WO2022151406A1 - 一种跳频的控制方法及装置 - Google Patents

一种跳频的控制方法及装置 Download PDF

Info

Publication number
WO2022151406A1
WO2022151406A1 PCT/CN2021/072285 CN2021072285W WO2022151406A1 WO 2022151406 A1 WO2022151406 A1 WO 2022151406A1 CN 2021072285 W CN2021072285 W CN 2021072285W WO 2022151406 A1 WO2022151406 A1 WO 2022151406A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency hopping
offset value
time domain
domain granularity
signaling
Prior art date
Application number
PCT/CN2021/072285
Other languages
English (en)
French (fr)
Inventor
乔雪梅
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/072285 priority Critical patent/WO2022151406A1/zh
Priority to CN202180000177.XA priority patent/CN115088226B/zh
Priority to EP21918610.3A priority patent/EP4280509A4/en
Priority to US18/272,538 priority patent/US20240072950A1/en
Publication of WO2022151406A1 publication Critical patent/WO2022151406A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7143Arrangements for generation of hop patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/713Frequency hopping
    • H04B2201/71384Look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a frequency hopping control method and device.
  • Frequency Hopping (FH) technology can be used. transmit communications.
  • the embodiments of the present disclosure provide a frequency hopping control method and device to solve the above problems.
  • the embodiment of the first aspect of the present disclosure proposes a frequency hopping control method, which is applied to a user equipment UE, including: determining a frequency hopping offset value, frequency hopping times, and frequency hopping time domain granularity; value, the frequency hopping times and the frequency hopping time domain granularity to perform frequency hopping.
  • At least one of the frequency hopping offset value, the frequency hopping number, and the frequency hopping time domain granularity is specified by a protocol.
  • At least one of the frequency hopping offset value, the frequency hopping number, and the frequency hopping time domain granularity is indicated by the base station.
  • the determining the frequency hopping offset value includes: acquiring random access response RAR signaling or downlink control information DCI signaling sent by the base station, and obtaining the RAR signaling or downlink control information DCI signaling from the base station.
  • the first offset identifier is obtained in the DCI signaling; the frequency hopping offset value configuration table is queried according to the first offset identifier to determine the frequency hopping offset value.
  • the first offset identifier is carried in the uplink scheduling grant UL Grant of the RAR signaling.
  • the frequency hopping offset value configuration table is specified by a protocol or indicated by signaling.
  • the determining the frequency hopping times includes: acquiring the repeated transmission times; and generating the frequency hopping times according to the repeated transmission times and the frequency hopping time domain granularity.
  • the determining the number of frequency hopping includes: acquiring the RAR signaling or DCI signaling sent by the base station, and acquiring the first RAR signaling or DCI signaling from the RAR signaling or DCI signaling A frequency hopping times identifier; query the frequency hopping times configuration table according to the first frequency hopping times identifier to determine the frequency hopping times.
  • the determining the frequency hopping time domain granularity includes: acquiring the RAR signaling or DCI signaling sent by the base station, and obtaining the RAR signaling or DCI signaling from the RAR signaling or DCI signaling Obtaining a first frequency hopping time domain granularity identifier; querying a frequency hopping time domain granularity configuration table according to the first frequency hopping time domain granularity identifier to determine the frequency hopping time domain granularity.
  • the determining the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity includes: receiving a first remaining minimum system message RMSI sent by the base station; One or more of the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity are acquired in the first RMSI.
  • the determining a frequency hopping offset value includes: acquiring a second RMSI sent by the base station, and acquiring the frequency hopping offset value configuration table from the second RMSI; acquiring the RAR signaling or DCI signaling sent by the base station, and obtain a second offset identifier from the RAR signaling or DCI signaling; query the frequency hopping according to the second offset identifier An offset value configuration table to determine the frequency hopping offset value.
  • each frequency hopping offset value configuration table corresponds to one frequency hopping number.
  • the method further includes: determining a corresponding frequency hopping offset value configuration table according to the frequency hopping times.
  • each frequency hopping number in the frequency hopping offset value configuration table corresponds to an index value.
  • the first offset identifier and the second offset identifier are the index values.
  • the determining the number of frequency hopping includes: acquiring a third RMSI sent by the base station, and acquiring the frequency hopping number configuration table from the third RMSI; the RAR signaling or DCI signaling, and obtain the second frequency hopping times identifier from the RAR signaling or DCI signaling; query the frequency hopping times configuration according to the second frequency hopping times identifier table to determine the number of frequency hopping.
  • the determining the frequency hopping time domain granularity includes: acquiring a fourth RMSI sent by the base station, and acquiring the frequency hopping time domain granularity configuration table from the fourth RMSI; acquiring the RAR signaling or DCI signaling sent by the base station, and obtain the second frequency hopping time domain granularity identifier from the RAR signaling or DCI signaling; according to the second frequency hopping time domain granularity
  • the identifier queries the frequency hopping time domain granularity configuration table to determine the frequency hopping time domain granularity.
  • one or more of the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity are indicated by the following messages: scheduling information of Message2, Message2 and Message3 One or more of the retransmission scheduling information.
  • the method further includes: determining a frequency hopping manner, wherein frequency hopping is performed according to the frequency hopping offset value, the frequency hopping times, the frequency hopping time domain granularity, and the frequency hopping manner.
  • the determining of the frequency hopping mode includes: acquiring repeated transmission content; and determining the corresponding frequency hopping mode according to the repeated transmission content.
  • the frequency hopping mode is indicated by the RMSI, and one or more of the scheduling information of Message2 and the retransmission scheduling information of Message2 and Message3 are indicated.
  • the embodiment of the second aspect of the present disclosure proposes a frequency hopping control method, which is applied to a base station and includes: sending indication information to a UE, for instructing the UE to determine a frequency hopping offset value, frequency hopping times, and frequency hopping time domain one or more of the granularities.
  • the sending the indication information to the UE includes: sending RAR signaling or DCI signaling to the UE, wherein the RAR signaling or DCI signaling includes a first offset logo.
  • the UL Grant of the RAR signaling carries the first offset identifier.
  • the frequency hopping offset value configuration table is specified by a protocol or indicated by a signaling sent by the base station.
  • the sending the indication information to the UE includes: sending the RAR signaling or the DCI signaling to the UE, wherein the RAR signaling or the DCI signaling includes the first hop Frequency ID.
  • the sending the indication information to the UE includes: sending the RAR signaling or the DCI signaling to the UE, wherein the RAR signaling or the DCI signaling includes the first Frequency hopping time domain granularity identifier.
  • the sending the indication information to the UE includes: sending a first RMSI to the UE, where the first RMSI includes the frequency hopping offset value and the frequency hopping number of times and one or more of the frequency hopping time domain granularities.
  • the sending the indication information to the UE includes: sending a second RMSI to the UE, where the second RMSI includes the frequency hopping offset value configuration table; sending the UE to the UE The RAR signaling or the DCI signaling, wherein the RAR signaling or the DCI signaling includes a second offset identifier.
  • each frequency hopping offset value configuration table corresponds to one frequency hopping number.
  • the method further includes: determining a corresponding frequency hopping offset value configuration table according to the frequency hopping times.
  • each frequency hopping number in the frequency hopping offset value configuration table corresponds to an index value.
  • the first offset identifier and the second offset identifier are the index values.
  • sending the indication information to the UE includes: sending a third RMSI to the UE, wherein the third RMSI includes the frequency hopping times configuration table; sending the frequency hopping times configuration table to the UE; The RAR signaling or the DCI signaling, wherein the RAR signaling or the DCI signaling includes the identifier of the second frequency hopping times.
  • sending the indication information to the UE includes: sending a fourth RMSI to the UE, where the fourth RMSI includes a frequency hopping time domain granularity configuration table; sending the UE the RAR signaling or DCI signaling, wherein the RAR signaling or DCI signaling includes a second frequency hopping time domain granularity identifier.
  • a third aspect of the present disclosure provides a frequency hopping control method, which is applied to a base station.
  • the method includes: determining a frequency hopping offset value, frequency hopping times, and frequency hopping time domain granularity corresponding to a UE; and
  • the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity corresponding to the UE provide a frequency hopping service for the UE.
  • At least one of the frequency hopping offset value, the frequency hopping number, and the frequency hopping time domain granularity is specified by a protocol.
  • the determining the frequency hopping times corresponding to the UE includes: acquiring the repeated transmission times corresponding to the UE; according to the repeated transmission times and the frequency hopping time domain granularity The frequency hopping times are generated.
  • the method further includes: acquiring the frequency hopping times corresponding to the UE; determining a frequency hopping offset value configuration table corresponding to the UE according to the frequency hopping times; The shift value configuration table determines the frequency hopping offset value corresponding to the UE.
  • the method further includes: determining a frequency hopping mode corresponding to the UE, wherein the frequency hopping offset value corresponding to the UE, the frequency hopping times, and the frequency hopping time domain granularity are determined. and the frequency hopping manner to provide a frequency hopping service for the UE.
  • the determining the frequency hopping mode corresponding to the UE includes: acquiring the repeated transmission content corresponding to the UE; and determining the corresponding frequency hopping mode according to the repeated transmission content.
  • the embodiment of the fourth aspect of the present disclosure provides a frequency hopping control device, which is applied to a UE, and the device includes:
  • a first determining module configured to determine the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity
  • the first processing module is configured to perform frequency hopping according to the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity.
  • At least one of the frequency hopping offset value, the frequency hopping number, and the frequency hopping time domain granularity is specified by a protocol.
  • At least one of the frequency hopping offset value, the frequency hopping number, and the frequency hopping time domain granularity is indicated by the base station.
  • the first determining module includes: a unit for obtaining a first offset identifier, configured to obtain a random access response RAR signaling or downlink control information DCI signaling sent by the base station, and obtain the first offset identifier from the RAR signaling or the DCI signaling; the first unit for determining the frequency hopping offset value is configured to query the frequency hopping offset value configuration according to the first offset identifier table to determine the frequency hopping offset value.
  • the first offset identifier is carried in the uplink scheduling grant UL Grant of the RAR signaling.
  • the frequency hopping offset value configuration table is specified by a protocol or indicated by signaling.
  • the first determining module includes: a first unit for acquiring the number of repeated transmissions, configured to acquire the number of repeated transmissions; a first unit for generating the number of frequency hopping times, configured to and the frequency hopping time domain granularity to generate the frequency hopping times.
  • a first unit for acquiring the number of repeated transmissions configured to acquire the number of repeated transmissions
  • a first unit for generating the number of frequency hopping times configured to and the frequency hopping time domain granularity to generate the frequency hopping times.
  • different combinations of the number of repeated transmissions and the time-domain granularity of frequency hopping may have a corresponding relationship with the number of frequency hopping, and the corresponding relationship is determined by one or more formulas or tables.
  • the formula or table can be specified by the protocol, or can be configured by the base station to the UE base station, so that the UE obtains the formula or table, and then obtains from one or more formulas or tables related to the specific number of repeated transmissions and the frequency hopping time domain Frequency hopping times corresponding to the granularity.
  • the formula or table may also be pre-configured in the communication device through a protocol specification or through a factory setting of the communication device.
  • the base station may send control signaling to the terminal, in which the control signaling indicates the formula or table to be applied in the current communication, so as to notify the terminal to activate the formula or table.
  • the first determining module includes: a unit for obtaining a first frequency hopping number identification unit, configured to obtain the RAR signaling or DCI signaling sent by the base station, and obtain the RAR signaling or DCI signaling from the RAR
  • the first determining module includes: acquiring a first frequency hopping time-domain granularity identification unit, configured to acquire the RAR signaling or DCI signaling sent by the base station, and obtain the RAR signaling or DCI signaling from the Obtain the first frequency hopping time domain granularity identifier in the RAR signaling or DCI signaling; the first unit for determining the frequency hopping time domain granularity is configured to query the frequency hopping time domain granularity according to the first frequency hopping time domain granularity identifier.
  • a table is configured to determine the frequency hopping time domain granularity.
  • the first determining module includes: a receiving RMSI unit configured to receive a first remaining minimum system message RMSI sent by the base station; a first determining unit configured to receive an RMSI from the first remaining minimum system message One or more of the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity are acquired in an RMSI.
  • the first determining module includes: an acquiring second RMSI unit, configured to acquire a second RMSI sent by the base station, and acquire the frequency hopping from the second RMSI an offset value configuration table; obtaining a second offset identification unit, configured to obtain the RAR signaling or DCI signaling sent by the base station, and obtain the second offset value from the RAR signaling or DCI signaling an offset identifier; a second unit for determining a frequency hopping offset value, configured to query the frequency hopping offset value configuration table according to the second offset identifier to determine the frequency hopping offset value.
  • each frequency hopping offset value configuration table corresponds to one frequency hopping number.
  • it further includes: a first corresponding module, configured to determine a corresponding frequency hopping offset value configuration table according to the frequency hopping times.
  • each frequency hopping number in the frequency hopping offset value configuration table corresponds to an index value.
  • the first offset identifier and the second offset identifier are the index values.
  • the first determining module includes: an acquiring third RMSI unit, configured to acquire a third RMSI sent by the base station, and acquire the frequency hopping from the third RMSI The number of times configuration table; the identification unit for acquiring the second frequency hopping times is configured to acquire the RAR signaling or DCI signaling sent by the base station, and acquire the second frequency hopping number from the RAR signaling or DCI signaling.
  • the frequency hopping times identifier; the second unit for determining the frequency hopping times is configured to query the frequency hopping times configuration table according to the second frequency hopping times identifier to determine the frequency hopping times.
  • the first determining module includes: a fourth RMSI acquiring unit, configured to acquire a fourth RMSI sent by the base station, and acquire the frequency hopping from the fourth RMSI Time-domain granularity configuration table; obtaining a second frequency hopping time-domain granularity identification unit, configured to obtain the RAR signaling or DCI signaling sent by the base station, and obtain from the RAR signaling or DCI signaling the second frequency hopping time domain granularity identifier; the second determining frequency hopping time domain granularity unit is configured to query the frequency hopping time domain granularity configuration table according to the second frequency hopping time domain granularity identifier to determine the frequency hopping time domain granularity Frequency-time-domain granularity.
  • a fourth RMSI acquiring unit configured to acquire a fourth RMSI sent by the base station, and acquire the frequency hopping from the fourth RMSI Time-domain granularity configuration table
  • one or more of the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity are indicated by the following messages: scheduling information of Message2, Message2 and Message3 One or more of the retransmission scheduling information.
  • it further includes: a first unit for determining a frequency hopping mode, configured to determine a frequency hopping mode, wherein the frequency hopping offset value, the frequency hopping times, the frequency hopping time domain are determined according to the The granularity and the frequency hopping mode are used for frequency hopping.
  • it further includes: a second unit for determining a frequency hopping mode, configured to acquire repeated transmission content; and determining the corresponding frequency hopping mode according to the repeated transmission content.
  • the frequency hopping manner is indicated by the RMSI, or one or more of the scheduling information of Message2 and the retransmission scheduling information of Message2 and Message3.
  • a fifth aspect of the present disclosure provides an apparatus for controlling frequency hopping, which is applied to a base station.
  • the apparatus includes: a first sending module configured to send indication information to a UE, for instructing the UE to determine a frequency hopping offset One or more of shift value, frequency hopping times, and frequency hopping time domain granularity.
  • the first sending module is configured to send RAR signaling or DCI signaling to the UE, wherein the RAR signaling or DCI signaling includes a first offset logo.
  • the UL Grant of the RAR signaling carries the first offset identifier.
  • the frequency hopping offset value configuration table is specified by a protocol or indicated by a signaling sent by the base station.
  • the first sending module is configured to send the RAR signaling or the DCI signaling to the UE, wherein the RAR signaling or the DCI signaling includes the first hop Frequency ID.
  • the first sending module configured to send the indication information to the UE, is configured to send the RAR signaling or the DCI signaling to the UE, wherein the RAR signaling
  • the first frequency hopping time domain granularity identifier is included in the command or DCI signaling.
  • the first sending module is configured to send a first RMSI to the UE, where the first RMSI includes the frequency hopping offset value and the frequency hopping times and one or more of the frequency hopping time domain granularities.
  • the first sending module is configured to send a second RMSI to the UE, where the second RMSI includes the frequency hopping offset value configuration table;
  • the RAR signaling or the DCI signaling wherein the RAR signaling or the DCI signaling includes a second offset identifier.
  • the first sending module is configured to have multiple frequency hopping offset value configuration tables, and each of the frequency hopping offset value configuration tables corresponds to one frequency hopping number.
  • it further includes: a second corresponding unit, configured to determine a corresponding frequency hopping offset value configuration table according to the frequency hopping times.
  • each frequency hopping number in the frequency hopping offset value configuration table corresponds to an index value.
  • the first offset identifier and the second offset identifier are the index values.
  • the first sending module is configured to send a third RMSI to the UE, where the third RMSI includes the frequency hopping times configuration table;
  • the RAR signaling or the DCI signaling wherein the RAR signaling or the DCI signaling includes the identifier of the second frequency hopping times.
  • the first sending module is configured to send a fourth RMSI to the UE, where the fourth RMSI includes a frequency hopping time domain granularity configuration table; RAR signaling or DCI signaling, wherein the RAR signaling or DCI signaling includes a second frequency hopping time domain granularity identifier.
  • the embodiment of the sixth aspect of the present disclosure provides a frequency hopping control device, which is applied to a base station, and the device includes:
  • a second determining module configured to determine the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity corresponding to the UE
  • a first providing module is configured to provide a frequency hopping service for the UE according to the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity corresponding to the UE.
  • At least one of the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity is specified by a protocol.
  • the second determining module includes: a second unit for acquiring the number of repeated transmissions, configured to acquire the number of repeated transmissions corresponding to the UE; a second unit for generating the number of frequency hopping times, configured as The frequency hopping times are generated according to the repeated transmission times and the frequency hopping time domain granularity. For example, different combinations of the number of repeated transmissions and the time-domain granularity of frequency hopping may have a corresponding relationship with the number of frequency hopping, and the corresponding relationship is determined by one or more formulas or tables.
  • the formula or table may be specified by the protocol, or may be configured by the base station to the UE base station, so that the UE obtains the formula or table, and then obtains from one or more formulas or tables the number of repeated transmissions and the frequency hopping time domain. Frequency hopping times corresponding to the granularity.
  • the formula or table can also be pre-configured in the communication device through a protocol specification or through a factory setting of the communication device.
  • the base station may send control signaling to the terminal, in which the control signaling indicates the formula or table to be applied in the current communication, so as to notify the terminal to activate the formula or table.
  • it further includes: a unit for obtaining the frequency hopping times corresponding to the UE, configured to obtain the frequency hopping times corresponding to the UE; and a unit for determining a frequency hopping offset value configuration table corresponding to the UE, configured to obtain the frequency hopping times corresponding to the UE.
  • the unit for determining the frequency hopping offset value corresponding to the UE is configured to determine the UE corresponding to the UE according to the frequency hopping offset value configuration table.
  • the frequency hopping offset value of is configured to determine the UE corresponding to the UE according to the frequency hopping offset value configuration table.
  • An embodiment of the present disclosure further includes: a unit for determining a frequency hopping mode corresponding to the UE, configured to determine a frequency hopping mode corresponding to the UE, wherein the frequency hopping offset value corresponding to the UE, the The frequency hopping times, the frequency hopping time domain granularity and the frequency hopping mode provide the UE with a frequency hopping service.
  • the unit for determining the frequency hopping mode corresponding to the UE is configured to acquire the repeated transmission content corresponding to the UE; and the corresponding frequency hopping mode is determined according to the repeated transmission content.
  • Embodiments of the seventh aspect of the present disclosure provide a communication device, including a transceiver; a memory; and a processor, respectively connected to the transceiver and the memory, and configured to control the memory by executing computer-executable instructions on the memory.
  • the transceiver transmits and receives wireless signals, and implements the frequency hopping control method proposed by the embodiments of the first aspect or the frequency hopping control method proposed in the second aspect or the frequency hopping control method proposed in the third aspect.
  • An embodiment of the eighth aspect of the present disclosure provides a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is used to cause the processor to execute the storage medium provided by the embodiment of the first aspect.
  • a frequency hopping control method and device provided by the embodiments of the present disclosure, by determining the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity, and then according to the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain Frequency hopping is performed with granularity, thus, by performing frequency hopping according to the frequency hopping offset value, frequency hopping times and frequency hopping time domain granularity, the coverage is enhanced, the frequency diversity gain is obtained, and the channel estimation hopping across time slots is realized. frequency mode.
  • FIG. 1 is a schematic flowchart of a frequency hopping control method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a frequency hopping mode provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of another frequency hopping control method provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of another frequency hopping control method provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of another frequency hopping control method provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of another frequency hopping control method provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a frequency hopping control method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of another frequency hopping control method provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a frequency hopping control device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another frequency hopping control device provided by an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another frequency hopping control device provided by an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a communication device proposed by the present disclosure.
  • Message3 is used as an example for description, but in other embodiments of the present disclosure, other information may also be transmitted, such as call establishment information, call clearing information, connection management information, channel Release information, system information, channel establishment information, etc.
  • embodiments of the present disclosure provide a frequency hopping control method and device.
  • FIG. 1 is a schematic flowchart of a frequency hopping control method provided by an embodiment of the present disclosure, which is executed by a UE, so that after the UE determines a frequency hopping offset value, a frequency hopping number, and a frequency hopping time domain granularity frequency hopping parameter, the frequency hopping.
  • the frequency hopping parameters include a frequency hopping offset value, a frequency hopping number, and a frequency hopping time domain granularity, wherein the frequency hopping offset value is used to determine the start of each hop Position; frequency hopping times, used to obtain higher frequency diversity gain by configuring multiple frequency domain positions, frequency hopping time domain granularity, used to extend the basic granularity of time domain frequency hopping, can support the realization of Cross-slot ( Cross-slot) joint channel estimation, or for low mobility or stationary UE, reduce its DMRS (Demodulation Reference Signal, demodulation reference signal) density, etc.
  • Cross-slot Cross-slot
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • the frequency hopping control method includes the following steps:
  • Step 101 Determine the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity.
  • frequency hopping can be understood as a technology of transmitting on different frequencies at different times and set to cope with frequency selective fading in communication.
  • the frequency hopping may be determined according to three frequency hopping parameters, the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity.
  • Step 102 Perform frequency hopping according to the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity.
  • the UE may perform hopping according to the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity. frequency.
  • frequency hopping can be performed according to the frequency hopping offset value, frequency hopping times, and frequency hopping time domain granularity.
  • the frequency hopping offset value is used to determine the starting position of each hop;
  • the frequency hopping times can be understood as the frequency hopping hop number: for example, Message3 is repeatedly transmitted 8 times, and the frequency hopping time domain granularity is 1 slot, the number of hops can be 4, then the frequency hopping mode can be as shown in Figure 2, which means that during the repetition process, the transmission of msg3 has 4 different frequency domain positions (as shown in Figure 2).
  • Gray part the time domain granularity of frequency hopping can be understood as the interval of frequency hopping, that is, the duration of frequency hopping in the time domain. time slot.
  • At least one of the frequency hopping offset value, the frequency hopping number, and the frequency hopping time domain granularity is specified by a protocol.
  • one or more lists may be designed.
  • one list includes the frequency hopping offset value, the number of frequency hopping, and the time domain granularity of frequency hopping, or three or more lists, each of which includes Include a parameter, for example, the first table includes the frequency hopping offset value, the second table includes the frequency hopping number, and the third table includes the frequency hopping time domain granularity.
  • the base station configures the base station of the UE, so that the UE obtains the list, and then obtains at least one of the frequency hopping offset value, the frequency hopping number, and the frequency hopping time domain granularity from one or more lists.
  • the list may also be pre-configured in the communication device by a communication protocol specification of a communication standardization organization (eg, 3GPP standardization organization, IEEE, etc.) or by a factory setting of the communication device.
  • the base station may send control signaling to the terminal, where the control signaling indicates the list to be applied in the current communication, so as to notify the terminal to activate the list.
  • a fixed frequency hopping offset value is set in the list, and the frequency hopping offset value can be determined according to the BWP (Bandwidth Part, bandwidth part) of the communication.
  • BWP Bandwidth Part, bandwidth part
  • the corresponding identifier when the number of hops is 2, as shown in Table 1, when the BWP is less than 50, the corresponding identifier is 0 or 1, wherein the frequency hopping offset value corresponding to the identifier 0 is BWP /2, the frequency hopping offset value corresponding to identifier 1 is BWP/4; when the bandwidth is greater than or equal to 50, the corresponding identifiers are 00, 01, 10, 11, and the frequency hopping offset value corresponding to identifier 00 is BWP/2, the frequency hopping offset value corresponding to identifier 01 is BWP/, the frequency hopping offset value corresponding to identifier 10 is -BWP/4, and the frequency hopping offset value corresponding to identifier 11 is reserved.
  • the corresponding flags are 0 and 1, wherein the frequency hopping offset corresponding to flag 0
  • the value is BWP/3, and the frequency hopping offset corresponding to identifier 1 is BWP/6; when the BWP is greater than or equal to 50, the corresponding identifiers are 00, 01, 10, and 11, where the frequency hopping offset corresponding to identifier 00
  • the shift value is BWP/3, the frequency hopping offset value corresponding to mark 01 is BWP/6, the frequency hopping offset value corresponding to mark 10 is -BWP/6, and the frequency hopping offset value corresponding to mark 11 is reserved.
  • the above table is only exemplary, and multiple items can be independently applied to technical solutions for different technical purposes.
  • the correspondence between the offset value amount identifier and the offset value is not limited to what is exemplified in the table. Those skilled in the art can modify the corresponding relationship and numerical system according to the needs of the implementation.
  • the offset value can be any value less than or equal to one-half of the system bandwidth or bandwidth portion.
  • the offset value can be any value less than or equal to one-third of the system bandwidth or bandwidth portion, and so on.
  • the UE may also determine the number of frequency hopping through the number of repeated transmissions.
  • the number of frequency hopping may be generated according to the number of repeated transmissions and the time domain granularity of frequency hopping. For example, different combinations of the number of repeated transmissions and the time-domain granularity of frequency hopping may have a corresponding relationship with the number of frequency hopping, and the corresponding relationship is determined by one or more formulas or tables.
  • the formula or table can be specified by the protocol, or can be configured by the base station to the UE base station, so that the UE obtains the formula or table, and then obtains from one or more formulas or tables related to the specific number of repeated transmissions and the frequency hopping time domain Frequency hopping times corresponding to the granularity.
  • the formula or table can also be pre-configured in the communication device through a protocol specification or through a factory setting of the communication device.
  • the base station may send control signaling to the terminal, in which the control signaling indicates the formula or table to be applied in the current communication, so as to notify the terminal to activate the formula or table.
  • repeated transmission can be understood as a technology in which the receiving end combines and decodes the content received multiple times by repeatedly sending the same content, thereby increasing the probability of correct reception by the receiving end.
  • the number of frequency hopping may be determined according to the ratio of the number of repeated transmissions to the time domain granularity of frequency hopping.
  • the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity are determined first, and then the frequency hopping is performed according to the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity. Therefore, by performing frequency hopping according to frequency hopping offset value, frequency hopping times and frequency hopping time domain granularity, coverage is enhanced, frequency diversity gain is obtained, and a channel estimation frequency hopping method across time slots is realized.
  • the frequency hopping parameters when performing frequency hopping processing, further include a frequency hopping method, and then the frequency hopping can be performed according to the frequency hopping offset value, the frequency hopping times, the frequency hopping time domain granularity and the frequency hopping method. .
  • the frequency hopping manner includes an intra-slot frequency hopping manner and an inter-slot frequency hopping manner.
  • FIG. 3 is a schematic flowchart of another frequency hopping control method provided by an embodiment of the present disclosure, which is executed by a UE. As shown in FIG. 3 , the frequency hopping control method includes the following steps:
  • Step 301 Determine the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity in the first manner.
  • the first manner means that one or more of the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity can be indicated by the base station.
  • frequency hopping can be understood as a technology of transmitting on different frequencies at different times and set to cope with frequency selective fading in communication.
  • the frequency hopping offset value can be used to determine the starting position of each hop;
  • the frequency hopping times can be understood as the frequency hopping hop number, for example, Message3 is repeatedly transmitted 8 times, and the frequency hopping time domain granularity is 1 slot, the number of hops can be 4, then the frequency hopping mode can be as shown in Figure 2, where, that is to say, during the repetition process, the transmission of Message3 has 4 different frequency domain positions; the frequency hopping time domain granularity can be It is understood as the interval of frequency hopping, that is, the duration of frequency hopping in the time domain. For example, one frequency hopping period is 2 time slots, and another example, one frequency hopping period is 5 time slots.
  • At least one of the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity may be directly indicated by the base station.
  • the frequency hopping offset value, the frequency hopping number, and the frequency hopping time domain may be obtained from the first RMSI by receiving the first remaining minimum system message RMSI (Remaining Minimum System Information) sent by the base station.
  • Granularity one or more.
  • the base station may send the first remaining minimum system message RMSI to the UE, where the RMSI carries one or more of a frequency hopping offset value, a frequency hopping number, and a frequency hopping time domain granularity, , and then the UE receives the RMSI, so as to obtain the frequency hopping offset value, the frequency hopping number and the frequency hopping time domain granularity from the RMSI.
  • the RMSI carries one or more of a frequency hopping offset value, a frequency hopping number, and a frequency hopping time domain granularity
  • a frequency hopping offset value, a frequency hopping number, and a frequency hopping time domain granularity may be carried in the first RMSI, or a frequency hopping manner may also be carried. It is sent directly to the UE through the first RMSI.
  • one or more frequency hopping offset values, frequency hopping times, and frequency hopping time domain granularity may also be acquired by receiving an RRC message sent by the base station, which is not limited herein.
  • the number of frequency hopping may be determined by the number of repeated transmissions.
  • the number of frequency hopping may be generated according to the number of repeated transmissions and the granularity of the frequency hopping time domain, so as to determine the number of frequency hopping. For example, different combinations of the number of repeated transmissions and the time-domain granularity of frequency hopping may have a corresponding relationship with the number of frequency hopping, and the corresponding relationship is determined by one or more formulas or tables.
  • the formula or table can be specified by the protocol, or can be configured by the base station to the UE base station, so that the UE obtains the formula or table, and then obtains from one or more formulas or tables related to the specific number of repeated transmissions and the frequency hopping time domain Frequency hopping times corresponding to the granularity.
  • the formula or table can also be pre-configured in the communication device through a protocol specification or through a factory setting of the communication device.
  • the base station may send control signaling to the terminal, in which the control signaling indicates the formula or table to be applied in the current communication, so as to notify the terminal to activate the formula or table.
  • repeated transmission can be understood as a technology in which the receiving end combines and decodes the content received multiple times by repeatedly sending the same content to increase the probability of correct reception by the receiving end.
  • the number of frequency hopping may be determined according to the ratio of the number of repeated transmissions to the time domain granularity of frequency hopping.
  • the frequency hopping parameter when performing frequency hopping processing, may further include a frequency hopping manner.
  • the UE after obtaining the frequency hopping mode, the UE may further perform frequency hopping according to the frequency hopping offset value, the frequency hopping times, the frequency hopping time domain granularity and the frequency hopping mode.
  • the frequency hopping manner includes an intra-slot frequency hopping manner and an inter-slot frequency hopping manner.
  • Step 302 Perform frequency hopping according to the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity.
  • frequency hopping can be performed according to the frequency hopping offset value, frequency hopping times and frequency hopping time domain granularity.
  • the frequency hopping is performed by determining the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity, and according to the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity.
  • FIG. 4 is a schematic flowchart of another frequency hopping control method provided by the embodiment of the present disclosure, which is executed by the UE.
  • the frequency hopping parameter can be determined by combining the protocol specification with the base station instruction.
  • the method may include the following steps:
  • Step 401 Determine the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity in a second manner.
  • the second manner refers to obtaining the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity from RAR signaling or DCI signaling.
  • frequency hopping can be understood as a technology of transmitting on different frequencies at different times and set to cope with frequency selective fading in communication.
  • the frequency hopping offset value can be understood as the starting position of each hop; the frequency hopping times can be understood as the frequency hopping hop number, for example, Message3 is repeatedly transmitted 8 times, and the frequency hopping time domain granularity is 1 There are 4 slots, and the number of hops can be 4, then the frequency hopping mode can be shown in Figure 2, in which, during the repetition process, the transmission of msg3 has 4 different frequency domain positions (the gray part in Figure 2);
  • the frequency-time-domain granularity can be understood as the interval of frequency hopping, that is, the duration of frequency hopping in the time domain.
  • the random access response RAR signaling or downlink control information DCI (Downlink Control Information) signaling sent by the base station can be obtained, and the first offset can be obtained from the RAR signaling or the DCI signaling Then, according to the first offset identifier, the frequency hopping offset value configuration table is queried to determine the frequency hopping offset value.
  • the above-mentioned first offset identifier may be an index for indexing a corresponding frequency hopping offset value from the frequency hopping offset value configuration table.
  • the first offset identifier may be carried in the uplink scheduling grant (ULGrant) of the RAR signaling.
  • the frequency hopping offset value configuration table is specified by a protocol, or indicated by a signaling of the base station.
  • the base station may send the RAR signaling or downlink control information DCI signaling carrying the first offset identifier to the UE, and then the user equipment UE may receive the first offset sent by the base station and carry the first offset.
  • RAR signaling or downlink control information DCI signaling and obtain the first offset identifier from the received RAR signaling or downlink control information DCI signaling, and then query the frequency hopping offset according to the first offset identifier value configuration table to determine the frequency hopping offset value.
  • a corresponding frequency hopping offset value configuration table may be determined according to different hop numbers, wherein the frequency hopping offset value configuration table may be one or more.
  • each frequency hopping offset value configuration table corresponds to one frequency hopping number.
  • the corresponding frequency hopping offset value configuration table may be determined according to the frequency hopping times, and then the frequency hopping offset value may be determined according to the frequency hopping offset value configuration table.
  • each frequency hopping number in the frequency hopping offset value configuration table corresponds to an index value.
  • the base station may send a first offset identifier to the UE, where the first offset identifier may be an index value, and the UE configures the table from the frequency hopping offset value through the first offset identifier Find the corresponding frequency hopping times among them.
  • multiple rows of the table may correspond to the same hop number or may correspond to different hop numbers.
  • multiple frequency hopping offset value configuration tables may be aggregated into a large table, and then the first offset identifier is used as an index value for retrieval. Since a plurality of frequency hopping offset value configuration tables are aggregated into one table, the large table is long, so the bit representation needs to be extended. Among them, the extended bits can multiplex the TPC (power control) field in the RARULgrant.
  • TPC power control
  • the coverage is poor at this time, and the terminal generally uses full power to transmit, and the TPC (power control) field is invalid at this time, so the TPC field can be reused as an extended bit. (ie the first offset identifier).
  • the RAR signaling or DCI signaling sent by the base station can be acquired, and the first frequency hopping number identifier can be acquired from the RAR signaling or DCI signaling, and then the first frequency hopping number identifier can be obtained according to the first frequency hopping number identifier.
  • the base station can send the RAR signaling or DCI signaling carrying the first frequency hopping number identifier to the UE, and then the UE can receive the RAR signaling carrying the first frequency hopping number identifier sent by the base station.
  • Command or DCI signaling and obtain the first frequency hopping number identifier from the received RAR signaling DCI signaling, and then query the frequency hopping offset value configuration table to determine the frequency hopping number according to the first frequency hopping number identifier.
  • the first frequency hopping times identifier may be an index, which is used to query the frequency hopping offset value configuration table.
  • the frequency hopping offset configuration table may be specified by the protocol or indicated by the base station.
  • the RAR signaling or DCI signaling sent by the base station is acquired, and the first frequency hopping time domain granularity identifier is acquired from the RAR signaling or DCI signaling, and according to the first frequency hopping time domain granularity Identify and query the frequency hopping time domain granularity configuration table to determine the frequency hopping time domain granularity.
  • the first frequency hopping time domain granularity identifier may be an index, which is used to query the frequency hopping time domain granularity configuration table.
  • the frequency hopping time domain granularity configuration table may be specified by the protocol, or may be indicated by the base station.
  • the frequency hopping offset value configuration table, the frequency hopping times configuration table, or the frequency hopping time domain granularity configuration table are specified by a protocol, or indicated by signaling.
  • the base station may send the RAR signaling or DCI signaling carrying the first frequency hopping time domain granularity identifier to the UE, and then the UE may receive the first frequency hopping time domain granularity sent by the base station and carry the first frequency hopping time domain granularity.
  • the identified RAR signaling or DCI signaling and obtain the first frequency hopping time domain granularity identifier from the received RAR signaling or DCI signaling, and then query the frequency hopping offset value configuration table according to the first frequency hopping time domain granularity identifier to determine the number of hops.
  • the frequency hopping parameters when performing frequency hopping processing, further include a frequency hopping method, and then the frequency hopping can be performed according to the frequency hopping offset value, the frequency hopping times, the frequency hopping time domain granularity and the frequency hopping method. .
  • the frequency hopping mode includes an intra-slot frequency hopping mode and an inter-slot frequency hopping mode.
  • Step 402 Perform frequency hopping according to the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity.
  • frequency hopping can be performed according to the frequency hopping offset value, frequency hopping times and frequency hopping time domain granularity.
  • the frequency hopping is performed by determining the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity, and according to the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity. Therefore, by performing frequency hopping according to frequency hopping offset value, frequency hopping times and frequency hopping time domain granularity, coverage is enhanced, frequency diversity gain is obtained, and a channel estimation frequency hopping method across time slots is realized.
  • FIG. 5 is a schematic flowchart of another frequency hopping control method provided by the embodiment of the present disclosure, which is executed by the UE. It should be noted that, in this embodiment, the frequency hopping parameter may be determined by the UE looking up a table.
  • the method may include the following steps:
  • Step 501 Determine the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity in a third manner.
  • the third way is to first obtain the corresponding configuration table from the base station, and then obtain the corresponding index, so as to determine the frequency hopping offset value, the frequency hopping number, and the frequency hopping time domain granularity.
  • frequency hopping can be understood as a technology of transmitting on different frequencies at different times and set to cope with frequency selective fading in communication.
  • the frequency hopping offset value can be understood as the starting position of each hop; the frequency hopping times can be understood as the number of frequency hopping, for example, 1 frequency hopping is 1 hop, and 2 frequency hopping is 2 hop. That is, the number of times that the communication frequency is changed in a frequency hopping period; the time domain granularity of frequency hopping can be understood as the interval of frequency hopping, that is, the duration of frequency hopping in the time domain.
  • a frequency hopping period is 2 time slots, and For example, one frequency hopping period is 5 time slots.
  • the second RMSI sent by the base station can be obtained, and the frequency hopping offset value configuration table can be obtained from the second RMSI, and the RAR signaling or DCI signaling sent by the base station can be obtained.
  • the frequency hopping offset value configuration table is specified by a protocol or indicated by signaling.
  • the base station may send the second RMSI and RAR signaling or DCI signaling to the UE, so that the UE receives the second RMSI and the RAR signaling or DCI signaling sent by the base station, and obtains the second RMSI from the second RMSI
  • the frequency hopping offset value configuration table is obtained, and the second offset identifier is obtained from RAR signaling or DCI signaling, and then the frequency hopping offset value configuration table is queried according to the second offset identifier to determine the frequency hopping offset. shift value.
  • the corresponding frequency hopping offset value configuration table may be determined according to different hop numbers, wherein the frequency hopping offset value configuration table may be one or more.
  • each frequency hopping offset value configuration table corresponds to one frequency hopping number.
  • the corresponding frequency hopping offset value configuration table may be determined according to the frequency hopping times, and then the frequency hopping offset value may be determined according to the frequency hopping offset value configuration table.
  • each frequency hopping number in the frequency hopping offset value configuration table corresponds to an index value, which can be correspondingly identified as an index value according to the second offset.
  • multiple rows of the table may correspond to the same hop number or may correspond to different hop numbers.
  • multiple frequency hopping offset value configuration tables may be aggregated into one large table, and the second offset identifier is used as an index value, since the multiple frequency hopping offset value configuration tables are aggregated into a table, which causes the large table to be long, so the bit representation needs to be extended.
  • multiple frequency hopping offset value configuration tables may be aggregated into a large table, and then the second offset identifier is used as an index value for retrieval. Since a plurality of frequency hopping offset value configuration tables are aggregated into one table, the large table is long, so the bit representation needs to be extended. Among them, the extended bits can multiplex the TPC (power control) field in the RARULgrant.
  • TPC power control
  • the coverage is poor at this time, and the terminal generally uses full power to transmit, and the TPC (power control) field is invalid at this time, so the TPC field can be reused as an extended bit. (ie the second offset identifier).
  • the third RMSI sent by the base station can be obtained, and the frequency hopping times configuration table can be obtained from the third RMSI, the RAR signaling or DCI signaling sent by the base station can be obtained, and the RAR signaling or DCI signaling sent by the base station can be obtained from the RAR signaling.
  • the second frequency hopping times identifier is obtained in the DCI signaling, and then the frequency hopping times configuration table is queried to determine the frequency hopping times according to the second frequency hopping times identifier.
  • the base station may send the third RMSI and the RAR signaling or the DCI signaling to the UE, so that the UE receives the third RMSI and the RAR signaling or the DCI signaling sent by the base station, and receives the third RMSI and the RAR signaling or the DCI signaling from the third RMSI
  • the frequency hopping times configuration table is obtained, the second frequency hopping times identifier is obtained from RAR signaling or DCI signaling, and then the frequency hopping times configuration table is queried according to the second frequency hopping times identifier to determine the frequency hopping times.
  • the RAR signaling or DCI signaling sent by the base station can be obtained by acquiring the fourth RMSI sent by the base station, and obtaining the frequency hopping time domain granularity configuration table from the fourth RMSI, and obtaining the RAR signaling or DCI signaling sent by the base station from the RAR
  • the second frequency hopping time domain granularity identifier is obtained in the signaling or DCI signaling, and then the frequency hopping time domain granularity configuration table is queried according to the second frequency hopping time domain granularity identifier to determine the frequency hopping time domain granularity.
  • the base station may send the fourth RMSI, and RAR signaling or DCI signaling to the UE, so that the UE receives the fourth RMSI and the RAR signaling or DCI signaling sent by the base station, and receives the fourth RMSI and RAR signaling or DCI signaling from the fourth RMSI Among them, the frequency hopping time domain granularity configuration table is obtained, the second frequency hopping time domain granularity identifier is obtained from RAR signaling or DCI signaling, and then the frequency hopping time domain granularity configuration table is queried according to the second frequency hopping time domain granularity identifier to determine the Frequency hopping time domain granularity.
  • the frequency hopping parameters when performing frequency hopping processing, further include a frequency hopping method, and then the frequency hopping can be performed according to the frequency hopping offset value, the frequency hopping times, the frequency hopping time domain granularity and the frequency hopping method. .
  • the frequency hopping manner includes an intra-slot frequency hopping manner and an inter-slot frequency hopping manner.
  • Step 502 Perform frequency hopping according to the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity.
  • the frequency hopping offset value, frequency hopping times and frequency hopping time domain granularity can be determined according to the frequency hopping offset value, frequency hopping times and frequency hopping time domain granularity frequency hopping.
  • the frequency hopping is performed by determining the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity, and according to the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity. Therefore, by performing frequency hopping according to frequency hopping offset value, frequency hopping times and frequency hopping time domain granularity, coverage is enhanced, frequency diversity gain is obtained, and a channel estimation frequency hopping method across time slots is realized.
  • FIG. 6 is a schematic flowchart of another frequency hopping control method provided by the embodiment of the present disclosure, which is executed by the UE. It should be noted that, in this embodiment, the frequency hopping parameter may be determined in a manner indicated by the base station.
  • the method may include the following steps:
  • Step 601 Determine the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity in a fourth manner.
  • the fourth manner refers to a manner indicated by the base station.
  • frequency hopping can be understood as a technology of transmitting on different frequencies at different times and set to cope with frequency selective fading in communication.
  • the frequency hopping offset value can be understood as the starting position of each hop; the frequency hopping times can be understood as the number of frequency hopping, for example, 1 frequency hopping is 1 hop, and 2 frequency hopping is 2 hop. That is, the number of times that the communication frequency is changed in a frequency hopping period; the time domain granularity of frequency hopping can be understood as the interval of frequency hopping, that is, the duration of frequency hopping in the time domain.
  • a frequency hopping period is 2 time slots, and For example, one frequency hopping period is 5 time slots.
  • one or more of the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity are indicated by the following messages: the scheduling information of Message2 and the retransmission scheduling information of Message2 and Message3 one or more of.
  • the base station may indicate one or more of the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity through one or more of the scheduling information of Message2 and the retransmission scheduling information of Message2 and Message3 .
  • the base station can indicate the frequency hopping offset value through the scheduling information of Message2, and the number of frequency hopping and the time domain granularity of frequency hopping through the retransmission scheduling information of Message3; for another example, the base station can indicate the frequency hopping offset through the retransmission scheduling information of Message2 Shift value and frequency hopping times, the frequency hopping time domain granularity is indicated by the retransmission scheduling information of Message3; for example, the base station can indicate the frequency hopping offset value, frequency hopping times and frequency hopping time domain granularity through the retransmission scheduling information of Message2; For example, the base station can indicate the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity through the retransmission scheduling information of Message3.
  • the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity may be indicated by the same signaling (Message2 or Message3).
  • the retransmission scheduling information of Message3 can only indicate the frequency hopping parameter during the retransmission of Message3, and the scheduling information of Message2 and the retransmission scheduling information of Message2 can both indicate the hopping frequency of the initial transmission.
  • the frequency parameter can also indicate the frequency hopping parameter of the retransmission.
  • the frequency hopping parameter may further include a frequency hopping mode, wherein the corresponding frequency hopping mode may be determined according to the repeated transmission content by acquiring the repeated transmission content.
  • the frequency hopping mode includes an intra-slot frequency hopping mode and an inter-slot frequency hopping mode.
  • the frequency hopping mode is indicated by RMSI, or one or more of the scheduling information of Message2 and the retransmission scheduling information of Message2 and Message3.
  • RMSI resource management information
  • the base station may send RMSI to the UE, where the RMSI carries the frequency hopping mode, and the UE may obtain the frequency hopping mode from the RMSI after receiving the RMSI sent by the base station; in one embodiment of the present disclosure , the base station can indicate the frequency hopping mode through the scheduling information of Message2, the retransmission scheduling information of Message2, or the retransmission scheduling information of Message3.
  • Step 602 Perform frequency hopping according to the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity.
  • the frequency hopping offset value, the frequency hopping times and After frequency hopping time domain granularity frequency hopping can be performed according to the frequency hopping offset value, frequency hopping times and frequency hopping time domain granularity.
  • the frequency hopping is performed by determining the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity, and according to the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity. Therefore, by performing frequency hopping according to frequency hopping offset value, frequency hopping times and frequency hopping time domain granularity, coverage is enhanced, frequency diversity gain is obtained, and a channel estimation frequency hopping method across time slots is realized.
  • FIG. 6 is a schematic flowchart of another frequency hopping control method provided by the embodiment of the present disclosure, which is executed by a base station.
  • the base station may send the indication information to the UE, so that the UE receives the indication information sent by the base station and performs frequency hopping.
  • the method may include the following steps:
  • Step 701 Send indication information to the UE for instructing the UE to determine one or more of the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity.
  • frequency hopping can be understood as a technology of transmitting on different frequencies at different times and set to cope with frequency selective fading in communication.
  • the frequency hopping offset value can be understood as the starting position of each hop; the frequency hopping times can be understood as the frequency hopping hop number, for example, Message3 is repeatedly transmitted 8 times, and the frequency hopping time domain granularity is 1 There are 4 slots, the number of hops can be 4, then the frequency hopping mode can be shown in Figure 1, that is to say, during the repetition process, the transmission of Message3 has 4 different frequency domain positions; the frequency hopping time domain granularity can be understood as hopping
  • the frequency interval that is, the duration of the frequency hopping in the time domain, for example, a frequency hopping period is 2 time slots, and another example, a frequency hopping period is 5 time slots.
  • the base station sends RAR signaling or DCI signaling to the UE.
  • the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity can be determined from the RAR signaling or the DCI signaling.
  • the base station sends RAR signaling or DCI signaling to the UE, wherein the RAR signaling or DCI signaling includes the first offset identifier.
  • the first offset identifier is carried in the UL Grant of the RAR signaling.
  • the UE After receiving the RAR signaling or DCI signaling sent by the base station, the UE determines the first offset identifier from the RAR signaling or the DCI signaling, and determines the frequency hopping offset value according to the first offset identifier.
  • the base station sends RAR signaling or DCI signaling to the UE, wherein the RAR signaling or DCI signaling includes a first frequency hopping number identifier.
  • the UE After receiving the RAR signaling or DCI signaling sent by the base station, the UE determines the first frequency hopping number identifier from the RAR signaling or the DCI signaling, and determines the frequency hopping number according to the first frequency hopping number identifier.
  • the base station sends RAR signaling or DCI signaling to the UE, wherein the RAR signaling or DCI signaling includes the first frequency hopping time domain granularity identifier.
  • the UE receives the RAR signaling or DCI signaling sent by the base station, determines the first frequency hopping time domain granularity identifier from the RAR signaling or DCI signaling, and determines the frequency hopping time domain granularity according to the first frequency hopping time domain granularity identifier .
  • one or more of the frequency hopping offset value configuration table, the frequency hopping time domain granularity configuration table, and the frequency hopping times configuration table may be specified by a protocol, or indicated by signaling sent by the base station .
  • the first RMSI may be sent to the UE, wherein the first RMSI includes one or more of a frequency hopping offset value, a frequency hopping number, and a frequency hopping time domain granularity, so that the The UE receives the first RMSI, and determines one or more of the frequency hopping offset value, the frequency hopping number, and the frequency hopping time domain granularity from the first RMSI.
  • the base station may send a second RMSI to the UE, where the second RMSI includes a frequency hopping parameter configuration table, and send RAR signaling or DCI signaling to the UE, wherein the RAR signaling or DCI
  • the signaling includes a parameter identifier, so that the UE receives the second RMSI and RAR signaling or DCI signaling, and searches the frequency hopping parameter from the parameter configuration table according to the parameter identifier.
  • the base station sends the second RMSI to the UE, where the second RMSI includes a frequency hopping offset value configuration table, and the base station sends RAR signaling or DCI signaling to the UE, wherein the RAR signaling Or the second offset identifier is included in the DCI signaling.
  • the UE determines the frequency offset value configuration table from the second RMSI, and determines the second offset identifier from the RAR signaling or DCI signaling, so as to convert the frequency offset from the frequency offset according to the second offset identifier.
  • the offset value is determined in the offset value configuration table.
  • the base station sends a third RMSI to the UE, wherein the third RMSI includes a frequency hopping number configuration table, and the base station sends RAR signaling or DCI signaling to the UE, wherein the RAR signaling Or the DCI signaling includes the identifier of the second frequency hopping times.
  • the UE receives the second RMSI, determines the frequency hopping times configuration table from the third RMSI, and determines the frequency hopping times identification from the RAR signaling or DCI signaling, so as to determine the frequency hopping times from the frequency hopping times configuration table according to the frequency hopping times identification frequency.
  • the base station may send the fourth RMSI to the UE, where the fourth RMSI includes a frequency hopping time domain granularity configuration table, and the base station sends RAR signaling or DCI signaling to the UE, wherein the RAR The signaling or DCI signaling includes the second frequency hopping time domain granularity identifier.
  • the UE receives the second RMSI, determines the frequency hopping time domain granularity configuration table from the fourth RMSI, and determines the second frequency hopping time domain granularity identifier from the RAR signaling or DCI signaling, so as to obtain the frequency hopping time domain granularity configuration table from the Determine the second frequency hopping time domain granularity in .
  • the RAR signaling or the DCI signaling may be one or more of the above-mentioned scheduling information of Message2 and retransmission scheduling information of Message2 and Message3.
  • the RAR signaling is Message2
  • the DCI signaling can be the scheduling information of Message2, such as DCIformat1_0
  • the DCI signaling can also be the retransmission scheduling information of Message3, such as DCI format0_0, etc.
  • DCI format0_0 DCI format0
  • a corresponding frequency hopping offset value configuration table may be determined according to different hop numbers, wherein the frequency hopping offset value configuration table may be one or more.
  • each frequency hopping offset value configuration table corresponds to one frequency hopping number.
  • the corresponding frequency hopping offset value configuration table may be determined according to the frequency hopping times, and then the frequency hopping offset value may be determined according to the frequency hopping offset value configuration table.
  • each frequency hopping number in the frequency hopping offset value configuration table corresponds to an index value
  • the first offset identifier and the second offset can be identified according to the first offset value and the second offset value. Quantities are identified as index values.
  • multiple rows of the table may correspond to the same hop number or may correspond to different hop numbers.
  • multiple frequency hopping offset value configuration tables may be aggregated into a large table, and then the second offset identifier is used as an index value for retrieval. Since a plurality of frequency hopping offset value configuration tables are aggregated into one table, the large table is long, so the bit representation needs to be extended. Among them, the extended bits can multiplex the TPC (power control) field in the RARULgrant.
  • TPC power control
  • the coverage is poor at this time, and the terminal generally uses full power to transmit, and the TPC (power control) field is invalid at this time, so the TPC field can be reused as an extended bit. (ie the second offset identifier).
  • the indication information by sending the indication information to the UE, it is used to instruct the UE to determine one or more of the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity, so that the UE realizes frequency hopping.
  • FIG. 8 is a schematic flowchart of another frequency hopping control method provided by the embodiment of the present disclosure, which is executed by a base station.
  • the base station may send the indication information to the UE, so that the UE receives the indication information sent by the base station and performs frequency hopping.
  • the method may include the following steps:
  • Step 801 Determine the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity corresponding to the UE.
  • frequency hopping can be understood as a technology of transmitting on different frequencies at different times and set to cope with frequency selective fading in communication.
  • the frequency hopping offset value can be understood as the starting position of each hop; the frequency hopping times can be understood as the number of frequency hopping, for example, 1 frequency hopping is 1 hop, and 2 frequency hopping is 2 hop. That is, the number of times that the communication frequency is changed in a frequency hopping period; the time domain granularity of frequency hopping can be understood as the interval of frequency hopping, that is, the duration of frequency hopping in the time domain.
  • a frequency hopping period is 2 time slots, and For example, one frequency hopping period is 5 time slots.
  • At least one of the frequency hopping offset value, the frequency hopping number, and the frequency hopping time domain granularity is specified by the protocol.
  • the frequency hopping times corresponding to the UE can be determined by acquiring the repeated transmission times corresponding to the UE, and then generating the frequency hopping times according to the repeated transmission times and the frequency hopping time domain granularity. For example, different combinations of the number of repeated transmissions and the time-domain granularity of frequency hopping may have a corresponding relationship with the number of frequency hopping, and the corresponding relationship is determined by one or more formulas or tables.
  • the formula or table can be specified by the protocol, or can be configured by the base station to the UE base station, so that the UE obtains the formula or table, and then obtains from one or more formulas or tables related to the specific number of repeated transmissions and the frequency hopping time domain Frequency hopping times corresponding to the granularity.
  • the formula or table can also be pre-configured in the communication device through a protocol specification or through a factory setting of the communication device.
  • the base station may send control signaling to the terminal, in which the control signaling indicates the formula or table to be applied in the current communication, so as to notify the terminal to activate the formula or table.
  • the frequency hopping times corresponding to the UE can be obtained, then the frequency hopping offset value configuration table corresponding to the UE can be determined according to the frequency hopping times, and then the hopping frequency corresponding to the UE can be determined according to the frequency hopping offset value configuration table. frequency offset value.
  • the base station may also determine the frequency hopping mode corresponding to the UE, wherein the repeated transmission content corresponding to the UE is obtained, and the corresponding frequency hopping is determined according to the repeated transmission content Way.
  • Step 802 Provide a frequency hopping service for the UE according to the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity corresponding to the UE.
  • the frequency hopping offset value, frequency hopping times, and frequency hopping time domain granularity corresponding to the UE can be determined.
  • the granularity provides frequency hopping services for the UE.
  • the frequency hopping offset value and frequency hopping times corresponding to the UE can be determined according to the , frequency hopping time domain granularity and frequency hopping mode to provide UE with frequency hopping service.
  • one or more of the frequency hopping offset value, frequency hopping times, frequency hopping time domain granularity and frequency hopping method can be obtained by the first method, and the others can be obtained by one or more of the second method to the fourth method.
  • Even, or each of the frequency hopping offset value, the frequency hopping number, the frequency hopping time domain granularity and the frequency hopping mode are confirmed in different ways.
  • one or more of the frequency hopping offset value, the frequency hopping times, the frequency hopping time domain granularity, and the frequency hopping mode may also be set as default values specified in the protocol.
  • Frequency hopping service is provided to enable UE to achieve frequency hopping.
  • the present disclosure also provides a frequency hopping control device.
  • the implementation of the frequency hopping control method is also applicable to the frequency hopping control apparatus provided in this embodiment, which will not be described in detail in this embodiment.
  • 9-11 are schematic structural diagrams of a frequency hopping control device proposed according to the present disclosure.
  • FIG. 9 is a schematic structural diagram of a frequency hopping control device according to an embodiment of the present disclosure.
  • the apparatus is applied to user equipment UE.
  • the frequency hopping control device 910 includes: a first determination module 901 and a first processing module 902, wherein:
  • the first determining module 901 is configured to determine the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity.
  • the first processing module 902 is configured to perform frequency hopping according to the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity.
  • At least one of the frequency hopping offset value, the frequency hopping number, and the frequency hopping time domain granularity is specified by a protocol.
  • the frequency hopping offset value, the frequency hopping number, and the frequency hopping time domain granularity is indicated by the base station.
  • the frequency hopping offset value, the frequency hopping number, and the frequency hopping time domain may be obtained from the first RMSI by receiving the first remaining minimum system message RMSI (Remaining Minimum System Information) sent by the base station.
  • Granularity one or more.
  • the base station may send the first remaining minimum system message RMSI to the UE, where the RMSI carries one or more of a frequency hopping offset value, a frequency hopping number, and a frequency hopping time domain granularity, , and then the UE receives the RMSI, so as to obtain the frequency hopping offset value, the frequency hopping number and the frequency hopping time domain granularity from the RMSI.
  • the RMSI carries one or more of a frequency hopping offset value, a frequency hopping number, and a frequency hopping time domain granularity
  • a frequency hopping offset value, a frequency hopping number, and a frequency hopping time domain granularity may be carried in the first RMSI, or a frequency hopping manner may also be carried. It is sent directly to the UE through the first RMSI.
  • the first determining module 801 includes: acquiring a first offset identification unit, configured to acquire random access response RAR signaling or downlink control information DCI signaling sent by the base station command, and obtain the first offset identifier from the RAR signaling or DCI signaling; the first unit for determining the frequency hopping offset value is configured to query the frequency hopping offset according to the first offset identifier A value configuration table to determine the frequency hopping offset value.
  • the above-mentioned first offset identifier may be an index for indexing a corresponding frequency hopping offset value from the frequency hopping offset value configuration table.
  • a corresponding frequency hopping offset value configuration table may be determined according to different hop numbers, wherein the frequency hopping offset value configuration table may be one or more.
  • each frequency hopping offset value configuration table corresponds to one frequency hopping number.
  • the corresponding frequency hopping offset value configuration table may be determined according to the frequency hopping times, and then the frequency hopping offset value may be determined according to the frequency hopping offset value configuration table.
  • each frequency hopping number in the frequency hopping offset value configuration table corresponds to an index value.
  • the base station may send a first offset identifier to the UE, where the first offset identifier may be an index value, and the UE configures the table from the frequency hopping offset value through the first offset identifier Find the corresponding frequency hopping times among them.
  • multiple rows of the table may correspond to the same hop number or may correspond to different hop numbers.
  • multiple frequency hopping offset value configuration tables may be aggregated into a large table, and then the first offset identifier is used as an index value for retrieval. Since a plurality of frequency hopping offset value configuration tables are aggregated into one table, the large table is long, so the bit representation needs to be extended. Among them, the extended bits can multiplex the TPC (power control) field in the RARULgrant.
  • TPC power control
  • the coverage is poor at this time, and the terminal generally uses full power to transmit, and the TPC (power control) field is invalid at this time, so the TPC field can be reused as an extended bit. (ie the first offset identifier).
  • the first offset identifier is carried in the uplink scheduling grant UL Grant of the RAR signaling.
  • the frequency hopping offset value configuration table is specified by a protocol or indicated by signaling.
  • the first determining module 901 includes: a first unit for acquiring the number of repeated transmissions, configured to acquire the number of repeated transmissions; a first unit for generating the number of frequency hopping times, configured to The number of transmissions and the granularity of the frequency hopping time domain generate the number of frequency hopping. For example, different combinations of the number of repeated transmissions and the time-domain granularity of frequency hopping may have a corresponding relationship with the number of frequency hopping, and the corresponding relationship is determined by one or more formulas or tables.
  • the formula or table can be specified by the protocol, or can be configured by the base station to the UE base station, so that the UE obtains the formula or table, and then obtains from one or more formulas or tables related to the specific number of repeated transmissions and the frequency hopping time domain Frequency hopping times corresponding to the granularity.
  • the formula or table may also be pre-configured in the communication device through a protocol specification or through a factory setting of the communication device.
  • the base station may send control signaling to the terminal, in which the control signaling indicates the formula or table to be applied in the current communication, so as to notify the terminal to activate the formula or table.
  • the first determining module 901 includes: an identification unit for obtaining a first frequency hopping number, configured to obtain the RAR signaling or DCI signaling sent by the base station, and obtain the RAR signaling or DCI signaling sent by the base station, and obtain the first frequency hopping number identification unit.
  • the first frequency hopping times identifier is obtained in the RAR signaling or DCI signaling; the first unit for determining the frequency hopping times is configured to query the frequency hopping times configuration table according to the first frequency hopping times identifier to determine the frequency hopping times. frequency.
  • the first frequency hopping times identifier may be an index, which is used to query the frequency hopping offset value configuration table.
  • the frequency hopping offset configuration table may be specified by the protocol or indicated by the base station.
  • the first determining module 901 includes: acquiring a first frequency hopping time-domain granularity identification unit, configured to acquire the RAR signaling or DCI signaling sent by the base station, and Obtain the first frequency hopping time domain granularity identifier from the RAR signaling or DCI signaling; the first unit for determining the frequency hopping time domain granularity is configured to query the frequency hopping time domain according to the first frequency hopping time domain granularity identifier
  • a domain granularity configuration table determines the frequency hopping time domain granularity.
  • the first frequency hopping time domain granularity identifier may be an index, which is used to query the frequency hopping time domain granularity configuration table.
  • the frequency hopping time domain granularity configuration table may be specified by the protocol, or may be indicated by the base station.
  • the frequency hopping offset value configuration table, the frequency hopping times configuration table, or the frequency hopping time domain granularity configuration table are specified by a protocol, or indicated by signaling.
  • the first determining module 901 includes: a first receiving RMSI unit, configured to receive a first remaining minimum system message RMSI sent by the base station; a first determining unit, configured to One or more of the frequency hopping offset value, the frequency hopping number, and the frequency hopping time domain granularity are acquired from the first RMSI.
  • the first determining module 901 includes: an acquiring second RMSI unit, configured to acquire a second RMSI sent by the base station, and acquire the second RMSI from the second RMSI Frequency hopping offset value configuration table; obtaining a second offset identification unit, configured to obtain the RAR signaling or DCI signaling sent by the base station, and obtain the RAR signaling or DCI signaling from the RAR signaling or DCI signaling a second offset identifier; a second unit for determining a frequency hopping offset value, configured to query the frequency hopping offset value configuration table according to the second offset identifier to determine the frequency hopping offset value.
  • each frequency hopping offset value configuration table corresponds to one frequency hopping number.
  • it further includes: a first corresponding unit, configured to determine a corresponding frequency hopping offset value configuration table according to the frequency hopping times.
  • each frequency hopping number in the frequency hopping offset value configuration table corresponds to an index value.
  • the second offset is identified as the index value.
  • multiple frequency hopping offset value configuration tables may be aggregated into one large table, and the second offset identifier is used as an index value, since the multiple frequency hopping offset value configuration tables are aggregated into a table, which causes the large table to be long, so the bit representation needs to be extended.
  • multiple frequency hopping offset value configuration tables may be aggregated into a large table, and then the second offset identifier is used as an index value for retrieval. Since a plurality of frequency hopping offset value configuration tables are aggregated into one table, the large table is long, so the bit representation needs to be extended. Among them, the extended bits can multiplex the TPC (power control) field in the RARULgrant.
  • TPC power control
  • the coverage is poor at this time, and the terminal generally uses full power to transmit, and the TPC (power control) field is invalid at this time, so the TPC field can be reused as an extended bit. (ie the second offset identifier).
  • the first determining module 901 includes: an acquiring third RMSI unit, configured to acquire a third RMSI sent by the base station, and acquire the third RMSI from the third RMSI Frequency hopping times configuration table; obtaining a second frequency hopping times identification unit, configured to obtain the RAR signaling or DCI signaling sent by the base station, and obtain the RAR signaling or DCI signaling from the RAR signaling or DCI signaling The second frequency hopping times identifier; the second frequency hopping times determining unit is configured to query the frequency hopping times configuration table according to the second frequency hopping times identifier to determine the frequency hopping times.
  • the first determining module 901 includes: a fourth RMSI obtaining unit, configured to obtain a fourth RMSI sent by the base station, and obtain the fourth RMSI from the fourth RMSI Frequency hopping time domain granularity configuration table; obtaining a second frequency hopping time domain granularity identification unit, configured to obtain the RAR signaling or DCI signaling sent by the base station, and obtain the RAR signaling or DCI signaling from the RAR signaling or DCI signaling.
  • a fourth RMSI obtaining unit configured to obtain a fourth RMSI sent by the base station, and obtain the fourth RMSI from the fourth RMSI Frequency hopping time domain granularity configuration table
  • obtaining a second frequency hopping time domain granularity identification unit configured to obtain the RAR signaling or DCI signaling sent by the base station, and obtain the RAR signaling or DCI signaling from the RAR signaling or DCI signaling.
  • the second frequency hopping time domain granularity identifier is obtained in the second frequency hopping time domain granularity identifier; the second determining frequency hopping time domain granularity unit is configured to query the frequency hopping time domain granularity configuration table according to the second frequency hopping time domain granularity identifier to determine the
  • the frequency hopping time domain granularity is described above.
  • one or more of the frequency hopping offset value, the frequency hopping times, and the frequency hopping time domain granularity are indicated by the following messages: scheduling information of Message2, Message2 and One or more of the retransmission scheduling information of Message3.
  • a first unit for determining a frequency hopping mode configured to determine a frequency hopping mode, wherein, according to the frequency hopping offset value, the frequency hopping times, the frequency hopping time domain granularity and the Frequency hopping is performed by frequency hopping.
  • the method further includes: a second unit for determining a frequency hopping mode, configured to acquire repeated transmission content; and determining the corresponding frequency hopping mode according to the repeated transmission content.
  • the frequency hopping mode is indicated by the RMSI, or one or more of the scheduling information of Message2 and the retransmission scheduling information of Message2 and Message3.
  • FIG. 10 is a schematic structural diagram of a frequency hopping control device according to an embodiment of the present disclosure.
  • the apparatus is applied to a base station, and includes: a first sending module 1001, wherein:
  • the first sending module 1001 is configured to send indication information to the UE for instructing the UE to determine one or more of the frequency hopping offset value, the frequency hopping number and the frequency hopping time domain granularity.
  • the first sending module 1001 is configured to send RAR signaling or DCI signaling to the UE, wherein the RAR signaling or DCI signaling includes a first offset identifier .
  • the UL Grant of the RAR signaling carries the first offset identifier.
  • the frequency hopping offset value configuration table is specified by a protocol or indicated by a signaling sent by the base station.
  • the first sending module 1001 is configured to include: sending the RAR signaling or the DCI signaling to the UE, wherein the RAR signaling or the DCI signaling includes the first Frequency hopping number identification.
  • the first sending module 1001 is configured to send the RAR signaling or the DCI signaling to the UE, where the RAR signaling or the DCI signaling includes a first frequency hopping Time domain granularity identification.
  • the first sending module 1001 is configured to send a first RMSI to the UE, where the first RMSI includes the frequency hopping offset value, the frequency hopping number, and One or more of the frequency hopping time domain granularities.
  • the first sending module 1001 is configured to send a second RMSI to the UE, where the second RMSI includes the frequency hopping offset value configuration table;
  • the RAR signaling or the DCI signaling wherein the RAR signaling or the DCI signaling includes a second offset identifier.
  • each frequency hopping offset value configuration table corresponds to one frequency hopping number.
  • it further includes: a second corresponding unit, configured to determine a corresponding frequency hopping offset value configuration table according to the frequency hopping times.
  • each frequency hopping number in the frequency hopping offset value configuration table corresponds to an index value.
  • the first offset identifier and the second offset identifier are the index values.
  • the first sending module 1001 is configured to send a third RMSI to the UE, where the third RMSI includes the frequency hopping times configuration table; The RAR signaling or the DCI signaling, wherein the RAR signaling or the DCI signaling includes the identifier of the second frequency hopping times.
  • the first sending module 1001 is configured to send a fourth RMSI to the UE, where the fourth RMSI includes a frequency hopping time domain granularity configuration table; send the RAR to the UE signaling or DCI signaling, wherein the RAR signaling or DCI signaling includes a second frequency hopping time domain granularity identifier.
  • FIG. 11 is a schematic structural diagram of a frequency hopping control apparatus according to an embodiment of the present disclosure.
  • the apparatus is applied to a base station, and includes: a second determining module 1110 and a first providing module 1120, wherein:
  • the second determining module 1110 is configured to determine the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity corresponding to the UE;
  • the first providing module 1120 is configured to provide a frequency hopping service for the UE according to the frequency hopping offset value corresponding to the UE, the frequency hopping times and the frequency hopping time domain granularity.
  • At least one of the frequency hopping offset value, the frequency hopping number, and the frequency hopping time domain granularity is specified by a protocol.
  • the second determining module 1110 includes: a second unit for acquiring the number of repeated transmissions, configured to acquire the number of repeated transmissions corresponding to the UE; a second unit for generating the number of frequency hopping times, configured generating the frequency hopping times according to the repeated transmission times and the frequency hopping time domain granularity.
  • a second unit for acquiring the number of repeated transmissions configured to acquire the number of repeated transmissions corresponding to the UE
  • a second unit for generating the number of frequency hopping times configured generating the frequency hopping times according to the repeated transmission times and the frequency hopping time domain granularity.
  • different combinations of the number of repeated transmissions and the time-domain granularity of frequency hopping may have a corresponding relationship with the number of frequency hopping, and the corresponding relationship is determined by one or more formulas or tables.
  • the formula or table can be specified by the protocol, or can be configured by the base station to the UE base station, so that the UE obtains the formula or table, and then obtains from one or more formulas or tables related to the specific number of repeated transmissions and the frequency hopping time domain Frequency hopping times corresponding to the granularity.
  • the formula or table can also be pre-configured in the communication device through a protocol specification or through a factory setting of the communication device.
  • the base station may send control signaling to the terminal, in which the control signaling indicates the formula or table to be applied in the current communication, so as to notify the terminal to activate the formula or table.
  • it further includes: a unit for obtaining the frequency hopping times corresponding to the UE, configured to obtain the frequency hopping times corresponding to the UE; and a unit for determining a frequency hopping offset value configuration table corresponding to the UE, configured to obtain the frequency hopping times corresponding to the UE.
  • the unit for determining the frequency hopping offset value corresponding to the UE is configured to determine the UE corresponding to the UE according to the frequency hopping offset value configuration table.
  • the frequency hopping offset value of is configured to determine the UE corresponding to the UE according to the frequency hopping offset value configuration table.
  • An embodiment of the present disclosure further includes: a unit for determining a frequency hopping mode corresponding to the UE, configured to determine a frequency hopping mode corresponding to the UE, wherein the frequency hopping offset value corresponding to the UE, the The frequency hopping times, the frequency hopping time domain granularity and the frequency hopping mode provide the UE with a frequency hopping service.
  • the unit for determining the frequency hopping mode corresponding to the UE is configured to acquire the repeated transmission content corresponding to the UE; and the corresponding frequency hopping mode is determined according to the repeated transmission content.
  • the present disclosure also provides a communication device and a readable storage medium.
  • FIG. 12 it is a block diagram of a communication device according to a control method of frequency hopping according to an embodiment of the present disclosure.
  • Communication devices are intended to represent various forms of digital computers, such as laptop computers, desktop computers, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers.
  • Communication devices may also represent various forms of mobile devices, such as personal digital processors, cellular phones, smart phones, wearable devices, and other similar computing devices.
  • the components shown herein, their connections and relationships, and their functions are by way of example only, and are not intended to limit implementations of the disclosure described and/or claimed herein.
  • the communication device includes: one or more processors 1100, a memory 1200, and interfaces for connecting various components, including a high-speed interface and a low-speed interface.
  • the various components are interconnected using different buses and may be mounted on a common motherboard or otherwise as desired.
  • the processor may process instructions executed within the communication device, including instructions stored in or on memory to display graphical information of the GUI on an external input/output device, such as a display device coupled to the interface.
  • multiple processors and/or multiple buses may be used with multiple memories and multiple memories, if desired.
  • multiple communication devices may be connected, with each device providing some of the necessary operations (eg, as a server array, a group of blade servers, or a multi-processor system).
  • a processor 1100 is taken as an example in FIG. 12 .
  • the memory 1200 is the non-transitory computer-readable storage medium provided by the present disclosure.
  • the memory stores instructions executable by at least one processor, so that the at least one processor executes the frequency hopping control method provided by the present disclosure.
  • the non-transitory computer-readable storage medium of the present disclosure stores computer instructions, and the computer instructions are used to cause the computer to execute the frequency hopping control method provided by the present disclosure.
  • the memory 1200 can be used to store non-transitory software programs, non-transitory computer-executable programs and modules, such as program instructions/modules corresponding to the frequency hopping control method in the embodiments of the present disclosure (for example, , the first determining module 801 and the first processing module 802 shown in FIG. 8, or the first sending module 901 shown in FIG. 9, or the second determining module 1010 and the first providing module shown in FIG. 10 module 1020).
  • the processor 1100 executes various functional applications and data processing of the server by running the non-transitory software programs, instructions and modules stored in the memory 1200, ie, implements the frequency hopping control method in the above method embodiments.
  • the memory 1200 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the positioning communication device, and the like. Additionally, memory 1200 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device. Optionally, the memory 1200 may optionally include memory located remotely from the processor 1100, and these remote memories may be connected to the positioning communication device through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the control device for frequency hopping may further include: an input device 1300 and an output device 1400 .
  • the processor 1100 , the memory 1200 , the input device 1300 and the output device 1400 may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 12 .
  • the input device 1300 can receive input numerical or character information and generate key signal input related to user settings and functional control of the positioning communication device, such as a touch screen, keypad, mouse, trackpad, touchpad, pointing stick, one or more Input devices such as mouse buttons, trackballs, joysticks, etc.
  • the output device 1400 may include a display device, auxiliary lighting devices (eg, LEDs), haptic feedback devices (eg, vibration motors), and the like.
  • the display device may include, but is not limited to, a liquid crystal display (LCD), a light emitting diode (LED) display, and a plasma display. In some embodiments, the display device may be a touch screen.
  • Various implementations of the systems and techniques described herein can be implemented in digital electronic circuitry, integrated circuit systems, application specific ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various embodiments may include being implemented in one or more computer programs executable and/or interpretable on a programmable system including at least one programmable processor that The processor, which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
  • the processor which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
  • machine-readable medium and “computer-readable medium” refer to any computer program product, apparatus, and/or apparatus for providing machine instructions and/or data to a programmable processor ( For example, magnetic disks, optical disks, memories, programmable logic devices (PLDs), including machine-readable media that receive machine instructions as machine-readable signals.
  • machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.
  • the systems and techniques described herein may be implemented on a computer having a display device (eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user ); and a keyboard and pointing device (eg, a mouse or trackball) through which a user can provide input to the computer.
  • a display device eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor
  • a keyboard and pointing device eg, a mouse or trackball
  • Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (eg, visual feedback, auditory feedback, or tactile feedback); and can be in any form (including acoustic input, voice input, or tactile input) to receive input from the user.
  • the systems and techniques described herein may be implemented on a computing system that includes back-end components (eg, as a data server), or a computing system that includes middleware components (eg, an application server), or a computing system that includes front-end components (eg, a user's computer having a graphical user interface or web browser through which a user may interact with implementations of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system.
  • the components of the system may be interconnected by any form or medium of digital data communication (eg, a communication network). Examples of communication networks include: Local Area Networks (LANs), Wide Area Networks (WANs), and the Internet.
  • a computer system can include clients and servers.
  • Clients and servers are generally remote from each other and usually interact through a communication network.
  • the relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other.
  • the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity are determined; the frequency hopping is performed according to the frequency hopping offset value, the frequency hopping times and the frequency hopping time domain granularity. Therefore, by performing frequency hopping according to frequency hopping offset value, frequency hopping times and frequency hopping time domain granularity, coverage is enhanced, frequency diversity gain is obtained, and a channel estimation frequency hopping method across time slots is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出了一种跳频的控制方法、装置和通信设备,涉及通信技术领域。该方案为:确定跳频偏移值、跳频次数和跳频时域粒度;根据跳频偏移值、跳频次数和跳频时域粒度进行跳频。由此,通过根据跳频偏移值、跳频次数和跳频时域粒度进行跳频的方式,以使覆盖增强,获得频率分集增益,实现了跨时隙的信道估计跳频方式。

Description

一种跳频的控制方法及装置 技术领域
本公开涉及通信领域,特别是指一种跳频的控制方法及装置。
背景技术
在通信技术上中,为了确保通信的秘密性和抗干扰性,可采用跳频(Frequency Hopping,FH)技术,其中,在一个频率上传输质量不高的情况下,可跳到另一个频率进行传输通信。
相关技术中,由于上行覆盖能力有限,需要进行覆盖增强,因此,如何控制用户设备UE(UE,User Equipment)进行跳频成为亟待解决的问题。
发明内容
本公开实施例提出了一种跳频的控制方法及装置,用以解决上述问题。
本公开第一方面实施例提出了一种跳频的控制方法,应用于用户设备UE,包括:确定跳频偏移值、跳频次数和跳频时域粒度;以及根据所述跳频偏移值、所述跳频次数和所述跳频时域粒度进行跳频。
本公开的一个实施例中,所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的至少一个由协议规定。
本公开的一个实施例中,所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的至少一个由基站指示。
本公开的一个实施例中,所述确定所述跳频偏移值,包括:获取所述基站发送的随机接入响应RAR信令或下行控制信息DCI信令,并从所述RAR信令或DCI信令之中获取第一偏移量标识;根据所述第一偏移量标识查询跳频偏移值配置表以确定所述跳频偏移值。
本公开的一个实施例中,所述RAR信令的上行调度授权UL Grant之中携带 所述第一偏移量标识。
本公开的一个实施例中,所述跳频偏移值配置表通过协议规定,或者通过信令指示。
本公开的一个实施例中,所述确定所述跳频次数,包括:获取重复传输次数;根据所述重复传输次数和所述跳频时域粒度生成所述跳频次数。
本公开的一个实施例中,所述确定所述跳频次数,包括:获取所述基站发送的所述RAR信令或DCI信令,并从所述RAR信令或DCI信令之中获取第一跳频次数标识;根据所述第一跳频次数标识查询跳频次数配置表以确定所述跳频次数。
本公开的一个实施例中,所述确定所述跳频时域粒度,包括:获取所述基站发送的所述RAR信令或DCI信令,并从所述RAR信令或DCI信令之中获取第一跳频时域粒度标识;根据所述第一跳频时域粒度标识查询跳频时域粒度配置表以确定所述跳频时域粒度。
本公开的一个实施例中,所述确定跳频偏移值、所述跳频次数和所述跳频时域粒度,包括:接收所述基站发送的第一剩余最小系统消息RMSI;从所述第一RMSI之中获取所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的一个或多个。
本公开的一个实施例中,所述确定跳频偏移值,包括:获取所述基站发送的第二RMSI,并从所述第二RMSI之中获取所述跳频偏移值配置表;获取所述基站发送的所述RAR信令或DCI信令,并从所述RAR信令或DCI信令之中获取第二偏移量标识;根据所述第二偏移量标识查询所述跳频偏移值配置表以确定所述跳频偏移值。
本公开的一个实施例中,所述跳频偏移值配置表为多个,每个所述跳频偏移值配置表对应一个跳频次数。
本公开的一个实施例中,还包括:根据所述跳频次数确定对应的跳频偏移值配置表。
本公开的一个实施例中,所述跳频偏移值配置表为一个,所述跳频偏移值配置表之中的每个跳频次数对应一个索引值。
本公开的一个实施例中,所述第一偏移量标识和所述第二偏移量标识为所述索引值。
本公开的一个实施例中,所述确定跳频次数,包括:获取所述基站发送的第三RMSI,并从所述第三RMSI之中获取所述跳频次数配置表;获取所述基站发送的所述RAR信令或DCI信令,并从所述RAR信令或DCI信令之中获取所述第二跳频次数标识;根据所述第二跳频次数标识查询所述跳频次数配置表以确定所述跳频次数。
本公开的一个实施例中,所述确定跳频时域粒度,包括:获取所述基站发送的第四RMSI,并从所述第四RMSI之中获取所述跳频时域粒度配置表;获取所述基站发送的所述RAR信令或DCI信令,并从所述RAR信令或DCI信令之中获取所述第二跳频时域粒度标识;根据所述第二跳频时域粒度标识查询所述跳频时域粒度配置表以确定所述跳频时域粒度。
本公开的一个实施例中,所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的一个或多个,由以下消息指示:Message2的调度信息、Message2和Message3的重传调度信息之中的一种或多种。
本公开的一个实施例中,还包括:确定跳频方式,其中,根据所述跳频偏移值、所述跳频次数、所述跳频时域粒度和所述跳频方式进行跳频。
本公开的一个实施例中,所述确定跳频方式,包括:获取重复传输内容;根据所述重复传输内容确定对应的所述跳频方式。
本公开的一个实施例中,所述跳频方式由所述RMSI指示,Message2的调度信息、Message2和Message3的重传调度信息之中的一种或多种指示。
本公开第二方面实施例提出了一种跳频的控制方法,应用于基站,包括:向UE发送指示信息,用于指示所述UE确定跳频偏移值、跳频次数和跳频时域粒度之中的一个或多个。
本公开的一个实施例中,所述向UE发送指示信息,包括:向所述UE发送RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括第一偏移量标识。
本公开的一个实施例中,所述RAR信令的UL Grant之中携带所述第一偏移量标识。
本公开的一个实施例中,所述跳频偏移值配置表通过协议规定,或者通过所述基站发送的信令指示。
本公开的一个实施例中,所述向UE发送指示信息,包括:向所述UE发送所述RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括第一跳频次数标识。
本公开的一个实施例中,所述向向UE发送指示信息,包括:向所述UE发送所述RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括第一跳频时域粒度标识。
本公开的一个实施例中,所述向UE发送指示信息,包括:向所述UE发送第一RMSI,其中,所述第一RMSI之中包括所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的一个或多个。
本公开的一个实施例中,所述向UE发送指示信息,包括:向所述UE发送第二RMSI,其中,所述第二RMSI包括所述跳频偏移值配置表;向所述UE发送所述RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括第二偏移量标识。
本公开的一个实施例中,所述跳频偏移值配置表为多个,每个所述跳频偏移值配置表对应一个跳频次数。
本公开的一个实施例中,还包括:根据所述跳频次数确定对应的跳频偏移值配置表。
本公开的一个实施例中,所述跳频偏移值配置表为一个,所述跳频偏移值配置表之中的每个跳频次数对应一个索引值。
本公开的一个实施例中,所述第一偏移量标识和所述第二偏移量标识为所述索引值。
本公开的一个实施例中,向所述UE发送指示信息,包括:向所述UE发送第三RMSI,其中,所述第三RMSI之中包括所述跳频次数配置表;向所述UE发送所述RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括所述第二跳频次数标识。
本公开的一个实施例中,向所述UE发送指示信息,包括:向所述UE发送第四RMSI,其中,所述第四RMSI包括跳频时域粒度配置表;向所述UE发送所述RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括第二跳频时域粒度标识。
本公开第三方面实施例提出了一种跳频的控制方法,应用于基站,所述方法包括:确定UE所对应的跳频偏移值、跳频次数和跳频时域粒度;以及根据所述UE所对应的所述跳频偏移值、所述跳频次数和所述跳频时域粒度为所述UE提供跳频服务。
本公开的一个实施例中,所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的至少一个由协议规定。
本公开的一个实施例中,所述确定所述UE所对应的所述跳频次数,包括:获取所述UE所对应的重复传输次数;根据所述重复传输次数和所述跳频时域粒度生成所述跳频次数。
本公开的一个实施例中,还包括:获取所述UE所对应的所述跳频次数;根据所述跳频次数确定所述UE对应的跳频偏移值配置表;根据所述跳频偏移值配置表确定所述UE对应的所述跳频偏移值。
本公开的一个实施例中,还包括:确定所述UE对应的跳频方式,其中,根据所述UE对应的所述跳频偏移值、所述跳频次数、所述跳频时域粒度和所述跳频方式为所述UE提供跳频服务。
本公开的一个实施例中,所述确定所述UE对应的跳频方式,包括:获取所 述UE对应的重复传输内容;根据所述重复传输内容确定对应的所述跳频方式。
本公开第四方面实施例提出了一种跳频的控制装置,应用于UE,所述装置包括:
第一确定模块,被配置为确定跳频偏移值、跳频次数和跳频时域粒度;
第一处理模块,被配置为根据所述跳频偏移值、所述跳频次数和所述跳频时域粒度进行跳频。
本公开的一个实施例中,所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的至少一个由协议规定。
本公开的一个实施例中,所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的至少一个由基站指示。
本公开的一个实施例中,所述第一确定模块,包括:获取第一偏移量标识单元,被配置为获取所述基站发送的随机接入响应RAR信令或下行控制信息DCI信令,并从所述RAR信令或DCI信令之中获取第一偏移量标识;第一确定跳频偏移值单元,被配置为根据所述第一偏移量标识查询跳频偏移值配置表以确定所述跳频偏移值。
本公开的一个实施例中,所述RAR信令的上行调度授权UL Grant之中携带所述第一偏移量标识。
本公开的一个实施例中,所述跳频偏移值配置表通过协议规定,或者通过信令指示。
本公开的一个实施例中,所述第一确定模块,包括:第一获取重复传输次数单元,被配置为获取重复传输次数;第一生成跳频次数单元,被配置为根据所述重复传输次数和所述跳频时域粒度生成所述跳频次数。例如,重复传输次数和跳频时域粒度的不同组合可以与跳频次数具有对应关系,该对应关系由一个或多个公式或表格来确定。该公式或表格可以是通过协议规定,也可通过基站向UE基站配置,以使UE获取该公式或表格,进而从一个或多个公式或表格中获取与特定的重复传输次数和跳频时域粒度相对应的跳频次数。此外该公式 或表格还可以是通过协议规定或通过通信设备的出厂设置预先配置在通信设备中的。在一个实施例中,当基站需要时,可以向终端发送控制信令,在该控制信令中指示当前通信中所要应用的该公式或表格,以通知终端激活该公式或表格。
本公开的一个实施例中,所述第一确定模块,包括:获取第一跳频次数标识单元,被配置为获取所述基站发送的所述RAR信令或DCI信令,并从所述RAR信令或DCI信令之中获取第一跳频次数标识;第一确定跳频次数单元,被配置为根据所述第一跳频次数标识查询跳频次数配置表以确定所述跳频次数。
本公开的一个实施例中,所述第一确定模块,包括:获取第一跳频时域粒度标识单元,被配置为获取所述基站发送的所述RAR信令或DCI信令,并从所述RAR信令或DCI信令之中获取第一跳频时域粒度标识;第一确定跳频时域粒度单元,被配置为根据所述第一跳频时域粒度标识查询跳频时域粒度配置表以确定所述跳频时域粒度。
本公开的一个实施例中,所述第一确定模块,包括:接收RMSI单元,被配置为接收所述基站发送的第一剩余最小系统消息RMSI;第一确定单元,被配置为从所述第一RMSI之中获取所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的一个或多个。
本公开的一个实施例中,所述第一确定模块,包括:获取第二RMSI单元,被配置为获取所述基站发送的第二RMSI,并从所述第二RMSI之中获取所述跳频偏移值配置表;获取第二偏移量标识单元,被配置为获取所述基站发送的所述RAR信令或DCI信令,并从所述RAR信令或DCI信令之中获取第二偏移量标识;第二确定跳频偏移值单元,被配置为根据所述第二偏移量标识查询所述跳频偏移值配置表以确定所述跳频偏移值。
本公开的一个实施例中,所述跳频偏移值配置表为多个,每个所述跳频偏移值配置表对应一个跳频次数。
本公开的一个实施例中,还包括:第一对应模块,被配置为根据所述跳频 次数确定对应的跳频偏移值配置表。
本公开的一个实施例中,所述跳频偏移值配置表为一个,所述跳频偏移值配置表之中的每个跳频次数对应一个索引值。
本公开的一个实施例中,所述第一偏移量标识和所述第二偏移量标识为所述索引值。
本公开的一个实施例中,所述第一确定模块,包括:获取第三RMSI单元,被配置为获取所述基站发送的第三RMSI,并从所述第三RMSI之中获取所述跳频次数配置表;获取第二跳频次数标识单元,被配置为获取所述基站发送的所述RAR信令或DCI信令,并从所述RAR信令或DCI信令之中获取所述第二跳频次数标识;第二确定跳频次数单元,被配置为根据所述第二跳频次数标识查询所述跳频次数配置表以确定所述跳频次数。
本公开的一个实施例中,所述第一确定模块,包括:获取第四RMSI单元,被配置为获取所述基站发送的第四RMSI,并从所述第四RMSI之中获取所述跳频时域粒度配置表;获取第二跳频时域粒度标识单元,被配置为获取所述基站发送的所述RAR信令或DCI信令,并从所述RAR信令或DCI信令之中获取所述第二跳频时域粒度标识;第二确定跳频时域粒度单元,被配置为根据所述第二跳频时域粒度标识查询所述跳频时域粒度配置表以确定所述跳频时域粒度。
本公开的一个实施例中,所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的一个或多个,由以下消息指示:Message2的调度信息、Message2和Message3的重传调度信息之中的一种或多种。
本公开的一个实施例中,还包括:第一确定跳频方式单元,被配置为确定跳频方式,其中,根据所述跳频偏移值、所述跳频次数、所述跳频时域粒度和所述跳频方式进行跳频。
本公开的一个实施例中,还包括:第二确定跳频方式单元,被配置为获取重复传输内容;根据所述重复传输内容确定对应的所述跳频方式。
本公开的一个实施例中,所述跳频方式由所述RMSI指示,或者由Message2 的调度信息、Message2和Message3的重传调度信息之中的一种或多种。
本公开第五方面实施例提出了一种跳频的控制装置,应用于基站,所述装置包括:第一发送模块,被配置为向UE发送指示信息,用于指示所述UE确定跳频偏移值、跳频次数和跳频时域粒度之中的一个或多个。
本公开的一个实施例中,所述第一发送模块,被配置为向所述UE发送RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括第一偏移量标识。
本公开的一个实施例中,所述RAR信令的UL Grant之中携带所述第一偏移量标识。
本公开的一个实施例中,所述跳频偏移值配置表通过协议规定,或者通过所述基站发送的信令指示。
本公开的一个实施例中,所述第一发送模块,被配置为向所述UE发送所述RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括第一跳频次数标识。
本公开的一个实施例中,所述第一发送模块,被配置为所述向UE发送指示信息,被配置为向所述UE发送所述RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括第一跳频时域粒度标识。
本公开的一个实施例中,所述第一发送模块,被配置为向所述UE发送第一RMSI,其中,所述第一RMSI之中包括所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的一个或多个。
本公开的一个实施例中,所述第一发送模块,被配置为向所述UE发送第二RMSI,其中,所述第二RMSI包括所述跳频偏移值配置表;向所述UE发送所述RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括第二偏移量标识。
本公开的一个实施例中,所述第一发送模块,被配置为所述跳频偏移值配置表为多个,每个所述跳频偏移值配置表对应一个跳频次数。
本公开的一个实施例中,还包括:第二对应单元,被配置为根据所述跳频 次数确定对应的跳频偏移值配置表。
本公开的一个实施例中,所述跳频偏移值配置表为一个,所述跳频偏移值配置表之中的每个跳频次数对应一个索引值。
本公开的一个实施例中,所述第一偏移量标识和所述第二偏移量标识为所述索引值。
本公开的一个实施例中,所述第一发送模块,被配置为向所述UE发送第三RMSI,其中,所述第三RMSI之中包括所述跳频次数配置表;向所述UE发送所述RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括所述第二跳频次数标识。
本公开的一个实施例中,所述第一发送模块,被配置为向所述UE发送第四RMSI,其中,所述第四RMSI包括跳频时域粒度配置表;向所述UE发送所述RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括第二跳频时域粒度标识。
本公开第六方面实施例提出了一种跳频的控制装置,应用于基站,所述装置包括:
第二确定模块,被配置为确定UE所对应的跳频偏移值、跳频次数和跳频时域粒度;以及
第一提供模块,被配置为根据所述UE所对应的所述跳频偏移值、所述跳频次数和所述跳频时域粒度为所述UE提供跳频服务。
本公开的一个实施例中,所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的至少一个由协议规定。
本公开的一个实施例中,所述第二确定模块,包括:第二获取重复传输次数单元,被配置为获取所述UE所对应的重复传输次数;第二生成跳频次数单元,被配置为根据所述重复传输次数和所述跳频时域粒度生成所述跳频次数。例如,重复传输次数和跳频时域粒度的不同组合可以与跳频次数具有对应关系,该对应关系由一个或多个公式或表格来确定。该公式或表格可以是通过协议规定, 也可通过基站向UE基站配置,以使UE获取该公式或表格,进而从一个或多个公式或表格中获取与特定的重复传输次数和跳频时域粒度相对应的跳频次数。此外该公式或表格还可以是通过协议规定或通过通信设备的出厂设置预先配置在通信设备中的。在一个实施例中,当基站需要时,可以向终端发送控制信令,在该控制信令中指示当前通信中所要应用的该公式或表格,以通知终端激活该公式或表格。
本公开的一个实施例中,还包括:获取UE对应跳频次数单元,被配置为获取所述UE所对应的所述跳频次数;确定UE对应的跳频偏移值配置表单元,被配置为根据所述跳频次数确定所述UE对应的跳频偏移值配置表;确定UE对应的跳频偏移值单元,被配置为根据所述跳频偏移值配置表确定所述UE对应的所述跳频偏移值。
本公开的一个实施例中,还包括:确定UE对应的跳频方式单元,被配置为确定所述UE对应的跳频方式,其中,根据所述UE对应的所述跳频偏移值、所述跳频次数、所述跳频时域粒度和所述跳频方式为所述UE提供跳频服务。
本公开的一个实施例中,确定UE对应的跳频方式单元,被配置为获取所述UE对应的重复传输内容;根据所述重复传输内容确定对应的所述跳频方式。
本公开第七方面实施例提出了一种通信设备,包括收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并实现如第一方面实施例提出的跳频的控制方法或第二方面提出的跳频的控制方法或第三方面提出的跳频的控制方法。
本公开第八方面实施例提出了一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行第一方面实施例提出的跳频的控制方法,或者,第二方面实施例提出的跳频的控制方法或者,第三方面提出的跳频的控制方法。
本公开实施例提供的一种跳频的控制方法及装置,通过确定跳频偏移值、 跳频次数和跳频时域粒度,然后根据跳频偏移值、跳频次数和跳频时域粒度进行跳频,由此,通过根据跳频偏移值、跳频次数和跳频时域粒度进行跳频的方式,以使覆盖增强,获得频率分集增益,实现了跨时隙的信道估计跳频方式。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开实施例提供的一种跳频的控制方法的流程示意图;
图2为本公开实施例提供的跳频模式示意图;
图3为本公开实施例提供的另一种跳频的控制方法的流程示意图;
图4为本公开实施例提供的另一种跳频的控制方法的流程示意图;
图5为本公开实施例提供的另一种跳频的控制方法的流程示意图;
图6为本公开实施例提供的另一种跳频的控制方法的流程示意图;
图7为本公开实施例提供的一种跳频的控制方法的流程示意图;
图8为本公开实施例提供的另一种跳频的控制方法的流程示意图;
图9为本公开实施例提供的一种跳频的控制装置的结构示意图;
图10为本公开实施例提供的另一种跳频的控制装置的结构示意图;
图11为本公开实施例提供的又一种跳频的控制装置的结构示意图;
图12为本公开提出的一种通信设备的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理 解为对本公开的限制。
相关技术中,由于上行覆盖能力有限,需要进行覆盖增强,因此本公开通过Message3 type A Repetition(重复传输)进行覆盖增强,其中,通过Message3Inter-slot(时隙之间)的FH(Frequency Hopping,跳频)机制可以获得频率分集增益,因此如何为Message3配置inter-slotFH相关参数成为亟待解决的问题。当然在本公开的一个实施例之中,以Message3为例进行描述,但是在本公开的其他实施例之中,还可以传输其他信息,例如,呼叫建立信息、呼叫清除信息、连接管理信息、信道释放信息、系统信息、信道建立信息等。
针对这一问题,本公开实施例提供了跳频的控制方法及装置。
图1为本公开实施例提供的一种跳频的控制方法的流程示意图,由UE执行,以在UE在确定跳频偏移值、跳频次数和跳频时域粒度跳频参数后,进行跳频。需要说明的是,在本公开的实施例中,跳频参数包括跳频偏移值、跳频次数和跳频时域粒度,其中,跳频偏移值,用于确定每一跳的起始位置;跳频次数,用于通过配置多个频域位置,可以获得更高的频率分集增益,跳频时域粒度,用于通过扩展时域跳频的基本粒度,可以支持实现Cross-slot(跨时隙)联合信道估计,或者针对低流动性或静止UE,降低其DMRS(Demodulation Reference Signal,解调参考信号)密度等。
如图1所示,该跳频的控制方法包括以下步骤:
步骤101,确定跳频偏移值、跳频次数和跳频时域粒度。在本公开的一个实施例中,跳频可理解为通信里面为了应对频率选择性衰落而设置的一种不同时间在不同频率上传输的技术。在本公开的实施例之中,跳频可以根据跳频偏移值、跳频次数和跳频时域粒度三个跳频参数进行确定。
步骤102,根据跳频偏移值、跳频次数和跳频时域粒度进行跳频。
在本公开的实施例之中,在UE确定了跳频偏移值、跳频次数和跳频时域粒度之后,UE可以根据跳频偏移值、跳频次数和跳频时域粒度进行跳频。在本公开的实施例中,基于协议规定确定跳频偏移值、跳频次数和跳频时域粒度后, 可根据跳频偏移值、跳频次数和跳频时域粒度进行跳频。
在本公开的一个实施例中,跳频偏移值用于确定每一跳的起始位置;跳频次数可理解为跳频的跳数:比如Message3重复传输8次,跳频时域粒度是1个slot,跳数可以为4,那么跳频模式可如图2所示,其中,也就是说,在repetition过程中,msg3的传输有4个不同的频域位置(如图2之中的灰色部分);跳频时域粒度可理解为跳频的间隔,即跳频在时域范围内的持续时间,比如一个跳频周期是2个时隙,又如,一个跳频周期是5个时隙。
在本公开的一个实施例中,跳频偏移值、跳频次数和跳频时域粒度之中的至少一个由协议规定。
在本公开的一个实施例中,可设计一个或多个列表,例如,一个列表中包括跳频偏移值、跳频次数和跳频时域粒度,或者三多个列表中,每个列表分别包括一个参数,例如,第一个表中包括跳频偏移值,第二个表中包括跳频次数,第三个表中包括跳频时域粒度,该列表可通过协议规定,也可通过基站向UE基站配置,以使UE获取该列表,进而从一个或多个列表中获取跳频偏移值、跳频次数和跳频时域粒度之中的至少一个。此外该列表还可以是通过通信标准化组织(例如,3GPP标准化组织,IEEE等)的通信协议规定或通过通信设备的出厂设置预先配置在通信设备中的。在一个实施例中,当基站需要时,可以向终端发送控制信令,在该控制信令中指示当前通信中所要应用的列表,以通知终端激活该列表。
需要说明的是,可根据不同的跳数,设置不同的跳频偏移值配置表。
在本公开的一个实施例中,该列表中设置有固定跳频偏移值,可根据通信的BWP(Bandwidth Part,带宽部分),确定跳频偏移值。
在本公开的一个实施例中,当跳数为2时,如表1所示,当BWP小于50时,其对应的标识为0或1,其中,标识0对应的跳频偏移值为BWP/2,标识1对应的跳频偏移值为BWP/4;当带宽大于或等于50时,其对应的标识为00、01、10、11,其中,标识00对应的跳频偏移值为BWP/2,标识01对应的跳频偏移 值为BWP/,标识10对应的跳频偏移值为-BWP/4,标识11保留跳频偏移值。
Figure PCTCN2021072285-appb-000001
表1
在本公开的一个实施例中,当跳数为3或3以上时,如表3所示,当BWP小于50时,其对应的标识为0和1,其中,标识0对应的跳频偏移值为BWP/3,标识1对应的跳频偏移值为BWP/6;当BWP大于或等于50时,其对应的标识为00、01、10、11,其中,标识00对应的跳频偏移值为BWP/3,标识01对应的跳频偏移值为BWP/6,标识10对应的跳频偏移值为-BWP/6,标识11保留跳频偏移值。
Figure PCTCN2021072285-appb-000002
表3
需要注意的是,以上表格仅仅是示例性的,多个条目之间均可以独立地应用于出于不同技术目的技术方案中。例如,偏移值量标识与偏移值之间的对应 关系并不限于表格中所示例的。本领域技术人员可以根据实施方案的需要来更改对应关系和数值体系。例如,对于用于两次跳频的表格1来说,偏移值可以是小于等于系统带宽或带宽部分的二分之一的任意数值。而对于用于三次跳频的表格1来说,偏移值可以是小于等于系统带宽或带宽部分的三分之一的任意数值,以此类推。
在本公开的另一个实施例中,UE还可通过重复传输次数确定跳频次数。在本公开的实施例之中,可根据重复传输次数和跳频时域粒度生成跳频次数。例如,重复传输次数和跳频时域粒度的不同组合可以与跳频次数具有对应关系,该对应关系由一个或多个公式或表格来确定。该公式或表格可以是通过协议规定,也可通过基站向UE基站配置,以使UE获取该公式或表格,进而从一个或多个公式或表格中获取与特定的重复传输次数和跳频时域粒度相对应的跳频次数。此外该公式或表格还可以是通过协议规定或通过通信设备的出厂设置预先配置在通信设备中的。在一个实施例中,当基站需要时,可以向终端发送控制信令,在该控制信令中指示当前通信中所要应用的该公式或表格,以通知终端激活该公式或表格。
需要说明的是,重复传输,可理解为通过多次重复发送相同的内容,接收端将多次接收的内容进行合并解码,从而增加接收端正确接收概率的技术。
在本公开的实施例中,根据信道情况确定重复传输次数后,可根据重复传输次数与跳频时域粒度的比值,确定跳频次数。
本实施例中,先通过确定跳频偏移值、跳频次数和跳频时域粒度,之后再根据跳频偏移值、跳频次数和跳频时域粒度进行跳频。由此,通过根据跳频偏移值、跳频次数和跳频时域粒度进行跳频的方式,以使覆盖增强,获得频率分集增益,实现了跨时隙的信道估计跳频方式。
在本公开的一个实施例中,在进行跳频处理时,跳频参数还包括跳频方式,进而可根据跳频偏移值、跳频次数、跳频时域粒度和跳频方式进行跳频。
其中,在本公开的一个实施例之中,跳频方式包括时隙内跳频方式和时隙间跳频方式。
图3为本公开实施例提供的另一种跳频的控制方法的流程示意图,由UE执行,如图3所示,该跳频的控制方法包括以下步骤:
步骤301,以第一方式确定跳频偏移值、跳频次数和跳频时域粒度。,其中,第一方式是指跳频偏移值、跳频次数和跳频时域粒度之中的一个或多个可由基站指示。
在本公开的一个实施例中,跳频可理解为通信里面为了应对频率选择性衰落而设置的一种不同时间在不同频率上传输的技术。
在本公开的一个实施例中,跳频偏移值可用于确定每一跳的起始位置;跳频次数可理解为跳频的跳数,比如Message3重复传输8次,跳频时域粒度是1个slot,跳数可以为4,那么跳频模式可如图2所示,其中,也就是说,在repetition过程中,Message3的传输有4个不同的频域位置;跳频时域粒度可理解为跳频的间隔,即跳频在时域范围内的持续时间,比如一个跳频周期是2个时隙,又如,一个跳频周期是5个时隙。
在本公开的一个实施例中,跳频偏移值、跳频次数和跳频时域粒度之中的至少一个可由基站直接指示。
在本公开的一个实施例中,可通过接收基站发送的第一剩余最小系统消息RMSI(Remaining Minimum System Information),从第一RMSI之中获取跳频偏移值、跳频次数和跳频时域粒度一个或多个。
在本公开的一个实施例中,基站可向UE发送第一剩余最小系统消息RMSI,其中,RMSI携带有跳频偏移值、跳频次数和跳频时域粒度之中的一个或多个,,进而UE接收到RMSI,以便从RMSI中获取跳频偏移值、跳频次数和跳频时域粒度。在该实施例之中,可以在第一RMSI之中携带跳频偏移值、跳频次数和跳频时域粒度之中的一个或多个,或者还可以携带跳频方式。通过第一RMSI直接将其发送至UE。
在本公开的一个实施例中,还可通过接收基站发送的RRC消息,来获取跳频偏移值、跳频次数和跳频时域粒度一个或多个,在此不做限定。
在本公开的另一个实施例中,可通过重复传输次数确定跳频次数。在本公开的实施例之中,可根据重复传输次数和跳频时域粒度生成跳频次数,从而确定跳频次数。例如,重复传输次数和跳频时域粒度的不同组合可以与跳频次数具有对应关系,该对应关系由一个或多个公式或表格来确定。该公式或表格可以是通过协议规定,也可通过基站向UE基站配置,以使UE获取该公式或表格,进而从一个或多个公式或表格中获取与特定的重复传输次数和跳频时域粒度相对应的跳频次数。此外该公式或表格还可以是通过协议规定或通过通信设备的出厂设置预先配置在通信设备中的。在一个实施例中,当基站需要时,可以向终端发送控制信令,在该控制信令中指示当前通信中所要应用的该公式或表格,以通知终端激活该公式或表格。
需要说明的是,重复传输,可理解为通过多次重复发送相同的内容,接收端将多次接收的内容进行合并解码,增加接收端正确接收概率的技术。
在本公开的实施例中,根据信道情况确定重复传输次数后,可根据重复传输次数与跳频时域粒度的比值,确定跳频次数。
在本公开的一个实施例中,在进行跳频处理时,跳频参数还可包括跳频方式。在本公开的实施例之中,UE在获得跳频方式之后,进而可根据跳频偏移值、跳频次数、跳频时域粒度和跳频方式进行跳频。
其中,在本公开的一个实施例中,跳频方式包括时隙内跳频方式和时隙间跳频方式。
步骤302,根据跳频偏移值、跳频次数和跳频时域粒度进行跳频。
在本公开的实施例中,基于基站指示确定跳频偏移值、跳频次数和跳频时域粒度后,可根据跳频偏移值、跳频次数和跳频时域粒度进行跳频。
本实施例中,通过确定跳频偏移值、跳频次数和跳频时域粒度,以及根据跳频偏移值、跳频次数和跳频时域粒度进行跳频。由此,通过根据跳频偏移值、 跳频次数和跳频时域粒度进行跳频的方式,以使覆盖增强,获得频率分集增益,实现了跨时隙的信道估计跳频方式。
本实施例提供了另一种跳频的控制方法,图4为本公开实施例提供的另一种跳频的控制方法的流程示意图,由UE执行。需要说明的是,本实施例可通过协议规定与基站指示相结合的方式,确定跳频参数。
如图4所示,该方法可以包括以下步骤:
步骤401,以第二方式确定跳频偏移值、跳频次数和跳频时域粒度。其中,第二方式是指,从RAR信令或DCI信令之中获取跳频偏移值、跳频次数和跳频时域粒度。
在本公开的一个实施例中,跳频可理解为通信里面为了应对频率选择性衰落而设置的一种不同时间在不同频率上传输的技术。
在本公开的一个实施例中,跳频偏移值可理解每一跳的起始位置;跳频次数可理解为跳频的跳数,比如Message3重复传输8次,跳频时域粒度是1个slot,跳数可以为4,那么跳频模式可如图2所示,其中,在repetition过程中,msg3的传输有4个不同的频域位置(如图2之中的灰色部分);跳频时域粒度可理解为跳频的间隔,即跳频在时域范围内的持续时间,比如一个跳频周期是2个时隙,又如,一个跳频周期是5个时隙。
在本公开的实施例中,可通过获取基站发送的随机接入响应RAR信令或下行控制信息DCI(Downlink Control Information)信令,并从RAR信令或DCI信令之中获取第一偏移量标识,然后根据第一偏移量标识查询跳频偏移值配置表以确定跳频偏移值。在本公开的一个实施例之中,上述的第一偏移量标识可为索引,用于从跳频偏移值配置表之中索引出对应的跳频偏移值。
其中,在本公开的一个实施例之中,可在RAR信令的上行调度授权ULGrant(上行调度授权)之中携带第一偏移量标识。
在本公开的一个实施例中,跳频偏移值配置表通过协议规定,或者通过基站的信令指示。
在本公开的一个实施例中,基站可向UE发送通过携带有第一偏移量标识的RAR信令或下行控制信息DCI信令,进而用户设备UE可接收基站发送的携带有第一偏移量标识的RAR信令或下行控制信息DCI信令,并从接收到RAR信令或下行控制信息DCI信令中获取第一偏移量标识,然后根据第一偏移量标识查询跳频偏移值配置表以确定跳频偏移值。
在本公开的一个实施例之中,可根据不同的跳数,确定对应的跳频偏移值配置表,其中,跳频偏移值配置表可为一个或多个。
其中,当跳频偏移值配置表可为多个时,每个跳频偏移值配置表对应一个跳频次数。对应地,可根据跳频次数确定对应的跳频偏移值配置表,进而根据跳频偏移值配置表,以确定跳频偏移值。
其中,当跳频偏移值配置表为一个时,跳频偏移值配置表之中的每个跳频次数对应一个索引值。在本公开的实施例之中,基站可以向UE发送第一偏移量标识,该第一偏移量标识可为索引值,UE通过第一偏移量标识从该跳频偏移值配置表之中查找对应的跳频次数。
需要说明的是,不同的跳频次数使用同一张表时,该表的多行可能对应于同一跳数,也可对应不同跳数。
在本公开的一个实施例中,可将多个跳频偏移值配置表汇总至一个大表中,之后再将第一偏移量标识作为索引值进行检索。由于将多个跳频偏移值配置表汇总至一个表中,导致该大表较长,因此需要扩展比特位表示。其中,扩展的比特位可复用RARULgrant中的TPC(功控)字段。
在本公开的一个实施例中,当需要进行重复时,此时覆盖较差,终端一般使用满功率发送,此时TPC(功控)字段无效,因此可以复用该TPC字段作为扩展的比特位(即第一偏移量标识)。
在本公开的一个实施例中,可通过获取基站发送的RAR信令或DCI信令,并从RAR信令或DCI信令之中获取第一跳频次数标识,然后根据第一跳频次数标识查询跳频次数配置表以确定跳频次数。
在本公开的一个实施例中,基站可向UE发送通过携带有第一跳频次数标识的RAR信令或DCI信令,进而UE可接收基站发送的携带有第一跳频次数标识的RAR信令或DCI信令,并从接收到RAR信令DCI信令中获取第一跳频次数标识,然后根据第一跳频次数标识查询跳频偏移值配置表以确定跳频次数。在本公开的一个实施例之中,第一跳频次数标识可为索引,用于查询跳频偏移值配置表。在该实施例之中,跳频偏移配置表可以是协议规定的,也可以是基站指示的。
在本公开的一个实施例中,获取基站发送的RAR信令或DCI信令,并从RAR信令或DCI信令之中获取第一跳频时域粒度标识,根据第一跳频时域粒度标识查询跳频时域粒度配置表以确定跳频时域粒度。在本公开的一个实施例之中,第一跳频时域粒度标识可为索引,用于查询跳频时域粒度配置表。在该实施例之中,跳频时域粒度配置表可以是协议规定的,也可以是基站指示的。
在本公开的一个实施例中,跳频偏移值配置表、跳频次数配置表或跳频时域粒度配置表通过协议规定,或者通过信令指示。
在本公开的一个实施例中,基站可向UE发送通过携带有第一跳频时域粒度标识的RAR信令或DCI信令,进而UE可接收基站发送的携带有第一跳频时域粒度标识的RAR信令或DCI信令,并从接收到RAR信令或DCI信令中获取第一跳频时域粒度标识,然后根据第一跳频时域粒度标识查询跳频偏移值配置表以确定跳频次数。
在本公开的一个实施例中,在进行跳频处理时,跳频参数还包括跳频方式,进而可根据跳频偏移值、跳频次数、跳频时域粒度和跳频方式进行跳频。
其中,跳频方式包括时隙内跳频方式和时隙间跳频方式。
步骤402,根据跳频偏移值、跳频次数和跳频时域粒度进行跳频。
在本公开的实施例中,基于UE接收基站发送的RAR信令或DCI信令,并从RAR信令或DCI信令之中,获取到第一跳频偏移值标识、第一跳频次数标识以及第一跳频时域粒度标识之中的一个或多个,并根据第一跳频偏移值标识、第一跳频次数标识以及第一跳频时域粒度标识之中的一个或多个确定对应的出跳 频偏移值、跳频次数和跳频时域粒度后,可根据跳频偏移值、跳频次数和跳频时域粒度进行跳频。
本实施例中,通过确定跳频偏移值、跳频次数和跳频时域粒度,以及根据跳频偏移值、跳频次数和跳频时域粒度进行跳频。由此,通过根据跳频偏移值、跳频次数和跳频时域粒度进行跳频的方式,以使覆盖增强,获得频率分集增益,实现了跨时隙的信道估计跳频方式。
本实施例提供了另一种跳频的控制方法,图5为本公开实施例提供的另一种跳频的控制方法的流程示意图,由UE执行。需要说明的是,本实施例中可通过UE查表的方式,确定跳频参数。
如图5所示,该方法可以包括以下步骤:
步骤501,以第三方式确定跳频偏移值、跳频次数和跳频时域粒度。第三方式是指,先从基站获取对应的配置表,再获取对应的索引,从而确定跳频偏移值、跳频次数和跳频时域粒度。在本公开的一个实施例中,跳频可理解为通信里面为了应对频率选择性衰落而设置的一种不同时间在不同频率上传输的技术。
在本公开的一个实施例中,跳频偏移值可理解每一跳的起始位置;跳频次数可理解为跳频的次数,比如跳频1次为1hop,跳频2次为2hop,即一个跳频周期内,改变通信频率的次数;跳频时域粒度可理解为跳频的间隔,即跳频在时域范围内的持续时间,比如一个跳频周期是2个时隙,又如,一个跳频周期是5个时隙。
在本公开的实施例中,可通过获取基站发送的第二RMSI,并从第二RMSI之中获取跳频偏移值配置表,获取基站发送的RAR信令或DCI信令,并从RAR信令或DCI信令之中获取第二偏移量标识,然后根据第二偏移量标识查询跳频偏移值配置表以确定跳频偏移值。
在本公开的一个实施例中,跳频偏移值配置表通过协议规定,或者通过信令指示。
在本公开的一个实施例中,基站可向UE发送第二RMSI,以及RAR信令或DCI信令,以便UE接收基站发送的第二RMSI以及RAR信令或DCI信令,并从第二RMSI之中获取跳频偏移值配置表,并从RAR信令或DCI信令获取第二偏移量标识,进而根据第二偏移量标识查询跳频偏移值配置表,以确定跳频偏移值。
需要说明的是,可根据不同的跳数,确定对应的跳频偏移值配置表,其中,跳频偏移值配置表可为一个或多个。
其中,当跳频偏移值配置表可为多个时,每个跳频偏移值配置表对应一个跳频次数。对应地,可根据跳频次数确定对应的跳频偏移值配置表,进而根据跳频偏移值配置表,以确定跳频偏移值。
其中,当跳频偏移值配置表为一个时,跳频偏移值配置表之中的每个跳频次数对应一个索引值,对应地,可根据第二偏移量标识为索引值。
需要说明的是,不同的跳频次数使用同一张表时,该表的多行可能对应于同一跳数,也可对应不同跳数。
在本公开的一个实施例中,可将多个跳频偏移值配置表汇总至一个大表中,根据第二偏移量标识作为索引值,由于将多个跳频偏移值配置表汇总至一个表中,导致该大表较长,因此需要扩展比特位表示。
在本公开的一个实施例中,可将多个跳频偏移值配置表汇总至一个大表中,之后再将第二偏移量标识作为索引值进行检索。由于将多个跳频偏移值配置表汇总至一个表中,导致该大表较长,因此需要扩展比特位表示。其中,扩展的比特位可复用RARULgrant中的TPC(功控)字段。
在本公开的一个实施例中,当需要进行重复时,此时覆盖较差,终端一般使用满功率发送,此时TPC(功控)字段无效,因此可以复用该TPC字段作为扩展的比特位(即第二偏移量标识)。
在本公开的一个实施例中,可通过获取基站发送的第三RMSI,并从第三RMSI之中获取跳频次数配置表,获取基站发送的RAR信令或DCI信令,并从RAR信令或DCI信令之中获取第二跳频次数标识,之后根据第二跳频次数标识查询 跳频次数配置表以确定跳频次数。
在本公开的一个实施例中,基站可向UE发送第三RMSI,以及RAR信令或DCI信令,以便UE接收基站发送的第三RMSI以及RAR信令或DCI信令,并从第三RMSI之中获取跳频次数配置表,从RAR信令或DCI信令获取第二跳频次数标识,进而根据第二跳频次数标识查询跳频次数配置表,以确定跳频次数。
在本公开的一个实施例中,可通过获取基站发送的第四RMSI,并从第四RMSI之中获取跳频时域粒度配置表,获取基站发送的RAR信令或DCI信令,并从RAR信令或DCI信令之中获取第二跳频时域粒度标识,之后根据第二跳频时域粒度标识查询跳频时域粒度配置表以确定跳频时域粒度。
在本公开的一个实施例中,基站可向UE发送第四RMSI,以及RAR信令或DCI信令,以便UE接收基站发送的第四RMSI以及RAR信令或DCI信令,并从第四RMSI之中获取跳频时域粒度配置表,从RAR信令或DCI信令获取第二跳频时域粒度标识,进而根据第二跳频时域粒度标识查询跳频时域粒度配置表,以确定跳频时域粒度。
在本公开的一个实施例中,在进行跳频处理时,跳频参数还包括跳频方式,进而可根据跳频偏移值、跳频次数、跳频时域粒度和跳频方式进行跳频。
其中,在本公开的一个实施例中,跳频方式包括时隙内跳频方式和时隙间跳频方式。
步骤502,根据跳频偏移值、跳频次数和跳频时域粒度进行跳频。
在本公开的实施例中,基于UE查表的方式,确定跳频偏移值、跳频次数和跳频时域粒度后,可根据跳频偏移值、跳频次数和跳频时域粒度进行跳频。
本实施例中,通过确定跳频偏移值、跳频次数和跳频时域粒度,以及根据跳频偏移值、跳频次数和跳频时域粒度进行跳频。由此,通过根据跳频偏移值、跳频次数和跳频时域粒度进行跳频的方式,以使覆盖增强,获得频率分集增益,实现了跨时隙的信道估计跳频方式。
本实施例提供了另一种跳频的控制方法,图6为本公开实施例提供的另一 种跳频的控制方法的流程示意图,由UE执行。需要说明的是,本实施例可通过基站指示的方式,确定跳频参数。
如图6所示,该方法可以包括以下步骤:
步骤601,以第四方式确定跳频偏移值、跳频次数和跳频时域粒度。在本公开的实施例之中,第四方式是指基站指示的方式。
在本公开的一个实施例中,跳频可理解为通信里面为了应对频率选择性衰落而设置的一种不同时间在不同频率上传输的技术。
在本公开的一个实施例中,跳频偏移值可理解每一跳的起始位置;跳频次数可理解为跳频的次数,比如跳频1次为1hop,跳频2次为2hop,即一个跳频周期内,改变通信频率的次数;跳频时域粒度可理解为跳频的间隔,即跳频在时域范围内的持续时间,比如一个跳频周期是2个时隙,又如,一个跳频周期是5个时隙。
在本公开的实施例中,跳频偏移值、跳频次数和跳频时域粒度之中的一个或多个,由以下消息指示:Message2的调度信息、Message2和Message3的重传调度信息之中的一种或多种。
具体地,基站可通过Message2的调度信息、Message2和Message3的重传调度信息之中的一种或多种指示跳频偏移值、跳频次数和跳频时域粒度之中的一个或多个。例如,基站可通过Message2的调度信息指示跳频偏移值,通过Message3的重传调度信息指示跳频次数和跳频时域粒度;又如,基站可通过Message2的重传调度信息指示跳频偏移值和跳频次数,通过Message3的重传调度信息指示跳频时域粒度;再如基站可通过Message2的重传调度信息指示跳频偏移值、跳频次数和跳频时域粒度;又如基站可通过Message3的重传调度信息指示跳频偏移值、跳频次数和跳频时域粒度。
其中,在本公开的一个实施例之中,跳频偏移值、跳频次数和跳频时域粒度可通过同一个信令(Message2或Message3)指示。在本公开的另一个实施例之中,可以通过Message3的重传调度信息只指示Message3重传时的跳频参数, 而可通过Message2的调度信息和Message2重传调度信息既可以指示初传的跳频参数,也可以指示重传的跳频参数。
在本公开的一个实施例中,跳频参数还可包括跳频方式,其中,可通过获取重复传输内容,根据重复传输内容确定对应的跳频方式。
其中,跳频方式包括时隙内跳频方式和时隙间跳频方式。
其中,跳频方式由RMSI指示,或者由Message2的调度信息、Message2和Message3的重传调度信息之中的一种或多种。具体过程可以参考上述跳频偏移值、跳频次数和跳频时域粒度的指示过程。
在本公开的一个实施例中,基站可向UE发送RMSI,其中,RMSI中携带跳频方式,UE接收到基站发送的RMSI,可从RMSI中获取跳频方式;在本公开的一个实施例中,基站可通过Message2的调度信息、Message2的重传调度信息或Message3的重传调度信息指示跳频方式。
步骤602,根据跳频偏移值、跳频次数和跳频时域粒度进行跳频。
在本公开的实施例中,基于基站通过RMSI指示,Message2的调度信息、Message2和Message3的重传调度信息之中的一种或多种指示的方式,确定跳频偏移值、跳频次数和跳频时域粒度后,可根据跳频偏移值、跳频次数和跳频时域粒度进行跳频。
本实施例中,通过确定跳频偏移值、跳频次数和跳频时域粒度,以及根据跳频偏移值、跳频次数和跳频时域粒度进行跳频。由此,通过根据跳频偏移值、跳频次数和跳频时域粒度进行跳频的方式,以使覆盖增强,获得频率分集增益,实现了跨时隙的信道估计跳频方式。
本实施例提供了另一种跳频的控制方法,图6为本公开实施例提供的另一种跳频的控制方法的流程示意图,由基站执行。需要说明的是,本实施例中可通过基站向UE发送指示信息,以使UE接收到基站发送的指示信息进行跳频。
如图7所示,该方法可以包括以下步骤:
步骤701,向UE发送指示信息,用于指示UE确定跳频偏移值、跳频次数 和跳频时域粒度之中的一个或多个。
在本公开的一个实施例中,跳频可理解为通信里面为了应对频率选择性衰落而设置的一种不同时间在不同频率上传输的技术。
在本公开的一个实施例中,跳频偏移值可理解每一跳的起始位置;跳频次数可理解为跳频的跳数,比如Message3重复传输8次,跳频时域粒度是1个slot,跳数可以为4,那么跳频模式可如图1所示,也就是说,在repetition过程中,Message3的传输有4个不同的频域位置;跳频时域粒度可理解为跳频的间隔,即跳频在时域范围内的持续时间,比如一个跳频周期是2个时隙,又如,一个跳频周期是5个时隙。
在本公开的实施例中,基站向UE发送RAR信令或DCI信令。在UE接收到基站发送的RAR信令或DCI信令之后,可从RAR信令或DCI信令之中确定跳频偏移值、跳频次数和跳频时域粒度。
其中,在本公开的实施例中,基站向UE发送RAR信令或DCI信令,其中,RAR信令或DCI信令之中包括第一偏移量标识。在本公开的一个实施例之中,RAR信令的UL Grant之中携带第一偏移量标识。UE接收到基站发送的RAR信令或DCI信令之后,从RAR信令或DCI信令之中确定第一偏移量标识,并根据第一偏移量标识确定跳频偏移值。
其中,在本公开的实施例中,基站向UE发送RAR信令或DCI信令,其中,RAR信令或DCI信令之中包括第一跳频次数标识。UE接收到基站发送的RAR信令或DCI信令之后,从RAR信令或DCI信令之中确定第一跳频次数标识,并根据该第一跳频次数标识确定跳频次数。
其中,在本公开的实施例中,基站向UE发送RAR信令或DCI信令,其中,RAR信令或DCI信令之中包括第一跳频时域粒度标识。UE接收到基站发送的RAR信令或DCI信令,从RAR信令或DCI信令之中确定第一跳频时域粒度标识,并根据第一跳频时域粒度标识确定跳频时域粒度。
在本公开的一个实施例中,跳频偏移值配置表、跳频时域粒度配置表和跳 频次数配置表之中的一个或多个可通过协议规定,或者通过基站发送的信令指示。
在本公开的一个实施例中,可向UE发送第一RMSI,其中,第一RMSI之中包括跳频偏移值、跳频次数和跳频时域粒度之中的一个或多个,进而使得UE接收到第一RMSI,从第一RMSI之中确定跳频偏移值、跳频次数和跳频时域粒度之中的一个或多个。
在本公开的一个实施例中,基站可通过向UE发送第二RMSI,其中,第二RMSI包括跳频参数配置表,以及向UE发送RAR信令或DCI信令,其中,RAR信令或DCI信令之中包括参数标识,以使UE接收到第二RMSI和RAR信令或DCI信令,根据参数标识从参数配置表中,查找跳频参数。
其中,在本公开的实施例中,基站向UE发送第二RMSI,其中,第二RMSI包括跳频偏移值配置表,以及基站向UE发送RAR信令或DCI信令,其中,RAR信令或DCI信令之中包括第二偏移量标识。UE接收到第二RMSI之后,从第二RMSI确定频偏移值配置表,以及从RAR信令或DCI信令之中确定第二偏移量标识,以便根据第二偏移量标识从频偏移值配置表中确定偏移值。
其中,在本公开的实施例中,基站向UE发送第三RMSI,其中,第三RMSI之中包括跳频次数配置表,以及基站向UE发送RAR信令或DCI信令,其中,RAR信令或DCI信令之中包括第二跳频次数标识。UE接收到第二RMSI,从第三RMSI确定跳频次数配置表,以及从RAR信令或DCI信令之中确定跳频次数标识,以便根据跳频次数标识从跳频次数配置表中确定跳频次数。
其中,在本公开的实施例中,基站可通过向UE发送第四RMSI,其中,第四RMSI包括跳频时域粒度配置表,以及基站向UE发送RAR信令或DCI信令,其中,RAR信令或DCI信令之中包括第二跳频时域粒度标识。UE接收到第二RMSI,从第四RMSI确定跳频时域粒度配置表,以及从RAR信令或DCI信令之中确定第二跳频时域粒度标识,以便从跳频时域粒度配置表中确定第二跳频时域粒度。
在本公开的实施例之中RAR信令或DCI信令,可为上述的Message2的调度信息、Message2和Message3的重传调度信息之中的一种或多种。例如RAR信令为Message2,DCI信令可为Message2的调度信息,例如DCIformat1_0,DCI信令还以是Message3的重传调度信息,例如DCI format0_0等。以上仅为示例性的,在此并不对RAR信令或DCI信令有任何限制。
需要说明的是,在本公开的实施例中,可根据不同的跳数,确定对应的跳频偏移值配置表,其中,跳频偏移值配置表可为一个或多个。
其中,当跳频偏移值配置表可为多个时,每个跳频偏移值配置表对应一个跳频次数。对应地,可根据跳频次数确定对应的跳频偏移值配置表,进而根据跳频偏移值配置表,以确定跳频偏移值。
其中,当跳频偏移值配置表为一个时,跳频偏移值配置表之中的每个跳频次数对应一个索引值,对应地,可根据第一偏移量标识和第二偏移量标识为索引值。
需要说明的是,不同的跳频次数使用同一张表时,该表的多行可能对应于同一跳数,也可对应不同跳数。
在本公开的一个实施例中,可将多个跳频偏移值配置表汇总至一个大表中,之后再将第二偏移量标识作为索引值进行检索。由于将多个跳频偏移值配置表汇总至一个表中,导致该大表较长,因此需要扩展比特位表示。其中,扩展的比特位可复用RARULgrant中的TPC(功控)字段。
在本公开的一个实施例中,当需要进行重复时,此时覆盖较差,终端一般使用满功率发送,此时TPC(功控)字段无效,因此可以复用该TPC字段作为扩展的比特位(即第二偏移量标识)。
本实施例中,通过向UE发送指示信息,用于指示UE确定跳频偏移值、跳频次数和跳频时域粒度之中的一个或多个,以使UE实现跳频。
本实施例提供了另一种跳频的控制方法,图8为本公开实施例提供的另一种跳频的控制方法的流程示意图,由基站执行。需要说明的是,本实施例中可 通过基站向UE发送指示信息,以使UE接收到基站发送的指示信息进行跳频。
如图8所示,该方法可以包括以下步骤:
步骤801,确定UE所对应的跳频偏移值、跳频次数和跳频时域粒度。
在本公开的一个实施例中,跳频可理解为通信里面为了应对频率选择性衰落而设置的一种不同时间在不同频率上传输的技术。
在本公开的一个实施例中,跳频偏移值可理解每一跳的起始位置;跳频次数可理解为跳频的次数,比如跳频1次为1hop,跳频2次为2hop,即一个跳频周期内,改变通信频率的次数;跳频时域粒度可理解为跳频的间隔,即跳频在时域范围内的持续时间,比如一个跳频周期是2个时隙,又如,一个跳频周期是5个时隙。
在本公开的实施例中,跳频偏移值、跳频次数和跳频时域粒度之中的至少一个由协议规定。
在本公开的一个实施例中,可通过获取UE所对应的重复传输次数,之后根据重复传输次数和跳频时域粒度生成跳频次数,进而可确定UE所对应的跳频次数。例如,重复传输次数和跳频时域粒度的不同组合可以与跳频次数具有对应关系,该对应关系由一个或多个公式或表格来确定。该公式或表格可以是通过协议规定,也可通过基站向UE基站配置,以使UE获取该公式或表格,进而从一个或多个公式或表格中获取与特定的重复传输次数和跳频时域粒度相对应的跳频次数。此外该公式或表格还可以是通过协议规定或通过通信设备的出厂设置预先配置在通信设备中的。在一个实施例中,当基站需要时,可以向终端发送控制信令,在该控制信令中指示当前通信中所要应用的该公式或表格,以通知终端激活该公式或表格。
在本公开的实施例中,可通过获取UE所对应的跳频次数,之后根据跳频次数确定UE对应的跳频偏移值配置表,然后根据跳频偏移值配置表确定UE对应的跳频偏移值。
基于UE端中跳频参数包括跳频方式,在本公开的实施例中,基站还可确定 UE对应的跳频方式,其中,获取UE对应的重复传输内容,根据重复传输内容确定对应的跳频方式。
步骤802,根据UE所对应的跳频偏移值、跳频次数和跳频时域粒度为UE提供跳频服务。
在本公开的实施例中,确定UE所对应的跳频偏移值、跳频次数和跳频时域粒度后,可根据UE所对应的跳频偏移值、跳频次数和跳频时域粒度为UE提供跳频服务。
在本公开的另一个实施例中,确定UE所对应的跳频偏移值、跳频次数、跳频时域粒度和跳频方式后,可根据UE对应的跳频偏移值、跳频次数、跳频时域粒度和跳频方式为UE提供跳频服务。
在本公开的实施例之中,上述方式可以结合使用。例如跳频偏移值、跳频次数、跳频时域粒度和跳频方式之中的一个或多个可以用第一方式获得,其他的可以用方式二至方式四的一种或多种获得。甚至,或者跳频偏移值、跳频次数、跳频时域粒度和跳频方式之中的每个都会采用不同的方式确认。当然在本公开的实施例之中,还可以将跳频偏移值、跳频次数、跳频时域粒度和跳频方式之中的一个或多个设置为协议规定的默认值。
本实施例中,通过确定UE所对应的跳频偏移值、跳频次数和跳频时域粒度,之后根据UE所对应的跳频偏移值、跳频次数和跳频时域粒度为UE提供跳频服务,以使UE实现跳频。
与上述几种实施例提供的跳频的控制方法相对应,本公开还提供一种跳频的控制装置,由于本公开实施例提供跳频的控制装置与上述几种实施例提供的跳频的控制方法相对应,因此在跳频的控制方法的实施方式也适用于本实施例提供的跳频的控制装置,在本实施例中不再详细描述。图9-图11是根据本公开提出的跳频的控制装置的结构示意图。
图9为本公开实施例提供的跳频的控制装置的结构示意图。所述装置应用于用户设备UE。
如图9所示,该跳频的控制装置910包括:第一确定模块901和第一处理模块902,其中:
第一确定模块901,被配置为确定跳频偏移值、跳频次数和跳频时域粒度。
第一处理模块902,被配置为根据所述跳频偏移值、所述跳频次数和所述跳频时域粒度进行跳频。
在本公开的一个实施例中,所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的至少一个由协议规定。
在本公开的一个实施例中,所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的至少一个由基站指示。在本公开的一个实施例中,可通过接收基站发送的第一剩余最小系统消息RMSI(Remaining Minimum System Information),从第一RMSI之中获取跳频偏移值、跳频次数和跳频时域粒度一个或多个。
在本公开的一个实施例中,基站可向UE发送第一剩余最小系统消息RMSI,其中,RMSI携带有跳频偏移值、跳频次数和跳频时域粒度之中的一个或多个,,进而UE接收到RMSI,以便从RMSI中获取跳频偏移值、跳频次数和跳频时域粒度。在该实施例之中,可以在第一RMSI之中携带跳频偏移值、跳频次数和跳频时域粒度之中的一个或多个,或者还可以携带跳频方式。通过第一RMSI直接将其发送至UE。在本公开的一个实施例中,所述第一确定模块801,包括:获取第一偏移量标识单元,被配置为获取所述基站发送的随机接入响应RAR信令或下行控制信息DCI信令,并从所述RAR信令或DCI信令之中获取第一偏移量标识;第一确定跳频偏移值单元,被配置为根据所述第一偏移量标识查询跳频偏移值配置表以确定所述跳频偏移值。在本公开的一个实施例之中,上述的第一偏移量标识可为索引,用于从跳频偏移值配置表之中索引出对应的跳频偏移值。
在本公开的一个实施例之中,可根据不同的跳数,确定对应的跳频偏移值配置表,其中,跳频偏移值配置表可为一个或多个。
其中,当跳频偏移值配置表可为多个时,每个跳频偏移值配置表对应一个 跳频次数。对应地,可根据跳频次数确定对应的跳频偏移值配置表,进而根据跳频偏移值配置表,以确定跳频偏移值。
其中,当跳频偏移值配置表为一个时,跳频偏移值配置表之中的每个跳频次数对应一个索引值。在本公开的实施例之中,基站可以向UE发送第一偏移量标识,该第一偏移量标识可为索引值,UE通过第一偏移量标识从该跳频偏移值配置表之中查找对应的跳频次数。
需要说明的是,不同的跳频次数使用同一张表时,该表的多行可能对应于同一跳数,也可对应不同跳数。
在本公开的一个实施例中,可将多个跳频偏移值配置表汇总至一个大表中,之后再将第一偏移量标识作为索引值进行检索。由于将多个跳频偏移值配置表汇总至一个表中,导致该大表较长,因此需要扩展比特位表示。其中,扩展的比特位可复用RARULgrant中的TPC(功控)字段。
在本公开的一个实施例中,当需要进行重复时,此时覆盖较差,终端一般使用满功率发送,此时TPC(功控)字段无效,因此可以复用该TPC字段作为扩展的比特位(即第一偏移量标识)。
在本公开的一个实施例中,所述RAR信令的上行调度授权UL Grant之中携带所述第一偏移量标识。
在本公开的一个实施例中,所述跳频偏移值配置表通过协议规定,或者通过信令指示。
在本公开的一个实施例中,所述第一确定模块901,包括:第一获取重复传输次数单元,被配置为获取重复传输次数;第一生成跳频次数单元,被配置为根据所述重复传输次数和所述跳频时域粒度生成所述跳频次数。例如,重复传输次数和跳频时域粒度的不同组合可以与跳频次数具有对应关系,该对应关系由一个或多个公式或表格来确定。该公式或表格可以是通过协议规定,也可通过基站向UE基站配置,以使UE获取该公式或表格,进而从一个或多个公式或表格中获取与特定的重复传输次数和跳频时域粒度相对应的跳频次数。此外 该公式或表格还可以是通过协议规定或通过通信设备的出厂设置预先配置在通信设备中的。在一个实施例中,当基站需要时,可以向终端发送控制信令,在该控制信令中指示当前通信中所要应用的该公式或表格,以通知终端激活该公式或表格。
在本公开的一个实施例中,所述第一确定模块901,包括:获取第一跳频次数标识单元,被配置为获取所述基站发送的所述RAR信令或DCI信令,并从所述RAR信令或DCI信令之中获取第一跳频次数标识;第一确定跳频次数单元,被配置为根据所述第一跳频次数标识查询跳频次数配置表以确定所述跳频次数。在本公开的一个实施例之中,第一跳频次数标识可为索引,用于查询跳频偏移值配置表。在该实施例之中,跳频偏移配置表可以是协议规定的,也可以是基站指示的。
在本公开的一个实施例中,所述第一确定模块901,包括:获取第一跳频时域粒度标识单元,被配置为获取所述基站发送的所述RAR信令或DCI信令,并从所述RAR信令或DCI信令之中获取第一跳频时域粒度标识;第一确定跳频时域粒度单元,被配置为根据所述第一跳频时域粒度标识查询跳频时域粒度配置表以确定所述跳频时域粒度。在本公开的一个实施例之中,第一跳频时域粒度标识可为索引,用于查询跳频时域粒度配置表。在该实施例之中,跳频时域粒度配置表可以是协议规定的,也可以是基站指示的。
在本公开的一个实施例中,跳频偏移值配置表、跳频次数配置表或跳频时域粒度配置表通过协议规定,或者通过信令指示。
在本公开的一个实施例中,所述第一确定模块901,包括:第一接收RMSI单元,被配置为接收所述基站发送的第一剩余最小系统消息RMSI;第一确定单元,被配置为从所述第一RMSI之中获取所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的一个或多个。
在本公开的一个实施例中,所述第一确定模块901,包括:获取第二RMSI单元,被配置为获取所述基站发送的第二RMSI,并从所述第二RMSI之中获取 所述跳频偏移值配置表;获取第二偏移量标识单元,被配置为获取所述基站发送的所述RAR信令或DCI信令,并从所述RAR信令或DCI信令之中获取第二偏移量标识;第二确定跳频偏移值单元,被配置为根据所述第二偏移量标识查询所述跳频偏移值配置表以确定所述跳频偏移值。
在本公开的一个实施例中,所述跳频偏移值配置表为多个,每个所述跳频偏移值配置表对应一个跳频次数。
在本公开的一个实施例中,还包括:第一对应单元,被配置为根据所述跳频次数确定对应的跳频偏移值配置表。
在本公开的一个实施例中,所述跳频偏移值配置表为一个,所述跳频偏移值配置表之中的每个跳频次数对应一个索引值。
在本公开的一个实施例中,所述第二偏移量标识为所述索引值。在本公开的一个实施例中,可将多个跳频偏移值配置表汇总至一个大表中,根据第二偏移量标识作为索引值,由于将多个跳频偏移值配置表汇总至一个表中,导致该大表较长,因此需要扩展比特位表示。
在本公开的一个实施例中,可将多个跳频偏移值配置表汇总至一个大表中,之后再将第二偏移量标识作为索引值进行检索。由于将多个跳频偏移值配置表汇总至一个表中,导致该大表较长,因此需要扩展比特位表示。其中,扩展的比特位可复用RARULgrant中的TPC(功控)字段。
在本公开的一个实施例中,当需要进行重复时,此时覆盖较差,终端一般使用满功率发送,此时TPC(功控)字段无效,因此可以复用该TPC字段作为扩展的比特位(即第二偏移量标识)。
在本公开的一个实施例中,所述第一确定模块901,包括:获取第三RMSI单元,被配置为获取所述基站发送的第三RMSI,并从所述第三RMSI之中获取所述跳频次数配置表;获取第二跳频次数标识单元,被配置为获取所述基站发送的所述RAR信令或DCI信令,并从所述RAR信令或DCI信令之中获取所述第二跳频次数标识;第二确定跳频次数单元,被配置为根据所述第二跳频次数标 识查询所述跳频次数配置表以确定所述跳频次数。
在本公开的一个实施例中,所述第一确定模块901,包括:获取第四RMSI单元,被配置为获取所述基站发送的第四RMSI,并从所述第四RMSI之中获取所述跳频时域粒度配置表;获取第二跳频时域粒度标识单元,被配置为获取所述基站发送的所述RAR信令或DCI信令,并从所述RAR信令或DCI信令之中获取所述第二跳频时域粒度标识;第二确定跳频时域粒度单元,被配置为根据所述第二跳频时域粒度标识查询所述跳频时域粒度配置表以确定所述跳频时域粒度。
在本公开的一个实施例中,所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的一个或多个,由以下消息指示:Message2的调度信息、Message2和Message3的重传调度信息之中的一种或多种。
可选地,还包括:第一确定跳频方式单元,被配置为确定跳频方式,其中,根据所述跳频偏移值、所述跳频次数、所述跳频时域粒度和所述跳频方式进行跳频。
可选地,还包括:第二确定跳频方式单元,被配置为获取重复传输内容;根据所述重复传输内容确定对应的所述跳频方式。
可选地,所述跳频方式由所述RMSI指示,或者Message2的调度信息、Message2和Message3的重传调度信息之中的一种或多种指示。
图10为本公开实施例提供的跳频的控制装置的结构示意图。所述装置应用于基站,包括:第一发送模块1001,其中:
第一发送模块1001,被配置为向UE发送指示信息,用于指示所述UE确定跳频偏移值、跳频次数和跳频时域粒度之中的一个或多个。
本公开的一个实施例中,第一发送模块1001,被配置为向所述UE发送RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括第一偏移量标识。
本公开的一个实施例中,所述RAR信令的UL Grant之中携带所述第一偏移量标识。
本公开的一个实施例中,所述跳频偏移值配置表通过协议规定,或者通过所述基站发送的信令指示。
本公开的一个实施例中,第一发送模块1001,被配置为包括:向所述UE发送所述RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括第一跳频次数标识。
本公开的一个实施例中,第一发送模块1001,被配置为向所述UE发送所述RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括第一跳频时域粒度标识。
本公开的一个实施例中,第一发送模块1001,被配置为向所述UE发送第一RMSI,其中,所述第一RMSI之中包括所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的一个或多个。
本公开的一个实施例中,第一发送模块1001,被配置为向所述UE发送第二RMSI,其中,所述第二RMSI包括所述跳频偏移值配置表;向所述UE发送所述RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括第二偏移量标识。
本公开的一个实施例中,所述跳频偏移值配置表为多个,每个所述跳频偏移值配置表对应一个跳频次数。
本公开的一个实施例中,还包括:第二对应单元,被配置为根据所述跳频次数确定对应的跳频偏移值配置表。
本公开的一个实施例中,所述跳频偏移值配置表为一个,所述跳频偏移值配置表之中的每个跳频次数对应一个索引值。
本公开的一个实施例中,所述第一偏移量标识和所述第二偏移量标识为所述索引值。
本公开的一个实施例中,第一发送模块1001,被配置为向所述UE发送第三RMSI,其中,所述第三RMSI之中包括所述跳频次数配置表;向所述UE发送所述RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括所述第二 跳频次数标识。
本公开的一个实施例中,第一发送模块1001,被配置为向所述UE发送第四RMSI,其中,所述第四RMSI包括跳频时域粒度配置表;向所述UE发送所述RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括第二跳频时域粒度标识。
图11为本公开实施例提供的跳频的控制装置的结构示意图。所述装置应用于基站,包括:第二确定模块1110和第一提供模块1120,其中:
第二确定模块1110,被配置为确定UE所对应的跳频偏移值、跳频次数和跳频时域粒度;以及
第一提供模块1120,被配置为根据所述UE所对应的所述跳频偏移值、所述跳频次数和所述跳频时域粒度为所述UE提供跳频服务。
本公开的一个实施例中,所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的至少一个由协议规定。
本公开的一个实施例中,所述第二确定模块1110,包括:第二获取重复传输次数单元,被配置为获取所述UE所对应的重复传输次数;第二生成跳频次数单元,被配置为根据所述重复传输次数和所述跳频时域粒度生成所述跳频次数。例如,重复传输次数和跳频时域粒度的不同组合可以与跳频次数具有对应关系,该对应关系由一个或多个公式或表格来确定。该公式或表格可以是通过协议规定,也可通过基站向UE基站配置,以使UE获取该公式或表格,进而从一个或多个公式或表格中获取与特定的重复传输次数和跳频时域粒度相对应的跳频次数。此外该公式或表格还可以是通过协议规定或通过通信设备的出厂设置预先配置在通信设备中的。在一个实施例中,当基站需要时,可以向终端发送控制信令,在该控制信令中指示当前通信中所要应用的该公式或表格,以通知终端激活该公式或表格。
本公开的一个实施例中,还包括:获取UE对应跳频次数单元,被配置为获取所述UE所对应的所述跳频次数;确定UE对应的跳频偏移值配置表单元,被 配置为根据所述跳频次数确定所述UE对应的跳频偏移值配置表;确定UE对应的跳频偏移值单元,被配置为根据所述跳频偏移值配置表确定所述UE对应的所述跳频偏移值。
本公开的一个实施例中,还包括:确定UE对应的跳频方式单元,被配置为确定所述UE对应的跳频方式,其中,根据所述UE对应的所述跳频偏移值、所述跳频次数、所述跳频时域粒度和所述跳频方式为所述UE提供跳频服务。
本公开的一个实施例中,确定UE对应的跳频方式单元,被配置为获取所述UE对应的重复传输内容;根据所述重复传输内容确定对应的所述跳频方式。
根据本公开的实施例,本公开还提供了一种通信设备和一种可读存储介质。
如图12所示,是根据本公开实施例的跳频的控制方法通信设备的框图。通信设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。通信设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本公开的实现。
如图12所示,该通信设备包括:一个或多个处理器1100、存储器1200,以及用于连接各部件的接口,包括高速接口和低速接口。各个部件利用不同的总线互相连接,并且可以被安装在公共主板上或者根据需要以其它方式安装。处理器可以对在通信设备内执行的指令进行处理,包括存储在存储器中或者存储器上以在外部输入/输出装置(诸如,耦合至接口的显示设备)上显示GUI的图形信息的指令。在其它实施方式中,若需要,可以将多个处理器和/或多条总线与多个存储器和多个存储器一起使用。同样,可以连接多个通信设备,各个设备提供部分必要的操作(例如,作为服务器阵列、一组刀片式服务器、或者多处理器系统)。图12中以一个处理器1100为例。
存储器1200即为本公开所提供的非瞬时计算机可读存储介质。其中,所述 存储器存储有可由至少一个处理器执行的指令,以使所述至少一个处理器执行本公开所提供的跳频的控制方法。本公开的非瞬时计算机可读存储介质存储计算机指令,该计算机指令用于使计算机执行本公开所提供的跳频的控制方法。
存储器1200作为一种非瞬时计算机可读存储介质,可用于存储非瞬时软件程序、非瞬时计算机可执行程序以及模块,如本公开实施例中的跳频的控制方法对应的程序指令/模块(例如,附图8所示的第一确定模块801和第一处理模块802,或者是附图9所示的第一发送模块901,或者是附图10所示的第二确定模块1010和第一提供模块1020)。处理器1100通过运行存储在存储器1200中的非瞬时软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例中的跳频的控制方法。
存储器1200可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据定位通信设备的使用所创建的数据等。此外,存储器1200可以包括高速随机存取存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。可选地,存储器1200可选包括相对于处理器1100远程设置的存储器,这些远程存储器可以通过网络连接至定位通信设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
跳频的控制设备还可以包括:输入装置1300和输出装置1400。处理器1100、存储器1200、输入装置1300和输出装置1400可以通过总线或者其他方式连接,图12中以通过总线连接为例。
输入装置1300可接收输入的数字或字符信息,以及产生与定位通信设备的用户设置以及功能控制有关的键信号输入,例如触摸屏、小键盘、鼠标、轨迹板、触摸板、指示杆、一个或者多个鼠标按钮、轨迹球、操纵杆等输入装置。输出装置1400可以包括显示设备、辅助照明装置(例如,LED)和触觉反馈装置(例如,振动电机)等。该显示设备可以包括但不限于,液晶显示器(LCD)、发光二极管(LED)显示器和等离子体显示器。在一些实施方式中,显示设备 可以是触摸屏。
此处描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、专用ASIC(专用集成电路)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
这些计算程序(也称作程序、软件、软件应用、或者代码)包括可编程处理器的机器指令,并且可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算程序。如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计 算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
根据本公开实施例的跳频的控制装置,确定跳频偏移值、跳频次数和跳频时域粒度;根据跳频偏移值、跳频次数和跳频时域粒度进行跳频。由此,通过根据跳频偏移值、跳频次数和跳频时域粒度进行跳频的方式,以使覆盖增强,获得频率分集增益,实现了跨时隙的信道估计跳频方式。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发申请中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本公开保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本公开的精神和原则之内所作的修改、等同替换和改进等,均应包含在本公开保护范围之内。

Claims (46)

  1. 一种跳频的控制方法,其特征在于,应用于用户设备UE,所述方法包括:
    确定跳频偏移值、跳频次数和跳频时域粒度;以及
    根据所述跳频偏移值、所述跳频次数和所述跳频时域粒度进行跳频。
  2. 如权利要求1所述的方法,其特征在于,所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的至少一个由协议规定。
  3. 如权利要求1所述的方法,其特征在于,所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的至少一个由基站指示。
  4. 如权利要求1所述的方法,其特征在于,所述确定所述跳频偏移值,包括:
    获取所述基站发送的随机接入响应RAR信令或下行控制信息DCI信令,并从所述RAR信令或DCI信令之中获取第一偏移量标识;
    根据所述第一偏移量标识查询跳频偏移值配置表以确定所述跳频偏移值。
  5. 如权利要求4所述的方法,其特征在于,所述RAR信令的上行调度授权UL Grant之中携带所述第一偏移量标识。
  6. 如权利要求1所述的方法,其特征在于,所述确定所述跳频次数,包括:
    获取重复传输次数;
    根据所述重复传输次数和所述跳频时域粒度生成所述跳频次数。
  7. 如权利要求1所述的方法,其特征在于,所述确定所述跳频次数,包括:
    获取所述基站发送的所述RAR信令或DCI信令,并从所述RAR信令或DCI 信令之中获取第一跳频次数标识;
    根据所述第一跳频次数标识查询跳频次数配置表以确定所述跳频次数。
  8. 如权利要求1所述的方法,其特征在于,所述确定所述跳频时域粒度,包括:
    获取所述基站发送的所述RAR信令或DCI信令,并从所述RAR信令或DCI信令之中获取第一跳频时域粒度标识;
    根据所述第一跳频时域粒度标识查询跳频时域粒度配置表以确定所述跳频时域粒度。
  9. 如权利要求4、7或8所述的方法,其特征在于,所述跳频偏移值配置表、所述跳频次数配置表或所述跳频时域粒度配置表通过协议规定,或者通过信令指示。
  10. 如权利要求3所述的方法,其特征在于,所述确定跳频偏移值、所述跳频次数和所述跳频时域粒度,包括:
    接收所述基站发送的第一剩余最小系统消息RMSI;
    从所述第一RMSI之中获取所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的一个或多个。
  11. 如权利要求1所述的方法,其特征在于,所述确定跳频偏移值,包括:
    获取所述基站发送的第二RMSI,并从所述第二RMSI之中获取所述跳频偏移值配置表;
    获取所述基站发送的所述RAR信令或DCI信令,并从所述RAR信令或DCI信令之中获取第二偏移量标识;
    根据所述第二偏移量标识查询所述跳频偏移值配置表以确定所述跳频偏移 值。
  12. 如权利要求4或11所述的方法,其特征在于,所述跳频偏移值配置表为多个,每个所述跳频偏移值配置表对应一个跳频次数。
  13. 如权利要求12所述的方法,其特征在于,还包括:
    根据所述跳频次数确定对应的跳频偏移值配置表。
  14. 如权利要求4或11所述的方法,其特征在于,所述跳频偏移值配置表为一个,所述跳频偏移值配置表之中的每个跳频次数对应一个索引值。
  15. 如权利要求14所述的方法,其特征在于,所述第一偏移量标识和所述第二偏移量标识为所述索引值。
  16. 如权利要求1所述的方法,其特征在于,所述确定跳频次数,包括:
    获取所述基站发送的第三RMSI,并从所述第三RMSI之中获取所述跳频次数配置表;
    获取所述基站发送的所述RAR信令或DCI信令,并从所述RAR信令或DCI信令之中获取所述第二跳频次数标识;
    根据所述第二跳频次数标识查询所述跳频次数配置表以确定所述跳频次数。
  17. 如权利要求1所述的方法,其特征在于,所述确定跳频时域粒度,包括:
    获取所述基站发送的第四RMSI,并从所述第四RMSI之中获取所述跳频时域粒度配置表;
    获取所述基站发送的所述RAR信令或DCI信令,并从所述RAR信令或DCI信令之中获取所述第二跳频时域粒度标识;
    根据所述第二跳频时域粒度标识查询所述跳频时域粒度配置表以确定所述跳频时域粒度。
  18. 如权利要求1所述的方法,其特征在于,所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的一个或多个,由以下消息指示:
    Message2的调度信息、Message2、Message3的重传调度信息之中的一种或多种。
  19. 如权利要求1所述的方法,其特征在于,还包括:
    确定跳频方式,其中,根据所述跳频偏移值、所述跳频次数、所述跳频时域粒度和所述跳频方式进行跳频。
  20. 如权利要求18所述的方法,其特征在于,还包括:确定跳频方式,
    获取重复传输内容;
    根据所述重复传输内容确定对应的所述跳频方式。
  21. 如权利要求18所述的方法,其特征在于,所述跳频方式由所述RMSI指示,或者由Message2的调度信息、Message2、Message3的重传调度信息之中的一种或多种指示。
  22. 一种跳频的控制方法,其特征在于,应用于基站,所述方法包括:
    向UE发送指示信息,用于指示所述UE确定跳频偏移值、跳频次数和跳频时域粒度之中的一个或多个。
  23. 如权利要求22所述的方法,其特征在于,所述向UE发送指示信息,包括:
    向所述UE发送RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括第一偏移量标识。
  24. 如权利要求23所述的方法,其特征在于,所述RAR信令的UL Grant之中携带所述第一偏移量标识。
  25. 如权利要求23所述的方法,其特征在于,通过所述第一偏移标识查询跳频偏移值配置表确定跳频偏移值,其中,所述跳频偏移值配置表通过协议规定。
  26. 如权利要求22所述的方法,其特征在于,所述向UE发送指示信息,包括:
    向所述UE发送所述RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括第一跳频次数标识。
  27. 如权利要求22所述的方法,其特征在于,所述向向UE发送指示信息,包括:
    向所述UE发送所述RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括第一跳频时域粒度标识。
  28. 如权利要求22所述的方法,其特征在于,所述向UE发送指示信息,包括:
    向所述UE发送第一RMSI,其中,所述第一RMSI之中包括所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的一个或多个。
  29. 如权利要求22所述的方法,其特征在于,所述向UE发送指示信息,包 括:
    向所述UE发送第二RMSI,其中,所述第二RMSI包括所述跳频偏移值配置表;
    向所述UE发送所述RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括第二偏移量标识。
  30. 如权利要求25或29所述的方法,其特征在于,所述跳频偏移值配置表为多个,每个所述跳频偏移值配置表对应一个跳频次数。
  31. 如权利要求30所述的方法,其特征在于,还包括:
    根据所述跳频次数确定对应的跳频偏移值配置表。
  32. 如权利要求25或29所述的方法,其特征在于,所述跳频偏移值配置表为一个,所述跳频偏移值配置表之中的每个跳频次数对应一个索引值。
  33. 如权利要求32所述的方法,其特征在于,所述第一偏移量标识和所述第二偏移量标识为所述索引值。
  34. 如权利要求22所述的方法,其特征在于,向所述UE发送指示信息,包括:
    向所述UE发送第三RMSI,其中,所述第三RMSI之中包括所述跳频次数配置表;
    向所述UE发送所述RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括所述第二跳频次数标识。
  35. 如权利要求22所述的方法,其特征在于,向所述UE发送指示信息,包 括:
    向所述UE发送第四RMSI,其中,所述第四RMSI包括跳频时域粒度配置表;
    向所述UE发送所述RAR信令或DCI信令,其中,所述RAR信令或DCI信令之中包括第二跳频时域粒度标识。
  36. 一种跳频的控制方法,其特征在于,应用于基站,所述方法包括:
    确定UE所对应的跳频偏移值、跳频次数和跳频时域粒度;以及
    根据所述UE所对应的所述跳频偏移值、所述跳频次数和所述跳频时域粒度为所述UE提供跳频服务。
  37. 如权利要求36所述的方法,其特征在于,所述跳频偏移值、所述跳频次数和所述跳频时域粒度之中的至少一个由协议规定。
  38. 如权利要求36所述的方法,其特征在于,所述确定所述UE所对应的所述跳频次数,包括:
    获取所述UE所对应的重复传输次数;
    根据所述重复传输次数和所述跳频时域粒度生成所述跳频次数。
  39. 如权利要求36所述的方法,其特征在于,还包括:
    获取所述UE所对应的所述跳频次数;
    根据所述跳频次数确定所述UE对应的跳频偏移值配置表;
    根据所述跳频偏移值配置表确定所述UE对应的所述跳频偏移值。
  40. 如权利要求36所述的方法,其特征在于,还包括:
    确定所述UE对应的跳频方式,其中,根据所述UE对应的所述跳频偏移值、所述跳频次数、所述跳频时域粒度和所述跳频方式为所述UE提供跳频服务。
  41. 如权利要求40所述的方法,其特征在于,所述确定所述UE对应的跳频方式,包括:
    获取所述UE对应的重复传输内容;
    根据所述重复传输内容确定对应的所述跳频方式。
  42. 一种跳频的控制装置,其特征在于,应用于用户设备UE,所述装置包括:
    第一确定模块,被配置为确定跳频偏移值、跳频次数和跳频时域粒度;以及
    第一处理模块,被配置为根据所述跳频偏移值、所述跳频次数和所述跳频时域粒度进行跳频。
  43. 一种跳频的控制装置,其特征在于,应用于基站,所述装置包括:
    第一发送模块,被配置为向UE发送指示信息,用于指示所述UE确定跳频偏移值、跳频次数和跳频时域粒度之中的一个或多个。
  44. 一种跳频的控制装置,其特征在于,应用于基站,所述装置包括:
    第二确定模块,被配置为确定UE所对应的跳频偏移值、跳频次数和跳频时域粒度;以及
    第一提供模块,被配置为根据所述UE所对应的所述跳频偏移值、所述跳频次数和所述跳频时域粒度为所述UE提供跳频服务。
  45. 一种通信设备,其中,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现权利要求1至21或22至35或 36至41任一项所述的方法。
  46. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现权利要求1至21或22至35或36至41任一项所述的方法。
PCT/CN2021/072285 2021-01-15 2021-01-15 一种跳频的控制方法及装置 WO2022151406A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/072285 WO2022151406A1 (zh) 2021-01-15 2021-01-15 一种跳频的控制方法及装置
CN202180000177.XA CN115088226B (zh) 2021-01-15 2021-01-15 一种跳频的控制方法及装置
EP21918610.3A EP4280509A4 (en) 2021-01-15 2021-01-15 FREQUENCY SKIP CONTROL METHOD AND APPARATUS
US18/272,538 US20240072950A1 (en) 2021-01-15 2021-01-15 Method for controlling frequency hopping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072285 WO2022151406A1 (zh) 2021-01-15 2021-01-15 一种跳频的控制方法及装置

Publications (1)

Publication Number Publication Date
WO2022151406A1 true WO2022151406A1 (zh) 2022-07-21

Family

ID=82446886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072285 WO2022151406A1 (zh) 2021-01-15 2021-01-15 一种跳频的控制方法及装置

Country Status (4)

Country Link
US (1) US20240072950A1 (zh)
EP (1) EP4280509A4 (zh)
CN (1) CN115088226B (zh)
WO (1) WO2022151406A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11863472B2 (en) 2020-07-31 2024-01-02 Wilus Institute Of Standards And Technology Inc. Method for transmitting uplink channel in wireless communication system, and device therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600211A (zh) * 2017-09-30 2019-04-09 中兴通讯股份有限公司 随机接入前导的跳频处理方法和装置、及终端和存储介质
CN111756511A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种确定跳频频率的方法、设备及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111756477B (zh) * 2019-03-29 2023-06-20 华为技术有限公司 一种信息指示方法及通信装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600211A (zh) * 2017-09-30 2019-04-09 中兴通讯股份有限公司 随机接入前导的跳频处理方法和装置、及终端和存储介质
CN111756511A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种确定跳频频率的方法、设备及系统

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for control (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.213, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. V16.4.0, 8 January 2021 (2021-01-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 181, XP051999687 *
APPLE INC.: "On potential techniques for PUSCH coverage enhancement", 3GPP DRAFT; R1-2006531, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051918097 *
HUAWEI, HISILICON: "Potential solutions for PUSCH coverage enhancement", 3GPP DRAFT; R1-2007583, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20201026 - 20201113, 17 October 2020 (2020-10-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051939800 *
See also references of EP4280509A4 *
ZTE CORPORATION: "Discussion on potential techniques for PUSCH", 3GPP DRAFT; R1-2007743, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 17 October 2020 (2020-10-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051939883 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11863472B2 (en) 2020-07-31 2024-01-02 Wilus Institute Of Standards And Technology Inc. Method for transmitting uplink channel in wireless communication system, and device therefor

Also Published As

Publication number Publication date
US20240072950A1 (en) 2024-02-29
EP4280509A1 (en) 2023-11-22
CN115088226B (zh) 2024-03-12
EP4280509A4 (en) 2024-03-13
CN115088226A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
TWI705727B (zh) 用於隨機存取進程的頻寬部分選擇的使用者設備及方法
TWI751281B (zh) 無線通信方法和設備
WO2018210243A1 (zh) 一种通信方法和装置
EP3965341A1 (en) Rate matching method, device and storage medium
WO2022126318A1 (zh) 直连通信方法、装置、通信设备和存储介质
US20190215120A1 (en) Pilot signal transmission method and device
WO2019028773A1 (zh) 无线通信的方法、网络设备和终端设备
TWI746800B (zh) 無線通信方法和設備
WO2022151406A1 (zh) 一种跳频的控制方法及装置
WO2022104797A1 (zh) 一种传输方法及装置
WO2019028914A1 (zh) 一种系统消息的指示方法、装置及系统
WO2022178779A1 (zh) 波束指示方法及装置
WO2022147675A1 (zh) 上行天线面板的确定方法、装置及通信设备
WO2022151453A1 (zh) 跳频控制方法及装置
WO2022147657A1 (zh) 一种天线切换配置的切换方法及设备
US20200008178A1 (en) Wireless Communication Method and Device
WO2022104735A1 (zh) 波束指示方法、装置及通信设备
JP2023522532A (ja) 初期アクセス信号またはチャネルを伝送する方法、デバイス、およびシステム
US20240187151A1 (en) Frequency hopping control method and apparatus
WO2022151228A1 (zh) 一种pucch资源指示方法以及装置
WO2022109934A1 (zh) 一种信号传输方法及装置
WO2022134061A1 (zh) 调度信息发送方法、调度信息接收方法及装置
WO2022141525A1 (zh) 解调参考信号dmrs配置方法、装置、设备及其存储介质
WO2022147733A1 (zh) 非连续接收方法及装置
CN112703701B (zh) 解调参考信号映射、装置、设备及其存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918610

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18272538

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021918610

Country of ref document: EP

Effective date: 20230816