WO2022151765A1 - 流量控制装置、余热排出系统及流量稳定方法 - Google Patents

流量控制装置、余热排出系统及流量稳定方法 Download PDF

Info

Publication number
WO2022151765A1
WO2022151765A1 PCT/CN2021/121080 CN2021121080W WO2022151765A1 WO 2022151765 A1 WO2022151765 A1 WO 2022151765A1 CN 2021121080 W CN2021121080 W CN 2021121080W WO 2022151765 A1 WO2022151765 A1 WO 2022151765A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensor
flow control
pipeline
waste heat
heat exchange
Prior art date
Application number
PCT/CN2021/121080
Other languages
English (en)
French (fr)
Inventor
卢向晖
梁活
罗汉炎
杨江
沈永刚
梁任
Original Assignee
中广核研究院有限公司
中广核工程有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核研究院有限公司, 中广核工程有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核研究院有限公司
Priority to EP21918956.0A priority Critical patent/EP4276854A4/en
Publication of WO2022151765A1 publication Critical patent/WO2022151765A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/02Devices or arrangements for monitoring coolant or moderator
    • G21C17/032Reactor-coolant flow measuring or monitoring
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/02Details of handling arrangements
    • G21C19/04Means for controlling flow of coolant over objects being handled; Means for controlling flow of coolant through channel being serviced, e.g. for preventing "blow-out"
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/08Regulation of any parameters in the plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the technical field of nuclear power plant safety systems, in particular to a flow control device, a waste heat discharge system and a flow stabilization method.
  • the heat exchange power is low, and when the condensed water does not fill the return pipe, an obvious gas-liquid interface will appear on the return pipe, and the condensed water flows down the return pipe to impact the gas-liquid interface, making the interface Fluctuation occurs, so that the flow of condensed water fluctuates, which is easy to cause a large load force to the pipeline, making the pipeline at risk of rupture.
  • the temperature of the condensed water at the outlet of the condenser is uneven and fluctuates greatly, it is easy to cause a large thermal fatigue shock to the downstream pipeline, which also makes the pipeline at risk of rupture.
  • the technical problem to be solved by the present invention is to provide a flow control device, a waste heat discharge system and a flow stabilization method.
  • a flow control device includes a first pressure sensor, a second pressure sensor, a temperature sensor, a flow control valve, and a controller, wherein the first pressure sensor, the second pressure sensor, the temperature sensor and the flow control valve are all Set on the return line of the condensed liquid;
  • the first pressure sensor and the second pressure sensor are arranged in sequence along the backflow direction of the condensed liquid, and the first pressure sensor, the second pressure sensor and the temperature sensor are all arranged upstream of the flow control valve ;
  • the first pressure sensor, the second pressure sensor, the temperature sensor and the flow control valve are respectively connected in communication with the controller.
  • the first pressure sensor is arranged at the outlet of the condensed liquid, and the second pressure sensor is arranged adjacent to the flow control valve.
  • the first pressure sensor, the temperature sensor, the second pressure sensor and the flow control valve are sequentially arranged on the return line of the condensed liquid along the return direction of the condensed liquid.
  • the present invention also provides a waste heat discharge system, which includes the passive system flow control device described in any one of the above, and also includes a heat exchange device and a temperature buffer tank connected in series with the steam generator. The setting heights of the temperature buffer box and the steam generator are successively decreased;
  • the first pressure sensor is arranged on the first pipeline connecting the heat exchange device and the temperature buffer tank, and the second pressure sensor, temperature sensor and flow control valve are all arranged on the first line connecting the temperature buffer tank and the main water supply pipeline. on the second line.
  • the temperature buffer tank is filled with liquid
  • the inlet is connected to the first pipeline, and is connected to the main water supply pipeline through the second pipeline to communicate with the steam generator.
  • the vertical distance between the heat exchange device and the temperature buffer tank is smaller than the vertical distance between the temperature buffer tank and the steam generator, and the first pressure sensor is close to the heat exchange device.
  • the outlet is arranged, and the second pressure sensor is arranged adjacent to the flow control valve.
  • the temperature sensor, the second pressure sensor and the flow control valve are arranged in sequence along the liquid flow direction on the second pipeline, and a function is also provided between the flow control valve and the main water supply pipeline.
  • the heat exchange device is connected to the main steam pipeline through a third pipeline, and an inlet isolation valve for intercepting steam is further provided between the heat exchange device and the main steam pipeline.
  • At least two of the inlet isolation valves are arranged in parallel on the third pipeline, and at least two of the outlet isolation valves are arranged in parallel on the second pipeline.
  • the heat exchange device includes a heat exchange tube and a heat trap tank filled with cooling liquid, the heat exchange tube is immersed in the cooling liquid, and the first pipeline and the third pipeline are respectively connected to the The heat exchange tubes are connected.
  • the top of the heat trap water tank is further provided with an air window for evaporating the cooling liquid, and the heat exchange tube is a C-shaped heat exchange tube.
  • the liquid in the temperature buffer tank is liquid water, and the liquid water fills the temperature buffer tank when the waste heat discharge system has not started to work.
  • the first pipeline communicates with the temperature buffer tank from the top surface of the temperature buffer tank
  • the second pipeline communicates with the temperature buffer tank from the side surface of the temperature buffer tank
  • the second pipeline The pipeline is connected to the upper half of the side of the temperature buffer tank.
  • the present invention also provides a method for stabilizing the flow of a waste heat discharge system, comprising any of the above waste heat discharge systems, and further comprising the following steps:
  • the pressure data of the corresponding position obtained by the first pressure sensor and the second pressure sensor, and the temperature value detected by the temperature sensor are transmitted to the controller. After the controller calculates the density of the condensed water, according to the formula, the relative water level h;
  • the controller compares the difference between the relative water level h and the target water level H, so as to control the opening of the flow regulating valve, so that the relative water level h is equal to the target water level H, or the relative water level h
  • the difference with the target water level H is within a preset error range
  • it also includes a method for adjusting the heat removal power of the waste heat removal system, comprising the following steps:
  • the controller reduces the opening of the flow control valve, raises the water level in the first pipeline until the heat exchange tube is partially submerged, and reduces the heat exchange area of the heat exchange tube, so as to reduce the discharge of the waste heat discharge system.
  • the present invention has the following beneficial effects: the present invention can automatically control the liquid level in the return line of the condensed liquid through a flow control system composed of a first pressure sensor, a second pressure sensor, a temperature sensor, a flow control valve and a processor, and simultaneously , By setting the flow control system in the waste heat discharge system, the liquid level is kept near the outlet of the heat exchanger, so as to avoid the impact of the condensed water on the gas-liquid interface, and achieve the effect of eliminating the fluctuation of the condensed water flow and realize the waste heat discharge system. Flow stabilization effect.
  • FIG. 1 is a schematic structural diagram of an embodiment of a flow control device of the present invention.
  • FIG. 2 is a schematic structural diagram of an embodiment of the waste heat removal system of the present invention.
  • the flow control device provided by the present invention can be used as a flow stabilizing device for improving the running flow stability of the passive system and reducing the probability of system pipeline damage.
  • the flow control device provided by the present invention can be used in a passive system, and can specifically include a first pressure sensor 31, a second pressure sensor 32, a temperature sensor 33, a flow control valve 34 and a controller 35, The first pressure sensor 31 , the second pressure sensor 32 , the temperature sensor 33 , and the flow control valve 34 are all connected to the controller 35 in communication.
  • first pressure sensor 31, the second pressure sensor 32, the temperature sensor 33, and the flow control valve 34 are all arranged on the return line of the condensed liquid, and the first pressure sensor 31 and the second pressure sensor 32 are along the return direction of the condensed liquid.
  • first pressure sensor 31 , the second pressure sensor 32 and the temperature sensor 33 are all arranged upstream of the flow control valve 34 , that is, on the pipeline on the inlet side of the flow control valve 34 .
  • the first pressure sensor 31 can be installed near the outlet of the condensed water source, and the second pressure sensor 32 can be installed near the flow control valve 34, so that the first pressure sensor 31 and the second pressure sensor 32 can measure the environment of the return line at the installation location
  • the pressure and temperature sensors 33 can measure the temperature of the liquid in the loop line and transmit the measured data to the controller 35 respectively.
  • the first pressure sensor 31 is preferably located at the outlet of the condensed liquid, that is, close to the height at which the condensed liquid enters the return line, and the second pressure sensor 32 is disposed adjacent to the flow control valve 34, so as to control the flow through automatic control.
  • the valve opening of the valve 34 keeps the water level in the return line at the height that submerges the first pressure sensor 31, that is, the height of the condensate source, so that the flow of the condensate return liquid can be kept stable.
  • first pressure sensor 31 the temperature sensor 33 , the second pressure sensor 32 , and the flow control valve 34 may be sequentially arranged on the return line of the condensed liquid along the return direction of the condensed liquid.
  • the present invention also provides a waste heat discharge system, comprising the above-mentioned flow control device, which is used for exporting the waste heat of the reactor.
  • the waste heat discharge system is connected between the main steam line 24 and the main water supply line 23 of the steam generator 11 .
  • the heights of the heat exchange device 12, the temperature buffer tank 13 and the steam generator 11 decrease in sequence.
  • the vertical distance between the heat exchange device 12 and the temperature buffer tank 13 is smaller than that between the temperature buffer tank 13 and the steam generator. The vertical distance between 11.
  • the heat exchange device 12 specifically includes a heat exchange tube 121 and a heat trap water tank 122 containing a cooling liquid.
  • the heat exchange tube 121 is immersed in the cooling liquid for condensing the steam into a liquid.
  • the cooling liquid in the heat trap water tank 122 is cooling water, and a gas window 1221 for evaporating the cooling liquid is further provided at the top of the cooling liquid.
  • the heat exchange tube 121 is a C-shaped heat exchange tube bundle, and two ends of the heat exchange tube 121 communicate with the steam generator 11 and the temperature buffer tank 13 respectively.
  • the temperature buffer tank 13 is filled with liquid, specifically liquid water. When the flow control device has not started to work, the temperature buffer tank 13 is filled with liquid water.
  • the temperature buffer tank 13 is connected to the heat exchange pipe 121 through the first pipeline 21, and is connected to the main water supply pipeline 23 through the second pipeline 22; the heat exchange device 12 is connected to the main steam pipeline 24 through the third pipeline 25,
  • the steam generator 11, the heat exchange device 12, and the temperature buffer tank 13 form a closed loop.
  • the said flow rate control apparatus is provided in this waste heat system.
  • the first pipeline 21 is provided with a first pressure sensor 31
  • the second pipeline 22 is provided with a second pressure sensor 32
  • the second pipeline 22 is also provided with a temperature for detecting the temperature of the liquid in the second pipeline 22 A sensor 33 , and a flow control valve 34 for controlling the flow rate of the liquid in the second line 22 .
  • the first pressure sensor 31 , the second pressure sensor 32 , the temperature sensor 33 and the flow control valve 34 are respectively connected to the controller 35 in communication.
  • the first pressure sensor 31 is provided at the outlet of the heat exchange tube 121 , and the temperature sensor 33 , the second pressure sensor 32 , and the flow control valve 34 are in sequence on the second pipeline 22 along the direction of liquid flow. set up. Further, an outlet isolation valve 14 for intercepting liquid is also provided between the flow control valve 34 and the main water supply line 23 , and an inlet isolation valve 15 for intercepting steam is also provided on the third pipeline 25 .
  • At least two inlet isolation valves 15 are connected to the third pipeline 25 in parallel, and at least two outlet isolation valves 14 are connected to the second pipeline 22 in parallel, so as to prevent in the case that one of the valves fails and cannot be opened, Another valve can be opened on demand, reducing the chance of system failure and increasing equipment availability.
  • first pipeline 21 communicates with the temperature buffer tank 13 from the top surface of the temperature buffer tank 13
  • second pipeline 22 communicates with the temperature buffer tank 13 from the side surface thereof.
  • the second pipeline 22 is connected to the temperature buffer tank 13. The upper half of the side of the tank 13, so that the water level of the temperature buffer tank 13 is always maintained near the height of the second pipeline 22, and there is always a certain volume of water in the temperature buffer tank 13.
  • the water stored in the temperature buffer tank 13 is flushed, and a vortex is formed in the tank, so that the stored water in the tank is fully mixed with the condensed water at the outlet of the condensation pipe, and the unevenness and fluctuation of the temperature of the condensed water in the tank are reduced. It acts as a temperature buffer, thereby reducing the thermal shock of the condensed water to the second pipeline 22 .
  • the present invention also provides a method for stabilizing the flow rate of a waste heat discharge system, including the above waste heat discharge system, and further comprising the following steps:
  • the controller 35 respectively receives the pressure data of the corresponding positions measured by the first pressure sensor 31 and the second pressure sensor 32, and the temperature value detected by the temperature sensor 33, and after obtaining the density of the condensed water, according to the formula to obtain the current inside the pipeline The relative water level h;
  • the controller 35 controls the opening of the flow regulating valve 34 by comparing the difference between the relative water level h and the target water level H, so that the relative water level h is equal to the target water level H, or between the relative water level h and the target water level H The difference is within the preset error range;
  • the controller 35 automatically controls the flow regulating valve 34 to reduce the valve opening, so that the water level in the pipeline rises to the target water level H;
  • the controller 35 automatically controls the flow regulating valve 34 to increase the valve opening, so that the water level in the pipeline drops to the target water level H.
  • the flow stabilization method may further include a method for adjusting the heat removal power of the waste heat removal system, specifically, may include the following steps:
  • the controller 35 reduces the opening of the flow control valve 34, and raises the water level in the first pipeline 21 until the heat exchange tube 121 is partially submerged, so as to reduce the heat exchange area of the heat exchange tube 121;
  • the purpose of controlling the heat removal power of the waste heat discharge system can be achieved.
  • the waste heat discharge system and the flow stabilization method proposed by the invention can be applied to various types of commercial pressurized water reactors to cope with various accident conditions and ensure the safe discharge of the waste heat of the reactor.
  • it is suitable for the power failure accident condition of the whole plant, which can ensure the safety of the reactor under the condition of power failure and improve the safety performance of the nuclear power plant.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

一种流量控制装置、余热排出系统及流量稳定方法,流量控制装置包括第一压力传感器(31)、第二压力传感器(32)、温度传感器(33)、流量控制阀(34)以及控制器(35),第一压力传感器(31)、第二压力传感器(32)、温度传感器(33)和流量控制阀(34)均设于冷凝液体的回流管线上;第一压力传感器(31)、第二压力传感器(32)、温度传感器(33)以及流量控制阀(34)分别与控制器(35)通信连接。该余热排出系统通过由第一压力传感器(31)、第二压力传感器(32)、温度传感器(33)、流量控制阀(34)和控制器(35)组成的流量控制装置,自动控制冷凝液体的回流管线内的液位,同时,通过在余热排出系统中设置该流量控制装置,使液位保持在换热器(121)出口附近,从而避免冷凝水对气液分界面的冲击,达到消除冷凝水流量波动的效果,使得余热排出系统的流量保持稳定。

Description

流量控制装置、余热排出系统及流量稳定方法 技术领域
本发明涉及核电站安全系统技术领域,尤其涉及一种流量控制装置、余热排出系统及流量稳定方法。
背景技术
当反应堆停堆后,下插的控制棒会立刻终止燃料棒裂变热,但是堆芯裂变产物中含有大量可衰变的放射性元素,使得反应堆停堆后堆芯依然产生大量衰变热。为了在停堆后实现反应堆降温降压,必须设置余热排出系统,源源不断地导出反应堆余热。而在降温过程中,换热功率较低,冷凝水未填满回流管道时,会在回流管道上出现明显的气液分界面,冷凝水沿回流管道流下冲击该气液分界面,使得分界面发生波动,从而使冷凝水流量发生波动,容易对管道造成较大的载荷力,使得管道有发生破裂的风险。当冷凝器出口的冷凝水温度不均匀、波动较大时,容易对下游管道造成较大的热疲劳冲击,同样使管道有破裂风险。
技术问题
本发明要解决的技术问题在于,提供一种流量控制装置、余热排出系统及流量稳定方法。
技术解决方案
本发明解决其技术问题所采用的技术方案是:
流量控制装置,包括第一压力传感器、第二压力传感器、温度传感器、流量控制阀以及控制器,所述第一压力传感器、所述第二压力传感器、所述温度传感器和所述流量控制阀均设于冷凝液体的回流管线上;
所述第一压力传感器和所述第二压力传感器沿冷凝液体的回流方向依次设置,所述第一压力传感器、所述第二压力传感器和所述温度传感器均设于所述流量控制阀的上游;
所述第一压力传感器、所述第二压力传感器、所述温度传感器以及所述流量控制阀分别与所述控制器通信连接。
优选地,所述第一压力传感器设于冷凝液体的出口处,所述第二压力传感器与所述流量控制阀相邻设置。
优选地,所述第一压力传感器、所述温度传感器、所述第二压力传感器和所述流量控制阀在所述冷凝液体的回流管线上沿冷凝液体的回流方向依次设置。
本发明还提供一种余热排出系统,包括上述任意一项所述的非能动系统流量控制装置,还包括与蒸汽发生器依次串联的换热装置和温度缓冲箱,所述换热装置、所述温度缓冲箱、所述蒸汽发生器的设置高度依次递减;
第一压力传感器设于连接所述换热装置和所述温度缓冲箱的第一管线上,第二压力传感器、温度传感器以及流量控制阀均设于连通所述温度缓冲箱和主给水管线的第二管线上。
优选地,所述温度缓冲箱内充有液体,入口连接所述第一管线,并通过所述第二管线连接至主给水管线上、与所述蒸汽发生器连通。
优选地,所述换热装置和所述温度缓冲箱之间的垂直距离小于所述温度缓冲箱与所述蒸汽发生器之间的垂直距离,所述第一压力传感器靠近所述换热装置的出口设置,所述第二压力传感器与所述流量控制阀相邻设置。
优选地,所述温度传感器、所述第二压力传感器和所述流量控制阀在所述第二管线上沿液体流动方向依次设置,所述流量控制阀和所述主给水管线之间还设有用于截流液体的出口隔离阀。
优选地,所述换热装置通过第三管线连接至主蒸汽管线上,所述换热装置和所述主蒸汽管线之间还设有截流蒸汽的入口隔离阀。
优选地,至少两个所述入口隔离阀并联设于所述第三管线上,至少两个所述出口隔离阀并联设于所述第二管线上。
优选地,所述换热装置包括换热管以及充有冷却液体的热阱水箱,所述换热管浸没于所述冷却液体中,所述第一管线、所述第三管线分别与所述换热管连通。
优选地,所述热阱水箱顶部还设有用于使所述冷却液体蒸发的气窗,所述换热管为C形换热管。
优选地,所述温度缓冲箱内液体为液态水,在所述余热排出系统尚未开始工作时,所述液态水充满所述温度缓冲箱。
优选地,所述第一管线自所述温度缓冲箱的顶面与所述温度缓冲箱连通,所述第二管线自所述温度缓冲箱的侧面与所述温度缓冲箱连通,所述第二管线连接于所述温度缓冲箱侧面的上半部分。
本发明还提供一种余热排出系统的流量稳定方法,包括上述任意一项余热排出系统,还包括以下步骤:
S1、启动余热排出系统,设定目标水位H,其中,目标水位H与第一压力传感器和第二压力传感器的高度差值相同;
S2、将第一压力传感器、第二压力传感器测量得到对应位置的压力数据,以及温度传感器检测到的温度数值传输至控制器,控制器计算得到冷凝水密度后,根据公式,得到此时的相对水位h;
S3、所述控制器对比相对水位h与所述目标水位H之间的差值,从而控制流量调节阀的开度,使所述相对水位h等于所述目标水位H,或所述相对水位h与所述目标水位H的差值在预设误差范围内;
S4、当h<H时,所述控制器自动控制所述流量调节阀,以缩小阀门开度;
S5、当h>H时,所述控制器自动控制所述流量调节阀,以增大阀门开度;
优选地,还包括调整所述余热排出系统排热功率的方法,包括以下步骤:
S1、启动所述余热排出系统;
S2、当需要减小所述余热排出系统的排热功率时,设定目标水位H,所述目标水位H大于所述第一压力传感器和所述第二压力传感器之间的差值,通过所述控制器减小所述流量控制阀的开度,抬高所述第一管线内的水位直至部分淹没换热管,减小换热管的换热面积,以降低所述余热排出系统的排热功率;
S3、当需要增大所述余热排出系统的排热功率时,减小所述目标水位H数值,通过所述控制器增大所述流量控制阀的开度,降低所述换热管内的水位高度,增大所述换热管的换热面积,以增大所述余热排出系统的排热功率。
有益效果
本发明具有以下有益效果:本发明通过由第一压力传感器、第二压力传感器、温度传感器、流量控制阀和处理器组成的流量控制系统,能够自动控制冷凝液体的回流管线内的液位,同时,通过在余热排出系统中设置该流量控制系统,使液位保持在换热器出口附近,从而避免冷凝水对气液分界面的冲击,达到消除冷凝水流量波动的效果,实现余热排出系统的流量稳定效果。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明流量控制装置一个实施例的结构示意图;
图2是本发明余热排出系统一个实施例的结构示意图。
本发明的实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
本发明提供的流量控制装置可以作为流量稳定装置,用于提高非能动系统的运行流量稳定性,降低系统管道损伤的概率。具体的,参考图1,本发明提供的流量控制装置,可用于非能动系统中,具体可包括第一压力传感器31、第二压力传感器32、温度传感器33、流量控制阀34以及控制器35,其中,第一压力传感器31、第二压力传感器32、温度传感器33、流量控制阀34均与控制器35通信连接。
进一步的,第一压力传感器31、第二压力传感器32、温度传感器33、流量控制阀34均设于冷凝液体的回流管线上,第一压力传感器31和第二压力传感器32沿冷凝液体的回流方向依次设置,第一压力传感器31、第二压力传感器32和温度传感器33均设于流量控制阀34的上游,即位于流量控制阀34入口一侧的管线上。其中,第一压力传感器31可靠近冷凝水源出口设置,第二压力传感器32可安装在接近流量控制阀34的位置,从而第一压力传感器31和第二压力传感器32可测量安装位置回流管线的环境压力,温度传感器33可以测量回路管线内的液体温度,并分别将测量数据传输至控制器35。
在一些实施例中,第一压力传感器31优选设于冷凝液体的出口处,即靠近冷凝液体进入回流管线的高度,第二压力传感器32与流量控制阀34相邻设置,从而通过自动控制流量控制阀34的阀门开度,将回流管线内的水位高度始终维持在淹没第一压力传感器31的高度,即冷凝水源头的高度,即可保持冷凝回流液体的流量稳定。
进一步的,第一压力传感器31、温度传感器33、第二压力传感器32、流量控制阀34在冷凝液体的回流管线上可沿冷凝液体的回流方向依次设置。
本发明还提供一种余热排出系统,包括上述流量控制装置,用于导出反应堆余热。具体的,参考图2,该余热排出系统连接于蒸汽发生器11的主蒸汽管线24和主给水管线23之间。其中,换热装置12、温度缓冲箱13和蒸汽发生器11的高度依次递减,在一些实施例中,换热装置12和温度缓冲箱13之间的垂直距离小于温度缓冲箱13与蒸汽发生器11之间的垂直距离。
进一步的,换热装置12具体包括换热管121和盛有冷却液体的热阱水箱122,换热管121浸没于冷却液体中,用于将蒸汽冷凝为液体。在一些实施例中,热阱水箱122内的冷却液体为冷却水,其顶部还设有用于使冷却液体蒸发的气窗1221。在一些实施例中,换热管121为C形换热管束,其两端分别与蒸汽发生器11和温度缓冲箱13连通。在一些实施例中,温度缓冲箱13内充有液体,具体为液态水,在该流量控制装置尚未开始工作时,液态水充满温度缓冲箱13。进一步的,温度缓冲箱13通过第一管线21与换热管121连通,并通过第二管线22连接至主给水管线23上;换热装置12通过第三管线25连接至主蒸汽管线24上,从而使蒸汽发生器11、换热装置12、温度缓冲箱13形成一封闭回路。
为使该余热排出系统的流量稳定,在本发明中,将上述流量控制装置设于该余热系统中。具体的,第一管线21上设有第一压力传感器31,第二管线22上设有第二压力传感器32,此外,第二管线22上还设有用于检测第二管线22内液体温度的温度传感器33,以及用于控制第二管线22内液体流量大小的流量控制阀34。在本发明中,第一压力传感器31、第二压力传感器32、温度传感器33以及流量控制阀34分别与控制器35通信连接。进一步的,在一些实施例中,第一压力传感器31设于换热管121的出口处,温度传感器33、第二压力传感器32、流量控制阀34在第二管线22上沿液体流动的方向依次设置。进一步的,流量控制阀34和主给水管线23之间还设有用于截流液体的出口隔离阀14,第三管线25上还设有用于截流蒸汽的入口隔离阀15。在一些实施例中,至少两个入口隔离阀15并联在第三管线25上,至少两个出口隔离阀14并联在第二管线22上,防止在其中一个阀门失效卡出无法打开的情况下,另一个阀门可以按需求打开,降低系统的失效几率,提高设备可用性。
进一步的,第一管线21自温度缓冲箱13的顶面与温度缓冲箱13连通,第二管线22自温度缓冲箱13的侧面与其连通,在一些实施例中,第二管线22连接于温度缓冲箱13侧面的上半部分,使得温度缓冲箱13的水位始终维持在第二管线22的高度附近,温度缓冲箱13内始终有一定体积的存水,当从第一管线21流下的冷凝水进入温度缓冲箱13后,冲刷温度缓冲箱13内的存水,在箱内形成漩涡,使得箱内的存水与冷凝管出口的冷凝水充分混合,降低箱内冷凝水温度的不均匀性和波动性,起到温度缓冲的作用,从而降低冷凝水对第二管线22的热冲击。
进一步的,本发明还提供一种余热排出系统的流量稳定方法,包括上述余热排出系统,其中,还包括以下步骤:
S1、启动余热排出系统,设定目标水位H,其中,目标水位H与第一压力传感器31和第二压力传感器32之间的高度差值相同;
S2、控制器35分别接收第一压力传感器31、第二压力传感器32测量得到的对应位置的压力数据,以及温度传感器33检测到的温度数值,得到冷凝水密度后,根据公式得到此时管线内的相对水位h;
S3、控制器35通过对比相对水位h与目标水位H之间的差值,从而控制流量调节阀34的开度,使相对水位h等于目标水位H,或使相对水位h与目标水位H之间的差值在预设误差范围内;
S4、当h<H时,控制器35自动控制流量调节阀34 ,以缩小阀门开度,从而使管线内的水位上升至目标水位H;
S5、当h>H时,控制器35自动控制流量调节阀34,以增大阀门开度,从而使管线内的水位下降至目标水位H。
通过上述流量控制方法,使得该余热排出系统中的水位维持在第一压力传感器31,即冷凝管出口附近时,即可消除管道中冷凝水流量的波动。
进一步的,该流量稳定方法还可包括调整该余热排出系统排热功率的方法,具体的,可包括以下步骤:
S1、启动余热排出系统;
S2、当需要减小所述余热排出系统的排热功率时,设定目标水位H,使目标水位H大于所述第一压力传感器31和所述第二压力传感器32之间的差值,通过控制器35减小流量控制阀34的开度,抬高第一管线21内的水位直至部分淹没换热管121,以减小换热管121的换热面积;
S3、当需要增大余热排出系统的排热功率时,减小目标水位H数值,通过所述控制器35增大流量控制阀34的开度,降低换热管121内的水位高度,以增大换热管121的换热面积。
通过改变淹没换热管121的长度,等效于改变换热管121的冷凝面积,即可达到控制该余热排出系统的排热功率的目的。
本发明提出的余热排出系统以及流量稳定方法可应用于各种类型的商用压水堆,应对各种事故工况,确保反应堆余热的安全排出。例如适用于全厂断电事故工况,可确保失电情况下的反应堆安全,提高核电厂安全性能。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细, 但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种流量控制装置,其特征在于,包括第一压力传感器(31)、第二压力传感器(32)、温度传感器(33)、流量控制阀(34)以及控制器(35),所述第一压力传感器(31)、所述第二压力传感器(32)、所述温度传感器(33)和所述流量控制阀(34)均设于冷凝液体的回流管线上;
    所述第一压力传感器(31)和所述第二压力传感器(32)沿冷凝液体的回流方向依次设置,所述第一压力传感器(31)、所述第二压力传感器(32)和所述温度传感器(33)均设于所述流量控制阀(34)上游;
    所述第一压力传感器(31)、所述第二压力传感器(32)、所述温度传感器(33)以及所述流量控制阀(34)分别与所述控制器(35)通信连接。
  2. 根据权利要求1所述的流量控制装置,其特征在于,所述第一压力传感器(31)设于冷凝液体的出口处,所述第二压力传感器(32)与所述流量控制阀(34)相邻设置。
  3. 根据权利要求2所述的流量控制装置,其特征在于,所述第一压力传感器(31)、所述温度传感器(33)、所述第二压力传感器(32)和所述流量控制阀(34)在冷凝液体的回流管线上沿冷凝液体的回流方向依次设置。
  4. 一种余热排出系统,其特征在于,包括权利要求1-3任意一项所述的流量控制装置,还包括与蒸汽发生器(11)依次串联的换热装置(12)和温度缓冲箱(13),所述换热装置(12)、所述温度缓冲箱(13)、所述蒸汽发生器(11)的设置高度依次递减;
    第一压力传感器(31)设于连接所述换热装置(12)和所述温度缓冲箱(13)的第一管线(21)上,第二压力传感器(32)、温度传感器(33)以及流量控制阀(34)均设于连通所述温度缓冲箱(13)和主给水管线(23)的第二管线(22)上。
  5. 根据权利要求4所述的余热排出系统,其特征在于,所述温度缓冲箱(13)内充有液体,入口连接所述第一管线(21),并通过所述第二管线(22)连接至主给水管线(23)上、与所述蒸汽发生器(11)连通。
  6. 根据权利要求5所述的余热排出系统,其特征在于,所述换热装置(12)和所述温度缓冲箱(13)之间的垂直距离小于所述温度缓冲箱(13)与所述蒸汽发生器(11)之间的垂直距离,所述第一压力传感器(31)靠近所述换热装置(12)的出口设置,所述第二压力传感器(32)与所述流量控制阀(34)相邻设置。
  7. 根据权利要求6所述的余热排出系统,其特征在于,所述温度传感器(33)、所述第二压力传感器(32)和所述流量控制阀(34)在所述第二管线(22)上沿液体流动方向依次设置,所述流量控制阀(34)和所述主给水管线(23)之间还设有用于截流液体的出口隔离阀(14)。
  8. 根据权利要求7所述的余热排出系统,其特征在于,所述换热装置(12)通过第三管线(25)连接至主蒸汽管线(24)上,所述换热装置(12)和所述主蒸汽管线(24)之间还设有截流蒸汽的入口隔离阀(15)。
  9. 根据权利要求8所述的余热排出系统,其特征在于,至少两个所述入口隔离阀(15)并联设于所述第三管线(25)上,至少两个所述出口隔离阀(14)并联设于所述第二管线(22)上。
  10. 根据权利要求8所述的余热排出系统,其特征在于,所述换热装置(12)包括换热管(121)以及充有冷却液体的热阱水箱(122),所述换热管(121)浸没于所述冷却液体中,所述第一管线(21)、所述第三管线(25)分别与所述换热管(121)连通。
  11. 根据权利要求10所述的余热排出系统,其特征在于,所述热阱水箱(122)顶部还设有用于使所述冷却液体蒸发的气窗(1221),所述换热管(121)为C形换热管。
  12. 根据权利要求5所述的余热排出系统,其特征在于,所述温度缓冲箱(13)内液体为液态水,在所述余热排出系统尚未开始工作时,所述液态水充满所述温度缓冲箱(13)。
  13. 根据权利要求12所述的余热排出系统,其特征在于,所述第一管线(21)自所述温度缓冲箱(13)的顶面与所述温度缓冲箱(13)连通,所述第二管线(22)自所述温度缓冲箱(13)的侧面与所述温度缓冲箱(13)连通,所述第二管线(22)连接于所述温度缓冲箱(13)侧面的上半部分。
  14. 一种余热排出系统的流量稳定方法,其特征在于,包括权利要求4-13任意一项所述的余热排出系统,还包括以下步骤:
    S1、启动余热排出系统,设定目标水位H,其中,目标水位H与第一压力传感器(31)和第二压力传感器(32)之间的高度差值相同;
    S2、控制器(35)接收第一压力传感器(31)、第二压力传感器(32)测量得到对应位置的压力数据,以及温度传感器(33)检测到的温度数值,计算得到冷凝水密度后,根据公式,得到此时的相对水位h;
    S3、所述控制器(35)对比相对水位h与所述目标水位H之间的差值,从而控制流量调节阀的开度,使所述相对水位h等于所述目标水位H,或所述相对水位h与所述目标水位H的差值在预设误差范围内;
    S4、当h<H时,所述控制器(35)自动控制所述流量调节阀,以缩小阀门开度;
    S5、当h>H时,所述控制器(35)自动控制所述流量调节阀,以增大阀门开度。
  15. 根据权利要求14所述的余热排出系统的流量稳定方法,其特征在于,还包括调整所述余热排出系统排热功率的方法,包括以下步骤:
    S1、启动所述余热排出系统;
    S2、当需要减小所述余热排出系统的排热功率时,设定目标水位H,所述目标水位H大于所述第一压力传感器(31)和所述第二压力传感器(32)之间的差值,通过所述控制器(35)减小所述流量控制阀(34)的开度,抬高所述第一管线(21)内的水位直至部分淹没换热管(121),减小所述换热管(121)的换热面积,以降低所述余热排出系统的排热功率;
    S3、当需要增大所述余热排出系统的排热功率时,减小所述目标水位H数值,通过所述控制器(35)增大所述流量控制阀(34)的开度,降低所述换热管(121)内的水位高度,增大所述换热管(121)的换热面积,以增大所述余热排出系统的排热功率。
PCT/CN2021/121080 2021-01-14 2021-09-27 流量控制装置、余热排出系统及流量稳定方法 WO2022151765A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21918956.0A EP4276854A4 (en) 2021-01-14 2021-09-27 FLOW CONTROL DEVICE, HEAT REMOVAL SYSTEM AND FLOW STABILIZATION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110050941.6A CN112786223B (zh) 2021-01-14 2021-01-14 余热排出系统及流量稳定方法
CN202110050941.6 2021-01-14

Publications (1)

Publication Number Publication Date
WO2022151765A1 true WO2022151765A1 (zh) 2022-07-21

Family

ID=75756782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121080 WO2022151765A1 (zh) 2021-01-14 2021-09-27 流量控制装置、余热排出系统及流量稳定方法

Country Status (3)

Country Link
EP (1) EP4276854A4 (zh)
CN (1) CN112786223B (zh)
WO (1) WO2022151765A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112786223B (zh) * 2021-01-14 2023-10-31 中广核研究院有限公司 余热排出系统及流量稳定方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010271A (ja) * 1996-06-25 1998-01-16 Toshiba Corp 原子炉圧力容器冷却装置
CN101200108A (zh) * 2006-12-15 2008-06-18 北京中拓机械有限责任公司 气体发泡剂流量控制系统
CN106024079A (zh) * 2016-08-02 2016-10-12 合肥通用机械研究院 一种非能动余热排出循环性能测试系统以及测试方法
CN107644693A (zh) * 2017-08-01 2018-01-30 中广核研究院有限公司 船用反应堆及直流蒸汽发生器二次侧非能动余热排出系统
CN107924199A (zh) * 2015-07-10 2018-04-17 关键系统公司 用于气体流量控制的方法和设备
CN107939492A (zh) * 2017-11-22 2018-04-20 北京工业大学 一种可用于油电混合动力汽车的余热回收装置
CN211855443U (zh) * 2020-04-16 2020-11-03 青岛新奥胶城燃气工程有限公司 一种燃气设备的流量检测装置
CN112786223A (zh) * 2021-01-14 2021-05-11 中广核研究院有限公司 流量稳定装置、余热排出系统及流量稳定方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584999B2 (ja) * 1978-09-22 1983-01-28 株式会社日立製作所 原子炉残留熱除去系の制御方法
JPH11163569A (ja) * 1997-11-28 1999-06-18 Nec Corp 熱負荷冷却システム
JP4553715B2 (ja) * 2004-12-15 2010-09-29 株式会社大気社 冷却水システム
JP4875546B2 (ja) * 2007-06-13 2012-02-15 株式会社荏原製作所 排熱発電装置、排熱発電装置の作動媒体蒸気過熱度制御方法
JP5812873B2 (ja) * 2012-01-12 2015-11-17 三菱日立パワーシステムズ株式会社 コンバインドサイクル発電プラント
CN103456375B (zh) * 2013-07-31 2016-05-25 中广核研究院有限公司 带有非能动流量控制装置的二次侧余热排出系统
CN104848283A (zh) * 2014-10-23 2015-08-19 青岛万力科技有限公司 利用蒸汽冷凝水余热节能的换热与回收平衡装置
US10752821B2 (en) * 2015-12-08 2020-08-25 Applied Research Associates, Inc. Dry cooling systems using thermally induced polymerization
CN206431473U (zh) * 2016-10-18 2017-08-22 沧州四星光热玻璃有限公司 一种能控制工质流量的蒸发器
JP6852458B2 (ja) * 2017-02-27 2021-03-31 株式会社Ihi バイナリー発電装置およびバイナリー発電方法
KR101946943B1 (ko) * 2017-03-31 2019-04-29 한국원자력연구원 원자로의 예열 및 냉각 시스템 및 이를 구비한 원전
CN107145175B (zh) * 2017-05-26 2020-11-06 中国核动力研究设计院 一种蒸汽发生器给水温度控制模拟系统
CN208806073U (zh) * 2018-08-31 2019-04-30 中国船舶重工集团公司第七一九研究所 一种用于海上反应堆的冷却剂余热排出自动监控系统
CN209149827U (zh) * 2018-11-13 2019-07-23 中国舰船研究设计中心 一种能动和非能动结合的二次侧余热排出系统
CN212061893U (zh) * 2019-10-28 2020-12-01 中广核研究院有限公司 核电厂多级并联给水阀门控制装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010271A (ja) * 1996-06-25 1998-01-16 Toshiba Corp 原子炉圧力容器冷却装置
CN101200108A (zh) * 2006-12-15 2008-06-18 北京中拓机械有限责任公司 气体发泡剂流量控制系统
CN107924199A (zh) * 2015-07-10 2018-04-17 关键系统公司 用于气体流量控制的方法和设备
CN106024079A (zh) * 2016-08-02 2016-10-12 合肥通用机械研究院 一种非能动余热排出循环性能测试系统以及测试方法
CN107644693A (zh) * 2017-08-01 2018-01-30 中广核研究院有限公司 船用反应堆及直流蒸汽发生器二次侧非能动余热排出系统
CN107939492A (zh) * 2017-11-22 2018-04-20 北京工业大学 一种可用于油电混合动力汽车的余热回收装置
CN211855443U (zh) * 2020-04-16 2020-11-03 青岛新奥胶城燃气工程有限公司 一种燃气设备的流量检测装置
CN112786223A (zh) * 2021-01-14 2021-05-11 中广核研究院有限公司 流量稳定装置、余热排出系统及流量稳定方法

Also Published As

Publication number Publication date
CN112786223A (zh) 2021-05-11
EP4276854A4 (en) 2024-06-05
CN112786223B (zh) 2023-10-31
EP4276854A1 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
WO2016078421A1 (zh) 非能动安全冷却系统
US10720250B2 (en) Containment internal passive heat removal system
WO2017018082A1 (ja) 凝縮器および冷却システムと運転方法
JPH0664171B2 (ja) 原子炉装置
US5377243A (en) Passive containment cooling system with drywell pressure regulation for boiling water reactor
JPH0341395A (ja) 原子炉容器用の受動熱除去系
WO2022151765A1 (zh) 流量控制装置、余热排出系统及流量稳定方法
CN114242284B (zh) 一种核反应堆热工水力试验系统及调控方法
US8443870B2 (en) Steam heat exchanger
JPH0549076B2 (zh)
JPH05240991A (ja) 加圧水型原子炉プラント
JPS62480B2 (zh)
CN108447570B (zh) 船用反应堆及其二次侧非能动余热排出系统
CN112908500B (zh) 一种压力容器顶部不可凝结气体的体积控制方法
CN212129984U (zh) 混凝土结构降温系统
JP3581021B2 (ja) 原子炉除熱系
CN206890491U (zh) 锅炉汽水系统
US20230049409A1 (en) Process and installation for the destruction of radioactive sodium
CN217654321U (zh) 一种用于蒸汽换热器的冷凝水收集装置
CN218384513U (zh) 闭式非能动安全壳热量导出系统
CN220397490U (zh) 一种直流锅炉给水再循环阀控制系统
KR100385838B1 (ko) 저수위 운전신뢰성을 갖는 원자로 증기발생기의 노즐구조
CN216898442U (zh) 一种凝液回收换热装置
KR102629816B1 (ko) 가압수형 원자로용 수소화 시스템 및 그 방법
JP2013120172A (ja) 原子炉隔離時冷却装置及び原子炉隔離時冷却装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021918956

Country of ref document: EP

Effective date: 20230809