WO2022110143A1 - 随机接入响应发送方法、接收方法、装置和终端设备 - Google Patents

随机接入响应发送方法、接收方法、装置和终端设备 Download PDF

Info

Publication number
WO2022110143A1
WO2022110143A1 PCT/CN2020/132774 CN2020132774W WO2022110143A1 WO 2022110143 A1 WO2022110143 A1 WO 2022110143A1 CN 2020132774 W CN2020132774 W CN 2020132774W WO 2022110143 A1 WO2022110143 A1 WO 2022110143A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
pdsch
transport block
carried
pdcch
Prior art date
Application number
PCT/CN2020/132774
Other languages
English (en)
French (fr)
Inventor
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2020/132774 priority Critical patent/WO2022110143A1/zh
Priority to CN202080003414.3A priority patent/CN114846873A/zh
Priority to US18/254,398 priority patent/US20240107586A1/en
Publication of WO2022110143A1 publication Critical patent/WO2022110143A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of mobile communication technologies, and in particular, to a method for sending a random access response, a method for receiving a random access response, an apparatus for sending a random access response, an apparatus for receiving a random access response, a base station, a terminal device, and a storage medium.
  • coverage enhancement is required.
  • coverage enhancement is usually carried out between the terminal and the base station in the following manner: 1) a repeated transmission method, for example, repeating the transmission of the terminal's data multiple times; 2) using the transmission block size scaling
  • TBS proportional Tranport Block Size
  • the current problem is: for the repeated transmission method, the data packet will be too large, which will bring the risk of increased power to the terminal; for the use of the TBS scaling method, due to the limitation of Reducap transmission resources, the excessively large data packet will bring about The zoom limit affects the overlay effect.
  • An embodiment of the first aspect of the present application proposes a method for sending a random access response.
  • the method is applied to a base station and includes: receiving at least one random access preamble; responding to the received at least one random access preamble , generating at least one random access response RAR; and allocating the at least one RAR to at least one transport block carried by the physical downlink shared channel PDSCH.
  • the capacity sizes of the transport blocks carried by the at least one PDSCH are set to be the same, or the capacity sizes of the transport blocks carried by the at least one PDSCH are set differently.
  • the sending method further includes: in response to the information size of the at least one RAR allocated in the transport block carried by the PDSCH being lower than the setting of the transport block carried by the PDSCH capacity size, then fill and fill the transport block carried by the PDSCH until the set capacity size is reached.
  • the allocating the at least one RAR to the at least one physical downlink shared channel PDSCH includes: allocating the at least one RAR to the transmission carried by the at least one PDSCH according to a preset algorithm piece.
  • the preset algorithm is related to an index value in the at least one random access preamble and/or the number of all the transport blocks.
  • allocating the at least one RAR to a transport block carried by at least one PDSCH according to a preset algorithm includes: assigning the index value of the one random access preamble to all Modulo the number of the transport blocks to obtain an operation result; add 1 to the operation result to obtain the position index value of the transport block carrying the RAR corresponding to the one random access preamble.
  • the method further includes: scheduling a transport block carried by the at least one PDSCH through a physical downlink control channel PDCCH.
  • the scheduling of the transport blocks carried by the at least one PDSCH through the PDCCH includes: invoking the transmission of all PDSCH bearers in the transport blocks carried by the at least one PDSCH through the same PDCCH. piece.
  • the method further includes: a plurality of transport blocks carried by the PDSCH share some scheduling resources.
  • control information sent on the PDCCH includes: MCS or transmission resources associated with multiple transport blocks carried by the PDSCH.
  • the method further includes: multiple transport blocks carried by the PDSCH are consecutive in time, or have a time interval with each other.
  • control information sent on the PDCCH includes: the number of transport blocks carried by all the PDSCHs, and/or; the number of RARs contained in the transport blocks carried by each of the PDSCHs .
  • broadcast signaling is used to notify: the number of transport blocks carried by all the PDSCHs, and/or the number of RARs included in the transport blocks carried by each PDSCH.
  • the scheduling of the transport blocks carried by the at least one PDSCH by using the PDCCH includes: scheduling the transport blocks carried by different PDSCHs respectively by using a plurality of different PDCCHs.
  • the multiple different PDCCHs have a corresponding relationship with the transport blocks carried by the scheduled PDSCH.
  • the method further includes: the control information carried by the multiple different PDCCHs is respectively associated with different scrambling codes for scramble.
  • the method further includes: the scrambling code associated with the control information carried by the PDCCH and the random access preamble corresponding to the RAR included in the transport block carried by the corresponding scheduled PDSCH code related.
  • the method further includes: the multiple different PDCCHs use different transmission resources respectively.
  • the method further includes: the transmission resource used by the PDCCH is related to the random access preamble corresponding to the RAR included in the transmission block carried by the corresponding scheduled PDSCH.
  • the embodiment of the second aspect of the present application proposes a method for receiving a random access response.
  • the method is applied to a terminal device and includes: sending a random access preamble to a base station; determining a PDCCH; and transmitting a PDSCH scheduled from the PDCCH.
  • a random access response RAR corresponding to the random access preamble is received in the block.
  • the receiving the RAR from the transport blocks carried by the PDSCH scheduled by the PDCCH includes: obtaining the RAR from the transport blocks carried by multiple PDSCHs scheduled by the PDCCH.
  • the method further includes: determining a transport block carrying the RAR according to a preset algorithm.
  • the preset algorithm is related to an index value in the random access preamble and/or the number of all the transport blocks.
  • the determining the transport block carrying the RAR according to a preset algorithm includes: taking the index value of the random access preamble and the number of all the transport blocks Modulo operation to obtain an operation result; adding 1 to the operation result to obtain the position index value of the transport block carrying the RAR.
  • the method further includes:
  • the method further includes:
  • the PDCCH has a corresponding relationship with a transport block carried by the scheduled PDSCH.
  • the determining the PDCCH includes: determining the PDCCH according to the random preamble used.
  • the determining the PDCCH according to the used random access preamble includes: determining, according to the random access preamble, a control information carried by the PDCCH associated with the control information. scrambling code; detecting the PDCCH according to the scrambling code.
  • the determining the corresponding PDCCH according to the used random access preamble includes: determining the transmission resource used by the PDCCH according to the random access preamble; The PDCCH is monitored on the transmission resource.
  • the embodiment of the third aspect of the present application provides an apparatus for sending a random access response.
  • the apparatus is applied to a base station and includes: a receiving module, configured to receive at least one random access preamble; a processing module, configured to respond to the received The at least one random access preamble is generated, and at least one random access response RAR is generated; the allocation module is configured to allocate the at least one RAR to the transport block carried by at least one physical downlink shared channel PDSCH.
  • a fourth aspect of the present application provides an apparatus for receiving a random access response.
  • the apparatus is applied to a terminal device, and includes: a sending module, configured to send a random access preamble to a base station; a determining module, configured to determine a PDCCH; A processing module, configured to receive a random access response RAR corresponding to the random access preamble from the transport block borne by the PDSCH scheduled by the PDCCH.
  • Embodiments of the fifth aspect of the present application provide a base station, including a processor, a transceiver, a memory, and a computer program stored in the memory, where the processor runs the computer program to implement the implementation of the foregoing first aspect Example of the random access response sending method.
  • An embodiment of the sixth aspect of the present application provides a terminal device, including a processor, a transceiver, a memory, and a computer program stored on the memory, where the processor runs the computer program to implement the aforementioned second aspect The random access response receiving method described in the embodiment.
  • An embodiment of the seventh aspect of the present application provides a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is used to cause the processor to execute the foregoing first aspect embodiment The method for sending a random access response, or, implementing the method for receiving a random access response according to the embodiment of the second aspect.
  • the base station receives different random access preambles on the same time-frequency resource, and allocates the random access response RARs corresponding to the different random access preambles to different transmission blocks, where each transmission The block is carried by the PDSCH.
  • the terminal device side determines the target transport block containing the random access response RAR corresponding to itself from the transport block carried by the corresponding PDSCH, and can determine from the target transport block.
  • the random access response RAR corresponding to the random access preamble Preamble thus, by assigning different random access response RARs to different transport blocks on the base station side, to reduce the size of the transport block transmitted by the base station to the terminal side , and reduce the monitoring time of each terminal, thereby reducing the power overhead of the terminal and improving the effect of coverage enhancement.
  • Fig. 1 is an example diagram that multiple RARs sent in the prior art can be multiplexed in a data packet
  • Fig. 2 is an example diagram of PDCCH scheduling and loading data packets of multiple RARs in the prior art
  • FIG. 3 is a flowchart of a method for sending a random access response provided according to an embodiment of the present application
  • FIG. 4a is an example diagram 1 of data loading of multiple random access responses according to an embodiment of the present application.
  • Fig. 4b is an example Fig. 2 of data loading of multiple random access responses according to an embodiment of the present application
  • FIG. 5 is a flowchart of a method for sending a random access response according to another embodiment of the present application.
  • FIG. 6 is an example of data loading of multiple random access responses according to an embodiment of the present application, FIG. 3 ;
  • FIG. 7 is a flowchart of another random access response sending method provided according to an embodiment of the present application.
  • FIG. 8 is a flowchart of another random access response sending method provided according to an embodiment of the present application.
  • FIG. 9 is an example of data loading of multiple random access responses according to an embodiment of the present application, FIG. 4 ;
  • FIG. 10 is a flowchart of a method for receiving a random access response provided according to an embodiment of the present application
  • FIG. 11 is a schematic structural diagram of a random access response sending apparatus proposed according to the present application.
  • FIG. 12 is a schematic structural diagram of a random access response receiving apparatus proposed according to the present application.
  • FIG. 13 is a block diagram of a terminal device for implementing a method for receiving a random access response according to an embodiment of the present application.
  • MTC technology and NB-IoT technology are proposed to support IoT services.
  • MTC technology and NB-IoT technology are mainly aimed at low-rate, high-latency and other scenarios. For example, remote meter reading, environmental monitoring and other scenarios.
  • NB-IoT technology currently supports a maximum rate of several hundred kilobytes
  • MTC technology currently supports a maximum rate of several megabytes.
  • Internet of Things services such as the popularization of video surveillance, smart home, wearable devices and industrial sensor monitoring, these services usually require very high rates, such as tens to 100M rates, and also have low latency.
  • IoT devices based on 5G NR-lite usually need to meet the following requirements: low cost, low complexity, a certain degree of coverage enhancement, and power saving.
  • the terminal device When a terminal device enters the IoT network, the terminal device needs to initiate random access to the base station. After the terminal device initiates random access, the terminal device first sends a preamble. After the base station receives the preamble, it transmits a random access response (Random Access Response, RAR for short). Since the base station can receive multiple Preambles on the same time-frequency resource, it can respond to multiple Preambles. That is, multiple RARs are sent at the same time.
  • RAR Random Access Response
  • multiple sent RARs can be multiplexed in one data packet.
  • the data packets loaded with multiple RARs are scheduled by the RAR's PDCCH (Physical Downlink Control Channel, physical downlink control channel). Random access wireless network temporary identification) for scrambling.
  • PDCCH Physical Downlink Control Channel, physical downlink control channel. Random access wireless network temporary identification
  • the terminal device can detect the PDCCH scrambled by the RA-RNTI in the corresponding random access response window, and receive the data packet containing the corresponding RAR through the PDCCH.
  • the data packet containing the corresponding RAR received by the terminal device through the PDCCH is the data packet shown in FIG. 2 , and the terminal device can find the corresponding RAR in the data packet according to the sent Preamble.
  • coverage enhancement is required.
  • coverage enhancement is usually performed between the base station and the terminal device in the following manner: 1) Repeated transmission mode, for example, repeating transmission of the data of the terminal device multiple times; 2) Using TBS
  • the scaling method is used for coverage enhancement, that is, the same TBS can use more resources. This method is equivalent to reducing the bit rate in disguise and increasing the coverage.
  • the embodiments of the present application propose a method for sending a random access response, a method for receiving a random access response, an apparatus for sending a random access response, an apparatus for receiving a random access response, a base station, a terminal device, and a storage medium, wherein,
  • the terminal device may be understood as the terminal device in this embodiment of the application, and the terminal device may be a Reducap terminal.
  • the terminal device may be a transmitter in a communication scenario, where the transmitter may be understood as a signal sender, as an example, the transmitter may be understood as an initiator of random access, and the transmitter may be a mobile phone, a One of terminal devices such as wearable devices, or the transmitter may also be one of terminal devices that can be used for Internet of Things services, such as smart home equipment, video surveillance equipment, and industrial sensor monitoring equipment.
  • the transmitter may be understood as a signal sender, as an example, the transmitter may be understood as an initiator of random access, and the transmitter may be a mobile phone, a One of terminal devices such as wearable devices, or the transmitter may also be one of terminal devices that can be used for Internet of Things services, such as smart home equipment, video surveillance equipment, and industrial sensor monitoring equipment.
  • FIG. 3 is a flowchart of a method for sending a random access response according to an embodiment of the present application, where the method is applied to a base station.
  • the random access response sending method may include the following steps.
  • step 301 at least one random access preamble is received.
  • At least one means one or more
  • plural means at least two, such as two, three and so on.
  • At least one random access preamble may be sent by at least one terminal device, wherein it can be understood that the number of random access preambles received by the base station is related to the terminal device that initiates random access. of the same number. In other embodiments, multiple terminal devices may use the same random access preamble. Then the number of random access preambles received by the base station may be greater than the number of terminal devices that transmit random access preambles.
  • the base station may receive at least one random access preamble sent by at least one terminal device on the same PRACH (Physical Random Access Channel, physical random access channel) time-frequency resource.
  • PRACH Physical Random Access Channel
  • the base station can receive the respective random access preamble Preamble sent by the at least one terminal device on the same time-frequency resource. Since the number of terminal devices is at least one, the base station receives on the same time-frequency resource. The number of the random access preamble Preamble is also at least one.
  • step 302 at least one random access response RAR is generated in response to the received at least one random access preamble.
  • the base station when the base station receives at least one random access preamble Preamble sent by at least one terminal device on the same time-frequency resource, it can respectively initiate a corresponding random access response RAR to the at least one terminal device, wherein , the random access response can be sent in the random access response window.
  • At least one RAR is allocated to a transport block carried by at least one PDSCH (Physical Downlink Shared Channel, Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel, Physical Downlink Shared Channel
  • the PDSCH is used to carry data from the transport channel, wherein the data carried on the PDSCH can be presented through a transport block.
  • the base station may allocate the generated at least one RAR to a transport block carried by at least one PDSCH, so that the at least one RAR is carried in the form of a transport block through at least one PDSCH, In order to send the RAR to the corresponding terminal equipment through the PDSCH bearing transport block.
  • a transport block Transport Block, TB for short
  • MAC Media Access Control, media access control sublayer protocol
  • the base station may group the random access response RAR corresponding to the random access preamble Preamble sent by the terminal device on the same time-frequency resource into one or more transport blocks, and the one or more transport blocks are composed of one or more transport blocks. or multiple PDSCH bearers, for example, each transport block is carried by one PDSCH.
  • the number of PDSCHs may be determined by the number of random access response RARs corresponding to the random access preamble Preamble sent on the same time-frequency resource, for example,
  • the base station sends a small number (such as less than a certain number, such as one or two) random access response RARs on the same time-frequency resource, the smaller number of RARs can be used.
  • the random access response RAR is allocated to a transport block carried by PDSCH, and the number of the PDSCH is the same as the number of transport blocks.
  • the base station may distribute the large number of random access response RARs in multiple transport blocks carried by the PDSCH, and the PDSCH The number is the same as the number of transport blocks.
  • the number of random access preambles is 8 (that is, it is assumed that the base station receives 8 random access preambles) as an example, and the base station is in the same time-frequency resource When receiving 8 random access preambles, it can send corresponding random access responses to the 8 terminal devices.
  • the number of random access response RARs is 8, for example, RAR1, RAR2, RAR3, RAR4, RAR5 , RAR6, RAR7 and RAR8, the 8 random access response RARs of RAR1, RAR2, RAR3, RAR4, RAR5, RAR6, RAR7 and RAR8 can be allocated to 4 transport blocks TB, such as transport block TB#1, transmission Block TB#2, transport block TB#3 and transport block TB#4, each transport block is carried by one PDSCH.
  • the number of random access preambles is 2 (that is, it is assumed that the base station receives 2 random access preambles), and the base station is on the same time-frequency resource.
  • the corresponding random access responses can be sent to the two terminal devices.
  • the number of random access response RARs is two, for example, RAR1 and RAR2.
  • the two random access responses RAR are allocated to one transport block TB, such as transport block TB#1, which is carried by one PDSCH.
  • the capacity sizes of the transport blocks carried by the PDSCH may be set to be the same.
  • the capacity of the transport block may be understood as the size of the transport block, that is, the number of bits contained in the transport block.
  • the capacity sizes of the transport blocks carried by the PDSCH may be the same, that is, the capacity sizes of the transport blocks carried by each PDSCH may be the same. It will be appreciated that in a given transport block set, all transport block sizes are fixed and the same. Wherein, when the capacity of the transport blocks carried by some or a certain PDSCH is insufficient, the remaining capacity of the transport blocks carried by the PDSCH may be supplemented by means of information filling.
  • the transport block carried by the PDSCH is filled with information until the set capacity is reached. size. That is to say, in order to make the capacity of the transport blocks carried by each PDSCH the same, when a random access response is stored in a transport block carried by a PDSCH, it is identified that the random access response is stored in the transport block carried by the PDSCH.
  • the information size of the response is lower than the set value of the capacity size of the transport block carried by the PDSCH
  • the information size of the random access response stored in the transport block carried by the PDSCH is lower than the set value of the capacity size of the transport block carried by the PDSCH
  • the remaining capacity of the transport block carried by the PDSCH is filled with information until the current capacity of the PDSCH reaches the set capacity of the PDSCH, that is, the maximum capacity limit of the transport block carried by the PDSCH is reached. If the information size of the random access response stored in the transport block carried by the PDSCH is not lower than the set value of the capacity size of the transport block carried by the PDSCH, the information padding is not performed on the transport block carried by the PDSCH.
  • the capacity size setting of the transport block carried by the PDSCH may be different.
  • the number of random access response RARs contained in multiple transport blocks carried by PDSCH may be different.
  • 8 random access response RARs are distributed in three transport blocks TB carried by PDSCH, where , the random access response RARs contained in transport block TB#1 are RAR1 and RAR2, the random access response RARs contained in transport block TB#2 are RAR3, RAR4 and RAR5, and the random access response RARs contained in transport block TB#3 are RAR3, RAR4 and RAR5.
  • the random access response RARs are RAR6, RAR7, and RAR8, wherein the number of random access response RARs contained in transport block TB#2 and transport block TB#3 is the same as the number of random access response RARs contained in transport block TB#1, respectively.
  • the number of response RARs varies. It should be noted that the setting of the capacity size of the transport block carried by the PDSCH may be determined by the communication protocol between the base station and the terminal device, which is not specifically limited in this application.
  • the base station receives different random access preambles on the same time-frequency resource, and sends random access responses corresponding to the different random access preambles respectively.
  • RARs are allocated to different transport blocks, wherein each transport block is carried by PDSCH.
  • the terminal device side determines the target transmission containing the random access response RAR corresponding to itself from the transport blocks carried by the corresponding PDSCH. block, the random access response RAR corresponding to the random access preamble Preamble sent by itself can be determined from the target transmission block.
  • the base station may allocate at least one RAR to at least one transport block carried by the PDSCH on the physical downlink shared channel according to a preset algorithm.
  • the preset algorithm may be predefined in the communication protocol between the base station and the terminal device.
  • FIG. 5 is a flowchart of a method for sending a random access response according to another embodiment of the present application, where the method for sending a random access response is applied to a base station. As shown in FIG. 5 , the random access response sending method may include the following steps.
  • step 501 at least one random access preamble is received.
  • step 501 may be implemented in any of the embodiments of the present application, which is not limited in the embodiments of the present application, and will not be described again.
  • step 502 at least one random access response RAR is generated in response to the received at least one random access preamble.
  • step 502 may be implemented in any of the embodiments of the present application, which is not limited in the embodiment of the present application, and will not be described again.
  • step 503 the at least one RAR is allocated to at least one transport block carried by the PDSCH according to a preset algorithm.
  • the preset algorithm is related to the index value in the at least one random access preamble, and/or the number of all the transport blocks.
  • the preset algorithm may be predefined in the communication protocol between the base station and the terminal device.
  • the preset algorithm may be any algorithm, as long as the base station can allocate at least one random access response corresponding to at least one random access preamble to at least one transport block carried by the PDSCH according to the algorithm, and the terminal can pass the The algorithm can identify the random access response RAR corresponding to the Preamble sent by the terminal itself from the transport block carried by the corresponding PDSCH.
  • the base station receives at least one random access preamble, and can use a preset algorithm to allocate at least one random access response RAR with at least one random access preamble Preamble to at least one PDSCH based on the index value of the random access preamble Preamble. carried in the transport block.
  • the preset algorithm may be a similarity calculation method, or a distance algorithm, or a random algorithm. For example, taking the preset algorithm as the similarity calculation method and the number of random access response RARs being multiple as an example, the similarity between the index values of multiple random access preambles can be calculated based on the similarity calculation method.
  • the access response RARs are distributed in different transport blocks, that is, based on the index values of multiple random access preambles, the random access response RARs corresponding to the random access preambles with similar index values are compared.
  • the grouping is placed in the same transport block, the random access response RAR corresponding to the random access preamble Preamble whose index value similarity is lower than the threshold is placed, and the grouping is placed in different transport blocks, so that multiple random access responses
  • the RAR is distributed in at least one different transport block, where each transport block is carried by a corresponding PDSCH.
  • the distance between the index values of the multiple random access preamble Preambles can be calculated based on the distance algorithm, and the distance is greater than or
  • the random access response RAR corresponding to the random access preamble Preamble equal to a certain threshold is distributed in the same transmission block, and the random access response RAR corresponding to the random access preamble Preamble whose distance is less than a certain threshold is distributed in the same transmission block.
  • the random access response RARs corresponding to the random access preambles with relatively small distances are grouped into the same transport block.
  • the random access response RAR corresponding to the random access preamble Preamble whose distance is higher than the threshold is grouped into different transport blocks, so that multiple random access response RARs are distributed in at least one different transport block, wherein , each transport block is carried by the corresponding PDSCH.
  • the distance algorithm may be Euclidean distance or Hamming distance, etc., which is not specifically limited in the present application.
  • the random access preamble corresponding to the random access preamble can be determined based on the index values of multiple random access preambles.
  • the incoming response RARs are randomly distributed in different transport blocks, wherein each transport block is carried by the corresponding PDSCH.
  • the base station receives at least one random access preamble, and can use a preset algorithm to distribute at least one random access response RAR corresponding to the at least one random access preamble Preamble in at least one random access response RAR based on the index value of the random access preamble Preamble. in the transport block carried by the PDSCH.
  • the preset algorithm may be related to the number of all transport blocks.
  • the total number of all transmission blocks has been pre-defined between the base station and the terminal device, for example, the total number is N
  • the preset algorithm is the random algorithm
  • the number of random access response RARs is multiple
  • the random access response RARs corresponding to the random access preambles can be allocated to the N different transport blocks, wherein each transport block is composed of Corresponding PDSCH bearer.
  • the base station can respond to multiple random access responses according to the reception time of the random access preamble Preamble.
  • RARs are allocated to corresponding transport blocks respectively. Wherein, each transport block is carried by the corresponding PDSCH.
  • multiple random access response RARs corresponding to multiple random access preambles Preamble can be allocated to at least one transport block carried by PDSCH using a preset algorithm based on the index value of the random access preamble Preamble.
  • the preset algorithm is related to the index value of the random access preamble Preamble and the number of all transport blocks.
  • the index value of a certain random access preamble and the number N of all transmission blocks can be modulo operation to obtain the operation result, and the operation result can be added by 1 and summed to obtain the carrying and The position index value of the transport block of the RAR corresponding to the random access preamble, so as to realize allocating the RAR to the transport block carried by the corresponding PDSCH. That is to say, the base station can determine the position of the transport block to which the current random access response RAR should be distributed based on the index value of the random access preamble Preamble and the number N of transport blocks carried by the PDSCH.
  • the base station receives 8 random access preambles
  • the number N of all transport blocks is 4, and 8 random access
  • the index values of the preamble Preamble are 32, 33, 34, 35, 36, 37, 38, and 39, respectively
  • the random access response RARs corresponding to the eight random access preambles are RAR1, RAR2, RAR3, and RAR4 respectively.
  • RAR5, RAR6, RAR7 and RAR8 the base station receives the 8 random access preambles, and can use the index values of the above 8 random access preambles and the number of transport blocks N (the value is 4) carried by the PDSCH respectively.
  • the obtained operation results are respectively: 0, 1, 2, 3, 0, 1, 2 and 3, and each value in the operation result is added by 1 and summed to obtain the position index value of the transmission block , thus, the random access response RAR1 can be placed in the transport block TB#1 corresponding to the position index value of 1, and the random access response RAR2 can be placed in the transport block TB#2 corresponding to the position index value of 2.
  • the access response RAR3 is placed in the transport block TB#3 corresponding to the position index value of 3
  • the random access response RAR4 is placed in the transport block TB#4 corresponding to the position index value of 4
  • the random access response RAR5 is placed in the position
  • the random access response RAR6 is placed in the transport block TB#2 corresponding to the position index value of 2
  • the random access response RAR7 is placed in the transport block corresponding to the position index value of 3.
  • the random access response RAR8 is placed in the transport block TB#4 corresponding to the location index value of 4.
  • the above preset algorithm is only an example given to facilitate the understanding of the embodiments of the present application by those skilled in the art, and cannot be used as a specific limitation to the present application. That is to say, the preset algorithm may also be another algorithm, which enables the base station to allocate at least one random access response corresponding to at least one random access preamble in at least one transport block carried by PDSCH according to the algorithm , the terminal can identify the target transport block corresponding to its own terminal from the corresponding PDCCH through the algorithm.
  • the base station can allocate at least one random access response RAR to at least one transport block carried by the PDSCH according to a preset algorithm, so that the size of the transport block can be reduced, and the size of the transport block can be reduced.
  • the monitoring time of each terminal is reduced, so that the power consumption of the terminal can be reduced, and the effect of coverage enhancement can be improved.
  • At least one transport block carried by the PDSCH may be scheduled through the physical downlink control channel PDCCH. That is to say, the base station may schedule the transport block carried by the PDSCH through the PDCCH, so that the base station sends the RAR required by the terminal device to the terminal device through the PDCCH.
  • the base station may schedule the transport blocks carried by all PDSCHs in the transport blocks carried by the at least one PDSCH through the same PDCCH, Alternatively, different transport blocks carried by PDSCH may also be scheduled through different PDCCHs.
  • the same PDCCH may be one PDCCH, or may be multiple identical PDCCHs. Examples of different implementations of these two ways are given below.
  • FIG. 7 is a flowchart of another random access response sending method provided according to an embodiment of the present application, where the method is applied to a base station.
  • the base station may schedule the at least one transport block carried by the PDSCH through the same PDCCH.
  • the random access response sending method may include the following steps.
  • step 701 at least one random access preamble is received.
  • step 701 may be implemented by any one of the embodiments of the present application, which is not limited in the embodiments of the present application, and will not be described again.
  • step 702 at least one random access response RAR is generated in response to the received at least one random access preamble.
  • step 702 may be implemented in any of the embodiments of the present application, which is not limited in the embodiments of the present application, and will not be described again.
  • step 703 at least one RAR is allocated to at least one transport block carried by the PDSCH.
  • step 703 may be implemented in any of the embodiments of the present application, which is not limited in the embodiment of the present application, and will not be described again.
  • step 704 all PDSCH-bearing transport blocks in at least one PDSCH-bearing transport block are scheduled through the same PDCCH.
  • the base station when the base station allocates at least one random access response corresponding to at least one random access preamble to a transport block carried by at least one PDSCH, the base station may schedule the at least one PDSCH through the same PDCCH
  • the transport blocks carried by all PDSCHs in the carried transport blocks are used to send the transport blocks carried by different PDSCHs to corresponding terminal devices respectively.
  • the PDCCH carries DCI (Downlink Control Information, downlink control information) control information
  • the DCI is a special information set for scheduling downlink data channels (such as PDSCH)
  • the DCI is the base station.
  • the downlink control information sent to the terminal equipment is used to indicate some attributes of the transport block.
  • the attributes may include but are not limited to uplink and downlink resource allocation, HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) information, power control Wait.
  • scheduling the transport block carried by PDSCH through PDCCH may be to send DCI to the terminal device to inform the terminal device of some attributes of the transport transport block, so that the terminal device can find out from the transport blocks carried by different PDSCH according to the DCI.
  • the multiple PDCCHs may be multiple PDCCH transmissions, and each PDCCH transmission may include downlink control information DCI and cyclic redundancy check code CRC.
  • the terminal device may determine the target PDCCH corresponding to itself, and determine the target transport block from at least one transport block carried by the PDSCH scheduled by the target PDCCH, wherein the target transport block includes a random access block corresponding to the terminal device. In this way, the terminal device can obtain the random access response RAR corresponding to the terminal device from the target transport block.
  • transport blocks carried by multiple PDSCHs may share some scheduling resources.
  • the scheduling resource may include, but is not limited to, one or more of MCS (Modulation and Coding Scheme, modulation and coding strategy), frequency resources, and the like.
  • the scheduling resources may include MCS or frequency resources.
  • the scheduling resources may include MCS and frequency resources.
  • transport blocks carried by multiple PDSCHs may share some scheduling resources such as MCS or frequency resources, that is, when multiple transport blocks carried by PDSCH are scheduled by the same PDCCH, they may share MCS or frequency resources, etc.
  • Partial scheduling resources alternatively, multiple transport blocks carried by PDSCH can share partial scheduling resources such as MCS and frequency resources, that is, multiple transport blocks carried by PDSCH can share MCS and frequency when they are scheduled by the same PDCCH Resources and other parts of the scheduling resources.
  • the control information sent on the PDCCH may include, but is not limited to, MCS or transmission resources associated with transport blocks carried by multiple PDSCHs.
  • multiple transport blocks carried by PDSCH may share some scheduling resources such as MCS or frequency resources, that is, when multiple transport blocks carried by PDSCH are scheduled by the same PDCCH, they may share MCS or frequency resources and other parts of the scheduling resources.
  • transport blocks carried by at least one PDSCH through the same PDCCH there can be many scheduling methods. For example, in the time domain, they can be scheduled continuously and separately, or there can be a certain interval. are scheduled separately.
  • transport blocks carried by multiple PDSCHs may be consecutive in time, or have time intervals from each other.
  • the scheduled transport blocks borne by the multiple PDSCHs may be consecutive in the time domain, or, the scheduled transport blocks borne by the multiple PDSCHs may be consecutive.
  • the transport blocks may also have certain intervals in the time domain.
  • the transport blocks carried by the multiple PDSCHs may be scheduled one after another in the time domain by the same PDSCH;
  • a transport block carried by two PDSCHs may be scheduled by the same PDSCH at regular intervals.
  • the base station allocates at least one random access response corresponding to at least one random access preamble to a transport block carried by at least one PDSCH, wherein the PDCCH has different PDSCHs, and may also Send control information.
  • the control information sent on the PDCCH may include, but is not limited to: the number of transport blocks carried by all PDSCHs, and/or; the number of RARs contained in the transport blocks carried by each PDSCH, and the like.
  • the base station allocates at least one random access response corresponding to at least one random access preamble to at least one transport block carried by PDSCH, and schedules at least one transport block carried by PDSCH through the same PDCCH, and on the PDCCH Control information may also be sent.
  • the control information sent on the PDCCH may include the number of transport blocks carried by all PDSCHs, so that the terminal device can identify, based on the control information in the PDCCH, from all the transport blocks carried in the target PDSCH, the random access data sent by itself. Enter the target transport block where the random access response RAR corresponding to the preamble preamble is located.
  • the base station allocates at least one random access response corresponding to at least one random access preamble to at least one transport block carried by PDSCH, and schedules at least one transport block carried by PDSCH through the same PDCCH, and on the PDCCH Control information may also be sent.
  • the control information sent on the PDCCH may include the number of RARs contained in the transport block carried by each PDSCH, etc., so that the terminal device, based on the control information in the PDCCH, from all the transport blocks carried in the target PDSCH, identify the The target transport block where the random access response RAR corresponding to the sent random access preamble Preamble is located.
  • the base station allocates at least one random access response corresponding to at least one random access preamble to at least one transport block carried by PDSCH, and schedules at least one transport block carried by PDSCH through the same PDCCH, and on the PDCCH Control information may also be sent.
  • the control information sent on the PDCCH may include the number of transport blocks carried by all PDSCHs and the number of RARs contained in the transport blocks carried by each PDSCH, etc., so that the terminal device can, based on the control information in the PDCCH, retrieve the data carried in the target PDSCH from the In all transport blocks, identify the target transport block where the random access response RAR corresponding to the random access preamble Preamble sent by itself is located.
  • the base station allocates at least one random access response corresponding to at least one random access preamble to a transport block carried by at least one PDSCH, wherein, broadcast signaling may be used to notify: all PDSCH The number of transport blocks carried, and/or; the number of RARs contained in the transport blocks carried by each PDSCH, etc.
  • the base station When the base station allocates at least one random access response corresponding to at least one random access preamble in at least one transport block carried by PDSCH, and schedules at least one transport block carried by PDSCH through the same PDCCH, it can broadcast Signals the number of transport blocks carried by all PDSCHs. That is to say, the number of transport blocks carried by all PDSCHs can be notified to each terminal device through broadcast signaling, so that the terminal device can identify all transport blocks carried in the target PDCCH based on the notification message in the broadcast signaling.
  • the target transport block where the random access response RAR corresponding to the random access preamble Preamble sent by itself is located.
  • the base station When the base station allocates at least one random access response corresponding to at least one random access preamble in at least one transport block carried by PDSCH, and schedules at least one transport block carried by PDSCH through the same PDCCH, it can broadcast Signals the number of RARs contained in the transport block carried by each PDSCH. That is to say, the number of RARs contained in the transport block carried by each PDSCH can be notified to each terminal device through broadcast signaling, so that the terminal device can, based on the notification message in the broadcast signaling, retrieve data from all transport blocks carried in the target PDCCH. , to identify the target transport block where the random access response RAR corresponding to the random access preamble Preamble sent by itself is located.
  • the base station When the base station allocates at least one random access response corresponding to at least one random access preamble in at least one transport block carried by PDSCH, and schedules at least one transport block carried by PDSCH through the same PDCCH, it can broadcast The number of transport blocks carried by all PDSCHs and the number of RARs contained in the transport blocks carried by each PDSCH are signaled.
  • the number of transport blocks carried by all PDSCHs and the number of RARs contained in the transport blocks carried by each PDSCH can be notified to each terminal device through broadcast signaling, so that the terminal device based on the notification message in the broadcast signaling, from the target Among all the transport blocks carried in the PDCCH, identify the target transport block where the random access response RAR corresponding to the random access preamble Preamble sent by itself is located.
  • the base station receives different random access preambles on the same time-frequency resource, and sends random access responses corresponding to the different random access preambles respectively.
  • RARs are distributed in different transport blocks, wherein each transport block is carried by PDSCH, and the different transport blocks carried by PDSCH are scheduled through the same PDCCH, so that the terminal equipment side schedules from the target PDCCH corresponding to itself Among the different transport blocks, the target transport block containing the random access response RAR corresponding to itself can be determined, and the random access preamble corresponding to the random access preamble sent by itself can be determined from the target transport block.
  • access response RAR thus, by distributing different random access response RARs in different transport blocks on the base station side to reduce the size of the transport block and reduce the monitoring time of each terminal, thereby reducing the power overhead of the terminal, And improve the effect of overlay enhancement.
  • FIG. 8 is a flowchart of another random access response sending method provided according to an embodiment of the present application, where the method is applied to a base station.
  • the base station may schedule different transport blocks carried by the PDSCH through different PDCCHs.
  • the random access response sending method may include the following steps.
  • step 801 multiple random access preambles are received.
  • step 801 may be implemented by any one of the embodiments of the present application, which is not limited in the embodiments of the present application, and will not be described again.
  • step 802 a plurality of random access responses RARs are generated in response to the received plurality of random access preambles.
  • step 802 may be implemented in any of the embodiments of the present application, which is not limited in the embodiments of the present application, and will not be described again.
  • step 803 multiple RARs are allocated to transport blocks carried by multiple PDSCHs.
  • step 803 may be implemented in any of the embodiments of the present application, which is not limited in the embodiment of the present application, and will not be described again.
  • step 804 transport blocks carried by different PDSCHs are respectively scheduled through multiple different PDCCHs.
  • the base station when the base station allocates multiple random access responses corresponding to multiple random access preambles into transport blocks carried by multiple PDSCHs, the base station may schedule different random access responses through multiple different PDCCHs respectively.
  • the transport block carried by the PDSCH In some embodiments, multiple different PDCCHs have a corresponding relationship with transport blocks carried by multiple scheduled PDSCHs. As an example, the number of transport blocks carried by the PDSCH is the same as the number of PDCCHs.
  • the 4 transport blocks carried by PDSCHs can be scheduled through 4 different PDCCHs, that is, each PDCCH schedules a corresponding PDSCH The transport block of the bearer.
  • the transport blocks carried by multiple PDSCHs may be scheduled multiple PDCCHs, wherein some PDCCHs among the multiple PDCCHs may be the same.
  • the base station distributes 8 random access responses to 4 transport blocks carried by PDSCH, wherein transport block 1 and transport block 2 are scheduled using the same PDCCH respectively, and transport block 3 and transport block 4 are respectively scheduled using the same PDCCH.
  • Different PDCCH scheduling may be used.
  • the control information carried by the multiple different PDCCHs is scrambled in association with different scrambling codes.
  • the PDCCH carries DCI) control information
  • the DCI is a special information set for scheduling downlink data channels (such as PDSCH)
  • the DCI is the downlink control information sent by the base station to the terminal device to indicate transmission transmission.
  • Some attributes of the block for example, the attributes may include but are not limited to uplink and downlink resource allocation, HARQ information, power control, and so on.
  • the above-mentioned scrambling code may be added to a CRC (Cyclic Redundancy Check, Cyclic Redundancy Check) corresponding to the DCI, and the scrambling code is added to the CRC to ensure the correctness of the DCI, and the terminal
  • the device can obtain the CRC according to the descrambling of the scrambling code, so as to determine the PDCCH corresponding to the terminal device, that is, the terminal device can learn the PDCCH corresponding to itself from multiple different PDCCHs.
  • the scrambling code associated with the control information carried by the PDCCH is related to the random access preamble corresponding to the RAR included in the transport block carried by the corresponding scheduled PDSCH.
  • multiple different PDCCHs may be scrambled with different RA-RNTIs respectively, that is, each PDCCH may be scrambled with different RA-RNTIs respectively.
  • the RA-RNTI used by each PDCCH may be determined based on the information of the random access preamble Preamble corresponding to the random access response. In this way, the terminal can determine the target PDCCH to be detected according to the random access preamble Preamble sent by itself.
  • the multiple different PDCCHs may use different transmission resources respectively.
  • the transmission resource used by each PDCCH is related to the random access preamble corresponding to the random access response included in the PDSCH.
  • multiple different PDCCHs can be transmitted on different transmission resources, for example, can be transmitted in different control resource sets, and the transmission resources are determined according to the preamble selected by the terminal device. The terminal device determines the transmission resource of the corresponding target PDCCH according to the used Preamble, and monitors the target PDCCH on the corresponding transmission resource.
  • the number of random access preambles is 8 (that is, it is assumed that the base station receives 8 random access preambles), the number of transport blocks carried by PDSCH is 4, and the index value of the 8 random access preambles Preamble They are 32, 33, 34, 35, 36, 37, 38 and 39 respectively, and the 8 random access response RARs corresponding to the 8 random access preambles are RAR1, RAR2, RAR3, RAR4, RAR5, RAR6, RAR7 and RAR8, the base station receives the 8 random access preambles Preamble, and can use the index values of the above 8 random access preambles and the number of transport blocks carried by the PDSCH to perform a modulo operation, and the obtained operation result
  • the sequence is 0, 1, 2, 3, 0, 1, 2, and 3, respectively, and each value in the operation result is added by 1 and summed to obtain the position index value of the transport block.
  • the random access response RAR1 can be placed in the transport block TB#1 corresponding to the position index value of the transport block, and the random access response RAR2 can be placed in the transport block corresponding to the position index value of 2
  • the random access response RAR3 is placed in the transport block TB#3 corresponding to the position index value of the transport block
  • the random access response RAR4 is placed in the transport block corresponding to the position index value of the transport block.
  • the random access response RAR5 is placed in the transport block TB#1 corresponding to the position index value of the transport block
  • the random access response RAR6 is placed in the transport block TB corresponding to the position index value of the transport block.
  • the random access response RAR7 is placed in the transport block TB#3 corresponding to the position index value of the transport block
  • the random access response RAR8 is placed in the transport block TB#4 corresponding to the position index value of the transport block.
  • the base station schedules the four transport blocks carried by the PDSCH through four different PDCCHs, wherein each PDCCH schedules a corresponding transport block carried by the PDSCH, and each transport block carried by the PDSCH contains two random access responses.
  • the 4 different PDCCHs may be scrambled by using different RA-RNTIs respectively.
  • the RA-RNTI used by each PDCCH may be determined based on the information of the random access preamble Preamble corresponding to the random access response.
  • the terminal can determine the target PDCCH to be detected according to the random access preamble Preamble sent by itself.
  • the four different PDCCHs may be transmitted on different transmission resources, for example, may be transmitted in different control resource sets, and the transmission resources are determined according to the Preamble selected by the terminal equipment.
  • the terminal device determines the transmission resource of the corresponding target PDCCH according to the used Preamble, and monitors the target PDCCH on the corresponding transmission resource.
  • the base station receives different random access preambles on the same time-frequency resource, and sends random access responses corresponding to the different random access preambles respectively.
  • RAR is allocated to different transport blocks, wherein each transport block is carried by PDSCH, and the different transport blocks carried by PDSCH are scheduled through different PDCCHs, wherein different PDCCHs have corresponding transport blocks carried by PDSCH
  • the terminal device side can determine the target transport block containing the random access response RAR corresponding to itself from the different transport blocks scheduled by the target PDCCH corresponding to itself.
  • the random access response RAR corresponding to the random access preamble Preamble sent by itself can be determined. Therefore, by distributing different random access response RARs in different transport blocks on the base station side, to reduce the size of the transport block, And reduce the monitoring time of each terminal, thereby reducing the power overhead of the terminal and improving the effect of coverage enhancement.
  • FIG. 10 is a flowchart of a method for receiving a random access response according to an embodiment of the present application.
  • the random access response receiving method can be applied to terminal equipment.
  • the random access response receiving method may include the following steps.
  • step 1001 a random access preamble is sent to the base station.
  • the terminal device can send the random access preamble Preamble to the base station.
  • step 1002 the PDCCH is determined.
  • the base station may receive at least one random access preamble sent by at least one terminal device on the same PRACH time-frequency resource.
  • the base station may distribute at least one random access response corresponding to at least one random access preamble in at least one transport block carried by PDSCH, and schedule at least one transport block carried by PDSCH through PDCCH.
  • multiple terminal devices may use the same random access preamble. Then the number of random access preambles received by the base station may be greater than the number of terminal devices that transmit random access preambles.
  • the base station may distribute at least one random access response corresponding to at least one random access preamble in at least one transport block carried by the PDSCH according to a preset algorithm.
  • the preset algorithm is related to the index value in the at least one random access preamble, and/or the number of all the transport blocks.
  • the preset algorithm may be predefined in the communication protocol between the base station and the terminal device.
  • the preset algorithm may be any algorithm, as long as the base station can allocate at least one random access response corresponding to at least one random access preamble to at least one transport block carried by the PDSCH according to the algorithm, and the terminal can pass the The algorithm can identify the random access response RAR corresponding to the Preamble sent by the terminal itself from the transport block carried by the corresponding PDSCH.
  • the base station receives at least one random access preamble, and can use a preset algorithm to allocate at least one random access response RAR with at least one random access preamble Preamble to at least one PDSCH based on the index value of the random access preamble Preamble. carried in the transport block.
  • the preset algorithm may be a similarity calculation method, or a distance algorithm, or a random algorithm. For example, taking the preset algorithm as the similarity calculation method and the number of random access response RARs being multiple as an example, the similarity between the index values of multiple random access preambles can be calculated based on the similarity calculation method.
  • the access response RARs are distributed in different transport blocks, that is, based on the index values of multiple random access preambles, the random access response RARs corresponding to the random access preambles with similar index values are compared.
  • the grouping is placed in the same transport block, the random access response RAR corresponding to the random access preamble Preamble whose index value similarity is lower than the threshold is placed, and the grouping is placed in different transport blocks, so that multiple random access responses
  • the RAR is distributed in at least one different transport block, where each transport block is carried by a corresponding PDSCH.
  • the distance between the index values of the multiple random access preamble Preambles can be calculated based on the distance algorithm, and the distance is greater than or
  • the random access response RAR corresponding to the random access preamble Preamble equal to a certain threshold is distributed in the same transmission block, and the random access response RAR corresponding to the random access preamble Preamble whose distance is less than a certain threshold is distributed in the same transmission block.
  • the random access response RARs corresponding to the random access preambles with relatively small distances are grouped into the same transport block.
  • the random access response RAR corresponding to the random access preamble Preamble whose distance is higher than the threshold is grouped into different transport blocks, so that multiple random access response RARs are distributed in at least one different transport block, wherein , each transport block is carried by the corresponding PDSCH.
  • the distance algorithm may be Euclidean distance or Hamming distance, etc., which is not specifically limited in the present application.
  • the random access preamble corresponding to the random access preamble can be determined based on the index values of multiple random access preambles.
  • the incoming response RARs are randomly distributed in different transport blocks, wherein each transport block is carried by the corresponding PDSCH.
  • the base station receives at least one random access preamble, and can use a preset algorithm to distribute at least one random access response RAR corresponding to the at least one random access preamble Preamble based on the index value of the random access preamble Preamble in at least one random access response RAR. in the transport block carried by the PDSCH.
  • the preset algorithm may be related to the number of all transport blocks.
  • the total number of all transmission blocks has been pre-defined between the base station and the terminal device, for example, the total number is N
  • the preset algorithm is the random algorithm
  • the number of random access response RARs is multiple
  • the random access response RARs corresponding to the random access preambles can be allocated to the N different transport blocks, wherein each transport block is composed of Corresponding PDSCH bearer.
  • the base station can respond to multiple random access responses according to the reception time of the random access preamble Preamble.
  • RARs are allocated to corresponding transport blocks respectively. Wherein, each transport block is carried by the corresponding PDSCH.
  • multiple random access response RARs corresponding to multiple random access preambles Preamble can be allocated to at least one transport block carried by PDSCH using a preset algorithm based on the index value of the random access preamble Preamble.
  • the preset algorithm is related to the index value of the random access preamble Preamble and the number of all transport blocks.
  • the index value of a certain random access preamble and the number N of all transmission blocks can be modulo operation to obtain the operation result, and the operation result can be added by 1 and summed to obtain the carrying and The position index value of the transport block of the RAR corresponding to the random access preamble, so as to realize allocating the RAR to the transport block carried by the corresponding PDSCH. That is to say, the base station can determine the position of the transport block to which the current random access response RAR should be distributed based on the index value of the random access preamble Preamble and the number N of transport blocks carried by the PDSCH.
  • the base station receives 8 random access preambles
  • the number N of all transport blocks is 4, and 8 random access
  • the index values of the preamble Preamble are 32, 33, 34, 35, 36, 37, 38, and 39, respectively
  • the random access response RARs corresponding to the eight random access preambles are RAR1, RAR2, RAR3, and RAR4 respectively.
  • RAR5, RAR6, RAR7 and RAR8 the base station receives the 8 random access preambles, and can use the index values of the above 8 random access preambles and the number of transport blocks N (the value is 4) carried by the PDSCH respectively.
  • the obtained operation results are respectively: 0, 1, 2, 3, 0, 1, 2 and 3, and each value in the operation result is added by 1 and summed to obtain the position index value of the transmission block , thus, the random access response RAR1 can be placed in the transport block TB#1 corresponding to the position index value of 1, and the random access response RAR2 can be placed in the transport block TB#2 corresponding to the position index value of 2.
  • the access response RAR3 is placed in the transport block TB#3 corresponding to the position index value of 3
  • the random access response RAR4 is placed in the transport block TB#4 corresponding to the position index value of 4
  • the random access response RAR5 is placed in the position
  • the random access response RAR6 is placed in the transport block TB#2 corresponding to the position index value of 2
  • the random access response RAR7 is placed in the transport block corresponding to the position index value of 3.
  • the random access response RAR8 is placed in the transport block TB#4 corresponding to the location index value of 4.
  • the above preset algorithm is only an example given to facilitate the understanding of the embodiments of the present application by those skilled in the art, and cannot be used as a specific limitation to the present application. That is to say, the preset algorithm may also be another algorithm, which enables the base station to allocate at least one random access response corresponding to at least one random access preamble in at least one transport block carried by PDSCH according to the algorithm , the terminal can identify the target transport block corresponding to its own terminal from the corresponding PDCCH through the algorithm.
  • the PDCCH has a corresponding relationship with the transport block carried by the scheduled PDSCH.
  • the number of transport blocks carried by PDSCH is the same as the number of PDCCHs.
  • the 4 transport blocks carried by PDSCHs can be scheduled through 4 different PDCCHs, that is, each PDCCH schedules a corresponding PDSCH The transport block of the bearer.
  • the terminal device may determine the PDCCH corresponding to the terminal device based on the random preamble used. That is to say, since the PDCCH has a corresponding relationship with the scheduled transport block carried by the PDSCH, and the transport block carried by the PDSCH has RAR, the RAR is obtained by the base station based on different random access preambles, so the terminal device can The random access preamble sent to the base station can determine the PDCCH corresponding to the terminal device.
  • the control information carried by multiple different PDCCHs is scrambled in association with different scrambling codes.
  • the scrambling code associated with the control information carried by the PDCCH is related to the random access preamble corresponding to the RAR included in the transport block carried by the corresponding scheduled PDSCH.
  • control information carried by multiple different PDCCHs may be scrambled using different RA-RNTIs respectively, that is, the control information carried by each PDCCH may be scrambled using different RA-RNTIs respectively.
  • the RA-RNTI used by the control information carried by each PDCCH may be determined based on the information of the random access preamble Preamble corresponding to the random access response. In this way, the terminal can determine the target PDCCH to be detected according to the random access preamble Preamble sent by itself.
  • multiple different PDCCHs may use different transmission resources respectively.
  • the transmission resource used by each PDCCH is related to the random access preamble corresponding to the random access response included in the PDSCH.
  • multiple different PDCCHs can be transmitted on different transmission resources, for example, can be transmitted in different control resource sets, and the transmission resources are determined according to the preamble selected by the terminal device. The terminal device determines the transmission resource of the corresponding PDCCH according to the used Preamble, and monitors the target PDCCH on the corresponding transmission resource.
  • the number of random access preambles is 8 (that is, it is assumed that the base station receives 8 random access preambles), the number of transport blocks carried by PDSCH is 4, and the index value of the 8 random access preambles Preamble They are 32, 33, 34, 35, 36, 37, 38 and 39 respectively, and the 8 random access response RARs corresponding to the 8 random access preambles are RAR1, RAR2, RAR3, RAR4, RAR5, RAR6, RAR7 and RAR8, the base station receives the 8 random access preambles Preamble, and can use the index values of the above 8 random access preambles and the number of transport blocks carried by the PDSCH to perform a modulo operation, and the obtained operation result
  • the sequence is 0, 1, 2, 3, 0, 1, 2, and 3, respectively, and each value in the operation result is added by 1 and summed to obtain the transport block identifier.
  • the random access response RAR1 can be placed in the transport block TB#1 corresponding to the transport block number 1
  • the random access response RAR2 can be placed in the transport block TB#2 corresponding to the transport block number 2
  • the random access response RAR3 is placed in the transport block TB#3 corresponding to the transport block number 3
  • the random access response RAR4 is placed in the transport block TB#4 corresponding to the transport block number 4
  • the random access response RAR5 is placed In the transport block TB#1 corresponding to the transport block number 1
  • the random access response RAR6 is placed in the transport block TB#2 corresponding to the transport block number 2
  • the random access response RAR7 is placed in the transport block corresponding to the transport block number 3.
  • the random access response RAR8 is placed in the transport block TB#4 corresponding to the transport block number 4.
  • the base station schedules the four transport blocks carried by the PDSCH through four different PDCCHs, wherein each PDCCH schedules a corresponding transport block carried by the PDSCH, and each transport block carried by the PDSCH contains two random access responses.
  • the 4 different PDCCHs may be scrambled by using different RA-RNTIs respectively.
  • the RA-RNTI used by each PDCCH may be determined based on the information of the random access preamble Preamble corresponding to the random access response. In this way, the terminal can determine the target PDCCH to be detected according to the random access preamble Preamble sent by itself.
  • the four different PDCCHs may be transmitted on different transmission resources, for example, may be transmitted in different control resource sets, and the transmission resources are determined according to the Preamble selected by the terminal device. The terminal device determines the transmission resource of the corresponding target PDCCH according to the used Preamble, and monitors the target PDCCH on the corresponding transmission resource.
  • step 1003 a random access response RAR corresponding to the random access preamble is received from the transport block carried by the PDSCH scheduled by the PDCCH.
  • the target transport block carrying the RAR may be obtained from transport blocks carried by multiple PDSCHs scheduled by the PDCCH.
  • the target transport block may be determined according to a preset algorithm, wherein the preset algorithm is related to the index value of the random access preamble used and/or to the number of all said transport blocks.
  • the preset algorithm may be predefined in the communication protocol between the base station and the terminal device.
  • the preset algorithm can be any algorithm, as long as the base station can distribute at least one random access response corresponding to at least one random access preamble in the transport block carried by at least one PDSCH according to the algorithm, and the terminal can pass the The algorithm can identify the random access response RAR corresponding to the Preamble sent by the own terminal from the corresponding target transport block.
  • the preset algorithm is related to the index value of the random access preamble used and the number of all the transmission blocks, the index value of a certain random access preamble and Perform modulo operation on the numbers of all the transport blocks to obtain the calculation result, and add 1 to the calculation results to obtain the position index value of the transport block carrying the RAR corresponding to the random access preamble, so as to realize the allocation of the RAR to the on the transport block carried by the corresponding PDSCH.
  • the number of random access preambles is 8 (that is, assuming that the base station receives 8 random access preambles), the number of all the transport blocks is 4, and the indices of the 8 random access preambles are Preamble
  • the values are 32, 33, 34, 35, 36, 37, 38 and 39 respectively, and the random access response RARs corresponding to the 8 random access preambles are RAR1, RAR2, RAR3, RAR4, RAR5, RAR6, RAR7 respectively. and RAR8. As shown in FIG.
  • transport block transport block TB#1 contains random access responses RAR1 and RAR5
  • transport block transport block TB#2 contains random access responses RAR2 and RAR6
  • transport block transport block TB#3 It contains random access responses RAR3 and RAR7
  • transport block transport block TB#4 contains random access responses RAR4 and RAR8.
  • the transport block transport block ID Y is 3. Obtain the target transport block transport block corresponding to the transport block transport block ID Y is 3 from the eight transport block transport blocks scheduled by the PDCCH and carried by the PDSCH, that is, the transport block transport block TB #3 is the target transport block transport block containing the random access response RAR7 corresponding to the terminal device.
  • the terminal equipment can identify the random access response RAR7 corresponding to the random access preamble sent by the terminal equipment itself from the transport block TB#3. For example, in an optional embodiment, the terminal device may descramble each RAR in the transport block TB#3 by using the RA-RNTI associated with the random access preamble of the terminal device to obtain the The RAR of the end device. Therefore, by reducing the size of the transport block including the random access response corresponding to the terminal device, the monitoring time of the terminal device can be reduced, thereby reducing the power overhead of the terminal and improving the coverage enhancement effect.
  • the above preset algorithm is only an example given to facilitate the understanding of the embodiments of the present application by those skilled in the art, and cannot be used as a specific limitation to the present application. That is to say, the preset algorithm may also be other algorithms, which can enable the base station to distribute at least one random access response corresponding to at least one random access preamble in the transport block carried by at least one PDSCH according to the algorithm, The terminal can identify the target transport block corresponding to its own terminal from the corresponding target PDCCH through the algorithm.
  • the terminal device may also obtain scheduling information related to the target PDCCH.
  • the scheduling information may include, but is not limited to: the number of transport blocks carried by the PDSCH scheduled by the target PDCCH, and/or the number of random access responses contained in the transport blocks carried by each PDSCH.
  • the terminal device may receive from the control information of the PDCCH: the number of transport blocks carried by all the PDSCHs, and/or; the number of RARs contained in the transport blocks carried by each of the PDSCHs.
  • the specific content received by the terminal device from the control information of the PDCCH may be determined by the specific content of the control information sent by the base station on the PDCCH. For example, when the control information sent by the base station on the PDCCH includes the number of transport blocks carried by all PDSCHs, the terminal device may receive the number of transport blocks carried by all the PDSCHs from the control information of the PDCCH.
  • the terminal device When the terminal device obtains the number of transport blocks carried by all the PDSCHs, it can determine the location of the RAR corresponding to the random access preamble used by the terminal device according to the number of transport blocks carried by all the PDSCHs in combination with the budget algorithm. The transport block carried by the PDSCH, so that the terminal device can find the corresponding RAR from the transport block.
  • the terminal device may receive the number of RARs contained in the transport block carried by each PDSCH from the control information of the PDCCH.
  • the terminal device obtains the number of RARs contained in the transport block carried by each PDSCH, it can determine the PDSCH where the RAR corresponding to the random access preamble used by the terminal device is located according to the number of RARs contained in the transport block carried by each PDSCH.
  • the transport block of the bearer so that the terminal device finds the corresponding RAR from the transport block.
  • the terminal device can receive the control information of all PDSCHs from the control information of the PDCCH.
  • the number of transport blocks and the number of RARs contained in the transport blocks carried by each PDSCH When the terminal device obtains the number of transport blocks carried by all PDSCHs and the number of RARs contained in the transport blocks carried by each PDSCH, it can determine the number of RARs contained in the transport blocks carried by all PDSCHs and the transport blocks carried by each PDSCH.
  • the transmission block carried by the PDSCH where the RAR corresponding to the random access preamble used by the terminal device is located is obtained, so that the terminal device can find the corresponding RAR from the transmission block.
  • the terminal device may receive from the broadcast signaling sent by the base station: the number of transport blocks carried by all the PDSCHs, and/or; the number of RARs contained in the transport blocks carried by each of the PDSCHs.
  • the specific content received by the terminal device from the broadcast signaling sent by the base station can be determined by the specific content of the broadcast signaling sent by the base station. For example, when the base station notifies the number of transport blocks carried by all PDSCHs through broadcast signaling, the terminal device may receive the number of transport blocks carried by all the PDSCHs from the broadcast signaling sent by the base station.
  • the terminal device may receive the number of RARs contained in the transport block carried by each PDSCH from the broadcast signaling sent by the base station.
  • the terminal device can receive the information of the transport blocks carried by all PDSCHs from the broadcast signaling sent by the base station. The number and number of RARs contained in the transport block carried by each PDSCH.
  • the random access response receiving method of the embodiment of the present application sends a random access preamble to the base station through the terminal device, wherein the base station receives different random access preambles on the same time-frequency resource, and compares it with the random access preamble.
  • the random access response RARs corresponding to different random access preambles are allocated to different transport blocks, where each transport block is carried by the PDSCH.
  • the terminal device side determines from the transport block carried by the corresponding PDSCH.
  • the target transport block containing the random access response RAR corresponding to itself can be determined from the target transport block and the random access response RAR corresponding to the random access preamble Preamble sent by itself can be determined.
  • the side allocates different random access response RARs to different transport blocks to reduce the size of the transport blocks transmitted by the base station to the terminal side and reduce the monitoring time of each terminal, thereby reducing the power overhead of the terminal and improving the coverage. Enhanced effect.
  • FIG. 11 is a schematic structural diagram of an apparatus for sending a random access response according to the present application.
  • the random access response sending apparatus can be applied to a base station.
  • the random access response sending apparatus 1100 may include: a receiving module 1101 , a processing module 1102 and an allocating module 1103 .
  • the receiving module 1101 is configured to receive at least one random access preamble.
  • the processing module 1102 is configured to generate at least one random access response RAR in response to the received at least one random access preamble.
  • the allocation module 1103 is configured to allocate the at least one RAR to the transport block carried by the at least one physical downlink shared channel PDSCH.
  • the random access response sending apparatus of the embodiment of the present application allocates different random access response RARs to different transport blocks on the base station side, so as to reduce the size of the transport block transmitted by the base station to the terminal side, and reduce the size of the transport block.
  • Each terminal monitors the time, thereby reducing the power overhead of the terminal and improving the coverage enhancement effect.
  • FIG. 12 is a schematic structural diagram of a random access response receiving apparatus according to the present application.
  • the random access response receiving apparatus can be applied to terminal equipment.
  • the random access response receiving apparatus 1200 may include: a sending module 1201 , a determining module 1202 and a processing module 1203 .
  • the sending module 1201 is configured to send the random access preamble to the base station.
  • the determination module 1202 is used to determine the PDCCH.
  • the processing module 1203 is configured to receive a random access response RAR corresponding to the random access preamble from the transport block borne by the PDSCH scheduled by the PDCCH.
  • the random access response receiving apparatus of the embodiment of the present application allocates different random access response RARs to different transmission blocks on the base station side, so as to reduce the size of the transmission block transmitted by the base station to the terminal side, and reduce the size of the transmission block.
  • Each terminal monitors the time, thereby reducing the power overhead of the terminal and improving the coverage enhancement effect.
  • the present application further provides a base station.
  • the base station may include a plurality of cells providing services for the terminal.
  • the base station may also be called an access point, or may be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or other names.
  • the base station can be used to exchange received air frames with Internet Protocol (IP) packets, and act as a router between the wireless terminal equipment and the rest of the access network, where the rest of the access network can include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • the base station may also coordinate attribute management of the air interface.
  • the base station involved in the embodiments of the present application may be a network device (Base Transceiver Station, BTS) in a Global System for Mobile Communications (GSM) or a Code Division Multiple Access (Code Division Multiple Access, CDMA).
  • BTS Base Transceiver Station
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • NodeB network device
  • WCDMA Wide-band Code Division Multiple Access
  • gNB 5G base station
  • gNB 5G base station
  • HeNB Home evolved Node B
  • relay node relay node
  • a base station may include a centralized unit (CU) node and a distributed unit (DU) node, and the centralized unit and the distributed unit may also be geographically separated.
  • the base station in this embodiment of the present application may include a processor, a transceiver, a memory, and a computer program stored in the memory, where the processor runs the computer program to implement the above-described embodiments in any of the embodiments.
  • the random access response sending method may include a processor, a transceiver, a memory, and a computer program stored in the memory, where the processor runs the computer program to implement the above-described embodiments in any of the embodiments.
  • the random access response sending method may include a processor, a transceiver, a memory, and a computer program stored in the memory, where the processor runs the computer program to implement the above-described embodiments in any of the embodiments.
  • the memory in the base station is the non-transitory computer-readable storage medium provided by the present application.
  • the memory stores instructions executable by at least one processor, so that the at least one processor executes the random access response receiving method provided by the present application.
  • the non-transitory computer-readable storage medium of the present application stores computer instructions, and the computer instructions are used to cause the computer to execute the random access response receiving method provided by the present application.
  • the memory can be used to store non-transitory software programs, non-transitory computer-executable programs, and modules, such as program instructions/modules corresponding to the random access response receiving method in the embodiments of the present application.
  • the processor executes various functional applications and data processing of the server by running the non-transitory software programs, instructions and modules stored in the memory, that is, implementing the random access response receiving method in the above method embodiments.
  • the memory may include a stored program area and a stored data area, wherein the stored program area can store an operating system and an application program required by at least one function; the stored data area can store data created according to the use of the positioning terminal device, and the like.
  • the memory may include high speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid state storage device.
  • the memory may optionally include memory located remotely from the processor, and these remote memories may be connected to the positioning terminal device via a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the present application further provides a terminal device and a readable storage medium.
  • Terminal devices are intended to represent various forms of digital computers, such as laptop computers, desktop computers, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers. Terminal devices may also represent various forms of mobile devices, such as personal digital processors, cellular phones, smart phones, wearable devices, and other similar computing devices.
  • the components shown herein, their connections and relationships, and their functions are by way of example only, and are not intended to limit implementations of the application described and/or claimed herein.
  • the terminal device includes: one or more processors 1301, a memory 1302, and interfaces for connecting various components, including a high-speed interface and a low-speed interface.
  • the various components are interconnected using different buses and may be mounted on a common motherboard or otherwise as desired.
  • the processor may process instructions executed within the terminal device, including instructions stored in or on memory to display graphical information of the GUI on an external input/output device, such as a display device coupled to the interface.
  • multiple processors and/or multiple buses may be used with multiple memories and multiple memories, if desired.
  • multiple end devices may be connected, with each device providing some of the necessary operations (eg, as a server array, a group of blade servers, or a multiprocessor system).
  • a processor 1301 is used as an example.
  • the memory 1302 is the non-transitory computer-readable storage medium provided by the present application.
  • the memory stores instructions executable by at least one processor, so that the at least one processor executes the random access response receiving method provided by the present application.
  • the non-transitory computer-readable storage medium of the present application stores computer instructions, and the computer instructions are used to cause the computer to execute the random access response receiving method provided by the present application.
  • the memory 1302 can be used to store non-transitory software programs, non-transitory computer-executable programs, and modules, such as program instructions/modules corresponding to the random access response receiving method in the embodiment of the present application.
  • the processor 1301 executes various functional applications and data processing of the server by running the non-transitory software programs, instructions and modules stored in the memory 1302, that is, implementing the random access response receiving method in the above method embodiments.
  • the memory 1302 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required by at least one function; the storage data area may store data created according to the use of the positioning terminal device, and the like. Additionally, memory 1302 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device. Optionally, the memory 1302 may optionally include memory disposed remotely with respect to the processor 1301, and these remote memories may be connected to the positioning terminal device through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the terminal device performing the random access response receiving method may further include: an input device 1303 and an output device 1304 .
  • the processor 1301 , the memory 1302 , the input device 1303 and the output device 1304 may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 13 .
  • the input device 1303 can receive input numerical or character information, and generate key signal input related to user settings and function control of the positioning terminal device, such as a touch screen, a keypad, a mouse, a trackpad, a touchpad, a pointing stick, one or more Input devices such as mouse buttons, trackballs, joysticks, etc.
  • Output devices 1304 may include display devices, auxiliary lighting devices (eg, LEDs), haptic feedback devices (eg, vibration motors), and the like.
  • the display device may include, but is not limited to, a liquid crystal display (LCD), a light emitting diode (LED) display, and a plasma display. In some implementations, the display device may be a touch screen.
  • Various implementations of the systems and techniques described herein can be implemented in digital electronic circuitry, integrated circuit systems, application specific ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various embodiments may include being implemented in one or more computer programs executable and/or interpretable on a programmable system including at least one programmable processor that The processor, which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
  • the processor which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
  • machine-readable medium and “computer-readable medium” refer to any computer program product, apparatus, and/or apparatus for providing machine instructions and/or data to a programmable processor ( For example, magnetic disks, optical disks, memories, programmable logic devices (PLDs), including machine-readable media that receive machine instructions as machine-readable signals.
  • machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.
  • the systems and techniques described herein may be implemented on a computer having a display device (eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user ); and a keyboard and pointing device (eg, a mouse or trackball) through which a user can provide input to the computer.
  • a display device eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor
  • a keyboard and pointing device eg, a mouse or trackball
  • Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (eg, visual feedback, auditory feedback, or tactile feedback); and can be in any form (including acoustic input, voice input, or tactile input) to receive input from the user.
  • the systems and techniques described herein may be implemented on a computing system that includes back-end components (eg, as a data server), or a computing system that includes middleware components (eg, an application server), or a computing system that includes front-end components (eg, a user computer having a graphical user interface or web browser through which a user may interact with implementations of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system.
  • the components of the system may be interconnected by any form or medium of digital data communication (eg, a communication network). Examples of communication networks include: Local Area Networks (LANs), Wide Area Networks (WANs), and the Internet.
  • a computer system can include clients and servers.
  • Clients and servers are generally remote from each other and usually interact through a communication network.
  • the relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种随机接入响应发送方法、接收方法、装置、基站、终端设备和存储介质。其中,发送方法包括:接收至少一个随机接入前导码,响应于接收到的所述至少一个随机接入前导码,产生至少一个随机接入响应RAR,并将所述至少一个RAR分配到至少一个物理下行共享信道PDSCH承载的传输块。由此,本申请通过在基站侧将不同的随机接入响应分布在不同的传输块,以减少基站向终端侧所传输的传输块的大小,并减少每个终端监测时间,从而能够减少终端的功率开销,并提高了覆盖增强的效果。

Description

随机接入响应发送方法、接收方法、装置和终端设备 技术领域
本申请涉及移动通信技术领域,尤其涉及一种随机接入响应发送方法、随机接入响应接收方法、随机接入响应发送装置、随机接入响应接收装置、基站、终端设备和存储介质。
背景技术
随着物联网业务的不断发展,例如视频监控、智能家居、可穿戴设备和工业传感监测等业务的普及,这些业务通常对速率有相对较高的要求,例如,需要满足几十到百兆的速率,同时对时延也有相对较高的要求,因此LTE(Long Term Evolution,长期演进)中的MTC(Machine Type Communication,机器类通信)技术和NB-IoT(Narrow band Internet of thing,窄带物联网)技术很难满足要求。基于这种情况,很多公司提出了在5G(5th Generation Mobile Networks,第五代移动通信技术)新空口中设计一种新的用户设备用以覆盖这种中端物联网设备的要求。在目前的3GPP(3rdGeneration Partnership Project,第三代合作项目)标准化中,这种新的终端类型叫做Reduced capability UE或者简称为NR-lite。
对于Reducap终端来说,由于终端能力的降低,比如接收天线的减少,会带来覆盖损失。因此需要进行覆盖增强。相关技术中,当终端发起随机接入后,终端与基站之间通常是采用如下方式进行覆盖增强:1)重复传输方式,例如,将终端的数据重复传输多次;2)使用传输块大小缩放比例Tranport Block Size(TBS)scaling方式进行覆盖增强,即相同的TBS可以使用更多的资源,这种方式相当于变相降低了码率,增加了覆盖。
但是,目前存在的问题是:对于重复传输方式,会造成数据包过大,给终端带来功率增加的风险;对于使用TBS scaling方式,由于Reducap传输资源的限制,过大的数据包会带来缩放的限制,影响覆盖效果。
发明内容
本申请第一方面实施例提出了一种随机接入响应发送方法,所述方法应用于基站,包括:接收至少一个随机接入前导码;响应于接收到的所述至少一个随机接入前导码,产生至少一个随机接入响应RAR;将所述至少一个RAR分配到至少一个物理下行共享信道PDSCH承载的传输块。
可选地,在本申请一些实施例中,所述至少一个PDSCH承载的传输块的容量大小设置相同,或者,所述至少一个PDSCH承载的传输块的容量大小设置不同。
可选地,在本申请一些实施例中,所述发送方法还包括:响应于所述PDSCH承载的传输块中分配的所述至少一个RAR的信息大小低于所述PDSCH承载的传输块的设置容量大小,则将所述PDSCH承载的传输块进行信息填充补齐直至达到所设置的容量大小。
可选地,在本申请一些实施例中,所述将所述至少一个RAR分配到至少一个物理下行共享信道PDSCH,包括:根据预设算法将所述至少一个RAR分配到至少一个PDSCH承载的传输块。
可选地,在本申请一些实施例中,所述预设算法与所述至少一个随机接入前导码中的索引值,和/或,所有所述传输块的数量相关。
可选地,在本申请一些实施例中,所述根据预设算法将所述至少一个RAR分配到至少一个PDSCH承载的传输块,包括:将所述一个随机接入前导码的索引值针对所有所述传输块的数量取模,以得到运算结果;对所述运算结果加1以得到所述携带与所述一个随机接入前导码对应的RAR的传输块的位置索引值。
可选地,在本申请一些实施例中,所述方法还包括:通过物理下行控制信道PDCCH调度所述至少一个PDSCH承载的传输块。
可选地,在本申请一些实施例中,所述通过PDCCH调度所述至少一个PDSCH承载的传输块,包括:通过相同的PDCCH调用所述至少一个PDSCH承载的传输块中的所有PDSCH承载的传输块。
可选地,在本申请一些实施例中,所述方法还包括:多个所述PDSCH承载的传输块共享部分调度资源。
可选地,在本申请一些实施例中,所述PDCCH上发送的控制信息包括:多个所述PDSCH承载的传输块相关联的MCS或传输资源。
可选地,在本申请一些实施例中,所述方法还包括:多个所述PDSCH承载的传输块在时间上是连续的,或彼此具有时间间隔。
可选地,在本申请一些实施例中,所述PDCCH上发送的控制信息包括:所有所述PDSCH承载的传输块的数量,和/或;每个所述PDSCH承载的传输块包含的RAR数量。
可选地,在本申请一些实施例中,通过广播信令通知:所有所述PDSCH承载的传输块的数量,和/或;每个所述PDSCH承载的传输块包含的RAR数量。
可选地,在本申请一些实施例中,所述通过PDCCH调度所述至少一个PDSCH承载的传输块,包括:通过多个不同的PDCCH分别调度不同的PDSCH承载的传输块。
可选地,在本申请一些实施例中,所述多个不同的PDCCH与所调度的PDSCH承载的传输块具有对应关系。
可选地,在本申请一些实施例中,所述方法还包括:所述多个不同的PDCCH所承载的控制信息分别关联不同的扰码进行加扰。
可选地,在本申请一些实施例中,所述方法还包括:PDCCH所承载的控制信息所关联的扰码与对应调度的PDSCH承载的传输块中所包含的RAR所对应的随机接入前导码相关。
可选地,在本申请一些实施例中,所述方法还包括:所述多个不同的PDCCH分别使用不同的传输资源。
可选地,在本申请一些实施例中,所述方法还包括:所述PDCCH使用的传输资源与对应调度的PDSCH承载的传输块中所包含的RAR所对应的随机接入前导码相关。
本申请第二方面实施例提出了一种随机接入响应接收方法,所述方法应用于终端设备,包括:向基站发送随机接入前导码;确定PDCCH;从所述PDCCH调度的PDSCH承载的传输块中接收与所述随机接入前导码对应的随机接入响应RAR。
可选地,在本申请一些实施例中,所述从所述PDCCH调度的PDSCH承载的传输块中接收所述RAR,包括:从所述PDCCH调度的多个PDSCH承载的传输块中获取携带所述RAR的传输块。
可选地,在本申请一些实施例中,所述方法还包括:根据预设算法确定携带所述RAR的传输块。
可选地,在本申请一些实施例中,所述预设算法与所述随机接入前导码中的索引值,和/或,所有所述传输块的数量相关。
可选地,在本申请一些实施例中,所述根据预设算法确定携带所述RAR的传输块,包括:将所述随机接入前导码的索引值和所有所述传输块的数量进行取模运算获取运算结果;对所述运算结果加1以得到所述携带所述RAR的传输块的位置索引值。
可选地,在本申请一些实施例中,所述方法还包括:
从所述PDCCH的控制信息中接收:所有所述PDSCH承载的传输块的数量,和/或;每个所述PDSCH承载的传输块包含的RAR数量。
可选地,在本申请一些实施例中,所述方法还包括:
从所述基站发送的广播信令中接收:所有所述PDSCH承载的传输块的数量,和/或;每个所述PDSCH承载的传输块包含的RAR数量。
可选地,在本申请一些实施例中,所述PDCCH与调度的PDSCH承载的传输块具有对应关系。
可选地,在本申请一些实施例中,所述确定PDCCH,包括:根据所使用的随机前导码确定所述PDCCH。
可选地,在本申请一些实施例中,所述根据所使用的随机接入前导码确定所述PDCCH,包括:根据所述随机接入前导码确定所述PDCCH所承载的控制信息所关联的扰码;根据所述扰码检测所述PDCCH。
可选地,在本申请一些实施例中,所述根据所使用的随机接入前导码确定对应的PDCCH,包括:根据所述随机接入前导码确定所述PDCCH所使用的传输资源;在所述传输资源上监测所述PDCCH。
本申请第三方面实施例提出了一种随机接入响应发送装置,所述装置应用于基站,包括:接收模块, 用于接收至少一个随机接入前导码;处理模块,用于响应于接收到的所述至少一个随机接入前导码,产生至少一个随机接入响应RAR;分配模块,用于将所述至少一个RAR分配到至少一个物理下行共享信道PDSCH承载的传输块。
本申请第四方面实施例提出了一种随机接入响应接收装置,所述装置应用于终端设备,包括:发送模块,用于向基站发送随机接入前导码;确定模块,用于确定PDCCH;处理模块,用于从所述PDCCH调度的PDSCH承载的传输块中接收与所述随机接入前导码对应的随机接入响应RAR。
本申请第五方面实施例提出了一种基站,包括处理器、收发器、存储器以及存储在所述存储器上的计算机程序,所述处理器运行所述计算机程序,以实现如前述第一方面实施例所述的随机接入响应发送方法。
本申请第六方面实施例提出了一种终端设备,包括处理器、收发器、存储器以及存储在所述存储器上的计算机程序,所述处理器运行所述计算机程序,以实现如前述第二方面实施例所述的随机接入响应接收方法。
本申请第七方面实施例提出了一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如前述第一方面实施例所述的随机接入响应发送方法,或者,实现如前述第二方面实施例所述的随机接入响应接收方法。
本申请实施例的技术方案,至少具有如下技术效果:
基站在相同时频资源上接收不同的随机接入前导码Preamble,并将与该不同的随机接入前导码分别对应的随机接入响应RAR,分配到不同的传输块中,其中,每个传输块由PDSCH承载,这样,终端设备侧从对应的PDSCH承载的传输块中确定出包含有与自身对应的随机接入响应RAR的目标传输块,从该目标传输块中即可确定出与自身发送的随机接入前导码Preamble对应的随机接入响应RAR,由此,通过在基站侧将不同的随机接入响应RAR分配到不同的传输块,以减少基站向终端侧所传输的传输块的大小,并减少每个终端监测时间,从而能够减少终端的功率开销,并提高了覆盖增强的效果。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是现有技术中多个发送的RAR是可以复用在一个数据包的示例图;
图2是现有技术中PDCCH调度装载多个RAR的数据包的示例图;
图3是根据本申请实施例提供的一种随机接入响应发送方法的流程图;
图4a是根据本申请实施例的多个随机接入响应的数据装载示例图一;
图4b是根据本申请实施例的多个随机接入响应的数据装载示例图二;
图5是根据本申请另一个实施例的随机接入响应发送方法的流程图;
图6是根据本申请实施例的多个随机接入响应的数据装载示例图三;
图7是根据本申请实施例提供的另一种随机接入响应发送方法的流程图;
图8是根据本申请实施例提供的又一种随机接入响应发送方法的流程图;
图9是根据本申请实施例的多个随机接入响应的数据装载示例图四;
图10是根据本申请实施例提供的一种随机接入响应接收方法的流程图;
图11是根据本申请提出的一种随机接入响应发送装置的结构示意图;
图12是根据本申请提出的一种随机接入响应接收装置的结构示意图;
图13是根据本申请实施例的用以实现随机接入响应接收方法的终端设备的框图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨 在用于解释本申请,而不能理解为对本申请的限制。
在LTE 4G(The 4th Generation Mobile Communication Technology,第四代移动通信技术)系统中,为了支持物联网业务提出了MTC技术和NB-IoT技术。MTC技术和NB-IoT技术主要针对的是低速率,高时延等场景。例如,远程抄表、环境监测等场景。NB-IoT技术目前最大支持几百千字节的速率,MTC技术目前最大支持几兆的速率。随着物联网业务的不断发展,例如视频监控、智能家居、可穿戴设备和工业传感监测等业务的普及,这些业务通常要求很高的速率,比如几十到100M的速率,同时对时延也有相对较高的要求,因此LTE中的MTC技术和NB-IoT技术很难满足要求。基于这种情况,很多公司提出了在5G新空口中设计一种新的用户设备用以覆盖这种中端物联网设备的要求。在目前的3GPP标准化中,这种新的终端类型叫做Reduced capability UE或者简称为NR-lite。
同时另一方面,同LTE中的物联网设备类似,基于5G NR-lite中的物联网设备通常需要满足如下要求:低造价,低复杂度,一定程度的覆盖增强,以及功率节省。终端设备在进入物联网网络时,终端设备需要向基站发起随机接入。当终端设备发起随机接入后,终端设备首先发送前导码Preamble。当基站接收到前导码Preamble后,传输随机接入响应(Random Access Response,简称为:RAR)。由于基站在相同的时频资源上可以接收到多个Preamble,因此可以对多个Preamble进行响应。即同时发送多个RAR。如图1所示,多个发送的RAR是可以复用在一个数据包中。如图2所示,装载了多个RAR的数据包是有RAR的PDCCH(Physical Downlink Control Channel,物理下行控制信道)调度,该PDCCH由RA-RNTI(Random Access Radio Network Temporary Identifier,覆盖增强场景下随机接入无线网络临时标识)进行加扰。
当终端设备发送完Preamble后,终端设备可以在对应的随机接入响应窗中检测由RA-RNTI加扰的PDCCH,并通过PDCCH接收包含对应RAR的数据包。例如,终端设备通过PDCCH接收包含对应RAR的数据包为如图2所示的数据包,终端设备可在该数据包中根据发送的Preamble找到对应的RAR。
对于Reducap终端设备来说,由于终端设备能力的降低,比如接收天线的减少,会带来覆盖损失。因此需要进行覆盖增强。相关技术中,当终端设备发起随机接入后,基站与终端设备之间通常是采用如下方式进行覆盖增强:1)重复传输方式,例如,将终端设备的数据重复传输多次;2)使用TBS scaling方式进行覆盖增强,即相同的TBS可以使用更多的资源,这种方式相当于变相降低了码率,增加了覆盖。
然而,对于需要进行覆盖增强的Reducap终端设备来说,当多个RAR复用在一个数据包中时,可能造成数据包过大,需要更多的重复传输。当更多的重复传输的接收会带来终端设备功率的增强。另外一方面,如果使用TBS scaling来进行覆盖增强的话,由于Reducap传输资源的限制,过大的数据包会带来缩放的限制,影响覆盖效果。
针对上述问题,本申请实施例提出了一种随机接入响应发送方法、随机接入响应接收方法、随机接入响应发送装置、随机接入响应接收装置、基站、终端设备和存储介质,其中,终端设备可以理解为本申请实施例中的终端设备,该终端设备可为Reducap终端。其中,终端设备可以为通信场景中的发射器,其中,该发射器可以理解为信号发送方,作为一种示例,该发射器可以理解为随机接入的发起方,发射器可以为手机、可穿戴设备等终端设备中的一种,或者,发射器还可以为智能家居设备、视频监控设备、工业传感监测设备等可用于物联网业务的终端设备中的一种。
下面参考附图描述本申请实施例的随机接入响应发送方法、随机接入响应接收方法、装置、基站、终端设备和存储介质。
为了说明的方便,下面实现集中在基站侧说明本申请实施例的随机接入响应发送方法。图3是根据本申请实施例提供的一种随机接入响应发送方法的流程图,其中,该方法应用于基站上。如图3所示,该随机接入响应发送方法可以包括如下步骤。
在步骤301中,接收至少一个随机接入前导码。
其中,在本申请的描述,“至少一个”的含义是一个或多个,“多个”的含义是至少两个,例如两个,三个等。
在本申请一些实施例中,至少一个随机接入前导码可以是由至少一个终端设备发送的,其中,可以理解,基站接收到的随机接入前导码的个数与发起随机接入的终端设备的个数相同。在另外一些实施例 中,多个终端设备可能使用相同的随机接入前导码。那么基站接收到的随机接入前导码的数量可能大于发送随机接入前导码的终端设备的数量。
作为一种示例,基站可以在相同的PRACH(PhysicalRandom Access Channel,物理随机接入信道)时频资源上接收由至少一个终端设备发送的至少一个随机接入前导码。例如,假设有至少一个终端设备可向基站发起随机接入,比如,一个终端设备向基站发送一个前导码Preamble。基站在相同的时频资源上可以接收到由该至少一个终端设备发送的各自的随机接入前导码Preamble,由于终端设备的个数为至少一个,所以基站在该相同的时频资源上接收到的随机接入前导码Preamble的个数也为至少一个。
在步骤302中,响应于接收到的至少一个随机接入前导码,产生至少一个随机接入响应RAR。
在一些实施例中,基站在相同时频资源上接收到由至少一个终端设备发送的至少一个随机接入前导码Preamble时,可对该至少一个终端设备分别发起对应的随机接入响应RAR,其中,该随机接入响应可以在随机接入响应窗中发送。
在步骤303中,将至少一个RAR分配到至少一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)承载的传输块。
需要说明的是,PDSCH用于承载来自传输信道的数据,其中,PDSCH上所承载的数据可通过传输块来呈现。在本申请实施例中,基站在产生至少一个RAR时,可将所产生的至少一个RAR分配到至少一个PDSCH承载的传输块,从而通过至少一个PDSCH以传输块的形式来承载该至少一个RAR,以便将通过PDSCH承载传输块将RAR发送给对应的终端设备。其中,传输块(Transport Block,简称TB)可理解是供物理层处理的MAC(Media Access Control,媒体访问控制子层协议)子层和物理层之间数据交换的基本单元。
在一些实施例中,基站可将在相同时频资源上终端设备发送的随机接入前导码Preamble所对应的随机接入响应RAR组成一个或多个传输块,该一个或多个传输块由一个或多个PDSCH承载,比如每个传输块由一个PDSCH承载。需要说明的是,在本申请一些实施例中,PDSCH的个数可以是由在相同时频资源上发送的随机接入前导码Preamble所对应的随机接入响应RAR的个数来决定,例如,随机接入响应RAR的个数较少时,比如基站在相同时频资源上发送较少数量(如小于一定数量,比如一个或两个)的随机接入响应RAR,可将该较少数量的随机接入响应RAR分配到一个由PDSCH承载的传输块中,该PDSCH的个数与传输块的个数相同。又如,随机接入响应RAR的个数较多(如大于或一定数量)时,基站可将该较多数量的随机接入响应RAR分布在多个由PDSCH承载的传输块中,该PDSCH的个数与传输块的个数相同。
作为一种可能实现方式的示例,如图4a所示,假设以随机接入前导码的个数为8(即假设基站接收到8个随机接入前导码)为例,基站在相同时频资源上接收到8个随机接入前导码时,可向该8个终端设备发送对应的随机接入响应,随机接入响应RAR的个数为8个,比如,RAR1、RAR2、RAR3、RAR4、RAR5、RAR6、RAR7和RAR8,可将该RAR1、RAR2、RAR3、RAR4、RAR5、RAR6、RAR7和RAR8这8个随机接入响应RAR,分配到4个传输块TB,如传输块TB#1、传输块TB#2、传输块TB#3和传输块TB#4,每个传输块由一个PDSCH承载。
作为另一种可能实现方式的示例,如图4b所示,假设以随机接入前导码的个数为2(即假设基站接收到2个随机接入前导码),基站在相同时频资源上接收到2个随机接入前导码时,可向该2个终端设备发送对应的随机接入响应,随机接入响应RAR的个数为2个,比如,RAR1、RAR2,可将该RAR1、RAR2这2个随机接入响应RAR,分配到1个传输块TB,如传输块TB#1,该传输块由一个PDSCH承载。
需要说明的是,在本申请一些实施例中,所述PDSCH承载的传输块的容量大小设置可相同。其中,在一些实施例中,所述传输块的容量可理解为传输块的大小,即传输块所含的比特数。
在一些实施例中,PDSCH承载的传输块的容量大小可以是相同的,也就是说,每个PDSCH承载的传输块的容量大小可以相同。可以理解,在一个给定的传输块集合中,所有的传输块大小是固定的并且相同。其中,当某些或某个PDSCH所承载的传输块容量不足时,可以使用信息填充的方式将该PDSCH承载的传输块的剩余容量补齐。
举例而言,响应于PDSCH承载的传输块中分配的至少一个RAR的信息大小低于PDSCH承载的传 输块的设置容量大小,则将PDSCH承载的传输块进行信息填充补齐直至达到所设置的容量大小。也就是说,为了能够使得每个PDSCH所承载的传输块的容量大小相同,当在某个PDSCH承载的传输块中存放随机接入响应时,识别该PDSCH承载的传输块中存放该随机接入响应的信息大小是否低于该PDSCH承载的传输块的容量大小设置值,若该PDSCH承载的传输块中存放该随机接入响应的信息大小低于该PDSCH承载的传输块的容量大小设置值,则将该PDSCH承载的传输块的剩余容量进行信息填充补齐,直至该PDSCH的当前容量大小达到所设置的该PDSCH的容量大小,即达到该PDSCH承载的传输块的容量最高限定值。如果该PDSCH承载的传输块中存放该随机接入响应的信息大小不低于该PDSCH承载的传输块的容量大小设置值,则不对该PDSCH承载的传输块进行信息填充补齐。
在本申请的其他实施例中,由PDSCH承载的传输块的容量大小设置可不同。作为一种示例,多个由PDSCH承载的传输块内所包含的随机接入响应RAR数量可以不一样,例如,将8个随机接入响应RAR分布在3个由PDSCH承载的传输块TB,其中,传输块TB#1内所包含的随机接入响应RAR为RAR1、RAR2,传输块TB#2内所包含的随机接入响应RAR为RAR3、RAR4和RAR5,传输块TB#3内所包含的随机接入响应RAR为RAR6、RAR7和RAR8,其中,传输块TB#2和传输块TB#3内所包含的随机接入响应RAR的个数分别与传输块TB#1所包含的随机接入响应RAR的个数不同。需要说明的是,由PDSCH承载的传输块的容量大小设置可以是由基站与终端设备之间的通信协议来决定的,本申请对此不做具体限定。
综上,本申请实施例的随机接入响应发送方法,基站在相同时频资源上接收不同的随机接入前导码Preamble,并将与该不同的随机接入前导码分别对应的随机接入响应RAR,分配到不同的传输块中,其中,每个传输块由PDSCH承载,这样,终端设备侧从对应的PDSCH承载的传输块中确定出包含有与自身对应的随机接入响应RAR的目标传输块,从该目标传输块中即可确定出与自身发送的随机接入前导码Preamble对应的随机接入响应RAR,由此,通过在基站侧将不同的随机接入响应RAR分配到不同的传输块,以减少基站向终端侧所传输的传输块的大小,并减少每个终端监测时间,从而能够减少终端的功率开销,并提高了覆盖增强的效果。
需要说明的是,在本申请一些实施例中,基站可根据预设算法将至少一个RAR分配到至少一个物理下行共享信道PDSCH承载的传输块中。其中,该预设算法可以预先定义在基站与终端设备之间的通信协议中。可选地,图5是根据本申请另一个实施例的随机接入响应发送方法的流程图,其中,该随机接入响应发送方法应用于基站上。如图5所示,该随机接入响应发送方法可以包括如下步骤。
在步骤501中,接收至少一个随机接入前导码。
在本申请的实施例中,步骤501可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
在步骤502中,响应于接收到的至少一个随机接入前导码,产生至少一个随机接入响应RAR。
在本申请的实施例中,步骤502可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
在步骤503中,根据预设算法将所述至少一个RAR分配到至少一个PDSCH承载的传输块。
在一些实施例中,预设算法与所述至少一个随机接入前导码中的索引值,和/或,所有所述传输块的数量相关。其中,该预设算法可以预先定义在基站与终端设备之间的通信协议中。该预设算法可以是任一算法,只要能够使得基站依据该算法将与至少一个随机接入前导码对应的至少一个随机接入响应,分配到至少一个PDSCH承载的传输块中,终端能够通过该算法可以从对应的PDSCH承载的传输块中识别出与自身终端发送的Preamble对应的随机接入响应RAR即可。
下面示例说明至少一个随机接入响应RAR的不同分布方式:
示例一:
基站接收至少一个随机接入前导码,可基于随机接入前导码Preamble的索引值,利用预设算法将与至少一个随机接入前导码Preamble的至少一个随机接入响应RAR,分配到至少一个PDSCH承载的传输块中。其中,该预设算法可以是相似度计算方法,或,距离算法,或,随机算法。例如,以预设算法为相似度计算方法,随机接入响应RAR的个数为多个为例,可基于相似度计算方法,计算多个随机接入前导码Preamble的索引值之间的相似度,将相似度大于或等于一定阈值的随机接入前导码Preamble 所对应的随机接入响应RAR,分布在相同的传输块中,将相似度小于一定阈值的随机接入前导码Preamble所对应的随机接入响应RAR,分布在不同的传输块中,也即是说,基于多个随机接入前导码Preamble的索引值,将索引值比较相似的随机接入前导码Preamble对应的随机接入响应RAR,分组放在相同的传输块中,将索引值的相似度低于阈值的随机接入前导码Preamble对应的随机接入响应RAR,分组放在不同的传输块,以使多个随机接入响应RAR分布在至少一个不同的传输块中,其中,每个传输块均由对应的PDSCH承载。
又如,以预设算法为距离算法,随机接入响应RAR的个数为多个为例,可基于距离算法计算多个随机接入前导码Preamble的索引值之间的距离,将距离大于或等于一定阈值的随机接入前导码Preamble所对应的随机接入响应RAR,分布在相同的传输块中,将距离小于一定阈值的随机接入前导码Preamble所对应的随机接入响应RAR,分布在不同的传输块中,也即是说,基于多个随机接入前导码Preamble的索引值,将距离比较小的随机接入前导码Preamble对应的随机接入响应RAR,分组放在相同的传输块中,将距离高于阈值的随机接入前导码Preamble对应的随机接入响应RAR,分组放在不同的传输块,以使多个随机接入响应RAR分布在至少一个不同的传输块中,其中,每个传输块均由对应的PDSCH承载。在本申请一些实施例中,该距离算法可为欧式距离或汉明距离等,本申请对此不做具体限定。
再如,以预设算法为随机算法,随机接入响应RAR的个数为多个为例,可基于多个随机接入前导码Preamble的索引值,将随机接入前导码Preamble对应的随机接入响应RAR随机分布在不同的传输块中,其中,每个传输块均由对应的PDSCH承载。
示例二:
基站接收至少一个随机接入前导码,可基于随机接入前导码Preamble的索引值,利用预设算法将与至少一个随机接入前导码Preamble对应的至少一个随机接入响应RAR,分布在至少一个PDSCH承载的传输块中。其中,该预设算法可以与所有传输块的数量相关有关。例如,假设基站与终端设备之间已经预先定义了所有传输块的总个数,比如,该总个数为N个,以预设算法为随机算法,随机接入响应RAR的个数为多个为例,可基于多个随机接入前导码Preamble的索引值,将随机接入前导码Preamble对应的随机接入响应RAR分配在该N个不同的传输块中,其中,每个传输块均由对应的PDSCH承载。
又如,假设基站与终端设备之间已经预先所有传输块的总个数,比如,该总个数为N个,基站可按照随机接入前导码Preamble的接收时间,将多个随机接入响应RAR分别分配到对应的传输块中。其中,每个传输块均由对应的PDSCH承载。
示例三:
假设基站与终端设备之间已经预先定义了所有传输块的总个数,比如,该总个数为N个,随机接入响应RAR的个数为多个,基站接收多个随机接入前导码,可基于随机接入前导码Preamble的索引值,利用预设算法将与多个随机接入前导码Preamble对应的多个随机接入响应RAR,分配到至少一个PDSCH承载的传输块中。其中,该预设算法与随机接入前导码Preamble的索引值和与所有传输块的数量相关。
作为一种可能实现方式的示例,可将某个随机接入前导码的索引值和所有传输块的数量N进行取模运算获取运算结果,并对运算结果进行加1求和,以得到携带与随机接入前导码对应的RAR的传输块的位置索引值,以实现将RAR分配到对应的PDSCH承载的传输块上。也就是说,基站可基于随机接入前导码Preamble的索引值和PDSCH承载的传输块数量N,确定出当前随机接入响应RAR应分布的传输块位置。
举例而言,如图6所示,假设随机接入前导码的个数为8(即假设基站接收到8个随机接入前导码),所有传输块的数量N为4,8个随机接入前导码Preamble的索引值分别为32、33、34、35、36、37、38和39,与8个随机接入前导码Preamble各自对应的随机接入响应RAR分别为RAR1、RAR2、RAR3、RAR4、RAR5、RAR6、RAR7和RAR8,基站接收该8个随机接入前导码Preamble,可利用上述8个随机接入前导码的索引值分别和PDSCH承载的传输块数量N(数值为4)进行取模运算,得到的运算结果依次分别为:0、1、2、3、0、1、2和3,并对该运算结果中的每个数值分别进行加1求和得到传输块的位置索引值,由此,可将随机接入响应RAR1放置到位置索引值为1对应的传输块TB#1中,将随机接入响应RAR2放置到位置索引值为2对应的传输块TB#2中,随机接入响应RAR3放置到位置索 引值为3对应的传输块TB#3中,随机接入响应RAR4放置到位置索引值为4对应的传输块TB#4中,将随机接入响应RAR5放置到位置索引值为1对应的传输块TB#1中,随机接入响应RAR6放置到位置索引值为2对应的传输块TB#2中,随机接入响应RAR7放置到位置索引值为3对应的传输块TB#3中,随机接入响应RAR8放置到位置索引值为4对应的传输块TB#4中。
需要说明的是,上述预设算法仅是为了方便本领域技术人员对本申请实施例的理解而给出的示例,并不能够作为对本申请的具体限定。也就是说,该预设算法还可以是其他算法,其能够使得基站依据该算法将与至少一个随机接入前导码对应的至少一个随机接入响应,分配在至少一个由PDSCH承载的传输块中,终端能够通过该算法可以从对应的PDCCH中识别出与自身终端对应的目标传输块即可。
综上,本申请实施例的随机接入响应发送方法,基站可根据预设算法将至少一个随机接入响应RAR分配到至少一个由PDSCH承载的传输块中,可以减小传输块的大小,并减少每个终端监测时间,从而能够减少终端的功率开销,并提高了覆盖增强的效果。
需要说明的是,在一些实施例中,可通过物理下行控制信道PDCCH调度至少一个PDSCH承载的传输块。也就是说,基站可通过PDCCH来调度PDSCH承载的传输块,以使得基站通过PDCCH将终端设备所需的RAR发送给终端设备。作为一种示例,基站在将至少一个随机接入响应,分布在至少一个由PDSCH承载的传输块中时,可通过相同的PDCCH调度该至少一个PDSCH承载的传输块中所有PDSCH承载的传输块,或者,还可通过不同的PDCCH调度不同的由PDSCH承载的传输块。在一个可选的实施方式中,相同的PDCCH可以是一个PDCCH,也可以是多个相同的PDCCH。下面将给出这两种方式的不同实现方式的示例。
图7是根据本申请实施例提供的另一种随机接入响应发送方法的流程图,其中,该方法应用于基站上。在本申请实施例中,基站可通过相同的PDCCH调度该至少一个由PDSCH承载的传输块。如图7所示,该随机接入响应发送方法可以包括如下步骤。
在步骤701中,接收至少一个随机接入前导码。
在本申请的实施例中,步骤701可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
在步骤702中,响应于接收到的至少一个随机接入前导码,产生至少一个随机接入响应RAR。
在本申请的实施例中,步骤702可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
在步骤703中,将至少一个RAR分配到至少一个PDSCH承载的传输块。
在本申请的实施例中,步骤703可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
在步骤704中,通过相同的PDCCH调度至少一个PDSCH承载的传输块中的所有PDSCH承载的传输块。
在本申请一些实施例中,基站在将与至少一个随机接入前导码对应的至少一个随机接入响应,分配到至少一个PDSCH承载的传输块中时,可通过相同的PDCCH调度该至少一个PDSCH承载的传输块中的所有PDSCH承载的传输块,以将不同的PDSCH承载的传输块分别发送给对应的终端设备。可选地,在一些实施例中,PDCCH上携带DCI(Downlink Control Information,下行链路控制信息)控制信息,该DCI是调度下行链路数据信道(如PDSCH)的特殊信息集,该DCI是基站发给终端设备的下行控制信息,用来指示传输传输块的一些属性,例如,该属性可包括但不限于上下行资源分配、HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)信息、功率控制等。如上所示例,通过PDCCH调度PDSCH承载的传输块,可以是指向终端设备发送DCI,以告知终端设备传输传输块的一些属性,以便终端设备根据该DCI从不同的PDSCH承载的传输块中找出与自身对应的PDSCH承载的传输块。可选地,多个PDCCH可以是多个PDCCH传输,每个PDCCH传输中可以包括下行控制信息DCI和循环冗余校验码CRC。
例如,基站在将与至少一个随机接入前导码对应的至少一个随机接入响应,分配在至少一个由PDSCH承载的传输块中,并通过相同的PDCCH调度至少一个由PDSCH承载的传输块时,终端设备可确定与自身对应的目标PDCCH,并从该目标PDCCH所调度的至少一个由PDSCH承载的传输块中确 定出目标传输块,其中,该目标传输块包含由与该终端设备对应的随机接入响应RAR,这样,终端设备可从该目标传输块中得到与该终端设备对应的随机接入响应RAR。
需要说明的是,在本申请一些实施例中,多个PDSCH承载的传输块可共享部分调度资源。其中,在本申请一些实施例中,该调度资源可包括但不限于MCS(Modulation and Coding Scheme,调制与编码策略)、频率资源等中的一种或多种。例如,该调度资源可包括MCS或频率资源。又如,该调度资源可包括MCS和频率资源。作为一种示例,多个PDSCH承载的传输块可共享MCS或频率资源等部分调度资源,也就是说,多个由PDSCH承载的传输块在被相同的PDCCH调度时,可共享MCS或频率资源等部分调度资源;或者,多个由PDSCH承载的传输块可共享MCS和频率资源等部分调度资源,也就是说,多个由PDSCH承载的传输块在被相同的PDCCH调度时,可共享MCS和频率资源等部分调度资源。
在本申请一些实施例中,PDCCH上发送的控制信息可包括但不限于多个PDSCH承载的传输块相关联的MCS或传输资源等。作为一种示例,多个由PDSCH承载的传输块可共享MCS或频率资源等部分调度资源,也就是说,多个由PDSCH承载的传输块在被相同的PDCCH调度时,可共享MCS或频率资源等部分调度资源。
需要说明的是,通过相同的PDCCH在调度至少一个PDSCH承载的传输块时,所采用的调度方式可以有很多种,例如,在时间域上可以是连续分别被调度,还可以是存在一定间隔的分别被调度。可选地,在本申请一些实施例中,多个PDSCH承载的传输块在时间上可以是连续的,或彼此具有时间间隔。作为一种示例,基站在通过相同的PDCCH调度多个PDSCH承载的传输块时,调度的该多个PDSCH承载的传输块在时间域上可以是连续的,或者,调度的该多个PDSCH承载的传输块在时间域上也可以是存在一定间隔的。也就是说,基站在通过相同的PDCCH调度多个PDSCH承载的传输块时,该多个PDSCH承载的传输块,可以由相同的PDSCH在时间域上一个接着一个连续的被调度;或者,该多个PDSCH承载的传输块,可以由相同的PDSCH每隔一段时间调度一个。
在本申请一些实施例中,基站在将与至少一个随机接入前导码对应的至少一个随机接入响应,分配到至少一个PDSCH承载的传输块中,其中,PDCCH上具有不同的PDSCH,还可发送控制信息。在一些实施例中,PDCCH上发送的控制信息可包括但不限于:所有PDSCH承载的传输块的数量,和/或;每个PDSCH承载的传输块包含的RAR数量等。
示例一:
基站在将与至少一个随机接入前导码对应的至少一个随机接入响应,分配到至少一个PDSCH承载的传输块中,并通过相同的PDCCH调度至少一个PDSCH承载的传输块,并在该PDCCH上还可发送控制信息。其中,该PDCCH上发送的控制信息可包括所有PDSCH承载的传输块的数量,以便终端设备基于PDCCH中的控制信息,从目标PDSCH之中承载的所有传输块中,识别出与自身发送的随机接入前导码Preamble对应的随机接入响应RAR所在的目标传输块。
示例二:
基站在将与至少一个随机接入前导码对应的至少一个随机接入响应,分配到至少一个PDSCH承载的传输块中,并通过相同的PDCCH调度至少一个PDSCH承载的传输块,并在该PDCCH上还可发送控制信息。其中,该PDCCH上发送的控制信息可包括每个PDSCH承载的传输块包含的RAR数量等,以便终端设备基于PDCCH中的控制信息,从目标PDSCH之中承载的所有传输块中,识别出与自身发送的随机接入前导码Preamble对应的随机接入响应RAR所在的目标传输块。
示例三:
基站在将与至少一个随机接入前导码对应的至少一个随机接入响应,分配到至少一个PDSCH承载的传输块中,并通过相同的PDCCH调度至少一个PDSCH承载的传输块,并在该PDCCH上还可发送控制信息。其中,该PDCCH上发送的控制信息可包括所有PDSCH承载的传输块的数量和每个PDSCH承载的传输块包含的RAR数量等,以便终端设备基于PDCCH中的控制信息,从目标PDSCH之中承载的所有传输块中,识别出与自身发送的随机接入前导码Preamble对应的随机接入响应RAR所在的目标传输块。
在本申请一些实施例中,基站在将与至少一个随机接入前导码对应的至少一个随机接入响应,分配 到至少一个PDSCH承载的传输块中,其中,可通过广播信令通知:所有PDSCH承载的传输块的数量,和/或;每个PDSCH承载的传输块包含的RAR数量等。
示例一:
基站在将与至少一个随机接入前导码对应的至少一个随机接入响应,分配在至少一个由PDSCH承载的传输块中,并通过相同的PDCCH调度至少一个PDSCH承载的传输块时,可通过广播信令通知所有PDSCH承载的传输块的数量。也就是说,可将所有PDSCH承载的传输块数量,通过广播信令通知各终端设备,以便终端设备基于广播信令中的通知消息,从目标PDCCH之中承载的所有传输块中,识别出与自身发送的随机接入前导码Preamble对应的随机接入响应RAR所在的目标传输块。
示例二:
基站在将与至少一个随机接入前导码对应的至少一个随机接入响应,分配在至少一个由PDSCH承载的传输块中,并通过相同的PDCCH调度至少一个PDSCH承载的传输块时,可通过广播信令通知每个PDSCH承载的传输块包含的RAR数量。也就是说,可将每个PDSCH承载的传输块包含的RAR数量,通过广播信令通知各终端设备,以便终端设备基于广播信令中的通知消息,从目标PDCCH之中承载的所有传输块中,识别出与自身发送的随机接入前导码Preamble对应的随机接入响应RAR所在的目标传输块。
示例三:
基站在将与至少一个随机接入前导码对应的至少一个随机接入响应,分配在至少一个由PDSCH承载的传输块中,并通过相同的PDCCH调度至少一个PDSCH承载的传输块时,可通过广播信令通知所有PDSCH承载的传输块的数量和每个PDSCH承载的传输块包含的RAR数量。也就是说,可将所有PDSCH承载的传输块的数量和每个PDSCH承载的传输块包含的RAR数量,通过广播信令通知各终端设备,以便终端设备基于广播信令中的通知消息,从目标PDCCH之中承载的所有传输块中,识别出与自身发送的随机接入前导码Preamble对应的随机接入响应RAR所在的目标传输块。
综上,本申请实施例的随机接入响应发送方法,基站在相同时频资源上接收不同的随机接入前导码Preamble,并将与该不同的随机接入前导码分别对应的随机接入响应RAR,分布在不同的传输块中,其中,每个传输块由PDSCH承载,并通过相同的PDCCH调度该不同的由PDSCH承载的传输块,这样,终端设备侧从与自身对应的目标PDCCH所调度的不同传输块之中,即可确定出包含有与自身对应的随机接入响应RAR的目标传输块,从该目标传输块中即可确定出与自身发送的随机接入前导码Preamble对应的随机接入响应RAR,由此,通过在基站侧将不同的随机接入响应RAR分布在不同的传输块,以减少传输块的大小,并减少每个终端监测时间,从而能够减少终端的功率开销,并提高了覆盖增强的效果。
图8是根据本申请实施例提供的又一种随机接入响应发送方法的流程图,其中,该方法应用于基站上。在本申请实施例中,基站可通过不同的PDCCH调度不同的由PDSCH承载的传输块。如图8所示,该随机接入响应发送方法可以包括如下步骤。
在步骤801中,接收多个随机接入前导码。
在本申请的实施例中,步骤801可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
在步骤802中,响应于接收到的多个随机接入前导码,产生多个随机接入响应RAR。
在本申请的实施例中,步骤802可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
在步骤803中,将多个RAR分配到多个PDSCH承载的传输块。
在本申请的实施例中,步骤803可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
在步骤804中,通过多个不同的PDCCH分别调度不同的PDSCH承载的传输块。
在本申请一些实施例中,基站在将与多个随机接入前导码对应的多个随机接入响应,分配到多个PDSCH承载的传输块中时,可通过多个不同的PDCCH分别调度不同的PDSCH承载的传输块。在一些实施例中,多个不同的PDCCH与多所调度的PDSCH承载的传输块具有对应关系。作为一种示例, PDSCH承载的传输块的数量与PDCCH的数量相同。例如,假设基站将8个随机接入响应,分布在4个PDSCH承载的传输块,则可通过4个不同的PDCCH调度该4个由PDSCH承载的传输块,即每个PDCCH调度对应的一个PDSCH承载的传输块。
在其他实施例中,多个PDSCH承载的传输块可以是多个PDCCH调度,其中,该多个PDCCH之中的部分PDCCH可以是相同的。例如,假设基站将8个随机接入响应,分布在4个由PDSCH承载的传输块,其中,传输块1和传输块2分别是使用相同的PDCCH调度的,传输块3和传输块4分别使用不同的PDCCH调度。
需要说明的是,为了能够使得终端设备了解到应当从多个PDCCH中找出与该终端设备对应的目标PDCCH,以减少终端设备的监测时间,降低终端的功率开销,可选地,在本申请一些实施例中,所述多个不同的PDCCH所承载的控制信息分别关联不同的扰码进行加扰。在一些实施例中,PDCCH上携带DCI)控制信息,该DCI是调度下行链路数据信道(如PDSCH)的特殊信息集,该DCI是基站发给终端设备的下行控制信息,用来指示传输传输块的一些属性,例如,该属性可包括但不限于上下行资源分配、HARQ信息、功率控制等。可选地,在一些实施例中,上述扰码可以是加在与DCI对应的CRC(Cyclic Redundancy Check,循环冗余校验)上,扰码加在CRC上是为了保证DCI的正确性,终端设备可根据扰码的解扰获取CRC,从而确定出与该终端设备对应的PDCCH,即终端设备可从多个不同的PDCCH中获知与自身对应的PDCCH。
其中,在一些实施例中,PDCCH所承载的控制信息所关联的扰码,与对应调度的PDSCH承载的传输块中所包含的RAR所对应的随机接入前导码相关。例如,多个不同的PDCCH可以分别使用不同的RA-RNTI进行加扰,也即是说,每个PDCCH可以分别使用不同的RA-RNTI进行加扰。每个PDCCH所使用的RA-RNTI可以是基于随机接入响应所对应的随机接入前导码Preamble的信息进行确定。这样,终端即可根据自身发送的随机接入前导码Preamble即可确定所需要检测的目标PDCCH。
在本申请其他实施例中,所述多个不同的PDCCH可分别使用不同的传输资源。其中,在一些实施例中,每个PDCCH所使用的传输资源与PDSCH中所包含的随机接入响应所对应的随机接入前导码相关。例如,多个不同的PDCCH可以在不同的传输资源上传输,比如,可以在不同的控制资源集合中传输,传输资源是根据终端设备的所选择的Preamble进行确定的。终端设备根据所使用的Preamble确定对应的目标PDCCH的传输资源,并在对应的传输资源上监测该目标PDCCH。
举例而言,假设随机接入前导码的个数为8(即假设基站接收到8个随机接入前导码),PDSCH承载的传输块数量为4,8个随机接入前导码Preamble的索引值分别为32、33、34、35、36、37、38和39,与8个随机接入前导码Preamble对应的8个随机接入响应RAR分别为RAR1、RAR2、RAR3、RAR4、RAR5、RAR6、RAR7和RAR8,基站接收该8个随机接入前导码Preamble,可利用上述8个随机接入前导码的索引值分别和PDSCH承载的传输块数量数值为4)进行取模运算,得到的运算结果依次分别为:0、1、2、3、0、1、2和3,并对该运算结果中的每个数值分别进行加1求和得到传输块的位置索引值。
如图9所示,可将随机接入响应RAR1放置到传输块的位置索引值为1对应的传输块TB#1中,将随机接入响应RAR2放置到传输块的位置索引值为2对应的传输块TB#2中,随机接入响应RAR3放置到传输块的位置索引值为3对应的传输块TB#3中,随机接入响应RAR4放置到传输块的位置索引值为4对应的传输块TB#4中,将随机接入响应RAR5放置到传输块的位置索引值为1对应的传输块TB#1中,随机接入响应RAR6放置到传输块的位置索引值为2对应的传输块TB#2中,随机接入响应RAR7放置到传输块的位置索引值为3对应的传输块TB#3中,随机接入响应RAR8放置到传输块的位置索引值为4对应的传输块TB#4中。基站通过4个不同的PDCCH调度该4个由PDSCH承载的传输块,其中,每个PDCCH调度对应的一个PDSCH承载的传输块,每个PDSCH承载的传输块内包含了两个随机接入响应。
其中,该4个不同的PDCCH可以分别使用不同的RA-RNTI进行加扰。每个PDCCH所使用的RA-RNTI可以是基于随机接入响应所对应的随机接入前导码Preamble的信息进行确定。这样,终端即可根据自身发送的随机接入前导码Preamble即可确定所需要检测的目标PDCCH。可选地,该4个不同的PDCCH可以在不同的传输资源上传输,比如,可以在不同的控制资源集合中传输,传输资源是根据 终端设备的所选择的Preamble进行确定的。终端设备根据所使用的Preamble确定对应的目标PDCCH的传输资源,并在对应的传输资源上监测该目标PDCCH。
综上,本申请实施例的随机接入响应发送方法,基站在相同时频资源上接收不同的随机接入前导码Preamble,并将与该不同的随机接入前导码分别对应的随机接入响应RAR,分配到不同的传输块中,其中,每个传输块由PDSCH承载,并通过不同的PDCCH调度该不同的由PDSCH承载的传输块,其中,不同的PDCCH与由PDSCH承载的传输块具有对应关系,这样,终端设备侧从与自身对应的目标PDCCH所调度的不同传输块之中,即可确定出包含有与自身对应的随机接入响应RAR的目标传输块,从该目标传输块中即可确定出与自身发送的随机接入前导码Preamble对应的随机接入响应RAR,由此,通过在基站侧将不同的随机接入响应RAR分布在不同的传输块,以减少传输块的大小,并减少每个终端监测时间,从而能够减少终端的功率开销,并提高了覆盖增强的效果。
下面实现集中在终端设备侧说明本申请实施例的随机接入响应接收方法。图10是根据本申请实施例提供的一种随机接入响应接收方法的流程图。其中,该随机接入响应接收方法可应用于终端设备。如图10所示,该随机接入响应接收方法可以包括如下步骤。
在步骤1001中,向基站发送随机接入前导码。
可选地,假设终端设备需要接入物联网网络或通信网络,终端设备可向基站发送随机接入前导码Preamble。
在步骤1002中,确定PDCCH。
可选地,确定与自身终端设备对应的PDCCH。
在本申请一些实施例中,基站在相同的PRACH时频资源上可接收到由至少一个终端设备发送的至少一个随机接入前导码。基站可将与至少一个随机接入前导码对应的至少一个随机接入响应,分布在至少一个由PDSCH承载的传输块中,并通过PDCCH调度至少一个由PDSCH承载的传输块。在另外一些实施例中,多个终端设备可能使用相同的随机接入前导码。那么基站接收到的随机接入前导码的数量可能大于发送随机接入前导码的终端设备的数量。
在本申请一些实施例中,基站可根据预设算法将与至少一个随机接入前导码对应的至少一个随机接入响应,分布在至少一个PDSCH承载的传输块中。在一些实施例中,预设算法与所述至少一个随机接入前导码中的索引值,和/或,所有所述传输块的数量相关。
其中,其中,该预设算法可以预先定义在基站与终端设备之间的通信协议中。该预设算法可以是任一算法,只要能够使得基站依据该算法将与至少一个随机接入前导码对应的至少一个随机接入响应,分配到至少一个PDSCH承载的传输块中,终端能够通过该算法可以从对应的PDSCH承载的传输块中识别出与自身终端发送的Preamble对应的随机接入响应RAR即可。
下面示例说明至少一个随机接入响应RAR的不同分布方式:
基站接收至少一个随机接入前导码,可基于随机接入前导码Preamble的索引值,利用预设算法将与至少一个随机接入前导码Preamble的至少一个随机接入响应RAR,分配到至少一个PDSCH承载的传输块中。其中,该预设算法可以是相似度计算方法,或,距离算法,或,随机算法。例如,以预设算法为相似度计算方法,随机接入响应RAR的个数为多个为例,可基于相似度计算方法,计算多个随机接入前导码Preamble的索引值之间的相似度,将相似度大于或等于一定阈值的随机接入前导码Preamble所对应的随机接入响应RAR,分布在相同的传输块中,将相似度小于一定阈值的随机接入前导码Preamble所对应的随机接入响应RAR,分布在不同的传输块中,也即是说,基于多个随机接入前导码Preamble的索引值,将索引值比较相似的随机接入前导码Preamble对应的随机接入响应RAR,分组放在相同的传输块中,将索引值的相似度低于阈值的随机接入前导码Preamble对应的随机接入响应RAR,分组放在不同的传输块,以使多个随机接入响应RAR分布在至少一个不同的传输块中,其中,每个传输块均由对应的PDSCH承载。
又如,以预设算法为距离算法,随机接入响应RAR的个数为多个为例,可基于距离算法计算多个随机接入前导码Preamble的索引值之间的距离,将距离大于或等于一定阈值的随机接入前导码Preamble所对应的随机接入响应RAR,分布在相同的传输块中,将距离小于一定阈值的随机接入前导码Preamble 所对应的随机接入响应RAR,分布在不同的传输块中,也即是说,基于多个随机接入前导码Preamble的索引值,将距离比较小的随机接入前导码Preamble对应的随机接入响应RAR,分组放在相同的传输块中,将距离高于阈值的随机接入前导码Preamble对应的随机接入响应RAR,分组放在不同的传输块,以使多个随机接入响应RAR分布在至少一个不同的传输块中,其中,每个传输块均由对应的PDSCH承载。在本申请一些实施例中,该距离算法可为欧式距离或汉明距离等,本申请对此不做具体限定。
再如,以预设算法为随机算法,随机接入响应RAR的个数为多个为例,可基于多个随机接入前导码Preamble的索引值,将随机接入前导码Preamble对应的随机接入响应RAR随机分布在不同的传输块中,其中,每个传输块均由对应的PDSCH承载。
示例二:
基站接收至少一个随机接入前导码,可基于随机接入前导码Preamble的索引值,利用预设算法将与至少一个随机接入前导码Preamble对应的至少一个随机接入响应RAR,分布在至少一个PDSCH承载的传输块中。其中,该预设算法可以与所有传输块的数量相关有关。例如,假设基站与终端设备之间已经预先定义了所有传输块的总个数,比如,该总个数为N个,以预设算法为随机算法,随机接入响应RAR的个数为多个为例,可基于多个随机接入前导码Preamble的索引值,将随机接入前导码Preamble对应的随机接入响应RAR分配在该N个不同的传输块中,其中,每个传输块均由对应的PDSCH承载。
又如,假设基站与终端设备之间已经预先所有传输块的总个数,比如,该总个数为N个,基站可按照随机接入前导码Preamble的接收时间,将多个随机接入响应RAR分别分配到对应的传输块中。其中,每个传输块均由对应的PDSCH承载。
示例三:
假设基站与终端设备之间已经预先定义了所有传输块的总个数,比如,该总个数为N个,随机接入响应RAR的个数为多个,基站接收多个随机接入前导码,可基于随机接入前导码Preamble的索引值,利用预设算法将与多个随机接入前导码Preamble对应的多个随机接入响应RAR,分配到至少一个PDSCH承载的传输块中。其中,该预设算法与随机接入前导码Preamble的索引值和与所有传输块的数量相关。
作为一种可能实现方式的示例,可将某个随机接入前导码的索引值和所有传输块的数量N进行取模运算获取运算结果,并对运算结果进行加1求和,以得到携带与随机接入前导码对应的RAR的传输块的位置索引值,以实现将RAR分配到对应的PDSCH承载的传输块上。也就是说,基站可基于随机接入前导码Preamble的索引值和PDSCH承载的传输块数量N,确定出当前随机接入响应RAR应分布的传输块位置。
举例而言,如图6所示,假设随机接入前导码的个数为8(即假设基站接收到8个随机接入前导码),所有传输块的数量N为4,8个随机接入前导码Preamble的索引值分别为32、33、34、35、36、37、38和39,与8个随机接入前导码Preamble各自对应的随机接入响应RAR分别为RAR1、RAR2、RAR3、RAR4、RAR5、RAR6、RAR7和RAR8,基站接收该8个随机接入前导码Preamble,可利用上述8个随机接入前导码的索引值分别和PDSCH承载的传输块数量N(数值为4)进行取模运算,得到的运算结果依次分别为:0、1、2、3、0、1、2和3,并对该运算结果中的每个数值分别进行加1求和得到传输块的位置索引值,由此,可将随机接入响应RAR1放置到位置索引值为1对应的传输块TB#1中,将随机接入响应RAR2放置到位置索引值为2对应的传输块TB#2中,随机接入响应RAR3放置到位置索引值为3对应的传输块TB#3中,随机接入响应RAR4放置到位置索引值为4对应的传输块TB#4中,将随机接入响应RAR5放置到位置索引值为1对应的传输块TB#1中,随机接入响应RAR6放置到位置索引值为2对应的传输块TB#2中,随机接入响应RAR7放置到位置索引值为3对应的传输块TB#3中,随机接入响应RAR8放置到位置索引值为4对应的传输块TB#4中。
需要说明的是,上述预设算法仅是为了方便本领域技术人员对本申请实施例的理解而给出的示例,并不能够作为对本申请的具体限定。也就是说,该预设算法还可以是其他算法,其能够使得基站依据该算法将与至少一个随机接入前导码对应的至少一个随机接入响应,分配在至少一个由PDSCH承载的传输块中,终端能够通过该算法可以从对应的PDCCH中识别出与自身终端对应的目标传输块即可。
在一些实施例中,PDCCH与调度的PDSCH承载的传输块具有对应关系。作为一种示例,PDSCH 承载的传输块的数量与PDCCH的数量相同。例如,假设基站将8个随机接入响应,分布在4个PDSCH承载的传输块,则可通过4个不同的PDCCH调度该4个由PDSCH承载的传输块,即每个PDCCH调度对应的一个PDSCH承载的传输块。
在一些实施例中,终端设备可根据所使用的随机前导码确定与终端设备对应的PDCCH。也就是说,由于PDCCH与调度的PDSCH承载的传输块具有对应关系,而PDSCH承载的传输块中具有RAR,RAR是由基站基于不同的随机接入前导码而得到的,所以终端设备可依据自身向基站所发送的随机接入前导码,即可确定出与该终端设备对应的PDCCH。
需要说明的是,为了能够使得终端设备了解到应当从基站发送的多个PDCCH中找出与该终端设备对应的PDCCH,以减少终端设备的监测时间,降低终端的功率开销,可选地,在本申请一些实施例中,多个不同的PDCCH所承载的控制信息分别关联不同的扰码进行加扰。其中,在一些实施例中,PDCCH所承载的控制信息所关联的扰码与对应调度的PDSCH承载的传输块中所包含的RAR所对应的随机接入前导码相关。例如,多个不同的PDCCH所承载的控制信息可以分别使用不同的RA-RNTI进行加扰,也即是说,每个PDCCH所承载的控制信息可以分别使用不同的RA-RNTI进行加扰。每个PDCCH所承载的控制信息所使用的RA-RNTI可以是基于随机接入响应所对应的随机接入前导码Preamble的信息进行确定。这样,终端即可根据自身发送的随机接入前导码Preamble即可确定所需要检测的目标PDCCH。
在本申请其他实施例中,多个不同的PDCCH可分别使用不同的传输资源。其中,在一些实施例中,每个PDCCH所使用的传输资源与PDSCH中所包含的随机接入响应所对应的随机接入前导码相关。例如,多个不同的PDCCH可以在不同的传输资源上传输,比如,可以在不同的控制资源集合中传输,传输资源是根据终端设备的所选择的Preamble进行确定的。终端设备根据所使用的Preamble确定对应的PDCCH的传输资源,并在对应的传输资源上监测该目标PDCCH。
举例而言,假设随机接入前导码的个数为8(即假设基站接收到8个随机接入前导码),PDSCH承载的传输块数量为4,8个随机接入前导码Preamble的索引值分别为32、33、34、35、36、37、38和39,与8个随机接入前导码Preamble对应的8个随机接入响应RAR分别为RAR1、RAR2、RAR3、RAR4、RAR5、RAR6、RAR7和RAR8,基站接收该8个随机接入前导码Preamble,可利用上述8个随机接入前导码的索引值分别和PDSCH承载的传输块数量数值为4)进行取模运算,得到的运算结果依次分别为:0、1、2、3、0、1、2和3,并对该运算结果中的每个数值分别进行加1求和得到传输块标识。
如图9所示,可将随机接入响应RAR1放置到传输块编号为1对应的传输块TB#1中,将随机接入响应RAR2放置到传输块编号为2对应的传输块TB#2中,随机接入响应RAR3放置到传输块编号为3对应的传输块TB#3中,随机接入响应RAR4放置到传输块编号为4对应的传输块TB#4中,将随机接入响应RAR5放置到传输块编号为1对应的传输块TB#1中,随机接入响应RAR6放置到传输块编号为2对应的传输块TB#2中,随机接入响应RAR7放置到传输块编号为3对应的传输块TB#3中,随机接入响应RAR8放置到传输块编号为4对应的传输块TB#4中。基站通过4个不同的PDCCH调度该4个由PDSCH承载的传输块,其中,每个PDCCH调度对应的一个PDSCH承载的传输块,每个PDSCH承载的传输块内包含了两个随机接入响应。
其中,该4个不同的PDCCH可以分别使用不同的RA-RNTI进行加扰。每个PDCCH所使用的RA-RNTI可以是基于随机接入响应所对应的随机接入前导码Preamble的信息进行确定。这样,终端即可根据自身发送的随机接入前导码Preamble即可确定所需要检测的目标PDCCH。可选地,该4个不同的PDCCH可以在不同的传输资源上传输,比如,可以在不同的控制资源集合中传输,传输资源是根据终端设备的所选择的Preamble进行确定的。终端设备根据所使用的Preamble确定对应的目标PDCCH的传输资源,并在对应的传输资源上监测该目标PDCCH。
在步骤1003中,从所述PDCCH调度的PDSCH承载的传输块中接收与所述随机接入前导码对应的随机接入响应RAR。
在本申请一些实施例中,可从所述PDCCH调度的多个PDSCH承载的传输块中获取携带所述RAR的目标传输块。
在一些实施例中,可根据预设算法确定目标传输块,其中,预设算法与所使用的随机接入前导码的 索引值和/或与所有所述传输块的数量相关。其中,该预设算法可以预先定义在基站与终端设备之间的通信协议中。该预设算法可以是任一算法,只要能够使得基站依据该算法将与至少一个随机接入前导码对应的至少一个随机接入响应,分布在至少一个PDSCH承载的传输块中,终端能够通过该算法可以从对应的目标传输块中识别出与自身终端发送的Preamble对应的随机接入响应RAR即可。
在本申请一些实施例中,以预设算法与所使用的随机接入前导码的索引值和与所有所述传输块的数量相关为例,可将某个随机接入前导码的索引值和所有所述传输块的数量进行取模运算获取运算结果,并运算结果进行加1求和,以得到携带与随机接入前导码对应的RAR的传输块的位置索引值,以实现将RAR分配到对应的PDSCH承载的传输块上。
举例而言,假设随机接入前导码的个数为8(即假设基站接收到8个随机接入前导码),所有所述传输块的数量为4,8个随机接入前导码Preamble的索引值分别为32、33、34、35、36、37、38和39,与8个随机接入前导码Preamble对应的随机接入响应RAR分别为RAR1、RAR2、RAR3、RAR4、RAR5、RAR6、RAR7和RAR8。如图6所示,为基站通过相同的PDCCH调度的8个由PDSCH承载的传输块传输块,传输块传输块TB#1、传输块传输块TB#2、传输块传输块TB#3和传输块传输块TB#4,其中,传输块传输块TB#1内包含随机接入响应RAR1和RAR5,传输块传输块TB#2内包含随机接入响应RAR2和RAR6,传输块传输块TB#3内包含随机接入响应RAR3和RAR7,传输块传输块TB#4内包含随机接入响应RAR4和RAR8。假设该如图6所示的PDCCH为与该终端设备对应的目标PDCCH,且终端设备发送的随机接入前导码Preamble的索引值为38,终端设备将自身发送的随机接入前导码Preamble的索引值“38”和N(取值为4)进行取模运算,得到的运算结果为2,并对该运算结果进行加1求和得到传输块传输块标识Y为3,由此,可根据该传输块传输块标识Y为3从该PDCCH调度的8个由PDSCH承载的传输块传输块中,获取与该传输块传输块标识Y为3对应的目标传输块传输块,即传输块传输块TB#3即为包含有与该终端设备对应的随机接入响应RAR7的目标传输块传输块。终端设备可从该传输块TB#3中识别出与自身终端设备发送的随机接入前导码对应的随机接入响应RAR7。例如,在一个可选的实施例中,终端设备可以通过与该终端设备的随机接入前导码相关联的RA-RNTI来对传输块TB#3中的各个RAR进行解扰,以得到属于该终端设备的RAR。由此,通过减少包含有与终端设备对应的随机接入响应的传输块的大小,可以减少终端设备的监测时间,从而能够减少终端的功率开销,并提高覆盖增强的效果。
需要说明的是,上述预设算法仅是为了方便本领域技术人员对本申请实施例的理解而给出的示例,并不能够作为对本申请的具体限定。也就是说,该预设算法还可以是其他算法,其能够使得基站依据该算法将与至少一个随机接入前导码对应的至少一个随机接入响应,分布在至少一个PDSCH承载的传输块中,终端能够通过该算法可以从对应的目标PDCCH中识别出与自身终端对应的目标传输块即可。
在本申请一些实施例中,终端设备还可获取与目标PDCCH相关的调度信息。其中,在一些实施例中,调度信息可包括但不限于:目标PDCCH调度的由PDSCH承载的传输块数量,和/或,每个PDSCH承载的传输块包含的随机接入响应的数量。
在一些实施例中,终端设备可从所述PDCCH的控制信息中接收:所有所述PDSCH承载的传输块的数量,和/或;每个所述PDSCH承载的传输块包含的RAR数量。终端设备从所述PDCCH的控制信息中接收的具体内容,可由基站在PDCCH上发送的控制信息的具体内容来决定的。例如,基站在PDCCH上发送的控制信息包括所有PDSCH承载的传输块的数量时,终端设备可从所述PDCCH的控制信息中接收所有所述PDSCH承载的传输块的数量。终端设备在得到所有所述PDSCH承载的传输块的数量时,可根据所有所述PDSCH承载的传输块的数量结合预算算法,确定出该终端设备所使用的随机接入前导码对应的RAR所在的PDSCH承载的传输块,从而使得终端设备从该传输块中找出该对应的RAR。
又如,基站在PDCCH上发送的控制信息包括每个PDSCH承载的传输块包含的RAR数量时,终端设备可从所述PDCCH的控制信息中接收每个PDSCH承载的传输块包含的RAR数量。终端设备在得到每个PDSCH承载的传输块包含的RAR数量时,可根据每个PDSCH承载的传输块包含的RAR数量,确定出该终端设备所使用的随机接入前导码对应的RAR所在的PDSCH承载的传输块,从而使得终端设备从该传输块中找出该对应的RAR。
再如,基站在PDCCH上发送的控制信息包括所有PDSCH承载的传输块的数量和每个PDSCH承载的传输块包含的RAR数量时,终端设备可从所述PDCCH的控制信息中接收所有PDSCH承载的传输块的数量和每个PDSCH承载的传输块包含的RAR数量。终端设备在得到所有PDSCH承载的传输块的数量和每个PDSCH承载的传输块包含的RAR数量时,可根据所有PDSCH承载的传输块的数量和每个PDSCH承载的传输块包含的RAR数量,确定出该终端设备所使用的随机接入前导码对应的RAR所在的PDSCH承载的传输块,从而使得终端设备从该传输块中找出该对应的RAR。
在一些实施例中,终端设备可从基站发送的广播信令中接收:所有所述PDSCH承载的传输块的数量,和/或;每个所述PDSCH承载的传输块包含的RAR数量。终端设备从基站发送的广播信令中接收的具体内容,可由基站发送的广播信令的具体内容来决定的。例如,基站通过广播信令通知所有PDSCH承载的传输块的数量时,终端设备可从基站发送的广播信令中接收所有所述PDSCH承载的传输块的数量。
又如,基站通过广播信令通知每个PDSCH承载的传输块包含的RAR数量时,终端设备可从基站发送的广播信令中接收每个PDSCH承载的传输块包含的RAR数量。
再如,基站通过广播信令通知所有PDSCH承载的传输块的数量和每个PDSCH承载的传输块包含的RAR数量时,终端设备可从基站发送的广播信令中接收所有PDSCH承载的传输块的数量和每个PDSCH承载的传输块包含的RAR数量。
综上,本申请实施例的随机接入响应接收方法,通过终端设备向基站发送随机接入前导码,其中,基站在相同时频资源上接收不同的随机接入前导码Preamble,并将与该不同的随机接入前导码分别对应的随机接入响应RAR,分配到不同的传输块中,其中,每个传输块由PDSCH承载,这样,终端设备侧从对应的PDSCH承载的传输块中确定出包含有与自身对应的随机接入响应RAR的目标传输块,从该目标传输块中即可确定出与自身发送的随机接入前导码Preamble对应的随机接入响应RAR,由此,通过在基站侧将不同的随机接入响应RAR分配到不同的传输块,以减少基站向终端侧所传输的传输块的大小,并减少每个终端监测时间,从而能够减少终端的功率开销,并提高了覆盖增强的效果。
与上述几种实施例提供的随机接入响应发送方法相对应,本申请还提供一种随机接入响应发送装置,由于本申请实施例提供的随机接入响应发送装置与上述几种实施例提供的随机接入响应发送方法相对应,因此在随机接入响应发送方法的实施方式也适用于本实施例提供的随机接入响应发送装置,在一个实施例中不再详细描述。图11是根据本申请提出的一种随机接入响应发送装置的结构示意图。其中,该随机接入响应发送装置可应用于基站。如图11所示,该随机接入响应发送装置1100可以包括:接收模块1101、处理模块1102和分配模块1103。
具体地,接收模块1101用于接收至少一个随机接入前导码。
处理模块1102用于响应于接收到的所述至少一个随机接入前导码,产生至少一个随机接入响应RAR。
分配模块1103用于将所述至少一个RAR分配到至少一个物理下行共享信道PDSCH承载的传输块。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
综上,本申请实施例的随机接入响应发送装置,通过在基站侧将不同的随机接入响应RAR分配到不同的传输块,以减少基站向终端侧所传输的传输块的大小,并减少每个终端监测时间,从而能够减少终端的功率开销,并提高了覆盖增强的效果。
与上述几种实施例提供的随机接入响应接收方法相对应,本申请还提供一种随机接入响应接收装置,由于本申请实施例提供的随机接入响应接收装置与上述几种实施例提供的随机接入响应接收方法相对应,因此在随机接入响应接收方法的实施方式也适用于本实施例提供的随机接入响应接收装置,在一个实施例中不再详细描述。图12是根据本申请提出的一种随机接入响应接收装置的结构示意图。其中,该随机接入响应接收装置可应用于终端设备。如图12所示,该随机接入响应接收装置1200可以包括:发送模块1201、确定模块1202和处理模块1203。
具体地,发送模块1201用于向基站发送随机接入前导码。
确定模块1202用于确定PDCCH。
处理模块1203用于从所述PDCCH调度的PDSCH承载的传输块中接收与所述随机接入前导码对应的随机接入响应RAR。
综上,本申请实施例的随机接入响应接收装置,通过在基站侧将不同的随机接入响应RAR分配到不同的传输块,以减少基站向终端侧所传输的传输块的大小,并减少每个终端监测时间,从而能够减少终端的功率开销,并提高了覆盖增强的效果。
根据本申请的实施例,本申请还提供一种基站。其中,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。该基站可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。基站还可协调对空中接口的属性管理。例如,本申请实施例涉及的基站可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本申请实施例中并不限定。在一些网络结构中,基站可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
需要说明的是,本申请实施例的基站可包括处理器、收发器、存储器以及存储在所述存储器上的计算机程序,所述处理器运行所述计算机程序,以实现前述任一实施例所述的随机接入响应发送方法。
可选地,基站中的存储器即为本申请所提供的非瞬时计算机可读存储介质。其中,所述存储器存储有可由至少一个处理器执行的指令,以使所述至少一个处理器执行本申请所提供的随机接入响应接收方法。本申请的非瞬时计算机可读存储介质存储计算机指令,该计算机指令用于使计算机执行本申请所提供的随机接入响应接收方法。
存储器作为一种非瞬时计算机可读存储介质,可用于存储非瞬时软件程序、非瞬时计算机可执行程序以及模块,如本申请实施例中的随机接入响应接收方法对应的程序指令/模块。处理器通过运行存储在存储器中的非瞬时软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例中的随机接入响应接收方法。
存储器可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据定位终端设备的使用所创建的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。可选地,存储器可选包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至定位终端设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
根据本申请的实施例,本申请还提供了一种终端设备和一种可读存储介质。
如图13所示,是根据本申请实施例的用以实现随机接入响应接收方法的终端设备的框图。终端设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。终端设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本申请的实现。
如图13所示,该终端设备包括:一个或多个处理器1301、存储器1302,以及用于连接各部件的接口,包括高速接口和低速接口。各个部件利用不同的总线互相连接,并且可以被安装在公共主板上或者根据需要以其它方式安装。处理器可以对在终端设备内执行的指令进行处理,包括存储在存储器中或者 存储器上以在外部输入/输出装置(诸如,耦合至接口的显示设备)上显示GUI的图形信息的指令。在其它实施方式中,若需要,可以将多个处理器和/或多条总线与多个存储器和多个存储器一起使用。同样,可以连接多个终端设备,各个设备提供部分必要的操作(例如,作为服务器阵列、一组刀片式服务器、或者多处理器系统)。图13中以一个处理器1301为例。
存储器1302即为本申请所提供的非瞬时计算机可读存储介质。其中,所述存储器存储有可由至少一个处理器执行的指令,以使所述至少一个处理器执行本申请所提供的随机接入响应接收方法。本申请的非瞬时计算机可读存储介质存储计算机指令,该计算机指令用于使计算机执行本申请所提供的随机接入响应接收方法。
存储器1302作为一种非瞬时计算机可读存储介质,可用于存储非瞬时软件程序、非瞬时计算机可执行程序以及模块,如本申请实施例中的随机接入响应接收方法对应的程序指令/模块。处理器1301通过运行存储在存储器1302中的非瞬时软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例中的随机接入响应接收方法。
存储器1302可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据定位终端设备的使用所创建的数据等。此外,存储器1302可以包括高速随机存取存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。可选地,存储器1302可选包括相对于处理器1301远程设置的存储器,这些远程存储器可以通过网络连接至定位终端设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
执行随机接入响应接收方法的终端设备还可以包括:输入装置1303和输出装置1304。处理器1301、存储器1302、输入装置1303和输出装置1304可以通过总线或者其他方式连接,图13中以通过总线连接为例。
输入装置1303可接收输入的数字或字符信息,以及产生与定位终端设备的用户设置以及功能控制有关的键信号输入,例如触摸屏、小键盘、鼠标、轨迹板、触摸板、指示杆、一个或者多个鼠标按钮、轨迹球、操纵杆等输入装置。输出装置1304可以包括显示设备、辅助照明装置(例如,LED)和触觉反馈装置(例如,振动电机)等。该显示设备可以包括但不限于,液晶显示器(LCD)、发光二极管(LED)显示器和等离子体显示器。在一些实施方式中,显示设备可以是触摸屏。
此处描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、专用ASIC(专用集成电路)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
这些计算程序(也称作程序、软件、软件应用、或者代码)包括可编程处理器的机器指令,并且可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算程序。如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户 界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发申请中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请公开的技术方案所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本申请保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本申请的精神和原则之内所作的修改、等同替换和改进等,均应包含在本申请保护范围之内。

Claims (35)

  1. 一种随机接入响应发送方法,其特征在于,所述方法应用于基站,包括:
    接收至少一个随机接入前导码;
    响应于接收到的所述至少一个随机接入前导码,产生至少一个随机接入响应RAR;
    将所述至少一个RAR分配到至少一个物理下行共享信道PDSCH承载的传输块。
  2. 根据权利要求1所述的方法,其特征在于,
    所述至少一个PDSCH承载的传输块的容量大小设置相同,或者,
    所述至少一个PDSCH承载的传输块的容量大小设置不同。
  3. 根据权利要求2所述的方法,其特征在于,还包括:
    响应于所述PDSCH承载的传输块中分配的所述至少一个RAR的信息大小低于所述PDSCH承载的传输块的设置容量大小,则将所述PDSCH承载的传输块进行信息填充补齐直至达到所设置的容量大小。
  4. 根据权利要求1所述的方法,其特征在于,所述将所述至少一个RAR分配到至少一个物理下行共享信道PDSCH承载的传输块,包括:
    根据预设算法将所述至少一个RAR分配到至少一个PDSCH承载的传输块。
  5. 根据权利要求4所述的方法,其特征在于,
    所述预设算法与所述至少一个随机接入前导码中的索引值,和/或,所有所述传输块的数量相关。
  6. 根据权利要求5所述的方法,其特征在于,所述根据预设算法将所述至少一个RAR分配到至少一个PDSCH承载的传输块,包括:
    将所述一个随机接入前导码的索引值针对所有所述传输块的数量取模,以得到运算结果;
    对所述运算结果加1以得到所述携带与所述一个随机接入前导码对应的RAR的传输块的位置索引值。
  7. 根据权利要求1所述的方法,其特征在于,还包括:
    通过物理下行控制信道PDCCH调度所述至少一个PDSCH承载的传输块。
  8. 根据权利要求7所述的方法,其特征在于,所述通过PDCCH调度所述至少一个PDSCH承载的传输块,包括:
    通过相同的PDCCH调度所述至少一个PDSCH承载的传输块中的所有PDSCH承载的传输块。
  9. 根据权利要求8所述的方法,其特征在于,还包括:
    多个所述PDSCH承载的传输块共享部分调度资源。
  10. 根据权利要求8所述的方法,其特征在于,所述PDCCH上发送的控制信息包括:
    多个所述PDSCH承载的传输块相关联的MCS或传输资源。
  11. 根据权利要求8所述的方法,其特征在于,还包括:
    多个所述PDSCH承载的传输块在时间上是连续的,或彼此具有时间间隔。
  12. 根据权利要求8所述的方法,其特征在于,所述PDCCH上发送的控制信息包括:
    所有所述PDSCH承载的传输块的数量,
    和/或;
    每个所述PDSCH承载的传输块包含的RAR数量。
  13. 根据权利要求8所述的方法,其特征在于,通过广播信令通知:
    所有所述PDSCH承载的传输块的数量,和/或;
    所述每个PDSCH承载的传输块所包含的RAR数量。
  14. 根据权利要求7所述的方法,其特征在于,所述通过PDCCH调度所述至少一个PDSCH承载的传输块,包括:
    通过多个不同的PDCCH分别调度不同的PDSCH承载的传输块。
  15. 根据权利要求14所述的方法,其特征在于,
    所述多个不同的PDCCH与所调度的PDSCH承载的传输块具有对应关系。
  16. 根据权利要求14所述的方法,其特征在于,还包括:
    所述多个不同的PDCCH所承载的控制信息分别关联不同的扰码进行加扰。
  17. 根据权利要求16所述的方法,其特征在于,还包括:
    PDCCH所承载的控制信息所关联的扰码与对应调度的PDSCH承载的传输块中所包含的RAR所对应的随机接入前导码相关。
  18. 根据权利要求14所述的方法,其特征在于,还包括:
    所述多个不同的PDCCH分别使用不同的传输资源。
  19. 根据权利要求18所述的方法,其特征在于,还包括:
    所述PDCCH使用的传输资源与对应调度的PDSCH承载的传输块中所包含的RAR所对应的随机接入前导码相关。
  20. 一种随机接入响应接收方法,其特征在于,所述方法应用于终端设备,包括:
    向基站发送随机接入前导码;
    确定PDCCH;
    从所述PDCCH调度的PDSCH承载的传输块中接收与所述随机接入前导码对应的随机接入响应RAR。
  21. 根据权利要求20所述的方法,其特征在于,所述从所述PDCCH调度的PDSCH承载的传输块中接收所述RAR,包括:
    从所述PDCCH调度的多个PDSCH承载的传输块中获取携带所述RAR的传输块。
  22. 根据权利要求21所述的方法,其特征在于,还包括:
    根据预设算法确定携带所述RAR的传输块。
  23. 根据权利要求22所述的方法,其特征在于,
    所述预设算法与所述随机接入前导码中的索引值,和/或,所有所述传输块的数量相关。
  24. 根据权利要求23所述的方法,其特征在于,所述根据预设算法确定携带所述RAR的传输块,包括:
    将所述随机接入前导码的索引值和所有所述传输块的数量进行取模运算获取运算结果;
    对所述运算结果加1以得到所述携带所述RAR的传输块的位置索引值。
  25. 根据权利要求20所述的方法,其特征在于,还包括:
    从所述PDCCH的控制信息中接收:所有所述PDSCH承载的传输块的数量,和/或;每个所述PDSCH承载的传输块包含的RAR数量。
  26. 根据权利要求20所述的方法,其特征在于,还包括:
    从所述基站发送的广播信令中接收:所有所述PDSCH承载的传输块的数量,和/或;每个所述PDSCH承载的传输块包含的RAR数量。
  27. 根据权利要求20所述的方法,其特征在于,所述PDCCH与调度的PDSCH承载的传输块具有对应关系。
  28. 根据权利要求27所述的方法,其特征在于,所述确定PDCCH,包括:
    根据所使用的随机前导码确定所述PDCCH。
  29. 根据权利要求28所述的方法,其特征在于,所述根据所使用的随机接入前导码确定所述PDCCH,包括:
    根据所述随机接入前导码确定所述PDCCH所承载的控制信息所关联的扰码;
    根据所述扰码检测所述PDCCH。
  30. 根据权利要求28所述的方法,其特征在于,所述根据所使用的随机接入前导码确定对应的PDCCH,包括:
    根据所述随机接入前导码确定所述PDCCH所使用的传输资源;
    在所述传输资源上监测所述PDCCH。
  31. 一种随机接入响应发送装置,其特征在于,所述装置应用于基站,包括:
    接收模块,用于接收至少一个随机接入前导码;
    处理模块,用于响应于接收到的所述至少一个随机接入前导码,产生至少一个随机接入响应RAR;
    分配模块,用于将所述至少一个RAR分配到至少一个物理下行共享信道PDSCH承载的传输块。
  32. 一种随机接入响应接收装置,其特征在于,所述装置应用于终端设备,包括:
    发送模块,用于向基站发送随机接入前导码;
    确定模块,用于确定PDCCH;
    处理模块,用于从所述PDCCH调度的PDSCH承载的传输块中接收与所述随机接入前导码对应的随机接入响应RAR。
  33. 一种基站,其特征在于,包括处理器、收发器、存储器以及存储在所述存储器上的计算机程序,所述处理器运行所述计算机程序,以实现如权利要求1-19任一项所述的随机接入响应发送方法。
  34. 一种终端设备,其特征在于,包括处理器、收发器、存储器以及存储在所述存储器上的计算机程序,所述处理器运行所述计算机程序,以实现如权利要求20-30任一项所述的随机接入响应接收方法。
  35. 一种处理器可读存储介质,其特征在于,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如权利要求1-19任一项所述的随机接入响应发送方法,或者,实现如权利要求20-30任一项所述的随机接入响应接收方法。
PCT/CN2020/132774 2020-11-30 2020-11-30 随机接入响应发送方法、接收方法、装置和终端设备 WO2022110143A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/132774 WO2022110143A1 (zh) 2020-11-30 2020-11-30 随机接入响应发送方法、接收方法、装置和终端设备
CN202080003414.3A CN114846873A (zh) 2020-11-30 2020-11-30 随机接入响应发送方法、接收方法、装置和终端设备
US18/254,398 US20240107586A1 (en) 2020-11-30 2020-11-30 Random access response sending method and receiving method, and apparatus and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/132774 WO2022110143A1 (zh) 2020-11-30 2020-11-30 随机接入响应发送方法、接收方法、装置和终端设备

Publications (1)

Publication Number Publication Date
WO2022110143A1 true WO2022110143A1 (zh) 2022-06-02

Family

ID=81753885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132774 WO2022110143A1 (zh) 2020-11-30 2020-11-30 随机接入响应发送方法、接收方法、装置和终端设备

Country Status (3)

Country Link
US (1) US20240107586A1 (zh)
CN (1) CN114846873A (zh)
WO (1) WO2022110143A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105430750A (zh) * 2014-09-22 2016-03-23 夏普株式会社 用于配置随机接入响应的方法以及基站和用户设备
CN107432037A (zh) * 2015-08-13 2017-12-01 松下电器(美国)知识产权公司 无线通信方法、eNodB和用户设备
CN107534977A (zh) * 2015-04-19 2018-01-02 阿尔卡特朗讯 用于覆盖增强低复杂度机器类型通信的随机接入响应位置指示
CN109617656A (zh) * 2017-09-30 2019-04-12 北京三星通信技术研究有限公司 终端、基站及混合自动重传请求harq过程标识id配置方法
CN110366261A (zh) * 2018-03-26 2019-10-22 普天信息技术有限公司 一种连接态终端随机接入方法和装置
CN110495192A (zh) * 2019-06-26 2019-11-22 北京小米移动软件有限公司 随机接入方法、装置及存储介质
US20200053757A1 (en) * 2018-08-09 2020-02-13 Lenovo (Singapore) Pte. Ltd. Downlink assignments for downlink control channels

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105430750A (zh) * 2014-09-22 2016-03-23 夏普株式会社 用于配置随机接入响应的方法以及基站和用户设备
CN107534977A (zh) * 2015-04-19 2018-01-02 阿尔卡特朗讯 用于覆盖增强低复杂度机器类型通信的随机接入响应位置指示
CN107432037A (zh) * 2015-08-13 2017-12-01 松下电器(美国)知识产权公司 无线通信方法、eNodB和用户设备
CN109617656A (zh) * 2017-09-30 2019-04-12 北京三星通信技术研究有限公司 终端、基站及混合自动重传请求harq过程标识id配置方法
CN110366261A (zh) * 2018-03-26 2019-10-22 普天信息技术有限公司 一种连接态终端随机接入方法和装置
US20200053757A1 (en) * 2018-08-09 2020-02-13 Lenovo (Singapore) Pte. Ltd. Downlink assignments for downlink control channels
CN110495192A (zh) * 2019-06-26 2019-11-22 北京小米移动软件有限公司 随机接入方法、装置及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NEC: "R1-152676 RAR and Paging transmission for Rel-13 MTC", 3GPP TSG RAN WG1 MEETING #81, 29 May 2015 (2015-05-29), XP050973362 *

Also Published As

Publication number Publication date
CN114846873A (zh) 2022-08-02
US20240107586A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
US20220272717A1 (en) Signal sending method and device, signal receiving method and device, information feedback method and device, communication node, and medium
US10631238B2 (en) System and method for dynamically configurable air interfaces
US9392615B2 (en) Methods and devices for allocating resources in device-to-device communication
US11039448B2 (en) Resource scheduling method and apparatus
JP2020504546A (ja) リソース指示方法、ユーザ機器、およびネットワークデバイス
JP6896941B2 (ja) 基地局のセル内のueグループへのスロットフォーマット指示
CN111865536B (zh) 搜索空间的监测、配置方法及装置
JP2023078303A (ja) V2xトラフィックに対応するための制御チャネル構造設計
US20210314981A1 (en) Communication system
US10694520B2 (en) Uplink transmission resource allocation method, base station, and user equipment
KR20200014423A (ko) 리소스 블록 그룹 크기를 결정하기 위한 방법 및 장치
EP3972352A1 (en) Search space monitoring method and apparatus
US11089604B2 (en) Communication resource management method and device
EP3955485A1 (en) Method and device for sending sidelink control information
EP3893546A1 (en) Communication method and apparatus, terminal, network device and storage medium
US20200067644A1 (en) Data feedback method and related device
AU2018407841A1 (en) Data transmission control method and related product
CN108811052B (zh) 一种下行控制信道检测接收方法、终端和网络侧设备
JP2020537845A (ja) Spsのアクティブ特定方法及びユーザ機器
US20210058929A1 (en) Uplink transmission resource allocation method and apparatus
JP7487226B2 (ja) 通信方法およびデバイス
CN111418229B (zh) 数据复制传输功能的配置方法、网络设备及终端设备
WO2022110143A1 (zh) 随机接入响应发送方法、接收方法、装置和终端设备
KR20210141605A (ko) 에너지 절약 신호를 전송하는 방법, 기지국, 단말기
TW201935975A (zh) 資源配置方法、終端及網路側設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963031

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18254398

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963031

Country of ref document: EP

Kind code of ref document: A1