,合并有机相经硅胶柱层析分离纯化(淋洗剂石油醚:二氯甲烷=15:1),得到12.2g固体粉末,产率77.4%。
Figure PCTCN2022071815-appb-000039
Comp-3的合成:
氮气气氛下,将化合物1e(10g,28.2mmol)、化合物3a(8g,28.2mmol)、碳酸铯(11g,33.8mmol)和碘化亚铜(0.5g,2.8mmol)依次加入到250mL的三口瓶中,再将100mL干燥的甲苯加入,抽真空氮气置换三次后加热110℃搅拌反应6小时,结束反应,将反应液旋转蒸发除去溶剂,用二氯甲烷溶解水洗三次,合并有机相经硅胶柱层析分离纯化(淋洗剂石油醚:二氯甲烷=15:1),得到11.3g固体粉末,产率72%。
Figure PCTCN2022071815-appb-000040
Comp-4的合成:
氮气气氛下,将化合物1e(10g,28.2mmol)、化合物4a(9.6g,28.2mmol)、碳酸铯(11g,33.8mmol)和碘化亚铜(0.5g,2.8mmol)依次加入到250mL的三口瓶中,再将100mL干燥的甲苯加入,抽真空氮气置换三次后加热110℃搅拌反应12小时,结束反应,将反应液旋转蒸发除去溶剂,用二氯甲烷溶解水洗三次,合并有机相经硅胶柱层析分离纯化(淋洗剂石油醚:二氯甲烷=20:1),得到11.9g固体粉末,产率66%。
Figure PCTCN2022071815-appb-000041
Comp-5的合成:
氮气气氛下,将化合物1e(10g,28.2mmol)、化合物5a(9.6g,28.2mmol)、碳酸铯(11g,33.8mmol)和碘化亚铜(0.5g,2.8mmol)依次加入到250mL的三口瓶中,再将100mL干燥的甲苯加入,抽真空氮气置换三次后加热110℃搅拌反应12小时,结束反应,将反应液旋转蒸发除去溶剂,用二氯甲烷溶解水洗三次,合并有机相经硅胶柱层析分离纯化(淋洗剂石油醚:二氯甲烷=20:1),得到12.4g固体粉末,产率69%。
Figure PCTCN2022071815-appb-000042
Comp-6的合成:
氮气气氛下,将化合物1e(10g,28.2mmol)、化合物6a(12.4g,28.2mmol)、碳酸铯(11g,33.8mmol)和碘化亚铜(0.5g,2.8mmol)依次加入到250mL的三口瓶中,再将100mL干燥的甲苯加入,抽真空氮气置换三次后加热110℃搅拌反应12小时,结束反应,将反应液旋转蒸发除去溶剂,用二氯甲烷溶解水洗三次,合并有机相经硅胶柱层析分离纯化(淋洗剂石油醚:二氯甲烷=20:1),得到15.3g固体粉末,产率76%。
Figure PCTCN2022071815-appb-000043
Comp-7的合成:
氮气气氛下,将化合物7a(20.2g,50mmol)、化合物7b(17.2g,100mmol)、四(三苯基磷)钯(3.5g,3mmol)、四丁基溴化铵(8.1g,25mmol)和氢氧化钠(4g,100mmol)依次加入到500mL的三口瓶中,再将200mL甲苯和50mL去离子水加入,抽真空氮气置换三次后加热110℃搅拌反应24小时,结束反应,将反应液旋转蒸发掉大部分溶剂,用二氯甲烷溶解水洗三次,合并有机相经硅胶柱层析分离纯化(淋洗剂石油醚),得到18.7g中间体7c,产率75%。
将(14.9g,30mmol)的中间体7c和100mL N,N-二甲基甲酰胺加入250mL单口瓶中,冰浴下滴加30mmol NBS的N,N-二甲基甲酰胺溶液,避光搅拌反应12小时,结束反应,将反应液倒入到300mL水中,抽滤,滤渣重结晶,得到17.3g中间体7d,产率90%。
在氮气气氛下,将中间体中间体7d(34.4g,20mmol)、中间体化合物7e(11.5g,20mmol)、四(三苯基磷)钯(0.7g,0.6mmol)和四丁基溴化铵(3.2g,10mmol)和氢氧化钠(1.6g,40mmol)依次加入到500mL三口烧瓶中,然后将200mL甲苯和50mL去离子水注入烧瓶并抽真空氮气置换三次,加热至110℃回流反应12小时,结束反应后旋转蒸发除去溶剂,然后用二氯甲烷将产物溶解并用饱和食盐水萃取三次,合并有机相经硅胶柱层析分离纯化(淋洗剂二氯甲烷:石油醚=1:10),得到18.7g固体粉末,产率85%。
Figure PCTCN2022071815-appb-000044
Comp-8的合成:
在氮气气氛下,将中间体7d(11.5g,20mmol)、化合物8a(44.4g,20mmol)、四(三苯基磷)钯(0.7g,0.6mmol)、四丁基溴化铵(3.2g,10mmol)、氢氧化钠(1.6g,40mmol)、(10mL)水和(80mL)甲苯加入250mL的三口瓶中,加热110℃搅拌反应12小时,结束反应,将反应液旋转蒸发掉大部分溶剂,用二氯甲烷溶解水洗三次,合并有机相经硅胶柱层析分离纯化(淋洗剂二氯甲烷:石油醚=1:10),得到21.8g固体粉末,产率85%。
2.OLED器件的制备及测量
下面通过具体实施例来详细说明采用上述的OLED器件的制备过程,红光OLED器件的结构为:ITO/HI/HI-1/HT-2/EML/ET:Liq/Liq/Al。
Figure PCTCN2022071815-appb-000045
制备步骤如下:
a、ITO(铟锡氧化物)导电玻璃基片的清洗:使用各种溶剂(例如氯仿、丙酮或异丙醇中的一种或几种)清洗,然后进行紫外臭氧处理。
b、HI(30nm),HT-1(60nm),HT-2(10nm),主体材料:3%RD(40nm),ET:Liq(50:50;30nm),Liq(1nm),Al(100nm)在高真空(1×10 -6毫巴)中热蒸镀而成;将ITO基片移入真空气相沉积设备中,在高真空(1×10 -6毫巴)下,采用电阻加热蒸发源形成厚度为30nm的HI层,在HI层上依次加热形成60nm的HT-1以及10nm的HT-2层。随后comp-1 置于一个蒸发单元,并且将化合物RD置于另外一个蒸发单元作为掺杂剂,使材料按不同速率气化,使得comp-1:Dopant的重量比在100:3,在空穴传输层上形成40nm的发光层。接着将ET和LiQ置于不同的蒸发单元,使其分别以50重量%的比例进行共沉积,在发光层上形成30nm的电子传输层,随后在电子传输层上沉积1nm的LiQ作为电子注入层,最后在所述电子注入层上沉积厚度为100nm的Al阴极。
c、封装:器件在氮气手套箱中用紫外线硬化树脂封装。
器件实施例2-11的实施方法同器件实施例1,除了用comp-2至comp-6以及不同的共主体取代comp-1。其中共主体是指两个化合物分别置于不同的蒸发单元,控制材料的重量比。
红光OLED器件的电流电压及发光(IVL)特性通过表征设备来表征,同时记录重要的参数如效率,寿命及驱动电压。红光OLED器件的性能总结在表1中。其中的寿命是相对对比例的值。
表1
Figure PCTCN2022071815-appb-000046
经检测,器件实施例1-11的发光效率和寿命与对比例1相比有明显提高。相比于对比例2中的B,氮杂环的引入可以提升材料的电子传输能力,改善载流子平衡,从而实现器件效率和寿命的提升。可见,采用本发明的有机化合物制备的OLED器件,其发光效率和寿命均得到大大提高。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种有机化合物,具有如通式(I)所示结构:
    Figure PCTCN2022071815-appb-100001
    其中:
    X 1-X 13独立表示为CR 1,且相邻的CR 1时可稠合成环;
    ETU为通式(I-1)或(I-2)所示的结构;
    Figure PCTCN2022071815-appb-100002
    “*”表示连接L的位点;
    A为C6-C30的芳香环或C5-C30杂芳香环或其组合;
    Y 1-Y 6独立表示为N或CR 2,且Y 1-Y 3中至少有一个为N,Y 4-Y 6中至少有一个为N;
    R 1和R 2在每次出现时,可以相同或不同地是H、D,或具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或具有3至20个C原子的支链或环状的烷基、烷氧基、硫代烷氧基基团或甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团,氨基甲酰基基团,卤甲酰基基团,甲酰基基团,异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF 3基团,Cl,Br,F,可交联的基团,或具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些基团的组合;
    L为连接基团,选自单键,C6-C60的亚芳基,亚芴基,C2-C60的杂芳香基团,C3-C60的脂肪族环,C6-C60的芳香族环的稠环基,以及这些基团的组合;
    Ar 1、Ar 2分别独立选自具有5至40个环原子的取代或未取代的芳香基团或杂芳香基团,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些基团的组合,其中一个或多个Ar 1、Ar 2基团可以彼此和/或与其键合的环形成单环或多环的脂族或芳族环系。
  2. 根据权利要求1所述的有机化合物,其特征在于,ETU选自以下所示的结构:
    Figure PCTCN2022071815-appb-100003
    Figure PCTCN2022071815-appb-100004
    其中,
    Z 1和Z 2分别独立选自S,O,CR 117R 118或NR 119
    R 101-R 119可以是相同或不同的基团,其含义同权利要求1中的R 1
    “*”表示连接L的位点;
    o,p,t,r为0-4的任一整数;q为0-6的任一整数;m和n分别独立选自0或1,且m+n=1;
    其它符号的含义同权利要求1。
  3. 根据权利要求1或2所述的有机化合物,其特征在于,Ar 1、Ar 2、L相同或不同地选自如下基团中的一种或它们中的组合:
    Figure PCTCN2022071815-appb-100005
    其中,
    V在多次出现时,相互独立选自CR 3或N;
    W选自CR 4R 5,SiR 6R 7,NR 8,C(=O),S或O;
    R 3-R 8在每次出现时,相同或不同地选自H、D,具有1至20个C原子的直链烷基、烷氧基、硫代烷氧基基团,或具有3至20个C原子的支链或环状的烷基、烷氧基、硫代烷氧基基团或甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团,氨基甲酰基基团,卤甲酰基基团,甲酰基基团,异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF 3基团,Cl,Br,F,可交联的基团,或具有5至40个环原子的取代或未取代的芳香基团或杂芳香基团,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些基团的组合;其中一个或多个基团可以彼此和/或与其键合的基团形成环系。
  4. 一种高聚物,包含至少一个重复单元,其特征在于,所述重复单元包含一种按照权利要求1-3任一项所述的有机化合物所对应的结构。
  5. 一种混合物,至少包含有机化合物H1和有机化合物H2,其特征在于,所述有机化合物H1选自权利要求1-3任一项所述的有机化合物或如权利要求4所述的高聚物,所述有机化合物H2是另一有机功能材料,且选自空穴注入材料、空穴传输材料、电子传输材料、电子注入材料、电子阻挡材料、空穴阻挡材料、发光材料、主体材料、有机染料中的一种或多种。
  6. 根据权利要求5所述的混合物,其特征在于,所述有机化合物H2具有如下通式(II)所示的结构:
    Figure PCTCN2022071815-appb-100006
    其中,B选自取代或未取代的碳原子数1-30的烷基、取代或未取代的碳原子数3-30的环烷基、取代或未取代的环原子数为5-60芳香族烃基或芳香族杂环基;D为富电子基团;s为1-6的任一整数。
  7. 根据权利要求6所述的混合物,其特征在于,富电子基团D包含有如下任一基团或其组合:
    Figure PCTCN2022071815-appb-100007
    其中,
    Ar 3表示环原子数为5-40芳香基团或杂芳香基团;
    Z 1、Z 2、Z 3分别独立选自单键、CR 21R 22、SiR 23R 24、NR 25、O、C(=O)、S、S=O或SO 2,且Z 2和Z 3不同时为单键;
    R 13-R 25分别独立选自H、D、具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或具有3至20个C原子的支链或环状的烷基、烷氧基、硫代烷氧基基团或甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团,氨基甲酰基基团,卤甲酰基基团,甲酰基基团,异氰基基团,异氰酸酯基团,硫氰酸酯基团,异硫氰酸酯基团,羟基基团,硝基基团,CF 3基团,Cl,Br,F,可交联的基团,或具有5至40个环原子的取代或未取代的芳香基团或杂芳香基团,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些基团的组合,其中一个或多个基团可以彼此和/或与其键合的基团形成环系。
  8. 根据权利要求6或7所述的一种混合物,其特征在于,所述混合物进一步包含一种发光材料,所述发光材料可选于单重态发光体、三重态发光体或TADF材料。
  9. 一种组合物,其特征在于,包含至少一种如权利要求1-3任一项所述的有机化合物或如权利要求4所述的高聚物或如权利要求5-8中任一项所述的混合物,及至少一种有机溶剂。
  10. 一种有机电子器件,所述有机电子器件包含功能层,其特征在于,所述功能层包含一种如权利要求1-3任一项所述的有机化合物或如权利要求4所述的高聚物或如权利要求5-8中任一项所述的混合物。
  11. 根据权利要求10所述的有机电子器件,其特征在于,所述有机电子器件选于有机发光二极管、有机光伏电池、有机发光电池、有机场效应管、有机发光场效应管、有机激光器、有机自旋电子器件、光电传感器、有机传感器及有机等离激元发射二极管。
  12. 根据权利要求11所述的有机电子器件,其特征在于,所述有机电子器件是有机电致发光器件,且至少包含一种如权利要求1-3任一项所述的有机化合物或如权利要求4所述的高聚物或如权利要求5-8中任一项所述的混合物。
PCT/CN2022/071815 2021-01-13 2022-01-13 一种有机化合物、组合物及其在有机电子器件中的应用 WO2022152214A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280010086.9A CN116829676A (zh) 2021-01-13 2022-01-13 一种有机化合物、组合物及其在有机电子器件中的应用
US18/351,664 US20230357169A1 (en) 2021-01-13 2023-07-13 Organic compounds, mixtures, and uses thereof in organic eletronic devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110041373.3 2021-01-13
CN202110041373 2021-01-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/351,664 Continuation US20230357169A1 (en) 2021-01-13 2023-07-13 Organic compounds, mixtures, and uses thereof in organic eletronic devices

Publications (1)

Publication Number Publication Date
WO2022152214A1 true WO2022152214A1 (zh) 2022-07-21

Family

ID=82446939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071815 WO2022152214A1 (zh) 2021-01-13 2022-01-13 一种有机化合物、组合物及其在有机电子器件中的应用

Country Status (3)

Country Link
US (1) US20230357169A1 (zh)
CN (1) CN116829676A (zh)
WO (1) WO2022152214A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170166581A1 (en) * 2014-07-21 2017-06-15 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
CN110872300A (zh) * 2019-11-18 2020-03-10 烟台九目化学股份有限公司 一种含氮杂七元环咔唑类有机发光材料及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170166581A1 (en) * 2014-07-21 2017-06-15 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
CN110872300A (zh) * 2019-11-18 2020-03-10 烟台九目化学股份有限公司 一种含氮杂七元环咔唑类有机发光材料及其应用

Also Published As

Publication number Publication date
US20230357169A1 (en) 2023-11-09
CN116829676A (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
CN110746409B (zh) 有机化合物、混合物、组合物及电子器件和应用
CN111278795B (zh) 有机混合物及其在有机电子器件中的应用
CN109705107B (zh) 稠环有机化合物、包含其的混合物及有机电子器件
EP3547385B1 (en) Organic mixture, composition, and organic electronic component
WO2017118238A1 (zh) 氘代三芳胺衍生物及其在电子器件中的应用
CN109970660B (zh) 含稠杂环的螺芴类有机化合物及其应用
WO2019120263A1 (zh) 有机混合物及其在有机电子器件中的应用
WO2018095393A1 (zh) 有机化合物、有机混合物、有机电子器件
WO2017118252A1 (zh) 含砜基稠杂环化合物及其应用
WO2017118262A1 (zh) 有机化合物及其应用
CN110698475A (zh) 稠环有机化合物及其应用
WO2019128599A1 (zh) 含氮杂环化合物、高聚物、混合物、组合物及其用途
CN115925719A (zh) 一种有机化合物、组合物及其在有机电子器件中的应用
WO2019114764A1 (zh) 一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在电子器件中的应用
CN110734396B (zh) 有机化合物、高聚物、混合物、组合物及有机电子器件
WO2018103746A1 (zh) 咔唑苯类稠环衍生物、聚合物、混合物、组合物、有机电子器件及其制备方法
WO2021129337A1 (zh) 一种有机化合物及有机电子器件
CN112979678A (zh) 一种有机化合物、高聚物、混合物、组合物及有机电子器件
WO2022152214A1 (zh) 一种有机化合物、组合物及其在有机电子器件中的应用
CN112724152B (zh) 含氮杂环有机化合物及其应用
WO2022152213A1 (zh) 一种有机化合物、组合物及其在有机电子器件中的应用
CN112724125B (zh) 含氮有机化合物及其应用
CN110746422B (zh) 有机化合物、高聚物、混合物、组合物及其有机电子器件
CN109791982B (zh) 有机混合物、有机组合物、有机电子器件及其制备方法
WO2023125498A1 (zh) 一种有机化合物,包含其混合物,组合物,有机电子器件及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739090

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280010086.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22739090

Country of ref document: EP

Kind code of ref document: A1