WO2023274120A1 - Csi-rs配置方法、csi反馈方法、装置和设备 - Google Patents

Csi-rs配置方法、csi反馈方法、装置和设备 Download PDF

Info

Publication number
WO2023274120A1
WO2023274120A1 PCT/CN2022/101431 CN2022101431W WO2023274120A1 WO 2023274120 A1 WO2023274120 A1 WO 2023274120A1 CN 2022101431 W CN2022101431 W CN 2022101431W WO 2023274120 A1 WO2023274120 A1 WO 2023274120A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
sub
cmr
pmis
amplitude
Prior art date
Application number
PCT/CN2022/101431
Other languages
English (en)
French (fr)
Inventor
宋扬
拉盖施塔玛拉卡
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023274120A1 publication Critical patent/WO2023274120A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application belongs to the technical field of communications, and in particular relates to a CSI-RS configuration method, a CSI feedback method, device and equipment.
  • TRP Transmission and Reception Point
  • NCJT Non-Coherent Joint Transmission
  • CSI-RS Channel State Information- Reference Signal
  • CSI Channel State Information
  • the CSI-RS resources are divided into multiple Channel Measurement Resource (CMR) subsets or CSI-RS resource subsets, and the user equipment (User Equipment, UE) can measure at least one pair of CMRs according to the configuration to calculate the NCJT CSI, a pair of CMRs each from a different subset of CMRs.
  • CJT Coherent Joint Transmission
  • Embodiments of the present application provide a CSI-RS configuration method, a CSI feedback method, device and equipment, which can solve the problems of CSI-RS configuration and CSI feedback in a multi-TRP coherent joint transmission mode.
  • a CSI-RS configuration method includes:
  • the terminal receives channel state information reference signal CSI-RS configuration information
  • the CSI-RS configuration information is used to indicate the association relationship between the CSI-RS port and multiple groups of quasi-co-located QCL reference sources.
  • a method for configuring a CSI-RS includes:
  • the network side device sends channel state information reference signal CSI-RS configuration information to the terminal;
  • the CSI-RS configuration information is used to indicate the association relationship between the CSI-RS port and multiple groups of quasi-co-located QCL reference sources.
  • a CSI feedback method which includes:
  • the terminal receives channel state information reference signal CSI-RS configuration information and channel state information CSI report configuration information;
  • the terminal performs measurement according to the CSI-RS configuration information, selects at least one CMR group from multiple channel measurement resource CMR subsets, and obtains CSI;
  • the terminal feeds back the CSI to the network side device according to the CSI report configuration information.
  • a CSI feedback method includes:
  • the network side device sends channel state information reference signal CSI-RS configuration information and channel state information CSI report configuration information to the terminal;
  • the network side device receives the channel state information CSI fed back by the terminal.
  • a CSI-RS configuration device including:
  • the first receiving unit is configured to receive channel state information reference signal CSI-RS configuration information
  • the CSI-RS configuration information is used to indicate the association relationship between the CSI-RS port and multiple groups of quasi-co-located QCL reference sources.
  • a CSI-RS configuration device including:
  • the first sending unit is used to send channel state information reference signal CSI-RS configuration information to the terminal;
  • the CSI-RS configuration information is used to indicate the association relationship between the CSI-RS port and multiple groups of quasi-co-located QCL reference sources.
  • a CSI feedback device including:
  • the second receiving unit is configured to receive channel state information reference signal CSI-RS configuration information and channel state information CSI report configuration information;
  • a measurement unit configured to perform measurement according to the CSI-RS configuration information, select at least one set of CMRs from a plurality of CMR subsets of channel measurement resources, and obtain CSI;
  • a feedback unit configured to feed back the CSI to the network side device according to the CSI report configuration information.
  • a CSI feedback device including:
  • the second sending unit is configured to send channel state information reference signal CSI-RS configuration information and channel state information CSI report configuration information to the terminal;
  • the third receiving unit is configured to receive channel state information CSI fed back by the terminal.
  • a terminal includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • the program or instruction is executed by the processor Realize the steps of the CSI-RS configuration method described in the first aspect, or realize the steps of the CSI feedback method described in the third aspect.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to receive channel state information reference signal CSI-RS configuration information; wherein the CSI-RS configuration information is used to indicate CSI - the association relationship between the RS port and multiple groups of quasi-co-located QCL reference sources.
  • the communication interface is configured to receive channel state information reference signal CSI-RS configuration information and channel state information CSI report configuration information; the processor is configured to perform measurement according to the CSI-RS configuration information, and measure resources from multiple channels Selecting at least one CMR group from the CMR subset to obtain CSI; the communication interface is further configured to feed back the CSI to the network side device according to the CSI report configuration information.
  • a network-side device includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, and the program or instruction is executed by the When the said processor executes, realize the steps of the CSI-RS configuration method according to the second aspect, or realize the steps of the CSI feedback method according to the fourth aspect.
  • a network side device including a processor and a communication interface, wherein the communication interface is used to send channel state information reference signal CSI-RS configuration information to a terminal; wherein the CSI-RS configuration The information is used to indicate the association relationship between the CSI-RS port and multiple groups of quasi-co-located QCL reference sources.
  • the communication interface is used to send channel state information reference signal CSI-RS configuration information and channel state information CSI report configuration information to the terminal; the communication interface is also used to receive channel state information CSI fed back by the terminal.
  • a thirteenth aspect provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the CSI-RS configuration method as described in the first aspect is implemented Steps, or the steps of realizing the CSI-RS configuration method according to the second aspect, or the steps of realizing the CSI feedback method according to the third aspect, or the steps of realizing the CSI feedback method according to the fourth aspect.
  • a chip in a fourteenth aspect, there is provided a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, the processor is used to run programs or instructions, and implement the method described in the first aspect
  • the CSI-RS configuration method or implement the CSI-RS configuration method as described in the second aspect, or implement the CSI feedback method as described in the third aspect, or implement the CSI feedback method as described in the fourth aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a non-transitory storage medium, and the program/program product is executed by at least one processor to implement the first
  • the steps of the CSI-RS configuration method described in the aspect, or the steps of the CSI-RS configuration method described in the second aspect, or the steps of the CSI feedback method described in the third aspect, or the implementation of the fourth aspect The steps of the CSI feedback method.
  • the terminal realizes the association of multiple TRPs to the channel measurement between the terminal by receiving the CSI-RS configuration information sent by the network side device for indicating the association relationship between the CSI-RS port and multiple groups of QCLs, It is applicable to the coherent joint transmission scenario of multiple TRPs.
  • FIG. 1 is a structural diagram of a wireless communication system applicable to an embodiment of the present application
  • FIG. 2 is one of the schematic flowcharts of the CSI-RS configuration method provided by the embodiment of the present application;
  • FIG. 3 is the second schematic flow diagram of the CSI-RS configuration method provided by the embodiment of the present application.
  • FIG. 4 is one of the schematic flowcharts of the CSI feedback method provided by the embodiment of the present application.
  • FIG. 5 is the second schematic flow diagram of the CSI feedback method provided by the embodiment of the present application.
  • FIG. 6 is one of the structural schematic diagrams of the CSI-RS configuration device provided by the embodiment of the present application.
  • FIG. 7 is the second structural schematic diagram of the CSI-RS configuration device provided by the embodiment of the present application.
  • FIG. 8 is one of the structural schematic diagrams of the CSI feedback device provided by the embodiment of the present application.
  • FIG. 9 is the second structural schematic diagram of the CSI feedback device provided by the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a network side device provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • Network is often used interchangeably, and the technology described may be used for the systems and radio technologies mentioned above as well as other systems and radio technologies.
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • NR New Radio
  • FIG. 1 shows a structural diagram of a wireless communication system to which this embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), Pedestrian Terminal (PUE) and other terminal-side devices, wearable devices include: smart watches, bracelets, earphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, where a base station may be called a node B, an evolved node B, an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN access point, WiFi node, transmission Receiving point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only The base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • FIG. 2 is one of the schematic flowcharts of the CSI-RS configuration method provided by the embodiment of the present application. As shown in Figure 2, the method includes the following steps:
  • Step 200 the terminal receives channel state information reference signal CSI-RS configuration information
  • the CSI-RS configuration information is used to indicate the association relationship between the CSI-RS port and multiple groups of quasi-co-located QCL reference sources.
  • quasi-co-location refers to the average time delay, time delay spread, Doppler frequency offset, Doppler spread and spatial reception parameters experienced by symbols on a certain antenna port. Inferred from another antenna port.
  • QCL quasi-co-location
  • NR New Radio
  • the CSI-RS configuration information indicates the association relationship between the CSI-RS port and multiple sets of QCL reference sources, that is, indicates the average delay, delay spread, and Doppler channel experienced by symbols on the CSI-RS port.
  • Le frequency offset, Doppler spread, and spatial reception parameters can be inferred from the antenna ports of multiple sets of QCL reference sources, realizing the correlation of channel measurements between multiple TRPs and terminals.
  • the CSI-RS configuration information includes at least one CSI-RS resource, where one CSI-RS resource includes at least one CSI-RS port.
  • each of the CSI-RS ports is associated with a plurality of first Transmission Configuration Indicator (TCI) states or multiple groups of QCL reference sources, wherein one of the first transmission configuration indication TCI states corresponds to a group QCL reference sources, the multiple first TCI states correspond to multiple groups of QCL reference sources.
  • TCI Transmission Configuration Indicator
  • the TCI state is used to indicate the QCL reference relationship between the reference signals.
  • each of the CSI-RS ports is associated with a second TCI state, where the second TCI state corresponds to multiple sets of QCL reference sources. That is, one second TCI state corresponds to multiple sets of QCL reference sources, so each CSI-RS port is associated with multiple sets of QCL reference sources.
  • the CSI-RS resource also satisfies at least one of the following:
  • Each set of QCL reference sources includes at least one QCL reference source
  • each of the CSI-RS ports is associated with multiple sets of QCL reference sources
  • the number and type of QCL reference sources contained in each set of QCL reference sources in the multiple sets of QCL reference sources are the same;
  • each of the CSI-RS ports is associated with multiple sets of QCL reference sources
  • the number and/or types of QCL reference sources contained in each set of QCL reference sources in the multiple sets of QCL reference sources are different;
  • each group of QCL reference sources includes two QCL reference sources
  • the type of one QCL reference source in the two QCL reference sources is QCL-TypeD
  • a channel state information interference measurement (Channel State Information Interference Measurement, CSI-IM) resource corresponding to the CSI-RS resource has the same QCL assumption as the CSI-RS resource.
  • CSI-IM Channel State Information Interference Measurement
  • each of the CSI-RS ports when each of the CSI-RS ports is associated with multiple groups of QCL reference sources, the number and type of QCL reference sources contained in each group of QCL reference sources in the multiple groups of QCL reference sources are the same, For example, a CSI-RS port configured by the network side device for the terminal is associated with the first QCL reference source group, the second QCL reference source group and the third QCL reference source group, and the number of QCL reference sources included in the first QCL reference source group is 2.
  • the types are respectively QCL-TypeA and QCL-TypeD; then, the number of QCL reference sources included in the second QCL reference source group is also 2, and the types are also QCL-TypeA and QCL-TypeD; the QCL reference sources included in the third QCL reference source group The number of reference sources is also 2, and the type is also QCL-TypeA, QCL-TypeD; that is, the number and type of QCL reference sources contained in the first QCL reference source group, the second QCL reference source group and the third QCL reference source group are the same .
  • each of the CSI-RS ports when each of the CSI-RS ports is associated with multiple sets of QCL reference sources, the number and/or types of QCL reference sources contained in each set of QCL reference sources in the multiple sets of QCL reference sources are different different.
  • a CSI-RS port configured by the network side device for the terminal is associated with the first QCL reference source group and the second QCL reference source group, the number of QCL reference sources contained in the first QCL reference source group is 2, and the types are QCL- TypeA, QCL-TypeD; the number of QCL reference sources contained in the second QCL reference source group is 1, and the type is QCL-
  • TypeD or, the number of QCL reference sources included in the second QCL reference source group is 2, and the types are QCL-TypeC and QCL-TypeD respectively.
  • each group of QCL reference sources includes two QCL reference sources
  • the type of one QCL reference source in the two QCL reference sources must be QCL-TypeD.
  • the CSI-RS resources include CSI-RS resources used for channel measurement and CSI-RS resources used for interference measurement.
  • the CSI-RS configuration information is used for coherent joint transmission (Coherernt Joint Transmission, CJT), and the channel state information CSI feedback based on the CSI-RS configuration information is based on a non-precoding matrix indicating non-PMI CSI feedback.
  • CJT coherent Joint Transmission
  • the network side device obtains the terminal-to-terminal information through the uplink Sounding Reference Signal (SRS) sent by the terminal.
  • SRS Sounding Reference Signal
  • the network side device can calculate the precoding matrix of multiple TRPs suitable for the terminal according to the CSI from the terminal to multiple TRPs.
  • the terminal can obtain the equivalent channel from multiple TRPs to the terminal after multiple TRP precoded according to the measurement, estimate the corresponding other CSI information and feed it back to the network side through the CSI report
  • other CSI information includes, for example, port selection indication, rank indication (Rank Indicator, RI), channel quality indication (Channel Quality Indicator, CQI), etc.
  • the network side device sends the above CSI-RS configuration information to the terminal.
  • the CSI-RS configuration information indicates the association relationship between the CSI-RS port and multiple sets of QCL reference sources, including the channel measurement relationship between multiple TRPs and the terminal. for coherent joint transmission.
  • the non-PMI-based CSI feedback method can be consistent with the existing technology.
  • the UE can feedback RI and CQI according to the port indication (non-PMI-PortIndication) , or the default port order determines the CSI-RS port corresponding to the channel measurement of the RI.
  • the CSI-RS configuration method provided by the embodiment of the present application realizes the connection between multiple TRPs and the terminal by receiving the CSI-RS configuration information sent by the network side device to indicate the association relationship between the CSI-RS port and multiple groups of QCL reference sources.
  • the correlation between inter-channel measurements can be applied to the coherent joint transmission scenario of multiple TRPs.
  • FIG. 3 is the second schematic flow diagram of the CSI-RS configuration method provided by the embodiment of the present application. As shown in Figure 3, the method includes the following steps:
  • Step 300 the network side device sends channel state information reference signal CSI-RS configuration information to the terminal;
  • the CSI-RS configuration information is used to indicate the association relationship between the CSI-RS port and multiple groups of quasi-co-located QCL reference sources.
  • the CSI-RS configuration information includes at least one CSI-RS resource, where one CSI-RS resource includes at least one CSI-RS port;
  • each of the CSI-RS ports is associated with multiple first transmission configurations indicating TCI status or multiple groups of QCL reference sources, and one of the first transmission configurations indicates that the TCI status corresponds to a group of QCL reference sources;
  • each of the CSI-RS ports is associated with a second TCI state, where the second TCI state corresponds to multiple sets of QCL reference sources.
  • the CSI-RS resource also satisfies at least one of the following:
  • Each set of QCL reference sources includes at least one QCL reference source
  • each of the CSI-RS ports is associated with multiple groups of QCL reference sources
  • the number and type of QCL reference sources contained in each group of QCL reference sources in the multiple groups of QCL reference sources are the same;
  • each of the CSI-RS ports is associated with multiple sets of QCL reference sources
  • the number and/or types of QCL reference sources included in each set of QCL reference sources in the multiple sets of QCL reference sources are different;
  • each group of QCL reference sources includes two QCL reference sources
  • the type of one QCL reference source in the two QCL reference sources is QCL-TypeD
  • the channel state information interference measurement CSI-IM resource corresponding to the CSI-RS resource has the same QCL assumption as the CSI-RS resource.
  • the channel state information interference measurement CSI-IM resource corresponding to the CSI-RS resource has the same QCL association relationship as the CSI-RS resource.
  • the CSI-RS resources include CSI-RS resources used for channel measurement and CSI-RS resources used for interference measurement.
  • the CSI-RS configuration information is used for coherent joint transmission, and the channel state information CSI feedback based on the CSI-RS configuration information is CSI feedback based on a non-precoding matrix indication non-PMI.
  • the CSI-RS configuration method provided by the embodiment of the present application takes the network side device as the execution subject, and belongs to the same inventive concept as the CSI-RS configuration method with the terminal as the execution subject shown in FIG.
  • the network side device is the execution subject in the embodiment of the application
  • the network side device sends CSI-RS configuration information to the terminal to indicate the association relationship between the CSI-RS port and multiple groups of QCL reference sources, and realizes the connection between multiple TRPs and the terminal.
  • the association of channel measurement is applicable to the coherent joint transmission scenario of multiple TRPs.
  • Figure 4 is one of the schematic flow charts of the CSI feedback method provided by the embodiment of the present application. As shown in Figure 4, the method includes the following steps:
  • Step 400 the terminal receives channel state information reference signal CSI-RS configuration information and channel state information CSI report configuration information;
  • the terminal receives the CSI-RS configuration information and the CSI report configuration information sent by the network side device.
  • the CSI-RS configuration information is used to indicate multiple CMR subsets.
  • the CSI report configuration information is used to indicate how to report the CSI.
  • Step 401 the terminal performs measurement according to the CSI-RS configuration information, selects at least one CMR group from multiple channel measurement resource CMR subsets, and obtains CSI;
  • the terminal selects a CMR group from multiple CMR subsets, each CMR included in the CMR group belongs to a different CMR subset, and each CMR included in the CMR group corresponds to a different TRP.
  • the terminal selects multiple CMR groups from multiple CMR subsets, wherein each CMR contained in one CMR group belongs to a different CMR subset respectively, and each CMR contained in one CMR group corresponds to For different TRPs, the number of CMRs contained in each of the multiple CMR groups is the same or different.
  • the terminal selects at least one CMR group from multiple CMR subsets of channel measurement resources, so as to realize coherent joint transmission of multiple TRPs.
  • Step 402 the terminal feeds back the CSI to the network side device according to the CSI report configuration information.
  • the CSI includes one of the following:
  • each CMR contained in one said CMR group belongs to different CMR subsets respectively, and the number of CMRs contained in each CMR group in the plurality of CMR groups is the same or different.
  • the terminal selects a CMR group from multiple CMR subsets to obtain CSI, and the terminal feeds back a CSI corresponding to the CMR group to the network side device, which can realize CJT transmission of TRP in the group, and feed back a CSI, including CSI Reference signal resource indication (CSI-RS Resource Indicator, CRI), precoding matrix indication (Precoding Matrix Index,
  • CSI-RS Resource Indicator CRI
  • Precoding Matrix Index Precoding Matrix Index
  • PMI Rank Indicator
  • RI Rank Indicator
  • CQI Channel Quality Indicator
  • the terminal selects a plurality of CMR groups from a plurality of CMR subsets, obtains the number of CMRs contained in each of the plurality of CMR groups in the CSI, which is the same or different, and the terminal feeds back the plurality of CMR groups to the network side device.
  • a CSI corresponding to a CMR group can realize mixed transmission of CJT and NCJT, that is, TRP in each CMR group is transmitted by CJT, and between groups is transmitted by NCJT, and a CSI is fed back, including CRI, PMI, RI, CQI, etc.
  • the terminal selects multiple CMR groups from multiple CMR subsets to obtain the CSI, and each CMR group in the multiple CMR groups contains the same or different numbers of CMRs, and the terminal feeds back the multiple CMRs to the network side device.
  • Multiple CSIs corresponding to a CMR group can realize the reporting of multiple possible CJT CSIs, and the network side device selects the optimal scheduling result.
  • the network-side device configures 6 CMR subsets for the terminal, selects 2 CMR groups, including 3 CMRs and 4 CMRs, and feeds back the 2 CMR groups and their CSIs.
  • the network-side device can be based on The situation flexibly schedules that the 3 TRPs or 4 TRPs corresponding to the 2 CMR groups perform service transmission to the terminal.
  • multiple groups of CMRs selected by the UE are in a nested relationship, for example:
  • the terminal can report resource indications (such as CRI) corresponding to CMR0, CMR1, CMR2, and CMR3, as well as CSI1 corresponding to group 1, CSI2 corresponding to group 2, and CSI3 corresponding to group 3.
  • resource indications such as CRI
  • CRI resource indication
  • CSI1 includes PMI 0/p0/ ⁇ 0
  • group 2 can only additionally feed back PMI2/p2/ ⁇ 2
  • group 3 can additionally feed back PMI3/p3/ ⁇ 3.
  • PMIi is a sub-precoding matrix indicator corresponding to CMRi
  • pi is amplitude or power information corresponding to CMRi
  • ⁇ i is phase information corresponding to CMRi.
  • the CSI also includes at least one of the following:
  • X and Y are integers greater than or equal to zero.
  • the CSI fed back by the terminal to the network side device can be the coherent joint transmission CJT CSI corresponding to the above-mentioned multiple TRPs, that is, one CSI corresponding to one CMR group, one CSI corresponding to multiple CMR groups, or multiple CMRs
  • the multiple CSIs corresponding to the group may also include: CSIs corresponding to X single TRPs, and non-coherent joint transmission NCJT CSIs corresponding to Y multiple TRPs.
  • both X and Y are configurable.
  • the embodiment of the present application can implement coherent joint transmission only within some TRPs (that is, multiple TRPs corresponding to one CMR group) among multiple TRPs, and between multiple partial TRPs (that is, between TRPs corresponding to multiple CMR groups)
  • the hybrid transmission mode of coherent joint transmission and non-coherent joint transmission can only be used in the case of non-coherent joint transmission, which improves the applicability and flexibility of CSI reporting.
  • the CSI corresponding to the CMR group includes:
  • the CSI reference signal resource of the CMR group indicates CRI or N CRIs corresponding to the N CMRs included in the CMR group;
  • N sub-precoding matrices indicate PMI
  • each sub-PMI corresponds to a CMR
  • N is the number of CMRs included in each CMR group
  • M1 and M2 are both integers greater than or equal to 0 and less than or equal to N.
  • the CSI corresponding to a CMR group includes the following content: CRI, PMI, phase information, amplitude or power information.
  • the CSI reference signal resource indication CRI of the CMR group refers to a CRI corresponding to the CMR group.
  • the N CMRs included in the CMR group correspond to N CRIs, that is, each CMR in the CMR group corresponds to a CRI, and the N CRIs are reported.
  • M1 and M2 may be preset, configured by the network side, or determined by the terminal independently according to the resource (PUCCH or PUSCH) size reported by the CSI.
  • the independent determination of the terminal according to the size of the resource (PUCCH or PUSCH) reported by the CSI means that when the size of the resource (PUCCH or PUSCH) reported by the CSI cannot transmit the phase information corresponding to the N sub-PMIs or the amplitude or power information corresponding to the N sub-PMIs, The terminal can discard part of the CSI content and not report it by adjusting M1 or M2.
  • Sub-PMIs that do not feed back phase information or amplitude or power information can be transmitted using NCJT.
  • the amplitude or power information means amplitude information or power information.
  • the magnitude or power information corresponding to the M2 sub-PMIs includes at least one of the following:
  • M2-1 amplitude or power quantization values, wherein the largest amplitude or power quantization value among the M2 amplitude or power quantization values is 1 and no feedback is given;
  • the M2 quantized amplitude or power values are quantized values of the largest M2 amplitude or power values among the amplitude or power values corresponding to the N sub-PMIs.
  • the larger the amplitude or power value the higher or lower the quantization accuracy of the corresponding amplitude or power quantization value; the quantization accuracy of the amplitude or power quantization value corresponding to different CMR or sending and receiving points TRP is Preset or configurable.
  • the quantization of the amplitude or power may also adopt an equal amplitude or equal power quantization manner.
  • phase information corresponding to the M1 sub-PMIs includes at least one of the following:
  • the M1 phase quantization values are phase quantization values corresponding to the M1 sub-PMIs with the largest amplitude or power value. That is, the M1 phase quantization values are quantization values of the phase values corresponding to the M1 sub-PMIs with the largest amplitude or power values.
  • the larger the amplitude or power value, the higher the quantization precision of the corresponding phase quantization value; the quantization precision of the phase quantization value corresponding to different CMRs or transmission and reception points TRP can be preset or configured.
  • the phase quantization may also adopt an equidistant quantization manner.
  • Example 1 A CMR group contains N CMRs, and N CRIs corresponding to N CMRs are reported. These CRIs are reported in descending order of the magnitude or power of the measured CMRs, and the reported N sub-PMIs and N CRIs indicate The order corresponds to the N CMRs.
  • the amplitude or power quantization value corresponding to the M2 sub-PMIs reported by the terminal is the amplitude or power quantization value of the sub-PMI corresponding to the first M2 CRIs
  • the phase quantization value corresponding to the M1 sub-PMIs is reported by the terminal as the sub-PMI corresponding to the first M1 CRIs. Phase quantization value.
  • Example 2 A CMR group contains N CMRs, and a CRI is reported to indicate the CMR group.
  • the magnitude or power of the N CMRs in the CMR group may not be arranged in a specific order, and the reported N sub-PMIs correspond to the N CMRs .
  • the terminal in addition to reporting the amplitude or power quantization values corresponding to the M2 sub-PMIs and the phase quantization values corresponding to the M1 sub-PMIs, the terminal also needs to report the amplitude or power quantization values corresponding to the M2 sub-PMIs and the N sub-PMIs in the CSI. and the corresponding relationship between the phase quantization values corresponding to the M1 sub-PMIs and the N sub-PMIs.
  • N bitmap bitmaps are used to indicate the corresponding relationship. If the nth bitmap bit is 1, it means that the nth sub-PMI has a corresponding amplitude or power quantization value/phase quantization value, and if it is 0, it means that the nth sub-PMI has no corresponding amplitude. Or power quantization value/phase quantization value.
  • the terminal selects at least one CMR group from multiple channel measurement resource CMR subsets, and the CSI fed back to the network side device includes CRI, sub-PMI, phase information and amplitude or power information, which realizes The association of channel measurement between multiple TRPs and terminals realizes the coherent joint transmission of multiple TRPs.
  • the method before the terminal feeds back the CSI to the network side device according to the CSI report configuration information, the method further includes:
  • the terminal feeds back the CSI to the network side device according to the CSI report configuration information, including:
  • the PMI, phase information, and amplitude or power information corresponding to some of the N sub-PMIs are fed back to the network side device.
  • the terminal determines the priority of the N sub-PMIs according to the amplitude or power information corresponding to the N sub-PMIs, wherein the greater the magnitude or power quantization value , the higher the priority, and then according to the priorities of the N sub-PMIs, report the PMI, phase information, and amplitude or power information corresponding to the sub-PMI with higher priority, that is, the sub-PMI with higher priority implements CJT transmission, Other sub-PMIs with relatively low priority are transmitted by NCJT.
  • the terminal uses the following formula to calculate the precoding matrix according to the phase information corresponding to the N sub-PMIs, the M1 sub-PMIs, and the amplitude or power information corresponding to the M2 sub-PMIs:
  • W new [p 1 ⁇ 1 W 1 p 2 ⁇ 2 W 2 ... p N ⁇ N W N ]
  • W new is the precoding matrix
  • W n is the precoding matrix corresponding to the nth sub-PMI
  • p n is the amplitude information or power information corresponding to the nth sub-PMI
  • ⁇ n is the phase information corresponding to the nth sub-PMI
  • n 1,2,...N
  • the above precoding matrix may be for all transmission layers or for each transmission layer.
  • W n is the precoding matrix of all transmission layers corresponding to the nth sub-PMI, that is, all transmission layers use the same p n and ⁇ n ; for each transmission layer, W n is the nth sub-PMI
  • the CSI report needs to include RI W n , p n , ⁇ n , and RI W new , RI That is, the number of transmission layers reported by the terminal.
  • the terminal calculates the precoding matrix, and determines channel parameters such as RI and CQI according to the precoding matrix to report CSI.
  • FIG. 5 is the second schematic flow diagram of the CSI feedback method provided by the embodiment of the present application. As shown in Figure 5, the method includes the following steps:
  • Step 500 the network side device sends channel state information reference signal CSI-RS configuration information and channel state information CSI report configuration information to the terminal;
  • Step 501 the network side device receives the channel state information CSI fed back by the terminal.
  • the CSI feedback method provided by the embodiment of the present application takes the network-side device as the execution subject, and belongs to the same inventive concept as the CSI feedback method in which the terminal is the execution subject shown in FIG. 4 . Therefore, for the embodiment of the present application
  • the network-side device is the execution subject
  • details are not repeated here.
  • the CSI includes one of the following:
  • the CMRs contained in one CMR group respectively belong to different CMR subsets, and the number of CMRs contained in each CMR group in the plurality of CMR groups is the same or different.
  • the CSI also includes at least one of the following:
  • X and Y are integers greater than or equal to zero.
  • the CSI corresponding to the CMR group includes:
  • the CSI reference signal resource corresponding to the CMR group indicates a CRI or N CRIs corresponding to the N CMRs included in the CMR group;
  • N sub-precoding matrices indicate PMI
  • each sub-PMI corresponds to a CMR
  • N is the number of CMRs included in each CMR group
  • M1 and M2 are both integers greater than or equal to 0 and less than or equal to N.
  • the amplitude or power information corresponding to the M2 sub-PMIs includes at least one of the following:
  • M2-1 amplitude or power quantization values, wherein the largest amplitude or power quantization value among the M2 amplitude or power quantization values is 1 and no feedback is given;
  • the amplitude or power quantization values corresponding to the M2 sub-PMIs are quantized values of the largest M2 amplitude or power values among the amplitude or power values corresponding to the N sub-PMIs.
  • the larger the amplitude or power value the higher or lower the quantization accuracy of the corresponding amplitude or power quantization value; the quantization accuracy of the amplitude or power quantization value corresponding to different CMR or sending and receiving points TRP is Preset or configurable.
  • phase information corresponding to the M1 sub-PMIs includes at least one of the following:
  • the M1 phase quantization values are phase quantization values corresponding to the M1 sub-PMIs with the largest amplitude or power value.
  • the quantization precision of the phase quantization value corresponding to different CMRs or sending and receiving points TRP can be preset or configured.
  • the network side device receives the CSI fed back by the terminal, the CSI includes CRI, sub-PMI, phase information and amplitude or power information, and realizes coherent joint transmission of multiple TRPs.
  • the network side device uses the following formula to calculate the precoding matrix according to the phase information corresponding to the N sub-PMIs, the M1 sub-PMIs, and the amplitude or power information corresponding to the M2 sub-PMIs:
  • W new [p 1 ⁇ 1 W 1 p 2 ⁇ 2 W 2 ... p N ⁇ N W N ]
  • W new is the precoding matrix
  • W n is the precoding matrix corresponding to the nth sub-PMI
  • p n is the amplitude information or power information corresponding to the nth sub-PMI
  • ⁇ n is the phase information corresponding to the nth sub-PMI
  • n 1,2,...N
  • the channel parameters include at least one of the following: a rank indicator RI of a channel matrix, and a channel quality indicator CQI.
  • the network side device uses the above formula to calculate the precoding matrix according to the N sub-PMIs in the CSI fed back by the terminal, the phase information corresponding to the M1 sub-PMIs, and the amplitude or power information corresponding to the M2 sub-PMIs, and uses the precoding matrix
  • the matrix precodes the transmitted data signal.
  • FIG. 6 is one of the schematic structural diagrams of the CSI-RS configuration device provided in the embodiment of the present application. As shown in FIG. 6, the CSI-RS configuration device 600 includes:
  • the first receiving unit 610 is configured to receive channel state information reference signal CSI-RS configuration information
  • the CSI-RS configuration information is used to indicate the association relationship between the CSI-RS port and multiple groups of quasi-co-located QCL reference sources.
  • the CSI-RS configuration information indicates the association relationship between the CSI-RS port and multiple groups of QCLs, realizing the association of multiple TRPs to channel measurement between terminals.
  • the CSI-RS configuration information includes at least one CSI-RS resource, where one CSI-RS resource includes at least one CSI-RS port;
  • each of the CSI-RS ports is associated with multiple first transmission configurations indicating TCI status or multiple groups of QCL reference sources, and one of the first transmission configurations indicates that the TCI status corresponds to a group of QCL reference sources;
  • each of the CSI-RS ports is associated with a second TCI state, where the second TCI state corresponds to multiple sets of QCL reference sources.
  • the CSI-RS resource also satisfies at least one of the following:
  • Each set of QCL reference sources includes at least one QCL reference source
  • each of the CSI-RS ports is associated with multiple groups of QCL reference sources
  • the number and type of QCL reference sources contained in each group of QCL reference sources in the multiple groups of QCL reference sources are the same;
  • each of the CSI-RS ports is associated with multiple sets of QCL reference sources
  • the number and/or types of QCL reference sources included in each set of QCL reference sources in the multiple sets of QCL reference sources are different;
  • each group of QCL reference sources includes two QCL reference sources
  • the type of one QCL reference source in the two QCL reference sources is QCL-TypeD
  • the channel state information interference measurement CSI-IM resource corresponding to the CSI-RS resource has the same QCL assumption as the CSI-RS resource.
  • the CSI-RS resources include CSI-RS resources used for channel measurement and CSI-RS resources used for interference measurement.
  • the CSI-RS configuration information is used for coherent joint transmission, and the channel state information CSI feedback based on the CSI-RS configuration information is CSI feedback based on a non-precoding matrix indication non-PMI.
  • the CSI-RS configuration device realizeds the channel between multiple TRPs and the terminal by receiving the CSI-RS configuration information sent by the network side device to indicate the association relationship between the CSI-RS port and multiple groups of QCLs.
  • the correlation of measurements is applicable to the coherent joint transmission scenario of multiple TRPs.
  • the CSI-RS configuring device in the embodiment of the present application may be a device, a device with an operating system or an electronic device, or a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic equipment may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but not limited to the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machines or self-service machines, etc., are not specifically limited in this embodiment of the present application.
  • the CSI-RS configuration device provided by the embodiment of the present application can realize each process realized by the method embodiment in FIG. 2 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • FIG. 7 is the second structural schematic diagram of the CSI-RS configuration device provided by the embodiment of the present application. As shown in FIG. 7, the CSI-RS configuration device 700 includes:
  • the first sending unit 710 is configured to send channel state information reference signal CSI-RS configuration information to the terminal;
  • the CSI-RS configuration information is used to indicate the association relationship between the CSI-RS port and multiple groups of quasi-co-located QCL reference sources.
  • the CSI-RS configuration information includes at least one CSI-RS resource, where one CSI-RS resource includes at least one CSI-RS port;
  • each of the CSI-RS ports is associated with multiple first transmission configurations indicating TCI status or multiple groups of QCL reference sources, and one of the first transmission configurations indicates that the TCI status corresponds to a group of QCL reference sources;
  • each CSI-RS port is associated with a second TCI state, where the second TCI state corresponds to multiple sets of QCL reference sources.
  • the CSI-RS resource also satisfies at least one of the following:
  • Each set of QCL reference sources includes at least one QCL reference source
  • each of the CSI-RS ports is associated with multiple groups of QCL reference sources
  • the number and type of QCL reference sources contained in each group of QCL reference sources in the multiple groups of QCL reference sources are the same;
  • each of the CSI-RS ports is associated with multiple sets of QCL reference sources
  • the number and/or types of QCL reference sources included in each set of QCL reference sources in the multiple sets of QCL reference sources are different;
  • each group of QCL reference sources includes two QCL reference sources
  • the type of one QCL reference source in the two QCL reference sources is QCL-TypeD
  • the channel state information interference measurement CSI-IM resource corresponding to the CSI-RS resource has the same QCL assumption as the CSI-RS resource.
  • the CSI-RS resources include CSI-RS resources used for channel measurement and CSI-RS resources used for interference measurement.
  • the CSI-RS configuration information is used for coherent joint transmission, and the channel state information CSI feedback based on the CSI-RS configuration information is CSI feedback based on a non-precoding matrix indication non-PMI.
  • the CSI-RS configuration device provided in the embodiment of the present application sends CSI-RS configuration information to the terminal to indicate the association relationship between the CSI-RS port and multiple groups of QCLs, realizing the association of multiple TRPs to the channel measurement between the terminal, It is applicable to the coherent joint transmission scenario of multiple TRPs.
  • the CSI-RS configuring device in the embodiment of the present application may be a device, a device with an operating system or an electronic device, or a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic equipment may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but not limited to the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machines or self-service machines, etc., are not specifically limited in this embodiment of the present application.
  • the CSI-RS configuration device provided by the embodiment of the present application can realize each process realized by the method embodiment in FIG. 3 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the CSI feedback method provided in the embodiment of the present application may be executed by a CSI feedback device, or a control module in the CSI feedback device for executing the CSI feedback method.
  • the CSI feedback device provided in the embodiment of the present application is described by taking the CSI feedback device executing the CSI feedback method as an example.
  • FIG. 8 is one of the structural schematic diagrams of the CSI feedback device provided in the embodiment of the present application. As shown in FIG. 8, the CSI feedback device 800 includes:
  • the second receiving unit 810 is configured to receive channel state information reference signal CSI-RS configuration information and channel state information CSI report configuration information;
  • the measurement unit 820 is configured to perform measurement according to the CSI-RS configuration information, select at least one set of CMRs from a plurality of channel measurement resource CMR subsets, and obtain CSI;
  • the feedback unit 830 is configured to feed back the CSI to the network side device according to the CSI report configuration information.
  • the CSI feedback apparatus selects at least one CMR group from multiple CMR subsets of channel measurement resources, and can realize coherent joint transmission of multiple TRPs.
  • the CSI includes one of the following:
  • the CMRs contained in one CMR group respectively belong to different CMR subsets, and the number of CMRs contained in each CMR group in the plurality of CMR groups is the same or different.
  • the CSI also includes at least one of the following:
  • X and Y are integers greater than or equal to zero.
  • the CSI corresponding to the CMR group includes:
  • the CSI reference signal resource of the CMR group indicates a CRI or N CRIs corresponding to the N CMRs included in the CMR group;
  • N sub-precoding matrices indicate PMI
  • each sub-PMI corresponds to a CMR
  • N is the number of CMRs included in each CMR group
  • M1 and M2 are both integers greater than or equal to 0 and less than or equal to N.
  • the amplitude or power information corresponding to the M2 sub-PMIs includes at least one of the following:
  • M2-1 amplitude or power quantization values, wherein the largest amplitude or power quantization value among the M2 amplitude or power quantization values is 1 and no feedback is given;
  • the amplitude or power quantization values corresponding to the M2 sub-PMIs are quantized values of the largest M2 amplitude or power values among the amplitude or power values corresponding to the N sub-PMIs.
  • the larger the amplitude or power value the higher or lower the quantization accuracy of the corresponding amplitude or power quantization value; the quantization accuracy of the amplitude or power quantization value corresponding to different CMR or sending and receiving points TRP is Preset or configurable.
  • phase information corresponding to the M1 sub-PMIs includes at least one of the following:
  • the M1 phase quantization values are phase quantization values corresponding to the M1 sub-PMIs with the largest amplitude or power value.
  • the larger the amplitude or power value, the higher the quantization precision of the corresponding phase quantization value; the quantization precision of the phase quantization value corresponding to different CMRs or transmission and reception points TRP can be preset or configured.
  • a first determining unit configured to determine the priorities of the N sub-PMIs according to amplitude or power information corresponding to the N sub-PMIs;
  • the feedback unit is used for:
  • the PMI, phase information, and amplitude or power information corresponding to some of the N sub-PMIs are fed back to the network side device.
  • a first computing unit configured to:
  • the following formula is used to calculate the precoding matrix:
  • W new [p 1 ⁇ 1 W 1 p 2 ⁇ 2 W 2 ... p N ⁇ N W N ]
  • W new is the precoding matrix
  • W n is the precoding matrix corresponding to the nth sub-PMI
  • p n is the amplitude information or power information corresponding to the nth sub-PMI
  • ⁇ n is the phase information corresponding to the nth sub-PMI
  • n 1,2,...N
  • the terminal selects at least one CMR group from multiple channel measurement resource CMR subsets, and the CSI fed back to the network side device includes CRI, sub-PMI, phase information and amplitude or power information, which realizes The association of channel measurement between multiple TRPs and terminals realizes the coherent joint transmission of multiple TRPs.
  • the CSI feedback device in the embodiment of the present application may be a device, a device with an operating system or an electronic device, or a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic equipment may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but not limited to the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machines or self-service machines, etc., are not specifically limited in this embodiment of the present application.
  • the CSI feedback device provided by the embodiment of the present application can realize each process realized by the method embodiment in FIG. 4 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • FIG. 9 is the second structural schematic diagram of the CSI feedback device provided by the embodiment of the present application. As shown in FIG. 9, the CSI feedback device 900 includes:
  • the second sending unit 910 is configured to send channel state information reference signal CSI-RS configuration information and channel state information CSI report configuration information to the terminal;
  • the third receiving unit 920 is configured to receive channel state information CSI fed back by the terminal.
  • the CSI includes one of the following:
  • the CMRs contained in one CMR group respectively belong to different CMR subsets, and the number of CMRs contained in each CMR group in the plurality of CMR groups is the same or different.
  • the CSI also includes at least one of the following:
  • X and Y are integers greater than or equal to zero.
  • the CSI corresponding to the CMR group includes:
  • the CSI reference signal resource of the CMR group indicates CRI or N CRIs corresponding to the N CMRs included in the CMR group;
  • N sub-precoding matrices indicate PMI
  • each sub-PMI corresponds to a CMR
  • N is the number of CMRs included in each CMR group
  • M1 and M2 are both integers greater than or equal to 0 and less than or equal to N.
  • the amplitude or power information corresponding to the M2 sub-PMIs includes at least one of the following:
  • M2-1 amplitude or power quantization values, wherein the largest amplitude or power quantization value among the M2 amplitude or power quantization values is 1 and no feedback is given;
  • the amplitude or power quantization values corresponding to the M2 sub-PMIs are quantized values of the largest M2 amplitude or power values among the amplitude or power values corresponding to the N sub-PMIs.
  • the larger the amplitude or power value the higher or lower the quantization accuracy of the corresponding amplitude or power quantization value; the quantization accuracy of the amplitude or power quantization value corresponding to different CMR or sending and receiving points TRP is Preset or configurable.
  • phase information corresponding to the M1 sub-PMIs includes at least one of the following:
  • the M1 phase quantization values are phase quantization values corresponding to the M1 sub-PMIs with the largest amplitude or power value.
  • the larger the amplitude or power value, the higher the quantization precision of the corresponding phase quantization value; the quantization precision of the phase quantization value corresponding to different CMRs or transmission and reception points TRP can be preset or configured.
  • a second calculation unit used for:
  • the following formula is used to calculate the precoding matrix:
  • W new [p 1 ⁇ 1 W 1 p 2 ⁇ 2 W 2 ... p N ⁇ N W N ]
  • W new is the precoding matrix
  • W n is the precoding matrix corresponding to the nth sub-PMI
  • p n is the amplitude information or power information corresponding to the nth sub-PMI
  • ⁇ n is the phase information corresponding to the nth sub-PMI
  • n 1,2,...N
  • a second determining unit configured to determine channel parameters according to the precoding matrix
  • the channel parameters include at least one of the following: a rank indicator RI of a channel matrix, and a channel quality indicator CQI.
  • the CSI feedback device receives the CSI fed back by the terminal, and the CSI includes CRI, sub-PMI, phase information and amplitude or power information, and realizes coherent joint transmission of multiple TRPs.
  • the CSI feedback device in the embodiment of the present application may be a device, a device with an operating system or an electronic device, or a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic equipment may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but not limited to the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machines or self-service machines, etc., are not specifically limited in this embodiment of the present application.
  • the CSI feedback device provided by the embodiment of the present application can realize each process realized by the method embodiment in FIG. 5 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • this embodiment of the present application further provides a communication device 1000, including a processor 1001, a memory 1002, and programs or instructions stored in the memory 1002 and operable on the processor 1001,
  • a communication device 1000 including a processor 1001, a memory 1002, and programs or instructions stored in the memory 1002 and operable on the processor 1001
  • the communication device 1000 is a terminal
  • the program or instruction is executed by the processor 1001
  • each process of the above CSI-RS configuration method or CSI feedback method embodiment can be realized, and the same technical effect can be achieved.
  • the communication device 1000 is a network-side device, when the program or instruction is executed by the processor 1001, each process of the above-mentioned CSI-RS configuration method or CSI feedback method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, here No longer.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, and the communication interface is used to receive channel state information reference signal CSI-RS configuration information; wherein, the CSI-RS configuration information is used to indicate the CSI-RS port and Associations of multiple groups of quasi-co-located QCL reference sources.
  • the communication interface is used to receive channel state information reference signal CSI-RS configuration information and channel state information CSI report configuration information, and the processor is used to perform measurement according to the CSI-RS configuration information and select from multiple channel measurement resource CMR subsets At least one CMR group obtains CSI; the communication interface is further configured to feed back the CSI to the network side device according to the CSI report configuration information.
  • FIG. 11 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1100 includes but is not limited to: a radio frequency unit 1101, a network module 1102, an audio output unit 1103, an input unit 1104, a sensor 1105, a display unit 1106, a user input unit 1107, an interface unit 1108, a memory 1109, and a processor 1110, etc. at least some of the components.
  • the terminal 1100 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 1110 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 11 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1104 may include a graphics processor (Graphics Processing Unit, GPU) 11041 and a microphone 11042, and the graphics processor 11041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 1106 may include a display panel 11061, and the display panel 11061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1107 includes a touch panel 11071 and other input devices 11072 . Touch panel 11071, also called touch screen.
  • the touch panel 11071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 11072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 1101 receives the downlink data from the network side device, and processes it to the processor 1110; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 1101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 1109 can be used to store software programs or instructions as well as various data.
  • the memory 1109 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1109 may include a high-speed random access memory, and may also include a nonvolatile memory, wherein the nonvolatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 1110 may include one or more processing units; optionally, the processor 1110 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 1110 .
  • the radio frequency unit 1101 is configured to receive channel state information reference signal CSI-RS configuration information
  • the CSI-RS configuration information is used to indicate the association relationship between the CSI-RS port and multiple groups of quasi-co-located QCL reference sources.
  • the CSI-RS configuration information indicates the association relationship between the CSI-RS port and multiple groups of QCLs, realizing the association of multiple TRPs to channel measurement between terminals.
  • the CSI-RS configuration information includes at least one CSI-RS resource, where one CSI-RS resource includes at least one CSI-RS port;
  • each of the CSI-RS ports is associated with multiple first transmission configurations indicating TCI status or multiple groups of QCL reference sources, and one of the first transmission configurations indicates that the TCI status corresponds to a group of QCL reference sources;
  • each of the CSI-RS ports is associated with a second TCI state, where the second TCI state corresponds to multiple sets of QCL reference sources.
  • the CSI-RS resource also satisfies at least one of the following:
  • Each set of QCL reference sources includes at least one QCL reference source
  • each of the CSI-RS ports is associated with multiple groups of QCL reference sources
  • the number and type of QCL reference sources contained in each group of QCL reference sources in the multiple groups of QCL reference sources are the same;
  • each of the CSI-RS ports is associated with multiple sets of QCL reference sources
  • the number and/or types of QCL reference sources included in each set of QCL reference sources in the multiple sets of QCL reference sources are different;
  • each group of QCL reference sources includes two QCL reference sources
  • the type of one QCL reference source in the two QCL reference sources is QCL-TypeD
  • the channel state information interference measurement CSI-IM resource corresponding to the CSI-RS resource has the same QCL assumption as the CSI-RS resource.
  • the CSI-RS resources include CSI-RS resources used for channel measurement and CSI-RS resources used for interference measurement.
  • the CSI-RS configuration information is used for coherent joint transmission, and the channel state information CSI feedback based on the CSI-RS configuration information is CSI feedback based on a non-precoding matrix indication non-PMI.
  • the terminal realizes the association of multiple TRPs to the channel measurement between the terminal by receiving the CSI-RS configuration information sent by the network side device for indicating the association relationship between the CSI-RS port and multiple groups of QCLs, It is applicable to the coherent joint transmission scenario of multiple TRPs.
  • the radio frequency unit 1101 is configured to receive channel state information reference signal CSI-RS configuration information and channel state information CSI report configuration information;
  • the processor 1110 is configured to perform measurement according to the CSI-RS configuration information, select at least one CMR group from multiple channel measurement resource CMR subsets, and obtain CSI;
  • the radio frequency unit 1101 is further configured to feed back the CSI to the network side device according to the CSI report configuration information.
  • the terminal selects at least one CMR group from multiple channel measurement resource CMR subsets, which can realize coherent joint transmission of multiple TRPs.
  • the CSI includes one of the following:
  • the CMRs contained in one CMR group respectively belong to different CMR subsets, and the number of CMRs contained in each CMR group in the plurality of CMR groups is the same or different.
  • the CSI also includes at least one of the following:
  • X and Y are integers greater than or equal to zero.
  • the CSI corresponding to the CMR group includes:
  • the CSI reference signal resource of the CMR group indicates CRI or N CRIs corresponding to the N CMRs included in the CMR group;
  • N sub-precoding matrices indicate PMI
  • each sub-PMI corresponds to a CMR
  • N is the number of CMRs included in each CMR group
  • M1 and M2 are both integers greater than or equal to 0 and less than or equal to N.
  • the amplitude or power information corresponding to the M2 sub-PMIs includes at least one of the following:
  • M2-1 amplitude or power quantization values, wherein the largest amplitude or power quantization value among the M2 amplitude or power quantization values is 1 and no feedback is given;
  • the M2 quantized amplitude or power values are quantized values of the largest M2 amplitude or power values among the amplitude or power values corresponding to the N sub-PMIs.
  • the larger the amplitude or power value the higher or lower the quantization accuracy of the corresponding amplitude or power quantization value; the quantization accuracy of the amplitude or power quantization value corresponding to different CMR or sending and receiving points TRP is Preset or configurable.
  • phase information corresponding to the M1 sub-PMIs includes at least one of the following:
  • the M1 phase quantization values are phase quantization values corresponding to the M1 sub-PMIs with the largest amplitude or power value.
  • the larger the amplitude or power value, the higher the quantization precision of the corresponding phase quantization value; the quantization precision of the phase quantization value corresponding to different CMRs or transmission and reception points TRP can be preset or configured.
  • processor 1110 is also used for:
  • the radio frequency unit 1101 is also used for:
  • the PMI, phase information, and amplitude or power information corresponding to some of the N sub-PMIs are fed back to the network side device.
  • processor 1110 is also used for:
  • the following formula is used to calculate the precoding matrix:
  • W new [p 1 ⁇ 1 W 1 p 2 ⁇ 2 W 2 ... p N ⁇ N W N ]
  • W new is the precoding matrix
  • W n is the precoding matrix corresponding to the nth sub-PMI
  • p n is the amplitude information or power information corresponding to the nth sub-PMI
  • ⁇ n is the phase information corresponding to the nth sub-PMI
  • n 1,2,...N
  • the terminal selects at least one CMR group from multiple channel measurement resource CMR subsets, and the CSI fed back to the network side device includes CRI, sub-PMI, phase information and amplitude or power information, and multiple TRPs are realized.
  • the association of channel measurement between terminals realizes the coherent joint transmission of multiple TRPs.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, and the communication interface is used to send channel state information reference signal CSI-RS configuration information to the terminal; wherein, the CSI-RS configuration information is used to indicate the CSI - the association relationship between the RS port and multiple groups of quasi-co-located QCL reference sources.
  • the communication interface is used to send channel state information reference signal CSI-RS configuration information and channel state information CSI report configuration information to the terminal; the communication interface is also used to receive channel state information CSI fed back by the terminal.
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network device 1200 includes: an antenna 1201 , a radio frequency device 1202 , and a baseband device 1203 .
  • the antenna 1201 is connected to the radio frequency device 1202 .
  • the radio frequency device 1202 receives information through the antenna 1201, and sends the received information to the baseband device 1203 for processing.
  • the baseband device 1203 processes the information to be sent and sends it to the radio frequency device 1202
  • the radio frequency device 1202 processes the received information and sends it out through the antenna 1201 .
  • the foregoing frequency band processing device may be located in the baseband device 1203 , and the method performed by the network side device in the above embodiments may be implemented in the baseband device 1203 , and the baseband device 1203 includes a processor 1204 and a memory 1205 .
  • the baseband device 1203 may include, for example, at least one baseband board, and the baseband board is provided with a plurality of chips, as shown in FIG.
  • the baseband device 1203 may also include a network interface 1206 for exchanging information with the radio frequency device 1202, such as a common public radio interface (CPRI for short).
  • a network interface 1206 for exchanging information with the radio frequency device 1202, such as a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present invention further includes: instructions or programs stored in the memory 1205 and executable on the processor 1204, and the processor 1204 calls the instructions or programs in the memory 1205 to execute the instructions shown in FIG. 7 or 9.
  • the methods executed by each module are shown to achieve the same technical effect. In order to avoid repetition, the details are not repeated here.
  • the embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored, and when the program or instruction is executed by a processor, each embodiment of the above-mentioned CSI-RS configuration method or CSI feedback method is implemented. process, and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above CSI-RS configuration method or
  • the various processes of the embodiments of the CSI feedback method can achieve the same technical effect, so to avoid repetition, details are not repeated here.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种CSI-RS配置方法、CSI反馈方法、装置和设备,属于通信技术领域,本申请实施例的CSI-RS配置方法包括:终端接收信道状态信息参考信号CSI-RS配置信息;其中,所述CSI-RS配置信息用于指示CSI-RS端口与多组准共址QCL参考源的关联关系。

Description

CSI-RS配置方法、CSI反馈方法、装置和设备
相关申请的交叉引用
本申请要求于2021年06月28日提交的申请号为2021107233905,发明名称为“CSI-RS配置方法、CSI反馈方法、装置和设备”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于通信技术领域,具体涉及一种CSI-RS配置方法、CSI反馈方法、装置和设备。
背景技术
现有多发送接收点(Transmission and Reception Point,TRP)传输为非相干联合传输模式(Non-Coherent Joint Transmission,NCJT),在相关技术中增强了多TRP的信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)配置以及信道状态信息(Channel State Information,CSI)反馈。
相关技术中将CSI-RS资源分成多个信道测量资源(Channel Measurement Resource,CMR)子集或CSI-RS资源子集,用户设备(User Equipment,UE)可以根据配置测量至少一对CMR计算NCJT的CSI,一对CMR分别来自不同的CMR子集。CSI反馈时,根据配置UE可以上报一个NCJT的CSI和X=0,1,2个单TRP的CSI,或者,上报NCJT与单TRP中最优的CSI。由于上述增强的信息不包含多个TRP之间的关系,无法适用于相干联合传输(Coherent Joint Transmission,CJT)。
发明内容
本申请实施例提供一种CSI-RS配置方法、CSI反馈方法、装置和设备,能够解决多TRP相干联合传输模式下CSI-RS配置和CSI反馈的问题。
第一方面,提供了一种CSI-RS配置方法,该方法包括:
终端接收信道状态信息参考信号CSI-RS配置信息;
其中,所述CSI-RS配置信息用于指示CSI-RS端口与多组准共址QCL参考源的关联关系。
第二方面,提供了一种CSI-RS配置方法,该方法包括:
网络侧设备向终端发送信道状态信息参考信号CSI-RS配置信息;
其中,所述CSI-RS配置信息用于指示CSI-RS端口与多组准共址QCL参考源的关联关系。
第三方面,提供了一种CSI反馈方法,该方法包括:
终端接收信道状态信息参考信号CSI-RS配置信息和信道状态信息CSI报告配置信息;
终端根据所述CSI-RS配置信息进行测量,从多个信道测量资源CMR子集中选择至少一个CMR组,得到CSI;
终端根据所述CSI报告配置信息向网络侧设备反馈所述CSI。
第四方面,提供了一种CSI反馈方法,该方法包括:
网络侧设备向终端发送信道状态信息参考信号CSI-RS配置信息和信道状态信息CSI报告配置信息;
网络侧设备接收终端反馈的信道状态信息CSI。
第五方面,提供了一种CSI-RS配置装置,包括:
第一接收单元,用于接收信道状态信息参考信号CSI-RS配置信息;
其中,所述CSI-RS配置信息用于指示CSI-RS端口与多组准共址QCL参考源的关联关系。
第六方面,提供了一种CSI-RS配置装置,包括:
第一发送单元,用于向终端发送信道状态信息参考信号CSI-RS配置 信息;
其中,所述CSI-RS配置信息用于指示CSI-RS端口与多组准共址QCL参考源的关联关系。
第七方面,提供了一种CSI反馈装置,包括:
第二接收单元,用于接收信道状态信息参考信号CSI-RS配置信息和信道状态信息CSI报告配置信息;
测量单元,用于根据所述CSI-RS配置信息进行测量,从多个信道测量资源CMR子集中选择至少一组CMR,得到CSI;
反馈单元,用于根据所述CSI报告配置信息向网络侧设备反馈所述CSI。
第八方面,提供了一种CSI反馈装置,包括:
第二发送单元,用于向终端发送信道状态信息参考信号CSI-RS配置信息和信道状态信息CSI报告配置信息;
第三接收单元,用于接收终端反馈的信道状态信息CSI。
第九方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的CSI-RS配置方法的步骤,或实现如第三方面所述的CSI反馈方法的步骤。
第十方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于接收信道状态信息参考信号CSI-RS配置信息;其中,所述CSI-RS配置信息用于指示CSI-RS端口与多组准共址QCL参考源的关联关系。或者,所述通信接口用于接收信道状态信息参考信号CSI-RS配置信息和信道状态信息CSI报告配置信息;所述处理器用于根据所述CSI-RS配置信息进行测量,从多个信道测量资源CMR子集中选择至少一个CMR组,得到CSI;所述通信接口还用于根据所述CSI报告配置信息向网络侧设备反馈所述CSI。
第十一方面,提供了一种网络侧设备,该网络侧设备包括处理器、 存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的CSI-RS配置方法的步骤,或实现如第四方面所述的CSI反馈方法的步骤。
第十二方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于向终端发送信道状态信息参考信号CSI-RS配置信息;其中,所述CSI-RS配置信息用于指示CSI-RS端口与多组准共址QCL参考源的关联关系。或者,所述通信接口用于向终端发送信道状态信息参考信号CSI-RS配置信息和信道状态信息CSI报告配置信息;所述通信接口还用于接收终端反馈的信道状态信息CSI。
第十三方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的CSI-RS配置方法的步骤,或实现如第二方面所述的CSI-RS配置方法的步骤,或实现如第三方面所述的CSI反馈方法的步骤,或实现如第四方面所述的CSI反馈方法的步骤。
第十四方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的CSI-RS配置方法,或实现如第二方面所述的CSI-RS配置方法,或实现如第三方面所述的CSI反馈方法,或实现如第四方面所述的CSI反馈方法。
第十五方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非瞬态的存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面所述的CSI-RS配置方法的步骤,或实现如第二方面所述的CSI-RS配置方法的步骤,或实现如第三方面所述的CSI反馈方法的步骤,或实现如第四方面所述的CSI反馈方法的步骤。
在本申请实施例中,终端通过接收网络侧设备发送的用于指示CSI-RS端口与多组QCL的关联关系的CSI-RS配置信息,实现了多个TRP到终端之间信道测量的关联,可适用于多TRP的相干联合传输场景。
附图说明
图1为本申请实施例可应用的一种无线通信系统的结构图;
图2为本申请实施例提供的CSI-RS配置方法的流程示意图之一;
图3为本申请实施例提供的CSI-RS配置方法的流程示意图之二;
图4为本申请实施例提供的CSI反馈方法的流程示意图之一;
图5为本申请实施例提供的CSI反馈方法的流程示意图之二;
图6为本申请实施例提供的CSI-RS配置装置的结构示意图之一;
图7为本申请实施例提供的CSI-RS配置装置的结构示意图之二;
图8为本申请实施例提供的CSI反馈装置的结构示意图之一;
图9为本申请实施例提供的CSI反馈装置的结构示意图之二;
图10为本申请实施例提供的通信设备的结构示意图;
图11为实现本申请实施例的一种终端的硬件结构示意图;
图12为本申请实施例提供的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接 对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和
“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的结构图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:智能手表、手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收 发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的CSI-RS配置方法、CSI反馈方法、装置和设备进行详细地说明。
图2为本申请实施例提供的CSI-RS配置方法的流程示意图之一。如图2所示,该方法包括以下步骤:
步骤200、终端接收信道状态信息参考信号CSI-RS配置信息;
其中,所述CSI-RS配置信息用于指示CSI-RS端口与多组准共址QCL参考源的关联关系。
其中,准共址(QCL,Quasi Co-Location)是指某一个天线端口上的符号所经历信道的平均时延、时延扩展、多普勒频偏、多普勒扩展以及空间接收参数等可以通过另外一个天线端口推断出来。新空口(New Radio,NR)中设计了如下4种不同类型的QCL关系,用于应对不同的传输场景:
1)QCL-TypeA,{多普勒频偏、多普勒扩展、平均时延、时延扩展};
2)QCL-TypeB,{多普勒频偏、多普勒扩展};
3)QCL-TypeC,{多普勒频偏、平均时延};
4)QCL-TypeD,{空间接收参数}。
在本申请实施例中,CSI-RS配置信息指示CSI-RS端口与多组QCL参考源的关联关系,即指示CSI-RS端口上的符号所经历信道的平均时延、时延扩展、多普勒频偏、多普勒扩展以及空间接收参数等可以通过 多组QCL参考源的天线端口推断出来,实现了多个TRP到终端之间信道测量的关联。
可选地,所述CSI-RS配置信息包括至少一个CSI-RS资源,其中,一个CSI-RS资源包括至少一个CSI-RS端口。
可选地,每个所述CSI-RS端口关联多个第一传输配置指示(Transmission Configuration Indicator,TCI)状态或多组QCL参考源,其中,一个所述第一传输配置指示TCI状态对应一组QCL参考源,则多个第一TCI状态对应多组QCL参考源。
其中,TCI状态用于指示参考信号之间的QCL参考关系。
可选地,每个所述CSI-RS端口关联一个第二TCI状态,其中,所述第二TCI状态对应多组QCL参考源。即一个第二TCI状态对应多组QCL参考源,从而每个所述CSI-RS端口与多组QCL参考源关联。
可选地,所述CSI-RS资源还满足以下至少之一:
每组QCL参考源包括至少一个QCL参考源;
在每个所述CSI-RS端口关联多组QCL参考源的情况下,所述多组QCL参考源中各组QCL参考源包含的QCL参考源的数量和类型相同;
在每个所述CSI-RS端口关联多组QCL参考源的情况下,所述多组QCL中参考源各组QCL参考源包含的QCL参考源的数量不同和/或类型不同;
在所述每组QCL参考源包括两个QCL参考源的情况下,所述两个QCL参考源中的一个QCL参考源的类型为QCL-TypeD;
与所述CSI-RS资源对应的信道状态信息干扰测量(Channel State Information Interference Measurement,CSI-IM)资源具有与所述CSI-RS资源相同的QCL假设。
一种实施方式中,在每个所述CSI-RS端口关联多组QCL参考源的情况下,所述多组QCL参考源中各组QCL参考源包含的QCL参考源的数量和类型均相同,例如,网络侧设备为终端配置的一个CSI-RS端口关 联第一QCL参考源组,第二QCL参考源组和第三QCL参考源组,第一QCL参考源组包含的QCL参考源的数量为2,类型分别为QCL-TypeA,QCL-TypeD;那么,第二QCL参考源组包含的QCL参考源的数量也是2,类型也是QCL-TypeA,QCL-TypeD;第三QCL参考源组包含的QCL参考源的数量也是2,类型也是QCL-TypeA,QCL-TypeD;即第一QCL参考源组,第二QCL参考源组和第三QCL参考源组所包含的QCL参考源的数量和类型均相同。
一种实施方式中,在每个所述CSI-RS端口关联多组QCL参考源的情况下,所述多组QCL参考源中各组QCL参考源包含的QCL参考源的数量不同和/或类型不同。例如,网络侧设备为终端配置的一个CSI-RS端口关联第一QCL参考源组和第二QCL参考源组,第一QCL参考源组包含的QCL参考源的数量为2,类型分别为QCL-TypeA,QCL-TypeD;第二QCL参考源组包含的QCL参考源的数量是1,类型是QCL-
TypeD;或者,第二QCL参考源组包含的QCL参考源的数量是2,类型分别为QCL-TypeC,QCL-TypeD。
一种实施方式中,在所述每组QCL参考源包括两个QCL参考源的情况下,所述两个QCL参考源中的一个QCL参考源的类型一定为QCL-TypeD。
可选地,所述CSI-RS资源包括用于信道测量的CSI-RS资源和用于干扰测量的CSI-RS资源。
可选地,所述CSI-RS配置信息用于相干联合传输(Coherernt Joint Transmission,CJT),并且基于所述CSI-RS配置信息的信道状态信息CSI反馈为基于非预编码矩阵指示non-PMI的CSI反馈。
可以理解的是,在配置为基于非预编码矩阵指示non-PMI的CSI反馈且相干联合传输模式的场景下,网络侧设备通过终端发送的上行探测参考信号(Sounding Reference Signal,SRS)获得终端到多个TRP的CSI,若存在上下行信道互易性,网络侧设备便可根据终端到多个TRP 的CSI计算得到适合该终端的多个TRP的预编码矩阵。网络侧设备发送的CSI-RS经过上述预编码,终端便可根据测量得到经过多个TRP预编码之后的多TRP到终端的等效信道,估计相应的其他CSI信息并通过CSI报告反馈给网络侧设备,其他CSI信息包括例如选择端口指示、秩指示(Rank Indicator,RI)、信道质量指示(Channel Quality Indicator,CQI)等。网络侧设备向终端发送上述CSI-RS配置信息,该CSI-RS配置信息指示了CSI-RS端口与多组QCL参考源的关联关系,包含了多个TRP到终端之间信道测量的关系,适用于相干联合传输。
其中,基于non-PMI的CSI反馈方法可以与现有技术一致,例如CSI反馈量reportQauntity配置为“cri-RI-CQI”时,UE反馈RI和CQI,可以按照端口指示(non-PMI-PortIndication),或默认端口顺序确定对应RI的信道测量的CSI-RS端口。
本申请实施例提供的CSI-RS配置方法,通过接收网络侧设备发送的用于指示CSI-RS端口与多组QCL参考源的关联关系的CSI-RS配置信息,实现了多个TRP到终端之间信道测量的关联,可适用于多TRP的相干联合传输场景。
图3为本申请实施例提供的CSI-RS配置方法的流程示意图之二。如图3所示,该方法包括以下步骤:
步骤300、网络侧设备向终端发送信道状态信息参考信号CSI-RS配置信息;
其中,所述CSI-RS配置信息用于指示CSI-RS端口与多组准共址QCL参考源的关联关系。
可选地,所述CSI-RS配置信息包括至少一个CSI-RS资源,其中,一个CSI-RS资源包括至少一个CSI-RS端口;
其中,每个所述CSI-RS端口关联多个第一传输配置指示TCI状态或多组QCL参考源,一个所述第一传输配置指示TCI状态对应一组QCL参考源;
或者,每个所述CSI-RS端口关联一个第二TCI状态,其中,所述第二TCI状态对应多组QCL参考源。
可选地,所述CSI-RS资源还满足以下至少之一:
每组QCL参考源包括至少一个QCL参考源;
在每个所述CSI-RS端口关联多组QCL参考源的情况下,所述多组QCL中参考源各组QCL参考源包含的QCL参考源的数量和类型相同;
在每个所述CSI-RS端口关联多组QCL参考源的情况下,所述多组QCL参考源中各组QCL参考源包含的QCL参考源的数量不同和/或类型不同;
在所述每组QCL参考源包括两个QCL参考源的情况下,所述两个QCL参考源中的一个QCL参考源的类型为QCL-TypeD;
与所述CSI-RS资源对应的信道状态信息干扰测量CSI-IM资源具有与所述CSI-RS资源相同的QCL假设。
可选地,与所述CSI-RS资源对应的信道状态信息干扰测量CSI-IM资源具有与所述CSI-RS资源相同的QCL关联关系。
可选地,所述CSI-RS资源包括用于信道测量的CSI-RS资源和用于干扰测量的CSI-RS资源。
可选地,所述CSI-RS配置信息用于相干联合传输,并且基于所述CSI-RS配置信息的信道状态信息CSI反馈为基于非预编码矩阵指示non-PMI的CSI反馈。
需要说明的是,本申请实施例提供的CSI-RS配置方法以网络侧设备为执行主体,与图2所示的以终端为执行主体的CSI-RS配置方法属于同一发明构思,因此,对于本申请实施例中以网络侧设备为执行主体的CSI-RS配置方法的理解,可以参考前述以终端为执行主体的CSI-RS配置方法实施例中的描述,在此不再赘述。
本申请实施例提供的CSI-RS配置方法,网络侧设备向终端发送用于指示CSI-RS端口与多组QCL参考源的关联关系的CSI-RS配置信息,实 现了多个TRP到终端之间信道测量的关联,可适用于多TRP的相干联合传输场景。
图4为本申请实施例提供的CSI反馈方法的流程示意图之一,如图4所示,该方法包括以下步骤:
步骤400、终端接收信道状态信息参考信号CSI-RS配置信息和信道状态信息CSI报告配置信息;
终端接收网络侧设备发送的CSI-RS配置信息和CSI报告配置信息。
其中,CSI-RS配置信息用于指示多个CMR子集。
CSI报告配置信息用于指示如何上报CSI。
步骤401、终端根据所述CSI-RS配置信息进行测量,从多个信道测量资源CMR子集中选择至少一个CMR组,得到CSI;
一种实施方式,终端从多个CMR子集中选择一个CMR组,所述CMR组中包含的各CMR分别属于不同的CMR子集,所述CMR组中包含的各CMR分别对应不同的TRP。
一种实施方式,终端从多个CMR子集中选择多个CMR组,其中,一个所述CMR组中包含的各CMR分别属于不同的CMR子集,一个所述CMR组中包含的各CMR分别对应不同的TRP,所述多个CMR组中每个CMR组包含的CMR数量相同或不同。
在本申请实施例中,终端从多个信道测量资源CMR子集中选择至少一个CMR组,可以实现多TRP的相干联合传输。
步骤402、终端根据所述CSI报告配置信息向网络侧设备反馈所述CSI。
可选地,所述CSI包括以下之一:
一个CMR组对应的一个CSI;
多个CMR组对应的一个CSI;
多个CMR组对应的多个CSI,其中,一个CMR组对应一个CSI;
其中,一个所述CMR组中包含的各CMR分别属于不同的CMR子 集,所述多个CMR组中每个CMR组包含的CMR数量相同或不同。
一种实施方式中,终端从多个CMR子集中选择一个CMR组,得到CSI,终端向网络侧设备反馈该CMR组对应的一个CSI,可以实现组内TRP的CJT传输,反馈一个CSI,包括CSI参考信号资源指示(CSI-RS Resource Indicator,CRI)、预编码矩阵指示(Precoding Matrix Index,
PMI)、秩指示(Rank Indicator,RI)、信道质量指示(Channel Quality Indicator,CQI)等。
一种实施方式中,终端从多个CMR子集中选择多个CMR组,得到CSI所述多个CMR组中每个CMR组包含的CMR数量相同或不同,终端向网络侧设备反馈所述多个CMR组对应的一个CSI,可以实现CJT与NCJT的混合传输,即每个CMR组内TRP以CJT传输、组间则以NCJT传输,反馈一个CSI,包括CRI、PMI、RI、CQI等
一种实施方式中,终端从多个CMR子集中选择多个CMR组,得到CSI,所述多个CMR组中每个CMR组包含的CMR数量相同或不同,终端向网络侧设备反馈所述多个CMR组对应的多个CSI,可以实现报告多种可能的CJT CSI,由网络侧设备选择最优的调度结果。
例如,网络侧设备给终端配置了6个CMR子集,选出2个CMR组,分别包括3个CMR和4个CMR,并将这2个CMR组及其CSI均反馈,网络侧设备可以根据情况灵活调度由这2个CMR组对应的3个TRP或4个TRP向该终端进行业务传输。
作为一种特例,UE选择的多组CMR呈嵌套关系,例如:
组1:CMR0、CMR1;
组2:CMR0、CMR1、CMR2;
组3:CMR0、CMR1、CMR2、CMR3。
这样终端可以上报CMR0、CMR1、CMR2、CMR3对应的资源指示(例如CRI)以及组1对应的CSI1、组2对应的CSI2、组3对应的CSI3。其中,CSI1包括PMI 0/p0/θ0、PMI 1/p1/θ1,组2可以仅额外反馈 PMI2/p2/θ2,组3可以再额外反馈PMI3/p3/θ3。其中,PMIi为CMRi对应的子预编码矩阵指示,pi为CMRi对应的幅度或功率信息,θi为CMRi对应的相位信息。
可选地,所述CSI还包括以下至少一项:
X个单TRP对应的CSI;
Y个多TRP对应的非相干联合传输NCJT CSI;
其中,X、Y为大于等于零的整数。
可以理解的是,终端向网络侧设备反馈的CSI除了可以是上述多TRP对应的相干联合传输CJT CSI,即一个CMR组对应的一个CSI,多个CMR组对应的一个CSI,或者,多个CMR组对应的多个CSI,还可以包括:X个单TRP对应的CSI,Y个多TRP对应的非相干联合传输NCJT CSI。
其中,X、Y均是可配置的。
本申请实施例可以实现多个TRP中仅在部分TRP内部(即一个CMR组内对应的多个TRP)采用相干联合传输,多个部分TRP之间(即多个CMR组对应的TRP之间)仅能采用非相干联合传输情况下的相干联合传输与非相干联合传输的混合传输模式,提高了CSI报告的适用性和灵活性。
可选地,所述CMR组对应的CSI包括:
所述CMR组的CSI参考信号资源指示CRI或所述CMR组包含的N个CMR对应的N个CRI;
N个子预编码矩阵指示PMI;
M1个子PMI对应的相位信息;
M2个子PMI对应的幅度或功率信息;
其中,每个所述子PMI对应一个CMR;N为每个所述CMR组包含的CMR数量;M1和M2均为大于等于0且小于等于N的整数。
可以理解的是,一个CMR组对应的CSI包括如下内容:CRI, PMI,相位信息,幅度或功率信息。
其中,所述CMR组的CSI参考信号资源指示CRI是指该CMR组对应的一个CRI。
所述CMR组包含的N个CMR对应的N个CRI,即该CMR组中的各CMR分别对应一个CRI,上报N个CRI。
M1、M2可以是预设的,或者网络侧配置的,或者终端根据CSI报告的资源(PUCCH或PUSCH)大小自主确定的。其中,终端根据CSI报告的资源(PUCCH或PUSCH)大小自主确定是指当CSI报告的资源(PUCCH或PUSCH)大小不能发送N个子PMI对应的相位信息或N个子PMI对应的幅度或功率信息时,终端可以通过调整M1或M2丢弃部分CSI内容不上报。未反馈相位信息或幅度或功率信息的子PMI则可采用NCJT传输。
其中,幅度或功率信息表示幅度信息或功率信息。
进一步地,所述M2个子PMI对应的幅度或功率信息,包括以下至少一项:
M2-1个幅度或功率量化值,其中,M2个幅度或功率量化值中最大的幅度或功率量化值为1且不反馈;
M2个幅度或功率量化值与所述N个子PMI的对应关系。
其中,所述M2个幅度或功率量化值为所述N个子PMI对应的幅度或功率值中最大的M2个幅度或功率值的量化值。
可选地,所述幅度或功率值越大,对应的所述幅度或功率量化值的量化精度越高或越低;不同的CMR或发送接收点TRP对应的幅度或功率量化值的量化精度是可预设或配置的。
可选地,所述幅度或功率的量化也可以采用等幅度或等功率量化方式。
进一步地,所述M1个子PMI对应的相位信息,包括以下至少一项:
M1个相位量化值;
M1个相位量化值与N个子PMI的对应关系;
其中,所述M1个相位量化值为幅度或功率值最大的M1个所述子PMI对应的相位量化值。即所述M1个相位量化值为幅度或功率值最大的M1个所述子PMI对应的相位值的量化值。
可选地,所述幅度或功率值越大,对应的所述相位量化值的量化精度越高;不同的CMR或发送接收点TRP对应的相位量化值的量化精度是可预设或配置的。
可选地,相位的量化也可以采用等间距量化方式。
需要说明的是,M2个幅度或功率量化值与所述N个子PMI的对应关系是可选上报的,M1个相位量化值与N个子PMI的对应关系是可选上报的。
例1:一个CMR组中包含N个CMR,报告N个CMR对应的N个CRI,这些CRI按照测量CMR的幅度或功率从大到小的顺序进行上报,上报的N个子PMI与N个CRI指示的顺序对应N个CMR相对应。这样,终端报告M2个子PMI对应的幅度或功率量化值为前M2个CRI对应的子PMI的幅度或功率量化值,终端报告M1个子PMI对应的相位量化值为前M1个CRI对应的子PMI的相位量化值。此时M2个子PMI对应的幅度或功率量化值和M1个子PMI对应的相位量化值与N个子PMI的对应关系已经很明确,无需在CSI中上报。
例2:一个CMR组中包含N个CMR,报告一个CRI指示该CMR组,CMR组内的N个CMR的幅度或功率大小排列可能并无特定顺序,上报的N个子PMI与N个CMR相对应。此时,终端除了报告M2个子PMI对应的幅度或功率量化值和M1个子PMI对应的相位量化值之外,还需在CSI中上报M2个子PMI对应的幅度或功率量化值与所述N个子PMI的对应关系,以及M1个子PMI对应的相位量化值与N个子PMI的对应关系。例如用N个位图比特bitmap指示对应关系,第n个位图比特 为1表示第n个子PMI有对应的幅度或功率量化值/相位量化值,为0则表示第n个子PMI没有对应的幅度或功率量化值/相位量化值。
本申请实施例提供的CSI反馈方法,终端从多个信道测量资源CMR子集中选择至少一个CMR组,向网络侧设备反馈的CSI包括了CRI、子PMI,相位信息和幅度或功率信息,实现了多个TRP到终端之间信道测量的关联,实现了多TRP的相干联合传输。
可选地,所述终端根据所述CSI报告配置信息向网络侧设备反馈所述CSI之前,还包括:
根据所述N个子PMI对应的幅度或功率信息,确定所述N个子PMI的优先级;
所述终端根据所述CSI报告配置信息向网络侧设备反馈所述CSI,包括:
根据所述N个子PMI的优先级,向网络侧设备反馈所述N个子PMI中的部分子PMI对应的PMI、相位信息以及幅度或功率信息。
可选地,在反馈资源不足即反馈信道容量有限的情况下,终端根据所述N个子PMI对应的幅度或功率信息,确定所述N个子PMI的优先级,其中,幅度或功率量化值越大,优先级越高,然后根据所述N个子PMI的优先级,将优先级较高的子PMI对应的PMI、相位信息以及幅度或功率信息上报,即优先级较高的子PMI实现CJT传输,其他优先级相对不高的子PMI采用NCJT传输。
可选地,还包括:
终端根据所述N个子PMI、M1个子PMI对应的相位信息和M2个子PMI对应的幅度或功率信息,利用如下公式计算预编码矩阵:
W new=[p 1θ 1W 1 p 2θ 2W 2 … p Nθ NW N]
其中,W new为预编码矩阵,W n为第n个子PMI对应的预编码矩阵,p n为第n个子PMI对应的幅度信息或功率信息,θ n为第n个子PMI对应的相位信息,n=1,2,…N,在所述CSI不包括第n个子PMI对应的幅 度信息或功率信息的情况下,所述p n为0或1;在所述CSI不包括第n个子PMI对应的相位信息的情况下,所述θ n为0或1。
需要指出的是,上述预编码矩阵可以是对所有传输层的,也可以是对每一传输层的。对所有传输层时,W n为第n个子PMI对应的所有传输层的预编码矩阵,即所有传输层使用相同的p n、θ n;对每一传输层时,W n为第n个子PMI对应的一个传输层的预编码矩阵,即所有传输层可能使用不同的p n、θ n,此时CSI报告中需要包括RI个的W n、p n、θ n,得到RI个W new,RI即为终端报告的传输层数。
终端计算得到预编码矩阵,并根据该预编码矩阵确定RI、CQI等信道参数进行CSI上报。
图5为本申请实施例提供的CSI反馈方法的流程示意图之二。如图5所示,该方法包括以下步骤:
步骤500、网络侧设备向终端发送信道状态信息参考信号CSI-RS配置信息和信道状态信息CSI报告配置信息;
步骤501、网络侧设备接收终端反馈的信道状态信息CSI。
需要说明的是,本申请实施例提供的CSI反馈方法以网络侧设备为执行主体,与图4所示的以终端为执行主体的的CSI反馈方法属于同一发明构思,因此,对于本申请实施例中以网络侧设备为执行主体的的CSI反馈方法的理解,可以参考前述以终端为执行主体的CSI反馈方法实施例中的描述,在此不再赘述。
可选地,所述CSI包括以下之一:
一个CMR组对应的一个CSI;
多个CMR组对应的一个CSI;
多个CMR组对应的多个CSI,其中,一个CMR组对应一个CSI;
其中,一个所述CMR组中包含的各CMR分别属于不同的CMR子集,所述多个CMR组中每个CMR组包含的CMR数量相同或不同。
可选地,所述CSI还包括以下至少一项:
X个单TRP对应的CSI;
Y个多TRP对应的非相干联合传输NCJT CSI;
其中,X、Y为大于等于零的整数。
可选地,所述CMR组对应的CSI包括:
所述CMR组对应的CSI参考信号资源指示CRI或所述CMR组包含的N个CMR对应的N个CRI;
N个子预编码矩阵指示PMI;
M1个子PMI对应的相位信息;
M2个子PMI对应的幅度或功率信息;
其中,每个所述子PMI对应一个CMR;N为每个所述CMR组包含的CMR数量;M1和M2均为大于等于0且小于等于N的整数。
可选地,所述M2个子PMI对应的幅度或功率信息,包括以下至少一项:
M2-1个幅度或功率量化值,其中,M2个幅度或功率量化值中最大的幅度或功率量化值为1且不反馈;
M2个幅度或功率量化值与所述N个子PMI的对应关系;
其中,所述M2个子PMI对应的幅度或功率量化值为所述N个子PMI对应的幅度或功率值中最大的M2个幅度或功率值的量化值。
可选地,所述幅度或功率值越大,对应的所述幅度或功率量化值的量化精度越高或越低;不同的CMR或发送接收点TRP对应的幅度或功率量化值的量化精度是可预设或配置的。
可选地,所述M1个子PMI对应的相位信息,包括以下至少一项:
M1个相位量化值;
M1个相位量化值与N个子PMI的对应关系;
其中,所述M1个相位量化值为幅度或功率值最大的M1个所述子PMI对应的相位量化值。
可选地,所述幅度或功率值越大,对应的所述相位量化值的量化精 度越高;不同的CMR或发送接收点TRP对应的相位量化值的量化精度是可预设或配置的。
本申请实施例提供的CSI反馈方法,网络侧设备接收终端反馈的CSI,该CSI包括了CRI、子PMI,相位信息和幅度或功率信息,实现了多TRP的相干联合传输。
可选地,还包括:
网络侧设备根据所述N个子PMI、M1个子PMI对应的相位信息和M2个子PMI对应的幅度或功率信息,利用如下公式计算预编码矩阵:
W new=[p 1θ 1W 1 p 2θ 2W 2 … p Nθ NW N]
其中,W new为预编码矩阵,W n为第n个子PMI对应的预编码矩阵,p n为第n个子PMI对应的幅度信息或功率信息,θ n为第n个子PMI对应的相位信息,n=1,2,…N,在所述CSI不包括第n个子PMI对应的幅度信息或功率信息的情况下,所述p n为0或1;在所述CSI不包括第n个子PMI对应的相位信息的情况下,所述θ n为0或1。
可选地,还包括:
根据所述预编码矩阵确定信道参数;
其中,所述信道参数包括以下至少一项:信道矩阵的秩指示RI,信道质量指示CQI。
可以理解的是,网络侧设备根据终端反馈的CSI中的N个子PMI、M1个子PMI对应的相位信息和M2个子PMI对应的幅度或功率信息利用上述公式计算得到预编码矩阵,并采用该预编码矩阵对传输的数据信号进行预编码。
图6为本申请实施例提供的CSI-RS配置装置的结构示意图之一,如图6所示,该CSI-RS配置装置600包括:
第一接收单元610,用于接收信道状态信息参考信号CSI-RS配置信息;
其中,所述CSI-RS配置信息用于指示CSI-RS端口与多组准共址 QCL参考源的关联关系。
在本申请实施例中,CSI-RS配置信息指示CSI-RS端口与多组QCL的关联关系,实现了多个TRP到终端之间信道测量的关联。
可选地,所述CSI-RS配置信息包括至少一个CSI-RS资源,其中,一个CSI-RS资源包括至少一个CSI-RS端口;
其中,每个所述CSI-RS端口关联多个第一传输配置指示TCI状态或多组QCL参考源,一个所述第一传输配置指示TCI状态对应一组QCL参考源;
或者,每个所述CSI-RS端口关联一个第二TCI状态,其中,所述第二TCI状态对应多组QCL参考源。
可选地,所述CSI-RS资源还满足以下至少之一:
每组QCL参考源包括至少一个QCL参考源;
在每个所述CSI-RS端口关联多组QCL参考源的情况下,所述多组QCL中参考源各组QCL参考源包含的QCL参考源的数量和类型相同;
在每个所述CSI-RS端口关联多组QCL参考源的情况下,所述多组QCL参考源中各组QCL参考源包含的QCL参考源的数量不同和/或类型不同;
在所述每组QCL参考源包括两个QCL参考源的情况下,所述两个QCL参考源中的一个QCL参考源的类型为QCL-TypeD;
与所述CSI-RS资源对应的信道状态信息干扰测量CSI-IM资源具有与所述CSI-RS资源相同的QCL假设。
可选地,所述CSI-RS资源包括用于信道测量的CSI-RS资源和用于干扰测量的CSI-RS资源。
可选地,所述CSI-RS配置信息用于相干联合传输,并且基于所述CSI-RS配置信息的信道状态信息CSI反馈为基于非预编码矩阵指示non-PMI的CSI反馈。
本申请实施例提供的CSI-RS配置装置,通过接收网络侧设备发送的 用于指示CSI-RS端口与多组QCL的关联关系的CSI-RS配置信息,实现了多个TRP到终端之间信道测量的关联,可适用于多TRP的相干联合传输场景。
本申请实施例中的CSI-RS配置装置可以是装置,具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的CSI-RS配置装置能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图7为本申请实施例提供的CSI-RS配置装置的结构示意图之二,如图7所示,该CSI-RS配置装置700包括:
第一发送单元710,用于向终端发送信道状态信息参考信号CSI-RS配置信息;
其中,所述CSI-RS配置信息用于指示CSI-RS端口与多组准共址QCL参考源的关联关系。
可选地,所述CSI-RS配置信息包括至少一个CSI-RS资源,其中,一个CSI-RS资源包括至少一个CSI-RS端口;
其中,每个所述CSI-RS端口关联多个第一传输配置指示TCI状态或多组QCL参考源,一个所述第一传输配置指示TCI状态对应一组QCL参考源;
或者,每个所述CSI-RS端口关联一个第二TCI状态,其中,所述第二TCI状态对应多组QCL参考源。
可选地,所述CSI-RS资源还满足以下至少之一:
每组QCL参考源包括至少一个QCL参考源;
在每个所述CSI-RS端口关联多组QCL参考源的情况下,所述多组QCL中参考源各组QCL参考源包含的QCL参考源的数量和类型相同;
在每个所述CSI-RS端口关联多组QCL参考源的情况下,所述多组QCL参考源中各组QCL参考源包含的QCL参考源的数量不同和/或类型不同;
在所述每组QCL参考源包括两个QCL参考源的情况下,所述两个QCL参考源中的一个QCL参考源的类型为QCL-TypeD;
与所述CSI-RS资源对应的信道状态信息干扰测量CSI-IM资源具有与所述CSI-RS资源相同的QCL假设。
可选地,所述CSI-RS资源包括用于信道测量的CSI-RS资源和用于干扰测量的CSI-RS资源。
可选地,所述CSI-RS配置信息用于相干联合传输,并且基于所述CSI-RS配置信息的信道状态信息CSI反馈为基于非预编码矩阵指示non-PMI的CSI反馈。
本申请实施例提供的CSI-RS配置装置,向终端发送用于指示CSI-RS端口与多组QCL的关联关系的CSI-RS配置信息,实现了多个TRP到终端之间信道测量的关联,可适用于多TRP的相干联合传输场景。
本申请实施例中的CSI-RS配置装置可以是装置,具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的CSI-RS配置装置能够实现图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,本申请实施例提供的CSI反馈方法,执行主体可以为CSI反馈装置,或者,该CSI反馈装置中的用于执行CSI反馈方法的控制模块。本申请实施例中以CSI反馈装置执行CSI反馈方法为例,说明本申请实施例提供的CSI反馈装置。
图8为本申请实施例提供的CSI反馈装置的结构示意图之一,如图8所示,该CSI反馈装置800包括:
第二接收单元810,用于接收信道状态信息参考信号CSI-RS配置信息和信道状态信息CSI报告配置信息;
测量单元820,用于根据所述CSI-RS配置信息进行测量,从多个信道测量资源CMR子集中选择至少一组CMR,得到CSI;
反馈单元830,用于根据所述CSI报告配置信息向网络侧设备反馈所述CSI。
本申请实施例提供的CSI反馈装置,从多个信道测量资源CMR子集中选择至少一个CMR组,可以实现多TRP的相干联合传输。
可选地,所述CSI包括以下之一:
一个CMR组对应的一个CSI;
多个CMR组对应的一个CSI;
多个CMR组对应的多个CSI,其中,一个CMR组对应一个CSI;
其中,一个所述CMR组中包含的各CMR分别属于不同的CMR子集,所述多个CMR组中每个CMR组包含的CMR数量相同或不同。
可选地,所述CSI还包括以下至少一项:
X个单TRP对应的CSI;
Y个多TRP对应的非相干联合传输NCJT CSI;
其中,X、Y为大于等于零的整数。
可选地,所述CMR组对应的CSI包括:
所述CMR组的CSI参考信号资源指示CRI或所述CMR组包含的N 个CMR对应的N个CRI;
N个子预编码矩阵指示PMI;
M1个子PMI对应的相位信息;
M2个子PMI对应的幅度或功率信息;
其中,每个所述子PMI对应一个CMR;N为每个所述CMR组包含的CMR数量;M1和M2均为大于等于0且小于等于N的整数。
可选地,所述M2个子PMI对应的幅度或功率信息,包括以下至少一项:
M2-1个幅度或功率量化值,其中,M2个幅度或功率量化值中最大的幅度或功率量化值为1且不反馈;
M2个幅度或功率量化值与所述N个子PMI的对应关系;
其中,所述M2个子PMI对应的幅度或功率量化值为所述N个子PMI对应的幅度或功率值中最大的M2个幅度或功率值的量化值。
可选地,所述幅度或功率值越大,对应的所述幅度或功率量化值的量化精度越高或越低;不同的CMR或发送接收点TRP对应的幅度或功率量化值的量化精度是可预设或配置的。
可选地,所述M1个子PMI对应的相位信息,包括以下至少一项:
M1个相位量化值;
M1个相位量化值与N个子PMI的对应关系;
其中,所述M1个相位量化值为幅度或功率值最大的M1个所述子PMI对应的相位量化值。
可选地,所述幅度或功率值越大,对应的所述相位量化值的量化精度越高;不同的CMR或发送接收点TRP对应的相位量化值的量化精度是可预设或配置的。
可选地,还包括:
第一确定单元,用于根据所述N个子PMI对应的幅度或功率信息,确定所述N个子PMI的优先级;
所述反馈单元用于:
根据所述N个子PMI的优先级,向网络侧设备反馈所述N个子PMI中的部分子PMI对应的PMI、相位信息以及幅度或功率信息。
可选地,还包括:第一计算单元,用于:
根据所述N个子PMI、M1个子PMI对应的相位信息和M2个子PMI对应的幅度或功率信息,利用如下公式计算预编码矩阵:
W new=[p 1θ 1W 1 p 2θ 2W 2 … p Nθ NW N]
其中,W new为预编码矩阵,W n为第n个子PMI对应的预编码矩阵,p n为第n个子PMI对应的幅度信息或功率信息,θ n为第n个子PMI对应的相位信息,n=1,2,…N,在所述CSI不包括第n个子PMI对应的幅度信息或功率信息的情况下,所述p n为0或1;在所述CSI不包括第n个子PMI对应的相位信息的情况下,所述θ n为0或1。
本申请实施例提供的CSI反馈方法,终端从多个信道测量资源CMR子集中选择至少一个CMR组,向网络侧设备反馈的CSI包括了CRI、子PMI,相位信息和幅度或功率信息,实现了多个TRP到终端之间信道测量的关联,实现了多TRP的相干联合传输。
本申请实施例中的CSI反馈装置可以是装置,具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的CSI反馈装置能够实现图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图9为本申请实施例提供的CSI反馈装置的结构示意图之二,如图9所示,该CSI反馈装置900包括:
第二发送单元910,用于向终端发送信道状态信息参考信号CSI-RS配置信息和信道状态信息CSI报告配置信息;
第三接收单元920,用于接收终端反馈的信道状态信息CSI。
可选地,所述CSI包括以下之一:
一个CMR组对应的一个CSI;
多个CMR组对应的一个CSI;
多个CMR组对应的多个CSI,其中,一个CMR组对应一个CSI;
其中,一个所述CMR组中包含的各CMR分别属于不同的CMR子集,所述多个CMR组中每个CMR组包含的CMR数量相同或不同。
可选地,所述CSI还包括以下至少一项:
X个单TRP对应的CSI;
Y个多TRP对应的非相干联合传输NCJT CSI;
其中,X、Y为大于等于零的整数。
可选地,所述CMR组对应的CSI包括:
所述CMR组的CSI参考信号资源指示CRI或所述CMR组包含的N个CMR对应的N个CRI;
N个子预编码矩阵指示PMI;
M1个子PMI对应的相位信息;
M2个子PMI对应的幅度或功率信息;
其中,每个所述子PMI对应一个CMR;N为每个所述CMR组包含的CMR数量;M1和M2均为大于等于0且小于等于N的整数。
可选地,所述M2个子PMI对应的幅度或功率信息,包括以下至少一项:
M2-1个幅度或功率量化值,其中,M2个幅度或功率量化值中最大的幅度或功率量化值为1且不反馈;
M2个幅度或功率量化值与所述N个子PMI的对应关系;
其中,所述M2个子PMI对应的幅度或功率量化值为所述N个子 PMI对应的幅度或功率值中最大的M2个幅度或功率值的量化值。
可选地,所述幅度或功率值越大,对应的所述幅度或功率量化值的量化精度越高或越低;不同的CMR或发送接收点TRP对应的幅度或功率量化值的量化精度是可预设或配置的。
可选地,所述M1个子PMI对应的相位信息,包括以下至少一项:
M1个相位量化值;
M1个相位量化值与N个子PMI的对应关系;
其中,所述M1个相位量化值为幅度或功率值最大的M1个所述子PMI对应的相位量化值。
可选地,所述幅度或功率值越大,对应的所述相位量化值的量化精度越高;不同的CMR或发送接收点TRP对应的相位量化值的量化精度是可预设或配置的。
可选地,还包括:第二计算单元,用于:
根据所述N个子PMI、M1个子PMI对应的相位信息和M2个子PMI对应的幅度或功率信息,利用如下公式计算预编码矩阵:
W new=[p 1θ 1W 1 p 2θ 2W 2 … p Nθ NW N]
其中,W new为预编码矩阵,W n为第n个子PMI对应的预编码矩阵,p n为第n个子PMI对应的幅度信息或功率信息,θ n为第n个子PMI对应的相位信息,n=1,2,…N,在所述CSI不包括第n个子PMI对应的幅度信息或功率信息的情况下,所述p n为0或1;在所述CSI不包括第n个子PMI对应的相位信息的情况下,所述θ n为0或1。
可选地,还包括:
第二确定单元,用于根据所述预编码矩阵确定信道参数;
其中,所述信道参数包括以下至少一项:信道矩阵的秩指示RI,信道质量指示CQI。
本申请实施例提供的CSI反馈装置,接收终端反馈的CSI,该CSI包括了CRI、子PMI,相位信息和幅度或功率信息,实现了多TRP的相 干联合传输。
本申请实施例中的CSI反馈装置可以是装置,具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的CSI反馈装置能够实现图5的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图10所示,本申请实施例还提供一种通信设备1000,包括处理器1001,存储器1002,存储在存储器1002上并可在所述处理器1001上运行的程序或指令,例如,该通信设备1000为终端时,该程序或指令被处理器1001执行时实现上述CSI-RS配置方法或CSI反馈方法实施例的各个过程,且能达到相同的技术效果。该通信设备1000为网络侧设备时,该程序或指令被处理器1001执行时实现上述CSI-RS配置方法或CSI反馈方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,通信接口用于接收信道状态信息参考信号CSI-RS配置信息;其中,所述CSI-RS配置信息用于指示CSI-RS端口与多组准共址QCL参考源的关联关系。或者,通信接口用于接收信道状态信息参考信号CSI-RS配置信息和信道状态信息CSI报告配置信息,处理器用于根据所述CSI-RS配置信息进行测量,从多个信道测量资源CMR子集中选择至少一个CMR组,得到CSI;通信接口还用于根据所述CSI报告配置信息向网络侧设备反馈所述CSI。该终端实施例是与上述终端侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同 的技术效果。具体地,图11为实现本申请实施例的一种终端的硬件结构示意图。
该终端1100包括但不限于:射频单元1101、网络模块1102、音频输出单元1103、输入单元1104、传感器1105、显示单元1106、用户输入单元1107、接口单元1108、存储器1109、以及处理器1110等中的至少部分部件。
本领域技术人员可以理解,终端1100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图11中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1104可以包括图形处理器(Graphics Processing Unit,GPU)11041和麦克风11042,图形处理器11041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1106可包括显示面板11061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板11061。用户输入单元1107包括触控面板11071以及其他输入设备11072。触控面板11071,也称为触摸屏。触控面板11071可包括触摸检测装置和触摸控制器两个部分。其他输入设备11072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1101将来自网络侧设备的下行数据接收后,给处理器1110处理;另外,将上行的数据发送给网络侧设备。通常,射频单元1101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1109可用于存储软件程序或指令以及各种数据。存储器1109 可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1109可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1110可包括一个或多个处理单元;可选的,处理器1110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1110中。
其中,射频单元1101,用于接收信道状态信息参考信号CSI-RS配置信息;
其中,所述CSI-RS配置信息用于指示CSI-RS端口与多组准共址QCL参考源的关联关系。
在本申请实施例中,CSI-RS配置信息指示CSI-RS端口与多组QCL的关联关系,实现了多个TRP到终端之间信道测量的关联。
可选地,所述CSI-RS配置信息包括至少一个CSI-RS资源,其中,一个CSI-RS资源包括至少一个CSI-RS端口;
其中,每个所述CSI-RS端口关联多个第一传输配置指示TCI状态或多组QCL参考源,一个所述第一传输配置指示TCI状态对应一组QCL参考源;
或者,每个所述CSI-RS端口关联一个第二TCI状态,其中,所述第二TCI状态对应多组QCL参考源。
可选地,所述CSI-RS资源还满足以下至少之一:
每组QCL参考源包括至少一个QCL参考源;
在每个所述CSI-RS端口关联多组QCL参考源的情况下,所述多组QCL中参考源各组QCL参考源包含的QCL参考源的数量和类型相同;
在每个所述CSI-RS端口关联多组QCL参考源的情况下,所述多组QCL参考源中各组QCL参考源包含的QCL参考源的数量不同和/或类型不同;
在所述每组QCL参考源包括两个QCL参考源的情况下,所述两个QCL参考源中的一个QCL参考源的类型为QCL-TypeD;
与所述CSI-RS资源对应的信道状态信息干扰测量CSI-IM资源具有与所述CSI-RS资源相同的QCL假设。
可选地,所述CSI-RS资源包括用于信道测量的CSI-RS资源和用于干扰测量的CSI-RS资源。
可选地,所述CSI-RS配置信息用于相干联合传输,并且基于所述CSI-RS配置信息的信道状态信息CSI反馈为基于非预编码矩阵指示non-PMI的CSI反馈。
在本申请实施例中,终端通过接收网络侧设备发送的用于指示CSI-RS端口与多组QCL的关联关系的CSI-RS配置信息,实现了多个TRP到终端之间信道测量的关联,可适用于多TRP的相干联合传输场景。
或者,
射频单元1101,用于接收信道状态信息参考信号CSI-RS配置信息和信道状态信息CSI报告配置信息;
处理器1110,用于根据所述CSI-RS配置信息进行测量,从多个信道测量资源CMR子集中选择至少一个CMR组,得到CSI;
射频单元1101,还用于根据所述CSI报告配置信息向网络侧设备反馈所述CSI。
在本申请实施例中,终端从多个信道测量资源CMR子集中选择至少 一个CMR组,可以实现多TRP的相干联合传输。
可选地,所述CSI包括以下之一:
一个CMR组对应的一个CSI;
多个CMR组对应的一个CSI;
多个CMR组对应的多个CSI,其中,一个CMR组对应一个CSI;
其中,一个所述CMR组中包含的各CMR分别属于不同的CMR子集,所述多个CMR组中每个CMR组包含的CMR数量相同或不同。
可选地,所述CSI还包括以下至少一项:
X个单TRP对应的CSI;
Y个多TRP对应的非相干联合传输NCJT CSI;
其中,X、Y为大于等于零的整数。
可选地,所述CMR组对应的CSI包括:
所述CMR组的CSI参考信号资源指示CRI或所述CMR组包含的N个CMR对应的N个CRI;
N个子预编码矩阵指示PMI;
M1个子PMI对应的相位信息;
M2个子PMI对应的幅度或功率信息;
其中,每个所述子PMI对应一个CMR;N为每个所述CMR组包含的CMR数量;M1和M2均为大于等于0且小于等于N的整数。
可选地,所述M2个子PMI对应的幅度或功率信息,包括以下至少一项:
M2-1个幅度或功率量化值,其中,M2个幅度或功率量化值中最大的幅度或功率量化值为1且不反馈;
M2个幅度或功率量化值与所述N个子PMI的对应关系;
其中,所述M2个幅度或功率量化值为所述N个子PMI对应的幅度或功率值中最大的M2个幅度或功率值的量化值。
可选地,所述幅度或功率值越大,对应的所述幅度或功率量化值的 量化精度越高或越低;不同的CMR或发送接收点TRP对应的幅度或功率量化值的量化精度是可预设或配置的。
可选地,所述M1个子PMI对应的相位信息,包括以下至少一项:
M1个相位量化值;
M1个相位量化值与N个子PMI的对应关系;
其中,所述M1个相位量化值为幅度或功率值最大的M1个所述子PMI对应的相位量化值。
可选地,所述幅度或功率值越大,对应的所述相位量化值的量化精度越高;不同的CMR或发送接收点TRP对应的相位量化值的量化精度是可预设或配置的。
可选地,处理器1110还用于:
根据所述N个子PMI对应的幅度或功率信息,确定所述N个子PMI的优先级;
所述射频单元1101,还用于:
根据所述N个子PMI的优先级,向网络侧设备反馈所述N个子PMI中的部分子PMI对应的PMI、相位信息以及幅度或功率信息。
可选地,处理器1110还用于:
根据所述N个子PMI、M1个子PMI对应的相位信息和M2个子PMI对应的幅度或功率信息,利用如下公式计算预编码矩阵:
W new=[p 1θ 1W 1 p 2θ 2W 2 … p Nθ NW N]
其中,W new为预编码矩阵,W n为第n个子PMI对应的预编码矩阵,p n为第n个子PMI对应的幅度信息或功率信息,θ n为第n个子PMI对应的相位信息,n=1,2,…N,在所述CSI不包括第n个子PMI对应的幅度信息或功率信息的情况下,所述p n为0或1;在所述CSI不包括第n个子PMI对应的相位信息的情况下,所述θ n为0或1。
在本申请实施例中,终端从多个信道测量资源CMR子集中选择至少一个CMR组,向网络侧设备反馈的CSI包括了CRI、子PMI,相位信息 和幅度或功率信息,实现了多个TRP到终端之间信道测量的关联,实现了多TRP的相干联合传输。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,通信接口用于向终端发送信道状态信息参考信号CSI-RS配置信息;其中,所述CSI-RS配置信息用于指示CSI-RS端口与多组准共址QCL参考源的关联关系。或者,通信接口用于向终端发送信道状态信息参考信号CSI-RS配置信息和信道状态信息CSI报告配置信息;通信接口还用于接收终端反馈的信道状态信息CSI。该网络侧设备实施例是与上述网络侧设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图12所示,该网络设备1200包括:天线1201、射频装置1202、基带装置1203。天线1201与射频装置1202连接。在上行方向上,射频装置1202通过天线1201接收信息,将接收的信息发送给基带装置1203进行处理。在下行方向上,基带装置1203对要发送的信息进行处理,并发送给射频装置1202,射频装置1202对收到的信息进行处理后经过天线1201发送出去。
上述频带处理装置可以位于基带装置1203中,以上实施例中网络侧设备执行的方法可以在基带装置1203中实现,该基带装置1203包括处理器1204和存储器1205。
基带装置1203例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图12所示,其中一个芯片例如为处理器1204,与存储器1205连接,以调用存储器1205中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置1203还可以包括网络接口1206,用于与射频装置1202交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器1205上并可在处理器1204上运行的指令或程序,处理器1204调用存储器1205中的指令或程序执行图7或图9所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述CSI-RS配置方法或CSI反馈方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述CSI-RS配置方法或CSI反馈方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次 序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (41)

  1. 一种CSI-RS配置方法,包括:
    终端接收信道状态信息参考信号CSI-RS配置信息;
    其中,所述CSI-RS配置信息用于指示CSI-RS端口与多组准共址QCL参考源的关联关系。
  2. 根据权利要求1所述的CSI-RS配置方法,其中,所述CSI-RS配置信息包括至少一个CSI-RS资源,其中,一个CSI-RS资源包括至少一个CSI-RS端口;
    其中,每个所述CSI-RS端口关联多个第一传输配置指示TCI状态或多组QCL参考源,一个所述第一TCI状态对应一组QCL参考源;
    或者,每个所述CSI-RS端口关联一个第二TCI状态,其中,所述第二TCI状态对应多组QCL参考源。
  3. 根据权利要求2所述的CSI-RS配置方法,其中,所述CSI-RS资源还满足以下至少之一:
    每组QCL参考源包括至少一个QCL参考源;
    在每个所述CSI-RS端口关联多组QCL参考源的情况下,所述多组QCL中参考源各组QCL参考源包含的QCL参考源的数量和类型相同;
    在每个所述CSI-RS端口关联多组QCL参考源的情况下,所述多组QCL参考源中各组QCL参考源包含的QCL参考源的数量不同和/或类型不同;
    在所述每组QCL参考源包括两个QCL参考源的情况下,所述两个QCL参考源中的一个QCL参考源的类型为QCL-TypeD;
    与所述CSI-RS资源对应的信道状态信息干扰测量CSI-IM资源具有与所述CSI-RS资源相同的QCL假设。
  4. 根据权利要求2所述的CSI-RS配置方法,其中,所述CSI-RS资源包括用于信道测量的CSI-RS资源和用于干扰测量的CSI-RS资源。
  5. 根据权利要求1-4中任一项所述的CSI-RS配置方法,其中,所述CSI-RS配置信息用于相干联合传输,并且基于所述CSI-RS配置信息的信道状态信息CSI反馈为基于非预编码矩阵指示non-PMI的CSI反馈。
  6. 一种CSI-RS配置方法,包括:
    网络侧设备向终端发送信道状态信息参考信号CSI-RS配置信息;
    其中,所述CSI-RS配置信息用于指示CSI-RS端口与多组准共址QCL参考源的关联关系。
  7. 根据权利要求6所述的CSI-RS配置方法,其中,所述CSI-RS配置信息包括至少一个CSI-RS资源,其中,一个CSI-RS资源包括至少一个CSI-RS端口;
    其中,每个所述CSI-RS端口关联多个第一传输配置指示TCI状态或多组QCL参考源,一个所述第一TCI状态对应一组QCL参考源;
    或者,每个所述CSI-RS端口关联一个第二TCI状态,其中,所述第二TCI状态对应多组QCL参考源。
  8. 根据权利要求7所述的CSI-RS配置方法,其中,所述CSI-RS资源还满足以下至少之一:
    每组QCL参考源包括至少一个QCL参考源;
    在每个所述CSI-RS端口关联多组QCL参考源的情况下,所述多组QCL中参考源各组QCL参考源包含的QCL参考源的数量和类型相同;
    在每个所述CSI-RS端口关联多组QCL参考源的情况下,所述多组QCL参考源中各组QCL参考源包含的QCL参考源的数量不同和/或类型不同;
    在所述每组QCL参考源包括两个QCL参考源的情况下,所述两个QCL参考源中的一个QCL参考源的类型为QCL-TypeD;
    与所述CSI-RS资源对应的信道状态信息干扰测量CSI-IM资源具有 与所述CSI-RS资源相同的QCL假设。
  9. 根据权利要求7所述的CSI-RS配置方法,其中,所述CSI-RS资源包括用于信道测量的CSI-RS资源和用于干扰测量的CSI-RS资源。
  10. 根据权利要求6-9中任一项所述的CSI-RS配置方法,其中,所述CSI-RS配置信息用于相干联合传输,并且基于所述CSI-RS配置信息的信道状态信息CSI反馈为基于非预编码矩阵指示non-PMI的CSI反馈。
  11. 一种CSI反馈方法,包括:
    终端接收信道状态信息参考信号CSI-RS配置信息和信道状态信息CSI报告配置信息;
    终端根据所述CSI-RS配置信息进行测量,从多个信道测量资源
    CMR子集中选择至少一个CMR组,得到CSI;
    终端根据所述CSI报告配置信息向网络侧设备反馈所述CSI。
  12. 根据权利要求11所述的CSI反馈方法,其中,所述CSI包括以下之一:
    一个CMR组对应的一个CSI;
    多个CMR组对应的一个CSI;
    多个CMR组对应的多个CSI,其中,一个CMR组对应一个CSI;
    其中,一个所述CMR组中包含的各CMR分别属于不同的CMR子集,所述多个CMR组中每个CMR组包含的CMR数量相同或不同。
  13. 根据权利要求12所述的CSI反馈方法,其中,所述CSI还包括:
    X个单TRP对应的CSI;
    Y个多TRP对应的非相干联合传输NCJT CSI;
    其中,X、Y为大于等于零的整数。
  14. 根据权利要求12或13所述的CSI反馈方法,其中,所述CMR 组对应的CSI包括:
    所述CMR组的CSI参考信号资源指示CRI或所述CMR组包含的N个CMR对应的N个CRI;
    N个子预编码矩阵指示PMI;
    M1个子PMI对应的相位信息;
    M2个子PMI对应的幅度或功率信息;
    其中,每个所述子PMI对应一个CMR;N为每个所述CMR组包含的CMR数量;M1和M2均为大于等于0且小于等于N的整数。
  15. 根据权利要求14所述的CSI反馈方法,其中,所述M2个子PMI对应的幅度或功率信息,包括以下至少一项:
    M2-1个幅度或功率量化值,其中,M2个幅度或功率量化值中最大的幅度或功率量化值为1且不反馈;
    M2个幅度或功率量化值与所述N个子PMI的对应关系;
    其中,所述M2个幅度或功率量化值为所述N个子PMI对应的幅度或功率值中最大的M2个幅度或功率值的量化值。
  16. 根据权利要求14所述的CSI反馈方法,其中,所述M1个子PMI对应的相位信息,包括以下至少一项:
    M1个相位量化值;
    M1个相位量化值与N个子PMI的对应关系;
    其中,所述M1个相位量化值为幅度或功率值最大的M1个所述子PMI对应的相位量化值。
  17. 根据权利要求14所述的CSI反馈方法,其中,所述终端根据所述CSI报告配置信息向网络侧设备反馈所述CSI之前,还包括:
    根据所述N个子PMI对应的幅度或功率信息,确定所述N个子PMI的优先级;
    所述终端根据所述CSI报告配置信息向网络侧设备反馈所述CSI,包括:
    根据所述N个子PMI的优先级,向网络侧设备反馈所述N个子PMI中的部分子PMI对应的PMI、相位信息以及幅度或功率信息。
  18. 根据权利要求14所述的CSI反馈方法,其中,还包括:
    终端根据所述N个子PMI、M1个子PMI对应的相位信息和M2个子PMI对应的幅度或功率信息,利用如下公式计算预编码矩阵:
    W new=[p 1θ 1W 1 p 2θ 2W 2 … p Nθ NW N]
    其中,W new为预编码矩阵,W n为第n个子PMI对应的预编码矩阵,p n为第n个子PMI对应的幅度信息或功率信息,θ n为第n个子PMI对应的相位信息,n=1,2,…N,在所述CSI不包括第n个子PMI对应的幅度信息或功率信息的情况下,所述p n为0或1;在所述CSI不包括第n个子PMI对应的相位信息的情况下,所述θ n为0或1。
  19. 一种CSI反馈方法,包括:
    网络侧设备向终端发送信道状态信息参考信号CSI-RS配置信息和信道状态信息CSI报告配置信息;
    网络侧设备接收终端反馈的信道状态信息CSI。
  20. 根据权利要求19所述的CSI反馈方法,其中,所述CSI包括以下之一:
    一个CMR组对应的一个CSI;
    多个CMR组对应的一个CSI;
    多个CMR组对应的多个CSI,其中,一个CMR组对应一个CSI;
    其中,一个所述CMR组中包含的各CMR分别属于不同的CMR子集,所述多个CMR组中每个CMR组包含的CMR数量相同或不同。
  21. 根据权利要求20所述的CSI反馈方法,其中,所述CSI还包括以下至少一项:
    X个单TRP对应的CSI;
    Y个多TRP对应的非相干联合传输NCJT CSI;
    其中,X、Y为大于等于零的整数。
  22. 根据权利要求20或21所述的CSI反馈方法,其中,所述CMR组对应的CSI包括:
    所述CMR组对应的CSI参考信号资源指示CRI或所述CMR组包含的N个CMR对应的N个CRI;
    N个子预编码矩阵指示PMI;
    M1个子PMI对应的相位信息;
    M2个子PMI对应的幅度或功率信息;
    其中,每个所述子PMI对应一个CMR;N为每个所述CMR组包含的CMR数量;M1和M2均为大于等于0且小于等于N的整数。
  23. 根据权利要求22所述的CSI反馈方法,其中,所述M2个子PMI对应的幅度或功率信息,包括以下至少一项:
    M2-1个幅度或功率量化值,其中,M2个幅度或功率量化值中最大的幅度或功率量化值为1且不反馈;
    M2个幅度或功率量化值与所述N个子PMI的对应关系;
    其中,所述M2个子PMI对应的幅度或功率量化值为所述N个子PMI对应的幅度或功率值中最大的M2个幅度或功率值的量化值。
  24. 根据权利要求22所述的CSI反馈方法,其中,所述M1个子PMI对应的相位信息,包括以下至少一项:
    M1个相位量化值;
    M1个相位量化值与N个子PMI的对应关系;
    其中,所述M1个相位量化值为幅度或功率值最大的M1个所述子PMI对应的相位量化值。
  25. 根据权利要求22所述的CSI反馈方法,其中,还包括:
    网络侧设备根据所述N个子PMI、M1个子PMI对应的相位信息和
    M2个子PMI对应的幅度或功率信息,利用如下公式计算预编码矩阵:
    W new=[p 1θ 1W 1 p 2θ 2W 2 … p Nθ NW N]
    其中,W new为预编码矩阵,W n为第n个子PMI对应的预编码矩阵,p n为第n个子PMI对应的幅度信息或功率信息,θ n为第n个子PMI对应的相位信息,n=1,2,…N,在所述CSI不包括第n个子PMI对应的幅度信息或功率信息的情况下,所述p n为0或1;在所述CSI不包括第n个子PMI对应的相位信息的情况下,所述θ n为0或1。
  26. 根据权利要求25所述的CSI反馈方法,其中,还包括:
    根据所述预编码矩阵确定信道参数;
    其中,所述信道参数包括以下至少一项:信道矩阵的秩指示RI,信道质量指示CQI。
  27. 一种CSI-RS配置装置,包括:
    第一接收单元,用于接收信道状态信息参考信号CSI-RS配置信息;
    其中,所述CSI-RS配置信息用于指示CSI-RS端口与多组准共址QCL参考源的关联关系。
  28. 根据权利要求27所述的CSI-RS配置装置,其中,所述CSI-RS配置信息包括至少一个CSI-RS资源,其中,一个CSI-RS资源包括至少一个CSI-RS端口;
    其中,每个所述CSI-RS端口关联多个第一传输配置指示TCI状态或多组QCL参考源,一个所述第一TCI状态对应一组QCL参考源;
    或者,每个所述CSI-RS端口关联一个第二TCI状态,其中,所述第二TCI状态对应多组QCL参考源。
  29. 一种CSI-RS配置装置,包括:
    第一发送单元,用于向终端发送信道状态信息参考信号CSI-RS配置信息;
    其中,所述CSI-RS配置信息用于指示CSI-RS端口与多组准共址QCL参考源的关联关系。
  30. 一种CSI反馈装置,包括:
    第二接收单元,用于接收信道状态信息参考信号CSI-RS配置信息和信道状态信息CSI报告配置信息;
    测量单元,用于根据所述CSI-RS配置信息进行测量,从多个信道测量资源CMR子集中选择至少一组CMR,得到CSI;
    反馈单元,用于根据所述CSI报告配置信息向网络侧设备反馈所述CSI。
  31. 根据权利要求30所述的CSI反馈装置,其中,所述CSI包括以下之一:
    一个CMR组对应的一个CSI;
    多个CMR组对应的一个CSI;
    多个CMR组对应的多个CSI,其中,一个CMR组对应一个CSI;
    其中,一个所述CMR组中包含的各CMR分别属于不同的CMR子集,所述多个CMR组中每个CMR组包含的CMR数量相同或不同。
  32. 根据权利要求31所述的CSI反馈装置,其中,所述CMR组对应的CSI包括:
    所述CMR组的CSI参考信号资源指示CRI或所述CMR组包含的N个CMR对应的N个CRI;
    N个子预编码矩阵指示PMI;
    M1个子PMI对应的相位信息;
    M2个子PMI对应的幅度或功率信息;
    其中,每个所述子PMI对应一个CMR;N为每个所述CMR组包含的CMR数量;M1和M2均为大于等于0且小于等于N的整数。
  33. 根据权利要求32所述的CSI反馈装置,其中,还包括:
    第一确定单元,用于根据所述N个子PMI对应的幅度或功率信息,确定所述N个子PMI的优先级;
    所述反馈单元用于:
    根据所述N个子PMI的优先级,向网络侧设备反馈所述N个子PMI 中的部分子PMI对应的PMI、相位信息以及幅度或功率信息。
  34. 根据权利要求33所述的CSI反馈装置,其中,还包括:第一计算单元,用于:
    根据所述N个子PMI、M1个子PMI对应的相位信息和M2个子PMI对应的幅度或功率信息,利用如下公式计算预编码矩阵:
    W new=[p 1θ 1W 1 p 2θ 2W 2 … p Nθ NW N]
    其中,W new为预编码矩阵,W n为第n个子PMI对应的预编码矩阵,p n为第n个子PMI对应的幅度信息或功率信息,θ n为第n个子PMI对应的相位信息,n=1,2,…N,在所述CSI不包括第n个子PMI对应的幅度信息或功率信息的情况下,所述p n为0或1;在所述CSI不包括第n个子PMI对应的相位信息的情况下,所述θ n为0或1。
  35. 一种CSI反馈装置,包括:
    第二发送单元,用于向终端发送信道状态信息参考信号CSI-RS配置信息和信道状态信息CSI报告配置信息;
    第三接收单元,用于接收终端反馈的信道状态信息CSI。
  36. 根据权利要求35所述的CSI反馈装置,其中,所述CSI包括以下之一:
    一个CMR组对应的一个CSI;
    多个CMR组对应的一个CSI;
    多个CMR组对应的多个CSI,其中,一个CMR组对应一个CSI;
    其中,一个所述CMR组中包含的各CMR分别属于不同的CMR子集,所述多个CMR组中每个CMR组包含的CMR数量相同或不同。
  37. 根据权利要求36所述的CSI反馈装置,其中,所述CMR组对应的CSI包括:
    所述CMR组的CSI参考信号资源指示CRI或所述CMR组包含的N个CMR对应的N个CRI;
    N个子预编码矩阵指示PMI;
    M1个子PMI对应的相位信息;
    M2个子PMI对应的幅度或功率信息;
    其中,每个所述子PMI对应一个CMR;N为每个所述CMR组包含的CMR数量;M1和M2均为大于等于0且小于等于N的整数。
  38. 根据权利要求37所述的CSI反馈装置,其中,还包括:第二计算单元,用于:
    根据所述N个子PMI、M1个子PMI对应的相位信息和M2个子PMI对应的幅度或功率信息,利用如下公式计算预编码矩阵:
    W new=[p 1θ 1W 1 p 2θ 2W 2 … p Nθ NW N]
    其中,W new为预编码矩阵,W n为第n个子PMI对应的预编码矩阵,p n为第n个子PMI对应的幅度信息或功率信息,θ n为第n个子PMI对应的相位信息,n=1,2,…N,在所述CSI不包括第n个子PMI对应的幅度信息或功率信息的情况下,所述p n为0或1;在所述CSI不包括第n个子PMI对应的相位信息的情况下,所述θ n为0或1。
  39. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至5任一项所述的CSI-RS配置方法的步骤,或实现如11至18任一项所述的CSI反馈方法的步骤。
  40. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求6至10任一项所述的CSI-RS配置方法的步骤,或实现如19至26任一项所述的CSI反馈方法的步骤。
  41. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至5任一项所述的CSI-RS配置方法的步骤,或实现如11至18任一项所述的CSI反馈方法的步骤,或实现如权利要求6至10任一项所述的CSI-RS配置方法的步骤,或实现如19至26任一项所述的CSI反馈方法的步骤。
PCT/CN2022/101431 2021-06-28 2022-06-27 Csi-rs配置方法、csi反馈方法、装置和设备 WO2023274120A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110723390.5A CN115603872A (zh) 2021-06-28 2021-06-28 Csi-rs配置方法、csi反馈方法、装置和设备
CN202110723390.5 2021-06-28

Publications (1)

Publication Number Publication Date
WO2023274120A1 true WO2023274120A1 (zh) 2023-01-05

Family

ID=84693018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101431 WO2023274120A1 (zh) 2021-06-28 2022-06-27 Csi-rs配置方法、csi反馈方法、装置和设备

Country Status (2)

Country Link
CN (1) CN115603872A (zh)
WO (1) WO2023274120A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108111272A (zh) * 2017-08-09 2018-06-01 中兴通讯股份有限公司 参考信号配置信息的指示方法、基站及终端
WO2021028284A1 (en) * 2019-08-15 2021-02-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Three-component codebook based csi reporting
WO2021059239A1 (en) * 2019-09-27 2021-04-01 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for early csi feedback in nr

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108111272A (zh) * 2017-08-09 2018-06-01 中兴通讯股份有限公司 参考信号配置信息的指示方法、基站及终端
WO2021028284A1 (en) * 2019-08-15 2021-02-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Three-component codebook based csi reporting
WO2021059239A1 (en) * 2019-09-27 2021-04-01 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for early csi feedback in nr

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on QCL for NR", 3GPP DRAFT; R1-1704893 NR_QCL_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20170403 - 20170407, 25 March 2017 (2017-03-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051251578 *

Also Published As

Publication number Publication date
CN115603872A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
US11283503B2 (en) Communication method and communications apparatus
US11653238B2 (en) Measurement reporting method and device
US11552686B2 (en) Beam reporting based on detection of a trigger event
CN114337953B (zh) 上行信道参数的确定和配置方法及装置
WO2022152271A1 (zh) Pusch传输方法、装置、设备及存储介质
EP4017176A1 (en) Method for indicating antenna panel state, and device
JP2023509673A (ja) フル電力アップリンク伝送の強化
WO2022206695A1 (zh) 信道状态信息csi报告的映射方法、终端及网络侧设备
US20230247467A1 (en) Method and apparatus for determining channel state information, method and apparatus for determining reporting setting, and related device
WO2023280043A1 (zh) 波束上报方法及终端
WO2023274120A1 (zh) Csi-rs配置方法、csi反馈方法、装置和设备
CN108631844B (zh) 一种获取信道状态信息的方法、终端和网络侧设备
WO2022152105A1 (zh) 信道状态信息的上报方法、装置及终端
CN114585016A (zh) 信道状态信息报告的上报、配置方法及通信设备
KR20230113619A (ko) 전송 방법, 전송 장치, 전송 기기 및 판독 가능한 저장매체
WO2023280212A1 (zh) 信道状态信息csi上报处理方法、接收方法及相关设备
WO2023072020A1 (zh) 信道信息的上报方法、终端及网络侧设备
CN115150025B (zh) Csi反馈方法、相关设备及可读存储介质
WO2023051539A1 (zh) 上行预编码信息确定方法、终端及网络侧设备
WO2023066333A1 (zh) 信道状态信息csi测量方法、终端及网络侧设备
WO2023143361A1 (zh) 能力信息上报方法、装置及终端
WO2022242676A1 (zh) 多普勒频偏上报方法、装置、终端及网络侧设备
WO2023198062A1 (zh) Csi测量和上报方法、装置、设备、系统及存储介质
WO2023151593A1 (zh) 预编码指示方法、装置、通信设备、系统及存储介质
WO2024001981A1 (zh) 预编码矩阵的指示方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22831934

Country of ref document: EP

Kind code of ref document: A1