WO2022151747A1 - 一种空调系统及其冷媒状态检测方法和装置 - Google Patents

一种空调系统及其冷媒状态检测方法和装置 Download PDF

Info

Publication number
WO2022151747A1
WO2022151747A1 PCT/CN2021/116969 CN2021116969W WO2022151747A1 WO 2022151747 A1 WO2022151747 A1 WO 2022151747A1 CN 2021116969 W CN2021116969 W CN 2021116969W WO 2022151747 A1 WO2022151747 A1 WO 2022151747A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
temperature
pressure
outlet
Prior art date
Application number
PCT/CN2021/116969
Other languages
English (en)
French (fr)
Inventor
李仲珍
范波
Original Assignee
广东美的暖通设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 美的集团股份有限公司 filed Critical 广东美的暖通设备有限公司
Priority to EP21918938.8A priority Critical patent/EP4261471A4/en
Priority to US18/260,608 priority patent/US20240068722A1/en
Publication of WO2022151747A1 publication Critical patent/WO2022151747A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/17Speeds
    • F25B2700/171Speeds of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21162Temperatures of a condenser of the refrigerant at the inlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application belongs to the technical field of air conditioning, and in particular, relates to an air conditioning system and a method and device for detecting a refrigerant state thereof.
  • air-conditioning is more and more widely used in people's daily production, work and life, and people pay more and more attention to the safety requirements of air-conditioning, including the diagnosis of refrigerant leakage. Due to the complex installation conditions of the air-conditioning system, the changing operating conditions and the changing conditions of use, it is difficult to determine the refrigerant state of the air-conditioning system. Refrigerant state judgment is the key to judging the operating state of the air-conditioning system, and it is also the basis for judging refrigerant leakage.
  • One of the purposes of the embodiments of the present application is to provide an air-conditioning system and a refrigerant state detection method and device thereof, which can accurately know the refrigerant state of the air-conditioning system according to the operating parameters of the air-conditioning system, thereby improving the safety of the air-conditioning system during use. sturdiness and reliability.
  • a first aspect of the embodiments of the present application provides a refrigerant state detection method, including:
  • Adjusting the first operating parameter of the air conditioning system wherein the first operating parameter includes the frequency of the compressor, the wind speed gear and the opening of the electronic expansion valve;
  • the second operating parameter of the air-conditioning system is collected; wherein the second operating parameter includes the outdoor ambient temperature and the operating parameter of the compressor;
  • the refrigerant state of the air conditioning system is determined according to the second operating parameter.
  • a second aspect of the embodiments of the present application provides a control device for an air conditioning system, including:
  • a parameter adjustment unit configured to adjust a first operating parameter of the air conditioning system; wherein the first operating parameter includes the frequency of the compressor of the outdoor unit of the air conditioner, the wind speed gear and the opening degree of the electronic expansion valve;
  • a parameter collection unit configured to collect a second operation parameter of the air-conditioning system after the first operation parameter is adjusted for a preset time; wherein the second operation parameter includes an outdoor ambient temperature and the operation of the compressor parameter;
  • a refrigerant state detection unit configured to determine the refrigerant state of the air conditioning system according to the second operating parameter.
  • a third aspect of the embodiments of the present application provides an air conditioning system, including a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor executes the When the computer program is described, the steps of the refrigerant state detection method described in the first aspect of the embodiments of the present application are implemented.
  • a fourth aspect of the embodiments of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the first aspect of the embodiments of the present application is implemented Describe the steps of the refrigerant state detection method.
  • the refrigerant state detection method provided by the first aspect of the embodiments of the present application adjusts the first operating parameter of the air-conditioning system; wherein the first operating parameter includes the frequency of the compressor, the wind speed gear, and the opening of the electronic expansion valve; After the adjustment of the first operating parameter is completed for a preset time, the second operating parameter of the air-conditioning system is collected; wherein the second operating parameter includes the outdoor ambient temperature and the operating parameter of the compressor; according to the first operating parameter
  • the second operation parameter determines the refrigerant state of the air conditioning system, and can accurately know the refrigerant state of the air conditioning system according to the operation parameters of the air conditioning system, thereby improving the safety and reliability of the air conditioning system during use.
  • FIG. 1 is a first structural schematic diagram of an air-conditioning system provided by an embodiment of the present application.
  • FIG. 2 is a second schematic structural diagram of the air-conditioning system provided by the embodiment of the present application.
  • FIG. 3 is a first schematic flow chart of a refrigerant state detection method provided by an embodiment of the present application.
  • FIG. 4 is a second schematic flow chart of the refrigerant state detection method provided by the embodiment of the present application.
  • Fig. 5 is the third schematic flow chart of the refrigerant state detection method provided by the embodiment of the present application.
  • FIG. 6 is a fourth schematic flow chart of the refrigerant state detection method provided by the embodiment of the present application.
  • FIG. 7 is a fifth schematic flowchart of the refrigerant state detection method provided by the embodiment of the present application.
  • FIG. 8 is a sixth schematic flowchart of the refrigerant state detection method provided by the embodiment of the present application.
  • FIG. 9 is a seventh schematic flow chart of the refrigerant state detection method provided by the embodiment of the present application.
  • FIG. 10 is an eighth schematic flowchart of the refrigerant state detection method provided by the embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a refrigerant state detection device provided by an embodiment of the present application.
  • FIG. 12 is a third structural schematic diagram of the air conditioning system provided by the embodiment of the present application.
  • the term “if” may be contextually interpreted as “when” or “once” or “in response to determining” or “in response to detecting “.
  • the phrases “if it is determined” or “if the [described condition or event] is detected” may be interpreted, depending on the context, to mean “once it is determined” or “in response to the determination” or “once the [described condition or event] is detected. ]” or “in response to detection of the [described condition or event]”.
  • references in this specification to "one embodiment” or “some embodiments” and the like mean that a particular feature, structure or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • An embodiment of the present application provides a method for detecting a refrigerant state, which can be executed by a processor of an air conditioning system when a corresponding computer program is executed.
  • the air-conditioning system may be a single-unit air-conditioning system or a multi-unit air-conditioning system, and the single-unit air-conditioning system and the multi-unit unit air-conditioning system may be a single-cooling system only used for refrigeration.
  • the air conditioning system may include, but is not limited to, a memory, a processor related to the embodiments of the present application, a compressor, a heat exchanger, an electronic expansion valve, a pressure sensor, a temperature sensor, etc. connected to the processor, and may also include oil Separator, four-way valve, gas-liquid separator, economizer, evaporator and pipes connecting various components, etc.
  • the air-conditioning system introduced in the embodiments of the present application does not constitute a limitation on the air-conditioning system, and the air-conditioning system may include more or less components, or combine some components, or arrange different components.
  • FIG. 1 it exemplarily shows a schematic structural diagram of an air-conditioning system that does not include an economizer; wherein, the air-conditioning system includes a compressor 10, an oil separator 20, a four-way valve 30, a heat exchanger 40, an air conditioner Liquid separator 50, evaporator 60;
  • the compressor 10 and the oil separator 20 are connected through an exhaust pipe, the exhaust pipe is provided with an exhaust pressure sensor 11 and an exhaust temperature sensor 12, and the compressor 10 and the gas-liquid separator 50 are connected through a first return pipe connection, the first return air pipe is provided with a return air pressure sensor 13 and a return air temperature sensor 14;
  • the oil separator 20 and the four-way valve 30 are connected through a high-pressure gas pipe;
  • the four-way valve 30 and the heat exchanger 40 are connected by a condensing gas pipe.
  • the condensing gas pipe is provided with a heat exchanger inlet pressure sensor 31 and a heat exchanger inlet temperature sensor 32.
  • the four-way valve 30 and the gas-liquid separator 50 are connected by a second
  • the return gas pipe is connected, and the four-way valve 30 and the evaporator 60 are connected through a low-pressure gas pipe;
  • the heat exchanger 40 and the evaporator 60 are connected by a high pressure liquid pipe, and the high pressure liquid pipe is provided with a heat exchanger outlet pressure sensor 41, a heat exchanger outlet temperature sensor 42, a first electronic expansion valve 43, and a high pressure liquid pipe outlet pressure sensor 44.
  • the high pressure liquid pipe outlet temperature sensor 45, the heat exchanger 40 is provided with an outdoor ambient temperature sensor 46.
  • FIG. 2 a schematic diagram of the structure of an air conditioning system including an economizer is exemplarily shown; wherein, the air conditioning system further includes an economizer 70 on the basis of FIG. 1 , and the inlet of the economizer 70 is connected to the high pressure
  • the liquid pipe 41 is connected, the input pipe is provided with a second electronic expansion valve 71 and an economizer inlet temperature sensor 72, the outlet of the economizer 70 is connected to the compressor 10 through an output pipe, and the output pipe is provided with an economizer outlet temperature sensor 73.
  • the method for detecting a refrigerant state of an air conditioning system includes the following steps S301 to S303:
  • Step S301 adjusting the first operating parameter of the air conditioning system; wherein, the first operating parameter includes the frequency of the compressor, the wind speed gear and the opening degree of the electronic expansion valve.
  • the refrigerant state detection can be performed automatically immediately after the air-conditioning system is turned on, and can also be automatically detected at any time the user needs after the air-conditioning system is turned on. Turn on the machine and adjust the first operating parameter of the air conditioning system to a specified value, or adjust the first operating parameter of the air conditioning system to a specified value after turning on the machine and when receiving a refrigerant state detection instruction sent by the user.
  • the first operating parameter includes the frequency of the compressor of the outdoor unit of the air conditioning system, the wind speed gear of the outdoor unit, and the opening degree of the electronic expansion valve of the outdoor unit.
  • the electronic expansion valve may be an electronic expansion valve of the outdoor unit, for example, the first electronic expansion valve 43 shown in FIG. 1 ; when the air conditioning system includes an economizer, the electronic expansion valve may also include an outdoor unit.
  • the electronic expansion valve of the engine and the electronic expansion valve of the economizer for example, the first electronic expansion valve 43 and the second electronic expansion valve 71 shown in FIG. 2 .
  • Step S302 After the first operating parameter is adjusted for a preset time, collect the second operating parameter of the air conditioning system; wherein the second operating parameter includes the outdoor ambient temperature and the operating parameter of the compressor;
  • Step S303 Determine the refrigerant state of the air conditioning system according to the second operating parameter.
  • the second operating parameter of the air-conditioning system can be collected, and the refrigerant state of the air-conditioning system can be judged according to the second operating parameter .
  • the preset time can be customized by the user according to actual needs or the factory default setting, as long as the air conditioning system can run stably after entering the refrigerant state detection mode for the preset time.
  • the outdoor ambient temperature is the temperature of the outdoor environment where the outdoor unit is located, which can be detected by a temperature sensor disposed outdoors, for example, the outdoor ambient temperature sensor 47 shown in FIG. 1 or FIG. 2 .
  • the operating parameters of the compressor may include, but are not limited to, compressor frequency, discharge pressure, return air pressure, return air temperature, discharge temperature, and the like.
  • the exhaust pressure, return air pressure, return air temperature and exhaust temperature of the compressor can be detected by corresponding pressure sensors and temperature sensors, for example, the exhaust pressure sensor 12 and the return air pressure sensor 15 shown in FIG. 1 or FIG. 2 , the return air temperature sensor 16 and the exhaust temperature sensor 13 .
  • the second operating parameter may further include the wind speed gear of the outdoor unit, the opening degree of the first electronic expansion valve, and the like.
  • the second operating parameter may further include the wind speed gear of the outdoor unit, the inlet temperature and the outlet temperature of the economizer, and the like.
  • the inlet temperature and outlet temperature of the economizer can be detected by corresponding temperature sensors, for example, the economizer inlet temperature sensor 72 and the economizer outlet temperature sensor 73 shown in FIG. 2 .
  • step S301 includes the following steps S401 and S402:
  • Step S401 if a power-on instruction or a refrigerant state detection instruction is received, enter a refrigerant state detection mode;
  • Step S402 In the refrigerant state detection mode, adjust the frequency of the compressor to the preset frequency, adjust the wind speed gear of the outdoor unit of the air conditioner to the preset wind speed gear, and adjust the electronic expansion valve of the outdoor unit of the air conditioner to the preset frequency.
  • the opening is adjusted to the preset opening.
  • the user can input the power-on command or the refrigerant state detection command through the human-computer interaction device of the air-conditioning system according to the actual needs, or send the power-on command or the refrigerant state detection command to the air-conditioning system through the terminal device connected to the air-conditioning system, so as to Control the air conditioning system to enter the refrigerant state detection mode.
  • the human-computer interaction device of the air conditioning system may include at least one of a physical button, a touch sensor, a gesture recognition sensor and a voice recognition unit, so that the user can input commands through corresponding touch control, gesture control or voice control.
  • buttons and touch sensors can be placed anywhere in the air conditioning system, such as the control panel.
  • the touch method for the physical button may be pressing or toggling.
  • the touch method of the touch sensor may specifically be pressing or touching.
  • the gesture recognition sensor can be placed anywhere in the air conditioning system, for example, outside the housing near the air outlet.
  • the gestures used to control the air conditioning system can be customized by the user according to actual needs, or the factory default settings can be used.
  • the speech recognition unit may include a microphone and a speech recognition chip, or may only include a microphone and the processor of the air conditioning system implements the speech recognition function.
  • the voice used to control the air conditioner can be customized by the user according to actual needs or the factory default setting.
  • the terminal device can be a mobile phone, a smart bracelet, a tablet computer, a notebook computer, a netbook, a personal digital assistant (PDA), etc., which have wireless communication functions and can be connected to the air-conditioning system for wireless communication.
  • the embodiments of the present application do not limit any specific types of terminal devices.
  • the user can control the terminal device to send instructions to the air conditioning system through any human-computer interaction method supported by the terminal device.
  • the human-computer interaction mode supported by the terminal device may be the same as that of the air-conditioning system, which will not be repeated here.
  • the preset frequency, preset fan speed gear and preset opening can be customized by the user according to actual needs or the factory default settings can be used, as long as the air conditioning system enters the refrigerant state detection mode, it can gradually trend to be stable.
  • step S303 includes:
  • Step S501 Determine the state of the refrigerant at the inlet of the heat exchanger according to the outdoor ambient temperature and the operating parameters of the compressor.
  • the state of the inlet refrigerant of the heat exchanger can be determined according to the outdoor ambient temperature and the operating parameters of the compressor. Specifically, the saturation temperature corresponding to the inlet temperature of the heat exchanger and the inlet pressure of the heat exchanger can be calculated according to the outdoor ambient temperature and the frequency of the compressor, exhaust pressure, return air pressure, return air temperature, and exhaust temperature, Then, according to the inlet temperature of the heat exchanger and the saturation temperature corresponding to the inlet pressure of the heat exchanger, the state of the refrigerant at the inlet of the heat exchanger is judged.
  • step S501 includes the following steps S601 to S603:
  • Step S601 Obtain the inlet temperature of the heat exchanger and the saturation temperature corresponding to the inlet pressure of the heat exchanger according to the outdoor ambient temperature and the operating parameters of the compressor;
  • Step S602 if the inlet temperature of the heat exchanger is greater than the sum of the saturation temperature corresponding to the inlet pressure of the heat exchanger and the first preset temperature threshold, determine that the refrigerant at the inlet of the heat exchanger is in a superheated state;
  • Step S603 if the inlet temperature of the heat exchanger is less than or equal to the sum of the saturation temperature corresponding to the inlet pressure of the heat exchanger and the first preset temperature threshold, determine that the refrigerant at the inlet of the heat exchanger is in a non-superheated state. , and adjust the first operating parameter.
  • the saturation temperature corresponding to the inlet temperature of the heat exchanger and the inlet pressure of the heat exchanger can be compared with the first preset The size of the sum of the temperature thresholds, and then determine the state of the refrigerant at the inlet of the heat exchanger according to the comparison result.
  • step S301 may be returned to continue to adjust the first operating parameter.
  • the first preset temperature threshold value can be set by the user according to actual needs, or the factory default setting can be used, for example, any value between 1°C and 3°C.
  • step S601 includes the following steps:
  • the exhaust temperature of the compressor and the refrigerant flow rate obtain the heat leakage of the exhaust pipeline of the compressor
  • the saturation temperature corresponding to the inlet pressure of the heat exchanger is obtained.
  • the saturation temperature corresponding to the exhaust pressure of the compressor can be calculated first according to the exhaust pressure of the compressor, and the saturation temperature corresponding to the return air pressure of the compressor can be calculated according to the return air pressure of the compressor.
  • temperature that is, the evaporating temperature, and then calculate the refrigerant flow according to the compressor flow coefficient, condensation temperature and evaporating temperature related to the frequency of the compressor, the discharge pressure, the return air pressure and the return air temperature.
  • the calculation formula of the refrigerant flow is as follows:
  • T1 Td-Q1/(m*B2*Tds)
  • T1s b1/(ln(p1)-b2)-b3
  • m is the flow rate of the refrigerant
  • k1 ⁇ k10 are the ten coefficients related to the frequency of the compressor, the discharge pressure pd, the return air pressure ps and the return air temperature Ts
  • Te is the return air pressure of the compressor
  • Tc is the saturation temperature corresponding to the discharge pressure pd of the compressor
  • B1 ⁇ B2, b1 ⁇ b3 are the refrigerant physical parameters related to the refrigerant type
  • dp1 is the pressure drop of the discharge line of the compressor
  • f1(m, Td, pd) is the function related to the discharge temperature Td and discharge pressure pd of the compressor and the refrigerant flow m
  • A1 ⁇ A2 is a parameter related to the structure of the exhaust pipeline
  • Q1 is the heat leakage of the exhaust pipe of the compressor
  • f2(m, Td, T0) is a function related to the outdoor ambient temperature T0, the exhaust temperature Td of the compressor and the refrigerant flow m ;
  • p1 is the inlet pressure of the heat exchanger
  • T1 is the inlet temperature of the heat exchanger
  • T1s is the saturation temperature corresponding to the inlet pressure of the heat exchanger
  • * is the multiplication operator
  • is the power operator
  • / is the division operator
  • ln() is the logarithmic function.
  • step S303 further includes:
  • Step S502 If the refrigerant at the inlet of the heat exchanger is in an overheated state, determine the state of the refrigerant at the outlet of the heat exchanger according to the outdoor ambient temperature, the operating parameters of the heat exchanger and the wind speed gear.
  • the state of the refrigerant at the outlet of the heat exchanger can be further determined according to the outdoor ambient temperature, the operating parameters of the heat exchanger and the wind speed gear.
  • the operating parameters of the heat exchanger may include, but are not limited to, the inlet pressure, outlet pressure, inlet temperature, outlet temperature, etc. of the heat exchanger.
  • the inlet pressure, outlet pressure, inlet temperature and outlet temperature of the heat exchanger can be detected by corresponding pressure sensors and temperature sensors, for example, the heat exchanger inlet pressure sensor 31 and the heat exchanger outlet pressure sensor shown in FIG. 1 or FIG. 2 41.
  • the heat exchanger inlet temperature sensor 32 and the heat exchanger outlet temperature sensor 42 can be detected by corresponding pressure sensors and temperature sensors, for example, the heat exchanger inlet pressure sensor 31 and the heat exchanger outlet pressure sensor shown in FIG. 1 or FIG. 2 41.
  • the outlet temperature of the heat exchanger and the temperature of the heat exchanger can be calculated according to the outdoor ambient temperature, refrigerant flow rate, inlet pressure of the heat exchanger, inlet temperature, saturation temperature corresponding to the inlet pressure of the heat exchanger, and wind speed gear.
  • the saturation temperature corresponding to the outlet pressure and then according to the outlet temperature of the heat exchanger and the saturation temperature corresponding to the outlet pressure of the heat exchanger, the state of the refrigerant at the outlet of the heat exchanger is judged.
  • step S502 includes the following steps S701 to S703:
  • Step S701 according to the outdoor ambient temperature, the refrigerant flow, the operating parameters of the heat exchanger and the wind speed gear, obtain the outlet temperature of the heat exchanger corresponding to the outlet pressure of the heat exchanger. saturation temperature;
  • Step S702 if the outlet temperature of the heat exchanger is less than the difference between the saturation temperature corresponding to the outlet pressure of the heat exchanger and the first preset temperature threshold, determine that the refrigerant at the outlet of the heat exchanger is in a subcooled state;
  • Step S703 if the outlet temperature of the heat exchanger is greater than or equal to the difference between the saturation temperature corresponding to the outlet pressure of the heat exchanger and the first preset temperature threshold, determine that the refrigerant at the outlet of the heat exchanger is not subcooled. state, adjust the first operating parameter of the air conditioning system.
  • the outlet temperature of the heat exchanger and the saturation temperature corresponding to the outlet pressure of the heat exchanger can be compared with the first preset The difference between the temperature thresholds is determined, and then the state of the outlet refrigerant of the heat exchanger is determined according to the comparison result. If the outlet refrigerant of the heat exchanger is in a subcooled state, the next step can be entered to continue to detect the state of the outlet refrigerant of the high-pressure liquid pipe; If the inlet refrigerant of the heat exchanger is in a non-subcooled state, the process may return to step S301 to continue to adjust the first operating parameter.
  • step S701 includes the following steps:
  • the saturation temperature corresponding to the outlet pressure of the heat exchanger is obtained.
  • the calculation formula of the refrigerant pressure drop of the heat exchanger is as follows:
  • T2 T1-Q2/(m*B2*T1s)
  • T2s b1/(ln(p2)-b2)-b3
  • dp2 is the refrigerant pressure drop of the compressor
  • f3(m, Fs) is a function related to the refrigerant flow m and the wind speed gear Fs
  • A3 to A6 are related to the structure of the heat exchanger parameters
  • c0 ⁇ c3 are parameters related to the fan characteristics of the outdoor unit
  • Q2 is the heat exchange amount of the heat exchanger
  • f4 (m, T1s, Fs, T0) is the saturation temperature T1s corresponding to the refrigerant flow m, the inlet pressure of the heat exchanger, and the wind speed gear Fs and the function related to the outdoor ambient temperature T0;
  • p2 is the outlet pressure of the heat exchanger
  • T2 is the outlet temperature of the heat exchanger
  • T2s is the saturation temperature corresponding to the outlet pressure of the heat exchanger.
  • step S303 further includes:
  • Step S503 if the outlet refrigerant of the heat exchanger is in a subcooled state, determine the outlet of the high-pressure liquid pipe according to the outdoor ambient temperature, the operating parameters of the heat exchanger and the opening of the first electronic expansion valve The state of the refrigerant.
  • the state of the refrigerant at the outlet of the high-pressure liquid pipe can be further determined according to the outdoor ambient temperature, the operating parameters of the heat exchanger and the opening of the first electronic expansion valve.
  • the outlet temperature of the high-pressure liquid pipe can be calculated according to the outdoor ambient temperature, the refrigerant flow rate, the outlet pressure and outlet temperature of the heat exchanger, the saturation temperature corresponding to the outlet pressure of the heat exchanger, and the opening of the first electronic expansion valve.
  • the saturation temperature corresponding to the outlet pressure of the high-pressure liquid pipe and then according to the outlet temperature of the high-pressure liquid pipe and the saturation temperature corresponding to the outlet pressure of the high-pressure liquid pipe, the state of the refrigerant at the outlet of the high-pressure liquid pipe is judged.
  • step S503 includes the following steps S801 and S802:
  • outlet temperature of the high-pressure liquid pipe is less than the difference between the saturation temperature corresponding to the outlet pressure of the high-pressure liquid pipe and a first preset temperature threshold, determine that the refrigerant at the outlet of the high-pressure liquid pipe is in a subcooled state.
  • the saturation temperature corresponding to the outlet temperature of the high-pressure liquid pipe and the outlet pressure of the high-pressure liquid pipe can be compared with the first preset The size of the difference between the temperature thresholds, and then determine the state of the refrigerant at the outlet of the high-pressure liquid pipe according to the comparison result.
  • the supercooled state of the refrigerant at the outlet of the high pressure liquid pipe can only be determined according to the outlet temperature of the high pressure liquid pipe and the saturation temperature corresponding to the outlet pressure of the high pressure liquid pipe. Determination of inlet and outlet temperatures.
  • step S801 includes the following steps:
  • the saturation temperature corresponding to the outlet pressure of the high-pressure liquid pipe is obtained.
  • the formula for calculating the pressure drop of the refrigerant in the high-pressure liquid pipe is as follows:
  • T3 T2-Q3/(m*B2*T2s)
  • T3s b1/(ln(p3)-b2)-b3
  • dp3 is the refrigerant pressure drop of the high-pressure liquid pipe
  • f5 m, T2, EXV
  • A7 ⁇ A8 are parameters related to the structure of the high-pressure liquid pipe
  • D0 ⁇ D1 are parameters related to the characteristics of the first electronic expansion valve
  • B3 are the refrigerant physical parameters related to the type of refrigerant
  • Q3 is the heat leakage of the high-pressure liquid pipe
  • f6 m, T2, T0
  • m, T2 of the heat exchanger is a function related to the refrigerant flow m, the outlet temperature T2 of the heat exchanger and the outdoor ambient temperature T0;
  • p3 is the outlet pressure of the high-pressure liquid pipe
  • T3 is the outlet temperature of the high-pressure liquid pipe
  • T3s is the saturation temperature corresponding to the outlet pressure of the high-pressure liquid pipe.
  • the refrigerant state detection method provided by the embodiment corresponding to FIG. 8 can be applied to the detection of the refrigerant state of any air conditioning system.
  • step S503 further includes the following step S803:
  • Step S803 if the outlet temperature of the high-pressure liquid pipe is greater than or equal to the difference between the saturation temperature corresponding to the outlet pressure of the high-pressure liquid pipe and the first preset temperature threshold, determine that the refrigerant at the outlet of the high-pressure liquid pipe is not subcooled. state.
  • the refrigerant state detection method provided by the embodiment corresponding to FIG. 9 can be applied to the detection of the refrigerant state of an air-conditioning system that does not include an economizer.
  • the air conditioning system includes an economizer, and step S303 further includes the following step S504:
  • Step S504 if the refrigerant at the outlet of the heat exchanger is in a subcooled state, determine the state of the refrigerant at the outlet of the high-pressure liquid pipe of the outdoor unit of the air conditioner according to the inlet temperature and outlet temperature of the economizer.
  • the state of the refrigerant at the outlet of the high-pressure liquid pipe can be further determined according to the inlet temperature and outlet temperature of the economizer.
  • step S504 includes the following steps:
  • the difference between the outlet temperature of the economizer and the inlet temperature is greater than or equal to a second preset temperature threshold, it is determined that the refrigerant at the outlet of the high-pressure liquid pipe of the outdoor unit of the air conditioner is in a supercooled state.
  • the difference between the outlet temperature and inlet temperature of the economizer can be compared with the second preset temperature threshold, and then the outlet refrigerant of the high-pressure liquid pipe can be determined according to the comparison result. status.
  • the second preset temperature threshold value can be set by the user according to actual needs, or the factory default setting can be used, for example, any value between 1°C and 5°C.
  • the refrigerant state detection method provided by the embodiment corresponding to FIG. 10 can be applied to detect the refrigerant state of an air conditioning system including an economizer.
  • the frequency of the compressor of the air-conditioning system by adjusting the frequency of the compressor of the air-conditioning system, the wind speed gear and the opening degree of the electronic expansion valve, after the system runs stably, the outdoor ambient temperature, the frequency of the compressor, the exhaust pressure, the return air of the air-conditioning system are collected.
  • Operating parameters such as pressure, return air temperature, exhaust temperature, the wind speed of the outdoor unit and the opening of the first electronic expansion valve can accurately know the refrigerant state of the air conditioning system according to the operating parameters of the air conditioning system, which improves the use of the air conditioning system. process safety and reliability.
  • Embodiments of the present application further provide a refrigerant state detection device, which is applied to an air conditioning system, and the refrigerant state detection device is used to execute the method steps in the above-mentioned embodiments of the refrigerant state detection method.
  • the refrigerant state detection device may be a virtual appliance (virtual appliance) in the air conditioning system, run by the processor of the air conditioning system, or may be the air conditioning system itself.
  • the refrigerant state detection device 100 provided in the embodiment of the present application includes:
  • the parameter adjustment unit 101 is used to adjust the first operation parameter of the air conditioning system; wherein, the first operation parameter includes the frequency of the compressor of the outdoor unit of the air conditioner, the wind speed gear and the opening degree of the electronic expansion valve;
  • the parameter collection unit 102 is configured to collect the second operation parameter of the air conditioning system after the adjustment of the first operation parameter is completed for a preset time; wherein, the second operation parameter includes the outdoor ambient temperature and the compressor Operating parameters;
  • the refrigerant state detection unit 103 is configured to determine the refrigerant state of the air conditioning system according to the second operating parameter.
  • the parameter adjustment unit includes:
  • the command receiving sub-unit is used to enter the refrigerant state detection mode if a power-on command or a refrigerant state detection command is received;
  • the parameter adjustment subunit is used to adjust the frequency of the compressor to a preset frequency in the refrigerant state detection mode, adjust the wind speed gear of the air conditioner outdoor unit to the preset wind speed gear, and adjust the air conditioner outdoor unit to the preset wind speed gear.
  • the opening of the electronic expansion valve is adjusted to a preset opening.
  • the refrigerant state detection unit includes:
  • a refrigerant state detection subunit configured to determine the state of the refrigerant at the inlet of the heat exchanger according to the outdoor ambient temperature and the operating parameters of the compressor
  • the first judging subunit is used to determine the temperature of the heat exchanger according to the outdoor ambient temperature, the operating parameters of the heat exchanger and the wind speed gear if the refrigerant at the inlet of the heat exchanger is in an overheated state.
  • the second judging subunit is used to determine if the outlet refrigerant of the heat exchanger is in a subcooled state, according to the outdoor ambient temperature, the operating parameters of the heat exchanger and the opening of the first electronic expansion valve.
  • each unit in the refrigerant state detection device may be a software program unit, or may be implemented by different logic circuits integrated in the processor, or may be implemented by multiple distributed processors.
  • the temperature acquisition unit may include a temperature sensor.
  • an embodiment of the present application further provides an air conditioning system 200 , including: at least one processor 201 (only one processor is shown in FIG. 12 ), a memory 202 , and an air conditioning system 200 stored in the memory 202 and available in at least one
  • the computer program 203 running on the processor 201 also includes a compressor 204, a heat exchanger 205, an electronic expansion valve 206, a pressure sensor 207 and a temperature sensor 208 connected to at least one processor 201.
  • the processor 201 executes the computer program 203 The steps in each of the above embodiments of the refrigerant state detection method are implemented.
  • the air conditioning system may include, but is not limited to, processors, memory, compressors, heat exchangers, electronic expansion valves, pressure sensors and temperature sensors, and may also include oil separators, four-way valves, gas-liquid separators , economizer, evaporator and pipes connecting various components, etc.
  • FIG. 12 is only an example of an air-conditioning system, and does not constitute a limitation on the air-conditioning system. It may include more or less components than the one shown in the figure, or combine certain components, or different components, such as It may also include input and output devices, network access devices, and the like.
  • the processor may be a central processing unit (Central Processing Unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory may in some embodiments be an internal storage unit of the air conditioning system, such as a hard disk or memory of the air conditioning system.
  • the memory can also be an external storage device of the air conditioning system, for example, a plug-in hard disk equipped on the air conditioning system, a Smart Media Card (SMC), a Secure Digital (SD) card, a flash memory Card (Flash Card), etc.
  • the memory may also include both an internal storage unit of the air conditioning system and an external storage device.
  • the memory is used to store an operating system, application programs, a boot loader (Boot Loader), data, and other programs, such as program codes of computer programs, and the like.
  • the memory may also be used to temporarily store data that has been or will be output.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the steps in each of the above-mentioned embodiments of the refrigerant state detection method can be implemented. .
  • the embodiments of the present application provide a computer program product, which enables the air-conditioning system to implement the steps in each of the foregoing embodiments of the refrigerant state detection method when the computer program product runs on the air-conditioning system.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the present application realizes all or part of the processes in the methods of the above embodiments, which can be completed by instructing the relevant hardware through a computer program, and the computer program can be stored in a computer-readable storage medium.
  • the computer program includes computer program code
  • the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like.
  • the computer-readable medium may include at least: any entity or device capable of carrying the computer program code to the air-conditioning system, a recording medium, a computer memory, a read-only memory (ROM, Read-Only). Memory), random access memory (RAM, Random Access Memory), electric carrier signal, telecommunication signal and software distribution medium.
  • a recording medium e.g., a hard disk, disk or CD, etc.
  • the disclosed apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调系统(200)及其冷媒状态检测方法和装置,通过调节空调系统(200)的第一运行参数;其中,所述第一运行参数包括压缩机(204)的频率、风速档位及电子膨胀阀(206)的开度;在所述第一运行参数调节完成预设时间之后,采集所述空调系统(200)的第二运行参数;其中,所述第二运行参数包括室外环境温度和所述压缩机(204)的运行参数;根据所述第二运行参数确定所述空调系统(200)的冷媒状态,可以根据空调系统(200)的运行参数准确的获知空调系统(200)的冷媒状态,提高了空调系统(200)使用过程中的安全性和可靠性。

Description

一种空调系统及其冷媒状态检测方法和装置
本申请要求于2021年01月15日在中国国家专利局提交的、申请号为202110055363.5、发明名称为“一种空调系统及其冷媒状态检测方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于空调技术领域,尤其涉及一种空调系统及其冷媒状态检测方法和装置。
背景技术
随着空调技术的不断发展以及空调应用的推广,空调在人们的日常生产和工作生活中的应用越来越广泛,人们对空调的安全要求也越来越重视,其中就包含冷媒泄漏的诊断。由于空调系统的安装条件复杂、使用工况以及使用条件的多变,导致空调系统的冷媒状态难以确定。冷媒状态判断是空调系统的运行状态判断的关键所在,也是用来判断冷媒泄漏的依据。
技术问题
本申请实施例的目的之一在于:提供了一种空调系统及其冷媒状态检测方法和装置,能够根据空调系统的运行参数准确的获知空调系统的冷媒状态,提高了空调系统使用过程中的安全性和可靠性。
技术解决方案
为了解决上述技术问题,本申请实施例采用的技术方案是:
本申请实施例的第一方面提供了一种冷媒状态检测方法,包括:
调节空调系统的第一运行参数;其中,所述第一运行参数包括压缩机的频率、风速档位及电子膨胀阀的开度;
在所述第一运行参数调节完成预设时间之后,采集所述空调系统的第二运行参数;其中,所述第二运行参数包括室外环境温度和所述压缩机的运行参数;
根据所述第二运行参数确定所述空调系统的冷媒状态。
本申请实施例的第二方面提供了一种空调系统的控制装置,包括:
参数调节单元,用于调节空调系统的第一运行参数;其中,所述第一运行参数包括空调室外机的压缩机的频率、风速档位及电子膨胀阀的开度;
参数采集单元,用于在所述第一运行参数调节完成预设时间之后,采集所述空调系统的第二运行参数;其中,所述第二运行参数包括室外环境温度和所述压缩机的运行参数;
冷媒状态检测单元,用于根据所述第二运行参数确定所述空调系统的冷媒状态。
本申请实施例的第三方面提供了一种空调系统,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现本申请实施例的第一方面所述冷媒状态检测方法的步骤。
本申请实施例的第四方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如本申请实施例的第一方面所述冷媒状态检测方法的步骤。
有益效果
本申请实施例的第一方面提供的冷媒状态检测方法,通过调节空调系统的第一运行参数;其中,所述第一运行参数包括压缩机的频率、风速档位及电子膨胀阀的开度;在所述第一运行参数调节完成预设时间之后,采集所述空调系统的第二运行参数;其中,所述第二运行参数包括室外环境温度和所述压缩机的运行参数;根据所述第二运行参数确定所述空调系统的冷媒状态,可以根据空调系统的运行参数准确的获知空调系统的冷媒状态,提高了空调系统使用过程中的安全性和可靠性。
可以理解的是,上述第二方面至第四方面的有益效果可以参见上述第一方面中的相关描述,在此不再赘述。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的空调系统的第一种结构示意图;
图2是本申请实施例提供的空调系统的第二种结构示意图;
图3是本申请实施例提供的冷媒状态检测方法的第一种流程示意图;
图4是本申请实施例提供的冷媒状态检测方法的第二种流程示意图;
图5是本申请实施例提供的冷媒状态检测方法的第三种流程示意图;
图6是本申请实施例提供的冷媒状态检测方法的第四种流程示意图;
图7是本申请实施例提供的冷媒状态检测方法的第五种流程示意图;
图8是本申请实施例提供的冷媒状态检测方法的第六种流程示意图;
图9是本申请实施例提供的冷媒状态检测方法的第七种流程示意图;
图10是本申请实施例提供的冷媒状态检测方法的第八种流程示意图;
图11是本申请实施例提供的冷媒状态检测装置的结构示意图;
图12是本申请实施例提供的空调系统的第三种结构示意图。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本申请说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请实施例提供一种冷媒状态检测方法,可以由空调系统的处理器在运行对应的计算机程序时执行。空调系统可以是单机空调系统,也可以是多联机组空调系统,单机空调系统和多联机组空调系统可以是仅用于制冷的单冷系统。
在应用中,空调系统可以包括但不限于与本申请实施例相关的存储器、处理器,与处理器连接的压缩机、换热器、电子膨胀阀、压力传感器、温度传感器等,还可以包括油分离器、四通阀、气液分离器、经济器、蒸发器及连接各部件的管道等。
本申请实施例中所介绍的空调系统,并不构成对空调系统的限定,空调系统可以包括更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,示例性的示出了一种不包括经济器的空调系统的结构示意图;其中,空调系统包括压缩机10、油分离器20、四通阀30、换热器40、气液分离器50、蒸发器60;
其中,压缩机10和油分离器20之间通过排气管连接,排气管设有排气压力传感器11和排气温度传感器12,压缩机10和气液分离器50之间通过第一回气管连接,第一回气管设置有回气压力传感器13和回气温度传感器14;
油分离器20和四通阀30之间通过高压气管连接;
四通阀30和换热器40之间通过冷凝气管连接,冷凝气管设置有换热器入口压力传感器31和换热器入口温度传感器32,四通阀30和气液分离器50之间通过第二回气管连接,四通阀30和蒸发器60之间通过低压气管连接;
换热器40和蒸发器60之间通过高压液管连接,高压液管设置有换热器出口压力传感器41、换热器出口温度传感器42、第一电子膨胀阀43、高压液管出口压力传感器44、高压液管出口温度传感器45,换热器40设置有室外环境温度传感器46。
如图2所示,示例性的示出了一种包括经济器的空调系统的结构示意图;其中,空调系统在图1的基础上还包括经济器70,经济器70的入口通过输入管道与高压液管41连接,输入管道设置有第二电子膨胀阀71和经济器入口温度传感器72,经济器70的出口通过输出管道与压缩机10连接,输出管道设置有经济器出口温度传感器73。
如图3所示,本申请实施例提供的空调系统的冷媒状态检测方法,包括如下步骤S301至S303:
步骤S301、调节空调系统的第一运行参数;其中,所述第一运行参数包括压缩机的频率、风速档位及电子膨胀阀的开度。
在应用中,在空调系统开机之后可以立即自动进行冷媒状态检测,也可以在空调系统开机之后用户有需要的任意时候自动进行冷媒状态检测,例如,空调系统可以在接收到用户发送的开启指令时开机,调节空调系统的第一运行参数至指定值,也可以在开机之后、接收到用户发送的冷媒状态检测指令时,调节空调系统的第一运行参数至指定值。第一运行参数包括空调系统的室外机的压缩机的频率、室外机的风速档位及室外机的电子膨胀阀的开度。当空调系统不包括经济器时,电子膨胀阀可以是室外机的电子膨胀阀,例如,图1所示的第一电子膨胀阀43;当空调系统包括经济器时,电子膨胀阀可以同时包括室外机的电子膨胀阀和经济器的电子膨胀阀,例如,图2所示的第一电子膨胀阀43和第二电子膨胀阀71。
步骤S302、在所述第一运行参数调节完成预设时间之后,采集所述空调系统的第二运行参数;其中,所述第二运行参数包括室外环境温度和所述压缩机的运行参数;
步骤S303、根据所述第二运行参数确定所述空调系统的冷媒状态。
在应用中,在调节第一运行参数,使得空调系统在冷媒状态检测模式下稳定运行预设时间之后,即可采集空调系统的第二运行参数,并根据第二运行参数判断空调系统的冷媒状态。预设时间可以由用户根据实际需要自定义设置或者采用出厂时的默认设置,只要使得空调系统在进入冷媒状态检测模式预设时间之后,能够稳定运行即可。
在应用中,室外环境温度是室外机所处的室外环境的温度,可以通过设置于室外的温度传感器检测,例如,图1或图2所示的室外环境温度传感器47。压缩机的运行参数可以包括但不限于压缩机的频率、排气压力、回气压力、回气温度、排气温度等。压缩机的排气压力、回气压力、回气温度和排气温度可以通过相应的压力传感器和温度传感器检测,例如,图1或图2所示的排气压力传感器12、回气压力传感器15、回气温度传感器16和排气温度传感器13。当空调系统不包括经济器时,第二运行参数还可以包括室外机的风速档位、第一电子膨胀阀的开度等。当空调系统包括经济器时,第二运行参数还可以包括室外机的风速档位、经济器的入口温度和出口温度等。经济器的入口温度和出口温度可以通过相应的温度传感器检测,例如,图2所示的经济器入口温度传感器72和经济器出口温度传感器73。
如图4所示,在一个实施例中,步骤S301包括如下步骤S401和S402:
步骤S401、若接收到开机指令或冷媒状态检测指令,进入冷媒状态检测模式;
步骤S402、在所述冷媒状态检测模式下,将压缩机的频率调节为预设频率,将空调室外机的风速档位调节为预设风速档位,将所述空调室外机的电子膨胀阀的开度调节为预设开度。
在应用中,用户可以根据实际需要通过空调系统的人机交互器件输入开机指令或冷媒状态检测指令,或者,通过与空调系统通信连接的终端设备向空调系统发送开机指令或冷媒状态检测指令,以控制空调系统进入冷媒状态检测模式。空调系统的人机交互器件可以包括实体按键、触控传感器、手势识别传感器和语音识别单元中的至少一种,使得用户可以通过对应的触控方式、手势操控方式或语音控制方式输入指令。
在应用中,实体按键和触控传感器可以设置于空调系统的任意位置,例如,控制面板。对实体按键的触控方式具体可以是按压或拨动。对触控传感器的触控方式具体可以为按压或触摸等。
在应用中,手势识别传感器可以设置在空调系统的任意位置,例如,出风口附近的壳体外部。用于控制空调系统的手势可以由用户根据实际需要自定义设置或者采用出厂时的默认设置。
在应用中,语音识别单元可以包括麦克风和语音识别芯片,也可以仅包括麦克风并由空调系统的处理器来实现语音识别功能。用于控制空调的语音可以由用户根据实际需要自定义设置或者采用出厂时的默认设置。
在应用中,终端设备可以是手机、智能手环、平板电脑、笔记本电脑、上网本、个人数字助理(personal digital assistant,PDA)等具有无线通信功能,能够与空调系统进行无线通信连接的电子设备,本申请实施例对终端设备的具体类型不作任何限制。用户可以通过终端设备所支持的任意人机交互方式控制终端设备向空调系统发送指令。终端设备所支持的人机交互方式可以与空调系统相同,此处不再赘述。
在应用中,预设频率、预设风速档位及预设开度可以由用户根据实际需要自定义设置或者采用出厂时的默认设置,只要使得空调系统在进入冷媒状态检测模式之后,能够逐步趋于稳定即可。
如图5所示,在一个实施例中,步骤S303包括:
步骤S501、根据所述室外环境温度和所述压缩机的运行参数,确定换热器的入口冷媒的状态。
在应用中,可以根据室外环境温度和压缩机的运行参数,确定换热器的入口冷媒的状态。具体的,可以根据室外环境温度和压缩机的频率、排气压力、回气压力、回气温度、排气温度,计算出换热器的入口温度和换热器的入口压力对应的饱和温度,然后根据换热器的入口温度和换热器的入口压力对应的饱和温度,判断换热器的入口冷媒的状态。
如图6所示,在一个实施例中,步骤S501包括如下步骤S601至S603:
步骤S601、根据所述室外环境温度和所述压缩机的运行参数,获取换热器的入口温度和所述换热器的入口压力对应的饱和温度;
步骤S602、若所述换热器的入口温度大于所述换热器的入口压力对应的饱和温度与第一预设温度阈值之和,确定所述换热器的入口冷媒为过热状态;
步骤S603、若所述换热器的入口温度小于或等于所述换热器的入口压力对应的饱和温度与第一预设温度阈值之和,确定所述换热器的入口冷媒为未过热状态,调节所述第一运行参数。
在应用中,在计算出换热器的入口温度和换热器的入口压力对应的饱和温度之后,可以比较换热器的入口温度与换热器的入口压力对应的饱和温度和第一预设温度阈值之和的大小,然后根据比较结果确定换热器的入口冷媒的状态,若换热器的入口冷媒为过热状态,则可以进入下一步,继续检测换热器的出口冷媒的状态;若换热器的入口冷媒为未过热状态,则可以返回步骤S301,继续调节第一运行参数。第一预设温度阈值可以由用户根据实际需要自定义设置或者采用出厂时的默认设置,例如,1℃~3℃之间的任意值。
在一个实施例中,步骤S601包括如下步骤:
根据所述压缩机的频率、排气压力、回气压力和回气温度,获取冷媒流量;
根据所述压缩机的排气温度和排气压力及所述冷媒流量,获取所述压缩机的排气管路的压降;
根据所述室外环境温度、所述压缩机的排气温度及所述冷媒流量,获取所述压缩机的排气管路的漏热量;
根据所述压缩机的排气压力和所述排气管路的压降,获取所述换热器的入口压力;
根据所述压缩机的排气温度、所述冷媒流量及所述排气管路的漏热量,获取所述换热器的入口温度;
根据所述换热器的入口压力,获取所述换热器的入口压力对应的饱和温度。
在应用中,可以先根据压缩机的排气压力,计算得到压缩机的排气压力对应的饱和温度,也即冷凝温度,根据压缩机的回气压力计算得到压缩机的回气压力对应的饱和温度,也即蒸发温度,然后根据与压缩机的频率、排气压力、回气压力和回气温度相关的压缩机流量十系数、冷凝温度和蒸发温度,计算得到冷媒流量。
在一个实施例中,所述冷媒流量的计算公式如下:
m=k1+k2*Te+k3*Tc+k4*Te^2+k5*Te*Tc+K6*Tc^2+k7*Te^3+k8*Te^2*Tc+k9*Te*Tc^2+k10*Tc^3
Te=b1/(ln (ps)-b2)-b3
Tc=b1/(ln (pd)-b2)-b3
所述压缩机的排气管路的压降的计算公式如下:
dp1=f1(m,Td,pd)=A1*m*exp(B1*Tc)*(Td-Tc)
所述压缩机的排气管路的漏热量的计算公式如下:
Q1=f2(m,Td,T0)=(Td-T0)*A2*m
所述换热器的入口压力的计算公式如下:
p1=pd-dp1
所述换热器的入口温度的计算公式如下:
T1=Td-Q1/(m*B2*Tds)
所述换热器的入口压力对应的饱和温度的计算公式如下:
T1s=b1/(ln(p1)-b2)-b3
其中,m为所述冷媒流量,k1~k10为与所述压缩机的频率、排气压力pd、回气压力ps和回气温度Ts相关的十系数,Te为所述压缩机的回气压力对应的饱和温度,Tc为所述压缩机的排气压力pd对应的饱和温度,B1~B2、b1~b3为与冷媒类型相关的冷媒物性参数;
dp1为所述压缩机的排气管路的压降,f1(m,Td,pd)为与所述压缩机的排气温度Td和排气压力pd及所述冷媒流量m相关的函数,A1~A2为与所述排气管路的结构相关的参数;
Q1为所述压缩机的排气管路的漏热量,f2(m,Td,T0)为与所述室外环境温度T0、所述压缩机的排气温度Td及所述冷媒流量m相关的函数;
p1为所述换热器的入口压力;
T1为所述换热器的入口温度;
T1s为所述换热器的入口压力对应的饱和温度;
*为乘运算符,^为乘方运算符,/为除运算符,ln()为对数函数。
如图5所示,在一个实施例中,步骤S303还包括:
步骤S502、若所述换热器的入口冷媒为过热状态,根据所述室外环境温度、所述换热器的运行参数及所述风速档位,确定所述换热器的出口冷媒的状态。
在应用中,若换热器的入口冷媒为过热状态,则可以进一步根据室外环境温度、换热器的运行参数及风速档位,确定换热器的出口冷媒的状态。换热器的运行参数可以包括但不限于换热器的入口压力、出口压力、入口温度、出口温度等。换热器的入口压力、出口压力、入口温度、出口温度可以通过相应的压力传感器和温度传感器检测,例如,图1或图2所示的换热器入口压力传感器31、换热器出口压力传感器41、换热器入口温度传感器32和换热器出口温度传感器42。具体的,可以根据室外环境温度、冷媒流量、换热器的入口压力、入口温度、换热器的入口压力对应的饱和温度及风速档位,计算出换热器的出口温度和换热器的出口压力对应的饱和温度,然后根据换热器的出口温度和换热器的出口压力对应的饱和温度,判断换热器的出口冷媒的状态。
如图7所示,在一个实施例中,步骤S502包括如下步骤S701至S703:
步骤S701、根据所述室外环境温度、所述冷媒流量、所述换热器的运行参数及所述风速档位,获取所述换热器的出口温度和所述换热器的出口压力对应的饱和温度;
步骤S702、若所述换热器的出口温度小于所述换热器的出口压力对应的饱和温度与第一预设温度阈值之差,确定所述换热器的出口冷媒为过冷状态;
步骤S703、若所述换热器的出口温度大于或等于所述换热器的出口压力对应的饱和温度与第一预设温度阈值之差,确定所述换热器的出口冷媒为未过冷状态,调节所述空调系统的第一运行参数。
在应用中,在计算出换热器的出口温度和换热器的出口压力对应的饱和温度之后,可以比较换热器的出口温度与换热器的出口压力对应的饱和温度和第一预设温度阈值之差的大小,然后根据比较结果确定换热器的出口冷媒的状态,若换热器的出口冷媒为过冷状态,则可以进入下一步,继续检测高压液管的出口冷媒的状态;若换热器的入口冷媒为未过冷状态,则可以返回步骤S301,继续调节第一运行参数。
在一个实施例中,步骤S701包括如下步骤:
根据所述风速档位和所述冷媒流量,获取所述换热器的冷媒压降;
根据所述室外环境温度、所述风速档位、所述冷媒流量及所述换热器的入口压力和入口温度,获取所述换热器的换热量;
根据所述换热器的入口压力和冷媒压降,获取所述换热器的出口压力;
根据所述冷媒流量、所述换热器的入口温度和换热量及与所述换热器的入口压力对应的饱和温度,获取所述换热器的出口温度;
根据所述换热器的出口压力,获取与所述换热器的出口压力对应的饱和温度。
在一个实施例中,所述换热器的冷媒压降的计算公式如下:
dp2=f3(m,Fs)=A3*m(c0+c1*Fs)
所述换热器的换热量的计算公式如下:
Q2=f4(m,T1s,Fs,T0)=A4*M*[A5+A6*(T1s-T0)]*(c2+c3*Fs)
所述换热器的出口压力的计算公式如下:
p2=p1-dp2
所述换热器的出口温度的计算公式如下:
T2=T1-Q2/(m*B2*T1s)
所述换热器的出口压力对应的饱和温度的计算公式如下:
T2s=b1/(ln(p2)-b2)-b3
其中,dp2为所述压缩机的冷媒压降,f3(m,Fs)为与所述冷媒流量m和所述风速档位Fs相关的函数,A3~A6为与所述换热器的结构相关的参数,c0~c3为与室外机的风机特性相关的参数;
Q2为所述换热器的换热量,f4(m,T1s,Fs,T0)为与所述冷媒流量m、所述换热器的入口压力对应的饱和温度T1s、所述风速档位Fs及所述室外环境温度T0相关的函数;
p2为所述换热器的出口压力;
T2为所述换热器的出口温度;
T2s为所述换热器的出口压力对应的饱和温度。
如图5所示,在一个实施例中,步骤S303还包括:
步骤S503、若所述换热器的出口冷媒为过冷状态,根据所述室外环境温度、所述换热器的运行参数及所述第一电子膨胀阀的开度,确定高压液管的出口冷媒的状态。
在应用中,若换热器的出口冷媒为过冷状态,则可以进一步根据室外环境温度、换热器的运行参数及第一电子膨胀阀的开度,确定高压液管的出口冷媒的状态。具体的,可以根据室外环境温度、冷媒流量、换热器的出口压力和出口温度、换热器的出口压力对应的饱和温度及第一电子膨胀阀的开度,计算出高压液管的出口温度和高压液管的出口压力对应的饱和温度,然后根据高压液管的出口温度和高压液管的出口压力对应的饱和温度,判断高压液管的出口冷媒的状态。
如图8所示,在一个实施例中,不论空调系统是否包括经济器,步骤S503包括如下步骤S801和S802:
S801、根据所述室外环境温度、所述冷媒流量、所述换热器的运行参数及所述第一电子膨胀阀的开度,获取所述高压液管的出口温度和所述高压液管的出口压力对应的饱和温度;
S802、若所述高压液管的出口温度小于所述高压液管的出口压力对应的饱和温度与第一预设温度阈值之差,确定所述高压液管的出口冷媒为过冷状态。
在应用中,在计算出高压液管的出口温度和高压液管的出口压力对应的饱和温度之后,可以比较高压液管的出口温度与高压液管的出口压力对应的饱和温度和第一预设温度阈值之差的大小,然后根据比较结果确定高压液管的出口冷媒的状态。对于不带经济器的空调系统,可以根据高压液管的出口温度和高压液管的出口压力对应的饱和温度,确定高压液管的出口冷媒为过冷状态或未过冷状态。对于带经济器的空调系统,只能根据高压液管的出口温度和高压液管的出口压力对应的饱和温度,确定高压液管的出口冷媒的过冷状态,未过冷状态需要根据经济器的入口温度和出口温度的确定。
在一个实施例中,步骤S801包括如下步骤:
根据所述冷媒流量、所述换热器的出口温度及所述第一电子膨胀阀的开度,获取所述高压液管的冷媒压降;
根据所述室外环境温度、所述冷媒流量及所述换热器的出口温度,获取所述高压液管的漏热量;
根据所述换热器的出口压力和所述高压液管的冷媒压降,获取所述高压液管的出口压力;
根据所述冷媒流量、所述换热器的出口温度、所述换热器的出口压力对应的饱和温度及所述高压液管的漏热量,获取所述高压液管的出口温度;
根据所述高压液管的出口压力,获取所述高压液管的出口压力对应的饱和温度。
在一个实施例中,所述高压液管的冷媒压降的计算公式如下:
dp3=f5(m,T2,EXV)=[A7*m+m/(D0+D1*EXV)]*(B3*T2)
所述高压液管的漏热量的计算公式如下:
Q3=f6(m,T2, T0)=(T2-T0)*A8*m
所述高压液管的出口压力的计算公式如下:
p3=p2-dp3
所述高压液管的出口温度的计算公式如下:
T3=T2-Q3/(m*B2*T2s)
所述高压液管的出口压力对应的饱和温度的计算公式如下:
T3s=b1/(ln(p3)-b2)-b3
其中,dp3为所述高压液管的冷媒压降,f5(m,T2,EXV)为与所述冷媒流量m、所述换热器的出口温度T2及所述第一电子膨胀阀的开度EXV相关的函数,A7~A8为与所述高压液管的结构相关的参数,D0~D1为与所述第一电子膨胀阀的特性相关的参数,B3为与冷媒类型相关的冷媒物性参数;
Q3为所述高压液管的漏热量,f6(m,T2, T0)为与所述冷媒流量m、所述换热器的出口温度T2及所述室外环境温度T0相关的函数;
p3为所述高压液管的出口压力;
T3为所述高压液管的出口温度;
T3s为所述高压液管的出口压力对应的饱和温度。
图8所对应的实施例所提供的冷媒状态检测方法,可以适用于对任意空调系统的冷媒状态进行检测。
如图9所示,在一个实施例中,空调系统不包括经济器,步骤S503还包括如下步骤S803:
步骤S803、若所述高压液管的出口温度大于或等于所述高压液管的出口压力对应的饱和温度与第一预设温度阈值之差,确定所述高压液管的出口冷媒为未过冷状态。
图9所对应的实施例所提供的冷媒状态检测方法,可以适用于对不包括经济器的空调系统的冷媒状态进行检测。
如图10所示,在一个实施例中,空调系统包括经济器,步骤S303还包括如下步骤S504:
步骤S504、若所述换热器的出口冷媒为过冷状态,根据所述经济器的入口温度和出口温度,确定所述空调室外机的高压液管的出口冷媒的状态。
在应用中,若换热器的出口冷媒为过冷状态,则可以进一步根据经济器的入口温度和出口温度,确定高压液管的出口冷媒的状态。
在一个实施例中,步骤S504包括如下步骤:
若所述经济器的出口温度与入口温度之差小于第二预设温度阈值,确定所述空调室外机的高压液管的出口冷媒为过冷状态;
若所述经济器的出口温度与入口温度之差大于或等于第二预设温度阈值,确定所述空调室外机的高压液管的出口冷媒为不过冷状态。
在应用中,在采集到经济器的出口温度与入口温度之后,可以比较经济器的出口温度与入口温度之差与第二预设温度阈值的大小,然后根据比较结果确定高压液管的出口冷媒的状态。第二预设温度阈值可以由用户根据实际需要自定义设置或者采用出厂时的默认设置,例如,1℃~5℃之间的任意值。
图10所对应的实施例所提供的冷媒状态检测方法,可以适用于对包括经济器的空调系统的冷媒状态进行检测。
本申请实施例通过调节空调系统的压缩机的频率、风速档位及电子膨胀阀的开度,在系统运行稳定之后,采集空调系统的室外环境温度、压缩机的频率、排气压力、回气压力、回气温度、排气温度、室外机的风速档位及第一电子膨胀阀的开度等运行参数,可以根据空调系统的运行参数准确的获知空调系统的冷媒状态,提高了空调系统使用过程中的安全性和可靠性。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本申请实施例还提供一种冷媒状态检测装置,应用于空调系统,冷媒状态检测装置用于执行上述冷媒状态检测方法实施例中的方法步骤。冷媒状态检测装置可以是空调系统中的虚拟装置(virtual appliance),由空调系统的处理器运行,也可以是空调系统本身。
如图11所示,本申请实施例提供的冷媒状态检测装置100包括:
参数调节单元101,用于调节空调系统的第一运行参数;其中,所述第一运行参数包括空调室外机的压缩机的频率、风速档位及电子膨胀阀的开度;
参数采集单元102,用于在所述第一运行参数调节完成预设时间之后,采集所述空调系统的第二运行参数;其中,所述第二运行参数包括室外环境温度和所述压缩机的运行参数;
冷媒状态检测单元103,用于根据所述第二运行参数确定所述空调系统的冷媒状态。
在一个实施例中,所述参数调节单元,包括:
指令接收子单元,用于若接收到开机指令或冷媒状态检测指令,进入冷媒状态检测模式;
参数调节子单元,用于在所述冷媒状态检测模式下,将压缩机的频率调节为预设频率,将空调室外机的风速档位调节为预设风速档位,将所述空调室外机的电子膨胀阀的开度调节为预设开度。
在一个实施例中,所述冷媒状态检测单元,包括:
冷媒状态检测子单元,用于根据所述室外环境温度和所述压缩机的运行参数,确定换热器的入口冷媒的状态;
第一判断子单元,用于若所述换热器的入口冷媒为过热状态,根据所述室外环境温度、所述换热器的运行参数及所述风速档位,确定所述换热器的出口冷媒的状态;
第二判断子单元,用于若所述换热器的出口冷媒为过冷状态,根据所述室外环境温度、所述换热器的运行参数及所述第一电子膨胀阀的开度,确定所述高压液管的出口冷媒的状态;或者,第三判断子单元,用于若所述换热器的出口冷媒为过冷状态,根据所述经济器的入口温度和出口温度,确定所述空调室外机的高压液管的出口冷媒的状态。
在应用中,冷媒状态检测装置中的各单元可以为软件程序单元,也可以通过处理器中集成的不同逻辑电路实现,还可以通过多个分布式处理器实现。温度获取单元可以包括温度传感器。
如图12所示,本申请实施例还提供一种空调系统200,包括:至少一个处理器201(图12中仅示出一个处理器)、存储器202以及存储在存储器202中并可在至少一个处理器201上运行的计算机程序203,还包括与至少一个处理器201连接的压缩机204、换热器205、电子膨胀阀206、压力传感器207及温度传感器208,处理器201执行计算机程序203时实现上述各个冷媒状态检测方法实施例中的步骤。
在应用中,空调系统可包括,但不仅限于,处理器、存储器、压缩机、换热器、电子膨胀阀、压力传感器及温度传感器,还可以包括油分离器、四通阀、气液分离器、经济器、蒸发器及连接各部件的管道等。本领域技术人员可以理解,图12仅仅是空调系统的举例,并不构成对空调系统的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备等。
在应用中,处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在应用中,存储器在一些实施例中可以是空调系统的内部存储单元,例如空调系统的硬盘或内存。存储器在另一些实施例中也可以空调系统的外部存储设备,例如,空调系统上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。存储器还可以既包括空调系统的内部存储单元也包括外部存储设备。存储器用于存储操作系统、应用程序、引导装载程序(Boot Loader)、数据以及其他程序等,例如计算机程序的程序代码等。存储器还可以用于暂时地存储已经输出或者将要输出的数据。
需要说明的是,上述装置/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元完成,即将所述装置的内部结构划分成不同的功能单元,以完成以上描述的全部或者部分功能。实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现可实现上述各个冷媒状态检测方法实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在空调系统上运行时,使得空调系统可实现上述各个冷媒状态检测方法实施例中的步骤。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质至少可以包括:能够将计算机程序代码携带到空调系统的任何实体或装置、记录介质、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种冷媒状态检测方法,其特征在于,包括:
    调节空调系统的第一运行参数;其中,所述第一运行参数包括压缩机的频率、风速档位及电子膨胀阀的开度;
    在所述第一运行参数调节完成预设时间之后,采集所述空调系统的第二运行参数;其中,所述第二运行参数包括室外环境温度和所述压缩机的运行参数;
    根据所述第二运行参数确定所述空调系统的冷媒状态。
  2. 如权利要求1所述的冷媒状态检测方法,其特征在于,所述根据所述第二运行参数确定所述空调系统的冷媒状态,包括:
    根据所述室外环境温度和所述压缩机的运行参数,确定换热器的入口冷媒的状态。
  3. 如权利要求2所述的冷媒状态检测方法,其特征在于,所述根据所述室外环境温度和所述压缩机的运行参数,确定换热器的入口冷媒的状态,包括:
    根据所述室外环境温度和所述压缩机的运行参数,获取换热器的入口温度和所述换热器的入口压力对应的饱和温度;
    若所述换热器的入口温度大于所述换热器的入口压力对应的饱和温度与第一预设温度阈值之和,确定所述换热器的入口冷媒为过热状态;
    若所述换热器的入口温度小于或等于所述换热器的入口压力对应的饱和温度与第一预设温度阈值之和,确定所述换热器的入口冷媒为未过热状态,调节所述第一运行参数。
  4. 如权利要求3所述的冷媒状态检测方法,其特征在于,所述根据所述室外环境温度和所述压缩机的运行参数,获取所述换热器的入口温度和所述换热器的入口压力对应的饱和温度,包括:
    根据所述压缩机的频率、排气压力、回气压力和回气温度,获取冷媒流量;
    根据所述压缩机的排气温度和排气压力及所述冷媒流量,获取所述压缩机的排气管路的压降;
    根据所述室外环境温度、所述压缩机的排气温度及所述冷媒流量,获取所述压缩机的排气管路的漏热量;
    根据所述压缩机的排气压力和所述排气管路的压降,获取所述换热器的入口压力;
    根据所述压缩机的排气温度、所述冷媒流量及所述排气管路的漏热量,获取所述换热器的入口温度;
    根据所述换热器的入口压力,获取所述换热器的入口压力对应的饱和温度。
  5. 如权利要求4所述的冷媒状态检测方法,其特征在于,所述第二运行参数还包括所述风速档位;
    所述根据所述第二运行参数确定所述空调系统的冷媒状态,还包括:
    若所述换热器的入口冷媒为过热状态,根据所述室外环境温度、所述冷媒流量、所述换热器的运行参数及所述风速档位,确定所述换热器的出口冷媒的状态。
  6. 如权利要求5所述的冷媒状态检测方法,其特征在于,所述根据所述室外环境温度、所述冷媒流量、所述换热器的运行参数及所述风速档位,确定所述换热器的出口冷媒的状态,包括:
    根据所述室外环境温度、所述冷媒流量、所述换热器的运行参数及所述风速档位,获取所述换热器的出口温度和所述换热器的出口压力对应的饱和温度;
    若所述换热器的出口温度小于所述换热器的出口压力对应的饱和温度与第一预设温度阈值之差,确定所述换热器的出口冷媒为过冷状态;
    若所述换热器的出口温度大于或等于所述换热器的出口压力对应的饱和温度与第一预设温度阈值之差,确定所述换热器的出口冷媒为未过冷状态,调节所述空调系统的第一运行参数。
  7. 如权利要求6所述的冷媒状态检测方法,其特征在于,所述根据所述室外环境温度、所述冷媒流量、所述换热器的运行参数及所述风速档位,获取所述换热器的出口温度和所述换热器的出口压力对应的饱和温度,包括:
    根据所述风速档位和所述冷媒流量,获取所述换热器的冷媒压降;
    根据所述室外环境温度、所述风速档位、所述冷媒流量及所述换热器的入口压力和入口温度,获取所述换热器的换热量;
    根据所述换热器的入口压力和冷媒压降,获取所述换热器的出口压力;
    根据所述冷媒流量、所述换热器的入口温度和换热量及与所述换热器的入口压力对应的饱和温度,获取所述换热器的出口温度;
    根据所述换热器的出口压力,获取与所述换热器的出口压力对应的饱和温度。
  8. 如权利要求7所述的冷媒状态检测方法,其特征在于,所述第二运行参数还包括第一电子膨胀阀的开度;
    所述根据所述第二运行参数确定所述空调系统的冷媒状态,还包括:
    若所述换热器的出口冷媒为过冷状态,根据所述室外环境温度、所述换热器的运行参数及所述第一电子膨胀阀的开度,确定高压液管的出口冷媒的状态。
  9. 如权利要求8所述的冷媒状态检测方法,其特征在于,所述根据所述室外环境温度、所述冷媒流量、所述换热器的运行参数及所述第一电子膨胀阀的开度,确定高压液管的出口冷媒的状态,包括:
    根据所述室外环境温度、所述冷媒流量、所述换热器的运行参数及所述第一电子膨胀阀的开度,获取所述高压液管的出口温度和所述高压液管的出口压力对应的饱和温度;
    若所述高压液管的出口温度小于所述高压液管的出口压力对应的饱和温度与第一预设温度阈值之差,确定所述高压液管的出口冷媒为过冷状态;
    若所述高压液管的出口温度大于或等于所述高压液管的出口压力对应的饱和温度与第一预设温度阈值之差,确定所述高压液管的出口冷媒为未过冷状态。
  10. 一种冷媒状态检测装置,其特征在于,包括:
    参数调节单元,用于调节空调系统的第一运行参数;其中,所述第一运行参数包括空调室外机的压缩机的频率、风速档位及电子膨胀阀的开度;
    参数采集单元,用于在所述第一运行参数调节完成预设时间之后,采集所述空调系统的第二运行参数;其中,所述第二运行参数包括室外环境温度和所述压缩机的运行参数;
    冷媒状态检测单元,用于根据所述第二运行参数确定所述空调系统的冷媒状态。
  11. 一种空调系统,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至9任一项所述冷媒状态检测方法的步骤。
PCT/CN2021/116969 2021-01-15 2021-09-07 一种空调系统及其冷媒状态检测方法和装置 WO2022151747A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21918938.8A EP4261471A4 (en) 2021-01-15 2021-09-07 AIR CONDITIONING SYSTEM AND METHOD AND DEVICE FOR INSPECTING THE CONDITION OF THE REFRIGERANT
US18/260,608 US20240068722A1 (en) 2021-01-15 2021-09-07 Air conditioning system, refrigerant state detection method and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110055363.5A CN112856716B (zh) 2021-01-15 2021-01-15 一种空调系统及其冷媒状态检测方法和装置
CN202110055363.5 2021-01-15

Publications (1)

Publication Number Publication Date
WO2022151747A1 true WO2022151747A1 (zh) 2022-07-21

Family

ID=76006779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116969 WO2022151747A1 (zh) 2021-01-15 2021-09-07 一种空调系统及其冷媒状态检测方法和装置

Country Status (4)

Country Link
US (1) US20240068722A1 (zh)
EP (1) EP4261471A4 (zh)
CN (1) CN112856716B (zh)
WO (1) WO2022151747A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114151924B (zh) * 2021-12-07 2022-12-02 珠海格力电器股份有限公司 一种空调感温包的故障确定方法、装置、空调和存储介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04283362A (ja) * 1991-03-13 1992-10-08 Matsushita Electric Ind Co Ltd 空気調和装置
KR19990024533A (ko) * 1997-09-03 1999-04-06 구자홍 냉난방기의 난방사이클
WO2017013757A1 (ja) * 2015-07-22 2017-01-26 三菱電機株式会社 空気調和装置
CN107642879A (zh) * 2017-11-03 2018-01-30 广东美的暖通设备有限公司 一种空调系统的控制方法、装置及空调器
CN107917512A (zh) * 2017-11-03 2018-04-17 广东美的暖通设备有限公司 一种空调系统的控制方法、装置与空调器
CN108375170A (zh) * 2018-02-12 2018-08-07 海信(山东)空调有限公司 一种电子膨胀阀的控制方法、装置及空调器
CN108759007A (zh) * 2018-06-12 2018-11-06 广东美的暖通设备有限公司 空调系统的控制方法、系统及空调
CN110579039A (zh) * 2019-09-12 2019-12-17 青岛海信日立空调系统有限公司 一种制冷剂循环系统的控制方法
CN110940059A (zh) * 2018-09-21 2020-03-31 珠海格力电器股份有限公司 一种空调设备控制方法、装置及设备
CN111059709A (zh) * 2019-12-31 2020-04-24 海信(山东)空调有限公司 一种空调器的控制方法及空调器
CN112033040A (zh) * 2020-09-15 2020-12-04 广东美的暖通设备有限公司 空调系统、空调系统的控制方法和计算机可读存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8590325B2 (en) * 2006-07-19 2013-11-26 Emerson Climate Technologies, Inc. Protection and diagnostic module for a refrigeration system
JP5528119B2 (ja) * 2008-01-21 2014-06-25 三菱電機株式会社 ヒートポンプ装置及びこのヒートポンプ装置を搭載した空気調和機又は給湯器
JP2013155964A (ja) * 2012-01-31 2013-08-15 Fujitsu General Ltd 空気調和装置
CN103574835B (zh) * 2012-07-31 2016-03-16 美的集团股份有限公司 空调器室外风机的控制方法及装置
CN103344357B (zh) * 2013-07-10 2015-04-08 海信(山东)空调有限公司 一种检测冷媒系统控制参数的装置及检测方法
JP6387276B2 (ja) * 2014-09-24 2018-09-05 東芝キヤリア株式会社 冷凍サイクル装置
CN105509242B (zh) * 2015-12-23 2018-09-25 宁波奥克斯电气股份有限公司 一种用于空调器的冷媒追加控制方法
CN105485992B (zh) * 2016-01-06 2018-09-07 广东美的暖通设备有限公司 空调系统及其欠冷媒检测方法
CN105928059B (zh) * 2016-04-25 2018-11-20 广东美的暖通设备有限公司 多联机系统及其制热节流元件的控制方法
CN106440587A (zh) * 2016-09-29 2017-02-22 海信(广东)空调有限公司 一种空调器制冷控制方法及空调器
CN106545973B (zh) * 2016-11-29 2019-07-26 广东美的暖通设备有限公司 多联机系统及其的冷媒量的判定方法
CN106642555A (zh) * 2016-12-01 2017-05-10 海信(广东)空调有限公司 一种空调器冷媒泄漏的判定方法及装置
US11656015B2 (en) * 2017-09-14 2023-05-23 Mitsubishi Electric Corporation Refrigeration cycle apparatus and refrigeration apparatus
CN109798627B (zh) * 2019-01-15 2021-03-16 广东美的暖通设备有限公司 多联机系统的控制方法和装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04283362A (ja) * 1991-03-13 1992-10-08 Matsushita Electric Ind Co Ltd 空気調和装置
KR19990024533A (ko) * 1997-09-03 1999-04-06 구자홍 냉난방기의 난방사이클
WO2017013757A1 (ja) * 2015-07-22 2017-01-26 三菱電機株式会社 空気調和装置
CN107642879A (zh) * 2017-11-03 2018-01-30 广东美的暖通设备有限公司 一种空调系统的控制方法、装置及空调器
CN107917512A (zh) * 2017-11-03 2018-04-17 广东美的暖通设备有限公司 一种空调系统的控制方法、装置与空调器
CN108375170A (zh) * 2018-02-12 2018-08-07 海信(山东)空调有限公司 一种电子膨胀阀的控制方法、装置及空调器
CN108759007A (zh) * 2018-06-12 2018-11-06 广东美的暖通设备有限公司 空调系统的控制方法、系统及空调
CN110940059A (zh) * 2018-09-21 2020-03-31 珠海格力电器股份有限公司 一种空调设备控制方法、装置及设备
CN110579039A (zh) * 2019-09-12 2019-12-17 青岛海信日立空调系统有限公司 一种制冷剂循环系统的控制方法
CN111059709A (zh) * 2019-12-31 2020-04-24 海信(山东)空调有限公司 一种空调器的控制方法及空调器
CN112033040A (zh) * 2020-09-15 2020-12-04 广东美的暖通设备有限公司 空调系统、空调系统的控制方法和计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4261471A4

Also Published As

Publication number Publication date
EP4261471A1 (en) 2023-10-18
CN112856716A (zh) 2021-05-28
EP4261471A4 (en) 2024-07-03
US20240068722A1 (en) 2024-02-29
CN112856716B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2022247314A1 (zh) 空调的控制方法、装置、设备、介质及程序产品
WO2022160652A1 (zh) 用于空调的控制方法及装置、空调
CN107388490B (zh) 空调运行控制方法
CN104848479B (zh) 空调器及其冷媒管路压力监控与系统控制方法和装置
KR102262245B1 (ko) 공기조화기 및 그 제어방법
WO2022160672A1 (zh) 用于制冷系统的冷媒量检测的方法、装置及空调
WO2022151747A1 (zh) 一种空调系统及其冷媒状态检测方法和装置
WO2024119723A1 (zh) 空调设备及其故障检测方法
CN108413586A (zh) 多联机的降噪控制方法及多联机
CN106288131B (zh) 一种空调器及其防凝露控制方法
CN110375420B (zh) 膨胀阀的控制方法、装置和计算机可读存储介质
CN114279046A (zh) 适用于模块化多联机系统的化霜控制方法、控制器及空调
CN112524764B (zh) 空调器及其控制方法、装置和存储介质
CN114517968A (zh) 空调、空调制冷控制方法、装置及相关设备
CN107421055A (zh) 变频空调、停机控制方法及计算机可读存储介质
CN109974202B (zh) 一种减缓结霜的控制方法、装置及空调器
WO2023184928A1 (zh) 新风空调控制方法、装置、空调、存储介质及程序产品
CN114576798B (zh) 一种多联机空调系统及其控制方法
CN115127222A (zh) 变频空调器的振动控制方法、装置、空调器及存储介质
CN115031463A (zh) 冰箱及制冷系统控制方法
CN114923273A (zh) 一种空调系统及其控制方法
CN112665009A (zh) 一种空调室内机及其控制方法和装置
CN113587363B (zh) 压缩机故障检测方法、装置、计算设备及存储介质
CN112556114A (zh) 空调的控制方法及装置、存储介质、处理器
CN218348889U (zh) 一种变频机房空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918938

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18260608

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021918938

Country of ref document: EP

Effective date: 20230713

NENP Non-entry into the national phase

Ref country code: DE