WO2022152105A1 - 信道状态信息的上报方法、装置及终端 - Google Patents

信道状态信息的上报方法、装置及终端 Download PDF

Info

Publication number
WO2022152105A1
WO2022152105A1 PCT/CN2022/071236 CN2022071236W WO2022152105A1 WO 2022152105 A1 WO2022152105 A1 WO 2022152105A1 CN 2022071236 W CN2022071236 W CN 2022071236W WO 2022152105 A1 WO2022152105 A1 WO 2022152105A1
Authority
WO
WIPO (PCT)
Prior art keywords
subbands
cqi
csi
time window
subband
Prior art date
Application number
PCT/CN2022/071236
Other languages
English (en)
French (fr)
Inventor
陈晓航
潘学明
曾超君
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022152105A1 publication Critical patent/WO2022152105A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • H04L1/0693Partial feedback, e.g. partial channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention claims the priority of the Chinese patent application with the application number of 202110057998.9 and the title of "Reporting Method, Apparatus and Terminal for Channel Status Information" submitted to the Chinese Patent Office on January 15, 2021, the entire contents of which are by reference Incorporated in the present invention.
  • the present application belongs to the technical field of wireless communication, and in particular relates to a method, device and terminal for reporting channel state information.
  • the New Radio (NR) system also introduces a downlink aperiodic Channel State Information (CSI) reporting mechanism, that is, the base station can use it as needed Downlink Control Information (DCI) of uplink scheduling triggers the transmission of downlink CSI on the scheduled Physical Uplink Shared Channel (PUSCH).
  • the base station can configure an aperiodic trigger state list (Aperiodic Trigger State List) for the user equipment (User Equipment, UE) in advance through radio resource control (Radio Resource Control, RRC) signaling, and each state corresponds to an associated reporting configuration information
  • Each item of reporting configuration information specifies how to report and which CSI reference signal (CSI Reference Signal, CSI-RS) resource set to use.
  • the "CSI request" field is used to specifically indicate which pre-configured aperiodic trigger state is actually triggered, and indicate that the corresponding CSI reporting information is carried on the PUSCH scheduled by the DCI.
  • the UE when the aperiodic trigger state is triggered, the UE performs CSI measurement on the subband (subband) indicated by the triggered aperiodic trigger state at the current moment, and reports according to the measurement result at the current moment.
  • the network side performs scheduling according to the reported subband CSI. Since the UE only reports the CSI of the subband specified by the network side when it is triggered, and there is a gap between the UE reporting CSI and the network side scheduling, it is likely that the network side will schedule the UE on the subband with poor quality, resulting in poor transmission performance. Decline.
  • the embodiments of the present application provide a method, device and terminal for reporting channel state information, which can solve the problem that the network side schedules the UE in a subband with poor quality because the UE only reports the CSI of the subband specified by the network side when it is triggered on the problem.
  • a first aspect provides a method for reporting channel state information, the method comprising: a terminal measuring CSI of N first subbands in a first time window, wherein the first time window includes M time domains unit, where N is an integer greater than 1, and M is an integer greater than or equal to 1; Selecting P second subbands, where P is an integer greater than 0 and less than or equal to N; and reporting a CSI report, where the CSI report includes the second CSI corresponding to the P second subbands.
  • an apparatus for reporting channel state information including: a measurement module configured to measure the CSI of N first subbands in a first time window, wherein the first time window includes M A time domain unit, where N is an integer greater than 1, and M is an integer greater than or equal to 1; a selection module is configured to, according to the first CSI of the N first subbands measured in the first time window, select from Select P second subbands from the N first subbands, where P is an integer greater than 0 and less than or equal to N; a reporting module, configured to report a CSI report, wherein the CSI report includes P The second CSI corresponding to the second subband.
  • a terminal in a third aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, when the program or instruction is executed by the processor.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect are implemented.
  • a chip in a fifth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a terminal program or instruction to implement the first aspect steps of the method.
  • a computer program product comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the The processor implements the steps of the method as described in the first aspect when executed.
  • the terminal measures the CSI of the multiple first subbands within the first time window, and according to the first CSI of the multiple first subbands obtained by the measurement in the first time window, from the Nth P second subbands are selected from one subband, and the second CSI corresponding to the P second subbands is reported. Therefore, the UE can select the appropriate P second subbands to report according to the first CSI of the N first subbands measured in the first time window, so that the network side can choose to schedule the UE on the subband with better quality , to improve transmission performance.
  • FIG. 1 shows a schematic diagram of a wireless communication system to which an embodiment of the present application can be applied
  • FIG. 2 shows a flowchart of a method for reporting channel state information provided by an embodiment of the present application
  • FIG. 3 shows a schematic structural diagram of an apparatus for reporting channel state information provided by an embodiment of the present application
  • FIG. 4 shows a schematic structural diagram of a communication device provided by an embodiment of the present application
  • FIG. 5 shows a schematic diagram of a hardware structure of a terminal provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the description below, but these techniques can also be applied to applications other than NR system applications, such as 6th Generation (6th Generation) , 6G) communication system.
  • 6th Generation 6th Generation
  • 6G 6th Generation
  • FIG. 1 shows a schematic diagram of a wireless communication system to which an embodiment of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, Wireless Local Area Network (WLAN) ) access point, wireless fidelity (Wireless Fidelity, WiFi) node, transmitting and receiving point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to For specific technical terms, it should be noted that in the embodiments of this application, only the base station in the NR system is used as an example, but
  • FIG. 2 shows a schematic flowchart of a method for reporting channel state information in an embodiment of the present application, and the method 200 may be executed by a terminal.
  • the method may be performed by software or hardware installed on the terminal.
  • the method may include the following steps.
  • S210 The terminal measures the CSI of N first subbands in a first time window, where the first time window includes M time domain units, where N is an integer greater than 1, and M is greater than or equal to 1 the integer.
  • the terminal measures the CSI of multiple first subbands in a first time window including M time domain units.
  • the terminal may measure the CSI of the N first subbands within the first time window when the subband CSI needs to be reported. For example, the terminal may measure N first subbands at time t, and obtain CSI measurement information of the N first subbands from time (t-t0) to time t, where from time (t-t0) to time t Time t is the first time window, and t0 is the window length of the first time window.
  • the window length of the first time window may be indicated by DCI.
  • the network side indicates the window length of the first time window in the DCI triggering CSI reporting, and the UE may determine the first time window according to the indication of the DCI. window length.
  • the window length of the first time window may also be configured by radio resource control (Radio Resource Control, RRC).
  • RRC Radio Resource Control
  • the network side may configure an offset (offset) through RRC, the offset is relative to the CSI measurement time t or the CSI reporting time t1, and the offset may also be a CSI measurement reference interval. That is to say, in this possible implementation manner, the terminal according to the RRC configuration, within the time window in which the CSI measurement time t or the CSI reporting time t1 configured by the network side is advanced by offset or delayed by offset, the N first The CSI of the subband is measured.
  • RRC Radio Resource Control
  • the window length of the first time window may also be predefined, for example, a predefined CSI calculation time.
  • the type of measurement performed may be channel measurement, interference measurement, or beam measurement, or the above-mentioned measurement may be performed simultaneously.
  • Various types of measurements for example, channel measurement and beam measurement, or interference measurement and beam measurement, or channel measurement and interference measurement, or channel measurement, interference measurement, and beam measurement, can be determined according to actual applications, which are implemented in this application. The examples are not limited.
  • the N first subbands may be all subbands of the terminal, or may be part of the subbands of the terminal.
  • the CSI reference signal (CSI Reference Signal, CSI-RS) corresponding to each of the first subbands may be triggered by DCI, for example, the network side indicates the CSI-RS in the DCI triggering CSI reporting.
  • CSI-RS CSI Reference Signal
  • the CSI-RS corresponding to each of the first subbands may also be determined by the CSI-RS associated with the CSI report.
  • the network side may configure the association between the CSI report and the CSI-RS resource through RRC, wherein one CSI-RS resource may be associated with one or more CSI reports, and one CSI report may be associated with one or more CSI-RS resources.
  • the terminal can obtain the CSI-RS resource associated with the CSI report, so as to determine the CSI-RS corresponding to the first subband.
  • S212 according to the first CSI of the N first subbands measured in the first time window, select P second subbands from the N first subbands, where P is greater than 0 and less than or equal to Integer of N.
  • the UE may directly report the measured CSI of the P second subbands, that is, the first CSI, or the UE may also perform a measurement on the measured CSI of the P second subbands. Calculation, for example, for a subband, if multiple CSI measurements are performed in the first time window, the UE may calculate the Channels Quality Indication (CQI) values obtained from multiple measurements, and report the values obtained from multiple measurements. The mean, standard deviation or variance, etc. of the CQI values of the second subband.
  • CQI Channels Quality Indication
  • the terminal when the terminal needs to report subband CSI, the terminal can use the statistical information of the CSI corresponding to the N first subbands and/or the statistical information of the CSI corresponding to each measurement moment. information to determine the corresponding P second subbands.
  • the terminal measures the CSI of the N first subbands at the first time (t), obtains the CSI of each of the first subbands at the first time, and counts the CSI from the second time (t-t0 ) to the first time (t), the statistical information of the CSI of each of the first subbands measured at each measurement time.
  • from the second time to the first time is the first time window.
  • the terminal may perform L measurements on the CSI of the N first subbands, that is, the terminal reporting the CSI corresponding to the second subband may be performed L times on the second subband. Statistics of the measured CSI.
  • one measurement moment may correspond to one of the foregoing time domain units.
  • the terminal measures the CSI of the multiple first subbands within the first time window, and obtains the first CSI of the multiple first subbands according to the measurement in the first time window, Select P second subbands from the N first subbands, and report the second CSI corresponding to the P second subbands. Therefore, the UE can select the appropriate P second subbands to report according to the first CSI of the N first subbands measured in the first time window, so that the network side can choose to schedule the UE on the subband with better quality , to improve transmission performance.
  • S210 may include: the terminal measures the CSI of the N first subbands on L time domain units of the first time window, where L is greater than or equal to Integer of 1, and L is less than or equal to M, and L is indicated by DCI or configured by RRC.
  • each time-domain unit corresponds to a measurement moment, and the UE performs measurement on the CSI of the L first subbands at each measurement moment, so that it can measure the CSI of the L first subbands.
  • L measurement results are acquired, and according to the L measurement results, the terminal can judge the channel variation of each first subband.
  • the time domain unit includes but is not limited to one of the following: a time slot, a sub-slot, a symbol, or a plurality of predetermined symbols.
  • the measured first CSI of the first subband may include, but is not limited to, the following three forms: Channels Quality Indication (CQI), Pre-coding Matrix Indicator (Pre-coding Matrix Indicator) , PMI), Rank Indicator (Rank Indicator, RI).
  • the first CSI includes a CQI value.
  • the second CSI corresponding to the second subband reported in S214 may include the following At least one of: the mean value of each CQI value obtained by measuring the second subband within the first time window, and the average value of each CQI value obtained by measuring the second subband within the first time window.
  • the mean, standard deviation or variance of the CQI value of the second subband is reported , instead of reporting the CQI values obtained by each measurement, which can reduce the amount of reported data and save uplink overhead.
  • the UE may calculate the CQI information of each of the first subbands, and then select from the N first subbands according to the CQI information of each of the first subbands P said second subbands.
  • the CQI information includes one of the following: the mean value of each CQI value obtained in the first time window, the variance of each CQI value obtained in the first time window, and the The standard deviation of each CQI value obtained within the window. That is to say, in this possible implementation manner, the UE collects statistics on the CQIs of each first subband measured in the first time window, and obtains the CQI information of each first subband in the first time window. For the CQI information of the first subband within the first time window, select P second subbands.
  • the UE may use the N first subbands as the second subbands, that is, select and report the N first subbands. For example, assuming that the N first subbands include subbands 1 to 8, the UE performs CSI measurements on subbands 1 to 8 at time t, and statistically calculates the mean CQI of each subband in the time window from (t-t0) to t. The UE reports the average CQI of each subband.
  • the UE may also select P subbands with the largest or smallest target CQI information from the N first subbands, where the target CQI information may include one of the following: the average of the CQI values, the CQI Variance of values, standard deviation of CQI values.
  • the UE can sort each subband according to its CQImean(k) (that is, the mean value of CQI values) (in ascending or descending order), and select the largest Or the P subbands corresponding to the smallest CQImean(k) are P second subbands.
  • CQImean(k) that is, the mean value of CQI values
  • the CQIvariance(k) that is, the standard deviation of the CQI value
  • CQIstd(k) that is, the variance of the CQI value
  • P subbands corresponding to the largest or smallest CQIvariance(k) or CQIstd(k) are selected, that is, P second subbands.
  • the N first subbands include: subbands 1 to 8
  • the UE sorts subbands 1 to 8 according to the CQI variance or standard deviation (ascending or descending order) corresponding to subbands 1 to 8, and the CQI variance or standard deviation comes first.
  • the 2-bit subbands are subband 3 and subband 4, and the UE uses subband 3 and subband 4 as the second subband.
  • the UE may also select S subbands with the largest or smallest first target CQI information from the N first subbands, and then select a second target from the S subbands
  • the P second target subbands with the largest or smallest CQI information where S is an integer greater than 0, and N ⁇ S ⁇ P; wherein the first target CQI information includes: the average of the CQI values, the second The target CQI information includes: the variance of the CQI value or the standard deviation of the CQI value; or, the first target CQI information includes: the variance of the CQI value or the standard deviation of the CQI value, and the second target CQI information includes: the CQI value mean.
  • the UE sorts subbands 1 to 8 according to their corresponding CQI averages (in ascending or descending order), and the subbands with the top 4 CQI averages are subbands 1, 2, 3 and subband 4.
  • the UE sorts subbands 1 to 4 according to their corresponding CQI variances or standard deviations (in ascending or descending order).
  • the subbands with the top two CQI variances or standard deviations are subband 3 and subband 4, and the UE chooses to report subband 3 and subband 4. 4 CQI mean or CQI variance or standard deviation.
  • the UE sorts each subband according to its corresponding CQIvariance(k) (in ascending or descending order), and selects the one corresponding to the largest CQIvariance(k).
  • the UE sorts subbands 1 to 8 according to the corresponding CQI variance or standard deviation (in ascending or descending order), and the subbands whose CQI variances or standard deviations are ranked in the top 4 are: subband 1,2,3 and subband 4.
  • the UE sorts subbands 1 to 4 according to the corresponding CQI mean value (ascending or descending order).
  • the subbands with the top two CQI mean values are subband 3 and subband 4, and the UE chooses to report the CQI mean or CQI variance of subband 3 and subband 4. or standard deviation.
  • the UE may select P second subbands with the largest or smallest target value from the N first subbands, where the target value is (x*CQImean-y* CQIstd) or (x*CQImean+y*CQIstd), x and y are rational numbers > 0, CQImean is the mean of CQI values, and CQIstd is the standard deviation of CQI values. For example, sort each first subband according to its corresponding target value (in ascending order or descending order), and select P first subbands with the largest or smallest target value as the second subband.
  • the UE sorts each subband according to its corresponding [CQImean(k)-CQIstd(k)], and selects the largest [CQImean(k) - P subbands corresponding to CQIstd(k)], that is, P second subbands.
  • x and y may be configured or predetermined by the network side.
  • the UE when selecting P second subbands from the N first subbands according to the first CSI of the N first subbands measured in the first time window, the UE may For the measurement on each of the L time-domain units, the N first subbands are sorted according to the measured CQI values from large to small or from small to large; then according to L According to the arrangement order of the N first subbands in the secondary sorting, the P second subbands that satisfy a predetermined condition are selected from the N first subbands.
  • the predetermined condition includes but is not limited to one of the following: the CQI value is the largest or the smallest number of times; the ranking average is the largest or the smallest.
  • the CQI corresponding to subband 2 is the largest among all subbands, and at time t3 and t5, subband 1
  • the corresponding CQI is the largest among all subbands, and the ones with the largest number of times are subband 2 and subband 1.
  • the UE uses subband 2 and subband 1 as the second subband.
  • the ranking The two subbands with the smallest average value are subband 2 and subband 1
  • the UE uses subband 2 and subband 1 as the second subband.
  • the UE selects P second subbands from N first subbands according to the CSI of each first subband in the L measurements in the first time window, and reports the P second subbands.
  • the mean, standard deviation or variance of the CQI values of the second subband so that the UE does not need to report the CSI of all subbands to the network side at every moment, and the network side can also learn the changes of the channel, improve the scheduling efficiency, avoid Added feedback overhead.
  • the execution subject may be a device for reporting channel state information, or, in the device for reporting channel state information, a method for performing the method for reporting channel state information is executed. control module.
  • the method for reporting channel state information performed by a device for reporting channel state information is taken as an example to describe the device for reporting channel state information provided by the embodiments of the present application.
  • FIG. 3 shows a schematic structural diagram of an apparatus for reporting channel state information provided by an embodiment of the present application.
  • the apparatus 300 for reporting channel state information mainly includes: a measurement module 301 , a selection module 302 and a reporting module 303 .
  • the measurement module 301 is configured to measure the CSI of N first subbands in a first time window, where the first time window includes M time domain units, where N is greater than is an integer of 1, and M is an integer greater than or equal to 1;
  • the selection module 302 is configured to select from the N first subbands according to the first CSI of the N first subbands measured in the first time window P second subbands, where P is an integer greater than 0 and less than or equal to N;
  • the reporting module 303 is configured to report a CSI report, where the CSI report includes the first subbands corresponding to the P second subbands Two CSI.
  • the measurement module 301 determines the length of the first time window according to at least one of the following:
  • the measurement module 301 measures the CSI of the N first subbands in the first time window, including:
  • Measurements of at least one of the following types are performed on the first subband: channel measurements, interference measurements, and beam measurements.
  • the CSI reference signal corresponding to each of the first subbands is triggered by DCI, or determined by the CSI reference signal associated with the CSI report.
  • the measurement module 301 measures the CSI of the N first subbands in the first time window, including:
  • L is an integer greater than or equal to 1, and L is less than or equal to M, and L is determined by the DCI Indicated or configured by RRC.
  • the first CSI includes: a channel quality indicator CQI value;
  • the second CSI corresponding to the second subband includes at least one of the following: The mean value of each CQI value measured in the two subbands, the variance of each CQI value measured by the second subband in the first time window, and the second subband in the first time window The standard deviation of each CQI value measured within.
  • the selecting module 302 selects P second subbands from the N first subbands according to the first CSI of the N first subbands measured in the first time window ,include:
  • the CQI information includes one of the following: an average value of each CQI value obtained in the first time window, a value of each CQI value obtained in the first time window The variance of the CQI value and the standard deviation of each CQI value obtained within the first time window;
  • the P second subbands are selected from the N first subbands.
  • the selection module 302 selects the P second subbands from the N first subbands according to the CQI information of each of the first subbands, including:
  • the P second subbands are selected from the N first subbands, where the P second subbands are the N first subbands P subbands with the largest or smallest target CQI information in the subbands, where the target CQI information includes one of the following: the mean of CQI values, the variance of CQI values, and the standard deviation of CQI values.
  • the selection module 302 selects the P second subbands from the N first subbands according to the CQI information of each of the first subbands, including:
  • the CQI information of each of the first subbands select S subbands with the largest or smallest first target CQI information from the N first subbands, and then select a second target from the S subbands
  • the P second target subbands with the largest or smallest CQI information where S is an integer greater than 0, and N ⁇ S ⁇ P; wherein the first target CQI information includes: the average of the CQI values, the second The target CQI information includes: the variance of the CQI value or the standard deviation of the CQI value; or, the first target CQI information includes: the variance of the CQI value or the standard deviation of the CQI value, and the second target CQI information includes: the CQI value mean.
  • the selection module 302 selects the P second subbands from the N first subbands according to the CQI information of each of the first subbands, including:
  • CQI information of each of the first subbands select P second subbands with the largest or smallest target value from the N first subbands, where the target value is (x*CQImean ⁇ y *CQIstd) or (x*CQImean+y*CQIstd), x and y are rational numbers > 0, CQImean is the mean of CQI values, and CQIstd is the standard deviation of CQI values.
  • the x and y are configured or predetermined by the network side.
  • the selecting module 302 selects P second subbands from the N first subbands according to the first CSI of the N first subbands measured in the first time window ,include:
  • the N first subbands are sorted according to the measured CQI values from large to small or from small to large;
  • the P second subbands that satisfy the predetermined condition are selected from the N first subbands.
  • the predetermined condition includes one of the following:
  • the CQI value has the largest or smallest number of times
  • the time domain unit includes one of the following: a time slot, a sub-slot, a symbol, or a plurality of predetermined symbols.
  • the device for reporting channel state information in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the device for reporting channel state information in this embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the device for reporting channel state information provided by the embodiment of the present application can implement each process implemented by the method embodiment in FIG. 2 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides a communication device 400 , including a processor 401 , a memory 402 , and programs or instructions stored in the memory 402 and executable on the processor 401
  • a communication device 400 including a processor 401 , a memory 402 , and programs or instructions stored in the memory 402 and executable on the processor 401
  • the communication device 400 is a terminal
  • the program or instruction is executed by the processor 401
  • each process of the above-mentioned channel state information reporting method embodiment can be realized, and the same technical effect can be achieved. Repeat.
  • FIG. 5 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 500 includes but is not limited to: a radio frequency unit 501, a network module 502, an audio output unit 503, an input unit 504, a sensor 505, a display unit 506, a user input unit 507, an interface unit 508, a memory 509, and a processor 510 and other components .
  • the terminal 500 may further include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 510 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 5 does not constitute a limitation to the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 504 may include a graphics processor (Graphics Processing Unit, GPU) 5041 and a microphone 5042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 506 may include a display panel 5061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 507 includes a touch panel 5071 and other input devices 5072 .
  • the touch panel 5071 is also called a touch screen.
  • the touch panel 5071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 5072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which are not described herein again.
  • the radio frequency unit 501 receives the downlink data from the network side device, and then processes it to the processor 510; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 501 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 509 may be used to store software programs or instructions as well as various data.
  • the memory 509 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 509 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 510 may include one or more processing units; optionally, the processor 510 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 510.
  • the processor 510 is configured to measure the CSI of the N first subbands in a first time window, where the first time window includes M time domain units, where N is an integer greater than 1, and M is an integer greater than or equal to 1; according to the first CSI of the N first subbands measured in the first time window, select P second subbands from the N first subbands, where P is an integer greater than 0 and less than or equal to N;
  • the radio frequency unit 501 is configured to report a CSI report, wherein the CSI report includes the second CSI corresponding to the P second subbands.
  • the CSI of the multiple first subbands can be measured within the first time window, and according to the first CSI of the multiple first subbands measured in the first time window, from Select P second subbands from the N first subbands, and report the second CSI corresponding to the P second subbands. Therefore, according to the first CSI of the N first subbands measured by the terminal in the first time window, the appropriate P second subbands can be selected for reporting, so that the network side can choose to schedule the UE in the subband with better quality. Bring on, improve transmission performance.
  • the processor 510 is further configured to perform at least one of the following types of measurement on the first subband: channel measurement, interference measurement, and beam measurement.
  • the processor 510 is further configured to measure the CSI of the N first subbands on the L time domain units of the first time window, where L is an integer greater than or equal to 1, And L is less than or equal to M, and L is indicated by DCI or configured by RRC.
  • the processor 510 is further configured to calculate the CQI information of each of the first subbands, wherein the CQI information includes one of the following: the mean value of each CQI value obtained in the first time window, The variance of each CQI value obtained in the first time window, and the standard deviation of each CQI value obtained in the first time window; and selecting P of the second subbands from the first subbands.
  • the processor 510 is further configured to select the P second subbands from the N first subbands according to the CQI information of each of the first subbands, where the P second subbands are The second subband is the P subbands with the largest or smallest target CQI information in the N first subbands, and the target CQI information includes one of the following: the mean of the CQI values, the variance of the CQI values, and the standard deviation of the CQI values .
  • the processor 510 is further configured to select S subbands with the largest or smallest first target CQI information from the N first subbands according to the CQI information of each of the first subbands, and then select the S subbands with the largest or smallest first target CQI information from the N first subbands.
  • the second target CQI information includes: the variance of the CQI value or the standard deviation of the CQI value; or, the first target CQI information includes: the variance of the CQI value or the standard deviation of the CQI value, so
  • the second target CQI information includes: an average value of CQI values.
  • the processor 510 is further configured to select P second subbands with the largest or smallest target value from the N first subbands according to the CQI information of each of the first subbands, wherein,
  • the target value is (x*CQImean ⁇ y*CQIstd) or (x*CQImean+y*CQIstd), x and y are rational numbers >0, CQImean is the mean of the CQI values, and CQIstd is the standard deviation of the CQI values.
  • the processor 510 is further configured to measure on each of the L time domain units, according to the measured CQI values from large to small or from small to large, for the N described CQI values.
  • the first subbands are sorted; the P second subbands that satisfy a predetermined condition are selected from the N first subbands according to the arrangement order of the N first subbands in the L sorting.
  • the embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the above-mentioned channel state information reporting method embodiment is implemented, and The same technical effect can be achieved, and in order to avoid repetition, details are not repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used for running network-side device programs or instructions to implement the above channel state information
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used for running network-side device programs or instructions to implement the above channel state information
  • An embodiment of the present application further provides a computer program product, the computer program product includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being When the processor is executed, each process of the above channel state information reporting method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, details are not described here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信道状态信息的上报方法、装置及终端,属于无线通信技术领域。其中,该信道状态信息的上报方法包括:终端在第一时间窗对N个第一子带的CSI进行测量,其中,所述第一时间窗包括M个时域单元,其中,N为大于1的整数,M为大于或等于1的整数;根据在所述第一时间窗测量得到的N个第一子带的第一CSI,从N个第一子带中选择P个第二子带,其中,P为大于0且小于或等于N的整数;上报CSI报告,其中,所述CSI报告中包括P个所述第二子带对应的第二CSI。

Description

信道状态信息的上报方法、装置及终端
交叉引用
本发明要求在2021年01月15日提交中国专利局、申请号为202110057998.9、发明名称为“信道状态信息的上报方法、装置及终端”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于无线通信技术领域,具体涉及一种信道状态信息的上报方法、装置及终端。
背景技术
与长期演进型(Long Term Evolution,LTE)系统类似,在新空口(New Radio,NR)系统中也引入了下行非周期信道状态信息(Channel State Information,CSI)上报机制,即基站可以根据需要使用上行调度的下行控制信息(Downlink Control Information,DCI)触发下行CSI在调度的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)上传输。基站可以通过无线资源控制(Radio Resource Control,RRC)信令预先为用户设备(User Equipment,UE)配置一个非周期触发状态列表(Aperiodic Trigger State List),每个状态对应于一个关联的上报配置信息列表,每项上报配置信息指明如何上报以及使用哪些CSI参考信号(CSI Reference Signal,CSI-RS)资源集合。在上行调度的DCI中通过“CSI request”域来具体指示哪一个预先配置的非周期触发状态实际被触发,以及指示对应的CSI上报信息在该DCI调度的PUSCH上承载。
在相关技术中,UE在非周期触发状态被触发时,对当前时刻的被触发的 非周期触发状态指示的子带(subband)进行CSI测量,并根据当前时刻的测量结果进行上报。网络侧根据上报的subband CSI进行调度。由于UE只上报网络侧指定的子带在被触发时的CSI,而UE上报CSI和网络侧调度之间存在间隔,从而很可能导致网络侧将UE调度在质量较差的subband上,导致传输性能的下降。
发明内容
本申请实施例提供一种信道状态信息的上报方法、装置及终端,能够解决由于UE只上报网络侧指定的子带在被触发时的CSI而导致网络侧将UE调度在质量较差的子带上的问题。
第一方面,提供了一种信道状态信息的上报方法,该方法包括:终端在第一时间窗对N个第一子带的CSI进行测量,其中,所述第一时间窗包括M个时域单元,其中,N为大于1的整数,M为大于或等于1的整数;根据在所述第一时间窗测量得到的N个第一子带的第一CSI,从N个第一子带中选择P个第二子带,其中,P为大于0且小于或等于N的整数;上报CSI报告,其中,所述CSI报告中包括P个所述第二子带对应的第二CSI。
第二方面,提供了一种信道状态信息的上报装置,包括:测量模块,用于在第一时间窗对N个第一子带的CSI进行测量,其中,所述第一时间窗包括M个时域单元,其中,N为大于1的整数,M为大于或等于1的整数;选择模块,用于根据在所述第一时间窗测量得到的N个第一子带的第一CSI,从N个第一子带中选择P个第二子带,其中,P为大于0且小于或等于N的整数;上报模块,用于上报CSI报告,其中,所述CSI报告中包括P个所述第二子带对应的第二CSI。
第三方面,提供了一种终端,该终端包括处理器、存储器及存储在所述 存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第五方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行终端程序或指令,实现如第一方面所述的方法的步骤。
第六方面,提供了一种计算机程序产品,该计算机程序产品包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
在本申请实施例中,终端在第一时间窗内对多个第一子带的CSI进行测量,并根据第一时间窗测量得到的多个第一子带的第一CSI,从N个第一子带中选择P个第二子带,并上报P个第二子带对应的第二CSI。从而使得UE可以根据第一时间窗测量得到的N个第一子带的第一CSI,选择合适的P个第二子带上报,使得网络侧可以选择将UE调度在质量较好的子带上,提高传输性能。
附图说明
图1示出本申请实施例可应用的一种无线通信系统的示意图;
图2示出本申请实施例提供的一种信道状态信息的上报方法的流程图;
图3示出本申请实施例提供的一种信道状态信息的上报装置的结构示意图;
图4示出本申请实施例提供的一种通信设备的结构示意图;
图5示出本申请实施例提供的一种终端的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的示意图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、无线局域网(Wireless Local Area Network,WLAN)接入点、无线保真(Wireless Fidelity,WiFi)节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的信道状态信息的上报方案进行详细地说明。
图2示出本申请实施例中的信道状态信息的上报方法的一种流程示意图,该方法200可以由终端执行。换言之,所述方法可以由安装在终端上的软件或硬件来执行。如图2所示,该方法可以包括以下步骤。
S210,终端在第一时间窗对N个第一子带的CSI进行测量,其中,所述第一时间窗包括M个时域单元,其中,N为大于1的整数,M为大于或等于1的整数。
在本申请实施例中,终端在包括M个时域单元的第一时间窗对多个第一子带的CSI进行测量。
在具体应用中,终端可以在需要上报子带CSI时,对在第一时间窗内对N个第一子带的CSI进行测量。例如,终端可以在时刻t对N个第一子带进行测量,并获取N个第一子带从时刻(t-t0)到时刻t的CSI测量信息,其中,从时刻(t-t0)到时刻t即为第一时间窗,t0为第一时间窗的窗长。
在一个可能的实现方式中,第一时间窗的窗长可以通过DCI指示,例如,网络侧在触发CSI上报的DCI中指示第一时间窗的窗长,UE根据DCI的指示可以确定第一时间窗的窗长。
或者,在另一个可能的实现方式中,第一时间窗的窗长也可以由无线资源控制(Radio Resource Control,RRC)配置。例如,网络侧可以通过RRC配置一个偏移量(offset),该offset相对于CSI测量时刻t或CSI上报时刻t1,该offset也可以是CSI测量参考间隔。也就是说,在该可能的实现方式中,终端根据RRC配置,在网络侧配置的CSI测量时刻t或CSI上报时刻t1向前提前offset或向后延迟offset的时间窗内,对N个第一子带的CSI进行测量。
或者,在又一个可能的实现方式中,第一时间窗的窗长也可以是预先定义的,例如,预先定义的CSI计算时间。
在一个可能的实现方式中,终端对N个第一子带的CSI进行测量时,执行的测量的类型可以信道测量,也可以是干扰测量,还可以是波束测量,或 者,也可以同时执行上述类型中的多种测量,例如,信道测量和波束测量,或者干扰测量和波束测量,或者信道测量和干扰测量,又或者信道测量、干扰测量和波束测量,具体可以根据实际应用确定,本申请实施例中不作限定。
在本申请实施例中,N个所述第一子带可以是终端的全部子带,也可以是终端的部分子带。
在一个可能的实现方式中,各个所述第一子带对应的CSI参考信号(CSI Reference Signal,CSI-RS)可以由DCI触发,例如,网络侧在触发CSI上报的DCI中指示CSI-RS。
或者,在另一个可能的实现方式中,各个所述第一子带对应的CSI-RS也可以由CSI报告所关联的CSI-RS确定。网络侧可以通过RRC配置CSI报告与CSI-RS资源的关联关系,其中,一个CSI-RS资源可以关联一个或多个CSI报告,一个CSI报告可以关联一个或多个CSI-RS资源。终端根据该关联关系,可以获取CSI报告关联的CSI-RS资源,从而确定第一子带对应的CSI-RS。
S212,根据在所述第一时间窗测量得到的N个第一子带的第一CSI,从N个第一子带中选择P个第二子带,其中,P为大于0且小于或等于N的整数。
在本申请实施例中,终端可以根据第一时间窗测量得到的N个第一子带的第一CSI,从N个第一子带中选择中合适的P个第二子带,作为上报的子带。例如,终端可以从N个第一子带中选择信道质量最好或最差的P个第二子带,以使网络侧将UE调度到信道质量最好的子带或者避免将UE调度到信道质量最差的子带。或者,终端也可以选择N个第一子带上报,即P=N。
S213,上报CSI报告,其中,所述CSI报告中包括P个所述第二子带对 应的第二CSI。
在本申请实施例中,UE可以直接上报测量得到的P个所述第二子带的CSI,即第一CSI,或者,UE也可以对测量得到的P个所述第二子带的CSI进行计算,例如,对于一个子带,如果第一时间窗执行了多次CSI测量,则UE可以对多个测量得到的信道质量指示(Channels Quality Indication,CQI)值进行计算,上报多次测量得到的第二子带的CQI值的均值、标准差或方差等。
由此可见,在本申请实施例提供的技术方案中,当终端需要上报子带CSI时,终端可以根据N个第一子带对应的CSI的统计信息和/或各个测量时刻对应的CSI的统计信息,确定对应的P个第二子带。其中,所述终端在第一时刻(t)对N个第一子带的CSI进行测量,得到所述第一时刻各个所述第一子带的CSI,并统计从第二时刻(t-t0)到所述第一时刻(t),各个测量时刻测量得到的各个所述第一子带的CSI的统计信息。其中,从第二时刻到所述第一时刻即为所述第一时间窗。可选的,从第二时刻到所述第一时刻终端可以对N个第一子带的CSI执行L次测量,即终端上报第二子带对应的CSI可以是对第二子带执行L次测量得到的CSI的统计信息。可选的,一个测量时刻可以对应一个上述的时域单元。
通过本申请实施例提供的上述技术方案,终端在第一时间窗内对多个第一子带的CSI进行测量,并根据第一时间窗测量得到的多个第一子带的第一CSI,从N个第一子带中选择P个第二子带,并上报P个第二子带对应的第二CSI。从而使得UE可以根据第一时间窗测量得到的N个第一子带的第一CSI,选择合适的P个第二子带上报,使得网络侧可以选择将UE调度在质量较好的子带上,提高传输性能。
在一个可能的实现方式中,在第一时间窗内,终端可以分别对N个第一子带的CSI执行多次测量。因此,在该可能的实现方式中,S210可以包括:终端在所述第一时间窗的L个时域单元上对所述N个第一子带的CSI进行测量,其中,L为大于或等于1的整数,且L小于或等于M,且L由DCI指示或由RRC配置。在该可能的实现方式中,L个时域单元中,每个时域单元对应一个测量时刻,UE在每个测量时刻,对L个第一子带的CSI执行测量,从而可以针对每个第一子带,获取L个测量结果,根据该L个测量结果,终端可以判断各个第一子带的信道变化情况。
在上述可能的实现方式中,所述时域单元包括但不限于以下之一:时隙、子时隙、符号、或预定的多个符号。
在上述可能的实现方式,测量得到的第一子带的第一CSI可以但不限于包括以下三种形式:信道质量指示(Channels Quality Indication,CQI)、预编码矩阵指示((Pre-coding Matrix Indicator,PMI)、秩指示(Rank Indicator,RI)。在本申请实施例中,可选地,第一CSI包括CQI值。而S214中上报的所述第二子带对应的第二CSI可以包括以下至少之一:在所述第一时间窗内对所述第二子带进行测量得到的各个CQI值的均值、所述第二子带在所述第一时间窗内测量得到的各个CQI值的方差、以及所述第二子带在所述第一时间窗内测量得到的各个CQI值的标准差。通过该可选的实现方式,上报第二子带的CQI值的均值、标准差或方差,而不是上报各次测量得到的CQI值,可以减少上报的数据量,节约上行开销。
在一个可能的实现方式中,在S212中,UE可以计算各个所述第一子带的CQI信息,然后根据各个所述第一子带的CQI信息,从N个所述第一子带中选择P个所述第二子带。其中,所述CQI信息包括以下之一:在所述第 一时间窗内得到的各个CQI值的均值、在所述第一时间窗内得到的各个CQI值的方差、以及在所述第一时间窗内得到的各个CQI值的标准差。也就是说,在该可能的实现方式中,UE对第一时间窗内测量得到的各个第一子带的CQI进行统计,得到各个第一子带在第一时间窗内的CQI信息,根据各个第一子带在第一时间窗内的CQI信息,选择P个第二子带。
在一个可能的实现方式中,UE可以将N个第一子带均作为第二子带,即选择上报N个第一子带。例如,假设N个第一子带包括subband 1~8,UE在时刻t对subband 1~8进行CSI测量,并统计计算各个子带在(t-t0)至t的时间窗内的CQI均值。UE上报每个subband的CQI均值。
在另一个可能的实现方式中,UE也可以从N个第一子带中选择出目标CQI信息最大或最小的P个子带,其中,目标CQI信息可以包括以下之一:CQI值的均值、CQI值的方差、CQI值的标准差。
例如,对于N个第一子带:subband k(k=1~N),UE可以将各个子带按照其CQImean(k)(即CQI值的均值)进行排序(升序或降序),选出最大或最小的CQImean(k)对应的P个subband即P个第二子带。
例如,假设N个第一子带包括:subband 1~8,UE按照subband 1~8对应的CQI均值(升序或降序)对subband 1~8进行排序,CQI均值排在前2(即P=2)位的subband为subband 3和subband 4,则UE将subband 3和subband 4作为第二子带。
又例如,对于N个第一子带subband k(k=1~N),按照各个子带的CQIvariance(k)(即CQI值的标准差)或CQIstd(k)(即CQI值的方差)对N个第一子带进行排序(升序或降序),选出最大或最小的CQIvariance(k)或CQIstd(k)对应的P个subband即P个第二子带。
例如,假设N个第一子带包括:subband 1~8,UE按照subband 1~8对应的CQI方差或标准差(升序或降序)对subband 1~8进行排序,CQI方差或标准差排在前2位的subband为subband 3和subband 4,则UE将subband 3和subband 4作为第二子带。
在另一个可能的实现方式中,UE也可以从N个所述第一子带中选出第一目标CQI信息最大或最小的S个子带,再从所述S个子带中选出第二目标CQI信息最大或最小的P个第二目标子带,其中,S为大于0的整数,且N≥S≥P;其中,所述第一目标CQI信息包括:CQI值的均值,所述第二目标CQI信息包括:CQI值的方差或CQI值的标准差;或者,所述第一目标CQI信息包括:CQI值的方差或CQI值的标准差,所述第二目标CQI信息包括:CQI值的均值。
例如,对于N个第一子带:subband k(k=1~N),UE将各个子带按照其CQImean(k)进行排序(升序或降序),选出最大或最小的CQImean(k)对应的S个subband,对于subband m(m=1~S),将CQIvariance(m)进行排序(升序或降序),选出最大或最小的CQIvariance(m)对应的P个subband即P个第二子带。
例如,假设N个第一子带为subband 1~8,UE对subband 1~8按照其对应的CQI均值进行排序(升序或降序),CQI均值排在前4位的subband为subband 1,2,3和subband 4。UE对subband 1~4按照其对应的CQI方差或标准差进行排序(升序或降序),CQI方差或标准差排在前2位的subband为subband 3和subband 4,则UE选择上报subband 3和subband 4的CQI均值或CQI方差或标准差。
又例如,对于N个第一子带subband k(k=1~N),UE将各个子带按照其 对应的CQIvariance(k)进行排序(升序或降序),选出最大CQIvariance(k)对应的S个subband,对于subband m(m=1~S),将各个子带按照其CQImean(m)进行排序,选出最大或最小的CQImean(m)对应的P个subband,即P个第二子带。
例如,假设N个第一子带为subband 1~8,UE对subband 1~8按照对应的CQI方差或标准差进行排序(升序或降序),CQI方差或标准差排在前4位的subband为subband 1,2,3和subband 4。UE对subband 1~4按照对应的CQI均值进行排序(升序或降序),CQI均值排在前2位的subband为subband 3和subband 4,则UE选择上报subband 3和subband 4的CQI均值或CQI方差或标准差。
在又一个可能的实现方式中,UE可以从N个所述第一子带中选择出目标值最大或最小的P个第二子带,其中,所述目标值为(x*CQImean-y*CQIstd)或(x*CQImean+y*CQIstd),x和y为>0的有理数,CQImean为CQI值的均值,CQIstd为CQI值的标准差。例如,将每个第一子带按照其对应的目标值进行排序(升序或降序),选择目标值最大或最小的P个第一子带作为第二子带。
例如,对于N个第一子带subband k(k=1~N),UE将各个子带按照其对应的[CQImean(k)-CQIstd(k)]进行排序,选出最大[CQImean(k)-CQIstd(k)]对应的P个subband,即P个第二子带。
在上述可能的实现方式中,x和y可以为网络侧配置的或预定的。
在一个可能的实现方式中,在根据在所述第一时间窗测量得到的N个第一子带的第一CSI,从N个第一子带中选择P个第二子带时,UE可以针对在所述L个时域单元中的每个时域单元上的测量,按照测量得到的CQI值从大到小或从小到大,对N个所述第一子带进行排序;然后根据L次排序中N 个所述第一子带的排列顺序,从所述N个第一子带中选择出满足预定条件的所述P个第二子带。
其中,所述预定条件包括但不限于以下之一:CQI值为最大或最小的次数最多;排名平均值最大或最小。
例如,对于N个第一子带subband k(k=1~N),对每个测量时刻t,将各个子带subband k(k=1~N)按照CQImean(k,t)进行排序,确定出最大CQImean对应的subband。统计时刻t=1~T中,P个最大CQImean次数最多的subband m(m=1~P),即P个第二子带。
例如,在表1所示的各个测量时刻的排序中,在测量时刻(即时域单元)t1、t2和t4,subband 2对应的CQI在所有subband中是最大的,在时刻t3和t5,subband 1对应的CQI在所有subband中是最大的,最大次数最多的为subband 2和subband 1,UE将subband 2和subband 1作为第二子带。
表1.
  测量时刻t1 测量时刻t2 测量时刻t3 测量时刻t4 测量时刻t5
1 subband 2 subband 2 subband 1 subband 2 subband 1
2 subband 1 subband 3 subband 3 subband 4 subband 2
3 subband 3 subband 1 subband 2 subband 1 subband 4
4 subband 4 subband 4 subband 4 subband 3 subband 3
又例如,表1中,subband 1的排名平均值为(2+3+1+3+1)/5=2,subband 2的排名平均值为(1+1+3+1+2)/5=1.6,subband 3的排名平均值为(3+2+2+4+4)/5=3,subband 4的排名平均值为(4+4+4+2+3)/5=3.4,排名平均值最小的两个子带为subband 2和subband 1,UE将subband 2和subband 1作为第二子带。
通过本申请实施例提供的技术方案,UE按照第一时间窗内的L次测量中,各个第一子带的CSI,从N个第一子带中选择P个第二子带,上报P个 第二子带的CQI值的均值、标准差或方差,从而使得UE无需每个时刻都将所有子带的CSI上报给网络侧,网络侧也能够获知信道的变化情况,提高调度的效率,避免增加反馈的开销。
需要说明的是,本申请实施例提供的信道状态信息的上报方法,执行主体可以为信道状态信息的上报装置,或者,该信道状态信息的上报装置中的用于执行信道状态信息的上报方法的控制模块。本申请实施例中以信道状态信息的上报装置执行信道状态信息的上报方法为例,说明本申请实施例提供的信道状态信息的上报装置。
图3示出本申请实施例提供的信道状态信息的上报装置的一种结构示意图,如图3所示,该信道状态信息的上报装置300主要包括:测量模块301、选择模块302和上报模块303。
在本申请实施例中,测量模块301,用于在第一时间窗对N个第一子带的CSI进行测量,其中,所述第一时间窗包括M个时域单元,其中,N为大于1的整数,M为大于或等于1的整数;选择模块302,用于根据在所述第一时间窗测量得到的N个第一子带的第一CSI,从N个第一子带中选择P个第二子带,其中,P为大于0且小于或等于N的整数;上报模块303,用于上报CSI报告,其中,所述CSI报告中包括P个所述第二子带对应的第二CSI。
在一个可能的实现方式中,所述测量模块301根据以下至少之一确定第一时间窗的长度:
DCI指示;
RRC配置;
预先定义。
在一个可能的实现方式中,所述测量模块301在第一时间窗对N个第一 子带的CSI进行测量,包括:
对所述第一子带执行以下至少之一的类型的测量:信道测量、干扰测量、和波束测量。
在一个可能的实现方式中,各个所述第一子带对应的CSI参考信号由DCI触发,或者由所述CSI报告所关联的CSI参考信号确定。
在一个可能的实现方式中,所述测量模块301在第一时间窗对N个第一子带的CSI进行测量,包括:
在所述第一时间窗的L个时域单元上对所述N个第一子带的CSI进行测量,其中,L为大于或等于1的整数,且L小于或等于M,且L由DCI指示或由RRC配置。
在一个可能的实现方式中,所述第一CSI包括:信道质量指示CQI值;所述第二子带对应的第二CSI包括以下至少之一:在所述第一时间窗内对所述第二子带进行测量得到的各个CQI值的均值、所述第二子带在所述第一时间窗内测量得到的各个CQI值的方差、以及所述第二子带在所述第一时间窗内测量得到的各个CQI值的标准差。
在一个可能的实现方式中,所述选择模块302根据在所述第一时间窗测量得到的N个第一子带的第一CSI,从N个第一子带中选择P个第二子带,包括:
计算各个所述第一子带的CQI信息,其中,所述CQI信息包括以下之一:在所述第一时间窗内得到的各个CQI值的均值、在所述第一时间窗内得到的各个CQI值的方差、以及在所述第一时间窗内得到的各个CQI值的标准差;
根据各个所述第一子带的CQI信息,从N个所述第一子带中选择P个所述第二子带。
在一个可能的实现方式中,所述选择模块302根据各个所述第一子带的CQI信息,从N个所述第一子带中选择P个所述第二子带,包括:
根据各个所述第一子带的CQI信息,从所述N个第一子带中选择出所述P个第二子带,其中,所述P个第二子带为N个所述第一子带中目标CQI信息最大或最小的P个子带,所述目标CQI信息包括以下之一:CQI值的均值、CQI值的方差、CQI值的标准差。
在一个可能的实现方式中,所述选择模块302根据各个所述第一子带的CQI信息,从N个所述第一子带中选择P个所述第二子带,包括:
根据各个所述第一子带的CQI信息,从N个所述第一子带中选出第一目标CQI信息最大或最小的S个子带,再从所述S个子带中选出第二目标CQI信息最大或最小的P个第二目标子带,其中,S为大于0的整数,且N≥S≥P;其中,所述第一目标CQI信息包括:CQI值的均值,所述第二目标CQI信息包括:CQI值的方差或CQI值的标准差;或者,所述第一目标CQI信息包括:CQI值的方差或CQI值的标准差,所述第二目标CQI信息包括:CQI值的均值。
在一个可能的实现方式中,所述选择模块302根据各个所述第一子带的CQI信息,从N个所述第一子带中选择P个所述第二子带,包括:
根据各个所述第一子带的CQI信息,从N个所述第一子带中选择出目标值最大或最小的P个第二子带,其中,所述目标值为(x*CQImean–y*CQIstd)或(x*CQImean+y*CQIstd),x和y为>0的有理数,CQImean为CQI值的均值,CQIstd为CQI值的标准差。
在一个可能的实现方式中,所述x和y为网络侧配置的或预定的。
在一个可能的实现方式中,所述选择模块302根据在所述第一时间窗测 量得到的N个第一子带的第一CSI,从N个第一子带中选择P个第二子带,包括:
针对在所述L个时域单元中的每个时域单元上测量,按照测量得到的CQI值从大到小或从小到大,对N个所述第一子带进行排序;
根据L次排序中N个所述第一子带的排列顺序,从所述N个第一子带中选择出满足预定条件的所述P个第二子带。
在一个可能的实现方式中,所述预定条件包括以下之一:
CQI值为最大或最小的次数最多;
排名平均值最大或最小。
在一个可能的实现方式中,所述时域单元包括以下之一:时隙、子时隙、符号、或预定的多个符号。
本申请实施例中的信道状态信息的上报装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的信道状态信息的上报装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的信道状态信息的上报装置能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图4所示,本申请实施例还提供一种通信设备400,包括处 理器401、存储器402、以及存储在存储器402上并可在所述处理器401上运行的程序或指令,例如,该通信设备400为终端时,该程序或指令被处理器401执行时实现上述信道状态信息的上报方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图5为实现本申请实施例的一种终端的硬件结构示意图。
该终端500包括但不限于:射频单元501、网络模块502、音频输出单元503、输入单元504、传感器505、显示单元506、用户输入单元507、接口单元508、存储器509、以及处理器510等部件。
本领域技术人员可以理解,终端500还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器510逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图5中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元504可以包括图形处理器(Graphics Processing Unit,GPU)5041和麦克风5042,图形处理器5041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元506可包括显示面板5061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板5061。用户输入单元507包括触控面板5071以及其他输入设备5072。触控面板5071,也称为触摸屏。触控面板5071可包括触摸检测装置和触摸控制器两个部分。其他输入设备5072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元501将来自网络侧设备的下行数据接收后, 给处理器510处理;另外,将上行的数据发送给网络侧设备。通常,射频单元501包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器509可用于存储软件程序或指令以及各种数据。存储器509可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器509可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器510可包括一个或多个处理单元;可选的,处理器510可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器510中。
其中,处理器510,用于在第一时间窗对N个第一子带的CSI进行测量,其中,所述第一时间窗包括M个时域单元,其中,N为大于1的整数,M为大于或等于1的整数;根据在所述第一时间窗测量得到的N个第一子带的第一CSI,从N个第一子带中选择P个第二子带,其中,P为大于0且小于或等于N的整数;
射频单元501,用于上报CSI报告,其中,所述CSI报告中包括P个所述第二子带对应的第二CSI。
通过本申请实施例提供的上述终端,可以在第一时间窗内对多个第一子带的CSI进行测量,并根据第一时间窗测量得到的多个第一子带的第一CSI,从N个第一子带中选择P个第二子带,并上报P个第二子带对应的第二CSI。从而使得可以根据终端在第一时间窗内测量得到的N个第一子带的第一CSI,选择合适的P个第二子带上报,使得网络侧可以选择将UE调度在质量较好的子带上,提高传输性能。
可选的,处理器510,还用于对所述第一子带执行以下至少之一的类型的测量:信道测量、干扰测量、和波束测量。
可选的,处理器510,还用于在所述第一时间窗的L个时域单元上对所述N个第一子带的CSI进行测量,其中,L为大于或等于1的整数,且L小于或等于M,且L由DCI指示或由RRC配置。
可选的,处理器510,还用于计算各个所述第一子带的CQI信息,其中,所述CQI信息包括以下之一:在所述第一时间窗内得到的各个CQI值的均值、在所述第一时间窗内得到的各个CQI值的方差、以及在所述第一时间窗内得到的各个CQI值的标准差;根据各个所述第一子带的CQI信息,从N个所述第一子带中选择P个所述第二子带。
可选的,处理器510,还用于根据各个所述第一子带的CQI信息,从所述N个第一子带中选择出所述P个第二子带,其中,所述P个第二子带为N个所述第一子带中目标CQI信息最大或最小的P个子带,所述目标CQI信息包括以下之一:CQI值的均值、CQI值的方差、CQI值的标准差。
可选的,处理器510,还用于根据各个所述第一子带的CQI信息,从N个所述第一子带中选出第一目标CQI信息最大或最小的S个子带,再从所述S个子带中选出第二目标CQI信息最大或最小的P个第二目标子带,其中, S为大于0的整数,且N≥S≥P;其中,所述第一目标CQI信息包括:CQI值的均值,所述第二目标CQI信息包括:CQI值的方差或CQI值的标准差;或者,所述第一目标CQI信息包括:CQI值的方差或CQI值的标准差,所述第二目标CQI信息包括:CQI值的均值。
可选的,处理器510,还用于根据各个所述第一子带的CQI信息,从N个所述第一子带中选择出目标值最大或最小的P个第二子带,其中,所述目标值为(x*CQImean–y*CQIstd)或(x*CQImean+y*CQIstd),x和y为>0的有理数,CQImean为CQI值的均值,CQIstd为CQI值的标准差。
可选的,处理器510,还用于针对在所述L个时域单元中的每个时域单元上测量,按照测量得到的CQI值从大到小或从小到大,对N个所述第一子带进行排序;根据L次排序中N个所述第一子带的排列顺序,从所述N个第一子带中选择出满足预定条件的所述P个第二子带。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信道状态信息的上报方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述信道状态信息的上报方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例另提供了一种计算机程序产品,该计算机程序产品包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时,实现上述信道状态信息的上报方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器, 或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (32)

  1. 一种信道状态信息的上报方法,包括:
    终端在第一时间窗对N个第一子带的信道状态信息CSI进行测量,其中,所述第一时间窗包括M个时域单元,其中,N为大于1的整数,M为大于或等于1的整数;
    根据在所述第一时间窗测量得到的N个第一子带的第一CSI,从N个第一子带中选择P个第二子带,其中,P为大于0且小于或等于N的整数;
    上报CSI报告,其中,所述CSI报告中包括P个所述第二子带对应的第二CSI。
  2. 根据权利要求1所述的方法,其中,终端在第一时间窗对N个第一子带的CSI进行测量,包括:
    所述终端在所述第一时间窗的L个时域单元上对所述N个第一子带的CSI进行测量,其中,L为大于或等于1的整数,且L小于或等于M,且L由DCI指示或由RRC配置。
  3. 根据权利要求2所述的方法,其中,
    所述第一CSI包括:信道质量指示CQI值;
    所述第二子带对应的第二CSI包括以下至少之一:在所述第一时间窗内对所述第二子带进行测量得到的各个CQI值的均值、所述第二子带在所述第一时间窗内测量得到的各个CQI值的方差、以及所述第二子带在所述第一时间窗内测量得到的各个CQI值的标准差。
  4. 根据权利要求2所述的方法,其中,根据在所述第一时间窗测量得到的N个第一子带的第一CSI,从N个第一子带中选择P个第二子带,包括:
    计算各个所述第一子带的CQI信息,其中,所述CQI信息包括以下 之一:在所述第一时间窗内得到的各个CQI值的均值、在所述第一时间窗内得到的各个CQI值的方差、以及在所述第一时间窗内得到的各个CQI值的标准差;
    根据各个所述第一子带的CQI信息,从N个所述第一子带中选择P个所述第二子带。
  5. 根据权利要求4所述的方法,其中,根据各个所述第一子带的CQI信息,从N个所述第一子带中选择P个所述第二子带,包括:
    根据各个所述第一子带的CQI信息,从所述N个第一子带中选择出所述P个第二子带,其中,所述P个第二子带为N个所述第一子带中目标CQI信息最大或最小的P个子带,所述目标CQI信息包括以下之一:CQI值的均值、CQI值的方差、CQI值的标准差。
  6. 根据权利要求4所述的方法,其中,根据各个所述第一子带的CQI信息,从N个所述第一子带中选择P个所述第二子带,包括:
    根据各个所述第一子带的CQI信息,从N个所述第一子带中选出第一目标CQI信息最大或最小的S个子带,再从所述S个子带中选出第二目标CQI信息最大或最小的P个第二目标子带,其中,S为大于0的整数,且N≥S≥P;其中,所述第一目标CQI信息包括:CQI值的均值,所述第二目标CQI信息包括:CQI值的方差或CQI值的标准差;或者,所述第一目标CQI信息包括:CQI值的方差或CQI值的标准差,所述第二目标CQI信息包括:CQI值的均值。
  7. 根据权利要求4所述的方法,其中,根据各个所述第一子带的CQI信息,从N个所述第一子带中选择P个所述第二子带,包括:
    根据各个所述第一子带的CQI信息,从N个所述第一子带中选择出目标值最大或最小的P个第二子带,其中,所述目标值为(x*CQImean–y*CQIstd)或(x*CQImean+y*CQIstd),x和y为>0的有理数,CQImean为CQI值的均值,CQIstd为CQI值的标准差。
  8. 根据权利要求7所述的方法,其中,所述x和y为网络侧配置的或预定的。
  9. 根据权利要求2所述的方法,其中,根据在所述第一时间窗测量得到的N个第一子带的第一CSI,从N个第一子带中选择P个第二子带,包括:
    针对在所述L个时域单元中的每个时域单元上测量,按照测量得到的CQI值从大到小或从小到大,对N个所述第一子带进行排序;
    根据L次排序中N个所述第一子带的排列顺序,从所述N个第一子带中选择出满足预定条件的所述P个第二子带。
  10. 根据权利要求9所述的方法,其中,所述预定条件包括以下之一:
    CQI值为最大或最小的次数最多;
    排名平均值最大或最小。
  11. 根据权利要求2所述的方法,其中,所述时域单元包括以下之一:时隙、子时隙、符号、或预定的多个符号。
  12. 根据权利要求1至11任一项所述的方法,其中,所述终端根据以下至少之一确定第一时间窗的长度:
    下行控制信息DCI指示;
    无线资源控制RRC配置;
    预先定义。
  13. 根据权利要求1至11任一项所述的方法,其中,终端在第一时间窗对N个第一子带的CSI进行测量,包括:
    对所述第一子带执行以下至少之一的类型的测量:信道测量、干扰测量、和波束测量。
  14. 根据权利要求1至11任一项所述的方法,其中,所述N个第一子带包括所述终端的部分子带。
  15. 根据权利要求1至11任一项所述的方法,其中,所述N个第一 子带包括所述终端的全部子带。
  16. 根据权利要求1至11任一项所述的方法,其中,各个所述第一子带对应的CSI参考信号由DCI触发,或者由所述CSI报告所关联的CSI参考信号确定。
  17. 一种信道状态信息的上报装置,包括:
    测量模块,用于在第一时间窗对N个第一子带的CSI进行测量,其中,所述第一时间窗包括M个时域单元,其中,N为大于1的整数,M为大于或等于1的整数;
    选择模块,用于根据在所述第一时间窗测量得到的N个第一子带的第一CSI,从N个第一子带中选择P个第二子带,其中,P为大于0且小于或等于N的整数;
    上报模块,用于上报CSI报告,其中,所述CSI报告中包括P个所述第二子带对应的第二CSI。
  18. 根据权利要求17所述的装置,其中,所述测量模块在第一时间窗对N个第一子带的CSI进行测量,包括:
    在所述第一时间窗的L个时域单元上对所述N个第一子带的CSI进行测量,其中,L为大于或等于1的整数,且L小于或等于M,且L由DCI指示或由RRC配置。
  19. 根据权利要求18所述的装置,其中,
    所述第一CSI包括:信道质量指示CQI值;
    所述第二子带对应的第二CSI包括以下至少之一:在所述第一时间窗内对所述第二子带进行测量得到的各个CQI值的均值、所述第二子带在所述第一时间窗内测量得到的各个CQI值的方差、以及所述第二子带在所述第一时间窗内测量得到的各个CQI值的标准差。
  20. 根据权利要求18所述的装置,其中,所述选择模块根据在所述第一时间窗测量得到的N个第一子带的第一CSI,从N个第一子带中选择 P个第二子带,包括:
    计算各个所述第一子带的CQI信息,其中,所述CQI信息包括以下之一:在所述第一时间窗内得到的各个CQI值的均值、在所述第一时间窗内得到的各个CQI值的方差、以及在所述第一时间窗内得到的各个CQI值的标准差;
    根据各个所述第一子带的CQI信息,从N个所述第一子带中选择P个所述第二子带。
  21. 根据权利要求20所述的装置,其中,所述选择模块根据各个所述第一子带的CQI信息,从N个所述第一子带中选择P个所述第二子带,包括:
    根据各个所述第一子带的CQI信息,从所述N个第一子带中选择出所述P个第二子带,其中,所述P个第二子带为N个所述第一子带中目标CQI信息最大或最小的P个子带,所述目标CQI信息包括以下之一:CQI值的均值、CQI值的方差、CQI值的标准差。
  22. 根据权利要求20所述的装置,其中,所述选择模块根据各个所述第一子带的CQI信息,从N个所述第一子带中选择P个所述第二子带,包括:
    根据各个所述第一子带的CQI信息,从N个所述第一子带中选出第一目标CQI信息最大或最小的S个子带,再从所述S个子带中选出第二目标CQI信息最大或最小的P个第二目标子带,其中,S为大于0的整数,且N≥S≥P;其中,所述第一目标CQI信息包括:CQI值的均值,所述第二目标CQI信息包括:CQI值的方差或CQI值的标准差;或者,所述第一目标CQI信息包括:CQI值的方差或CQI值的标准差,所述第二目标CQI信息包括:CQI值的均值。
  23. 根据权利要求20所述的装置,其中,所述选择模块根据各个所述第一子带的CQI信息,从N个所述第一子带中选择P个所述第二子带, 包括:
    根据各个所述第一子带的CQI信息,从N个所述第一子带中选择出目标值最大或最小的P个第二子带,其中,所述目标值为(x*CQImean–y*CQIstd)或(x*CQImean+y*CQIstd),x和y为>0的有理数,CQImean为CQI值的均值,CQIstd为CQI值的标准差。
  24. 根据权利要求23所述的装置,其中,所述x和y为网络侧配置的或预定的。
  25. 根据权利要求18所述的装置,其中,所述选择模块根据在所述第一时间窗测量得到的N个第一子带的第一CSI,从N个第一子带中选择P个第二子带,包括:
    针对在所述L个时域单元中的每个时域单元上测量,按照测量得到的CQI值从大到小或从小到大,对N个所述第一子带进行排序;
    根据L次排序中N个所述第一子带的排列顺序,从所述N个第一子带中选择出满足预定条件的所述P个第二子带。
  26. 根据权利要求25所述的装置,其特征在于,所述预定条件包括以下之一:
    CQI值为最大或最小的次数最多;
    排名平均值最大或最小。
  27. 根据权利要求18所述的装置,其中,所述时域单元包括以下之一:时隙、子时隙、符号、或预定的多个符号。
  28. 根据权利要求17至27任一项所述的装置,其中,所述测量模块根据以下至少之一确定第一时间窗的长度:
    下行控制信息DCI指示;
    无线资源控制RRC配置;
    预先定义。
  29. 根据权利要求17至27任一项所述的装置,其中,所述测量模块 在第一时间窗对N个第一子带的CSI进行测量,包括:
    对所述第一子带执行以下至少之一的类型的测量:信道测量、干扰测量、和波束测量。
  30. 根据权利要求17至27任一项所述的装置,其中,各个所述第一子带对应的CSI参考信号由DCI触发,或者由所述CSI报告所关联的CSI参考信号确定。
  31. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至16任一项所述的信道状态信息的上报方法的步骤。
  32. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至16任一项所述的信道状态信息的上报方法的步骤。
PCT/CN2022/071236 2021-01-15 2022-01-11 信道状态信息的上报方法、装置及终端 WO2022152105A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110057998.9A CN114765483A (zh) 2021-01-15 2021-01-15 信道状态信息的上报方法、装置及终端
CN202110057998.9 2021-01-15

Publications (1)

Publication Number Publication Date
WO2022152105A1 true WO2022152105A1 (zh) 2022-07-21

Family

ID=82364637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071236 WO2022152105A1 (zh) 2021-01-15 2022-01-11 信道状态信息的上报方法、装置及终端

Country Status (2)

Country Link
CN (1) CN114765483A (zh)
WO (1) WO2022152105A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065426A1 (zh) * 2022-09-29 2024-04-04 北京小米移动软件有限公司 一种信道质量指示cqi上报方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105991220A (zh) * 2015-01-30 2016-10-05 中兴通讯股份有限公司 Ue上报csi及触发ue上报csi的方法和装置
US20170310384A1 (en) * 2014-10-06 2017-10-26 Lg Electronics Inc. Method and apparatus for measuring channel in wireless communication system
CN107453851A (zh) * 2016-05-30 2017-12-08 华为技术有限公司 一种cqi测量方法、装置及无线通信系统
US20180212739A1 (en) * 2015-08-21 2018-07-26 Lg Electronics Inc. Method for transmitting and receiving channel state information in wireless communication system and apparatus therefor
WO2020068906A1 (en) * 2018-09-25 2020-04-02 Idac Holdings, Inc. Wtru autonomous beamformed unicast transmission

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100606062B1 (ko) * 2004-02-26 2006-07-26 삼성전자주식회사 이동통신 시스템에서 시변채널의 특성에 따라 채널품질정보의 전송을 제어하는 방법
CN1996811A (zh) * 2005-12-31 2007-07-11 北京三星通信技术研究有限公司 用于判决传输模式转换的测量报告实现方法及设备
US8675558B2 (en) * 2011-01-07 2014-03-18 Intel Corporation CQI definition for transmission mode 9 in LTE-advanced
KR101607179B1 (ko) * 2011-06-10 2016-03-29 후아웨이 테크놀러지 컴퍼니 리미티드 채널 품질 표시를 정정하는 방법 및 장치
KR20150128918A (ko) * 2013-03-12 2015-11-18 후아웨이 테크놀러지 컴퍼니 리미티드 주파수 대역 자원 스케줄링 방법 및 장치
CN109151887B (zh) * 2017-06-16 2023-10-24 华为技术有限公司 通信方法和通信装置
CN109586775B (zh) * 2017-09-29 2021-03-02 电信科学技术研究院 一种信道状态信息csi反馈方法、终端及基站
CN111132216B (zh) * 2018-10-31 2023-03-24 维沃移动通信有限公司 信息上报方法、终端及网络设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170310384A1 (en) * 2014-10-06 2017-10-26 Lg Electronics Inc. Method and apparatus for measuring channel in wireless communication system
CN105991220A (zh) * 2015-01-30 2016-10-05 中兴通讯股份有限公司 Ue上报csi及触发ue上报csi的方法和装置
US20180212739A1 (en) * 2015-08-21 2018-07-26 Lg Electronics Inc. Method for transmitting and receiving channel state information in wireless communication system and apparatus therefor
CN107453851A (zh) * 2016-05-30 2017-12-08 华为技术有限公司 一种cqi测量方法、装置及无线通信系统
WO2020068906A1 (en) * 2018-09-25 2020-04-02 Idac Holdings, Inc. Wtru autonomous beamformed unicast transmission

Also Published As

Publication number Publication date
CN114765483A (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
WO2022028373A1 (zh) 测量上报方法、装置及设备
WO2022171129A1 (zh) 信号参数上报方法、装置及设备
US20230244911A1 (en) Neural network information transmission method and apparatus, communication device, and storage medium
CN114390581A (zh) 信道状态信息的报告方法、装置及终端
EP4280667A1 (en) Channel information sending method, channel information receiving method and related device
WO2022152105A1 (zh) 信道状态信息的上报方法、装置及终端
WO2022083634A1 (zh) 资源配置方法、装置、设备及可读存储介质
WO2022028468A1 (zh) 信息确定方法、信息发送方法、终端及网络侧设备
JP2024512970A (ja) チャネル状態情報csiレポートのマッピング方法、端末及びネットワーク側機器
WO2021062766A1 (zh) 一种干扰测量上报的方法和通信装置
WO2023280043A1 (zh) 波束上报方法及终端
WO2022228341A1 (zh) 上行信道的传输参数方法、终端及网络侧设备
WO2022083606A1 (zh) 信道状态信息确定方法、上报设置确定方法、装置及相关设备
CN114585016A (zh) 信道状态信息报告的上报、配置方法及通信设备
CN115208526B (zh) 信号传输方法、装置及终端
WO2023241691A1 (zh) 信息确定方法、装置、通信设备及可读存储介质
WO2023274120A1 (zh) Csi-rs配置方法、csi反馈方法、装置和设备
WO2023198062A1 (zh) Csi测量和上报方法、装置、设备、系统及存储介质
WO2022242557A1 (zh) 控制信道监测方法和设备
WO2024022264A1 (zh) 信号处理方法、装置、终端、网络侧设备及介质
WO2024083075A1 (zh) 信道状态信息csi上报方法、装置、终端及介质
CN115150025B (zh) Csi反馈方法、相关设备及可读存储介质
WO2024008006A1 (zh) 信息处理方法、装置及终端
WO2023066333A1 (zh) 信道状态信息csi测量方法、终端及网络侧设备
WO2023280212A1 (zh) 信道状态信息csi上报处理方法、接收方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22738985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22738985

Country of ref document: EP

Kind code of ref document: A1