WO2022151453A1 - 跳频控制方法及装置 - Google Patents

跳频控制方法及装置 Download PDF

Info

Publication number
WO2022151453A1
WO2022151453A1 PCT/CN2021/072350 CN2021072350W WO2022151453A1 WO 2022151453 A1 WO2022151453 A1 WO 2022151453A1 CN 2021072350 W CN2021072350 W CN 2021072350W WO 2022151453 A1 WO2022151453 A1 WO 2022151453A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency hopping
lightweight
light
present disclosure
offset
Prior art date
Application number
PCT/CN2021/072350
Other languages
English (en)
French (fr)
Inventor
乔雪梅
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to EP21918656.6A priority Critical patent/EP4280740A4/en
Priority to US18/272,764 priority patent/US20240187151A1/en
Priority to CN202180000173.1A priority patent/CN115088348A/zh
Priority to PCT/CN2021/072350 priority patent/WO2022151453A1/zh
Publication of WO2022151453A1 publication Critical patent/WO2022151453A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a frequency hopping control method and device.
  • a light-weight (Redcap) UE with reduced capabilities is proposed in 5G (the 5th generation mobile communication technology). Therefore, when the light-weight UE performs frequency hopping, the light-weight UE may jump out of the system bandwidth and cannot work.
  • the embodiments of the present disclosure propose a frequency hopping control method and device to solve the above problems.
  • the embodiment of the first aspect of the present disclosure proposes a frequency hopping control method, which is applied to a user equipment UE, including: determining the type of the UE; determining a frequency hopping parameter according to the type of the UE; according to the determined frequency hopping parameter frequency hopping.
  • the frequency hopping parameter is a frequency hopping start position.
  • the determining the initial frequency hopping position according to the type of the UE includes: in response to the UE being a light-weight UE, determining the initial frequency hopping initial position of the UE; The initial value of frequency hopping determines the starting position of frequency hopping.
  • the determining the initial frequency hopping position according to the initial frequency hopping initial position includes: determining the system bandwidth of the UE; in response to the initial frequency hopping initial position exceeding the system bandwidth of the UE bandwidth, and obtain an adjustment value; adjust the initial frequency hopping initial position according to the adjustment value to generate the frequency hopping initial position.
  • the method further includes: in response to the initial frequency hopping initial position not exceeding the system bandwidth of the UE, determining the initial frequency hopping initial position as the frequency hopping initial position.
  • the adjustment value is determined in the following manner: a protocol specification; or, a signaling configuration sent by a base station.
  • the method further includes: in response to the UE being a non-lightweight UE, using the initial frequency hopping initial position as the frequency hopping initial position.
  • the determining the frequency hopping starting position according to the type of the UE includes: obtaining the current frequency hopping times; generating the current frequency hopping starting position according to the current frequency hopping times; and generating the frequency hopping start position according to the adjustment coefficient and the current frequency hopping start position.
  • the generating the adjustment coefficient according to the type of the UE includes: if the UE is a non-lightweight UE, acquiring the bandwidth part BWP of the non-lightweight UE, and generating the BWP according to the BWP. the adjustment coefficient; if the UE is a light-duty UE, obtain the system bandwidth of the light-duty UE, and generate the adjustment coefficient according to the system bandwidth.
  • the generating the adjustment coefficient according to the system bandwidth includes: generating the adjustment coefficient according to a minimum value among the system bandwidth of the lightweight UE and the BWP of the non-lightweight UE.
  • the generating the adjustment coefficient according to the type of the UE includes: generating the adjustment coefficient according to a minimum value among the BWP of the non-lightweight UE and the system bandwidth of the lightweight UE, wherein , the frequency hopping starting positions of the non-lightweight UE and the lightweight UE are both generated by the adjustment coefficient.
  • the frequency hopping parameter is a frequency hopping offset.
  • the determining the frequency hopping offset according to the type of the UE includes: acquiring an offset configuration table corresponding to the type of the UE; acquiring an offset identifier indicated by the base station; The frequency hopping offset is determined by the offset identifier and the offset configuration table corresponding to the type of the UE.
  • the method further includes: if the UE is a non-lightweight UE, the frequency hopping offset in the first offset configuration table corresponding to the non-lightweight UE is based on the non-lightweight UE's The BWP is determined; if the UE is a lightweight UE, the frequency hopping offset in the second offset configuration table corresponding to the lightweight UE is determined according to the system bandwidth of the lightweight UE.
  • the frequency hopping offset in the second offset configuration table is determined according to the minimum value among the system bandwidth of the lightweight UE and the BWP of the non-lightweight UE.
  • the offset configuration table is determined in the following manner: a protocol specification; or, a signaling configuration sent by a base station.
  • both the non-lightweight UE and the lightweight UE use the second offset configuration table.
  • the frequency hopping offset corresponding to the non-lightweight UE is determined by the BWP of the non-lightweight UE, and the frequency hopping offset corresponding to the lightweight UE The amount of shift is determined by the minimum value among the BWP of the non-lightweight UE and the system bandwidth of the lightweight UE.
  • the frequency hopping parameter is the number of frequency hopping.
  • the number of frequency hopping supported by the non-lightweight UE is greater than the number of frequency hopping supported by the lightweight UE.
  • the determining the frequency hopping times according to the type of the UE includes: if the UE is a non-lightweight UE, using the first frequency hopping times as the frequency hopping times of the non-lightweight UE; If the UE is a light-duty UE, use the second frequency hopping times as the frequency hopping times of the light-duty UE, where the first frequency hopping times is greater than the second frequency hopping times.
  • the first frequency hopping times and the second frequency hopping times are configured by a protocol or indicated by a base station.
  • the first frequency hopping times and the second frequency hopping times are indicated by RMSI, random access response RAR or downlink control information DCI of the base station.
  • the determining the number of frequency hopping according to the type of the UE includes: judging whether the BWP of the non-lightweight UE is greater than the system bandwidth of the lightweight UE; if it is greater than the system bandwidth of the lightweight UE , the first preset number of times is used as the frequency hopping times of the non-lightweight UE, and the second preset number of times is used as the frequency hopping times of the lightweight UE, wherein the first preset number of times is greater than the second A preset number of times; if it is less than or equal to the system bandwidth of the lightweight UE, the first preset number of times is used as the frequency hopping number of the non-lightweight UE and the lightweight UE.
  • the determining the number of frequency hopping according to the type of the UE includes: receiving a first indication number and a second indication number indicated by the base station, wherein the first indication number is greater than the The second indication times; if the BWP of the non-lightweight UE is greater than the system bandwidth of the lightweight UE, the first indication times are used as the frequency hopping times of the non-lightweight UE, and the second indication The number of times is used as the frequency hopping number of the light UE.
  • the determining the number of frequency hopping according to the type of the UE includes: receiving a third indication number indicated by the base station; if the first BWP of the non-lightweight UE is less than or equal to the lightweight UE The second BWP of the UE takes the third indicated times as the frequency hopping times of the non-lightweight UE and the lightweight UE.
  • the first indication times and the second indication times, or the third indication times are indicated by RMSI, random access response RAR or downlink control information DCI of the base station.
  • the frequency hopping times corresponding to the non-lightweight UE is indicated by the base station, and the frequency hopping times corresponding to the lightweight UE is specified by a protocol.
  • the embodiment of the second aspect of the present disclosure proposes a frequency hopping control method, which is applied to a lightweight UE, including: confirming the location of the next hop of the lightweight UE; if the frequency domain location of the next hop exceeds the current location of the lightweight UE The frequency domain position where the working bandwidth is located, the radio frequency readjustment is performed, so that the working bandwidth of the light-duty UE is jumped to the frequency domain position where the next hop is located.
  • the time interval of the radio frequency re-tuning is specified by a protocol as a fixed value, or indicated by the base station.
  • the time interval is indicated by a system message, a medium access control control unit MAC CE or DCI signaling.
  • a third aspect of the present disclosure provides a frequency hopping control method, which is applied to a base station and includes: determining a type of UE; determining a frequency hopping parameter of the UE according to the type of the UE; The frequency parameter provides a frequency hopping service for the UE.
  • the frequency hopping parameter is a frequency hopping start position.
  • the determining the initial frequency hopping position of the UE according to the type of the UE includes: in response to the UE being a light UE, determining the initial frequency hopping initial position of the UE; The initial frequency hopping position of the UE is determined according to the initial value of the initial frequency hopping of the UE.
  • the determining the initial frequency hopping position of the UE according to the initial frequency hopping initial position includes: determining the system bandwidth of the UE; According to the system bandwidth of the UE, an adjustment value is obtained; the initial frequency hopping position is adjusted according to the adjustment value, so as to generate the initial frequency hopping position of the UE.
  • the method further includes: in response to the initial frequency hopping initial position not exceeding the system bandwidth of the UE, determining the initial frequency hopping initial position as the initial frequency hopping position of the UE.
  • the adjustment value is determined in the following manner: a protocol specification; or, a signaling configuration is sent to the UE.
  • the method further includes: in response to the UE being a non-lightweight UE, setting the initial frequency hopping position as the initial frequency hopping position of the UE.
  • the determining the frequency hopping starting position of the UE according to the type of the UE includes: acquiring the current frequency hopping times of the UE; generating the UE according to the current frequency hopping times The current frequency hopping starting position of the UE; generating an adjustment coefficient according to the type of the UE; and generating the frequency hopping starting position of the UE according to the adjustment coefficient and the current frequency hopping starting position.
  • the generating the adjustment coefficient according to the type of the UE includes: if the UE is a non-lightweight UE, acquiring the bandwidth part BWP of the non-lightweight UE, and generating the BWP according to the BWP. the adjustment coefficient; if the UE is a light-duty UE, obtain the system bandwidth of the light-duty UE, and generate the adjustment coefficient according to the system bandwidth.
  • the generating the adjustment coefficient according to the system bandwidth includes: generating the adjustment coefficient according to a minimum value among the system bandwidth of the lightweight UE and the BWP of the non-lightweight UE.
  • the generating the adjustment coefficient according to the type of the UE includes: generating the adjustment coefficient according to a minimum value among the BWP of the non-lightweight UE and the system bandwidth of the lightweight UE, wherein , the frequency hopping starting positions of the non-lightweight UE and the lightweight UE are both generated by the adjustment coefficient.
  • the frequency hopping parameter is a frequency hopping offset.
  • the determining the frequency hopping offset of the UE according to the type of the UE includes: sending an offset configuration table corresponding to the type of the UE to the UE; The UE sends the offset identifier.
  • the method further includes: if the UE is a non-lightweight UE, the frequency hopping offset in the first offset configuration table corresponding to the non-lightweight UE is based on the non-lightweight UE's The BWP is determined; if the UE is a lightweight UE, the frequency hopping offset in the second offset configuration table corresponding to the lightweight UE is determined according to the system bandwidth of the lightweight UE.
  • the frequency hopping offset in the second offset configuration table is determined according to the minimum value among the system bandwidth of the lightweight UE and the BWP of the non-lightweight UE.
  • the offset configuration table is determined by the following methods: protocol specification; or, sending a signaling configuration to the UE.
  • both the non-lightweight UE and the lightweight UE use the second offset configuration table.
  • the frequency hopping offset corresponding to the non-lightweight UE is determined by the BWP of the non-lightweight UE, and the frequency hopping offset corresponding to the lightweight UE The amount of shift is determined by the minimum value among the BWP of the non-lightweight UE and the system bandwidth of the lightweight UE.
  • the frequency hopping parameter is the number of frequency hopping.
  • the number of frequency hopping supported by the non-lightweight UE is greater than the number of frequency hopping supported by the lightweight UE.
  • the determining the frequency hopping times of the UE according to the type of the UE includes: if the UE is a non-lightweight UE, taking the first frequency hopping times as the frequency hopping times of the non-lightweight UE Frequency hopping times; if the UE is a light-duty UE, use the second frequency hopping times as the frequency hopping times of the light-duty UE, where the first frequency hopping times is greater than the second frequency hopping times.
  • the first frequency hopping times and the second frequency hopping times are configured by a protocol or indicated by a base station.
  • the first frequency hopping times and the second frequency hopping times are indicated by RMSI, random access response RAR or downlink control information DCI of the base station.
  • the determining the frequency hopping times of the UE according to the type of the UE includes: judging whether the BWP of the non-lightweight UE is greater than the system bandwidth of the lightweight UE; The system bandwidth of the UE, the first preset number of times is used as the frequency hopping times of the non-lightweight UE, and the second preset number of times is used as the frequency hopping times of the light-duty UE, wherein the first preset number of times is greater than the second preset number of times; if it is less than or equal to the system bandwidth of the lightweight UE, the first preset number of times is used as the frequency hopping number of the non-lightweight UE and the lightweight UE.
  • the determining the number of times of frequency hopping of the UE according to the type of the UE includes: sending a first number of indication times and a second number of indications, wherein the first number of indications is greater than the second number of indications Indication times, wherein if the BWP of the non-lightweight UE is greater than the system bandwidth of the lightweight UE, the first indication times are taken as the frequency hopping times of the non-lightweight UE, and the second indication The number of times is used as the frequency hopping number of the light UE.
  • the determining the number of frequency hopping times according to the type of the UE includes: sending a third indication number of times, wherein if the first BWP of the non-lightweight UE is less than or equal to the first BWP of the lightweight UE If the BWP is two, the third indicated number of times is used as the frequency hopping number of the non-lightweight UE and the lightweight UE.
  • the first indication times and the second indication times, or the third indication times are indicated by RMSI, random access response RAR or downlink control information DCI of the base station.
  • the frequency hopping times corresponding to the non-lightweight UE is indicated by the base station, and the frequency hopping times corresponding to the lightweight UE is specified by a protocol.
  • the embodiment of the fourth aspect of the present disclosure provides a frequency hopping control device, which is applied to a base station, including:
  • a first determining module configured to determine the type of the UE
  • a second determining module configured to determine a frequency hopping parameter according to the type of the UE
  • the first processing module is configured to perform frequency hopping according to the determined frequency hopping parameter.
  • the frequency hopping parameter is a frequency hopping start position.
  • the second determining module is configured to, in response to the UE being a light-duty UE, determine an initial frequency hopping position of the UE; frequency starting position.
  • the second determining module is configured to determine the system bandwidth of the UE; in response to the initial frequency hopping initial position exceeding the system bandwidth of the UE, obtain an adjustment value; according to the adjustment value to adjust the starting frequency hopping initial position to generate the frequency hopping starting position.
  • the second determining module is configured to, in response to the initial frequency hopping initial position not exceeding the system bandwidth of the UE, determine the initial frequency hopping initial position as the frequency hopping starting point.
  • the adjustment value is determined in the following manner: a protocol specification; or, a signaling configuration sent by a base station.
  • the second determining module is configured to, in response to the UE being a non-lightweight UE, use the initial frequency hopping initial position as the frequency hopping initial position.
  • the second determining module includes: a unit for acquiring the number of frequency hopping times, configured to acquire the current number of frequency hopping times; a unit for generating a current frequency hopping starting position, configured to generating the current frequency hopping starting position for the number of times; generating an adjustment coefficient unit, configured to generate an adjustment coefficient according to the type of the UE; and generating a frequency hopping starting position unit, configured to generate an adjustment coefficient according to the adjustment coefficient and the current frequency hopping The starting position generates the frequency hopping starting position.
  • the unit for generating an adjustment coefficient includes: a subunit for obtaining a bandwidth portion BWP, configured to obtain a bandwidth portion BWP of the non-lightweight UE if the UE is a non-lightweight UE, and according to The BWP generates the adjustment coefficient; the obtaining system bandwidth subunit is configured to obtain the system bandwidth of the lightweight UE if the UE is a lightweight UE, and generate the adjustment coefficient according to the system bandwidth.
  • the obtaining system bandwidth subunit is configured to generate the adjustment coefficient according to a minimum value among the system bandwidth of the lightweight UE and the BWP of the non-lightweight UE.
  • the generating adjustment coefficient unit is configured to: generate the adjustment coefficient according to a minimum value among the BWP of the non-lightweight UE and the system bandwidth of the lightweight UE, wherein the The frequency hopping starting positions of the non-lightweight UE and the lightweight UE are both generated by the adjustment coefficient.
  • the frequency hopping parameter is a frequency hopping offset.
  • the second determining module includes: a unit for obtaining an offset configuration table, configured to obtain an offset configuration table corresponding to the type of the UE; and a unit for obtaining an offset identification, is configured to obtain the offset identifier indicated by the base station; the unit for determining a frequency hopping offset is configured to determine the frequency hopping offset according to the offset identifier and an offset configuration table corresponding to the type of the UE shift.
  • it further includes: a first frequency hopping offset unit, configured to: if the UE is a non-lightweight UE, the first offset configuration table corresponding to the non-lightweight UE The frequency hopping offset is determined according to the BWP of the non-lightweight UE; the second frequency hopping offset unit is configured to, if the UE is a lightweight UE, the second offset configuration table corresponding to the lightweight UE.
  • the frequency hopping offset in is determined according to the system bandwidth of the lightweight UE.
  • the frequency hopping offset in the second offset configuration table is determined according to the minimum value among the system bandwidth of the lightweight UE and the BWP of the non-lightweight UE.
  • the offset configuration table is determined in the following manner: a protocol specification; or, a signaling configuration sent by a base station.
  • both the non-lightweight UE and the lightweight UE use the second offset configuration table.
  • the frequency hopping offset corresponding to the non-lightweight UE is determined by the BWP of the non-lightweight UE, and the frequency hopping offset corresponding to the lightweight UE The amount of shift is determined by the minimum value among the BWP of the non-lightweight UE and the system bandwidth of the lightweight UE.
  • the frequency hopping parameter is the number of frequency hopping.
  • the number of frequency hopping supported by the non-lightweight UE is greater than the number of frequency hopping supported by the lightweight UE.
  • the second determining module includes: a first unit for determining the frequency hopping times of the non-lightweight UE, and is configured to use the first frequency hopping times as the frequency hopping times if the UE is a non-lightweight UE.
  • the frequency hopping times of the non-lightweight UE; the first unit for determining the frequency hopping times of the lightweight UE is configured to use the second frequency hopping times as the frequency hopping times of the lightweight UE if the UE is a lightweight UE, wherein, The first frequency hopping times are greater than the second frequency hopping times.
  • the first frequency hopping times and the second frequency hopping times are configured by a protocol or indicated by a base station.
  • the first frequency hopping times and the second frequency hopping times are indicated by RMSI, random access response RAR or downlink control information DCI of the base station.
  • the second determining module includes: a first determining module configured to determine whether the BWP of the non-lightweight UE is greater than the system bandwidth of the lightweight UE; The number of frequency hopping, which is configured to be larger than the system bandwidth of the lightweight UE, the first preset number of times is used as the frequency hopping number of the non-lightweight UE, and the second preset number is used as the frequency hopping number of the lightweight UE.
  • the first unit for determining the frequency hopping times of the non-lightweight UE and the lightweight UE is configured to be less than or equal to the system bandwidth of the lightweight UE, Then, the first preset number of times is used as the frequency hopping number of the non-lightweight UE and the lightweight UE.
  • the second determining module includes: a first number of times of indication reception unit, configured to receive a first number of indication times and a second number of indication times indicated by the base station, wherein the first indication number The number of times is greater than the second indicated number of times; the second unit for determining the frequency hopping times of the non-lightweight UE and the light-duty UE is configured to be configured to set the first The number of indications is used as the number of frequency hopping of the non-lightweight UE, and the second number of indications is used as the number of frequency hopping of the lightweight UE.
  • the second determining module includes: a second receiving indication count unit, configured to receive a third indication count indicated by the base station; thirdly determining the frequency hopping of the non-lightweight UE and the light duty UE a number of times unit, configured to use the third indicated number of times as the non-lightweight UE and the lightweight UE if the first BWP of the non-lightweight UE is less than or equal to the second BWP of the lightweight UE Frequency hops.
  • the first indication times and the second indication times, or the third indication times are indicated by RMSI, random access response RAR or downlink control information DCI of the base station.
  • the frequency hopping times corresponding to the non-lightweight UE is indicated by the base station, and the frequency hopping times corresponding to the lightweight UE is specified by a protocol.
  • a fifth aspect of the present disclosure provides a frequency hopping control apparatus, which is applied to a light-duty UE.
  • the apparatus includes: a third determining module, configured to confirm the position of the next hop of the light-duty UE; a radio frequency retuning module, is configured to perform radio frequency readjustment if the frequency domain position of the next hop exceeds the frequency domain position where the current working bandwidth of the light-duty UE is located, so that the working bandwidth of the light-duty UE is jumped to the frequency domain where the next hop is located. Domain location.
  • the time interval of the radio frequency re-tuning is specified by a protocol as a fixed value, or indicated by the base station.
  • the time interval is indicated by a system message, a medium access control unit MAC CE or DCI signaling.
  • the embodiment of the sixth aspect of the present disclosure provides a frequency hopping control device, which is applied to a base station, and the device includes:
  • a fourth determining module configured to determine the type of the UE
  • a fifth determining module configured to determine a frequency hopping parameter of the UE according to the type of the UE
  • the first providing module is configured to provide a frequency hopping service for the UE according to the determined frequency hopping parameter of the UE.
  • the frequency hopping parameter is a frequency hopping start position.
  • the fifth determining module is configured to, in response to the UE being a light UE, determine an initial frequency hopping location of the UE; according to the initial frequency hopping initial value of the UE A frequency hopping starting position of the UE is determined.
  • the fifth determining module is configured to determine the system bandwidth of the UE; in response to the initial frequency hopping initial position exceeding the system bandwidth of the UE, obtain an adjustment value; according to the adjustment value to adjust the initial frequency hopping position to generate the initial frequency hopping position of the UE.
  • the fifth determining module is configured to, in response to that the initial frequency hopping initial position does not exceed the system bandwidth of the UE, determine the initial frequency hopping initial position as the initial frequency hopping position of the UE. Frequency hopping start position.
  • the adjustment value is determined in the following manner: a protocol specification; or, a signaling configuration is sent to the UE.
  • the fifth determining module is configured to, in response to the UE being a non-lightweight UE, use the initial frequency hopping position as the initial frequency hopping position of the UE.
  • the fifth determining module includes: a unit for obtaining the frequency hopping times of the UE, configured to obtain the current frequency hopping times of the UE; and a unit for generating the current frequency hopping start position of the UE, configured as Generating a current frequency hopping starting position of the UE according to the current frequency hopping times; a generating unit, configured to generate an adjustment coefficient according to the type of the UE; and generating a UE frequency hopping starting position unit, configured to The adjustment coefficient and the current frequency hopping start position generate the frequency hopping start position of the UE.
  • the generating unit is configured to, if the UE is a non-lightweight UE, obtain the bandwidth part BWP of the non-lightweight UE, and generate the adjustment coefficient according to the BWP; If the UE is a light-duty UE, the system bandwidth of the light-duty UE is acquired, and the adjustment coefficient is generated according to the system bandwidth.
  • the generating unit is configured to generate the adjustment coefficient according to a minimum value among the system bandwidth of the light-weight UE and the BWP of the non-light-weight UE.
  • the generating unit is configured to generate the adjustment coefficient according to a minimum value among the BWP of the non-lightweight UE and the system bandwidth of the light-weight UE, wherein the non-lightweight UE and the frequency hopping starting position of the light-weight UE are both generated by the adjustment coefficient.
  • the frequency hopping parameter is a frequency hopping offset.
  • the fifth determining module includes: a first sending unit, configured to send an offset configuration table corresponding to the type of the UE to the UE; a second sending unit, configured to send to the UE an offset configuration table corresponding to the type of the UE; is configured to send the offset identifier to the UE.
  • the method further includes: determining a first offset configuration table unit corresponding to a non-lightweight UE, configured as if the UE is a non-lightweight UE, the first offset corresponding to the non-lightweight UE
  • the frequency hopping offset in the configuration table is determined according to the BWP of the non-lightweight UE
  • the second offset configuration table corresponding to the UE is determined, and is configured such that if the UE is a lightweight UE, the lightweight UE corresponds to
  • the frequency hopping offset in the second offset configuration table of is determined according to the system bandwidth of the light-weight UE.
  • the frequency hopping offset in the second offset configuration table is determined according to the minimum value among the system bandwidth of the lightweight UE and the BWP of the non-lightweight UE.
  • the offset configuration table is determined by the following methods: protocol specification; or, sending a signaling configuration to the UE.
  • both the non-lightweight UE and the lightweight UE use the second offset configuration table.
  • the frequency hopping offset corresponding to the non-lightweight UE is determined by the BWP of the non-lightweight UE, and the frequency hopping offset corresponding to the lightweight UE The amount of shift is determined by the minimum value among the BWP of the non-lightweight UE and the system bandwidth of the lightweight UE.
  • the frequency hopping parameter is the number of frequency hopping.
  • the number of frequency hopping supported by the non-lightweight UE is greater than the number of frequency hopping supported by the lightweight UE.
  • the fifth determining module includes: a third unit for determining the frequency hopping times of the non-lightweight UE, and is configured to use the first frequency hopping times as the frequency hopping times if the UE is a non-lightweight UE. the frequency hopping times of the non-lightweight UE; the second unit for determining the frequency hopping times of the lightweight UE is configured to use the second frequency hopping times as the frequency hopping times of the lightweight UE if the UE is a lightweight UE, wherein, The first frequency hopping times are greater than the second frequency hopping times.
  • the first frequency hopping times and the second frequency hopping times are configured by a protocol or indicated by a base station.
  • the first frequency hopping times and the second frequency hopping times are indicated by RMSI, random access response RAR or downlink control information DCI of the base station.
  • the fifth determination module includes: a second determination module configured to determine whether the BWP of the non-lightweight UE is greater than the system bandwidth of the lightweight UE; The number of frequency hopping, configured to be larger than the system bandwidth of the lightweight UE, the first preset number of times as the frequency hopping number of the non-lightweight UE, and the second preset number of times as the frequency hopping of the lightweight UE number of times, where the first preset number of times is greater than the second preset number of times; the fourth unit for determining the frequency hopping times of the non-lightweight UE and the lightweight UE is configured to be less than or equal to the system bandwidth of the lightweight UE, Then, the first preset number of times is used as the frequency hopping number of the non-lightweight UE and the lightweight UE.
  • the fifth determination module includes: a third sending unit configured to send a first indication number of times and a second indication number of times, wherein the first indication number is greater than the second indication number of times, wherein if the BWP of the non-lightweight UE is greater than the system bandwidth of the lightweight UE, the first indicated number of times is used as the frequency hopping number of the non-lightweight UE, and the second indicated number of times is used as the frequency hopping number of the non-lightweight UE. as the frequency hopping number of the lightweight UE.
  • the fifth determining module includes: a fourth sending unit configured to send a third indication number of times, wherein, if the first BWP of the non-lightweight UE is less than or equal to the lightweight UE the second BWP, the third indicated number of times is used as the frequency hopping times of the non-lightweight UE and the lightweight UE.
  • the first indication times and the second indication times, or the third indication times are indicated by RMSI, random access response RAR or downlink control information DCI of the base station.
  • the frequency hopping times corresponding to the non-lightweight UE is indicated by the base station, and the frequency hopping times corresponding to the lightweight UE is specified by a protocol.
  • Embodiments of the seventh aspect of the present disclosure provide a communication device, including a transceiver; a memory; and a processor, respectively connected to the transceiver and the memory, and configured to control the memory by executing computer-executable instructions on the memory.
  • the transceiver transmits and receives wireless signals, and implements the frequency hopping control method proposed in the embodiments of the first aspect, or the frequency hopping control method proposed in the second aspect, or the frequency hopping control method proposed in the third aspect.
  • An embodiment of the eighth aspect of the present disclosure provides a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is used to cause the processor to execute the storage medium provided by the embodiment of the first aspect.
  • the type of the UE is determined, then the frequency hopping parameter is determined according to the type of the UE, and then the frequency hopping is performed according to the determined frequency hopping parameter.
  • the frequency hopping parameter can be adjusted according to the type of the UE, so as to avoid the occurrence of jumping out of the system bandwidth range of the light-weight UE.
  • FIG. 1 is a schematic flowchart of a frequency hopping control method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a frequency hopping mode provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of another frequency hopping control method provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of frequency hopping starting position adjustment according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of another frequency hopping control method provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of another frequency hopping control method provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a frequency hopping control method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of another frequency hopping control method provided by an embodiment of the present disclosure.
  • 9a and 9b are a schematic diagram of performing radio frequency re-tuning according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of a frequency hopping control method provided by an embodiment of the present disclosure
  • FIG. 11 is a schematic flowchart of another frequency hopping control method provided by an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a frequency hopping control device provided by an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a frequency hopping control device provided by an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a frequency hopping control device provided by an embodiment of the present disclosure.
  • FIG. 15 is a block diagram of a communication device of a frequency hopping control method according to an embodiment of the present disclosure.
  • the light-duty UE since the light-duty UE has a small system bandwidth, when the light-duty UE performs frequency hopping, the light-duty UE may jump out of the system bandwidth and cannot work. Therefore, how to prevent the light terminal from jumping out of the system bandwidth during frequency hopping has become an urgent problem to be solved.
  • the embodiments of the present disclosure provide a frequency hopping control method and device.
  • FIG. 1 is a schematic flowchart of a frequency hopping control method provided by an embodiment of the present disclosure, which is executed by a UE.
  • the lightweight UE and the non-lightweight UE use the same initial uplink BWP (bandwidth part).
  • the light-weight UE and the non-light-weight UE may jump out of the system bandwidth of the light-weight UE during a certain frequency hopping.
  • the frequency hopping parameter can be adjusted according to the type of the UE to avoid the occurrence of the lightweight UE jumping out of its system bandwidth. range situation.
  • the UE may perform frequency hopping according to the determined frequency hopping parameters.
  • the frequency hopping parameters include a frequency hopping offset value, a frequency hopping number, and a frequency hopping time domain granularity, wherein the frequency hopping offset value is used to determine the start of each hop Location; frequency hopping times, used to obtain higher frequency diversity gain by configuring multiple frequency domain locations; frequency hopping time domain granularity, used to extend the basic granularity of time domain frequency hopping, which can support the realization of Cross-slot ( Cross-slot) joint channel estimation, or for low mobility or stationary UE, reduce its DMRS (Demodulation Reference Signal, demodulation reference signal) density, etc.
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • the frequency hopping control method includes the following steps:
  • Step 101 Determine the type of the UE.
  • the types of UE include light UE (Reduced capability) and non-light UE.
  • a light-weight UE can be understood as an IoT device with a small bandwidth or a small number of antennas
  • a non-light-weight UE can be understood as an ordinary NR terminal that supports all the features of NR.
  • MTC Machine Type Communications
  • NB-IoT Nearband Internet of Things
  • NB-IoT can only support a maximum rate of several hundred k
  • MTC can only support a maximum rate of several M.
  • this new UE type is collectively referred to as Reduced capability UE, that is, light-weight UE, while the current common terminal is referred to as non-light-weight UE in the embodiments of the present disclosure.
  • a light-weight UE generally has the following characteristics:
  • the current NR new air interface is designed for high-end terminals such as high-speed and low-latency, the current design cannot meet the above requirements of light-weight UEs. Therefore, the current NR system needs to be modified to meet the requirements of light-weight UEs. For example, in order to meet the requirements of low cost and low complexity, the bandwidth of light-weight UEs can be limited, for example, to 10MHz or 20MHz, or the number of receiving antennas of light-weight UEs can be limited. For power saving, the possible optimization direction is to reduce the processing complexity of the user equipment. For example, only the PDCCH (Physical Downlink Control Channel) channel is received in the same time slot, and it is entered at other symbol times in the same time slot. micro-sleep state. For a certain degree of coverage enhancement, multiple repeated transmissions can also be performed on each channel to reduce the code rate.
  • PDCCH Physical Downlink Control Channel
  • the UE type may be determined according to the size of the bandwidth.
  • the base station can obtain the bandwidth of the UE, and according to the bandwidth of the UE, can obtain the type of the UE, that is, a light-weight UE or a non-light-weight UE.
  • the two types of UEs may also be distinguished according to a physical random access channel (PRACH).
  • PRACH physical random access channel
  • the frequency hopping offset value is used to determine the starting position of each hop; the frequency hopping times can be understood as the frequency hopping hop number:
  • the time domain granularity of frequency hopping is 1 slot, and the number of hops can be 4, then the frequency hopping mode can be shown in Figure 2, in which, that is to say, during the repetition process, the transmission of msg3 has 4 different frequency domain positions ( The gray part in Figure 2).
  • Step 102 Determine frequency hopping parameters according to the type of the UE.
  • the frequency hopping parameter includes one or more of a frequency hopping starting position, a frequency hopping offset, and a frequency hopping number.
  • the frequency hopping parameter is determined according to the type of UE. Specifically, independent frequency hopping parameters may be set for light-weight UEs, and independent frequency hopping parameters may be set for non-lightweight UEs.
  • the light-weight UE can set frequency hopping parameters according to its own system bandwidth, so as to avoid the situation of jumping out of the light-weight UE system bandwidth during frequency hopping.
  • the same frequency hopping parameter can also be set for the light UE and the non-light UE, and the frequency hopping parameter needs to take into account the light UE to avoid the situation that it jumps out of the system bandwidth range of the light UE.
  • the frequency hopping parameters of the current non-lightweight UE may be kept unchanged, and the frequency hopping parameters of the lightweight UE may be adjusted.
  • one or more of the frequency hopping start position, frequency hopping offset, and frequency hopping times may be adjusted to avoid jumping out of the system bandwidth range of the light-weight UE.
  • Step 103 Perform frequency hopping according to the determined frequency hopping parameters.
  • frequency hopping may be performed according to the frequency hopping parameter determined by the UE.
  • the frequency hopping is performed according to the starting position of the frequency hopping, the frequency hopping offset and the frequency hopping times.
  • the frequency hopping parameter can be adjusted according to the type of the UE, so as to avoid the occurrence of jumping out of the system bandwidth range of the light-weight UE.
  • FIG. 3 is a schematic flowchart of a frequency hopping control method provided by an embodiment of the present disclosure, which is executed by the UE. After the UE determines frequency hopping parameters such as the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity, the UE can determine the frequency hopping parameters according to the frequency hopping parameters.
  • frequency hopping parameters such as the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity
  • the frequency hopping parameters include a frequency hopping offset value, a frequency hopping number, and a frequency hopping time domain granularity, wherein the frequency hopping offset value is used to determine the start of each hop Location; frequency hopping times, used to obtain higher frequency diversity gain by configuring multiple frequency domain locations; frequency hopping time domain granularity, used to extend the basic granularity of time domain frequency hopping, which can support the realization of Cross-slot ( Cross-slot) joint channel estimation, or for low mobility or stationary UE, reduce its DMRS (Demodulation Reference Signal, demodulation reference signal) density, etc.
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • the frequency hopping parameter may be a frequency hopping starting position.
  • the frequency hopping control method includes the following steps:
  • Step 301 determining the type of the UE.
  • the types of UE include light UE (Reduced capability) and non-light UE.
  • a light-weight UE can be understood as an IoT device with a small bandwidth or a small number of antennas
  • a non-light-weight UE can be understood as an ordinary NR terminal that supports all the features of NR.
  • Step 302 Determine the corresponding frequency hopping starting position according to the type of the UE.
  • the frequency hopping starting position may be determined in the same manner for the non-lightweight UE and the light weight UE. However, for the light-duty UE, after the frequency hopping starting position of the light-duty UE is determined, the frequency hopping starting position of the light-duty UE needs to be adjusted, so as to avoid the occurrence of jumping out of the system bandwidth range of the light-duty UE.
  • the frequency hopping parameter may be determined as the frequency hopping start position in the following manner.
  • the initial frequency hopping initial position of the light-duty UE is first determined, and then the frequency hopping initial position is determined according to the initial frequency hopping initial position.
  • a corresponding adjustment value may be determined according to the system bandwidth of the light UE, and then the initial frequency hopping initial position may be adjusted according to the adjustment value, thereby determining the frequency hopping initial position.
  • the adjustment value is determined in the following manner:
  • Protocol specification or, through signaling configuration sent by the base station.
  • the adjustment value may be fixed through a protocol, or may be dynamically configured by the base station.
  • the determined initial frequency hopping initial position is n, and the problem of jumping out of the light-weight UE system bandwidth occurs in the n, and n needs to be adjusted.
  • the initial frequency hopping initial position of the nth hop is a, and a jumps out of the maximum system bandwidth supported by the light-weight UE, then the frequency hopping initial position of the nth hop is determined. It can be the position b of the n-mth hop, where b is within the light-weight UE system bandwidth, and n>m.
  • m may be fixed through a protocol, or may be dynamically configured by the base station. m is determined according to the number of frequency hopping.
  • FIG. 4 is a schematic diagram of adjusting the starting position of frequency hopping according to an embodiment of the present disclosure.
  • the adjustment value is subtracted, such as 2, so that it falls back to the system bandwidth of the light UE .
  • the adjustment value such as 2 can also be subtracted.
  • the initial frequency hopping initial position in response to the initial frequency hopping initial position not exceeding the system bandwidth of the UE, the initial frequency hopping initial position may be directly determined as the initial frequency hopping position.
  • the frequency hopping parameter when the type of the UE is a non-lightweight UE, the frequency hopping parameter may be determined as the frequency hopping starting position in the following manner.
  • the initial frequency hopping initial position in response to the UE being a non-lightweight UE, is used as the initial frequency hopping position.
  • the base station may notify the UE of the adjustment value by sending signaling to the UE.
  • the signaling may include Remaining Minimum System Information (RMSI) signaling.
  • RMSI Remaining Minimum System Information
  • Step 303 Perform frequency hopping according to the starting position of frequency hopping.
  • the frequency hopping may be performed according to the frequency hopping starting position.
  • its initial frequency hopping initial position is adjusted to determine the frequency hopping initial position corresponding to the light-duty UE, so as to avoid jumping out of the system bandwidth range of the light-duty UE.
  • FIG. 5 is a schematic flowchart of a frequency hopping control method provided by an embodiment of the present disclosure, which is executed by a UE. After determining the frequency hopping parameters such as the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity, the UE may perform frequency hopping according to the determined frequency hopping parameters.
  • the frequency hopping parameters such as the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity
  • the frequency hopping parameters include a frequency hopping offset value, a frequency hopping number, and a frequency hopping time domain granularity, wherein the frequency hopping offset value is used to determine the start of each hop Location; frequency hopping times, used to obtain higher frequency diversity gain by configuring multiple frequency domain locations; frequency hopping time domain granularity, used to extend the basic granularity of time domain frequency hopping, which can support the realization of Cross-slot ( Cross-slot) joint channel estimation, or for low mobility or stationary UE, reduce its DMRS (Demodulation Reference Signal, demodulation reference signal) density, etc.
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • a corresponding formula for determining the starting position of frequency hopping may be set for the light-duty UE, so as to avoid the occurrence of jumping out of the system bandwidth range of the light-duty UE.
  • the frequency hopping control method includes the following steps:
  • Step 501 determining the type of the UE.
  • the types of UE include light UE (Reduced capability) and non-light UE.
  • a light-weight UE can be understood as an IoT device with a small bandwidth or a small number of antennas
  • a non-light-weight UE can be understood as an ordinary NR terminal that supports all the features of NR.
  • Step 502 obtaining the current frequency hopping times
  • the formulas corresponding to different frequency hopping times are different, so the frequency hopping times need to be confirmed.
  • Step 503 generate the current frequency hopping starting position according to the current frequency hopping number
  • the As the current frequency hopping starting position, i is the current frequency hopping times, RBstart is the current frequency hopping starting position, and RBoffset is the offset.
  • Step 504 generating an adjustment coefficient according to the type of the UE.
  • a corresponding adjustment coefficient is generated according to the type of the UE, and the current frequency hopping starting position can be adjusted by the adjustment coefficient.
  • the adjustment coefficient is in, It is the bandwidth part BWP for non-lightweight UEs.
  • the adjustment coefficient may be generated according to the system bandwidth of the light-weight UE.
  • the adjustment coefficient is in, is the bandwidth part BWP of the non-light UE, is the system bandwidth of light UEs.
  • the adjustment coefficient may also be generated based on other manners, and this disclosure does not make any limitation.
  • Step 505 Generate a frequency hopping start position according to the adjustment coefficient and the current frequency hopping start position.
  • the current frequency hopping starting position is adjusted by an adjustment coefficient, thereby generating the frequency hopping starting position.
  • Step 506 Perform frequency hopping according to the starting position of frequency hopping.
  • the UE After the UE determines its own corresponding frequency hopping starting position, the UE performs frequency hopping according to the determined frequency hopping starting position.
  • the adjustment coefficient may be determined according to the type of the UE, so that the light-duty UE can avoid jumping out of the system bandwidth range of the light-duty UE.
  • the frequency hopping starting positions of the light-weight UE and the non-light-weight UE may be determined in the following manner.
  • the frequency hopping start position can be calculated by the following formula:
  • i is the number of frequency hopping.
  • the frequency hopping start position can be calculated by the following formula:
  • i is the number of frequency hopping.
  • intra-slot frequency hopping intra-slot
  • inter-slot two-hop inter-slot frequency hopping
  • the starting position of frequency hopping can be determined by the following formula:
  • the starting position of frequency hopping can be determined by the following formula:
  • the starting position of frequency hopping can be determined by the following formula:
  • i is the number of frequency hopping.
  • the starting position of frequency hopping can be determined by the following formula:
  • i is the number of frequency hopping.
  • multiple frequency hopping can also be performed.
  • the starting position of frequency hopping can be determined by the following formula:
  • i is the number of frequency hopping.
  • i is the number of frequency hopping.
  • the adjustment coefficient is generated according to the minimum value among the system bandwidth of the light-weight UE and the BWP of the non-light-weight UE.
  • both the lightweight UE and the non-lightweight UE use the same frequency hopping starting position determination formula.
  • the base station since the light-duty UE and the non-light-duty UE use the same formula (both adopt the formula for determining the frequency hopping starting position of the light-duty UE as shown above), the base station does not need to distinguish between the two.
  • an adjustment coefficient is generated according to the minimum value among the BWP of the non-lightweight UE and the system bandwidth of the lightweight UE, wherein the frequency hopping starting positions of the non-lightweight UE and the lightweight UE are both adjusted through the adjustment coefficient is determined.
  • FIG. 6 is a schematic flowchart of a frequency hopping control method provided by an embodiment of the present disclosure, which is executed by a UE. After determining the frequency hopping parameters such as the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity, the UE may perform frequency hopping according to the determined frequency hopping parameters.
  • the frequency hopping parameters such as the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity
  • the frequency hopping parameters include a frequency hopping offset value, a frequency hopping number, and a frequency hopping time domain granularity, wherein the frequency hopping offset value is used to determine the start of each hop Location; frequency hopping times, used to obtain higher frequency diversity gain by configuring multiple frequency domain locations; frequency hopping time domain granularity, used to extend the basic granularity of time domain frequency hopping, which can support the realization of Cross-slot ( Cross-slot) joint channel estimation, or for low mobility or stationary UE, reduce its DMRS (Demodulation Reference Signal, demodulation reference signal) density, etc.
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • the frequency hopping parameter is a frequency hopping offset.
  • the frequency hopping control method includes the following steps:
  • Step 601 determine the type of the UE.
  • the types of UE include light UE (Reduced capability) and non-light UE.
  • a light-weight UE can be understood as an IoT device with a small bandwidth or a small number of antennas
  • a non-light-weight UE can be understood as an ordinary NR terminal that supports all the features of NR.
  • Step 602 Determine the frequency hopping parameter as a frequency hopping offset according to the type of the UE.
  • the offset configuration table corresponding to the type of the UE can be obtained first, and then the offset identifier indicated by the base station can be obtained, and then the offset identifier and the offset corresponding to the type of the UE can be obtained.
  • the amount configuration table determines the frequency hopping offset.
  • different offset configuration tables are set for different types of UEs.
  • the offset configuration table may be specified by a protocol, or may be notified by the base station through a system message.
  • the same offset configuration table may be configured for the non-lightweight UE and the lightweight UE, or different offset configuration tables may be configured for the non-lightweight UE and the lightweight UE. If the same offset configuration table is configured, it is necessary to prevent the light-weight UE from jumping out of its own system bandwidth.
  • Step 603 Perform frequency hopping according to the frequency hopping offset.
  • the UE performs frequency hopping according to the frequency hopping offset determined in the above steps.
  • the frequency hopping offset of the light-duty UE can be adjusted, so as to avoid the problem of the light-duty UE jumping out of the system bandwidth range.
  • the frequency hopping offset in the first offset configuration table corresponding to the non-lightweight UE is determined according to the BWP of the non-lightweight UE; when the UE is a lightweight UE UE, the frequency hopping offset in the second offset configuration table corresponding to the lightweight UE is determined according to the system bandwidth of the lightweight UE.
  • the non-lightweight UE may use the following first offset configuration table:
  • the light-weight UE can use the following second offset configuration table:
  • the above Table 1 and Table 2 may be fixed by means of a protocol. It can also be configured into the UE in a manner indicated by the base station.
  • the non-lightweight UE may use the following first offset configuration table:
  • the light-weight UE may use the following second offset configuration table:
  • the frequency hopping offset corresponding to the non-lightweight UE is determined by the BWP of the non-lightweight UE
  • the frequency hopping offset corresponding to the lightweight UE is determined by the non-lightweight UE.
  • the minimum value among the BWP of the UE and the system bandwidth of the light UE is determined.
  • the above offset configuration table may also be configured for the UE through a system message.
  • both the non-lightweight UE and the lightweight UE may use the second offset configuration table.
  • the offset configuration table may also be set for multi-hop.
  • the non-lightweight UE may use the following first offset configuration table:
  • the light-weight UE may use the following second offset configuration table:
  • first offset configuration table 5 and second offset configuration table 6 may be specified by a protocol or notified by a system message.
  • the first offset configuration table and the second offset configuration table are also combined.
  • the tables in this merger are applicable to both lightweight UEs and non-lightweight UEs, as shown in the table below.
  • multiple frequency hopping offset value configuration tables may be aggregated into a large table, and then the first offset identifier is used as an index value for retrieval. Since multiple frequency hopping offset value configuration tables are aggregated into one table, the large table is relatively long, so corresponding dynamic signaling needs to extend bits to indicate its index. Among them, the extended bits can multiplex the TPC (power control) field in the RARULgrant.
  • TPC power control
  • the coverage is poor at this time, and the terminal generally uses full power to transmit, and the TPC (power control) field is invalid at this time, so the TPC field can be reused as an extended bit. (ie the first offset identifier).
  • the base station may set the first offset configuration table and the second offset configuration table, or may also set the first offset configuration table or the second offset configuration table. If the BWP is larger than the system bandwidth of the light UE, the first offset configuration table and the second offset configuration table are configured in the base station. If the BWP is less than or equal to the system bandwidth of the lightweight UE, only the first offset configuration table is configured in the base station, and the lightweight UE also uses the first offset configuration table.
  • the base station may set a first offset configuration table and a second offset configuration table, and the non-lightweight UE uses the first offset configuration table to determine the starting position of frequency hopping.
  • the UE uses the second offset configuration table to determine the starting position of the frequency hopping.
  • the second offset configuration table may be sent, and both the non-lightweight UE and the lightweight UE use the second offset configuration table.
  • the offset configuration table determines the starting position of the frequency hopping. In this way, the base station does not need to distinguish the UE types.
  • the offset may not only be set through the above-mentioned offset configuration table, but also may be set through a protocol, or a system message configuration of the base station.
  • FIG. 7 is a schematic flowchart of a frequency hopping control method according to an embodiment of the present disclosure, which is executed by the UE, so that after the UE determines frequency hopping parameters such as frequency hopping offset value, frequency hopping times, and frequency hopping time domain granularity, it can Frequency hopping is performed according to the determined frequency hopping parameters.
  • frequency hopping parameters such as frequency hopping offset value, frequency hopping times, and frequency hopping time domain granularity
  • the frequency hopping parameters include a frequency hopping offset value, a frequency hopping number, and a frequency hopping time domain granularity, wherein the frequency hopping offset value is used to determine the start of each hop Position; frequency hopping times, used to obtain higher frequency diversity gain by configuring multiple frequency domain positions, frequency hopping time domain granularity, used to extend the basic granularity of time domain frequency hopping, can support the realization of Cross-slot ( Cross-slot) joint channel estimation, or for low mobility or stationary UE, reduce its DMRS (Demodulation Reference Signal, demodulation reference signal) density, etc.
  • Cross-slot Cross-slot
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • the frequency hopping parameter is the number of frequency hopping.
  • the frequency hopping control method includes the following steps:
  • Step 701 determine the type of the UE.
  • the types of UE include light UE (Reduced capability) and non-light UE.
  • a light-weight UE can be understood as an IoT device with a small bandwidth or a small number of antennas
  • a non-light-weight UE can be understood as an ordinary NR terminal that supports all the features of NR.
  • Step 702 Determine the frequency hopping parameter as the number of frequency hopping according to the type of the UE.
  • the first frequency hopping times are used as the frequency hopping times of the non-lightweight UE; if the UE is a light weight UE, the second frequency hopping times are used as the frequency hopping times of the lightweight UE. times, where the first frequency hopping times is greater than the second frequency hopping times.
  • the number of frequency hopping supported by the non-lightweight UE is greater than the number of frequency hopping supported by the lightweight UE.
  • the above-mentioned first frequency hopping times and second frequency hopping times are indicated by RMSI, random access response RAR or downlink control information DCI of the base station.
  • the first frequency hopping times and the second frequency hopping times are configured by the protocol or indicated by the base station.
  • the base station may broadcast the first frequency hopping number and the second frequency hopping number through RMSI.
  • the number of frequency hopping corresponding to the non-lightweight UE is indicated by the base station, and the corresponding frequency hopping number of the lightweight UE is specified by the protocol.
  • the BWP of the non-lightweight UE is greater than the system bandwidth of the lightweight UE; if it is greater than the system bandwidth of the lightweight UE, the first preset number of times is used as the frequency hopping number of the non-lightweight UE, and the The second preset number of times is used as the frequency hopping number of the light-duty UE, where the first preset number of times is greater than the second preset number of times; if it is less than or equal to the system bandwidth of the light-duty UE, the first preset number of times is used as the non-light-duty UE and the light-duty UE. Frequency hopping times of the UE.
  • the first indication times and the second indication times indicated by the base station are received, wherein the first indication times are greater than the second indication times; if the BWP of the non-lightweight UE is greater than the system bandwidth of the light weight UE, then Take the first indicated times as the frequency hopping times of the non-lightweight UE, and take the second indicated times as the frequency hopping times of the light weight UEs
  • a third indication number of times indicated by the base station is received. If the first BWP of the non-lightweight UE is less than or equal to the second BWP of the lightweight UE, use the third indicated number of times as the number of frequency hopping between the non-lightweight UE and the lightweight UE
  • first indication times and second indication times, or the third indication times are indicated by RMSI, random access response RAR or downlink control information DCI of the base station.
  • a preset value may also be notified or set for the light-weight UE, for example, 0, that is, frequency hopping is not performed for the light-weight UE.
  • the method of frequency hopping within a time slot can also be applied to the method of frequency hopping between time slots.
  • the frequency hopping times of the non-lightweight UE may be configured by the base station, and the frequency hopping times of the light weight UE may also be set to a fixed value.
  • the value configured by the base station may be greater than the preset value specified by the protocol for the light-weight UE
  • Step 703 Perform frequency hopping according to the frequency hopping times.
  • the UE performs frequency hopping according to the frequency hopping times determined in the above steps.
  • the frequency hopping times of the light-duty UE can be adjusted, so as to avoid the problem of the light-duty UE jumping out of the system bandwidth range.
  • FIG. 8 is a schematic flowchart of a frequency hopping control method provided by an embodiment of the present disclosure, which is executed by a light-weight UE.
  • the frequency hopping parameters include a frequency hopping offset value and a frequency hopping number of times.
  • the frequency hopping offset value is used to determine the starting position of each hop; the frequency hopping times is used to obtain higher frequency diversity gain by configuring multiple frequency domain positions, hopping frequency Frequency-time-domain granularity, used to extend the basic granularity of time-domain frequency hopping, can support the realization of Cross-slot (cross-slot) joint channel estimation, or reduce its DMRS (Demodulation Reference Signal, solution for low mobility or static UEs) Adjust the reference signal) density and so on.
  • Cross-slot cross-slot
  • DMRS Demodulation Reference Signal, solution for low mobility or static UEs
  • the adjustment can be performed by means of radio frequency re-tuning.
  • the frequency hopping control method includes the following steps:
  • Step 801 confirming the location of the next hop of the light UE.
  • FIG. 9a it is a schematic diagram of performing radio frequency re-tuning according to an embodiment of the present disclosure.
  • the time domain position of the next hop of the light UE is Slot3.
  • Step 802 if the frequency domain position of the next hop exceeds the frequency domain position of the light-duty UE's current working bandwidth, radio frequency readjustment is performed, so that the working bandwidth of the light-duty UE is jumped to the frequency domain position of the next hop.
  • the next-hop frequency domain position of the light-duty UE exceeds the frequency-domain position where the current working bandwidth of the light-duty UE is located. Therefore, it is necessary to perform radio frequency readjustment on the light-duty UE, so that the working bandwidth of the light-duty UE is jumped to the frequency domain position where the next hop is located, such as Slot4 in Fig. 9a.
  • the time interval of the radio frequency re-tuning is specified by the protocol as a fixed value, or indicated by the base station.
  • the time interval is indicated by a system message, a medium access control control unit MAC CE or DCI signaling.
  • FIG. 9b another schematic diagram of performing radio frequency re-tuning according to an embodiment of the present disclosure.
  • the light UE jumps from Hop#0 to Hop#1 by means of radio frequency retuning.
  • the radio frequency readjustment time + the number of PUSCH characters ⁇ preset characters number, such as 14.
  • the present disclosure implements the Msg3 transmission support frequency hopping mechanism that can support the lightweight UE and the non-lightweight UE, including the traditional intra-slot frequency hopping, inter-slot hopping Frequency and multi-hop inter-slot frequency hopping, as well as time-domain granularity-enhanced inter-slot frequency hopping schemes.
  • the frequency hopping parameters include a frequency hopping offset value, a frequency hopping number, and a frequency hopping time domain granularity, wherein the frequency hopping offset value is used to determine the start of each hop Position; frequency hopping times, used to obtain higher frequency diversity gain by configuring multiple frequency domain positions, frequency hopping time domain granularity, used to extend the basic granularity of time domain frequency hopping, can support the realization of Cross-slot ( Cross-slot) joint channel estimation, or for low mobility or stationary UE, reduce its DMRS (Demodulation Reference Signal, demodulation reference signal) density, etc.
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • the frequency hopping control method includes the following steps:
  • Step 1010 determine the type of the UE.
  • the types of UE include light UE (Reduced capability) and non-light UE.
  • a light-weight UE can be understood as an IoT device with a small bandwidth or a small number of antennas
  • a non-light-weight UE can be understood as an ordinary NR terminal that supports all the features of NR.
  • the types of UE include light UE (Reduced capability) and non-light UE.
  • a light-weight UE can be understood as an IoT device with a small bandwidth or a small number of antennas
  • a non-light-weight UE can be understood as an ordinary NR terminal that supports all the features of NR.
  • MTC Machine Type Communications
  • NB-IoT Nearband Internet of Things
  • NB-IoT can only support a maximum rate of several hundred k
  • MTC can only support a maximum rate of several M.
  • this new UE type is collectively referred to as Reduced capability UE, that is, light-weight UE, while the current common terminal is referred to as non-light-weight UE in the embodiments of the present disclosure.
  • a light-weight UE generally has the following characteristics:
  • the current NR new air interface is designed for high-end terminals such as high-speed and low-latency, the current design cannot meet the above requirements of light-weight UEs. Therefore, the current NR system needs to be modified to meet the requirements of light-weight UEs. For example, in order to meet the requirements of low cost and low complexity, the bandwidth of light-weight UEs can be limited, for example, to 10MHz or 20MHz, or the number of receiving antennas of light-weight UEs can be limited.
  • the possible optimization direction is to reduce the processing complexity of the user equipment. For example, only the PDCCH (Physical Downlink Control Channel) channel is received in the same time slot, and it is entered at other symbol times in the same time slot. micro-sleep state. For a certain degree of coverage enhancement, multiple repeated transmissions can be performed on each channel, the aggregation level can be increased, and the code rate can be reduced.
  • PDCCH Physical Downlink Control Channel
  • the UE type may be determined according to the size of the bandwidth.
  • the base station can obtain the bandwidth of the UE, and according to the bandwidth of the UE, can obtain the type of the UE, that is, a light-weight UE or a non-light-weight UE.
  • the two types of UEs may also be distinguished according to a physical random access channel (PRACH).
  • PRACH physical random access channel
  • the frequency hopping offset value is used to determine the starting position of each hop; the frequency hopping times can be understood as the frequency hopping hop number:
  • the time domain granularity of frequency hopping is 1 slot, and the number of hops can be 4, then the frequency hopping mode can be shown in Figure 2, in which, that is to say, during the repetition process, the transmission of msg3 has 4 different frequency domain positions ( The gray part in Figure 2).
  • Step 1020 Determine a frequency hopping parameter of the UE according to the type of the UE.
  • the frequency hopping parameter includes one or more of a frequency hopping starting position, a frequency hopping offset, and a frequency hopping number.
  • the frequency hopping parameter is determined according to the type of UE. Specifically, independent frequency hopping parameters can be set for light-weight UEs, and independent frequency-hopping parameters can be set for non-light-weight UEs, so that the frequency-hopping parameters of light-duty UEs and non-light-duty UEs are different, thereby avoiding the frequency hopping of light-duty UEs. There is a situation where the bandwidth of the light UE system is jumped out.
  • the same frequency hopping parameter can also be set for the light UE and the non-light UE, and the frequency hopping parameter needs to take into account the light UE to avoid the situation that it jumps out of the system bandwidth range of the light UE.
  • the frequency hopping parameters of the current non-lightweight UE may be kept unchanged, and the frequency hopping parameters of the lightweight UE may be adjusted.
  • Step 1030 Provide a frequency hopping service for the UE according to the determined frequency hopping parameter of the UE.
  • a frequency hopping service may be provided for the UE according to the frequency hopping parameter of the UE.
  • FIG. 11 is a schematic flowchart of a frequency hopping control method provided by an embodiment of the present disclosure, which is executed by a base station.
  • the frequency hopping parameters include a frequency hopping offset value, a frequency hopping number, and a frequency hopping time domain granularity, wherein the frequency hopping offset value is used to determine the start of each hop Position; frequency hopping times, used to obtain higher frequency diversity gain by configuring multiple frequency domain positions, frequency hopping time domain granularity, used to extend the basic granularity of time domain frequency hopping, can support the realization of Cross-slot ( Cross-slot) joint channel estimation, or for low mobility or stationary UE, reduce its DMRS (Demodulation Reference Signal, demodulation reference signal) density, etc.
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • the frequency hopping parameter may be the starting position of the frequency hopping.
  • the frequency hopping control method includes the following steps:
  • Step 1110 determine the type of the UE.
  • the types of UE include light UE (Reduced capability) and non-light UE.
  • a light-weight UE can be understood as an IoT device with a small bandwidth or a small number of antennas
  • a non-light-weight UE can be understood as an ordinary NR terminal that supports all the features of NR.
  • the types of UE include light UE (Reduced capability) and non-light UE.
  • a light-weight UE can be understood as an IoT device with a small bandwidth or a small number of antennas
  • a non-light-weight UE can be understood as an ordinary NR terminal that supports all the features of NR.
  • MTC Machine Type Communications
  • NB-IoT Nearband Internet of Things
  • NB-IoT can only support a maximum rate of several hundred k
  • MTC can only support a maximum rate of several M.
  • this new UE type is collectively referred to as Reduced capability UE, that is, light-weight UE, while the current common terminal is referred to as non-light-weight UE in the embodiments of the present disclosure.
  • a light-weight UE generally has the following characteristics:
  • the current NR system needs to be modified to meet the requirements of light-weight UEs.
  • the bandwidth of light-weight UEs can be limited, for example, to 10MHz or 20MHz, or the number of receiving antennas of light-weight UEs can be limited.
  • the possible optimization direction is to reduce the processing complexity of the user equipment. For example, only the PDCCH (Physical Downlink Control Channel) channel is received in the same time slot, and it is entered at other symbol times in the same time slot. micro-sleep state. For a certain degree of coverage enhancement, multiple repeated transmissions can be performed on each channel, the aggregation level can be increased, and the code rate can be reduced.
  • PDCCH Physical Downlink Control Channel
  • the UE type may be determined according to the size of the bandwidth.
  • the base station can obtain the bandwidth of the UE, and according to the bandwidth of the UE, can obtain the type of the UE, that is, a light-weight UE or a non-light-weight UE.
  • the two types of UEs may also be distinguished according to a physical random access channel (PRACH).
  • PRACH physical random access channel
  • the frequency hopping offset value is used to determine the starting position of each hop; the frequency hopping times can be understood as the frequency hopping hop number:
  • the time domain granularity of frequency hopping is 1 slot, and the number of hops can be 4, then the frequency hopping mode can be shown in Figure 2, in which, that is to say, during the repetition process, the transmission of msg3 has 4 different frequency domain positions ( The gray part in Figure 2).
  • Step 1120 Determine the UE frequency hopping parameter as the frequency hopping start position according to the type of the UE.
  • the frequency hopping starting position may be determined in the same manner for the non-lightweight UE and the light weight UE. However, for the light-duty UE, after the frequency hopping start position of the light-duty UE is determined, the frequency-hopping start position of the light-duty UE needs to be adjusted to reduce it, so as to avoid the occurrence of jumping out of the system bandwidth range of the light-duty UE. .
  • the frequency hopping parameter may be determined as the frequency hopping start position in the following manner.
  • the initial frequency hopping position of the UE is determined, and then the initial frequency hopping position of the UE is determined according to the initial value of the initial frequency hopping of the UE.
  • the adjustment value is determined in the following ways: a protocol specification; or, sending a signaling configuration to the UE.
  • the adjustment value may be fixed through a protocol, or may be dynamically configured by the base station.
  • the system bandwidth of the UE is determined, and in response to the initial frequency hopping initial position exceeding the system bandwidth of the UE, an adjustment value is obtained, and then the initial frequency hopping position is adjusted according to the adjustment value to generate the UE's initial frequency hopping position.
  • Frequency hopping start position In the embodiment of the present disclosure, the system bandwidth of the UE is determined, and in response to the initial frequency hopping initial position exceeding the system bandwidth of the UE, an adjustment value is obtained, and then the initial frequency hopping position is adjusted according to the adjustment value to generate the UE's initial frequency hopping position. Frequency hopping start position.
  • the initial frequency hopping initial position in response to that the initial frequency hopping initial position does not exceed the system bandwidth of the UE, the initial frequency hopping initial position is determined as the initial frequency hopping position of the UE.
  • the determined initial frequency hopping initial position is n, and the problem of jumping out of the light-weight UE system bandwidth occurs in the n, and n needs to be adjusted.
  • the initial frequency hopping initial position of the nth hop is a, and a jumps out of the maximum system bandwidth supported by the light-weight UE, then the frequency hopping initial position of the nth hop is determined. It can be the position b of the n-mth hop, where b is within the light-weight UE system bandwidth, and n>m.
  • m may be fixed through a protocol, or may be dynamically configured by the base station. m is determined according to the number of frequency hopping.
  • FIG. 4 is a schematic diagram of adjusting the starting position of frequency hopping according to an embodiment of the present disclosure.
  • the adjustment value is subtracted, such as 2, so that it falls back to the system bandwidth of the light UE .
  • the adjustment value such as 2 can also be subtracted.
  • the initial frequency hopping initial position in response to the UE being a non-lightweight UE, is used as the initial frequency hopping position.
  • the base station may notify the UE of the adjustment value by sending signaling to the UE.
  • the signaling may include Remaining Minimum System Information (RMSI) signaling.
  • RMSI Remaining Minimum System Information
  • the location by acquiring the current frequency hopping times of the UE, generating the current frequency hopping starting position of the UE according to the current frequency hopping times, generating an adjustment coefficient according to the type of the UE, and generating an adjustment coefficient according to the adjustment coefficient and the current frequency hopping starting position
  • the location generates the frequency hopping start location of the UE.
  • the As the current frequency hopping starting position, i is the current frequency hopping times, RBstart is the current frequency hopping starting position, and RBoffset is the offset.
  • the bandwidth part BWP of the non-lightweight UE is obtained, and an adjustment coefficient is generated according to the BWP; if the UE is a lightweight UE, the system bandwidth of the lightweight UE is obtained, and according to the The system bandwidth generates an adjustment factor.
  • the adjustment coefficient is in, It is the bandwidth part BWP for non-lightweight UEs.
  • the adjustment coefficient may be generated according to the system bandwidth of the light-weight UE.
  • the adjustment coefficient is in, is the bandwidth part BWP of the non-light UE, is the system bandwidth of light UEs.
  • the adjustment coefficient may also be generated based on other manners, and this disclosure does not make any limitation.
  • an implementation manner of generating the adjustment coefficient according to the system bandwidth may be to generate the adjustment coefficient according to the minimum value among the system bandwidth of the light-weight UE and the BWP of the non-light-weight UE.
  • the adjustment coefficient is generated according to the minimum value among the BWP of the non-lightweight UE and the system bandwidth of the lightweight UE, wherein the frequency hopping starting positions of the non-lightweight UE and the lightweight UE are determined by the adjustment coefficient.
  • Step 1130 Determine the UE frequency hopping parameter as a frequency hopping offset according to the type of the UE.
  • the offset configuration table corresponding to the type of the UE is sent to the UE, and the offset identifier is sent to the UE.
  • the offset configuration table is determined by the following methods: protocol specification; or, sending a signaling configuration to the UE.
  • different offset configuration tables are set for different types of UEs.
  • the same offset configuration table may be configured for the non-lightweight UE and the lightweight UE, or different offset configuration tables may be configured for the non-lightweight UE and the lightweight UE.
  • the same offset configuration table By configuring the same offset configuration table, light-weight UEs can be prevented from jumping out of their own system bandwidth.
  • the frequency hopping offset in the first offset configuration table corresponding to the non-lightweight UE is determined according to the BWP of the non-lightweight UE; if the UE is a lightweight UE, Then, the frequency hopping offset in the second offset configuration table corresponding to the lightweight UE is determined according to the system bandwidth of the lightweight UE.
  • the frequency hopping offset in the second offset configuration table is determined according to the minimum value among the system bandwidth of the light-weight UE and the BWP of the non-light-weight UE.
  • both the non-lightweight UE and the lightweight UE use the second offset configuration table.
  • the frequency hopping offset corresponding to the non-lightweight UE is determined by the BWP of the non-lightweight UE
  • the frequency hopping offset corresponding to the lightweight UE is determined by the BWP of the non-lightweight UE and the system bandwidth of the lightweight UE. The minimum value is determined.
  • Step 1140 Determine the UE frequency hopping parameter as the frequency hopping times according to the type of the UE.
  • the first frequency hopping times are used as the frequency hopping times of the non-lightweight UE; if the UE is a light weight UE, the second frequency hopping times are used as the frequency hopping times of the lightweight UE. times, where the first frequency hopping times is greater than the second frequency hopping times.
  • the number of frequency hopping supported by the non-lightweight UE is greater than the number of frequency hopping supported by the lightweight UE.
  • the first frequency hopping times and the second frequency hopping times are configured by the protocol or indicated by the base station.
  • the first frequency hopping times and the second frequency hopping times are indicated by the RMSI of the base station, the random access response RAR or the downlink control information DCI.
  • the first preset number of times is used as the frequency hopping number of the non-lightweight UE, and Two preset times are used as frequency hopping times of light-duty UEs, wherein the first preset times are greater than the second preset times; if it is less than or equal to the system bandwidth of light-duty UEs, the first preset times are used as non-light-duty UEs and light-duty UEs the number of hops.
  • the first indicated times is used as the frequency hopping times of the non-lightweight UE, and the second indicated times is used as the frequency hopping times of the light weight UE.
  • a third indicated number of times is sent, wherein if the first BWP of the non-lightweight UE is less than or equal to the second BWP of the light-duty UE, the third indicated number of times is used as the hop between the non-lightweight UE and the light-duty UE frequency
  • first indication times and second indication times, or the third indication times are indicated by RMSI, random access response RAR or downlink control information DCI of the base station.
  • a preset value may also be notified or set for the light-weight UE, for example, 0, that is, frequency hopping is not performed for the light-weight UE.
  • the number of frequency hopping corresponding to the non-lightweight UE is indicated by the base station, and the corresponding frequency hopping number of the lightweight UE is specified by the protocol.
  • Step 1050 Provide a frequency hopping service for the UE according to the determined frequency hopping starting position, frequency hopping offset and frequency hopping times.
  • the frequency hopping service may be performed according to the determined frequency hopping starting position.
  • the adjustment coefficient may be determined according to the type of the UE, so that the light-duty UE can avoid jumping out of the system bandwidth range of the light-duty UE.
  • the frequency hopping starting positions of the light-weight UE and the non-light-weight UE may be determined in the following manner.
  • the frequency hopping start position can be calculated by the following formula:
  • i is the number of frequency hopping.
  • the frequency hopping start position can be calculated by the following formula:
  • i is the number of frequency hopping.
  • intra-slot frequency hopping intra-slot
  • inter-slot two-hop inter-slot frequency hopping
  • the starting position of frequency hopping can be determined by the following formula:
  • the starting position of frequency hopping can be determined by the following formula:
  • the starting position of frequency hopping can be determined by the following formula:
  • i is the number of frequency hopping.
  • the starting position of frequency hopping can be determined by the following formula:
  • i is the number of frequency hopping.
  • multiple frequency hopping can also be performed.
  • the starting position of frequency hopping can be determined by the following formula:
  • i is the number of frequency hopping.
  • i is the number of frequency hopping.
  • the frequency hopping service is performed according to the frequency hopping offset.
  • the frequency hopping offset of the light-duty UE can be adjusted, so as to avoid the problem of the light-duty UE jumping out of the system bandwidth range.
  • the frequency hopping offset in the first offset configuration table corresponding to the non-lightweight UE is determined according to the BWP of the non-lightweight UE; when the UE is a lightweight UE UE, the frequency hopping offset in the second offset configuration table corresponding to the lightweight UE is determined according to the system bandwidth of the lightweight UE.
  • the non-lightweight UE can use the following first offset configuration table:
  • the light-weight UE can use the following second offset configuration table:
  • the above Table 1 and Table 2 may be fixed by means of a protocol. It can also be configured into the UE in a manner indicated by the base station.
  • the non-lightweight UE may use the following first offset configuration table:
  • the light-weight UE may use the following second offset configuration table:
  • the frequency hopping offset corresponding to the non-lightweight UE is determined by the BWP of the non-lightweight UE
  • the frequency hopping offset corresponding to the lightweight UE is determined by the non-lightweight UE.
  • the minimum value among the BWP of the UE and the system bandwidth of the light UE is determined.
  • the above offset configuration table may also be configured for the UE through a system message.
  • both the non-lightweight UE and the lightweight UE may use the second offset configuration table.
  • the offset configuration table may also be set for multi-hop.
  • the non-lightweight UE may use the following first offset configuration table:
  • the light-weight UE may use the following second offset configuration table:
  • first offset configuration table 5 and second offset configuration table 6 may be specified by a protocol or notified by a system message.
  • the first offset configuration table and the second offset configuration table are also combined.
  • the tables in this merger are applicable to both lightweight UEs and non-lightweight UEs, as shown in the table below.
  • multiple frequency hopping offset value configuration tables may be aggregated into a large table, and then the first offset identifier is used as an index value for retrieval. Since multiple frequency hopping offset value configuration tables are aggregated into one table, the large table is relatively long, so corresponding dynamic signaling needs to extend bits to indicate its index. Among them, the extended bits can multiplex the TPC (power control) field in the RARULgrant.
  • TPC power control
  • the coverage is poor at this time, and the terminal generally uses full power to transmit, and the TPC (power control) field is invalid at this time, so the TPC field can be reused as an extended bit. (ie the first offset identifier).
  • the base station may set the first offset configuration table and the second offset configuration table, or may also set the first offset configuration table or the second offset configuration table. If the BWP is larger than the system bandwidth of the light UE, the first offset configuration table and the second offset configuration table are configured in the base station. If the BWP is less than or equal to the system bandwidth of the lightweight UE, only the first offset configuration table is configured in the base station, and the lightweight UE also uses the first offset configuration table.
  • the base station may set a first offset configuration table and a second offset configuration table, and the non-lightweight UE uses the first offset configuration table to determine the starting position of frequency hopping.
  • the UE uses the second offset configuration table to determine the starting position of the frequency hopping.
  • the second offset configuration table may be sent, and both the non-lightweight UE and the lightweight UE use the second offset configuration table.
  • the offset configuration table determines the starting position of the frequency hopping. In this way, the base station does not need to distinguish the UE types.
  • the offset may not only be set through the above-mentioned offset configuration table, but also may be set through a protocol, or a system message configuration of the base station.
  • the frequency hopping is performed according to the number of frequency hopping.
  • the frequency hopping times of the light-duty UE can be adjusted, so as to avoid the problem of the light-duty UE jumping out of the system bandwidth range.
  • the present disclosure also provides a frequency hopping control apparatus, because the frequency hopping control apparatus provided by the embodiments of the present disclosure corresponds to the frequency hopping control methods provided by the above-mentioned embodiments. , so the implementation of the frequency hopping control method is also applicable to the frequency hopping control apparatus provided in this embodiment, which will not be described in detail in this embodiment.
  • 12-14 are schematic structural diagrams of a frequency hopping control device proposed according to the present disclosure.
  • FIG. 12 is a schematic structural diagram of a frequency hopping control apparatus provided by an embodiment of the present disclosure. The apparatus is applied to user equipment UE.
  • the frequency hopping control device 1200 includes: a first determination module 1201, a second determination module 1202 and a first processing module 1203, wherein:
  • the first determining module 1201 is configured to determine the type of the UE.
  • the types of UEs include light-weight UEs (Reduced capability) and non-lightweight UEs.
  • a light-weight UE can be understood as an IoT device with a small bandwidth or a small number of antennas
  • a non-light-weight UE can be understood as an ordinary NR terminal that supports all the features of NR.
  • the UE type may be determined according to the size of the bandwidth.
  • the base station can obtain the bandwidth of the UE, and according to the bandwidth of the UE, can obtain the type of the UE, that is, a light-weight UE or a non-light-weight UE.
  • the two types of UEs may also be distinguished according to a physical random access channel (PRACH).
  • PRACH physical random access channel
  • the second determining module 1202 is configured to determine the frequency hopping parameter according to the type of the UE.
  • the frequency hopping parameter includes one or more of a frequency hopping starting position, a frequency hopping offset, and a frequency hopping number.
  • the frequency hopping parameter is determined according to the type of UE. Specifically, independent frequency hopping parameters can be set for light-weight UEs, and independent frequency-hopping parameters can be set for non-light-weight UEs, so that the frequency-hopping parameters of light-duty UEs and non-light-duty UEs are different, thereby avoiding the frequency hopping of light-duty UEs. There is a situation where the bandwidth of the light UE system is jumped out.
  • the same frequency hopping parameter can also be set for the light UE and the non-light UE, and the frequency hopping parameter needs to take into account the light UE to avoid the situation that it jumps out of the system bandwidth range of the light UE.
  • the frequency hopping parameters of the current non-lightweight UE may be kept unchanged, and the frequency hopping parameters of the lightweight UE may be adjusted.
  • the first processing module 1203 is configured to perform frequency hopping according to the determined frequency hopping parameters.
  • frequency hopping may be performed according to the frequency hopping parameter determined by the UE.
  • the frequency hopping is performed according to the starting position of the frequency hopping, the frequency hopping offset and the frequency hopping times.
  • the frequency hopping parameter can be adjusted according to the type of the UE, so as to avoid the occurrence of jumping out of the system bandwidth range of the light-weight UE.
  • the frequency hopping parameter is a frequency hopping start position.
  • the second determining module 1202 is configured to, in response to the UE being a light-weight UE, determine an initial frequency hopping location of the UE; and determine frequency hopping according to the initial frequency hopping initial value starting point.
  • the determined initial frequency hopping initial position is n, and the problem of jumping out of the light-weight UE system bandwidth occurs in the n, and n needs to be adjusted.
  • the initial frequency hopping initial position of the nth hop is a, and a jumps out of the maximum system bandwidth supported by the light-weight UE, then the frequency hopping initial position of the nth hop is determined. It can be the position b of the n-mth hop, where b is within the light-weight UE system bandwidth, and n>m.
  • m may be fixed through a protocol, or may be dynamically configured by the base station. m is determined according to the number of frequency hopping.
  • the initial frequency hopping initial position in response to the initial frequency hopping initial position not exceeding the system bandwidth of the UE, the initial frequency hopping initial position may be directly determined as the initial frequency hopping position.
  • FIG. 4 is a schematic diagram of adjusting the starting position of frequency hopping according to an embodiment of the present disclosure.
  • the adjustment value is subtracted, such as 2, so that it falls back to the system bandwidth of the light UE .
  • the adjustment value such as 2 can also be subtracted.
  • the second determining module 1202 is configured to determine the system bandwidth of the UE; in response to the initial frequency hopping initial position exceeding the system bandwidth of the UE, obtain an adjustment value, and determine the adjustment value according to the The adjustment value is used to adjust the initial frequency hopping initial position to generate the frequency hopping initial position.
  • the second determining module 1202 is configured to, in response to the initial frequency hopping initial position not exceeding the system bandwidth of the UE, determine the initial frequency hopping initial position as the hopping initial position frequency starting position.
  • the adjustment value is determined in the following manner: a protocol specification; or, a signaling configuration sent by a base station.
  • the second determining module 1202 is configured to, in response to the UE being a non-lightweight UE, use the initial frequency hopping initial position as the frequency hopping initial position.
  • the second determining module 1202 includes: a unit for obtaining the number of frequency hopping times, configured to obtain the current number of frequency hopping times; a unit for generating a current frequency hopping starting position, configured to generating a current frequency hopping starting position by the number of frequencies; generating an adjustment coefficient unit, configured to generate an adjustment coefficient according to the type of the UE; and generating a frequency hopping starting position unit, configured to generate an adjustment coefficient according to the adjustment coefficient and the current hopping
  • the frequency starting position generates the frequency hopping starting position.
  • the As the current frequency hopping starting position, i is the current frequency hopping times, RBstart is the current frequency hopping starting position, and RBoffset is the offset.
  • the adjustment coefficient is in, It is the bandwidth part BWP for non-lightweight UEs.
  • the adjustment coefficient may be generated according to the system bandwidth of the light-weight UE.
  • the adjustment coefficient is in, is the bandwidth part BWP of the non-light UE, is the system bandwidth of light UEs.
  • the adjustment coefficient may also be generated based on other manners, and this disclosure does not make any limitation.
  • the frequency hopping starting positions of the light-weight UE and the non-light-weight UE may be determined in the following manner.
  • the frequency hopping start position can be calculated by the following formula:
  • i is the number of frequency hopping.
  • the frequency hopping start position can be calculated by the following formula:
  • i is the number of frequency hopping.
  • intra-slot frequency hopping intra-slot
  • inter-slot two-hop inter-slot frequency hopping
  • the starting position of frequency hopping can be determined by the following formula:
  • the starting position of frequency hopping can be determined by the following formula:
  • the starting position of frequency hopping can be determined by the following formula:
  • i is the number of frequency hopping.
  • the starting position of frequency hopping can be determined by the following formula:
  • i is the number of frequency hopping.
  • multiple frequency hopping can also be performed.
  • the starting position of frequency hopping can be determined by the following formula:
  • i is the number of frequency hopping.
  • i is the number of frequency hopping.
  • the adjustment coefficient is generated according to the minimum value among the system bandwidth of the light-weight UE and the BWP of the non-light-weight UE.
  • both the lightweight UE and the non-lightweight UE use the same frequency hopping starting position determination formula.
  • the base station since the light-duty UE and the non-light-duty UE use the same formula (both adopt the formula for determining the frequency hopping starting position of the light-duty UE shown above), the base station does not need to distinguish between the two.
  • an adjustment coefficient is generated according to the minimum value among the BWP of the non-lightweight UE and the system bandwidth of the lightweight UE, wherein the frequency hopping starting positions of the non-lightweight UE and the lightweight UE are both adjusted through the adjustment coefficient is determined.
  • the unit for generating adjustment coefficients includes: an adjustment coefficient generation subunit, configured to obtain a bandwidth part BWP of the non-lightweight UE if the UE is a non-lightweight UE, and generate an adjustment coefficient according to the BWP; If the UE is a light-duty UE, the system bandwidth of the light-duty UE is obtained, and an adjustment coefficient is generated according to the system bandwidth.
  • the obtaining system bandwidth subunit is configured to generate the adjustment coefficient according to the minimum value among the system bandwidth of the light-weight UE and the BWP of the non-light-weight UE.
  • the generating adjustment coefficient unit is configured to: generate the adjustment coefficient according to the minimum value among the BWP of the non-lightweight UE and the system bandwidth of the light weight UE, wherein the hops of the non-lightweight UE and the light weight UE are The starting position of the frequency is determined by this adjustment coefficient.
  • the frequency hopping parameter is a frequency hopping offset.
  • the second determining module 1202 includes: an offset configuration table unit, configured to obtain an offset configuration table corresponding to the type of the UE; and an offset identification unit, configured as Acquire the offset identifier indicated by the base station; the unit for determining the frequency hopping offset is configured to determine the frequency hopping offset according to the offset identifier and the offset configuration table corresponding to the type of the UE.
  • the offset configuration table corresponding to the type of the UE can be obtained first, and then the offset identifier indicated by the base station can be obtained, and then the offset identifier and the offset corresponding to the type of the UE can be obtained.
  • the amount configuration table determines the frequency hopping offset.
  • different offset configuration tables are set for different types of UEs.
  • the offset configuration table may be specified by a protocol, or may be notified by the base station through a system message.
  • the same offset configuration table may be configured for the non-lightweight UE and the lightweight UE, or different offset configuration tables may be configured for the non-lightweight UE and the lightweight UE.
  • the same offset configuration table By configuring the same offset configuration table, light-weight UEs can be prevented from jumping out of their own system bandwidth.
  • a first frequency hopping offset unit configured to, if the UE is a non-lightweight UE, the frequency hopping offset in the first offset configuration table corresponding to the non-lightweight UE The amount is determined according to the BWP of the non-lightweight UE; the second frequency hopping offset unit is configured so that if the UE is a lightweight UE, the frequency hopping offset in the second offset configuration table corresponding to the lightweight UE is based on the lightweight UE.
  • the system bandwidth is determined.
  • the frequency hopping offset in the second offset configuration table is determined according to the minimum value among the system bandwidth of the lightweight UE and the BWP of the non-lightweight UE.
  • the offset configuration table is determined in the following manner: a protocol specification; or, a signaling configuration sent by a base station.
  • one or more lists may be designed, for example, one list includes frequency hopping parameters such as frequency hopping offset value, frequency hopping times, and frequency hopping time domain granularity, or in multiple lists, each Each list includes a parameter.
  • the first table includes the frequency hopping offset value
  • the second table includes the frequency hopping times
  • the third table includes the frequency hopping time domain granularity.
  • the list can be specified by the protocol.
  • the UE may also be notified through a system message to obtain the list, and then obtain at least one of frequency hopping parameters such as frequency hopping offset value, frequency hopping times, and frequency hopping time domain granularity from one or more lists.
  • the list may also be pre-configured in the communication device by a communication protocol specification of a communication standardization organization (eg, 3GPP standardization organization, IEEE, etc.) or by a factory setting of the communication device.
  • the base station may send control signaling to the terminal, where the control signaling indicates the list to be applied in the current communication, so as to notify the terminal to activate the list.
  • both the non-lightweight UE and the lightweight UE use the second offset configuration table.
  • the frequency hopping offset corresponding to the non-lightweight UE is determined by the BWP of the non-lightweight UE
  • the frequency hopping offset corresponding to the lightweight UE is determined by the BWP of the non-lightweight UE. and the minimum value among the system bandwidths of light UEs.
  • the non-lightweight UE can use the following first offset configuration table:
  • the light-weight UE can use the following second offset configuration table:
  • the above Table 1 and Table 2 may be fixed by means of a protocol. It can also be configured into the UE in a manner indicated by the base station.
  • the non-lightweight UE may use the following first offset configuration table:
  • the light-weight UE may use the following second offset configuration table:
  • the frequency hopping offset corresponding to the non-lightweight UE is determined by the BWP of the non-lightweight UE
  • the frequency hopping offset corresponding to the lightweight UE is determined by the non-lightweight UE.
  • the minimum value among the BWP of the UE and the system bandwidth of the light UE is determined.
  • the above offset configuration table may also be configured for the UE through a system message.
  • both the non-lightweight UE and the lightweight UE may use the second offset configuration table.
  • the offset configuration table may also be set for multi-hop.
  • the non-lightweight UE may use the following first offset configuration table:
  • the light-weight UE may use the following second offset configuration table:
  • first offset configuration table 5 and second offset configuration table 6 may be specified by a protocol or notified by a system message.
  • the first offset configuration table and the second offset configuration table are also combined.
  • the tables in this merger are applicable to both lightweight UEs and non-lightweight UEs, as shown in the table below.
  • multiple frequency hopping offset value configuration tables may be aggregated into a large table, and then the first offset identifier is used as an index value for retrieval. Since multiple frequency hopping offset value configuration tables are aggregated into one table, the large table is long, so the corresponding dynamic signaling needs to extend the bit to indicate its index. Among them, the extended bits can multiplex the TPC (power control) field in the RARULgrant.
  • TPC power control
  • the coverage is poor at this time, and the terminal generally uses full power to transmit, and the TPC (power control) field is invalid at this time, so the TPC field can be reused as an extended bit. (ie the first offset identifier).
  • the base station may set the first offset configuration table and the second offset configuration table, or may also set the first offset configuration table or the second offset configuration table. If the BWP is larger than the system bandwidth of the light UE, the first offset configuration table and the second offset configuration table are configured in the base station. If the BWP is less than or equal to the system bandwidth of the lightweight UE, only the first offset configuration table is configured in the base station, and the lightweight UE also uses the first offset configuration table.
  • the base station may set a first offset configuration table and a second offset configuration table, and the non-lightweight UE uses the first offset configuration table to determine the starting position of frequency hopping.
  • the UE uses the second offset configuration table to determine the starting position of the frequency hopping.
  • the second offset configuration table may be sent, and both the non-lightweight UE and the lightweight UE use the second offset configuration table.
  • the offset configuration table determines the starting position of the frequency hopping. In this way, the base station does not need to distinguish the UE types.
  • the offset may not only be set through the above-mentioned offset configuration table, but also may be set through a protocol, or a system message configuration of the base station.
  • the frequency hopping parameter is the number of frequency hopping.
  • the number of frequency hopping supported by the non-lightweight UE is greater than the number of frequency hopping supported by the lightweight UE.
  • the second determining module 1202 includes: a first unit for determining the frequency hopping times of the non-lightweight UE, and is configured to use the first frequency hopping times as the frequency hopping times of the non-lightweight UE if the UE is a non-lightweight UE. Frequency hopping times; the unit for first determining the frequency hopping times of the light-duty UE is configured to use the second frequency hopping times as the frequency hopping times of the light-duty UE if the UE is a light-duty UE, wherein the first frequency hopping times is greater than the second hopping times frequency.
  • the first frequency hopping times and the second frequency hopping times are configured by a protocol or indicated by the base station.
  • the first frequency hopping times and the second frequency hopping times are indicated by RMSI, random access response RAR or downlink control information DCI of the base station.
  • the second determining module 1202 includes: a first determining module configured to determine whether the BWP of the non-lightweight UE is greater than the system bandwidth of the lightweight UE; secondly determining the hop of the non-lightweight UE
  • the number of frequencies is configured to be greater than the system bandwidth of the light-duty UE, the first preset number of times is used as the frequency hopping times of the non-light-duty UE, and the second preset number of times is used as the frequency hopping times of the light-duty UE.
  • the first unit for determining the frequency hopping times of the non-light-duty UE and the light-duty UE is configured to use the first preset number of times as the non-light-duty UE and the light-duty UE if it is less than or equal to the system bandwidth of the light-duty UE. Frequency hopping times of the UE.
  • the second determining module 1202 includes: a first receiving indication count unit, configured to receive a first indication count and a second indication count indicated by the base station, where the first indication count is greater than the second indication count number of times; the second unit for determining the frequency hopping times of the non-lightweight UE and the lightweight UE is configured to use the first indicated number of times as the frequency hopping times of the non-lightweight UE if the BWP of the non-lightweight UE is greater than the system bandwidth of the lightweight UE, and use The second indicated times is the frequency hopping times of the light-duty UE.
  • the second determining module 1202 includes: a second receiving indication count unit, configured to receive a third indication count indicated by the base station; a third unit for determining the frequency hopping count of the non-lightweight UE and the light duty UE, It is configured to use the third indicated number of times as the frequency hopping number of the non-lightweight UE and the lightweight UE if the first BWP of the non-lightweight UE is less than or equal to the second BWP of the lightweight UE.
  • the first indication times and the second indication times, or the third indication times are indicated by RMSI, random access response RAR or downlink control information DCI of the base station.
  • the frequency hopping times corresponding to the non-lightweight UE is indicated by the base station, and the frequency hopping times corresponding to the light weight UE is specified by a protocol.
  • the first frequency hopping times are used as the frequency hopping times of the non-lightweight UE; if the UE is a light weight UE, the second frequency hopping times are used as the frequency hopping times of the lightweight UE. times, where the first frequency hopping times is greater than the second frequency hopping times.
  • the number of frequency hopping supported by the non-lightweight UE is greater than the number of frequency hopping supported by the lightweight UE.
  • the above-mentioned first frequency hopping times and second frequency hopping times are indicated by RMSI, random access response RAR or downlink control information DCI of the base station
  • the first frequency hopping times and the second frequency hopping times are configured by the protocol or indicated by the base station.
  • the base station may broadcast the first frequency hopping number and the second frequency hopping number through RMSI.
  • the number of frequency hopping corresponding to the non-lightweight UE is indicated by the base station, and the corresponding frequency hopping number of the lightweight UE is specified by the protocol.
  • the BWP of the non-lightweight UE is greater than the system bandwidth of the lightweight UE; if it is greater than the system bandwidth of the lightweight UE, the first preset number of times is used as the frequency hopping number of the non-lightweight UE, and the The second preset number of times is used as the frequency hopping number of the light-duty UE, where the first preset number of times is greater than the second preset number of times; if it is less than or equal to the system bandwidth of the light-duty UE, the first preset number of times is used as the non-light-duty UE and the light-duty UE. Frequency hopping times of the UE.
  • the first indication times and the second indication times indicated by the base station are received, wherein the first indication times are greater than the second indication times; if the BWP of the non-lightweight UE is greater than the system bandwidth of the light weight UE, then Take the first indicated times as the frequency hopping times of the non-lightweight UE, and take the second indicated times as the frequency hopping times of the light weight UEs
  • a third indication number of times indicated by the base station is received. If the first BWP of the non-lightweight UE is less than or equal to the second BWP of the lightweight UE, use the third indicated number of times as the number of frequency hopping between the non-lightweight UE and the lightweight UE
  • first indication times and second indication times, or the third indication times are indicated by RMSI, random access response RAR or downlink control information DCI of the base station.
  • a preset value may also be notified or set for the light-weight UE, for example, 0, that is, frequency hopping is not performed for the light-weight UE.
  • the method of frequency hopping within a time slot can also be applied to the method of frequency hopping between time slots.
  • the frequency hopping times of the non-lightweight UE may be configured by the base station, and the frequency hopping times of the light weight UE may also be set to a fixed value.
  • the value configured by the base station may be greater than the preset value specified by the protocol for the light-weight UE.
  • FIG. 13 is a schematic structural diagram of a frequency hopping control apparatus provided by an embodiment of the present disclosure. The apparatus is applied to a light-weight UE.
  • the frequency hopping control device 1300 includes: a third determination module 1301 and a radio frequency readjustment module 1302, wherein:
  • the third determining module 1301 is configured to confirm the location of the next hop of the lightweight UE. As shown in FIG. 9a, it is a schematic diagram of performing radio frequency re-tuning according to an embodiment of the present disclosure. Referring to Fig. 9a, the next hop position of the light UE is Slot3.
  • the radio frequency readjustment module 1302 is configured to perform radio frequency readjustment if the frequency domain position of the next hop exceeds the frequency domain position where the current working bandwidth of the light-duty UE is located, so as to make the working bandwidth of the light-duty UE jump to the frequency domain position of the next hop. Further referring to Fig. 9a, the next hop position Slot3 of the light-duty UE exceeds the frequency domain position where the current working bandwidth of the light-duty UE is located. Therefore, it is necessary to perform radio frequency readjustment on the light-duty UE, so that the working bandwidth of the light-duty UE is jumped to the frequency domain position where the next hop is located, such as Slot4 in Fig. 9a.
  • the time interval of the radio frequency re-tuning is specified by a protocol as a fixed value, or indicated by the base station.
  • the time interval is indicated by a system message, a medium access control control unit MAC CE or DCI signaling.
  • FIG. 9b another schematic diagram of performing radio frequency re-tuning according to an embodiment of the present disclosure.
  • the light UE jumps from Hop#0 to Hop#1 by means of radio frequency retuning.
  • the radio frequency readjustment time + the number of PUSCH characters ⁇ preset characters number, such as 14.
  • FIG. 14 is a schematic structural diagram of a frequency hopping control apparatus provided by an embodiment of the present disclosure. The apparatus is applied to a base station.
  • the frequency hopping control device 1400 includes: a fourth determination module 1401, a fifth determination module 1402 and a first providing module 1403, wherein:
  • a fourth determining module 1401, configured to determine the type of the UE
  • a fifth determining module 1402 configured to determine a frequency hopping parameter of the UE according to the type of the UE;
  • the first providing module 1403 is configured to provide a frequency hopping service for the UE according to the determined frequency hopping parameter of the UE.
  • the frequency hopping parameter is a frequency hopping start position.
  • the fifth determining module 1402 is configured to, in response to the UE being a light-weight UE, determine the initial frequency hopping position of the UE; according to the initial frequency hopping initial position of the UE The value determines the frequency hopping start position of the UE.
  • the fifth determination module 1402 is configured to determine the system bandwidth of the UE; obtain an adjustment value in response to the initial frequency hopping initial position exceeding the system bandwidth of the UE; according to the The adjustment value adjusts the initial frequency hopping position to generate the initial frequency hopping position of the UE.
  • the fifth determining module 1402 is configured to, in response to the initial frequency hopping initial position not exceeding the system bandwidth of the UE, determine the initial frequency hopping initial position as the UE The frequency hopping start position.
  • the adjustment value is determined in the following manner: a protocol specification; or, a signaling configuration is sent to the UE.
  • the fifth determining module 1402 is configured to, in response to the UE being a non-lightweight UE, use the initial frequency hopping location as the initial frequency hopping location of the UE.
  • the fifth determining module 1402 includes: a unit for obtaining the frequency hopping times of the UE, configured to obtain the current frequency hopping times of the UE; and a unit for generating the current frequency hopping starting position of the UE, configured To generate the current frequency hopping starting position of the UE according to the current frequency hopping times; a generating unit is configured to generate an adjustment coefficient according to the type of the UE; and a UE frequency hopping starting position unit is configured to be generated according to The adjustment coefficient and the current frequency hopping start position generate the frequency hopping start position of the UE.
  • the generating unit is configured to, if the UE is a non-lightweight UE, obtain the bandwidth part BWP of the non-lightweight UE, and generate the adjustment coefficient according to the BWP; If the UE is a light-duty UE, the system bandwidth of the light-duty UE is acquired, and the adjustment coefficient is generated according to the system bandwidth.
  • the generating unit is configured to generate the adjustment coefficient according to a minimum value among the system bandwidth of the light-weight UE and the BWP of the non-light-weight UE.
  • the generating unit is configured to generate the adjustment coefficient according to a minimum value among the BWP of the non-lightweight UE and the system bandwidth of the light-weight UE, wherein the non-lightweight UE and the frequency hopping starting position of the light-weight UE are both generated by the adjustment coefficient.
  • the frequency hopping parameter is a frequency hopping offset.
  • the fifth determining module 1402 includes: a first sending unit configured to send an offset configuration table corresponding to the type of the UE to the UE; a second sending unit, is configured to send an offset identification to the UE.
  • the method further includes: determining a first offset configuration table unit corresponding to a non-lightweight UE, configured as if the UE is a non-lightweight UE, the first offset corresponding to the non-lightweight UE
  • the frequency hopping offset in the configuration table is determined according to the BWP of the non-lightweight UE
  • the second offset configuration table corresponding to the UE is determined, and is configured such that if the UE is a lightweight UE, the lightweight UE corresponds to
  • the frequency hopping offset in the second offset configuration table of is determined according to the system bandwidth of the light-weight UE.
  • the frequency hopping offset in the second offset configuration table is determined according to the minimum value among the system bandwidth of the lightweight UE and the BWP of the non-lightweight UE.
  • the offset configuration table is determined by the following methods: protocol specification; or, sending a signaling configuration to the UE.
  • both the non-lightweight UE and the lightweight UE use the second offset configuration table.
  • the frequency hopping offset corresponding to the non-lightweight UE is determined by the BWP of the non-lightweight UE, and the frequency hopping offset corresponding to the lightweight UE The amount of shift is determined by the minimum value among the BWP of the non-lightweight UE and the system bandwidth of the lightweight UE.
  • the frequency hopping parameter is the number of frequency hopping.
  • the number of frequency hopping supported by the non-lightweight UE is greater than the number of frequency hopping supported by the lightweight UE.
  • the fifth determining module 1402 includes: a third unit for determining the frequency hopping times of a non-lightweight UE, configured to use the first frequency hopping times as a non-lightweight UE if the UE is a non-lightweight UE The frequency hopping times of the non-lightweight UE; the second unit for determining the frequency hopping times of the lightweight UE is configured to use the second frequency hopping times as the frequency hopping times of the lightweight UE if the UE is a lightweight UE, wherein , the first frequency hopping times is greater than the second frequency hopping times.
  • the first frequency hopping times and the second frequency hopping times are configured by a protocol or indicated by a base station.
  • the first frequency hopping times and the second frequency hopping times are indicated by RMSI, random access response RAR or downlink control information DCI of the base station.
  • the fifth determining module 1402 includes: a second determining module configured to determine whether the BWP of the non-lightweight UE is greater than the system bandwidth of the lightweight UE; fourthly determining the non-lightweight UE
  • the number of frequency hopping is configured to be greater than the system bandwidth of the lightweight UE, the first preset number of times is used as the frequency hopping number of the non-lightweight UE, and the second preset number of times is used as the hopping frequency of the lightweight UE.
  • the first preset number of times is greater than the second preset number of times; the fourth unit for determining the frequency hopping times of the non-lightweight UE and the lightweight UE is configured to be less than or equal to the system bandwidth of the lightweight UE , the first preset number of times is used as the frequency hopping times of the non-lightweight UE and the lightweight UE.
  • the fifth determining module 1402 includes: a third sending unit configured to send a first indication number of times and a second indication number of times, wherein the first indication number is greater than the second indication number Indication times, wherein if the BWP of the non-lightweight UE is greater than the system bandwidth of the lightweight UE, the first indication times are used as the frequency hopping times of the non-lightweight UE, and the second indication The number of times is used as the frequency hopping number of the light UE.
  • the fifth determining module 1402 includes: a fourth sending unit configured to send a third indication number of times, wherein if the first BWP of the non-lightweight UE is less than or equal to the lightweight UE The second BWP of the UE takes the third indicated times as the frequency hopping times of the non-lightweight UE and the lightweight UE.
  • the first indication times and the second indication times, or the third indication times are indicated by RMSI, random access response RAR or downlink control information DCI of the base station.
  • the frequency hopping times corresponding to the non-lightweight UE is indicated by the base station, and the frequency hopping times corresponding to the lightweight UE is specified by a protocol.
  • the type of the UE is determined; the frequency hopping parameter is determined according to the type of the UE; and the frequency hopping is performed according to the determined frequency hopping parameter.
  • the frequency hopping parameter can be adjusted according to the type of the UE, so as to avoid the occurrence of jumping out of the system bandwidth range of the light-weight UE.
  • the present disclosure also provides a communication device and a readable storage medium.
  • FIG. 15 it is a block diagram of a communication device according to a frequency hopping control method according to an embodiment of the present disclosure.
  • Communication devices are intended to represent various forms of digital computers, such as laptop computers, desktop computers, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers.
  • Communication devices may also represent various forms of mobile devices, such as personal digital processors, cellular phones, smart phones, wearable devices, and other similar computing devices.
  • the components shown herein, their connections and relationships, and their functions are by way of example only, and are not intended to limit implementations of the disclosure described and/or claimed herein.
  • the communication device includes: one or more processors 1100, a memory 1200, and interfaces for connecting various components, including a high-speed interface and a low-speed interface.
  • the various components are interconnected using different buses and may be mounted on a common motherboard or otherwise as desired.
  • the processor may process instructions executed within the communication device, including instructions stored in or on memory to display graphical information of the GUI on an external input/output device, such as a display device coupled to the interface.
  • multiple processors and/or multiple buses may be used with multiple memories and multiple memories, if desired.
  • multiple communication devices may be connected, with each device providing some of the necessary operations (eg, as a server array, a group of blade servers, or a multi-processor system).
  • a processor 1100 is used as an example.
  • the memory 1200 is the non-transitory computer-readable storage medium provided by the present disclosure.
  • the memory stores instructions executable by at least one processor, so that the at least one processor executes the frequency hopping control method provided by the present disclosure.
  • the non-transitory computer-readable storage medium of the present disclosure stores computer instructions for causing the computer to execute the frequency hopping control method provided by the present disclosure.
  • the memory 1200 can be used to store non-transitory software programs, non-transitory computer-executable programs and modules, such as program instructions/modules corresponding to the frequency hopping control method in the embodiments of the present disclosure (for example, The first determination module 1201, the second determination module 1202 and the first processing module 1203 shown in FIG. 12, or the third determination module 1301 and the radio frequency readjustment module 1302 shown in FIG. 13, or the The fourth determining module 1401, the fifth determining module 1402, and the first providing module 1403 shown).
  • the processor 1100 executes various functional applications and data processing of the server by running the non-transitory software programs, instructions and modules stored in the memory 1200, ie, implements the frequency hopping control method in the above method embodiments.
  • the memory 1200 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the positioning communication device, and the like. Additionally, memory 1200 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device. Optionally, the memory 1200 may optionally include memory located remotely from the processor 1100, and these remote memories may be connected to the positioning communication device through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the control device for frequency hopping may further include: an input device 1300 and an output device 1400 .
  • the processor 1100, the memory 1200, the input device 1300, and the output device 1400 may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 15 .
  • the input device 1300 may receive input numerical or character information and generate key signal input related to user settings and functional control of the positioning communication device, such as a touch screen, keypad, mouse, trackpad, touchpad, pointing stick, one or more Input devices such as mouse buttons, trackballs, joysticks, etc.
  • the output device 1400 may include a display device, auxiliary lighting devices (eg, LEDs), haptic feedback devices (eg, vibration motors), and the like.
  • the display device may include, but is not limited to, a liquid crystal display (LCD), a light emitting diode (LED) display, and a plasma display. In some implementations, the display device may be a touch screen.
  • Various implementations of the systems and techniques described herein can be implemented in digital electronic circuitry, integrated circuit systems, application specific ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various embodiments may include being implemented in one or more computer programs executable and/or interpretable on a programmable system including at least one programmable processor that The processor, which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
  • the processor which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
  • machine-readable medium and “computer-readable medium” refer to any computer program product, apparatus, and/or apparatus for providing machine instructions and/or data to a programmable processor ( For example, magnetic disks, optical disks, memories, programmable logic devices (PLDs), including machine-readable media that receive machine instructions as machine-readable signals.
  • machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.
  • the systems and techniques described herein may be implemented on a computer having a display device (eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user ); and a keyboard and pointing device (eg, a mouse or trackball) through which a user can provide input to the computer.
  • a display device eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor
  • a keyboard and pointing device eg, a mouse or trackball
  • Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (eg, visual feedback, auditory feedback, or tactile feedback); and can be in any form (including acoustic input, voice input, or tactile input) to receive input from the user.
  • the systems and techniques described herein may be implemented on a computing system that includes back-end components (eg, as a data server), or a computing system that includes middleware components (eg, an application server), or a computing system that includes front-end components (eg, a user computer having a graphical user interface or web browser through which a user may interact with implementations of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system.
  • the components of the system may be interconnected by any form or medium of digital data communication (eg, a communication network). Examples of communication networks include: Local Area Networks (LANs), Wide Area Networks (WANs), and the Internet.
  • a computer system can include clients and servers.
  • Clients and servers are generally remote from each other and usually interact through a communication network.
  • the relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出了一种跳频控制方法、装置和通信设备,涉及通信技术领域。该方案为:确定UE的类型;根据UE的类型确定跳频参数;根据确定的跳频参数进行跳频。由此,可以根据UE的类型对跳频参数进行调整,从而避免跳出轻型UE的系统带宽范围的情况发生。

Description

跳频控制方法及装置 技术领域
本公开涉及通信领域,特别是指一种跳频控制方法及装置。
背景技术
通信技术中,为了满足LTE(Long Term Evolution,长期演进)4G(the 4th generation mobile communication technology,第四代移动通信技术)中的物联网连接的需求,提出了MTC(Machine Type Communication,机器类通信)和NB-IoT(Narrow Band Internet of thing窄带物联网)技术。
为了进一步满足物联网设备的低速率及高时延的需求,在5G(the 5th generation mobile communication technology,第五代移动通信技术)中提出了一种减轻能力的轻型(Redcap)UE,由于轻型UE的系统带宽较小,因此在轻型UE进行跳频时可能会导致轻型UE跳出系统带宽,无法工作。
因此,如何避免轻型终端的带宽跳出系统成为亟待解决的问题。
发明内容
本公开实施例提出了一种跳频控制方法及装置,用以解决上述问题。
本公开第一方面实施例提出了一种跳频控制方法,应用与用户设备UE,包括:确定所述UE的类型;根据所述UE的类型确定跳频参数;根据确定的所述跳频参数进行跳频。
本公开的一个实施例中,所述跳频参数为跳频起始位置。
本公开的一个实施例中,所述根据所述UE的类型确定跳频起始位置,包括:响应于所述UE为轻型UE,确定所述UE的起始跳频初始位置;根据所述起始跳频初始值确定跳频起始位置。
本公开的一个实施例中,所述根据所述起始跳频初始位置确定跳频起始位置,包括:确定所述UE的系统带宽;响应于起始跳频初始位置超出所述UE的系统带宽,获取调整值;根据所述调整值对所述起始跳频初始位置进行调整,以生成所述跳频起始位置。
本公开的一个实施例中,还包括:响应于起始跳频初始位置未超出所述UE的系统带宽,将所述起始跳频初始位置确定为所述跳频起始位置。
本公开的一个实施例中,所述调整值,通过以下方式确定:协议规定;或者,通过基站发送的信令配置。
本公开的一个实施例中,还包括:响应于所述UE为非轻型UE,则将所述起始跳频初始位置作为所述跳频起始位置。
本公开的一个实施例中,所述根据所述UE的类型确定跳频起始位置,包括:获取当前跳频次数;根据所述当前跳频次数生成当前跳频起始位置;根据所述UE的类型生成调整系数;以及根据所述调整系数和所述当前跳频起始位置生成所述跳频起始位置。
本公开的一个实施例中,所述根据所述UE的类型生成调整系数,包括:如果所述UE为非轻型UE,则获取所述非轻型UE的带宽部分BWP,并根据所述BWP生成所述调整系数;如果所述UE为轻型UE,则获取所述轻型UE的系统带宽,并根据所述系统带宽生成所述调整系数。
本公开的一个实施例中,所述根据所述系统带宽生成所述调整系数,包括:根据所述轻型UE的系统带宽和所述非轻型UE的BWP之中的最小值生成所述调整系数。
本公开的一个实施例中,所述根据所述UE的类型生成调整系数,包括:根据所述非轻型UE的BWP和所述轻型UE的系统带宽之中的最小值生成所述调整系数,其中,所述非轻型UE和所述轻型UE的所述跳频起始位置均由所述调整系数生成。
本公开的一个实施例中,所述跳频参数为跳频偏移量。
本公开的一个实施例中,所述根据所述UE的类型确定跳频偏移量,包括:获取所述UE的类型所对应的偏移量配置表;获取基站指示的偏移量标识;根据所述偏移量标识和所述UE的类型所对应的偏移量配置表确定所述跳频偏移量。
本公开的一个实施例中,还包括:如果所述UE为非轻型UE,则所述非轻型UE对应的第一偏移量配置表之中的跳频偏移量根据所述非轻型UE的BWP确定;如果所述UE为轻型UE,则所述轻型UE对应的第二偏移量配置表之中的跳频偏移量根据所述轻型UE的系统带宽确定。
本公开的一个实施例中,所述第二偏移量配置表之中的跳频偏移量根据所述轻型UE的系统带宽和所述非轻型UE的BWP之中的最小值确定。
本公开的一个实施例中,所述偏移量配置表,通过以下方式确定:协议规定;或者,通过基站发送的信令配置。
本公开的一个实施例中,所述非轻型UE和所述轻型UE均使用第二偏移量配置表。
本公开的一个实施例中,在所述偏移量配置表之中,所述非轻型UE对应的跳频偏移量由所述非轻型UE的BWP确定,所述轻型UE对应的跳频偏移量由所述非轻型UE的BWP和所述轻型UE的系统带宽之中的最小值确定。
本公开的一个实施例中,所述跳频参数为跳频次数。
本公开的一个实施例中,所述非轻型UE支持的跳频次数大于所述轻型UE支持的跳频次数。
本公开的一个实施例中,所述根据所述UE的类型确定跳频次数,包括:如果所述UE为非轻型UE,则将第一跳频次数作为所述非轻型UE的跳频次数;如果所述UE为轻型UE,则将第二跳频次数作为所述轻型UE的跳频次数,其中,所述第一跳频次数大于所述第二跳频次数。
本公开的一个实施例中,所述第一跳频次数和所述第二跳频次数由协议配置或者基站指示。
本公开的一个实施例中,所述第一跳频次数和所述第二跳频次数,通过所述基站的RMSI、随机接入响应RAR或下行控制信息DCI指示。
本公开的一个实施例中,所述根据所述UE的类型确定跳频次数,包括:判断所述非轻型UE的BWP是否大于所述轻型UE的系统带宽;如果大于所述轻型UE的系统带宽,则将第一预设次数作为所述非轻型UE的跳频次数,并将第二预设次数作为所述轻型UE的跳频次数,其中,所述第一预设次数大于所述第二预设次数;如果小于或等于所述轻型UE的系统带宽,则将所述第一预设次数作为所述非轻型UE和所述轻型UE的跳频次数。
本公开的一个实施例中,所述根据所述UE的类型确定跳频次数,包括:接收所述基站指示的第一指示次数和第二指示次数,其中,所述第一指示次数大于所述第二指示次数;如果所述非轻型UE的BWP大于所述轻型UE的系统带宽,则将所述第一指示次数作为所述非轻型UE的所述跳频次数,并将所述第二指示次数作为所述轻型UE的所述跳频次数。
本公开的一个实施例中,所述根据所述UE的类型确定跳频次数,包括:接收所述基站指示的第三指示次数;如果所述非轻型UE的第一BWP小于或等于所述轻型UE的第二BWP,则将所述第三指示次数作为所述非轻型UE和所述轻型UE的所述跳频次数。
本公开的一个实施例中,所述第一指示次数和第二指示次数,或者所述第三指示次数,通过所述基站的RMSI、随机接入响应RAR或下行控制信息DCI指示。
本公开的一个实施例中,所述非轻型UE对应的所述跳频次数由基站指示,所述轻型UE的对应的所述跳频次数由协议规定。
本公开第二方面实施例提出了一种跳频控制方法,应用与轻型UE,包括:确认所述轻型UE下一跳的位置;如果所述下一跳的频域位置超出所述轻型UE当前工作带宽所在的频域位置,则进行射频重调,以使所述轻型UE的工作带宽跳转至下一跳所在频域位置。
本公开的一个实施例中,所述射频重调的时间间隔由协议规定为固定值,或基站指示。
本公开的一个实施例中,所述时间间隔由系统消息、媒体接入控制控制单元MAC CE或DCI信令指示。
本公开第三方面实施例提出了一种跳频控制方法,应用与基站,包括:确定UE的类型;根据所述UE的类型确定所述UE的跳频参数;根据确定的所述UE的跳频参数为所述UE提供跳频服务。
本公开的一个实施例中,所述跳频参数为跳频起始位置。
本公开的一个实施例中,所述根据所述UE的类型确定所述UE的跳频起始位置,包括:响应于所述UE为轻型UE,确定所述UE的起始跳频初始位置;根据所述UE的起始跳频初始值确定所述UE的跳频起始位置。
本公开的一个实施例中,所述根据所述起始跳频初始位置确定所述UE的跳频起始位置,包括:确定所述UE的系统带宽;响应于起始跳频初始位置超出所述UE的系统带宽,获取调整值;根据所述调整值对所述起始跳频初始位置进行调整,以生成所述UE的跳频起始位置。
本公开的一个实施例中,还包括:响应于起始跳频初始位置未超出所述UE的系统带宽,将所述起始跳频初始位置确定为所述UE的跳频起始位置。
本公开的一个实施例中,所述调整值,通过以下方式确定:协议规定;或者,向所述UE发送信令配置。
本公开的一个实施例中,还包括:响应于所述UE为非轻型UE,则将所述起始跳频初始位置作为所述UE的跳频起始位置。
本公开的一个实施例中,所述根据所述UE的类型确定所述UE的跳频起始位置,包括:获取所述UE的当前跳频次数;根据所述当前跳频次数生成所述UE的当前跳频起始位置;根据所述UE的类型生成调整系数;以及根据所述调整系数和所述当前跳频起始位置生成所述UE的跳频起始位置。
本公开的一个实施例中,所述根据所述UE的类型生成调整系数,包括:如果所述UE为非轻型UE,则获取所述非轻型UE的带宽部分BWP,并根据所述BWP生成所述调整系数;如果所述UE为轻型UE,则获取所述轻型UE的系统带宽,并根据所述系统带宽生成所述调整系数。
本公开的一个实施例中,所述根据所述系统带宽生成所述调整系数,包括:根据所述轻型UE的系统带宽和所述非轻型UE的BWP之中的最小值生成所述调整系数。
本公开的一个实施例中,所述根据所述UE的类型生成调整系数,包括:根据所述非轻型UE的BWP和所述轻型UE的系统带宽之中的最小值生成所述调整系数,其中,所述非轻型UE和所述轻型UE的所述跳频起始位置均由所述调整系数生成。
本公开的一个实施例中,所述跳频参数为跳频偏移量。
本公开的一个实施例中,所述根据所述UE的类型确定所述UE的跳频偏移量,包括:向所述UE发送所述UE的类型所对应的偏移量配置表;向所述UE发送偏移量标识。
本公开的一个实施例中,还包括:如果所述UE为非轻型UE,则所述非轻型UE对应的第一偏移量配置表之中的跳频偏移量根据所述非轻型UE的BWP确定;如果所述UE为轻型UE,则所述轻型UE对应的第二偏移量配置表之中的跳频偏移量根据所述轻型UE的系统带宽确定。
本公开的一个实施例中,所述第二偏移量配置表之中的跳频偏移量根据所述轻型UE的系统带宽和所述非轻型UE的BWP之中的最小值确定。
本公开的一个实施例中,所述偏移量配置表,通过以下方式确定:协议规定;或者,向所述UE发送信令配置。
本公开的一个实施例中,所述非轻型UE和所述轻型UE均使用第二偏移量配置表。
本公开的一个实施例中,在所述偏移量配置表之中,所述非轻型UE对应的跳频偏移量由所述非轻型UE的BWP确定,所述轻型UE对应的跳频偏移量由所述非轻型UE的BWP和所述轻型UE的系统带宽之中的最小值确定。
本公开的一个实施例中,所述跳频参数为跳频次数。
本公开的一个实施例中,所述非轻型UE支持的跳频次数大于所述轻型UE支持的跳频次数。
本公开的一个实施例中,所述根据所述UE的类型确定所述UE的跳频次数,包括:如果所述UE为非轻型UE,则将第一跳频次数作为所述非轻型UE的跳频次数;如果所述UE为轻型UE,则将第二跳频次数作为所述轻型UE的跳频次数,其中,所述第一跳频次数大于所述第二跳频次数。
本公开的一个实施例中,所述第一跳频次数和所述第二跳频次数由协议配置或者基站指示。
本公开的一个实施例中,所述第一跳频次数和所述第二跳频次数,通过所述基站的RMSI、随机接入响应RAR或下行控制信息DCI指示。
本公开的一个实施例中,所述根据所述UE的类型确定所述UE的跳频次数,包括:判断所述非轻型UE的BWP是否大于所述轻型UE的系统带宽;如果大于所述轻型UE的系统带宽,则将第一预设次数作为所述非轻型UE的跳频次数,并将第二预设次数作为所述轻型UE的跳频次数,其中,所述第一预设次数大于所述第二预设次数;如果小于或等于所述轻型UE的系统带宽,则将所述第一预设次数作为所述非轻型UE和所述轻型UE的跳频次数。
本公开的一个实施例中,所述根据所述UE的类型确定所述UE跳频次数,包括:发送第一指示次数和第二指示次数,其中,所述第一指示次数大于所述第二指示次数,其中,如果所述非轻型UE的BWP大于所述轻型UE的系统带宽,则将所述第一指示次数作为所述非轻型UE的所述跳频次数,并将所述第二指示次数作为所述轻型UE的所述跳频次数。
本公开的一个实施例中,所述根据所述UE的类型确定跳频次数,包括:发送第三指示次数,其中,如果所述非轻型UE的第一BWP小于或等于所述轻型UE的第二BWP,则将所述第三指示次数作为所述非轻型UE和所述轻型UE的所述跳频次数。
本公开的一个实施例中,所述第一指示次数和第二指示次数,或者所述第三指示次数,通过所述基站的RMSI、随机接入响应RAR或下行控制信息DCI指示。
本公开的一个实施例中,所述非轻型UE对应的所述跳频次数由基站指示,所述轻型UE的对应的所述跳频次数由协议规定。
本公开第四方面实施例提出了一种跳频控制装置,应用与基站,包括:
第一确定模块,被配置为确定所述UE的类型;
第二确定模块,被配置为根据所述UE的类型确定跳频参数;
第一处理模块,被配置为根据确定的所述跳频参数进行跳频。
本公开的一个实施例中,所述跳频参数为跳频起始位置。
本公开的一个实施例中,所述第二确定模块,被配置为响应于所述UE为轻型UE,确定所述UE的 起始跳频初始位置;根据所述起始跳频初始值确定跳频起始位置。
本公开的一个实施例中,所述第二确定模块,被配置为确定所述UE的系统带宽;响应于起始跳频初始位置超出所述UE的系统带宽,获取调整值;根据所述调整值对所述起始跳频初始位置进行调整,以生成所述跳频起始位置。
本公开的一个实施例中,所述第二确定模块,被配置为响应于起始跳频初始位置未超出所述UE的系统带宽,将所述起始跳频初始位置确定为所述跳频起始位置。
本公开的一个实施例中,所述调整值,通过以下方式确定:协议规定;或者,通过基站发送的信令配置。
本公开的一个实施例中,所述第二确定模块,被配置为响应于所述UE为非轻型UE,则将所述起始跳频初始位置作为所述跳频起始位置。
本公开的一个实施例中,所述第二确定模块,包括:获取跳频次数单元,被配置为获取当前跳频次数;生成当前跳频起始位置单元,被配置为根据所述当前跳频次数生成当前跳频起始位置;生成调整系数单元,被配置为根据所述UE的类型生成调整系数;以及生成跳频起始位置单元,被配置为根据所述调整系数和所述当前跳频起始位置生成所述跳频起始位置。
本公开的一个实施例中,所述生成调整系数单元,包括:获取带宽部分BWP子单元,被配置为如果所述UE为非轻型UE,则获取所述非轻型UE的带宽部分BWP,并根据所述BWP生成所述调整系数;获取系统带宽子单元,被配置为如果所述UE为轻型UE,则获取所述轻型UE的系统带宽,并根据所述系统带宽生成所述调整系数。
本公开的一个实施例中,所述获取系统带宽子单元,被配置为根据所述轻型UE的系统带宽和所述非轻型UE的BWP之中的最小值生成所述调整系数。
本公开的一个实施例中,所述生成调整系数单元,被配置为:根据所述非轻型UE的BWP和所述轻型UE的系统带宽之中的最小值生成所述调整系数,其中,所述非轻型UE和所述轻型UE的所述跳频起始位置均由所述调整系数生成。
本公开的一个实施例中,所述跳频参数为跳频偏移量。
本公开的一个实施例中,所述第二确定模块,包括:获取偏移量配置表单元,被配置为获取所述UE的类型所对应的偏移量配置表;获取偏移量标识单元,被配置为获取基站指示的偏移量标识;确定跳频偏移量单元,被配置为根据所述偏移量标识和所述UE的类型所对应的偏移量配置表确定所述跳频偏移量。
本公开的一个实施例中,还包括:第一跳频偏移量单元,被配置为如果所述UE为非轻型UE,则所述非轻型UE对应的第一偏移量配置表之中的跳频偏移量根据所述非轻型UE的BWP确定;第二跳频偏移量单元,被配置为如果所述UE为轻型UE,则所述轻型UE对应的第二偏移量配置表之中的跳频偏移量根据所述轻型UE的系统带宽确定。
本公开的一个实施例中,所述第二偏移量配置表之中的跳频偏移量根据所述轻型UE的系统带宽和所述非轻型UE的BWP之中的最小值确定。
本公开的一个实施例中,所述偏移量配置表,通过以下方式确定:协议规定;或者,通过基站发送的信令配置。
本公开的一个实施例中,所述非轻型UE和所述轻型UE均使用第二偏移量配置表。
本公开的一个实施例中,在所述偏移量配置表之中,所述非轻型UE对应的跳频偏移量由所述非轻型UE的BWP确定,所述轻型UE对应的跳频偏移量由所述非轻型UE的BWP和所述轻型UE的系统带宽之中的最小值确定。
本公开的一个实施例中,所述跳频参数为跳频次数。
本公开的一个实施例中,所述非轻型UE支持的跳频次数大于所述轻型UE支持的跳频次数。
本公开的一个实施例中,所述第二确定模块,包括:第一确定非轻型UE的跳频次数单元,被配置为如果所述UE为非轻型UE,则将第一跳频次数作为所述非轻型UE的跳频次数;第一确定轻型UE的跳频次数单元,被配置为如果所述UE为轻型UE,则将第二跳频次数作为所述轻型UE的跳频次数,其中,所述第一跳频次数大于所述第二跳频次数。
本公开的一个实施例中,所述第一跳频次数和所述第二跳频次数由协议配置或者基站指示。
本公开的一个实施例中,所述第一跳频次数和所述第二跳频次数,通过所述基站的RMSI、随机接入响应RAR或下行控制信息DCI指示。
本公开的一个实施例中,所述第二确定模块,包括:第一判断模块,被配置为判断所述非轻型UE的BWP是否大于所述轻型UE的系统带宽;第二确定非轻型UE的跳频次数,被配置为如果大于所述轻型UE的系统带宽,则将第一预设次数作为所述非轻型UE的跳频次数,并将第二预设次数作为所述轻型UE 的跳频次数,其中,所述第一预设次数大于所述第二预设次数;第一确定非轻型UE和轻型UE的跳频次数单元,被配置为如果小于或等于所述轻型UE的系统带宽,则将所述第一预设次数作为所述非轻型UE和所述轻型UE的跳频次数。
本公开的一个实施例中,所述第二确定模块,包括:第一接收指示次数单元,被配置为接收所述基站指示的第一指示次数和第二指示次数,其中,所述第一指示次数大于所述第二指示次数;第二确定非轻型UE和轻型UE的跳频次数单元,被配置为如果所述非轻型UE的BWP大于所述轻型UE的系统带宽,则将所述第一指示次数作为所述非轻型UE的所述跳频次数,并将所述第二指示次数作为所述轻型UE的所述跳频次数。
本公开的一个实施例中,所述第二确定模块,包括:第二接收指示次数单元,被配置为接收所述基站指示的第三指示次数;第三确定非轻型UE和轻型UE的跳频次数单元,被配置为如果所述非轻型UE的第一BWP小于或等于所述轻型UE的第二BWP,则将所述第三指示次数作为所述非轻型UE和所述轻型UE的所述跳频次数。
本公开的一个实施例中,所述第一指示次数和第二指示次数,或者所述第三指示次数,通过所述基站的RMSI、随机接入响应RAR或下行控制信息DCI指示。
本公开的一个实施例中,所述非轻型UE对应的所述跳频次数由基站指示,所述轻型UE的对应的所述跳频次数由协议规定。
本公开第五方面实施例提出了一种跳频控制装置,应用于轻型UE,所述装置包括:第三确定模块,被配置为确认所述轻型UE下一跳的位置;射频重调模块,被配置为如果所述下一跳的频域位置超出所述轻型UE当前工作带宽所在的频域位置,则进行射频重调,以使所述轻型UE的工作带宽跳转至下一跳所在频域位置。
本公开的一个实施例中,所述射频重调的时间间隔由协议规定为固定值,或基站指示。
本公开的一个实施例中,其特征在于所述时间间隔由系统消息、媒体接入控制控制单元MAC CE或DCI信令指示。
本公开第六方面实施例提出了一种跳频控制装置,应用于基站,所述装置包括
第四确定模块,被配置为确定UE的类型;
第五确定模块,被配置为根据所述UE的类型确定所述UE的跳频参数;
第一提供模块,被配置为根据确定的所述UE的跳频参数为所述UE提供跳频服务。
本公开的一个实施例中,所述跳频参数为跳频起始位置。
本公开的一个实施例中,所述第五确定模块,被配置为响应于所述UE为轻型UE,确定所述UE的起始跳频初始位置;根据所述UE的起始跳频初始值确定所述UE的跳频起始位置。
本公开的一个实施例中,所述第五确定模块,被配置为确定所述UE的系统带宽;响应于起始跳频初始位置超出所述UE的系统带宽,获取调整值;根据所述调整值对所述起始跳频初始位置进行调整,以生成所述UE的跳频起始位置。
本公开的一个实施例中,所述第五确定模块,被配置为响应于起始跳频初始位置未超出所述UE的系统带宽,将所述起始跳频初始位置确定为所述UE的跳频起始位置。
本公开的一个实施例中,所述调整值,通过以下方式确定:协议规定;或者,向所述UE发送信令配置。
本公开的一个实施例中,所述第五确定模块,被配置为响应于所述UE为非轻型UE,则将所述起始跳频初始位置作为所述UE的跳频起始位置。
本公开的一个实施例中,所述第五确定模块,包括:获取UE跳频次数单元,被配置为获取所述UE的当前跳频次数;生成UE当前跳频起始位置单元,被配置为根据所述当前跳频次数生成所述UE的当前跳频起始位置;生成单元,被配置为根据所述UE的类型生成调整系数;以及生成UE跳频起始位置单元,被配置为根据所述调整系数和所述当前跳频起始位置生成所述UE的跳频起始位置。
本公开的一个实施例中,所述生成单元,被配置为如果所述UE为非轻型UE,则获取所述非轻型UE的带宽部分BWP,并根据所述BWP生成所述调整系数;如果所述UE为轻型UE,则获取所述轻型UE的系统带宽,并根据所述系统带宽生成所述调整系数。
本公开的一个实施例中,所述生成单元,被配置为根据所述轻型UE的系统带宽和所述非轻型UE的BWP之中的最小值生成所述调整系数。
本公开的一个实施例中,所述生成单元,被配置为根据所述非轻型UE的BWP和所述轻型UE的系统带宽之中的最小值生成所述调整系数,其中,所述非轻型UE和所述轻型UE的所述跳频起始位置均由所述调整系数生成。
本公开的一个实施例中,所述跳频参数为跳频偏移量。
本公开的一个实施例中,所述第五确定模块,包括:第一发送单元,被配置为向所述UE发送所述UE的类型所对应的偏移量配置表;第二发送单元,被配置为向所述UE发送偏移量标识。
本公开的一个实施例中,还包括:确定非轻型UE对应的第一偏移量配置表单元,被配置为如果所述UE为非轻型UE,则所述非轻型UE对应的第一偏移量配置表之中的跳频偏移量根据所述非轻型UE的BWP确定;确定UE对应的第二偏移量配置表,被配置为如果所述UE为轻型UE,则所述轻型UE对应的第二偏移量配置表之中的跳频偏移量根据所述轻型UE的系统带宽确定。
本公开的一个实施例中,所述第二偏移量配置表之中的跳频偏移量根据所述轻型UE的系统带宽和所述非轻型UE的BWP之中的最小值确定。
本公开的一个实施例中,所述偏移量配置表,通过以下方式确定:协议规定;或者,向所述UE发送信令配置。
本公开的一个实施例中,所述非轻型UE和所述轻型UE均使用第二偏移量配置表。
本公开的一个实施例中,在所述偏移量配置表之中,所述非轻型UE对应的跳频偏移量由所述非轻型UE的BWP确定,所述轻型UE对应的跳频偏移量由所述非轻型UE的BWP和所述轻型UE的系统带宽之中的最小值确定。
本公开的一个实施例中,所述跳频参数为跳频次数。
本公开的一个实施例中,所述非轻型UE支持的跳频次数大于所述轻型UE支持的跳频次数。
本公开的一个实施例中,所述第五确定模块,包括:第三确定非轻型UE的跳频次数单元,被配置为如果所述UE为非轻型UE,则将第一跳频次数作为所述非轻型UE的跳频次数;第二确定轻型UE的跳频次数单元,被配置为如果所述UE为轻型UE,则将第二跳频次数作为所述轻型UE的跳频次数,其中,所述第一跳频次数大于所述第二跳频次数。
本公开的一个实施例中,所述第一跳频次数和所述第二跳频次数由协议配置或者基站指示。
本公开的一个实施例中,所述第一跳频次数和所述第二跳频次数,通过所述基站的RMSI、随机接入响应RAR或下行控制信息DCI指示。
本公开的一个实施例中,所述第五确定模块,包括:第二判断模块,被配置为判断所述非轻型UE的BWP是否大于所述轻型UE的系统带宽;第四确定非轻型UE的跳频次数,被配置为如果大于所述轻型UE的系统带宽,则将第一预设次数作为所述非轻型UE的跳频次数,并将第二预设次数作为所述轻型UE的跳频次数,其中,所述第一预设次数大于所述第二预设次数;第四确定非轻型UE和轻型UE的跳频次数单元,被配置为如果小于或等于所述轻型UE的系统带宽,则将所述第一预设次数作为所述非轻型UE和所述轻型UE的跳频次数。
本公开的一个实施例中,所述第五确定模块,包括:第三发送单元,被配置为发送第一指示次数和第二指示次数,其中,所述第一指示次数大于所述第二指示次数,其中,如果所述非轻型UE的BWP大于所述轻型UE的系统带宽,则将所述第一指示次数作为所述非轻型UE的所述跳频次数,并将所述第二指示次数作为所述轻型UE的所述跳频次数。
本公开的一个实施例中,所述第五确定模块,包括:第四发送单元,被配置为发送第三指示次数,其中,如果所述非轻型UE的第一BWP小于或等于所述轻型UE的第二BWP,则将所述第三指示次数作为所述非轻型UE和所述轻型UE的所述跳频次数。
本公开的一个实施例中,所述第一指示次数和第二指示次数,或者所述第三指示次数,通过所述基站的RMSI、随机接入响应RAR或下行控制信息DCI指示。
本公开的一个实施例中,所述非轻型UE对应的所述跳频次数由基站指示,所述轻型UE的对应的所述跳频次数由协议规定。
本公开第七方面实施例提出了一种通信设备,包括收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并实现如第一方面实施例提出的跳频控制方法,或第二方面提出的跳频控制方法,或第三方面提出的跳频控制方法。
本公开第八方面实施例提出了一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行第一方面实施例提出的跳频控制方法,或者,第二方面实施例提出的跳频控制方法或者,第三方面提出的跳频控制方法。
本公开实施例提供的一种跳频控制方法及装置,确定UE的类型,然后根据UE的类型确定跳频参数,之后根据确定的跳频参数进行跳频。由此,可以根据UE的类型对跳频参数进行调整,从而避免跳出轻型UE的系统带宽范围的情况发生。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开实施例提供的一种跳频控制方法的流程示意图;
图2为本公开实施例提供的跳频模式示意图;
图3为本公开实施例提供的另一种跳频控制方法的流程示意图;
图4为本公开实施例提供的跳频起始位置调整的示意图;
图5为本公开实施例提供的另一种跳频控制方法的流程示意图;
图6为本公开实施例提供的另一种跳频控制方法的流程示意图;
图7为本公开实施例提供的一种跳频控制方法的流程示意图;
图8为本公开实施例提供的另一种跳频控制方法的流程示意图;
图9a和9b为本公开实施例的进行射频重调的一个示意图;
图10为本公开实施例提供的一种跳频控制方法的流程示意图;
图11为本公开实施例提供的另一种跳频控制方法的流程示意图;
图12为本公开实施例提供的跳频控制装置的结构示意图;
图13为本公开实施例提供的跳频控制装置的结构示意图;
图14为本公开实施例提供的跳频控制装置的结构示意图;
图15为本公开实施例的跳频控制方法通信设备的框图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
相关技术中,由于轻型UE的系统带宽较小,因此在轻型UE进行跳频时可能会导致轻型UE跳出系统带宽,无法工作。因此,如何避免轻型终端在跳频时跳出系统带宽成为了亟待解决的问题。
针对这一问题,本公开实施例提供了跳频控制方法及装置。
图1为本公开实施例提供的一种跳频控制方法的流程示意图,由UE执行。在该实施例之中,轻型UE和非轻型UE使用相同的初始上行BWP(带宽部分)。如上所述的,如果轻型UE和非轻型UE所采用的跳频机制一样,则出现轻型UE在某跳跳频时跳出轻型UE的系统带宽的情况。因此,在本公开的实施例之中,在轻型UE和非轻型UE所采用的跳频机制一样的前提下,可根据UE的类型对跳频参数进行调整,以避免出现轻型UE跳出其系统带宽范围的情况。
在本公开的实施例之中,UE在确定跳频偏移值、跳频次数和跳频时域粒度跳频等参数后,可以按照确定的跳频参数进行跳频。需要说明的是,在本公开的实施例中,跳频参数包括跳频偏移值、跳频次数和跳频时域粒度,其中,跳频偏移值,用于确定每一跳的起始位置;跳频次数,用于通过配置多个频域位置,可以获得更高的频率分集增益;跳频时域粒度,用于通过扩展时域跳频的基本粒度,可以支持实现Cross-slot(跨时隙)联合信道估计,或者针对低流动性或静止UE,降低其DMRS(Demodulation Reference Signal,解调参考信号)密度等。
如图1所示,该跳频控制方法包括以下步骤:
步骤101,确定UE的类型。
其中,在本公开的实施例之中,UE的类型包括轻型UE(Reduced capability)和非轻型UE。在本公开的一个实施例中,轻型UE可理解为带宽较小或者天线数量较少的物联网设备,非轻型UE可理解为支持NR全部特性的普通NR终端。在LTE 4G系统中,为了支持物联网业务提出了MTC(机器类通信,Machine Type Communications),NB-IoT(窄带物联网)两大技术。这两大技术主要针对的是低速率,高时延等场景,比如抄表,环境监测等场景。NB-IoT目前最大只能支持几百k的速率,MTC目前最大只能支持几M的速率。但同时另外一方面,随着物联网业务的不断发展,比如视频监控,智能家居,可穿戴设备和工业传感监测等业务的普及。这些业务通常要求几十到100M的速率,同时对时延也有相对较高的要求,因此LTE中的MTC,NB-IoT技术很难满足要求。在该实施例之中,将这种新的UE类型统称为Reduced capability UE,即轻型UE,而目前的普通终端,在本公开的实施例之中称之为非轻型UE。
在本公开的一个实施例之中,通常轻型UE具有以下特点:
-低造价,低复杂度
-一定程度的覆盖增强
-功率节省。
由于目前的NR新空口是针对高速率低时延等高端终端设计的,因此当前的设计无法满足轻型UE的上述要求。因此需要对目前的NR系统进行改造用以满足轻型UE的要求。比如,为了满足低造价,低复杂度等要求,可以限制轻型UE的带宽,比如限制到10M Hz或者20M Hz,或者限制轻型UE的接收天线数量。针对功率节省,可能的优化方向是减少用户设备的处理复杂度,如在同一个时隙中只接收PDCCH(物理下行控制信道,Physical Downlink Control Channel)信道,在同一时隙的其他符号时刻则进入微睡眠状态。对于一定程度的覆盖增强,还可对各个信道进行多次重复传输,降低码率等。
在本公开的一个实施例中,可根据带宽的大小,确定UE类型。在本公开的一个实施例之中,基站可以获知UE的带宽,根据UE的带宽大小,可以获知该UE的类型,即轻型UE或非轻型UE。在本公开的其他实施例之中,还可根据物理随机接入信道(physical random accesschannel,PRACH)对两种UE的类型进行区分。
如图2所示,在本公开的一个实施例中,跳频偏移值用于确定每一跳的起始位置;跳频次数可理解为跳频的跳数:比如Message3重复传输8次,跳频时域粒度是1个slot,跳数可以为4,那么跳频模式可如图2所示,其中,也就是说,在repetition过程中,msg3的传输有4个不同的频域位置(如图2之中的灰色部分)。
步骤102,根据UE的类型确定跳频参数。
在本公开的实施例之中,跳频参数包括跳频起始位置、跳频偏移量以及跳频次数之中的一个或多个。在本公开的一个实施例之中,跳频参数是根据UE的类型来决定的。具体而言,可以为轻型UE设置独立的跳频参数,并为非轻型UE设置独立的跳频参数。在本公开的实施例之中,轻型UE可以根据自身的系统带宽进行跳频参数的设置,从而避免在跳频时出现跳出轻型UE系统带宽的情况。在本公开的另一个是实施例之中,也还可以为轻型UE和非轻型UE设置相同的跳频参数,该跳频参数需要兼顾轻型UE,避免其跳出轻型UE的系统带宽范围的情况。或者,还可以保持目前非轻型UE的跳频参数不变,对轻型UE的跳频参数进行调整。
在本公开的实施例之中,可对跳频起始位置、跳频偏移量以及跳频次数之中的一个或多个进行调整,以避免出现跳出轻型UE的系统带宽范围的情况。
步骤103,根据确定的跳频参数进行跳频。
在本公开的实施例之中,可以根据UE确定的跳频参数进行跳频。例如根据跳频起始位置、跳频偏移量以及跳频次数进行跳频。
在本公开的实施例之中,可以根据UE的类型对跳频参数进行调整,从而避免跳出轻型UE的系统带宽范围的情况发生。
图3为本公开实施例提供的一种跳频控制方法的流程示意图,由UE执行,UE在确定跳频偏移值、跳频次数和跳频时域粒度等跳频参数之后,可以按照确定的跳频参数进行跳频。需要说明的是,在本公开的实施例中,跳频参数包括跳频偏移值、跳频次数和跳频时域粒度,其中,跳频偏移值,用于确定每一跳的起始位置;跳频次数,用于通过配置多个频域位置,可以获得更高的频率分集增益;跳频时域粒度,用于通过扩展时域跳频的基本粒度,可以支持实现Cross-slot(跨时隙)联合信道估计,或者针对低流动性或静止UE,降低其DMRS(Demodulation Reference Signal,解调参考信号)密度等。
如图3所示,在该实施例之中,跳频参数可为跳频起始位置。该跳频控制方法包括以下步骤:
步骤301,确定UE的类型。
其中,在本公开的实施例之中,UE的类型包括轻型UE(Reduced capability)和非轻型UE。在本公开的一个实施例中,轻型UE可理解为带宽较小或者天线数量较少的物联网设备,非轻型UE可理解为支持NR全部特性的普通NR终端。
步骤302,根据UE的类型确定对应的跳频起始位置。
在本公开的一个实施例之中,对于非轻型UE和轻型UE可以通过相同的方式确定跳频起始位置。但是对于轻型UE而言,在确定了轻型UE的跳频起始位置之后,需要对轻型UE的跳频起始位置进行调整,从而避免跳出轻型UE的系统带宽范围的情况发生。
在本公开的一个实施例中,可通过以下方式确定跳频参数为跳频起始位置。
在本公开的一个实施例中,响应于UE为轻型UE,首先确定轻型UE的起始跳频初始位置,然后根据起始跳频初始位置确定跳频起始位置。
其中,在本公开的一个实施例中,可根据轻型UE的系统带宽确定对应的调整值,再根据调整值对起始跳频初始位置进行调整,从而确定跳频起始位置。
其中,在本公开的一个实施例之中,调整值通过以下方式确定:
协议规定;或者,通过基站发送的信令配置。
在本公开的一个实施例之中,调整值可以通过协议的方式固定,也可以由基站进行动态配置。
在本公开的一个实施例之中,例如确定的起始跳频初始位置为n,且该n出现了跳出轻型UE系统带宽的问题,则需要对n进行调整。在本公开的另一个实施例之中,例如确定第n跳的的起始跳频初始位置为a,且a跳出了轻型UE所支持的最大系统带宽,那么第n跳的跳频起始位置可以为第n-m跳的位置b,其中b在轻型UE系统带宽范围内,并且,n>m。在该实施例之中,m可以通过协议固定,也可以是由基站动态配置。m依据跳频次数决定。
如图4所示为,本公开实施例的跳频起始位置调整示意图。如图4所示,在Slot3(时隙3)时,由于出现超出UE系统带宽的情况,因此对其进行调整,例如减去调整值,例如2,使其回落到轻型UE的系统带宽之中。同样地,对于Slot4而言,也可对其减去调整值,例如2。
其中,在本公开的一个实施例中,响应于起始跳频初始位置未超出UE的系统带宽,可直接将起始跳频初始位置确定为跳频起始位置。
在本公开的一个实施例中,当UE的类型为非轻型UE时,可通过以下方式确定跳频参数为跳频起始位置。
其中,在本公开的一个实施例中,响应于UE为非轻型UE,则将起始跳频初始位置作为跳频起始位置。
在本公开的实施例中,基站可通过向UE发送信令告知UE的调整值。在本公开的一个实施例之中,信令可包括剩余最小系统消息RMSI(Remaining Minimum System Information)信令。
步骤303,根据跳频起始位置进行跳频。
在本公开的一个实施例中,在确定跳频起始位置后,可根据跳频起始位置进行跳频。
在本公开的实施例中,对于轻型UE来说,对其起始跳频初始位置进行调整,从而确定轻型UE对应的跳频起始位置,避免跳出轻型UE的系统带宽范围。
图5为本公开实施例提供的一种跳频控制方法的流程示意图,由UE执行。UE在确定跳频偏移值、跳频次数和跳频时域粒度等跳频参数之后,可以按照确定的跳频参数进行跳频。需要说明的是,在本公开的实施例中,跳频参数包括跳频偏移值、跳频次数和跳频时域粒度,其中,跳频偏移值,用于确定每一跳的起始位置;跳频次数,用于通过配置多个频域位置,可以获得更高的频率分集增益;跳频时域粒度,用于通过扩展时域跳频的基本粒度,可以支持实现Cross-slot(跨时隙)联合信道估计,或者针对低流动性或静止UE,降低其DMRS(Demodulation Reference Signal,解调参考信号)密度等。
如图5所示,在该实施例之中,可以对轻型UE设置对应的跳频起始位置确定公式,从而避免跳出轻型UE的系统带宽范围的情况发生。该跳频控制方法包括以下步骤:
步骤501,确定UE的类型。
其中,在本公开的实施例之中,UE的类型包括轻型UE(Reduced capability)和非轻型UE。在本公开的一个实施例中,轻型UE可理解为带宽较小或者天线数量较少的物联网设备,非轻型UE可理解为支持NR全部特性的普通NR终端。
步骤502,获取当前跳频次数;
在本公开的实施例之中,不同的跳频次数对应的公式不同,因此需要确认跳频次数。
步骤503,根据当前跳频次数生成当前跳频起始位置;
在本公开的实施例之中,对于UE而言,可以将
Figure PCTCN2021072350-appb-000001
作为当前跳频起始位置,其中,i为当前跳频次数,RBstart为当前跳频起始位置,RBoffset为偏移量。
步骤504,根据UE的类型生成调整系数。
在本公开的实施例之中,根据UE的类型生成相应的调整系数,可通过该调整系数对当前跳频起始位置进行调整。
在本公开的一个实施例之中,对于非轻型UE而言,该调整系数为
Figure PCTCN2021072350-appb-000002
其中,
Figure PCTCN2021072350-appb-000003
为非轻型UE的带宽部分BWP。
在本公开的一个实施例之中,对于轻型UE而言,可根据轻型UE的系统带宽生成该调整系数。在本 公开的另一个实施例之中,对于轻型UE而言,该调整系数为
Figure PCTCN2021072350-appb-000004
其中,
Figure PCTCN2021072350-appb-000005
为非轻型UE的带宽部分BWP,
Figure PCTCN2021072350-appb-000006
为轻型UE的系统带宽。
在本公开的实施例中,基于取模生成的调整系数,还可基于其它方式生成调整系数,对此本公开不作任何限制。
步骤505,根据调整系数和当前跳频起始位置生成跳频起始位置。
在本公开的实施例之中,通过调整系数对当前跳频起始位置进行调整,从而生成跳频起始位置。
步骤506,根据跳频起始位置进行跳频。
在UE确定了自身对应的跳频起始位置之后,按照确定之中的跳频起始位置进行跳频。
在该实施例之中,可根据UE的类型,确定调整系数,从而使得轻型UE,避免跳出轻型UE的系统带宽范围。
在本公开的一个实施例之中,对于多个跳频位置的方式,可以通过以下方式确定轻型UE和非轻型UE的跳频起始位置。
对于非轻型UE而言,可以通过以下公式计算跳频起始位置:
Figure PCTCN2021072350-appb-000007
其中,i为跳频次数。
对于轻型UE而言,可以通过以下公式计算跳频起始位置:
Figure PCTCN2021072350-appb-000008
其中,i为跳频次数。
在本公开的另一个实施例之中,对于时隙内跳频(intra-slot)以及两跳时隙间跳频(inter-slot)的方式,还可通过以下公式来确定跳频起始位置。
对于非轻型UE,以及时隙内跳频(intra-slot)而言,可通过以下公式确定跳频起始位置:
Figure PCTCN2021072350-appb-000009
对于非轻型UE,以及两跳时隙间跳频(inter-slot)而言,可通过以下公式确定跳频起始位置:
Figure PCTCN2021072350-appb-000010
对于轻型UE,以及时隙内跳频(intra-slot)而言,可通过以下公式确定跳频起始位置:
Figure PCTCN2021072350-appb-000011
其中,i为跳频次数。
对于轻型UE,以及两跳时隙间跳频(inter-slot)而言,可通过以下公式确定跳频起始位置:
Figure PCTCN2021072350-appb-000012
其中,i为跳频次数。
在本公开的其他实施例之中,还可以进行多次的跳频,例如对于轻型UE而言,可以通过以下公式 确定跳频起始位置:
对于轻型UE基于时隙间跳频的多次跳频:
Figure PCTCN2021072350-appb-000013
Figure PCTCN2021072350-appb-000014
其中,i为跳频次数。
对于轻型UE的时隙内跳频:
Figure PCTCN2021072350-appb-000015
其中,i为跳频次数。
对于轻型UE的两跳时隙间跳频:
Figure PCTCN2021072350-appb-000016
Figure PCTCN2021072350-appb-000017
为当前时隙号。
在上述实施例之中,可以用于轻型UE支持RAR和Msg3之间进行RFretuning(射频重调)的场景中。
在本公开的实施例之中,根据所述轻型UE的系统带宽和非轻型UE的BWP之中的最小值生成调整系数。在本公开的另一个实施例之中,轻型UE和非轻型UE均使用相同的跳频起始位置确定公式。在该实施例之中,由于轻型UE和非轻型UE使用的公式相同(均采用如上所示的轻型UE的跳频起始位置确定公式),因此基站无需对二者进行区分。在本公开的另一个实施例之中,根据非轻型UE的BWP和轻型UE的系统带宽之中的最小值生成调整系数,其中,非轻型UE和轻型UE的跳频起始位置均通过该调整系数确定。
图6为本公开实施例提供的一种跳频控制方法的流程示意图,由UE执行。UE在确定跳频偏移值、跳频次数和跳频时域粒度等跳频参数之后,可以按照确定的跳频参数进行跳频。需要说明的是,在本公开的实施例中,跳频参数包括跳频偏移值、跳频次数和跳频时域粒度,其中,跳频偏移值,用于确定每一跳的起始位置;跳频次数,用于通过配置多个频域位置,可以获得更高的频率分集增益;跳频时域粒度,用于通过扩展时域跳频的基本粒度,可以支持实现Cross-slot(跨时隙)联合信道估计,或者针对低流动性或静止UE,降低其DMRS(Demodulation Reference Signal,解调参考信号)密度等。
如图6所示,在该实施例之中跳频参数为跳频偏移量。在本公开的实施例之中,还可通过调整轻型UE的跳频偏移量实现避免跳出轻型UE系统带宽的问题。该跳频控制方法包括以下步骤:
步骤601,确定UE的类型。
其中,在本公开的实施例之中,UE的类型包括轻型UE(Reduced capability)和非轻型UE。在本公开的一个实施例中,轻型UE可理解为带宽较小或者天线数量较少的物联网设备,非轻型UE可理解为支持NR全部特性的普通NR终端。
步骤602,根据UE的类型确定跳频参数为跳频偏移量。
在本公开的一个实施例中,可首先通过获取UE的类型所对应的偏移量配置表,之后获取基站指示的偏移量标识,再根据偏移量标识和UE的类型所对应的偏移量配置表确定跳频偏移量。
在本公开的一个实施例之中,针对UE不同的类型,设置不同的偏移量配置表。
在本公开的一个实施例之中,偏移量配置表可以是协议规定的,也可以是基站通过系统消息通知的。
在本公开的一个实施例之中,可以为非轻型UE和轻型UE配置相同的偏移量配置表,也可以为非轻型UE和轻型UE配置不相同的偏移量配置表。若配置相同的偏移量配置表,需要避免轻型UE跳出自身 系统带宽。
步骤603,根据跳频偏移量进行跳频。
UE根据以上步骤确定的跳频偏移量进行跳频。
在本公开的实施例之中,可以对轻型UE的跳频偏移量进行调整,从而避免轻型UE出现跳出系统带宽范围的问题。
在本公开的一个实施例之中,当UE为非轻型UE,则非轻型UE对应的第一偏移量配置表之中的跳频偏移量根据非轻型UE的BWP确定;当UE为轻型UE,则轻型UE对应的第二偏移量配置表之中的跳频偏移量根据轻型UE的系统带宽确定。
在该实施例之中,对于时隙内跳频(intra-slot),非轻型UE可以使用如下的第一偏移量配置表:
Figure PCTCN2021072350-appb-000018
表1
在该实施例之中,对于时隙内跳频(intra-slot),轻型UE可以使用如下的第二偏移量配置表:
Figure PCTCN2021072350-appb-000019
表2
在本公开的一个实施例之中,上述表1和表2可通过协议的方式固定。也可通过基站指示的方式配置到UE之中。
在本公开的其他实施例之中,对于两跳的时隙间跳频,非轻型UE可以使用如下的第一偏移量配置表:
Figure PCTCN2021072350-appb-000020
表3
在本公开的其他实施例之中,对于两跳的时隙间跳频,轻型UE可以使用如下的第二偏移量配置表:
Figure PCTCN2021072350-appb-000021
表4
其中,在本公开的一个实施例中,在偏移量配置表之中,非轻型UE对应的跳频偏移量由非轻型UE的BWP确定,轻型UE对应的跳频偏移量由非轻型UE的BWP和轻型UE的系统带宽之中的最小值确定。
在本公开的一个实施例之中,还可通过系统消息给UE配置上述偏移量配置表。
在本公开的实施例之中,非轻型UE和轻型UE可均使用第二偏移量配置表。
在本公开的一个实施例之中,还可以针对多跳设置偏移量配置表。
在本公开的其他实施例之中,对于三跳的时隙间跳频,非轻型UE可以使用如下的第一偏移量配置表:
Figure PCTCN2021072350-appb-000022
表5
在本公开的其他实施例之中,对于三跳的时隙间跳频,轻型UE可以使用如下的第二偏移量配置表:
Figure PCTCN2021072350-appb-000023
表6
在本公开的实施例之中,上述第一偏移量配置表5和第二偏移量配置表6可通过协议规定,也可以通过系统消息通知。
在本公开的实施例之中,还将第一偏移量配置表和第二偏移量配置表合并。该合并之中的表对于轻型UE和非轻型UE均适用,如下表所示。
Figure PCTCN2021072350-appb-000024
表7
在本公开的一个实施例中,可将多个跳频偏移值配置表汇总至一个大表中,之后再将第一偏移量标识作为索引值进行检索。由于将多个跳频偏移值配置表汇总至一个表中,导致该大表较长,因此相应动态信令中需要扩展比特位来指示其索引。其中,扩展的比特位可复用RARULgrant中的TPC(功控)字段。
在本公开的一个实施例中,当需要进行重复时,此时覆盖较差,终端一般使用满功率发送,此时TPC(功控)字段无效,因此可以复用该TPC字段作为扩展的比特位(即第一偏移量标识)。
在本公开的一个实施例之中,基站可以设置第一偏移量配置表和第二偏移量配置表,或者,也可以设置第一偏移量配置表或第二偏移量配置表。如果BWP大于轻型UE的系统带宽,则在基站之中配置第一偏移量配置表和第二偏移量配置表。如果BWP小于或等于轻型UE的系统带宽,则在基站之中只配置第一偏移量配置表,轻型UE也使用该第一偏移量配置表。
在本公开的一个实施例之中,基站可以设置第一偏移量配置表和第二偏移量配置表,非轻型UE使用第一偏移量配置表进行跳频起始位置的确定,轻型UE使用第二偏移量配置表进行跳频起始位置的确定。
在本公开的一个实施例之中,如果上述偏移量配置表由系统消息通知,则在该实施例之中可以只发送第二偏移量配置表,非轻型UE和轻型UE均使用第二偏移量配置表进行跳频起始位置的确定。这样基站可以无需对UE进行类型区分。
在本公开的一个实施例之中,偏移量不仅可以通过上述的偏移量配置表设定,还可以通过协议设定,或者基站的系统消息配置。
图7为本公开实施例提供的一种跳频控制方法的流程示意图,由UE执行,以在UE在确定跳频偏移值、跳频次数和跳频时域粒度等跳频参数之后,可以按照确定的跳频参数进行跳频。需要说明的是,在本公开的实施例中,跳频参数包括跳频偏移值、跳频次数和跳频时域粒度,其中,跳频偏移值,用于确定每一跳的起始位置;跳频次数,用于通过配置多个频域位置,可以获得更高的频率分集增益,跳频时域粒度,用于通过扩展时域跳频的基本粒度,可以支持实现Cross-slot(跨时隙)联合信道估计,或者针对低流动性或静止UE,降低其DMRS(Demodulation Reference Signal,解调参考信号)密度等。
如图7示,在该实施例之中跳频参数为跳频次数。在本公开的实施例之中,还可通过调整轻型UE的跳频次数实现避免跳出轻型UE系统带宽的问题。该跳频控制方法包括以下步骤:
步骤701,确定UE的类型。
其中,在本公开的实施例之中,UE的类型包括轻型UE(Reduced capability)和非轻型UE。在本公开的一个实施例中,轻型UE可理解为带宽较小或者天线数量较少的物联网设备,非轻型UE可理解为支持NR全部特性的普通NR终端。
步骤702,根据UE的类型确定跳频参数为跳频次数。
在本公开的实施例中,如果UE为非轻型UE,则将第一跳频次数作为非轻型UE的跳频次数;如果 UE为轻型UE,则将第二跳频次数作为轻型UE的跳频次数,其中,第一跳频次数大于第二跳频次数。
在本公开的实施例中,非轻型UE支持的跳频次数大于轻型UE支持的跳频次数。
在本公开的实施例中,上述第一跳频次数和第二跳频次数,通过基站的RMSI、随机接入响应RAR或下行控制信息DCI指示。
在本公开的实施例中,第一跳频次数和第二跳频次数由协议配置或者基站指示。在本公开的一个实施例之中,基站可通过RMSI广播第一跳频次数和第二跳频次数。
在本公开的实施例中,非轻型UE对应的跳频次数由基站指示,轻型UE的对应的跳频次数由协议规定。
在本公开的另一个实施例中,判断非轻型UE的BWP是否大于轻型UE的系统带宽;如果大于轻型UE的系统带宽,则将第一预设次数作为非轻型UE的跳频次数,并将第二预设次数作为轻型UE的跳频次数,其中,第一预设次数大于第二预设次数;如果小于或等于轻型UE的系统带宽,则将第一预设次数作为非轻型UE和轻型UE的跳频次数。
在本公开的另一个实施例中,接收基站指示的第一指示次数和第二指示次数,其中,第一指示次数大于第二指示次数;如果非轻型UE的BWP大于轻型UE的系统带宽,则将第一指示次数作为非轻型UE的跳频次数,并将第二指示次数作为轻型UE的跳频次数
在本公开的另一个实施例中,接收基站指示的第三指示次数。如果非轻型UE的第一BWP小于或等于轻型UE的第二BWP,则将第三指示次数作为非轻型UE和轻型UE的跳频次数
需要说明的是,上述第一指示次数和第二指示次数,或者第三指示次数,通过基站的RMSI、随机接入响应RAR或下行控制信息DCI指示。
在本公开个一个实施例之中,也还可为轻型UE通知或设置预设的值,例如0,即对轻型UE来说不进行跳频。
在该实施例之中,可适用于时隙内跳频的方式,也可适用于时隙间跳频的方式。
在本公开个一个实施例之中,可以将非轻型UE的跳频次数由基站进行配置,对于轻型UE的跳频次数,也可以设置为固定值。在本公开的一个实施例之中,基站配置的值可大于协议为轻型UE规定的预设值
步骤703,根据跳频次数进行跳频。
UE根据以上步骤确定的跳频次数进行跳频。
在本公开的实施例之中,可以对轻型UE的跳频次数进行调整,从而避免轻型UE出现跳出系统带宽范围的问题。
图8为本公开实施例提供的一种跳频控制方法的流程示意图,由轻型UE执行,需要说明的是,在本公开的实施例中,跳频参数包括跳频偏移值、跳频次数和跳频时域粒度,其中,跳频偏移值,用于确定每一跳的起始位置;跳频次数,用于通过配置多个频域位置,可以获得更高的频率分集增益,跳频时域粒度,用于通过扩展时域跳频的基本粒度,可以支持实现Cross-slot(跨时隙)联合信道估计,或者针对低流动性或静止UE,降低其DMRS(Demodulation Reference Signal,解调参考信号)密度等。
如图8示,在该实施例之中,可通过射频重调的方式进行调整。该跳频控制方法包括以下步骤:
步骤801,确认轻型UE下一跳的位置。
如图9a所示,为本公开实施例的进行射频重调的一个示意图。参照图9a所示,轻型UE的下一跳时域位置为Slot3。
步骤802,如果下一跳的频域位置超出轻型UE当前工作带宽所在的频域位置,则进行射频重调,以使轻型UE的工作带宽跳转至下一跳所在频域位置。
进一步参照图9a所示,轻型UE的下一跳频域位置超出了轻型UE当前工作带宽所在的频域位置。因此,需要对轻型UE进行射频重调,以使轻型UE的工作带宽跳转至下一跳所在频域位置,例如图9a之中的Slot4。
在本公开的实施例中,射频重调的时间间隔由协议规定为固定值,或基站指示。
在本公开的实施例中,时间间隔由系统消息、媒体接入控制控制单元MAC CE或DCI信令指示。
如图9b所示,为本公开实施例的进行射频重调的另一个示意图。轻型UE从Hop#0,通过射频重调的方式跳转至Hop#1。
在本公开的实施例之中,对于时隙内跳频,如果采用本公开实施例的射频重调方案,对于PUSCH时域资源分配,可使得射频重调时间+PUSCH字符数<=预设字符数,例如14。
在上述实施例之中,当轻型UE和非轻型UE共用BWP时,本公开实施可支持轻型UE和非轻型UE的Msg3传输支持跳频机制,包括传统的时隙内跳频、时隙间跳频和多跳时隙间跳频,以及时域粒度增强的时隙间跳频方案。
图10为本公开实施例提供的一种跳频控制方法的流程示意图,由基站执行,以在UE在确定跳频偏移值、跳频次数和跳频时域粒度等跳频参数后,可以按照确定的跳频参数进行跳频。需要说明的是,在本公开的实施例中,跳频参数包括跳频偏移值、跳频次数和跳频时域粒度,其中,跳频偏移值,用于确定每一跳的起始位置;跳频次数,用于通过配置多个频域位置,可以获得更高的频率分集增益,跳频时域粒度,用于通过扩展时域跳频的基本粒度,可以支持实现Cross-slot(跨时隙)联合信道估计,或者针对低流动性或静止UE,降低其DMRS(Demodulation Reference Signal,解调参考信号)密度等。
如图10所示,该跳频控制方法包括以下步骤:
步骤1010,确定UE的类型。
其中,在本公开的实施例之中,UE的类型包括轻型UE(Reduced capability)和非轻型UE。在本公开的一个实施例中,轻型UE可理解为带宽较小或者天线数量较少的物联网设备,非轻型UE可理解为支持NR全部特性的普通NR终端。
其中,在本公开的实施例之中,UE的类型包括轻型UE(Reduced capability)和非轻型UE。在本公开的一个实施例中,轻型UE可理解为带宽较小或者天线数量较少的物联网设备,非轻型UE可理解为支持NR全部特性的普通NR终端。在LTE 4G系统中,为了支持物联网业务提出了MTC(机器类通信,Machine Type Communications),NB-IoT(窄带物联网)两大技术。这两大技术主要针对的是低速率,高时延等场景,比如抄表,环境监测等场景。NB-IoT目前最大只能支持几百k的速率,MTC目前最大只能支持几M的速率。但同时另外一方面,随着物联网业务的不断发展,比如视频监控,智能家居,可穿戴设备和工业传感监测等业务的普及。这些业务通常要求几十到100M的速率,同时对时延也有相对较高的要求,因此LTE中的MTC,NB-IoT技术很难满足要求。在该实施例之中,将这种新的UE类型统称为Reduced capability UE,即轻型UE,而目前的普通终端,在本公开的实施例之中称之为非轻型UE。
在本公开的一个实施例之中,通常轻型UE具有以下特点:
-低造价,低复杂度
-一定程度的覆盖增强
-功率节省。
由于目前的NR新空口是针对高速率低时延等高端终端设计的,因此当前的设计无法满足轻型UE的上述要求。因此需要对目前的NR系统进行改造用以满足轻型UE的要求。比如,为了满足低造价,低复杂度等要求,可以限制轻型UE的带宽,比如限制到10M Hz或者20M Hz,或者限制轻型UE的接收天线数量。针对功率节省,可能的优化方向是减少用户设备的处理复杂度,如在同一个时隙中只接收PDCCH(物理下行控制信道,Physical Downlink Control Channel)信道,在同一时隙的其他符号时刻则进入微睡眠状态。对于一定程度的覆盖增强,还可对各个信道进行多次重复传输,增加聚合等级以及降低码率等。
在本公开的一个实施例中,可根据带宽的大小,确定UE类型。在本公开的一个实施例之中,基站可以获知UE的带宽,根据UE的带宽大小,可以获知该UE的类型,即轻型UE或非轻型UE。在本公开的其他实施例之中,还可根据物理随机接入信道(physical random accesschannel,PRACH)对两种UE的类型进行区分。
如图2所示,在本公开的一个实施例中,跳频偏移值用于确定每一跳的起始位置;跳频次数可理解为跳频的跳数:比如Message3重复传输8次,跳频时域粒度是1个slot,跳数可以为4,那么跳频模式可如图2所示,其中,也就是说,在repetition过程中,msg3的传输有4个不同的频域位置(如图2之中的灰色部分)。
步骤1020,根据UE的类型确定UE的跳频参数。
在本公开的实施例之中,跳频参数包括跳频起始位置、跳频偏移量以及跳频次数之中的一个或多个。在本公开的一个实施例之中,跳频参数是根据UE的类型来决定的。具体而言,可以为轻型UE设置独立的跳频参数,并为非轻型UE设置独立的跳频参数,使得轻型UE和非轻型UE的跳频参数有所区别,从而避免轻型UE在跳频时出现跳出轻型UE系统带宽的情况。在本公开的另一个是实施例之中,也还可以为轻型UE和非轻型UE设置相同的跳频参数,该跳频参数需要兼顾轻型UE,避免其跳出轻型UE的系统带宽范围的情况。或者,还可以保持目前非轻型UE的跳频参数不变,对轻型UE的跳频参数进行调整。
步骤1030,根据确定的UE的跳频参数为UE提供跳频服务。
在本公开的实施例中,可以根据确定UE的跳频参数为UE提供跳频服务。
图11为本公开实施例提供的一种跳频控制方法的流程示意图,由基站执行。需要说明的是,在本公开的实施例中,跳频参数包括跳频偏移值、跳频次数和跳频时域粒度,其中,跳频偏移值,用于确定每一跳的起始位置;跳频次数,用于通过配置多个频域位置,可以获得更高的频率分集增益,跳频时域 粒度,用于通过扩展时域跳频的基本粒度,可以支持实现Cross-slot(跨时隙)联合信道估计,或者针对低流动性或静止UE,降低其DMRS(Demodulation Reference Signal,解调参考信号)密度等。
如图11所示,在该实施例之中,跳频参数可为跳频起始位置。该跳频控制方法包括以下步骤:
步骤1110,确定UE的类型。
其中,在本公开的实施例之中,UE的类型包括轻型UE(Reduced capability)和非轻型UE。在本公开的一个实施例中,轻型UE可理解为带宽较小或者天线数量较少的物联网设备,非轻型UE可理解为支持NR全部特性的普通NR终端。
其中,在本公开的实施例之中,UE的类型包括轻型UE(Reduced capability)和非轻型UE。在本公开的一个实施例中,轻型UE可理解为带宽较小或者天线数量较少的物联网设备,非轻型UE可理解为支持NR全部特性的普通NR终端。在LTE 4G系统中,为了支持物联网业务提出了MTC(机器类通信,Machine Type Communications),NB-IoT(窄带物联网)两大技术。这两大技术主要针对的是低速率,高时延等场景,比如抄表,环境监测等场景。NB-IoT目前最大只能支持几百k的速率,MTC目前最大只能支持几M的速率。但同时另外一方面,随着物联网业务的不断发展,比如视频监控,智能家居,可穿戴设备和工业传感监测等业务的普及。这些业务通常要求几十到100M的速率,同时对时延也有相对较高的要求,因此LTE中的MTC,NB-IoT技术很难满足要求。在该实施例之中,将这种新的UE类型统称为Reduced capability UE,即轻型UE,而目前的普通终端,在本公开的实施例之中称之为非轻型UE。
在本公开的一个实施例之中,通常轻型UE具有以下特点:
-低造价,低复杂度
-一定程度的覆盖增强
-功率节省。
由于目前的NR新空口是针对高速率低时延等高端终端设计的,因此当前的设计无法满足轻
型UE的上述要求。因此需要对目前的NR系统进行改造用以满足轻型UE的要求。比如,为了满足低造价,低复杂度等要求,可以限制轻型UE的带宽,比如限制到10M Hz或者20M Hz,或者限制轻型UE的接收天线数量。针对功率节省,可能的优化方向是减少用户设备的处理复杂度,如在同一个时隙中只接收PDCCH(物理下行控制信道,Physical Downlink Control Channel)信道,在同一时隙的其他符号时刻则进入微睡眠状态。对于一定程度的覆盖增强,还可对各个信道进行多次重复传输,增加聚合等级以及降低码率等。
在本公开的一个实施例中,可根据带宽的大小,确定UE类型。在本公开的一个实施例之中,基站可以获知UE的带宽,根据UE的带宽大小,可以获知该UE的类型,即轻型UE或非轻型UE。在本公开的其他实施例之中,还可根据物理随机接入信道(physical random accesschannel,PRACH)对两种UE的类型进行区分。
如图2所示,在本公开的一个实施例中,跳频偏移值用于确定每一跳的起始位置;跳频次数可理解为跳频的跳数:比如Message3重复传输8次,跳频时域粒度是1个slot,跳数可以为4,那么跳频模式可如图2所示,其中,也就是说,在repetition过程中,msg3的传输有4个不同的频域位置(如图2之中的灰色部分)。
步骤1120,根据UE的类型确定UE跳频参数为跳频起始位置。
在本公开的一个实施例之中,对于非轻型UE和轻型UE可以通过相同的方式确定跳频起始位置。但是对于轻型UE而言,在确定了轻型UE的跳频起始位置之后,需要对轻型UE的跳频起始位置进行调整,使其减小,从而避免跳出轻型UE的系统带宽范围的情况发生。
在本公开的一个实施例中,可通过以下方式确定跳频参数为跳频起始位置。
其中,响应于UE为轻型UE,确定UE的起始跳频初始位置,然后根据UE的起始跳频初始值确定UE的跳频起始位置。
其中,调整值,通过以下方式确定:协议规定;或者,向UE发送信令配置。
在本公开的一个实施例之中,调整值可以通过协议的方式固定,也可以由基站进行动态配置。
在本公开的实施例中,确定UE的系统带宽,响应于起始跳频初始位置超出UE的系统带宽,获取调整值,之后根据调整值对起始跳频初始位置进行调整,以生成UE的跳频起始位置。
其中,在本公开的实施例中,响应于起始跳频初始位置未超出UE的系统带宽,将起始跳频初始位置确定为UE的跳频起始位置。
在本公开的一个实施例之中,例如确定的起始跳频初始位置为n,且该n出现了跳出轻型UE系统带宽的问题,则需要对n进行调整。在本公开的另一个实施例之中,例如确定第n跳的的起始跳频初始位置为a,且a跳出了轻型UE所支持的最大系统带宽,那么第n跳的跳频起始位置可以为第n-m跳的 位置b,其中b在轻型UE系统带宽范围内,并且,n>m。在该实施例之中,m可以通过协议固定,也可以是由基站动态配置。m依据跳频次数决定。
如图4所示为,本公开实施例的跳频起始位置调整示意图。如图4所示,在Slot3(时隙3)时,由于出现超出UE系统带宽的情况,因此对其进行调整,例如减去调整值,例如2,使其回落到轻型UE的系统带宽之中。同样地,对于Slot4而言,也可对其减去调整值,例如2。
其中,在本公开的一个实施例中,响应于UE为非轻型UE,则将起始跳频初始位置作为跳频起始位置。
在本公开的实施例中,基站可通过向UE发送信令告知UE的调整值。在本公开的一个实施例之中,信令可包括剩余最小系统消息RMSI(Remaining Minimum System Information)信令。
在本公开的实施例中,通过获取UE的当前跳频次数,根据当前跳频次数生成UE的当前跳频起始位置,根据UE的类型生成调整系数,以及根据调整系数和当前跳频起始位置生成UE的跳频起始位置。
在本公开的实施例之中,对于UE而言,可以将
Figure PCTCN2021072350-appb-000025
作为当前跳频起始位置,其中,i为当前跳频次数,RBstart为当前跳频起始位置,RBoffset为偏移量。
其中,在本公开的实施例中,如果UE为非轻型UE,则获取非轻型UE的带宽部分BWP,并根据BWP生成调整系数;如果UE为轻型UE,则获取轻型UE的系统带宽,并根据系统带宽生成调整系数。
在本公开的一个实施例之中,对于非轻型UE而言,该调整系数为
Figure PCTCN2021072350-appb-000026
其中,
Figure PCTCN2021072350-appb-000027
为非轻型UE的带宽部分BWP。
在本公开的一个实施例之中,对于轻型UE而言,可根据轻型UE的系统带宽生成该调整系数。在本公开的另一个实施例之中,对于轻型UE而言,该调整系数为
Figure PCTCN2021072350-appb-000028
其中,
Figure PCTCN2021072350-appb-000029
为非轻型UE的带宽部分BWP,
Figure PCTCN2021072350-appb-000030
为轻型UE的系统带宽。
在本公开的实施例中,基于取模生成的调整系数,还可基于其它方式生成调整系数,对此本公开不作任何限制。
在本公开的实施例中,根据系统带宽生成调整系数的实现方式可为,根据轻型UE的系统带宽和非轻型UE的BWP之中的最小值生成调整系数。
在本公开的实施例中,根据非轻型UE的BWP和轻型UE的系统带宽之中的最小值生成调整系数,其中,非轻型UE和轻型UE的跳频起始位置均通过该调整系数确定。
步骤1130,根据UE的类型确定UE跳频参数为跳频偏移量。
在本公开的实施例中,向UE发送UE的类型所对应的偏移量配置表,向UE发送偏移量标识。
其中,偏移量配置表,通过以下方式确定:协议规定;或者,向UE发送信令配置。
在本公开的一个实施例之中,针对UE不同的类型,设置不同的偏移量配置表。
在本公开的一个实施例之中,可以为非轻型UE和轻型UE配置相同的偏移量配置表,也可以为非轻型UE和轻型UE配置不相同的偏移量配置表。在配置相同的偏移量配置表,可避免轻型UE跳出自身系统带宽。
在本公开的实施例中,如果UE为非轻型UE,则非轻型UE对应的第一偏移量配置表之中的跳频偏移量根据非轻型UE的BWP确定;如果UE为轻型UE,则轻型UE对应的第二偏移量配置表之中的跳频偏移量根据轻型UE的系统带宽确定。
其中,第二偏移量配置表之中的跳频偏移量根据轻型UE的系统带宽和非轻型UE的BWP之中的最小值确定。
在本公开的一个实施例中,非轻型UE和轻型UE均使用第二偏移量配置表。
在本公开的实施例中,非轻型UE对应的跳频偏移量由非轻型UE的BWP确定,轻型UE对应的跳频偏移量由非轻型UE的BWP和轻型UE的系统带宽之中的最小值确定。
步骤1140,根据UE的类型确定UE跳频参数为跳频次数。
在本公开的实施例中,如果UE为非轻型UE,则将第一跳频次数作为非轻型UE的跳频次数;如果UE为轻型UE,则将第二跳频次数作为轻型UE的跳频次数,其中,第一跳频次数大于第二跳频次数。
其中,非轻型UE支持的跳频次数大于轻型UE支持的跳频次数。
其中,第一跳频次数和第二跳频次数由协议配置或者基站指示。
其中,第一跳频次数和第二跳频次数,通过基站的RMSI、随机接入响应RAR或下行控制信息DCI指示。
在本公开的一个实施例中,判断非轻型UE的BWP是否大于轻型UE的系统带宽,如果大于轻型UE的系统带宽,则将第一预设次数作为非轻型UE的跳频次数,并将第二预设次数作为轻型UE的跳频次数,其中,第一预设次数大于第二预设次数;如果小于或等于轻型UE的系统带宽,则将第一预设次数作为非轻型UE和轻型UE的跳频次数。
在本公开的一个实施例中,通过发送第一指示次数和第二指示次数,其中,第一指示次数大于第二指示次数,其中,如果非轻型UE的BWP大于轻型UE的系统带宽,则将第一指示次数作为非轻型UE的跳频次数,并将第二指示次数作为轻型UE的跳频次数。
在本公开的一个实施例中,发送第三指示次数,其中,如果非轻型UE的第一BWP小于或等于轻型UE的第二BWP,则将第三指示次数作为非轻型UE和轻型UE的跳频次数
需要说明的是,上述第一指示次数和第二指示次数,或者第三指示次数,通过基站的RMSI、随机接入响应RAR或下行控制信息DCI指示。
在本公开个一个实施例之中,也还可为轻型UE通知或设置预设的值,例如0,即对轻型UE来说不进行跳频。
在本公开的实施例中,非轻型UE对应的跳频次数由基站指示,轻型UE的对应的跳频次数由协议规定。
步骤1050,根据确定跳频起始位置、跳频偏移量和跳频次数,为UE提供跳频服务。
在本公开的实施例中,确定跳频起始位置之后,可按照确定之中的跳频起始位置进行跳频服务。
在该实施例之中,可根据UE的类型,确定调整系数,从而使得轻型UE,避免跳出轻型UE的系统带宽范围。
在本公开的一个实施例之中,对于多个跳频位置的方式,可以通过以下方式确定轻型UE和非轻型UE的跳频起始位置。
对于非轻型UE而言,可以通过以下公式计算跳频起始位置:
Figure PCTCN2021072350-appb-000031
其中,i为跳频次数。
对于轻型UE而言,可以通过以下公式计算跳频起始位置:
Figure PCTCN2021072350-appb-000032
其中,i为跳频次数。
在本公开的另一个实施例之中,对于时隙内跳频(intra-slot)以及两跳时隙间跳频(inter-slot)的方式,还可通过以下公式来确定跳频起始位置。
对于非轻型UE,以及时隙内跳频(intra-slot)而言,可通过以下公式确定跳频起始位置:
Figure PCTCN2021072350-appb-000033
对于非轻型UE,以及两跳时隙间跳频(inter-slot)而言,可通过以下公式确定跳频起始位置:
Figure PCTCN2021072350-appb-000034
对于轻型UE,以及时隙内跳频(intra-slot)而言,可通过以下公式确定跳频起始位置:
Figure PCTCN2021072350-appb-000035
其中,i为跳频次数。
对于轻型UE,以及两跳时隙间跳频(inter-slot)而言,可通过以下公式确定跳频起始位置:
Figure PCTCN2021072350-appb-000036
其中,i为跳频次数。
在本公开的其他实施例之中,还可以进行多次的跳频,例如对于轻型UE而言,可以通过以下公式确定跳频起始位置:
对于轻型UE基于时隙间跳频的多次跳频:
Figure PCTCN2021072350-appb-000037
其中,i为跳频次数。
对于轻型UE的时隙内跳频:
Figure PCTCN2021072350-appb-000038
其中,i为跳频次数。
对于轻型UE的两跳时隙间跳频:
Figure PCTCN2021072350-appb-000039
Figure PCTCN2021072350-appb-000040
为当前时隙号。
在上述实施例之中,可以用于轻型UE支持RAR和Msg3之间进行RFretuning(射频重调)的场景中。
在本公开的事实中,确定跳频偏移量之后,按照跳频偏移量进行跳频服务。
其中,在本公开的实施例之中,可以对轻型UE的跳频偏移量进行调整,从而避免轻型UE出现跳出系统带宽范围的问题。
在本公开的一个实施例之中,当UE为非轻型UE,则非轻型UE对应的第一偏移量配置表之中的跳频偏移量根据非轻型UE的BWP确定;当UE为轻型UE,则轻型UE对应的第二偏移量配置表之中的跳频偏移量根据轻型UE的系统带宽确定。
在该实施例之中,对于时隙内跳频(intra-slot),非轻型UE可以使用如下的第一偏移量配置表:
Figure PCTCN2021072350-appb-000041
Figure PCTCN2021072350-appb-000042
表1
在该实施例之中,对于时隙内跳频(intra-slot),轻型UE可以使用如下的第二偏移量配置表:
Figure PCTCN2021072350-appb-000043
表2
在本公开的一个实施例之中,上述表1和表2可通过协议的方式固定。也可通过基站指示的方式配置到UE之中。
在本公开的其他实施例之中,对于两跳的时隙间跳频,非轻型UE可以使用如下的第一偏移量配置表:
Figure PCTCN2021072350-appb-000044
表3
在本公开的其他实施例之中,对于两跳的时隙间跳频,轻型UE可以使用如下的第二偏移量配置表:
Figure PCTCN2021072350-appb-000045
表4
其中,在本公开的一个实施例中,在偏移量配置表之中,非轻型UE对应的跳频偏移量由非轻型UE的BWP确定,轻型UE对应的跳频偏移量由非轻型UE的BWP和轻型UE的系统带宽之中的最小值确定。
在本公开的一个实施例之中,还可通过系统消息给UE配置上述偏移量配置表。
在本公开的实施例之中,非轻型UE和轻型UE可均使用第二偏移量配置表。
在本公开的一个实施例之中,还可以针对多跳设置偏移量配置表。
在本公开的其他实施例之中,对于三跳的时隙间跳频,非轻型UE可以使用如下的第一偏移量配置表:
Figure PCTCN2021072350-appb-000046
表5
在本公开的其他实施例之中,对于三跳的时隙间跳频,轻型UE可以使用如下的第二偏移量配置表:
Figure PCTCN2021072350-appb-000047
表6
在本公开的实施例之中,上述第一偏移量配置表5和第二偏移量配置表6可通过协议规定,也可以通过系统消息通知。
在本公开的实施例之中,还将第一偏移量配置表和第二偏移量配置表合并。该合并之中的表对于轻型UE和非轻型UE均适用,如下表所示。
Figure PCTCN2021072350-appb-000048
表7
在本公开的一个实施例中,可将多个跳频偏移值配置表汇总至一个大表中,之后再将第一偏移量标识作为索引值进行检索。由于将多个跳频偏移值配置表汇总至一个表中,导致该大表较长,因此相应动态信令中需要扩展比特位来指示其索引。其中,扩展的比特位可复用RARULgrant中的TPC(功控)字段。
在本公开的一个实施例中,当需要进行重复时,此时覆盖较差,终端一般使用满功率发送,此时TPC(功控)字段无效,因此可以复用该TPC字段作为扩展的比特位(即第一偏移量标识)。
在本公开的一个实施例之中,基站可以设置第一偏移量配置表和第二偏移量配置表,或者,也可以设置第一偏移量配置表或第二偏移量配置表。如果BWP大于轻型UE的系统带宽,则在基站之中配置第一偏移量配置表和第二偏移量配置表。如果BWP小于或等于轻型UE的系统带宽,则在基站之中只配置第一偏移量配置表,轻型UE也使用该第一偏移量配置表。
在本公开的一个实施例之中,基站可以设置第一偏移量配置表和第二偏移量配置表,非轻型UE使用第一偏移量配置表进行跳频起始位置的确定,轻型UE使用第二偏移量配置表进行跳频起始位置的确定。
在本公开的一个实施例之中,如果上述偏移量配置表由系统消息通知,则在该实施例之中可以只发送第二偏移量配置表,非轻型UE和轻型UE均使用第二偏移量配置表进行跳频起始位置的确定。这样基站可以无需对UE进行类型区分。
在本公开的一个实施例之中,偏移量不仅可以通过上述的偏移量配置表设定,还可以通过协议设定,或者基站的系统消息配置。
在本公开的事实中,在UE确定了跳频次数之后,按照跳跳频次数进行跳频。
在本公开的实施例之中,可以对轻型UE的跳频次数进行调整,从而避免轻型UE出现跳出系统带宽范围的问题。
与上述几种实施例提供的跳频控制方法相对应,本公开还提供一种跳频控制装置,由于本公开实施例提供跳频控制装置与上述几种实施例提供的跳频控制方法相对应,因此在跳频控制方法的实施方式也适用于本实施例提供的跳频控制装置,在本实施例中不再详细描述。图12-图14是根据本公开提出的跳频控制装置的结构示意图。
图12为本公开实施例提供的跳频控制装置的结构示意图。所述装置应用于用户设备UE。
如图12所示,该跳频的控制装置1200包括:第一确定模块1201、第二确定模块1202和第一处理模块1203,其中:
第一确定模块1201,被配置为确定UE的类型。在本公开的实施例之中,UE的类型包括轻型UE(Reduced capability)和非轻型UE。在本公开的一个实施例中,轻型UE可理解为带宽较小或者天线数量较少的物联网设备,非轻型UE可理解为支持NR全部特性的普通NR终端。在本公开的一个实施例中,可根据带宽的大小,确定UE类型。在本公开的一个实施例之中,基站可以获知UE的带宽,根据UE的带宽大小,可以获知该UE的类型,即轻型UE或非轻型UE。在本公开的其他实施例之中,还可根据物理随机接入信道(physical random accesschannel,PRACH)对两种UE的类型进行区分。
第二确定模块1202,被配置为根据UE的类型确定跳频参数。在本公开的实施例之中,跳频参数包括跳频起始位置、跳频偏移量以及跳频次数之中的一个或多个。在本公开的一个实施例之中,跳频参数是根据UE的类型来决定的。具体而言,可以为轻型UE设置独立的跳频参数,并为非轻型UE设置独立的跳频参数,使得轻型UE和非轻型UE的跳频参数有所区别,从而避免轻型UE在跳频时出现跳出轻型UE系统带宽的情况。在本公开的另一个是实施例之中,也还可以为轻型UE和非轻型UE设置相同的跳频参数,该跳频参数需要兼顾轻型UE,避免其跳出轻型UE的系统带宽范围的情况。或者,还可以保持目前非轻型UE的跳频参数不变,对轻型UE的跳频参数进行调整。
第一处理模块1203,被配置为根据确定的跳频参数进行跳频。在本公开的实施例之,可以根据UE确定的跳频参数进行跳频。例如根据跳频起始位置、跳频偏移量以及跳频次数进行跳频。
在本公开的实施例之中,可以根据UE的类型对跳频参数进行调整,从而避免跳出轻型UE的系统带宽范围的情况发生。
本公开的一个实施例中,跳频参数为跳频起始位置。
本公开的一个实施例中,第二确定模块1202,被配置为响应于所述UE为轻型UE,确定所述UE的起始跳频初始位置;根据所述起始跳频初始值确定跳频起始位置。
在本公开的一个实施例之中,例如确定的起始跳频初始位置为n,且该n出现了跳出轻型UE系统带宽的问题,则需要对n进行调整。在本公开的另一个实施例之中,例如确定第n跳的的起始跳频初始位置为a,且a跳出了轻型UE所支持的最大系统带宽,那么第n跳的跳频起始位置可以为第n-m跳的 位置b,其中b在轻型UE系统带宽范围内,并且,n>m。在该实施例之中,m可以通过协议固定,也可以是由基站动态配置。m依据跳频次数决定。
其中,在本公开的一个实施例中,响应于起始跳频初始位置未超出UE的系统带宽,可直接将起始跳频初始位置确定为跳频起始位置。
如图4所示为,本公开实施例的跳频起始位置调整示意图。如图4所示,在Slot3(时隙3)时,由于出现超出UE系统带宽的情况,因此对其进行调整,例如减去调整值,例如2,使其回落到轻型UE的系统带宽之中。同样地,对于Slot4而言,也可对其减去调整值,例如2。
本公开的一个实施例中,所述第二确定模块1202,被配置为确定所述UE的系统带宽;响应于起始跳频初始位置超出所述UE的系统带宽,获取调整值,并根据所述调整值对所述起始跳频初始位置进行调整,以生成所述跳频起始位置。
本公开的一个实施例中,所述第二确定模块1202,被配置为响应于起始跳频初始位置未超出所述UE的系统带宽,将所述起始跳频初始位置确定为所述跳频起始位置。
本公开的一个实施例中,所述调整值,通过以下方式确定:协议规定;或者,通过基站发送的信令配置。
本公开的一个实施例中,所述第二确定模块1202,被配置为响应于所述UE为非轻型UE,则将所述起始跳频初始位置作为所述跳频起始位置。
本公开的一个实施例中,所述第二确定模块1202,包括:获取跳频次数单元,被配置为获取当前跳频次数;生成当前跳频起始位置单元,被配置为根据所述当前跳频次数生成当前跳频起始位置;生成调整系数单元,被配置为根据所述UE的类型生成调整系数;以及生成跳频起始位置单元,被配置为根据所述调整系数和所述当前跳频起始位置生成所述跳频起始位置。
在本公开的实施例之中,对于UE而言,可以将
Figure PCTCN2021072350-appb-000049
作为当前跳频起始位置,其中,i为当前跳频次数,RBstart为当前跳频起始位置,RBoffset为偏移量。
在本公开的一个实施例之中,对于非轻型UE而言,该调整系数为
Figure PCTCN2021072350-appb-000050
其中,
Figure PCTCN2021072350-appb-000051
为非轻型UE的带宽部分BWP。
在本公开的一个实施例之中,对于轻型UE而言,可根据轻型UE的系统带宽生成该调整系数。在本公开的另一个实施例之中,对于轻型UE而言,该调整系数为
Figure PCTCN2021072350-appb-000052
其中,
Figure PCTCN2021072350-appb-000053
为非轻型UE的带宽部分BWP,
Figure PCTCN2021072350-appb-000054
为轻型UE的系统带宽。
在本公开的实施例中,基于取模生成的调整系数,还可基于其它方式生成调整系数,对此本公开不作任何限制。
在本公开的一个实施例之中,对于多个跳频位置的方式,可以通过以下方式确定轻型UE和非轻型UE的跳频起始位置。
对于非轻型UE而言,可以通过以下公式计算跳频起始位置:
Figure PCTCN2021072350-appb-000055
其中,i为跳频次数。
对于轻型UE而言,可以通过以下公式计算跳频起始位置:
Figure PCTCN2021072350-appb-000056
其中,i为跳频次数。
在本公开的另一个实施例之中,对于时隙内跳频(intra-slot)以及两跳时隙间跳频(inter-slot)的方式,还可通过以下公式来确定跳频起始位置。
对于非轻型UE,以及时隙内跳频(intra-slot)而言,可通过以下公式确定跳频起始位置:
Figure PCTCN2021072350-appb-000057
对于非轻型UE,以及两跳时隙间跳频(inter-slot)而言,可通过以下公式确定跳频起始位置:
Figure PCTCN2021072350-appb-000058
对于轻型UE,以及时隙内跳频(intra-slot)而言,可通过以下公式确定跳频起始位置:
Figure PCTCN2021072350-appb-000059
其中,i为跳频次数。
对于轻型UE,以及两跳时隙间跳频(inter-slot)而言,可通过以下公式确定跳频起始位置:
Figure PCTCN2021072350-appb-000060
其中,i为跳频次数。
在本公开的其他实施例之中,还可以进行多次的跳频,例如对于轻型UE而言,可以通过以下公式确定跳频起始位置:
对于轻型UE基于时隙间跳频的多次跳频:
Figure PCTCN2021072350-appb-000061
Figure PCTCN2021072350-appb-000062
其中,i为跳频次数。
对于轻型UE的时隙内跳频:
Figure PCTCN2021072350-appb-000063
其中,i为跳频次数。
对于轻型UE的两跳时隙间跳频:
Figure PCTCN2021072350-appb-000064
Figure PCTCN2021072350-appb-000065
为当前时隙号。
在上述实施例之中,可以用于轻型UE支持RAR和Msg3之间进行RFretuning(射频重调)的场景中。
在本公开的实施例之中,根据所述轻型UE的系统带宽和非轻型UE的BWP之中的最小值生成调整系数。在本公开的另一个实施例之中,轻型UE和非轻型UE均使用相同的跳频起始位置确定公式。在该实施例之中,由于轻型UE和非轻型UE使用的公式相同(均采用如上所示的轻型UE的跳频起始位置确定 公式),因此基站无需对二者进行区分。在本公开的另一个实施例之中,根据非轻型UE的BWP和轻型UE的系统带宽之中的最小值生成调整系数,其中,非轻型UE和轻型UE的跳频起始位置均通过该调整系数确定。
本公开的一个实施例中,所述生成调整系数单元,包括:调整系数生成子单元,被配置为如果UE为非轻型UE,则获取非轻型UE的带宽部分BWP,并根据BWP生成调整系数;如果UE为轻型UE,则获取轻型UE的系统带宽,并根据系统带宽生成调整系数。
本公开的一个实施例中,获取系统带宽子单元,被配置为根据轻型UE的系统带宽和非轻型UE的BWP之中的最小值生成所述调整系数。
本公开的一个实施例中,生成调整系数单元,被配置为:根据非轻型UE的BWP和轻型UE的系统带宽之中的最小值生成所述调整系数,其中,非轻型UE和轻型UE的跳频起始位置均通过该调整系数确定。
本公开的一个实施例中,跳频参数为跳频偏移量。
本公开的一个实施例中,第二确定模块1202,包括:获取偏移量配置表单元,被配置为获取UE的类型所对应的偏移量配置表;获取偏移量标识单元,被配置为获取基站指示的偏移量标识;确定跳频偏移量单元,被配置为根据偏移量标识和UE的类型所对应的偏移量配置表确定跳频偏移量。
在本公开的一个实施例中,可首先通过获取UE的类型所对应的偏移量配置表,之后获取基站指示的偏移量标识,再根据偏移量标识和UE的类型所对应的偏移量配置表确定跳频偏移量。
在本公开的一个实施例之中,针对UE不同的类型,设置不同的偏移量配置表。
在本公开的一个实施例之中,偏移量配置表可以是协议规定的,也可以是基站通过系统消息通知的。
在本公开的一个实施例之中,可以为非轻型UE和轻型UE配置相同的偏移量配置表,也可以为非轻型UE和轻型UE配置不相同的偏移量配置表。在配置相同的偏移量配置表,可避免轻型UE跳出自身系统带宽。
本公开的一个实施例中,还包括:第一跳频偏移量单元,被配置为如果UE为非轻型UE,则非轻型UE对应的第一偏移量配置表之中的跳频偏移量根据非轻型UE的BWP确定;第二跳频偏移量单元,被配置为如果UE为轻型UE,则轻型UE对应的第二偏移量配置表之中的跳频偏移量根据轻型UE的系统带宽确定。
本公开的一个实施例中,第二偏移量配置表之中的跳频偏移量根据轻型UE的系统带宽和非轻型UE的BWP之中的最小值确定。
本公开的一个实施例中,偏移量配置表,通过以下方式确定:协议规定;或者,通过基站发送的信令配置。
在本公开的一个实施例中,可设计一个或多个列表,例如,一个列表中包括跳频偏移值、跳频次数和跳频时域粒度等跳频参数,或者多个列表中,每个列表分别包括一个参数,例如,第一个表中包括跳频偏移值,第二个表中包括跳频次数,第三个表中包括跳频时域粒度,该列表可通过协议规定,也可通过通过系统消息通知,以使UE获取该列表,进而从一个或多个列表中获取跳频偏移值、跳频次数和跳频时域粒度等跳频参数之中的至少一个。此外该列表还可以是通过通信标准化组织(例如,3GPP标准化组织,IEEE等)的通信协议规定或通过通信设备的出厂设置预先配置在通信设备中的。在一个实施例中,当基站需要时,可以向终端发送控制信令,在该控制信令中指示当前通信中所要应用的列表,以通知终端激活该列表。
本公开的一个实施例中,非轻型UE和轻型UE均使用第二偏移量配置表。
本公开的一个实施例中,在偏移量配置表之中,非轻型UE对应的跳频偏移量由非轻型UE的BWP确定,轻型UE对应的跳频偏移量由非轻型UE的BWP和轻型UE的系统带宽之中的最小值确定。
在该实施例之中,对于时隙内跳频(intra-slot),非轻型UE可以使用如下的第一偏移量配置表:
Figure PCTCN2021072350-appb-000066
表1
在该实施例之中,对于时隙内跳频(intra-slot),轻型UE可以使用如下的第二偏移量配置表:
Figure PCTCN2021072350-appb-000067
表2
在本公开的一个实施例之中,上述表1和表2可通过协议的方式固定。也可通过基站指示的方式配置到UE之中。
在本公开的其他实施例之中,对于两跳的时隙间跳频,非轻型UE可以使用如下的第一偏移量配置表:
Figure PCTCN2021072350-appb-000068
表3
在本公开的其他实施例之中,对于两跳的时隙间跳频,轻型UE可以使用如下的第二偏移量配置表:
Figure PCTCN2021072350-appb-000069
表4
其中,在本公开的一个实施例中,在偏移量配置表之中,非轻型UE对应的跳频偏移量由非轻型UE的BWP确定,轻型UE对应的跳频偏移量由非轻型UE的BWP和轻型UE的系统带宽之中的最小值确定。
在本公开的一个实施例之中,还可通过系统消息给UE配置上述偏移量配置表。
在本公开的实施例之中,非轻型UE和轻型UE可均使用第二偏移量配置表。
在本公开的一个实施例之中,还可以针对多跳设置偏移量配置表。
在本公开的其他实施例之中,对于三跳的时隙间跳频,非轻型UE可以使用如下的第一偏移量配置 表:
Figure PCTCN2021072350-appb-000070
表5
在本公开的其他实施例之中,对于三跳的时隙间跳频,轻型UE可以使用如下的第二偏移量配置表:
Figure PCTCN2021072350-appb-000071
表6
在本公开的实施例之中,上述第一偏移量配置表5和第二偏移量配置表6可通过协议规定,也可以通过系统消息通知。
在本公开的实施例之中,还将第一偏移量配置表和第二偏移量配置表合并。该合并之中的表对于轻型UE和非轻型UE均适用,如下表所示。
Figure PCTCN2021072350-appb-000072
表7
在本公开的一个实施例中,可将多个跳频偏移值配置表汇总至一个大表中,之后再将第一偏移量标识作为索引值进行检索。由于将多个跳频偏移值配置表汇总至一个表中,导致该大表较长,因此相应动 态信令中需要扩展比特位来指示其索引。其中,扩展的比特位可复用RARULgrant中的TPC(功控)字段。
在本公开的一个实施例中,当需要进行重复时,此时覆盖较差,终端一般使用满功率发送,此时TPC(功控)字段无效,因此可以复用该TPC字段作为扩展的比特位(即第一偏移量标识)。
在本公开的一个实施例之中,基站可以设置第一偏移量配置表和第二偏移量配置表,或者,也可以设置第一偏移量配置表或第二偏移量配置表。如果BWP大于轻型UE的系统带宽,则在基站之中配置第一偏移量配置表和第二偏移量配置表。如果BWP小于或等于轻型UE的系统带宽,则在基站之中只配置第一偏移量配置表,轻型UE也使用该第一偏移量配置表。
在本公开的一个实施例之中,基站可以设置第一偏移量配置表和第二偏移量配置表,非轻型UE使用第一偏移量配置表进行跳频起始位置的确定,轻型UE使用第二偏移量配置表进行跳频起始位置的确定。
在本公开的一个实施例之中,如果上述偏移量配置表由系统消息通知,则在该实施例之中可以只发送第二偏移量配置表,非轻型UE和轻型UE均使用第二偏移量配置表进行跳频起始位置的确定。这样基站可以无需对UE进行类型区分。
在本公开的一个实施例之中,偏移量不仅可以通过上述的偏移量配置表设定,还可以通过协议设定,或者基站的系统消息配置。
本公开的一个实施例中,跳频参数为跳频次数。
本公开的一个实施例中,非轻型UE支持的跳频次数大于轻型UE支持的跳频次数。
本公开的一个实施例中,第二确定模块1202,包括:第一确定非轻型UE的跳频次数单元,被配置为如果UE为非轻型UE,则将第一跳频次数作为非轻型UE的跳频次数;第一确定轻型UE的跳频次数单元,被配置为如果UE为轻型UE,则将第二跳频次数作为轻型UE的跳频次数,其中,第一跳频次数大于第二跳频次数。
本公开的一个实施例中,第一跳频次数和第二跳频次数由协议配置或者基站指示。
本公开的一个实施例中,第一跳频次数和所述第二跳频次数,通过基站的RMSI、随机接入响应RAR或下行控制信息DCI指示。
本公开的一个实施例中,所述第二确定模块1202,包括:第一判断模块,被配置为判断非轻型UE的BWP是否大于所述轻型UE的系统带宽;第二确定非轻型UE的跳频次数,被配置为如果大于轻型UE的系统带宽,则将第一预设次数作为非轻型UE的跳频次数,并将第二预设次数作为轻型UE的跳频次数,其中,第一预设次数大于第二预设次数;第一确定非轻型UE和轻型UE的跳频次数单元,被配置为如果小于或等于轻型UE的系统带宽,则将第一预设次数作为非轻型UE和轻型UE的跳频次数。
本公开的一个实施例中,第二确定模块1202,包括:第一接收指示次数单元,被配置为接收基站指示的第一指示次数和第二指示次数,其中,第一指示次数大于第二指示次数;第二确定非轻型UE和轻型UE的跳频次数单元,被配置为如果非轻型UE的BWP大于轻型UE的系统带宽,则将第一指示次数作为非轻型UE的跳频次数,并将第二指示次数作为轻型UE的所述跳频次数。
本公开的一个实施例中,第二确定模块1202,包括:第二接收指示次数单元,被配置为接收基站指示的第三指示次数;第三确定非轻型UE和轻型UE的跳频次数单元,被配置为如果非轻型UE的第一BWP小于或等于所述轻型UE的第二BWP,则将第三指示次数作为非轻型UE和轻型UE的跳频次数。
本公开的一个实施例中,第一指示次数和第二指示次数,或者第三指示次数,通过基站的RMSI、随机接入响应RAR或下行控制信息DCI指示。
本公开的一个实施例中,非轻型UE对应的所述跳频次数由基站指示,轻型UE的对应的所述跳频次数由协议规定。
在本公开的实施例中,如果UE为非轻型UE,则将第一跳频次数作为非轻型UE的跳频次数;如果UE为轻型UE,则将第二跳频次数作为轻型UE的跳频次数,其中,第一跳频次数大于第二跳频次数。
在本公开的实施例中,非轻型UE支持的跳频次数大于轻型UE支持的跳频次数。
在本公开的实施例中,上述第一跳频次数和第二跳频次数,通过基站的RMSI、随机接入响应RAR或下行控制信息DCI指示
在本公开的实施例中,第一跳频次数和第二跳频次数由协议配置或者基站指示。在本公开的一个实施例之中,基站可通过RMSI广播第一跳频次数和第二跳频次数。
在本公开的实施例中,非轻型UE对应的跳频次数由基站指示,轻型UE的对应的跳频次数由协议规定。
在本公开的另一个实施例中,判断非轻型UE的BWP是否大于轻型UE的系统带宽;如果大于轻型UE的系统带宽,则将第一预设次数作为非轻型UE的跳频次数,并将第二预设次数作为轻型UE的跳频 次数,其中,第一预设次数大于第二预设次数;如果小于或等于轻型UE的系统带宽,则将第一预设次数作为非轻型UE和轻型UE的跳频次数。
在本公开的另一个实施例中,接收基站指示的第一指示次数和第二指示次数,其中,第一指示次数大于第二指示次数;如果非轻型UE的BWP大于轻型UE的系统带宽,则将第一指示次数作为非轻型UE的跳频次数,并将第二指示次数作为轻型UE的跳频次数
在本公开的另一个实施例中,接收基站指示的第三指示次数。如果非轻型UE的第一BWP小于或等于轻型UE的第二BWP,则将第三指示次数作为非轻型UE和轻型UE的跳频次数
需要说明的是,上述第一指示次数和第二指示次数,或者第三指示次数,通过基站的RMSI、随机接入响应RAR或下行控制信息DCI指示。
在本公开个一个实施例之中,也还可为轻型UE通知或设置预设的值,例如0,即对轻型UE来说不进行跳频。
在该实施例之中,可适用于时隙内跳频的方式,也可适用于时隙间跳频的方式。
在本公开个一个实施例之中,可以将非轻型UE的跳频次数由基站进行配置,对于轻型UE的跳频次数,也可以设置为固定值。在本公开的一个实施例之中,基站配置的值可大于协议为轻型UE规定的预设值。
图13为本公开实施例提供的跳频控制装置的结构示意图。所述装置应用于轻型UE。
如图13所示,该跳频的控制装置1300包括:第三确定模块1301和射频重调模块1302,其中:
第三确定模块1301,被配置为确认所述轻型UE下一跳的位置。如图9a所示,为本公开实施例的进行射频重调的一个示意图。参照图9a所示,轻型UE的下一跳位置为Slot3。
射频重调模块1302,被配置为如果所述下一跳的频域位置超出所述轻型UE当前工作带宽所在的频域位置,则进行射频重调,以使所述轻型UE的工作带宽跳转至下一跳所在频域位置。进一步参照图9a所示,轻型UE的下一跳位置Slot3超出了轻型UE当前工作带宽所在的频域位置。因此,需要对轻型UE进行射频重调,以使轻型UE的工作带宽跳转至下一跳所在频域位置,例如图9a之中的Slot4。
本公开的一个实施例中,所述射频重调的时间间隔由协议规定为固定值,或基站指示。
本公开的一个实施例中,其特征在于所述时间间隔由系统消息、媒体接入控制控制单元MAC CE或DCI信令指示。
如图9b所示,为本公开实施例的进行射频重调的另一个示意图。轻型UE从Hop#0,通过射频重调的方式跳转至Hop#1。
在本公开的实施例之中,对于时隙内跳频,如果采用本公开实施例的射频重调方案,对于PUSCH时域资源分配,可使得射频重调时间+PUSCH字符数<=预设字符数,例如14。
图14为本公开实施例提供的跳频控制装置的结构示意图。所述装置应用于基站。
如图14所示,该跳频的控制装置1400包括:第四确定模块1401、第五确定模块1402和第一提供模块1403,其中:
第四确定模块1401,被配置为确定UE的类型;
第五确定模块1402,被配置为根据所述UE的类型确定所述UE的跳频参数;
第一提供模块1403,被配置为根据确定的所述UE的跳频参数为所述UE提供跳频服务。
本公开的一个实施例中,所述跳频参数为跳频起始位置。
本公开的一个实施例中,所述第五确定模块1402,被配置为响应于所述UE为轻型UE,确定所述UE的起始跳频初始位置;根据所述UE的起始跳频初始值确定所述UE的跳频起始位置。
本公开的一个实施例中,所述第五确定模块1402,被配置为确定所述UE的系统带宽;响应于起始跳频初始位置超出所述UE的系统带宽,获取调整值;根据所述调整值对所述起始跳频初始位置进行调整,以生成所述UE的跳频起始位置。
本公开的一个实施例中,所述第五确定模块1402,被配置为响应于起始跳频初始位置未超出所述UE的系统带宽,将所述起始跳频初始位置确定为所述UE的跳频起始位置。
本公开的一个实施例中,所述调整值,通过以下方式确定:协议规定;或者,向所述UE发送信令配置。
本公开的一个实施例中,所述第五确定模块1402,被配置为响应于所述UE为非轻型UE,则将所述起始跳频初始位置作为所述UE的跳频起始位置。
本公开的一个实施例中,所述第五确定模块1402,包括:获取UE跳频次数单元,被配置为获取所述UE的当前跳频次数;生成UE当前跳频起始位置单元,被配置为根据所述当前跳频次数生成所述UE的当前跳频起始位置;生成单元,被配置为根据所述UE的类型生成调整系数;以及生成UE跳频起始位置单元,被配置为根据所述调整系数和所述当前跳频起始位置生成所述UE的跳频起始位置。
本公开的一个实施例中,所述生成单元,被配置为如果所述UE为非轻型UE,则获取所述非轻型UE的带宽部分BWP,并根据所述BWP生成所述调整系数;如果所述UE为轻型UE,则获取所述轻型UE的系统带宽,并根据所述系统带宽生成所述调整系数。
本公开的一个实施例中,所述生成单元,被配置为根据所述轻型UE的系统带宽和所述非轻型UE的BWP之中的最小值生成所述调整系数。
本公开的一个实施例中,所述生成单元,被配置为根据所述非轻型UE的BWP和所述轻型UE的系统带宽之中的最小值生成所述调整系数,其中,所述非轻型UE和所述轻型UE的所述跳频起始位置均由所述调整系数生成。
本公开的一个实施例中,所述跳频参数为跳频偏移量。
本公开的一个实施例中,所述第五确定模块1402,包括:第一发送单元,被配置为向所述UE发送所述UE的类型所对应的偏移量配置表;第二发送单元,被配置为向所述UE发送偏移量标识。
本公开的一个实施例中,还包括:确定非轻型UE对应的第一偏移量配置表单元,被配置为如果所述UE为非轻型UE,则所述非轻型UE对应的第一偏移量配置表之中的跳频偏移量根据所述非轻型UE的BWP确定;确定UE对应的第二偏移量配置表,被配置为如果所述UE为轻型UE,则所述轻型UE对应的第二偏移量配置表之中的跳频偏移量根据所述轻型UE的系统带宽确定。
本公开的一个实施例中,所述第二偏移量配置表之中的跳频偏移量根据所述轻型UE的系统带宽和所述非轻型UE的BWP之中的最小值确定。
本公开的一个实施例中,所述偏移量配置表,通过以下方式确定:协议规定;或者,向所述UE发送信令配置。
本公开的一个实施例中,所述非轻型UE和所述轻型UE均使用第二偏移量配置表。
本公开的一个实施例中,在所述偏移量配置表之中,所述非轻型UE对应的跳频偏移量由所述非轻型UE的BWP确定,所述轻型UE对应的跳频偏移量由所述非轻型UE的BWP和所述轻型UE的系统带宽之中的最小值确定。
本公开的一个实施例中,所述跳频参数为跳频次数。
本公开的一个实施例中,所述非轻型UE支持的跳频次数大于所述轻型UE支持的跳频次数。
本公开的一个实施例中,所述第五确定模块1402,包括:第三确定非轻型UE的跳频次数单元,被配置为如果所述UE为非轻型UE,则将第一跳频次数作为所述非轻型UE的跳频次数;第二确定轻型UE的跳频次数单元,被配置为如果所述UE为轻型UE,则将第二跳频次数作为所述轻型UE的跳频次数,其中,所述第一跳频次数大于所述第二跳频次数。
本公开的一个实施例中,所述第一跳频次数和所述第二跳频次数由协议配置或者基站指示。
本公开的一个实施例中,所述第一跳频次数和所述第二跳频次数,通过所述基站的RMSI、随机接入响应RAR或下行控制信息DCI指示。
本公开的一个实施例中,所述第五确定模块1402,包括:第二判断模块,被配置为判断所述非轻型UE的BWP是否大于所述轻型UE的系统带宽;第四确定非轻型UE的跳频次数,被配置为如果大于所述轻型UE的系统带宽,则将第一预设次数作为所述非轻型UE的跳频次数,并将第二预设次数作为所述轻型UE的跳频次数,其中,所述第一预设次数大于所述第二预设次数;第四确定非轻型UE和轻型UE的跳频次数单元,被配置为如果小于或等于所述轻型UE的系统带宽,则将所述第一预设次数作为所述非轻型UE和所述轻型UE的跳频次数。
本公开的一个实施例中,所述第五确定模块1402,包括:第三发送单元,被配置为发送第一指示次数和第二指示次数,其中,所述第一指示次数大于所述第二指示次数,其中,如果所述非轻型UE的BWP大于所述轻型UE的系统带宽,则将所述第一指示次数作为所述非轻型UE的所述跳频次数,并将所述第二指示次数作为所述轻型UE的所述跳频次数。
本公开的一个实施例中,所述第五确定模块1402,包括:第四发送单元,被配置为发送第三指示次数,其中,如果所述非轻型UE的第一BWP小于或等于所述轻型UE的第二BWP,则将所述第三指示次数作为所述非轻型UE和所述轻型UE的所述跳频次数。
本公开的一个实施例中,所述第一指示次数和第二指示次数,或者所述第三指示次数,通过所述基站的RMSI、随机接入响应RAR或下行控制信息DCI指示。
本公开的一个实施例中,所述非轻型UE对应的所述跳频次数由基站指示,所述轻型UE的对应的所述跳频次数由协议规定。
根据本公开实施例的跳频控制装置,确定UE的类型;根据UE的类型确定跳频参数;根据确定的跳频参数进行跳频。由此,可以根据UE的类型对跳频参数进行调整,从而避免跳出轻型UE的系统带宽范围的情况发生。
根据本公开的实施例,本公开还提供了一种通信设备和一种可读存储介质。
如图15所示,是根据本公开实施例的跳频控制方法通信设备的框图。通信设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。通信设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本公开的实现。
如图15所示,该通信设备包括:一个或多个处理器1100、存储器1200,以及用于连接各部件的接口,包括高速接口和低速接口。各个部件利用不同的总线互相连接,并且可以被安装在公共主板上或者根据需要以其它方式安装。处理器可以对在通信设备内执行的指令进行处理,包括存储在存储器中或者存储器上以在外部输入/输出装置(诸如,耦合至接口的显示设备)上显示GUI的图形信息的指令。在其它实施方式中,若需要,可以将多个处理器和/或多条总线与多个存储器和多个存储器一起使用。同样,可以连接多个通信设备,各个设备提供部分必要的操作(例如,作为服务器阵列、一组刀片式服务器、或者多处理器系统)。图15中以一个处理器1100为例。
存储器1200即为本公开所提供的非瞬时计算机可读存储介质。其中,所述存储器存储有可由至少一个处理器执行的指令,以使所述至少一个处理器执行本公开所提供的跳频控制方法。本公开的非瞬时计算机可读存储介质存储计算机指令,该计算机指令用于使计算机执行本公开所提供的跳频控制方法。
存储器1200作为一种非瞬时计算机可读存储介质,可用于存储非瞬时软件程序、非瞬时计算机可执行程序以及模块,如本公开实施例中的跳频控制方法对应的程序指令/模块(例如,附图12所示的第一确定模块1201、第二确定模块1202和第一处理模块1203,或者是附图13所示的第三确定模块1301和射频重调模块1302,或者是附图14所示的第四确定模块1401、第五确定模块1402和第一提供模块1403)。处理器1100通过运行存储在存储器1200中的非瞬时软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例中的跳频控制方法。
存储器1200可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据定位通信设备的使用所创建的数据等。此外,存储器1200可以包括高速随机存取存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。可选地,存储器1200可选包括相对于处理器1100远程设置的存储器,这些远程存储器可以通过网络连接至定位通信设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
跳频的控制设备还可以包括:输入装置1300和输出装置1400。处理器1100、存储器1200、输入装置1300和输出装置1400可以通过总线或者其他方式连接,图15中以通过总线连接为例。
输入装置1300可接收输入的数字或字符信息,以及产生与定位通信设备的用户设置以及功能控制有关的键信号输入,例如触摸屏、小键盘、鼠标、轨迹板、触摸板、指示杆、一个或者多个鼠标按钮、轨迹球、操纵杆等输入装置。输出装置1400可以包括显示设备、辅助照明装置(例如,LED)和触觉反馈装置(例如,振动电机)等。该显示设备可以包括但不限于,液晶显示器(LCD)、发光二极管(LED)显示器和等离子体显示器。在一些实施方式中,显示设备可以是触摸屏。
此处描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、专用ASIC(专用集成电路)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
这些计算程序(也称作程序、软件、软件应用、或者代码)包括可编程处理器的机器指令,并且可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算程序。如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来 接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发申请中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本公开保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本公开的精神和原则之内所作的修改、等同替换和改进等,均应包含在本公开保护范围之内。

Claims (64)

  1. 一种跳频控制方法,其特征在于,应用于用户设备UE,所述方法包括:
    确定所述UE的类型;
    根据所述UE的类型确定跳频参数;
    根据确定的所述跳频参数进行跳频。
  2. 如权利要求1所述的方法,其特征在于,所述跳频参数包括跳频起始位置。
  3. 如权利要求2所述的方法,其特征在于,所述根据所述UE的类型确定跳频起始位置,包括:
    响应于所述UE为轻型UE,确定所述UE的跳频起始位置的初始值;
    根据所述跳频起始位置的初始值确定跳频起始位置。
  4. 如权利要求3所述的方法,其特征在于,所述根据所述跳频起始位置的初始值确定跳频起始位置,包括:
    确定所述UE的系统带宽;
    响应于所述跳频起始位置的初始值超出所述UE的系统带宽,获取调整值;
    基于所述跳频起始位置的初始值和所述调整值,确定所述跳频起始位置的最终值。
  5. 如权利要求4所述的方法,其特征在于,还包括:
    响应于起始跳频初始位置未超出所述UE的系统带宽,将所述跳频起始位置的初始值确定为所述跳频起始位置的最终值。
  6. 如权利要求4所述的方法,其特征在于,所述调整值,通过以下方式确定:
    协议规定;
    或者,通过基站发送的信令配置。
  7. 如权利要求2所述的方法,其特征在于,根据所述UE的类型确定跳频参数包括:
    响应于所述UE为非轻型UE,确定所述UE的跳频起始位置的初始值;
    将所述跳频起始位置的初始值确定为所述跳频起始位置的最终值。
  8. 如权利要求2所述的方法,其特征在于,所述根据所述UE的类型确定所述跳频参数,包括:
    确定当前跳频次数;
    根据所述当前跳频次数生成当前跳频起始位置;
    根据所述UE的类型生成调整系数;以及
    根据所述调整系数和所述当前跳频起始位置生成所述跳频起始位置。
  9. 如权利要求8所述的方法,其特征在于,所述根据所述UE的类型生成调整系数,包括:
    如果所述UE为非轻型UE,则获取所述非轻型UE的带宽部分BWP,并根据所述BWP生成所述调整系数;
    如果所述UE为轻型UE,则获取所述轻型UE的系统带宽,并根据所述系统带宽生成所述调整系数。
  10. 如权利要求9所述的方法,其特征在于,所述根据所述系统带宽生成所述调整系数,包括:
    根据所述轻型UE的系统带宽和所述非轻型UE的BWP之中的最小值生成所述调整系数。
  11. 如权利要求8所述的方法,其特征在于,所述根据所述UE的类型生成调整系数,包括:
    根据所述非轻型UE的BWP和所述轻型UE的系统带宽之中的最小值生成所述调整系数,其中,所述非轻型UE和所述轻型UE的所述跳频起始位置均由所述调整系数生成。
  12. 如权利要求1所述的方法,其特征在于,所述跳频参数为跳频偏移量。
  13. 如权利要求12所述的方法,其特征在于,所述根据所述UE的类型确定跳频偏移量,包括:
    获取所述UE的类型所对应的偏移量配置表;
    获取基站指示的偏移量标识;
    根据所述偏移量标识和所述UE的类型所对应的偏移量配置表确定所述跳频偏移量。
  14. 如权利要求13所述的方法,其特征在于,还包括:
    如果所述UE为非轻型UE,则所述非轻型UE对应的第一偏移量配置表之中的跳频偏移量根据所述非轻型UE的BWP确定;
    如果所述UE为轻型UE,则所述轻型UE对应的第二偏移量配置表之中的跳频偏移量根据所述轻型UE的系统带宽确定。
  15. 如权利要求14所述的方法,其特征在于,所述第二偏移量配置表之中的跳频偏移量根据所述轻型UE的系统带宽和所述非轻型UE的BWP之中的最小值确定。
  16. 如权利要求13所述的方法,其特征在于,所述偏移量配置表,通过以下方式确定:
    协议规定;
    或者,通过基站发送的信令配置。
  17. 如权利要求15所述的方法,其特征在于,所述非轻型UE和所述轻型UE均使用第二偏移量配置表。
  18. 如权利要求13所述的方法,其特征在于,在所述偏移量配置表之中,所述非轻型UE对应的跳频偏移量由所述非轻型UE的BWP确定,所述轻型UE对应的跳频偏移量由所述非轻型UE的BWP和所述轻型UE的系统带宽之中的最小值确定。
  19. 如权利要求1所述的方法,其特征在于,所述跳频参数为跳频次数。
  20. 如权利要求19所述的方法,其特征在于,所述非轻型UE支持的跳频次数大于所述轻型UE支持的跳频次数。
  21. 如权利要求19所述的方法,其特征在于,所述根据所述UE的类型确定跳频次数,包括:
    如果所述UE为非轻型UE,则将第一跳频次数作为所述非轻型UE的跳频次数;
    如果所述UE为轻型UE,则将第二跳频次数作为所述轻型UE的跳频次数,其中,所述第一跳频次数大于所述第二跳频次数。
  22. 如权利要求21所述的方法,其特征在于,所述第一跳频次数和所述第二跳频次数由协议配置或者基站指示。
  23. 如权利要求21所述的方法,其特征在于,所述第一跳频次数和所述第二跳频次数,通过所述基站的RMSI、随机接入响应RAR或下行控制信息DCI指示。
  24. 如权利要求19所述的方法,其特征在于,所述根据所述UE的类型确定跳频次数,包括:
    判断所述非轻型UE的BWP是否大于所述轻型UE的系统带宽;
    如果大于所述轻型UE的系统带宽,则将第一预设次数作为所述非轻型UE的跳频次数,并将第二预设次数作为所述轻型UE的跳频次数,其中,所述第一预设次数大于所述第二预设次数;
    如果小于或等于所述轻型UE的系统带宽,则将所述第一预设次数作为所述非轻型UE和所述轻型UE的跳频次数。
  25. 如权利要求19所述的方法,其特征在于,所述根据所述UE的类型确定跳频次数,包括:
    接收所述基站指示的第一指示次数和第二指示次数,其中,所述第一指示次数大于所述第二指示次数;
    如果所述非轻型UE的BWP大于所述轻型UE的系统带宽,则将所述第一指示次数作为所述非轻型UE的所述跳频次数,并将所述第二指示次数作为所述轻型UE的所述跳频次数。
  26. 如权利要求18所述的方法,其特征在于,所述根据所述UE的类型确定跳频次数,包括:
    接收所述基站指示的第三指示次数;
    如果所述非轻型UE的第一BWP小于或等于所述轻型UE的第二BWP,则将所述第三指示次数作为所述非轻型UE和所述轻型UE的所述跳频次数。
  27. 如权利要求25或26所述的方法,其特征在于,所述第一指示次数和第二指示次数,或者所述第三指示次数,通过所述基站的RMSI、随机接入响应RAR或下行控制信息DCI指示。
  28. 如权利要求19所述的方法,其特征在于,所述非轻型UE对应的所述跳频次数由基站指示,所述轻型UE的对应的所述跳频次数由协议规定。
  29. 一种跳频控制方法,其特征在于,应用于轻型UE,所述方法包括:
    确认所述轻型UE下一跳的位置;
    如果所述下一跳的频域位置超出所述轻型UE当前工作带宽所在的频域位置,则进行射频重调,以使所述轻型UE的工作带宽跳转至下一跳所在频域位置。
  30. 如权利要求29所述的方法,其特征在于,所述射频重调的时间间隔由协议规定为固定值,或基站指示。
  31. 如权利要求30所述的方法,其特征在于所述时间间隔由系统消息、媒体接入控制控制单元MAC CE或DCI信令指示。
  32. 一种跳频控制方法,其特征在于,应用于基站,所述方法包括:
    确定UE的类型;
    根据所述UE的类型确定所述UE的跳频参数;
    根据确定的所述UE的跳频参数为所述UE提供跳频服务。
  33. 如权利要求32所述的方法,其特征在于,所述跳频参数为跳频起始位置。
  34. 如权利要求33所述的方法,其特征在于,所述根据所述UE的类型确定所述UE的跳频起始位置,包括:
    响应于所述UE为轻型UE,确定所述UE的起始跳频初始位置;
    根据所述UE的起始跳频初始值确定所述UE的跳频起始位置。
  35. 如权利要求33所述的方法,其特征在于,所述根据所述起始跳频初始位置确定所述UE的跳频起始位置,包括:
    确定所述UE的系统带宽;
    响应于起始跳频初始位置超出所述UE的系统带宽,获取调整值;
    根据所述调整值对所述起始跳频初始位置进行调整,以生成所述UE的跳频起始位置。
  36. 如权利要求35所述的方法,其特征在于,还包括:
    响应于起始跳频初始位置未超出所述UE的系统带宽,将所述起始跳频初始位置确定为所述UE的跳频起始位置。
  37. 如权利要求35所述的方法,其特征在于,所述调整值,通过以下方式确定:
    协议规定;
    或者,向所述UE发送信令配置。
  38. 如权利要求34所述的方法,其特征在于,还包括:
    响应于所述UE为非轻型UE,则将所述起始跳频初始位置作为所述UE的跳频起始位置。
  39. 如权利要求33所述的方法,其特征在于,所述根据所述UE的类型确定所述UE的跳频起始位置, 包括:
    获取所述UE的当前跳频次数;
    根据所述当前跳频次数生成所述UE的当前跳频起始位置;
    根据所述UE的类型生成调整系数;以及
    根据所述调整系数和所述当前跳频起始位置生成所述UE的跳频起始位置。
  40. 如权利要求39所述的方法,其特征在于,所述根据所述UE的类型生成调整系数,包括:
    如果所述UE为非轻型UE,则获取所述非轻型UE的带宽部分BWP,并根据所述BWP生成所述调整系数;
    如果所述UE为轻型UE,则获取所述轻型UE的系统带宽,并根据所述系统带宽生成所述调整系数。
  41. 如权利要求40所述的方法,其特征在于,所述根据所述系统带宽生成所述调整系数,包括:
    根据所述轻型UE的系统带宽和所述非轻型UE的BWP之中的最小值生成所述调整系数。
  42. 如权利要求39所述的方法,其特征在于,所述根据所述UE的类型生成调整系数,包括:
    根据所述非轻型UE的BWP和所述轻型UE的系统带宽之中的最小值生成所述调整系数,其中,所述非轻型UE和所述轻型UE的所述跳频起始位置均由所述调整系数生成。
  43. 如权利要求32所述的方法,其特征在于,所述跳频参数为跳频偏移量。
  44. 如权利要求43所述的方法,其特征在于,所述根据所述UE的类型确定所述UE的跳频偏移量,包括:
    向所述UE发送所述UE的类型所对应的偏移量配置表;
    向所述UE发送偏移量标识。
  45. 如权利要求44所述的方法,其特征在于,还包括:
    如果所述UE为非轻型UE,则所述非轻型UE对应的第一偏移量配置表之中的跳频偏移量根据所述非轻型UE的BWP确定;
    如果所述UE为轻型UE,则所述轻型UE对应的第二偏移量配置表之中的跳频偏移量根据所述轻型UE的系统带宽确定。
  46. 如权利要求45所述的方法,其特征在于,所述第二偏移量配置表之中的跳频偏移量根据所述轻型UE的系统带宽和所述非轻型UE的BWP之中的最小值确定。
  47. 如权利要求46所述的方法,其特征在于,所述偏移量配置表,通过以下方式确定:
    协议规定;
    或者,向所述UE发送信令配置。
  48. 如权利要求34所述的方法,其特征在于,所述非轻型UE和所述轻型UE均使用第二偏移量配置表。
  49. 如权利要求44所述的方法,其特征在于,在所述偏移量配置表之中,所述非轻型UE对应的跳频偏移量由所述非轻型UE的BWP确定,所述轻型UE对应的跳频偏移量由所述非轻型UE的BWP和所述轻型UE的系统带宽之中的最小值确定。
  50. 如权利要求32所述的方法,其特征在于,所述跳频参数为跳频次数。
  51. 如权利要求50所述的方法,其特征在于,所述非轻型UE支持的跳频次数大于所述轻型UE支持的跳频次数。
  52. 如权利要求50所述的方法,其特征在于,所述根据所述UE的类型确定所述UE的跳频次数,包括:
    如果所述UE为非轻型UE,则将第一跳频次数作为所述非轻型UE的跳频次数;
    如果所述UE为轻型UE,则将第二跳频次数作为所述轻型UE的跳频次数,其中,所述第一跳频次数大于所述第二跳频次数。
  53. 如权利要求52所述的方法,其特征在于,所述第一跳频次数和所述第二跳频次数由协议配置或者基站指示。
  54. 如权利要求52所述的方法,其特征在于,所述第一跳频次数和所述第二跳频次数,通过所述基站的RMSI、随机接入响应RAR或下行控制信息DCI指示。
  55. 如权利要求50所述的方法,其特征在于,所述根据所述UE的类型确定所述UE的跳频次数,包括:
    判断所述非轻型UE的BWP是否大于所述轻型UE的系统带宽;
    如果大于所述轻型UE的系统带宽,则将第一预设次数作为所述非轻型UE的跳频次数,并将第二预设次数作为所述轻型UE的跳频次数,其中,所述第一预设次数大于所述第二预设次数;
    如果小于或等于所述轻型UE的系统带宽,则将所述第一预设次数作为所述非轻型UE和所述轻型UE的跳频次数。
  56. 如权利要求50所述的方法,其特征在于,所述根据所述UE的类型确定所述UE跳频次数,包括:
    发送第一指示次数和第二指示次数,其中,所述第一指示次数大于所述第二指示次数,其中,如果所述非轻型UE的BWP大于所述轻型UE的系统带宽,则将所述第一指示次数作为所述非轻型UE的所述跳频次数,并将所述第二指示次数作为所述轻型UE的所述跳频次数。
  57. 如权利要求50所述的方法,其特征在于,所述根据所述UE的类型确定跳频次数,包括:
    发送第三指示次数,其中,如果所述非轻型UE的第一BWP小于或等于所述轻型UE的第二BWP,则将所述第三指示次数作为所述非轻型UE和所述轻型UE的所述跳频次数。
  58. 如权利要求56或57所述的方法,其特征在于,所述第一指示次数和第二指示次数,或者所述第三指示次数,通过所述基站的RMSI、随机接入响应RAR或下行控制信息DCI指示。
  59. 如权利要求50所述的方法,其特征在于,所述非轻型UE对应的所述跳频次数由基站指示,所述轻型UE的对应的所述跳频次数由协议规定。
  60. 一种跳频控制装置,其特征在于,应用于用户设备UE,所述装置包括:
    第一确定模块,被配置为确定所述UE的类型;
    第二确定模块,被配置为根据所述UE的类型确定跳频参数;
    第一处理模块,被配置为根据确定的所述跳频参数进行跳频。
  61. 一种跳频控制装置,其特征在于,应用于轻型UE,所述装置包括:
    第三确定模块,被配置为确认所述轻型UE下一跳的位置;
    射频重调模块,被配置为如果所述下一跳的频域位置超出所述轻型UE当前工作带宽所在的频域位置,则进行射频重调,以使所述轻型UE的工作带宽跳转至下一跳所在频域位置。
  62. 一种跳频控制装置,其特征在于,应用于基站,所述装置包括
    第四确定模块,被配置为确定UE的类型;
    第五确定模块,被配置为根据所述UE的类型确定所述UE的跳频参数;
    第一提供模块,被配置为根据确定的所述UE的跳频参数为所述UE提供跳频服务。
  63. 一种通信设备,其中,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现权利要求1至28或29至31或32-59任一项所述的方法。
  64. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现权利要求1至28或29至31或32-59任一项所述的方法。
PCT/CN2021/072350 2021-01-16 2021-01-16 跳频控制方法及装置 WO2022151453A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21918656.6A EP4280740A4 (en) 2021-01-16 2021-01-16 FREQUENCY SKIP CONTROL METHOD AND APPARATUS
US18/272,764 US20240187151A1 (en) 2021-01-16 2021-01-16 Frequency hopping control method and apparatus
CN202180000173.1A CN115088348A (zh) 2021-01-16 2021-01-16 跳频控制方法及装置
PCT/CN2021/072350 WO2022151453A1 (zh) 2021-01-16 2021-01-16 跳频控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072350 WO2022151453A1 (zh) 2021-01-16 2021-01-16 跳频控制方法及装置

Publications (1)

Publication Number Publication Date
WO2022151453A1 true WO2022151453A1 (zh) 2022-07-21

Family

ID=82447898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072350 WO2022151453A1 (zh) 2021-01-16 2021-01-16 跳频控制方法及装置

Country Status (4)

Country Link
US (1) US20240187151A1 (zh)
EP (1) EP4280740A4 (zh)
CN (1) CN115088348A (zh)
WO (1) WO2022151453A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065219A1 (zh) * 2022-09-27 2024-04-04 北京小米移动软件有限公司 跳频处理方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222268A (zh) * 2007-01-08 2008-07-16 中兴通讯股份有限公司 连续频分多址系统跳频发射机、接收机装置及其跳频方法
CN106464296A (zh) * 2014-08-07 2017-02-22 华为技术有限公司 传输数据的方法、设备及系统
CN109600833A (zh) * 2017-09-30 2019-04-09 中国移动通信有限公司研究院 一种确定传输资源的方法及设备
WO2020032646A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
CN111406378A (zh) * 2020-02-25 2020-07-10 北京小米移动软件有限公司 通信方法、装置及计算机存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3747233A1 (en) * 2018-02-02 2020-12-09 Sony Corporation Telecommunications apparatus and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222268A (zh) * 2007-01-08 2008-07-16 中兴通讯股份有限公司 连续频分多址系统跳频发射机、接收机装置及其跳频方法
CN106464296A (zh) * 2014-08-07 2017-02-22 华为技术有限公司 传输数据的方法、设备及系统
CN109600833A (zh) * 2017-09-30 2019-04-09 中国移动通信有限公司研究院 一种确定传输资源的方法及设备
WO2020032646A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
CN111406378A (zh) * 2020-02-25 2020-07-10 北京小米移动软件有限公司 通信方法、装置及计算机存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4280740A4 *

Also Published As

Publication number Publication date
EP4280740A1 (en) 2023-11-22
CN115088348A (zh) 2022-09-20
US20240187151A1 (en) 2024-06-06
EP4280740A4 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
EP3963956A1 (en) Method and apparatus for communicating a data communication with an offset
WO2019029473A1 (zh) 传输数据的方法、终端设备和网络设备
WO2018196787A1 (zh) 一种信道状态的指示方法、装置及网络设备
CN109842432B (zh) 跳频处理方法及设备
JP2020523902A (ja) 通信方法、ネットワークデバイス、およびユーザ機器
WO2022104797A1 (zh) 一种传输方法及装置
EP3557940B1 (en) Communication method, terminal device and computer readable medium
CN112020881A (zh) 5g nr快速低功率模式
JP2022542017A (ja) サイドリンクリソース選択方法及び装置
CN110999436B (zh) 一种系统消息的指示方法、装置及系统
WO2022253312A1 (zh) 上行数据传输方法、装置、终端及介质
WO2022151453A1 (zh) 跳频控制方法及装置
WO2022178779A1 (zh) 波束指示方法及装置
WO2022151406A1 (zh) 一种跳频的控制方法及装置
TW201944829A (zh) 行動通訊中緊湊下行鏈路控制資訊的頻域資源配置
WO2018201861A1 (zh) 一种消息解码方法、发送端设备和接收端设备
US20200008178A1 (en) Wireless Communication Method and Device
WO2019034101A1 (zh) 网络配置参数的有效取值确定方法、用户终端、基站以及网络配置参数的有效取值确定系统
JP2020509637A (ja) 無線通信方法、端末装置とネットワーク装置
US20230421301A1 (en) Methods for uplink coverage enhancement, communication device and storage medium
WO2020220352A1 (zh) 一种通信方法及设备
WO2022134061A1 (zh) 调度信息发送方法、调度信息接收方法及装置
CN113243092B (zh) 通信方法及装置
WO2022151228A1 (zh) 一种pucch资源指示方法以及装置
WO2022110143A1 (zh) 随机接入响应发送方法、接收方法、装置和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918656

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317054812

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021918656

Country of ref document: EP

Effective date: 20230816