WO2022149357A1 - ジアルキルカーボネート類とジオール類を工業的に製造する方法 - Google Patents

ジアルキルカーボネート類とジオール類を工業的に製造する方法 Download PDF

Info

Publication number
WO2022149357A1
WO2022149357A1 PCT/JP2021/042494 JP2021042494W WO2022149357A1 WO 2022149357 A1 WO2022149357 A1 WO 2022149357A1 JP 2021042494 W JP2021042494 W JP 2021042494W WO 2022149357 A1 WO2022149357 A1 WO 2022149357A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
area
ratio
hour
distillation column
Prior art date
Application number
PCT/JP2021/042494
Other languages
English (en)
French (fr)
Inventor
広宣 山内
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to US18/271,084 priority Critical patent/US20240051911A1/en
Priority to CN202180073206.5A priority patent/CN116367901A/zh
Priority to EP21917582.5A priority patent/EP4275776A4/en
Priority to KR1020237018375A priority patent/KR20230098307A/ko
Priority to JP2022573935A priority patent/JP7451771B2/ja
Priority to CA3202747A priority patent/CA3202747A1/en
Publication of WO2022149357A1 publication Critical patent/WO2022149357A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/16Fractionating columns in which vapour bubbles through liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/16Fractionating columns in which vapour bubbles through liquid
    • B01D3/22Fractionating columns in which vapour bubbles through liquid with horizontal sieve plates or grids; Construction of sieve plates or grids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/36Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • C07C31/202Ethylene glycol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • C07C68/065Preparation of esters of carbonic or haloformic acids from organic carbonates from alkylene carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/08Purification; Separation; Stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a method for industrially producing dialkyl carbonates and diols.
  • a method for industrially producing dialkyl carbonates and diols for example, in Patent Document 1, a cyclic carbonate and an aliphatic monohydric alcohol are used as raw materials, and the raw materials are used in a continuous multi-stage distillation column in which a homogeneous catalyst is present.
  • a reactive distillation method in which the reaction and distillation are carried out simultaneously in the column, a large amount of dialkyl carbonate and diols are industrially produced (for example, 2 tons or more of dialkyl carbonate per hour and 1 diol).
  • a method and an apparatus have been proposed in which they can be stably produced in high yield for a long period of time (for example, 5000 hours or more) with high selectivity and high productivity when producing to 1.3 tons or more per hour). ..
  • Patent Document 1 may not have sufficient productivity of dialkyl carbonates and diols with respect to the scale of the apparatus.
  • the problem to be solved by the present invention is to use cyclic carbonate and an aliphatic monohydric alcohol as raw materials, and continuously supply the raw materials into a continuous multi-stage distillation column in which a homogeneous catalyst is present, in the column.
  • Stable and higher productivity for example, 4.5 tons or more of dialkyl carbonate per hour, diol
  • Specific that can stably produce a class for a long period of time for example, 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more
  • high selectivity and high yield 2.7 tons or more per hour. Is to provide a good method.
  • the present inventor has set the length and inner diameter of the tower and the active area ratio and the open area ratio of each stage tray in the tower within a specific range.
  • stable and higher productivity for example, the target value described in Patent Document 1 (dialkyl carbonate is 2 per hour)).
  • More than tons 1.3 times or more of diols (1.3 tons or more per hour) (that is, dialkyl carbonates of 4.5 tons or more per hour, diols of 2.7 tons or more per hour)) It has been found that stable production can be performed for a long period of time (for example, 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more) with high selectivity and high yield, and the present invention has been reached.
  • the present invention is as follows.
  • Cyclic carbonate and aliphatic monohydric alcohol are used as raw materials, and this raw material is continuously supplied into a continuous multi-stage distillation column in which a homogeneous catalyst is present, and the reaction and distillation are simultaneously performed in the column to generate a dialkyl carbonate.
  • the dialkyl carbonate and the diols are continuously extracted from the lower part of the column by a reactive distillation method in which the low boiling point reaction mixture containing the above is continuously extracted from the upper part of the column in a gaseous state and the high boiling point reaction mixture containing the diols is continuously extracted from the lower part of the column in a liquid state.
  • the continuous multi-stage distillation column has a cylindrical body having a length L (cm) and an inner diameter D (cm), and has a structure having an internal inside, and the internals are plural. It is a shelf-stage column type distillation column that is a tray with holes, and has a gas outlet at the top of the column or near it, a liquid outlet at the bottom of the column or at the bottom of the tower near it, and below the gas outlet. It has one or more first inlets at the top and / or middle of the tower and one or more second inlets above and / or below the drain. , (1) The length L (cm) of the tower satisfies the formula (1).
  • the inner diameter D (cm) of the tower satisfies the formula (2). 120 ⁇ D ⁇ 3,000 formula (2)
  • the internal consists of three types of trays, upper, middle and lower.
  • the cyclic carbonate as a raw material is continuously introduced into the continuous multi-stage distillation column from one or more of the first introduction ports, and the upper stage is among one or more of the first introduction ports.
  • the ratio of the number of trays in the upper stage is 1 to 10% of the total number of stages.
  • the aliphatic monohydric alcohol as a raw material is continuously introduced into the continuous multi-stage distillation column from one or more of the second introduction ports, and the middle stage is one or more of the second introduction.
  • the open area area is the total area of all the holes in the active area, and the active area area is synonymous with the formula (i).)
  • the ratio of the active area calculated by the above formula (i) is 40 to 80%
  • the ratio of the open area calculated by the above formula (ii) is each of the lower stages. It is 1.0 times or more of the ratio of the open area calculated by the above formula (ii) in the tray.
  • the homogeneous catalyst is composed of a mixture of an alkali metal and ethylene glycol, and the mass ratio of the alkali metal to ethylene glycol (alkali metal / ethylene glycol) in the homogeneous catalyst is 0.05 to 0.5.
  • the catalyst concentration (converted to alkali metal concentration) is 0.05 to 2.0% by mass with respect to the cyclic carbonate supplied to the distillation column.
  • the gas flow rate is 5,000 to 45,000 kg / hour
  • the liquid flow rate is 1,000 to 15,000 kg / hour
  • the liquid flow rate is 1,000 to 15,000 kg / hour.
  • the gas flow rate is 5,000 to 30,000 kg / hour
  • the liquid flow rate is 1,000 to 15,000 kg / hour
  • the liquid flow rate is 1,000 to 15,000 kg / hour.
  • the liquid flow rate is 1,000 to 15,000 kg / hour.
  • the gas flow rate is 5,000 to 20,000 kg / hour
  • the liquid flow rate is 1,000 to 30,000 kg / hour.
  • the internal consists of three types of trays, upper, middle and lower.
  • the cyclic carbonate as a raw material is continuously introduced into the continuous multi-stage distillation column from one or more of the first inlets, and the upper one is the most of the one or more first inlets. It is the stage above the introduction port in the upper stage, and the ratio of the number of trays in the upper stage is 1 to 10% of the total number of stages.
  • the aliphatic monohydric alcohol as a raw material is continuously introduced into the continuous multi-stage distillation column from one or more of the second inlets, and the middle stage is of one or more of the second inlets.
  • the ratio of the number of trays in the middle stage is 40 to 40 out of the total number of stages.
  • the lower stage is a stage lower than the uppermost stage of the second introduction port of the one or more, and the ratio of the number of trays in the lower stage is 45 to 55% of the total number of stages.
  • the open area area is the total area of all the holes in the active area, and the active area area is synonymous with the formula (i).)
  • the ratio of the active area calculated by the above formula (i) is 40 to 80%
  • the ratio of the open area calculated by the above formula (ii) is each of the lower stages. It is 1.0 times or more the ratio of the open area calculated by the above formula (ii) in the tray. Continuous multi-stage distillation column.
  • the present embodiment will be described in more detail, but the present invention is not limited to this, and various embodiments are made without departing from the gist thereof. It can be transformed.
  • the cyclic carbonate and the aliphatic monohydric alcohol are used as raw materials, and the raw materials are continuously used in a continuous multi-stage distillation column in which a uniform catalyst is present.
  • the low boiling point reaction mixture containing the dialkyl carbonate produced is continuously extracted from the upper part of the column in a gaseous state, and the high boiling point reaction mixture containing diols is liquid from the lower part of the column.
  • the continuous multi-stage distillation column has a cylindrical body having a length L (cm) and an inner diameter D (cm), and has a structure having an internal inside, and the internals are plural. It is a shelf-stage column type distillation column that is a tray with holes, and has a gas outlet at the top of the column or near it, a liquid outlet at the bottom of the column or at the bottom of the tower near it, and below the gas outlet. It has one or more first inlets at the top and / or middle of the tower and one or more second inlets above and / or below the drain.
  • the length L (cm) of the tower satisfies the formula (1). 1,500 ⁇ L ⁇ 12,000 formula (1)
  • the inner diameter D (cm) of the tower satisfies the formula (2). 120 ⁇ D ⁇ 3,000 formula (2)
  • the internal consists of three types of trays, upper, middle and lower.
  • the cyclic carbonate as a raw material is continuously introduced into the continuous multi-stage distillation column from one or more of the first introduction ports, and the upper stage is among one or more of the first introduction ports.
  • the ratio of the number of trays in the upper stage is 1 to 10% of the total number of stages.
  • the aliphatic monohydric alcohol as a raw material is continuously introduced into the continuous multi-stage distillation column from one or more of the second introduction ports, and the middle stage is one or more of the second introduction. It is a stage from the uppermost introduction port of the mouth to the uppermost introduction port of one or more of the first introduction ports, and the ratio of the number of trays in the middle stage is the total number of stages. 40-50%, (6)
  • the lower stage is a stage lower than the uppermost stage of the second introduction port of the one or more, and the ratio of the number of trays in the lower stage is 45 to 55% of the total number of stages.
  • Percentage of open area (%) open area area (cm 2 ) / active area area (cm 2 ) x 100 ... (ii) (In the formula (ii), the open area area is the total area of all the holes in the active area, and the active area area is synonymous with the formula (i).) (8) In each of the upper and middle trays, the ratio of the active area calculated by the above formula (i) is 40 to 80%, and the ratio of the open area calculated by the above formula (ii) is each of the lower stages. It is 1.0 times or more the ratio of the open area calculated by the above formula (ii) in the stage tray.
  • the homogeneous catalyst is composed of a mixture of an alkali metal and ethylene glycol, and is alkaline in the homogeneous catalyst.
  • the mass ratio of metal to ethylene glycol is 0.05 to 0.5
  • the catalyst concentration is 0.05 to 2 with respect to the cyclic carbonate supplied to the distillation column. It is 0.0% by mass.
  • the production method of the present embodiment is stable and has higher productivity (for example, 4.5 tons or more of dialkyl carbonate per hour) in industrially producing dialkyl carbonate and diols.
  • Diols can be produced stably for a long period of time (for example, 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more) with high selectivity and high yield (2.7 tons or more per hour). ..
  • the reaction used in the production method of the present embodiment is a reversible reaction represented by the following formula in which a dialkyl carbonate (C) and a diol (D) are produced from a cyclic carbonate (A) and an aliphatic monohydric alcohol (B). It is an equilibrium transesterification reaction.
  • R l represents a divalent group- (CH 2 ) m- (m is an integer of 2 to 6)), and one or more hydrogens thereof are substituted with an alkyl group or an aryl group having 1 to 10 carbon atoms.
  • R 2 represents a monovalent aliphatic group having 1 to 12 carbon atoms, and one or more hydrogens thereof may be substituted with an alkyl group or an aryl group having 1 to 10 carbon atoms. good.
  • the cyclic carbonate used as a raw material is a compound represented by (A) in the above formula.
  • the cyclic carbonate for example, alkylene carbonates such as ethylene carbonate and propylene carbonate, 1,3-dioxacyclohex-2-one, 1,3-dioxacyclohepta-2-one and the like are preferably used. Ethylene carbonate and propylene carbonate are more preferably used from the viewpoint of easy availability, and ethylene carbonate is particularly preferably used.
  • the other raw material, the aliphatic monohydric alcohol is a compound represented by (B) in the above formula.
  • the aliphatic monohydric alcohols those having a boiling point lower than that of the diols produced are preferably used. Therefore, the aliphatic monohydric alcohols may vary depending on the type of cyclic carbonate used, but for example, methanol, ethanol, propanol (each isomer), allyl alcohol, butanol (each isomer), 3-butene-.
  • halogens lower alkoxy groups, cyano groups, alkoxycarbonyl groups, etc. It may be substituted with a substituent such as an allyloxycarbonyl group, an asyloxy group or a nitro group.
  • alcohols having 1 to 6 carbon atoms are preferably used, and methanol, ethanol, propanol (each isomer) and butanol (each isomer) are more preferable.
  • Alcohols having 1-4 carbon atoms When ethylene carbonate or propylene carbonate is used as the cyclic carbonate, methanol and ethanol are preferable, and methanol is particularly preferable.
  • the cyclic carbonate as a raw material is continuously introduced into the continuous multi-stage distillation column from one or more first inlets, and the aliphatic monohydric alcohol as a raw material is one. It is continuously introduced into the continuous multi-stage distillation column from the above second introduction port.
  • a homogeneous catalyst is present in the reaction distillation column. Any method may be used for the presence of the homogeneous catalyst, but it is preferable to continuously supply the catalyst in the reaction distillation column so that the catalyst is present in the liquid phase in the reaction distillation column.
  • the homogeneous catalyst When the homogeneous catalyst is continuously supplied into the reaction distillation column, it may be supplied at the same time as the cyclic carbonate and / or the aliphatic monohydric alcohol, or may be supplied at a position different from the raw material. Since the reaction actually proceeds in the distillation column in the region below the catalyst supply position, it is preferable to supply the catalyst to the region between the column top and the raw material supply position.
  • the number of stages in which the catalyst is present is preferably 5 or more, more preferably 7 or more, and even more preferably 10 or more.
  • the catalyst used in the production method of this embodiment is a compound composed of a mixture of an alkali metal and ethylene glycol. Further, in the homogeneous catalyst, the mass ratio of the alkali metal to ethylene glycol (alkali metal / ethylene glycol) is 0.05 to 0.5, preferably 0.1 to 0.4, and 0. It is more preferably 2 to 0.3. When the mass ratio of alkali metal to ethylene glycol (alkali metal / ethylene glycol) is in the above range, the formation of dialkyl carbonate and diols can be promoted and the formation of impurities can be suppressed.
  • the catalyst concentration (converted to alkali metal concentration) is 0.05 to 2.0% by mass with respect to the cyclic carbonate (for example, ethylene carbonate (EC)) supplied to the distillation column.
  • the alkali metal in the catalyst used in the production method of the present embodiment is not particularly limited, and examples thereof include lithium, potassium, sodium, and cesium, and potassium and sodium are preferable.
  • the amount of the catalyst used in the production method of the present embodiment (converted to alkali metal concentration) is expressed as a ratio to the mass of the cyclic carbonate as a feed material, and is usually 0.05 to 2.0% by mass, preferably 0. .1 to 1.0% by mass, more preferably 0.5 to 1.0% by mass.
  • the amount of the catalyst is equal to or more than the lower limit, the reaction and the yield are sufficient, and the production amount is improved. Further, when the amount of the catalyst is not more than the upper limit value, impurities (high boiling point components) are suppressed and the product purity is improved. In addition, it is possible to prevent a part of the catalyst from being extracted from the system together with impurities (high boiling point components), and the loss of the catalyst is reduced.
  • the cyclic carbonate is continuously supplied to the continuous multi-stage distillation column (for example, the number of stages n) which is the reaction distillation column in the production method of the present embodiment, it is preferable to supply the cyclic carbonate to a specific stage.
  • the cyclic carbonate as a raw material is one provided between the top of the continuous multi-stage distillation column and the (n / 3) stage from the top of the continuous multi-stage distillation column. It is preferable to continuously introduce into the continuous multi-stage distillation column from the above introduction port.
  • the steps above the cyclic carbonate inlet do not contain high boiling point compounds such as cyclic carbonates and diols in the column top component. In this sense, the number of steps above the cyclic carbonate inlet is preferably 3 or more, more preferably 4 to 10 steps, and even more preferably 5 to 8 steps.
  • the internal in the continuous multi-stage distillation column consists of three types of trays: upper, middle and lower.
  • the upper stage is the stage above the uppermost introduction port of the one or more first introduction ports
  • the middle stage is the uppermost stage of the one or more second introduction ports. It is a stage from the stage to the uppermost introduction port of one or more first introduction ports
  • the lower stage is lower than the stage of the uppermost introduction port of one or more second introduction ports. It is the stage of.
  • the total number of stages n of the upper stage, the middle stage, and the lower stage is preferably 10 to 100 stages, more preferably 30 to 100 stages, and further preferably 30 to 80 stages.
  • the ratio of the number of trays in the upper stage is 1 to 10%, preferably 3 to 10%, and more preferably 5 to 10% of the total number of trays. ..
  • the ratio of the number of trays in the middle stage is 40 to 50%, preferably 40 to 45%, and more preferably 40 to 43% of the total number of trays.
  • the ratio of the number of trays in the lower stage is 45 to 55%, preferably 48 to 55%, and more preferably 50 to 55% of the total number of trays.
  • the optimum reaction efficiency between the dialkyl carbonate and the diols can be achieved and the production amount can be sufficiently secured, and the optimum separation performance can be achieved to achieve the optimum separation performance between the dialkyl carbonate and the diols. It can be secured sufficiently.
  • the preferred cyclic carbonate used in this embodiment is, for example, a halogen-free cyclic carbonate produced by reacting carbon dioxide with an alkylene oxide such as ethylene oxide, propylene oxide, or styrene oxide. Therefore, a cyclic carbonate containing a small amount of these raw material compounds and diols can also be used as the raw material of the present embodiment.
  • the cyclic carbonate may be derived from biomass. For example, a cyclic carbonate obtained from bioethanol as a raw material can be mentioned.
  • the aliphatic monohydric alcohol as a raw material may be a high-purity aliphatic monohydric alcohol or an aliphatic monohydric alcohol containing other compounds.
  • an aliphatic monohydric alcohol containing 1 to 15% by mass of a dialkyl carbonate with respect to the total mass of the aliphatic monohydric alcohol and the dialkyl carbonate is preferably used.
  • An aliphatic monohydric alcohol containing 1.5 to 12% by mass of carbonate is more preferably used, and more preferably an aliphatic monohydric alcohol containing 2 to 10% by mass of dialkyl carbonate is used.
  • the cyclic carbonate and / or fat recovered in this step and / or other steps are not particularly limited, and examples thereof include a step of producing a diallyl carbonate from a dialkyl carbonate and an aromatic monohydroxy compound. In this step, aliphatic monohydric alcohol is by-produced and recovered.
  • the recovered by-product aliphatic monohydric alcohol usually contains dialkyl carbonate, but when the content thereof is within the above range, the excellent effect of the production method of the present embodiment is further exhibited. be able to. Further, the recovered by-product aliphatic monohydric alcohol may contain an aromatic monohydroxy compound, an alkylaryl ether, a small amount of an alkylaryl carbonate, a diarylcarbonate and the like. In the production method of the present embodiment, the by-product aliphatic monohydric alcohol can be used as it is as a raw material, or the raw material is obtained after reducing the amount of a substance having a boiling point higher than that of the aliphatic monohydric alcohol by distillation or the like. It can also be.
  • the aliphatic monohydric alcohol as a raw material is from the top of the continuous multi-stage distillation column (n / 3) to the bottom, and from the top of the continuous multi-stage distillation column (n / 3). It is preferable that the distillation column is continuously introduced into the continuous multi-stage distillation column from one or more introduction ports provided between the 2n / 3) stages.
  • the introduction port thereof is set to a specific stage, so that the production method of the present embodiment is excellent.
  • the effect can be further exhibited.
  • the aliphatic monohydric alcohol is from the top of the continuous multi-stage distillation column to the bottom (2n / 5) and from the top of the continuous multi-stage distillation column to the (3n / 5) stage. This is the case where the distillation column is continuously introduced into the continuous multi-stage distillation column from one or more inlets provided in.
  • the raw material is continuously supplied to the distillation column as a liquid, a gaseous, or a mixture of a liquid and a gas.
  • cyclic carbonate is continuously supplied to the distillation column in a liquid or gas-liquid mixed state in a stage above the stage where the catalyst is present, and one or more inlets installed in the above stage of the distillation column.
  • a method of continuously supplying the aliphatic monohydric alcohol in the form of a gas and / or a liquid is also a preferable method. Then, it is preferable that these raw materials are brought into contact with the catalyst in a region of at least 5 stages or more, preferably 7 stages or more, more preferably 10 stages or more of the distillation column.
  • the amount ratio of the cyclic carbonate supplied to the reaction distillation column to the aliphatic monohydric alcohol varies depending on the type and amount of the transesterification catalyst and the reaction conditions, but is preferably supplied.
  • the aliphatic monohydric alcohol can be supplied in the range of 0.01 to 1,000 times the molar ratio with respect to the cyclic carbonate.
  • the molar ratio of the aliphatic monohydric alcohol to the cyclic carbonate is preferably 2 to 20, more preferably 3 to 15, and even more preferably 5 to 12. If a large amount of unreacted cyclic carbonate remains, it reacts with diols as products to produce multimers such as dimers and trimers by-produced. Therefore, when it is carried out industrially, it is unreacted. It is preferable to reduce the residual amount of cyclic carbonate as much as possible. In the production method of the present embodiment, even if the molar ratio is 10 or less, the reaction rate of the cyclic carbonate can be 98% or more, preferably 99% or more, more preferably 99.9% or more. .. This is also one of the features of the manufacturing method of this embodiment.
  • dialkyl carbonate preferably 4.5 tons or more of dialkyl carbonate can be continuously produced per hour, but the minimum amount of cyclic carbonate continuously supplied for that purpose is produced.
  • amount of dialkyl carbonate to be (p ton / hour) it is usually 2.0 p ton / hour, preferably 1.5 p ton / hour, more preferably 1.3 p ton / hour. If more preferred, it can be less than 1.0 pton / hour.
  • FIG. 1 is a schematic view showing an example of a continuous multi-stage distillation column used in the production method according to the present embodiment.
  • the continuous multi-stage distillation column 10 used in the manufacturing method of the present embodiment has end plate portions 5 above and below a cylindrical body portion 7 having a length L (cm) and an inner diameter D (cm), and is inside. It has a structure having an internal having the number of stages n, and the internal is a shelf-stage column distillation column in which the internal is a tray having a plurality of holes, and the inner diameter d 1 is located at the column section or the upper part of the column near the column.
  • (Cm) gas outlet 1 liquid outlet 2 with an inner diameter d 2 (cm) at the bottom of the column or the lower part of the column near it, and below the gas outlet 1 from above the continuous multi-stage distillation column.
  • One or more introduction ports 1st introduction port 3 (a, e) provided between the top of the continuous multi-stage distillation column and the (n / 3) stage, which are the third stage or lower, and the said.
  • Above the liquid outlet 2 from the top of the continuous multi-stage distillation tower to the bottom (n / 3), and from the top of the continuous multi-stage distillation tower to the (2n / 3) stage.
  • FIG. 1 is an embodiment of the continuous multi-stage distillation column used in the production method according to the present embodiment, the arrangement of the shelf stages is not limited to the configuration shown in FIG.
  • the continuous multi-stage distillation column according to the present embodiment is not only a condition from a simple distillation function but also a combination of conditions necessary for stably advancing the reaction with a high reaction rate and a high selectivity.
  • the continuous multi-stage distillation column of the present embodiment is a continuous multi-stage distillation column for performing transesterification reaction and distillation between a cyclic carbonate and an aliphatic monohydric alcohol.
  • the internal consists of three types of trays, upper, middle and lower.
  • the cyclic carbonate as a raw material is continuously introduced into the continuous multi-stage distillation column from one or more of the first inlets, and the upper one is the most of the one or more first inlets. It is the stage above the introduction port in the upper stage, and the ratio of the number of trays in the upper stage is 1 to 10% of the total number of stages.
  • the aliphatic monohydric alcohol as a raw material is continuously introduced into the continuous multi-stage distillation column from one or more of the second inlets, and the middle stage is of one or more of the second inlets.
  • the ratio of the number of trays in the middle stage is 40 to 40 out of the total number of stages.
  • the lower stage is a stage lower than the uppermost stage of the second introduction port of the one or more, and the ratio of the number of trays in the lower stage is 45 to 55% of the total number of stages.
  • the open area area is the total area of all the holes in the active area, and the active area area is synonymous with the formula (i).)
  • the ratio of the active area calculated by the above formula (i) is 40 to 80%
  • the ratio of the open area calculated by the above formula (ii) is each of the lower stages. It is 1.0 times or more the ratio of the open area calculated by the above formula (ii) in the tray.
  • the gas flow rate is preferably 5,000 to 45,000 kg / hour
  • the liquid flow rate is preferably 1,000 to 15,000 kg / hour in the upper stage.
  • the gas flow rate is preferably 5,000 to 30,000 kg / hour
  • the liquid flow rate is preferably 1,000 to 15,000 kg / hour in the middle stage.
  • the gas flow rate is preferably 5,000 to 20,000 kg / hour
  • the liquid flow rate is preferably 1,000 to 30,000 kg / hour in the lower stage.
  • the amount of dialkyl carbonate produced is 4.5 tons or more per hour.
  • the amount of diols produced is 2.5 tons or more per hour.
  • tower section or the upper part of the tower near the tower used in the present embodiment means a portion up to about 0.25 L downward from the tower section, and the term “bottom of the tower or the lower part of the tower close to it". Means the portion up to about 0.25 L from the bottom of the tower. Further, "L” is as defined above.
  • the production method of the present embodiment is a reaction distillation method in which not only simple distillation but also reaction is performed at the same time, and a high reaction rate and a high selectivity (high yield) are achieved.
  • a reaction distillation method in which not only simple distillation but also reaction is performed at the same time, and a high reaction rate and a high selectivity (high yield) are achieved.
  • the preferred range of each factor is shown below.
  • L (cm) When L (cm) is 1,500 or more, the reaction rate is improved and the target production amount can be achieved. When L (cm) is 12,000 or less, the target production amount can be achieved. It is possible to reduce the equipment cost while ensuring the above.
  • the preferred range of L (cm) is 2,000 ⁇ L ⁇ 10,000, more preferably 2,200 ⁇ L ⁇ 15,000, and even more preferably 2,500 ⁇ L ⁇ 5,000. Is.
  • D (cm) when D (cm) is 120 or more, the target production amount can be achieved, and when D (cm) is 3,000 or less, the equipment cost can be reduced while achieving the target production amount. can.
  • the preferred range of D (cm) is 150 ⁇ D ⁇ 2,000, more preferably 180 ⁇ D ⁇ 1,200, and even more preferably 210 ⁇ D ⁇ 800.
  • the continuous multi-stage distillation column used in the present embodiment is preferably a shelf-stage distillation column having n stages of trays having a plurality of holes as internals.
  • the internal in the present embodiment means a portion of the distillation column where gas and liquid are actually contacted.
  • Examples of such trays include foam trays, perforated plate trays, ripple trays, ballast trays, valve trays, countercurrent trays, uniflux trays, super flak trays, max flak trays, dual flow trays, grid plate trays, and turbo trays.
  • High performance trays such as grid plate trays, kittel trays, and UFM (manufactured by Sulzer) are preferable.
  • a distillation column filled with a filler that is, a tray portion. It is also preferable to use a multi-stage distillation column having both the and the filled portion of the filler.
  • Such fillings include, for example, irregular fillings such as Raschig rings, lessing rings, pole rings, bell rusdles, interlocks saddles, Dixon packings, McMahon packings, heli packs, mela packs, gem packs, techno packs, flexi packs, sulzers. Regular fillings such as packing, good roll packing, glitch grid, etc. are preferred.
  • number of stages n in the present embodiment means the number of trays in the case of trays, and means the theoretical number of stages in the case of fillings. Therefore, in the case of a multi-stage distillation column having both a tray portion and a filled portion of a filling, the number of stages n is the total number of trays and the number of theoretical plates.
  • the tray is a perforated plate portion (tray deck).
  • a perforated plate tray having a portion) and a portion of the downside is particularly preferable in terms of function and equipment cost.
  • the perforated plate tray has 100 to 1,000 holes per 1 m 2 of the perforated plate portion.
  • a more preferable number of holes is 120 to 900 per 1 m 2 of the perforated plate portion, and even more preferably 150 to 800.
  • the cross-sectional area per hole of the perforated plate tray is preferably 0.5 to 5 cm 2 .
  • the cross-sectional area per hole is more preferably 0.7 to 4 cm 2 , and even more preferably 0.9 to 3 cm 2 . Further, when the perforated plate tray has 100 to 1,000 holes per 1 m 2 of the perforated plate portion and the cross-sectional area per hole is 0.5 to 5 cm 2 . , Especially preferred. Further, the number of holes in the perforated plate portion may be the same or different in all the perforated plates as long as the above requirements (7) and (8) are satisfied.
  • FIG. 2 shows a conceptual diagram of an example of the structure of the tray in the continuous multi-stage distillation column used in the present embodiment.
  • the tray in the distillation column has a downcomer portion 11 and a tray deck portion 13, and a hole 14 in the tray deck portion 13 (in FIG. 2, the portion indicated by a small circle indicates each hole).
  • a section (the range from the boundary 15 of the smallest area including all holes to 4 inches further outward) is the active area 12.
  • the liquid and the steam actually come into contact with each other, and in the downcomer portion 13, the liquid foamed on the tray deck portion 13 is divided into the liquid and the steam, and only the liquid is below. Send to the stage.
  • the ratio of the active area in each tray used in this embodiment is calculated by the following formula (i).
  • the active area area is the area of the tray deck portion having holes (the range from the boundary of the smallest area including all holes to 4 inches outward), and the tray area. Is the area of the tray deck portion, which includes the active area area and does not include the downcomer portion.)
  • the ratio of the open area in each tray used in this embodiment is calculated by the following formula (ii).
  • the ratio (%) of the active area calculated by the above formula (i) is 40 to 80%, preferably 40 to 70%. , More preferably 45 to 65%, and particularly preferably 45 to 55%. Further, in each of the lower trays used in the present embodiment, the ratio (%) of the active area calculated by the above formula (i) is 40 to 80%, preferably 40 to 70%, and further. It is preferably 45 to 65%, and particularly preferably 45 to 55%. Further, in each of the lower trays used in the present embodiment, the ratio (%) of the open area calculated by the above formula (ii) is 1.0 to 5.0%, preferably 1.0 to 5.0%. It is 4.0%, more preferably 2.0 to 3.5%.
  • the ratio (%) of the open area calculated by the above formula (ii) is the open calculated by the above formula (ii) in each of the lower trays.
  • the ratio of the area is 1.0 times or more, preferably 1.0 to 6.0 times, more preferably 1.0 to 3.0 times, still more preferably 1.0 to 1.5 times. be.
  • the ratio of the active area and the open area By setting the ratio of the active area and the open area to the above lower limit or more in each of the upper, middle and lower trays, the differential pressure in the column is reduced, the processing capacity is improved, and the reaction proceeds sufficiently. Yield is improved and production is improved. Further, by setting the ratio of the active area and the open area to the above upper limit or less in each of the upper, middle and lower trays, the separation of the reaction product becomes sufficient, the product purity is improved, and the reaction is sufficiently sufficient. It progresses, yields improve, and production increases.
  • the gas flow rate (kg / hour) is preferably 5,000 to 45,000 kg / hour, more preferably 10,000 to 25,000 kg / hour, and further preferably. Is 15,000 to 25,000 kg / hour.
  • the gas flow rate (kg / hour) is preferably 5,000 to 30,000 kg / hour, more preferably 10,000 to 25,000 kg / hour, and further preferably. Is 10,000 to 20,000 kg / hour.
  • the gas flow rate (kg / hour) is preferably 5,000 to 20,000 kg / hour, more preferably 5,000 to 10,000 kg / hour.
  • the liquid flow rate (kg / hour) is preferably 1,000 to 15,000 kg / hour, more preferably 3,000 to 10,000 kg / hour, and further preferably. Is 4,000 to 8,000 kg / hour.
  • the liquid flow rate (kg / hour) is preferably 1,000 to 15,000 kg / hour, more preferably 3,000 to 10,000 kg / hour, and even more preferably. Is 3,000 to 8,000 kg / hour.
  • the liquid flow rate (kg / hour) is preferably 1,000 to 30,000 kg / hour, more preferably 5,000 to 20,000 kg / hour, and further preferably. Is 5,000 to 15,000 kg / hour.
  • the subject of the present invention can be achieved more easily.
  • the cyclic carbonate as a raw material and the aliphatic monohydric alcohol are continuously supplied into a continuous multi-stage distillation column in which a catalyst is present, and the reaction and distillation are simultaneously performed in the column.
  • the low boiling point reaction mixture containing the dialkyl carbonate to be produced is continuously extracted from the upper part of the column in a gaseous state, and the high boiling point reaction mixture containing diols is continuously extracted from the lower part of the column in a liquid state. Nets and diols are continuously produced.
  • the reaction time of the ester exchange reaction carried out by the production method of the present embodiment is considered to correspond to the average residence time of the reaction solution in the continuous multi-stage distillation column, which is the internal shape of the distillation column, the number of stages, and the raw material. Although it varies depending on the supply amount, the type and amount of the catalyst, the reaction conditions, etc., it is preferably 0.1 to 20 hours, more preferably 0.5 to 15 hours, and further preferably 1 to 10 hours.
  • the reaction temperature of the transesterification reaction carried out by the production method of the present embodiment varies depending on the type of the raw material compound used and the type and amount of the catalyst, but is preferably 30 to 300 ° C. It is preferable to raise the reaction temperature in order to increase the reaction rate, but if the reaction temperature is high, side reactions are likely to occur. Therefore, the more preferable reaction temperature is in the range of 40 to 250 ° C., more preferably 50 to 200 ° C., and particularly preferably 60 to 150 ° C.
  • the reaction distillation may be carried out at a column bottom temperature of preferably 150 ° C. or lower, more preferably 130 ° C. or lower, still more preferably 110 ° C.
  • the reaction pressure of the transesterification reaction carried out by the production method of the present embodiment varies depending on the type and composition of the raw material compound used, the reaction temperature, etc., but may be reduced pressure, normal pressure, or pressure, and is preferable. Is 1 Pa to 2 ⁇ 10 7 Pa, more preferably 10 3 Pa to 10 7 Pa, and further preferably 10 4 to 5 ⁇ 10 6 Pa.
  • the material constituting the continuous multi-stage distillation column used in the present embodiment is not particularly limited, and examples thereof include metal materials such as carbon steel and stainless steel, and the quality of the dialkyl carbonate to be produced and the diols. Therefore, stainless steel is preferable.
  • Example 1 ⁇ Continuous multi-stage distillation column> As shown in FIG. 1, the length of the tower L: 3300 cm, the inner diameter of the tower D: 300 cm, L / D: 11, the number of stages n: 60, the ratio of the inner diameter D of the tower to the inner diameter d 1 of the gas outlet (D).
  • a continuous multi-stage distillation column (shelf-stage column type distillation column) having / d 1 ): 7.5 and a ratio of the inner diameter D of the column to the inner diameter d 2 of the liquid outlet (D / d 2 ): 12 was used.
  • the tray of this distillation column was a perforated plate tray having a plurality of holes, and the cross-sectional area per hole of the perforated plate portion was about 1.3 cm 2 .
  • the structure of the internal (tray) of this distillation column differs depending on the place where it is installed, and there are three types of tray structures: upper, middle and lower.
  • the upper stage was the upper stage from the introduction port of the cyclic carbonate (ethylene carbonate) (the introduction port (3-a) installed in the fifth stage from the top of the distillation column).
  • the number of trays in the upper stage was 5, which was 8.3% of the total number of 60 trays.
  • the ratio of the active area of each upper tray was 45%, and the ratio of the open area was 4.5%.
  • the middle stage is the stage of the introduction port (introduction port (3-a) installed in the fifth stage from the top of the distillation column) for cyclic carbonate (ethylene carbonate) and the stage below it, and is an aliphatic monovalent. It was the stage of the introduction port of alcohol (methanol) (the introduction port (3-b) and (3-c) installed at the 30th stage from the top of the distillation column) and the stage above it.
  • the number of trays in the middle stage was 24, which was 40% of the total number of 60 stages.
  • the ratio of the active area of each tray in the middle stage was 45%, and the ratio of the open area was 3.5%.
  • the lower stage is a stage below the introduction port (introduction port (3-b) and (3-c) installed at the 30th stage from the top of the distillation column) for the aliphatic monohydric alcohol (methanol). rice field.
  • the number of trays in the lower stage was 31, which was 51.7% of the total number of 60 trays.
  • the ratio of the active area of each lower tray was 45%, and the ratio of the open area was 3.0%.
  • the catalyst consisted of a mixture of alkali metal and ethylene glycol, and the mass ratio of alkali metal to ethylene glycol (alkali metal / ethylene glycol) in the catalyst was in the range of 0.2 to 0.3.
  • the catalyst is a homogeneous catalyst synthesized by adding 4.8 tons of ethylene glycol to 2.5 tons of alkali metal (potassium), heating to about 130 ° C., and heat-treating at about 1300 Pa for about 3 hours to make a homogeneous solution. there were.
  • This homogeneous catalyst solution was continuously introduced into the distillation column from the introduction port (3-e) provided at the 54th stage from the bottom of the distillation column (catalyst concentration (alkali metal concentration conversion): supplied ethylene carbonate. 1.0% by mass).
  • the reaction distillation was continuously carried out under the conditions that the temperature of the bottom of the column was 98 ° C., the pressure of the section of the column was about 1.118 ⁇ 105 Pa, and the reflux ratio was 0.52.
  • the gas flow rate was in the range of 19600 to 23000 kg / hour and the liquid flow rate was in the range of 6000 to 7700 kg / hour, and in the middle part of the tower, the gas flow rate was 9250 to 16000 kg / hour and the liquid.
  • the flow rate was in the range of 5800 to 6500 kg / hour, the gas flow rate was in the range of 5280 to 10000 kg / hour, and the liquid flow rate was in the range of 7980 to 14900 kg / hour in the lower part of the tower. Stable steady operation was achieved after 24 hours.
  • the low boiling point reaction mixture extracted in the form of gas from the gas outlet 1 of the column section was cooled by a heat exchanger to make it a liquid.
  • the proportion of dimethyl carbonate in the liquid low boiling point reaction mixture continuously withdrawn from the distillation column at 15.246 tonnes / hour was 5.283 tonnes / hour and the proportion of methanol was 8.429 tonnes / hour. rice field.
  • the proportion of ethylene glycol in the liquid continuously withdrawn from the liquid outlet 2 at the bottom of the tower at 4.883 tons / hour is 3.027 tons / hour, and the ratio of methanol is 1.303 tons / hour.
  • the proportion of unreacted ethylene carbonate was 7.6 kg / hour.
  • the real production amount of dimethyl carbonate excluding dimethyl carbonate contained in the raw material was 4.651 tons per hour, and the real amount of ethylene glycol excluding ethylene glycol contained in the catalyst solution was real per hour.
  • the production was 2.955 tons.
  • the reaction rate of ethylene carbonate was 99.7%, the selectivity of dimethyl carbonate was 99.99% or more, and the selectivity of ethylene glycol was 99.99% or more.
  • Long-term continuous operation was performed under these conditions. After 500 hours, 2000 hours, 4000 hours, 5000 hours, and 6000 hours of the continuous operation, the actual production amount of dimethyl carbonate per hour was 4.661 tons, 4.682 tons, and 4. 661 tons, 4.661 tons and 4.692 tons, and the actual production of ethylene glycol per hour was 2.982 tons, 2.955 tons, 2.9222 tons, 2.952 tons and 2.
  • the reaction rates of ethylene carbonate were 99.89%, 99.90%, 99.90%, 99.88% and 99.92%, respectively, and the selectivity of dimethyl carbonate was 99. 99% or more, 99.99% or more, 99.99% or more, 99.99% or more and 99.99% or more, and the selectivity of ethylene glycol is 99.99% or more, 99.99% or more, respectively. It was 99.99% or more, 99.99% or more, and 99.99% or more.
  • Example 2 ⁇ Continuous multi-stage distillation column> Using the same continuous multi-stage distillation column as in Example 1, the tray structure was changed as follows to perform reactive distillation. In each of the upper trays, the ratio of the active area was 60% and the ratio of the open area was 5.0%. Further, in each tray in the middle stage, the ratio of the active area was 60% and the ratio of the open area was 4.0%. Further, in each of the lower trays, the ratio of the active area was 45% and the ratio of the open area was 3.5%.
  • the reaction distillation was continuously carried out under the same conditions as in Example 1 except for the following conditions.
  • the catalyst was synthesized in the same manner as in Example 1 and continuously introduced into the distillation column from the introduction port (3-e) provided at the 54th stage from the bottom of the distillation column (catalyst concentration (alkaline metal concentration conversion)). : 0.5% by mass with respect to the supplied ethylene carbonate).
  • the reaction distillation was continuously carried out under the conditions that the temperature of the bottom of the column was 98 ° C., the pressure of the section of the column was about 1.118 ⁇ 105 Pa, and the reflux ratio was 0.6.
  • the gas flow rate was in the range of 21200 to 24500 kg / hour and the liquid flow rate was in the range of 4730 to 6250 kg / hour, and in the middle stage, the gas flow rate was 10040 to 19200 kg / hour and the liquid flow rate was 4630.
  • the gas flow rate was in the range of 6170 to 9490 kg / hour, and the liquid flow rate was in the range of 7200 to 14100 kg / hour in the lower stage. Stable steady operation was achieved after 24 hours.
  • the low boiling point reaction mixture extracted in the form of gas from the gas outlet 1 of the column section was cooled by a heat exchanger to make it a liquid.
  • the proportion of dimethyl carbonate in the liquid low boiling point reaction mixture continuously withdrawn from the distillation column at 15.246 tonnes / hour was 5.577 tonnes / hour and the proportion of methanol was 8.898 tonnes / hour. there were.
  • the proportion of ethylene glycol in the liquid continuously withdrawn from the liquid outlet 2 at the bottom of the tower at 4.639 tons / hour is 3.200 tons / hour, and the ratio of methanol is 1.376 tons / hour.
  • the proportion of unreacted ethylene carbonate was 5.6 kg / hour.
  • the actual production amount of dimethyl carbonate excluding dimethyl carbonate contained in the raw material is 4.920 tons per hour, and the actual production of ethylene glycol excluding ethylene glycol contained in the catalyst solution is real production per hour.
  • the amount was 3.119 tons.
  • the reaction rate of ethylene carbonate was 99.88%, the selectivity of dimethyl carbonate was 99.99% or more, and the selectivity of ethylene glycol was 99.99% or more.
  • Long-term continuous operation was performed under these conditions. After 500 hours, 2000 hours, 4000 hours, 5000 hours, and 6000 hours of the continuous operation, the actual production amount of dimethyl carbonate per hour was 4.630 tons, 4.828 tons, and 4. It is 639 tons and 4.635 tons, 4.728 tons, and the real production amount of ethylene glycol per hour is 3.222 tons, 3.283 tons, 3.265 tons, 3.226 tons and 3.
  • the reaction rates of ethylene carbonate were 99.99%, 99.99%, 99.99%, 99.99% and 99.99%, respectively, and the selectivity of dimethyl carbonate was 99. 99% or more, 99.99% or more, 99.99% or more, 99.99% or more and 99.99% or more, and the selectivity of ethylene glycol is 99.99% or more, 99.99% or more, respectively. It was 99.99% or more, 99.99% or more, and 99.99% or more.
  • Example 3 Continuous multi-stage distillation column> Using the same continuous multi-stage distillation column as in Example 1, the tray structure was kept in the same state as in Example 1 as follows, and the amount of raw materials to be introduced into the distillation column was changed to perform reactive distillation. In each of the upper trays, the ratio of the active area was 45% and the ratio of the open area was 4.5%. Further, in each tray in the middle stage, the ratio of the active area was 45% and the ratio of the open area was 3.5%. Further, in each of the lower trays, the ratio of the active area was 45% and the ratio of the open area was 3.0%. In the continuous multi-stage distillation column shown in FIG.
  • liquid ethylene carbonate is continuously connected to the distillation column from the introduction port (3-a) installed in the fifth stage from the top of the distillation column at a flow rate of 8.68 tons / hour.
  • Gaseous methanol (containing 8.8% by mass of dimethyl carbonate) is distilled at a flow rate of 8.53 tons / hour from the inlet (3-b) installed in the 30th stage from the top of the distillation column.
  • An inlet installed in the 30th stage from the top of the distillation column, which is continuously introduced into the column and contains liquid methanol (containing 6.5% by mass of dimethyl carbonate) at a flow rate of 19.74 tons / hour. It was continuously introduced into the distillation column from (3-c).
  • the reaction distillation was continuously carried out under the same conditions as in Example 1 except for the following conditions.
  • the catalyst was synthesized in the same manner as in Example 1 and continuously introduced into the distillation column from the introduction port (3-e) provided at the 54th stage from the bottom of the distillation column (catalyst concentration (alkaline metal concentration conversion)). : 0.6% by mass with respect to the supplied ethylene carbonate).
  • the reaction distillation was continuously carried out under the conditions that the temperature of the bottom of the column was 98 ° C., the pressure of the section of the column was about 1.118 ⁇ 105 Pa, and the reflux ratio was 0.45.
  • the gas flow rate was in the range of 36260 to 42550 kg / hour and the liquid flow rate was in the range of 11100 to 14250 kg / hour, and in the middle stage, the gas flow rate was 17110 to 29600 kg / hour and the liquid flow rate was 10730.
  • the gas flow rate was in the range of 9770 to 18500 kg / hour, and the liquid flow rate was in the range of 14760 to 27570 kg / hour. Stable steady operation was achieved after 24 hours.
  • the low boiling point reaction mixture extracted in the form of gas from the gas outlet 1 of the column section was cooled by a heat exchanger to make it a liquid.
  • the proportion of dimethyl carbonate in the liquid low boiling point reaction mixture continuously withdrawn from the distillation column at 28.205 tonnes / hour was 9.774 tonnes / hour and the proportion of methanol was 15.594 tonnes / hour. there were.
  • the proportion of ethylene glycol in the liquid continuously withdrawn from the liquid outlet 2 at the bottom of the tower at 9.034 tons / hour is 5.600 tons / hour, and the ratio of methanol is 2.411 tons / hour. In terms of time, the proportion of unreacted ethylene carbonate was 14.06 kg / hour.
  • the actual production amount of dimethyl carbonate excluding dimethyl carbonate contained in the raw material is 8.604 tons per hour
  • the actual production amount of ethylene glycol excluding ethylene glycol contained in the catalyst solution is 8.604 tons per hour. It was 5.467 tons.
  • the reaction rate of ethylene carbonate was 99.88%
  • the selectivity of dimethyl carbonate was 99.99% or more
  • the selectivity of ethylene glycol was 99.99% or more.
  • Long-term continuous operation was performed under these conditions. After 500 hours, 2000 hours, 4000 hours, 5000 hours, and 6000 hours of the continuous operation, the actual production amount of dimethyl carbonate per hour was 8.604 tons, 8.604 tons, and 8.
  • the actual production of ethylene glycol per hour is 5.467 tons, 5.467 tons, 5.467 tons, 5.467 tons and 5. It was 467 tons, the reaction rates of ethylene carbonate were 99.99%, 99.99%, 99.99%, 99.99% and 99.99%, respectively, and the selectivity of dimethyl carbonate was 99. 99% or more, 99.99% or more, 99.99% or more, 99.99% or more and 99.99% or more, and the selectivity of ethylene glycol is 99.99% or more, 99.99% or more, respectively. It was 99.99% or more, 99.99% or more, and 99.99% or more.
  • An inlet installed in the 30th stage from the top of the distillation column which is continuously introduced into the column and contains liquid methanol (containing 6.5% by mass of dimethyl carbonate) at a flow rate of 17.282 tons / hour. It was continuously introduced into the distillation column from (3-c).
  • the catalyst was synthesized in the same manner as in Example 1 and continuously introduced into the distillation column from the introduction port (3-e) provided at the 54th stage from the bottom of the distillation column (catalyst concentration (alkaline metal concentration conversion)). : 0.6% by mass with respect to the supplied ethylene carbonate).
  • the reaction distillation was continuously carried out under the conditions that the temperature of the bottom of the column was 98 ° C., the pressure of the section of the column was about 1.118 ⁇ 105 Pa, and the reflux ratio was 0.45.
  • the gas flow rate was in the range of 31523 to 36991 kg / hour and the liquid flow rate was in the range of 9906 to 12384 kg / hour, and in the middle stage, the gas flow rate was 15272 to 25733 kg / hour and the liquid flow rate was 9575.
  • the gas flow rate was in the range of 8717 to 16083 kg / hour, and the liquid flow rate was in the range of 13174 to 23964 kg / hour.
  • the actual production amount of dimethyl carbonate excluding dimethyl carbonate contained in the raw material is 7.708 tons per hour, and the actual production amount of ethylene glycol excluding ethylene glycol contained in the catalyst solution is 5 per hour. It was .310 tons.
  • the reaction rate of ethylene carbonate was 99.7%, the selectivity of dimethyl carbonate was 99.99% or more, and the selectivity of ethylene glycol was 99.99% or more.
  • Long-term continuous operation was performed under these conditions. After 500 hours, 2000 hours, 4000 hours, 5000 hours, and 6000 hours of the continuous operation, the actual production amount of dimethyl carbonate per hour was 7.708 tons, 7.708 tons, and 7.
  • liquid ethylene carbonate is continuously connected to the distillation column from the introduction port (3-a) installed in the fifth stage from the top of the distillation column at a flow rate of 8.68 tons / hour.
  • Gaseous methanol (containing 8.8% by mass of dimethyl carbonate) is distilled at a flow rate of 8.53 tons / hour from the inlet (3-b) installed in the 30th stage from the top of the distillation column.
  • An inlet installed in the 30th stage from the top of the distillation column, which is continuously introduced into the column and contains liquid methanol (containing 6.5% by mass of dimethyl carbonate) at a flow rate of 19.74 tons / hour. It was continuously introduced into the distillation column from (3-c).
  • the gas flow rate is in the range of 33250 to 40200 kg / hour and the liquid flow rate is in the range of 12520 to 40200 kg / hour, and in the middle stage, the gas flow rate is 15420 to 25200 kg / hour and the liquid flow rate is 12320.
  • the gas flow rate was in the range of 8270 to 14200 kg / hour, and the liquid flow rate was in the range of 13750 to 24450 kg / hour in the lower stage. Stable steady operation was achieved after 24 hours.
  • the low boiling point reaction mixture extracted in the form of gas from the gas outlet 1 of the column section was cooled by a heat exchanger to make it a liquid.
  • the proportion of dimethyl carbonate in the liquid low boiling point reaction mixture continuously withdrawn from the distillation column at 28.036 tonnes / hour was 9.715 tonnes / hour and the proportion of methanol was 15.500 tonnes / hour. there were.
  • the proportion of ethylene glycol in the liquid continuously withdrawn from the liquid outlet 2 at the bottom of the tower at 8.979 tons / hour is 5.634 tons / hour, and the ratio of methanol is 2.396 tons / hour.
  • the proportion of unreacted ethylene carbonate was 14.153 kg / hour.
  • the actual production amount of dimethyl carbonate excluding dimethyl carbonate contained in the raw material is 8.543 tons per hour
  • the actual production amount of ethylene glycol excluding ethylene glycol contained in the catalyst solution is 8.543 tons per hour. It was 5.431 tons.
  • the reaction rate of ethylene carbonate was 99.33%
  • the selectivity of dimethyl carbonate was 99.33%
  • the selectivity of ethylene glycol was 99.33%.
  • Long-term continuous operation was performed under these conditions. After 500 hours, 1000 hours, and 2000 hours of the continuous operation, the actual production amount of dimethyl carbonate per hour was 8.547 tons, 8.547 tons, and 8.546 tons, respectively, and ethylene glycol.
  • the actual production amount per hour was 5.431 tons, 5.430 tons, and 5.431 tons, respectively, and the reaction rates of ethylene carbonate were 99.33%, 99.33%, and 99.32%, respectively.
  • the selectivity of dimethyl carbonate is 99.43%, 99.43%, 99.53%, respectively, and the selectivity of ethylene glycol is 99.43%, 99.43%, 99.43%, respectively. there were.
  • liquid ethylene carbonate is continuously connected to the distillation column from the introduction port (3-a) installed in the fifth stage from the top of the distillation column at a flow rate of 7.546 tons / hour.
  • Liquid methanol (containing 6.5% by mass of dimethyl carbonate) was continuously introduced into the distillation column at a flow rate of 17.282 tons / hour, and was installed at the 30th stage from the top of the distillation column (introduction port). It was continuously introduced into the distillation column from 3-c).
  • the gas flow rate was in the range of 31544 to 36975 kg / hour and the liquid flow rate was in the range of 9912 to 12348 kg / hour, and in the middle stage, the gas flow rate was 15274 to 25733 kg / hour and the liquid flow rate was 9572.
  • the gas flow rate was in the range of 8720 to 16078 kg / hour, and the liquid flow rate was in the range of 13180 to 23928 kg / hour. Stable steady operation was achieved after 24 hours.
  • the low boiling point reaction mixture extracted in the form of gas from the gas outlet 1 of the column section was cooled by a heat exchanger to make it a liquid.
  • the proportion of dimethyl carbonate in the liquid low boiling point reaction mixture continuously withdrawn from the distillation column at 26.669 tonnes / hour was 4.113 tonnes / hour and the proportion of methanol was 15.130 tonnes / hour. there were.
  • the proportion of ethylene glycol in the liquid continuously withdrawn from the liquid outlet 2 at the bottom of the tower at 7.796 tons / hour is 5.441 tons / hour, and the ratio of methanol is 2.338 tons / hour. In terms of time, the proportion of unreacted ethylene carbonate was 14.082 kg / hour.
  • the real production amount of dimethyl carbonate excluding dimethyl carbonate contained in the raw material is 7.716 tons
  • the real production amount of ethylene glycol excluding ethylene glycol contained in the catalyst solution is 7.716 tons per hour.
  • the reaction rate of ethylene carbonate was 99.80%, the selectivity of dimethyl carbonate was 99.89%, and the selectivity of ethylene glycol was 99.90%.
  • Long-term continuous operation was performed under these conditions. After 500 hours, 1000 hours, and 2000 hours of the continuous operation, the actual production amount of dimethyl carbonate per hour was 7.716 tons, 7.716 tons, and 7.716 tons, respectively, of ethylene glycol.
  • the actual production amount per hour was 5.315 tons, 5.315 tons, and 5.315 tons, respectively, and the reaction rates of ethylene carbonate were 99.80%, 99.80%, and 99.80%, respectively.
  • the selectivity of dimethyl carbonate is 99.90%, 99.90%, 99.90%, respectively, and the selectivity of ethylene glycol is 99.90%, 99.89%, 99.90%, respectively. there were.
  • the dialkyl carbonate and the diols have a high selectivity of 97% or more, preferably 99% or more, more preferably 99.99% or more, respectively.
  • the upper limit of the production amount of the dialkyl carbonate is not particularly limited, but is, for example, 12 tons or less per hour, and the upper limit of the production amount of the diols is not particularly limited, but is, for example, 8 tons or less per hour.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明の目的は、環状カーボネートと脂肪族1価アルコールとを原料とし、ジアルキルカーボネートとジオール類とを、高い生産性で長期間安定的に高選択率及び高収率で工業的に製造できる具体的な方法を提供することにある。 環状カーボネートと脂肪族1価アルコールとを原料とし、この原料を均一系触媒が存在する連続多段蒸留塔内に連続的に供給し、該塔内で反応と蒸留とを同時に行い、生成するジアルキルカーボネートを含む低沸点反応混合物を塔上部よりガス状で連続的に抜出し、ジオール類を含む高沸点反応混合物を塔下部より液状で連続的に抜出す反応蒸留方式によって、ジアルキルカーボネートとジオール類とを連続的に製造するにあたり、特定の要件を満たす、ジアルキルカーボネートとジオール類とを工業的に製造する方法。

Description

ジアルキルカーボネート類とジオール類を工業的に製造する方法
 本発明は、ジアルキルカーボネート類とジオール類を工業的に製造する方法に関する。
 ジアルキルカーボネート類とジオール類を工業的に製造する方法として、例えば、特許文献1には、環状カーボネートと脂肪族1価アルコールとを原料とし、この原料を均一系触媒が存在する連続多段蒸留塔内に連続的に供給し、該塔内で反応と蒸留を同時に行う反応蒸留方式によって、ジアルキルカーボネートとジオール類とを工業的に大量(例えば、ジアルキルカーボネートを1時間あたり2トン以上、ジオール類を1時間あたり1.3トン以上)に製造するにあたり、それらが高選択率及び高生産性で、長期間(例えば、5000時間以上)安定的に高収率で製造できる方法及び装置が提案されている。
国際公開第2007/069514号
 しかしながら、特許文献1に記載の方法及び装置は、装置の規模に対するジアルキルカーボネート及びジオール類の生産性が十分でない場合がある。
 そこで、本発明が解決しようとする課題は、環状カーボネートと脂肪族1価アルコールとを原料とし、この原料を均一系触媒が存在する連続多段蒸留塔内に連続的に供給し、該塔内で反応と蒸留を同時に行う反応蒸留方式によって、ジアルキルカーボネートとジオール類とを工業的に大量に製造するにあたり、安定してさらに高い生産性(例えば、ジアルキルカーボネートを1時間あたり4.5トン以上、ジオール類を1時間あたり2.7トン以上)で、長期間(例えば、1000時間以上、好ましくは3000時間以上、より好ましくは5000時間以上)安定的に高選択率及び高収率で製造できる具体的な方法を提供することにある。
 本発明者は、前述の課題を解決するために鋭意検討した結果、塔の長さ及び内径と、塔内の各段トレイのアクティブエリア率及びオープンエリア率とを特定の範囲にすることで、同じ塔の長さ及び内径でジアルキルカーボネートとジオール類とを工業的に大量に製造するにあたり、安定してさらに高い生産性(例えば、特許文献1に記載の目標値(ジアルキルカーボネートを1時間あたり2トン以上、ジオール類を1時間あたり1.3トン以上)の1.3倍以上(すなわち、ジアルキルカーボネートを1時間あたり4.5トン以上、ジオール類を1時間あたり2.7トン以上))で、長期間(例えば、1000時間以上、好ましくは3000時間以上、より好ましくは5000時間以上)安定的に高選択率及び高収率で製造できることを見出し、本発明に至った。
 すなわち本発明は、下記のとおりである。
[1]
 環状カーボネートと脂肪族1価アルコールとを原料とし、この原料を均一系触媒が存在する連続多段蒸留塔内に連続的に供給し、該塔内で反応と蒸留とを同時に行い、生成するジアルキルカーボネートを含む低沸点反応混合物を塔上部よりガス状で連続的に抜出し、ジオール類を含む高沸点反応混合物を塔下部より液状で連続的に抜出す反応蒸留方式によって、ジアルキルカーボネートとジオール類とを連続的に製造するにあたり、
(a)該連続多段蒸留塔が、長さL(cm)、内径D(cm)の円筒形の胴部を有し、内部にインターナルを有する構造をしており、該インターナルが複数の孔をもつトレイである棚段塔式蒸留塔であり、塔項部又はそれに近い塔の上部にガス抜出し口、塔底部又はそれに近い塔の下部に液抜出し口、該ガス抜出し口より下部であって塔の上部及び/又は中間部に1つ以上の第1の導入口、該液抜出し口より上部であって塔の中間部及び/又は下部に1つ以上の第2の導入口を有し、
(1)塔の長さL(cm)が式(1)を満足するものであり、
1,500 ≦ L ≦ 12,000     式(1)
(2)塔の内径D(cm)が式(2)を満足するものであり、
120 ≦ D ≦ 3,000     式(2)
(3)該インターナルは、上段、中段及び下段の3種類のトレイからなり、
(4)原料である環状カーボネートが、1つ以上の該第1の導入口から該連続多段蒸留塔に連続的に導入されており、上段は、1つ以上の該第1の導入口のうちの最上段の導入口の段より上部の段であり、上段のトレイの数の割合は、全段数のうち1~10%であり、
(5)原料である脂肪族1価アルコールが、1つ以上の該第2の導入口から該連続多段蒸留塔に連続的に導入されており、中段は、1つ以上の該第2の導入口のうちの最上段の導入口の段から、1つ以上の該第1の導入口のうちの最上段の導入口までの段であり、中段のトレイの数の割合は、全段数のうち40~50%であり、
(6)下段は、1つ以上の該第2の導入口のうちの最上段の導入口の段より下部の段であり、下段のトレイの数の割合は、全段数のうち45~55%であり、
(7)下段の各段トレイにおいて、下記式(i)で算出されるアクティブエリアの割合は40~80%であり、下記式(ii)で算出されるオープンエリアの割合は1.0~5.0%であり、
アクティブエリアの割合(%)=アクティブエリア面積(cm)/トレイ面積(cm)×100・・・(i)
(式(i)中、アクティブエリア面積とは、トレイデッキ部分のうち孔がある区画(全ての孔を含む最小の区域の境界からさらに外側に4インチまでの範囲)の面積であり、トレイ面積とは、トレイデッキ部分の面積であり、アクティブエリア面積を含み、ダウンカマー部分を含まない面積である。)
オープンエリアの割合(%)=オープンエリア面積(cm)/アクティブエリア面積(cm)×100・・・(ii)
(式(ii)中、オープンエリア面積とは、アクティブエリアにおける全ての孔の合計面積であり、アクティブエリア面積とは、式(i)と同義である。)
(8)上段及び中段の各段トレイにおいて、上記式(i)で算出されるアクティブエリアの割合は40~80%であり、上記式(ii)で算出されるオープンエリアの割合は下段の各段トレイにおける上記式(ii)で算出されるオープンエリアの割合の1.0倍以上であり、
(9)該均一系触媒が、アルカリ金属とエチレングリコールとの混合物からなり、該均一系触媒においてアルカリ金属とエチレングリコールとの質量比(アルカリ金属/エチレングリコール)が0.05~0.5であり、蒸留塔に供給する環状カーボネートに対して触媒濃度(アルカリ金属濃度換算)が0.05~2.0質量%である、
ジアルキルカーボネートとジオール類とを工業的に製造する方法。
[2]
 上段において、ガス流量が5,000~45,000kg/時間であり、液流量が1,000~15,000kg/時間であり、
 中段において、ガス流量が5,000~30,000kg/時間であり、液流量が1,000~15,000kg/時間であり、
 下段において、ガス流量が5,000~20,000kg/時間であり、液流量が1,000~30,000kg/時間である、
請求項1に記載の方法。
[3]
 製造されるジアルキルカーボネートの量が1時間あたり、4.5トン以上である、[1]又は[2]に記載の方法。
[4]
 製造されるジオール類の量が1時間あたり、2.5トン以上である、[1]~[3]のいずれかに記載の方法。
[5]
 環状カーボネートと脂肪族1価アルコールとのエステル交換反応及び蒸留を行うための連続多段蒸留塔であって、
(a)長さL(cm)、内径D(cm)の円筒形の胴部と、
 該胴部の内部にインターナルとして配設される複数の孔をもつトレイと、
 塔項部又はそれに近い塔の上部にガス抜出し口と、
 塔底部又はそれに近い塔の下部に液抜出し口と、
 該ガス抜出し口より下部であって塔の上部及び/又は中間部に1つ以上の第1の導入口と、
 該液抜出し口より上部であって塔の中間部及び/又は下部に1つ以上の第2の導入口と、
を備え、
(1)塔の長さL(cm)が式(1)を満足するものであり、
1,500 ≦ L ≦ 12,000     式(1)
(2)塔の内径D(cm)が式(2)を満足するものであり、
120 ≦ D ≦ 3,000     式(2)
(3)該インターナルは、上段、中段及び下段の3種類のトレイからなり、
(4)原料である環状カーボネートが、1つ以上の該第1の導入口から該連続多段蒸留塔に連続的に導入され、上段は、1つ以上の該第1の導入口のうちの最上段の導入口の段より上部の段であり、上段のトレイの数の割合は、全段数のうち1~10%であり、
(5)原料である脂肪族1価アルコールが、1つ以上の該第2の導入口から該連続多段蒸留塔に連続的に導入され、中段は、1つ以上の該第2の導入口のうちの最上段の導入口の段から、1つ以上の該第1の導入口のうちの最上段の導入口までの段であり、中段のトレイの数の割合は、全段数のうち40~50%であり、
(6)下段は、1つ以上の該第2の導入口のうちの最上段の導入口の段より下部の段であり、下段のトレイの数の割合は、全段数のうち45~55%であり、
(7)下段の各段トレイにおいて、下記式(i)で算出されるアクティブエリアの割合は40~80%であり、下記式(ii)で算出されるオープンエリアの割合は1.0~5.0%であり、
アクティブエリアの割合(%)=アクティブエリア面積(cm)/トレイ面積(cm)×100・・・(i)
(式(i)中、アクティブエリア面積とは、トレイデッキ部分のうち孔がある区画(全ての孔を含む最小の区域の境界からさらに外側に4インチまでの範囲)の面積であり、トレイ面積とは、トレイデッキ部分の面積であり、アクティブエリア面積を含み、ダウンカマー部分を含まない面積である。)
オープンエリアの割合(%)=オープンエリア面積(cm)/アクティブエリア面積(cm)×100・・・(ii)
(式(ii)中、オープンエリア面積とは、アクティブエリアにおける全ての孔の合計面積であり、アクティブエリア面積とは、式(i)と同義である。)
(8)上段及び中段の各段トレイにおいて、上記式(i)で算出されるアクティブエリアの割合は40~80%であり、上記式(ii)で算出されるオープンエリアの割合は下段の各段トレイにおける上記式(ii)で算出されるオープンエリアの割合の1.0倍以上である、
連続多段蒸留塔。
 本発明は、同じ塔の長さ及び内径でジアルキルカーボネート及びジオール類を工業的に大量に製造するにあたり、安定してさらに高い生産性(例えば、特許文献1に記載の目標値(ジアルキルカーボネートを1時間あたり2トン以上、ジオール類を1時間あたり1.3トン以上)の1.3倍以上(すなわち、ジアルキルカーボネートを1時間あたり4.5トン以上、ジオール類を1時間あたり2.7トン以上))で、長期間(例えば、1000時間以上、好ましくは3000時間以上、より好ましくは5000時間以上)安定的に高選択率及び高収率で製造することができる。
本発明のジアルキルカーボネート及びジオール類の製造に用いられる製造装置の一例を示す図である。 本発明に用いる連続多段蒸留塔内のトレイの構造の一例の概念図である。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)についてさらに詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
 本実施形態のジアルキルカーボネートとジオール類とを工業的に製造する方法は、環状カーボネートと脂肪族1価アルコールとを原料とし、この原料を均一系触媒が存在する連続多段蒸留塔内に連続的に供給し、該塔内で反応と蒸留とを同時に行い、生成するジアルキルカーボネートを含む低沸点反応混合物を塔上部よりガス状で連続的に抜出し、ジオール類を含む高沸点反応混合物を塔下部より液状で連続的に抜出す反応蒸留方式によって、ジアルキルカーボネートとジオール類とを連続的に製造するにあたり、
(a)該連続多段蒸留塔が、長さL(cm)、内径D(cm)の円筒形の胴部を有し、内部にインターナルを有する構造をしており、該インターナルが複数の孔をもつトレイである棚段塔式蒸留塔であり、塔項部又はそれに近い塔の上部にガス抜出し口、塔底部又はそれに近い塔の下部に液抜出し口、該ガス抜出し口より下部であって塔の上部及び/又は中間部に1つ以上の第1の導入口、該液抜出し口より上部であって塔の中間部及び/又は下部に1つ以上の第2の導入口を有し、
(1)塔の長さL(cm)が式(1)を満足するものであり、
1,500 ≦ L ≦ 12,000     式(1)
(2)塔の内径D(cm)が式(2)を満足するものであり、
120 ≦ D ≦ 3,000     式(2)
(3)該インターナルは、上段、中段及び下段の3種類のトレイからなり、
(4)原料である環状カーボネートが、1つ以上の該第1の導入口から該連続多段蒸留塔に連続的に導入されており、上段は、1つ以上の該第1の導入口のうちの最上段の導入口の段より上部の段であり、上段のトレイの数の割合は、全段数のうち1~10%であり、
(5)原料である脂肪族1価アルコールが、1つ以上の該第2の導入口から該連続多段蒸留塔に連続的に導入されており、中段は、1つ以上の該第2の導入口のうちの最上段の導入口の段から、1つ以上の該第1の導入口のうちの最上段の導入口までの段であり、中段のトレイの数の割合は、全段数のうち40~50%であり、
(6)下段は、1つ以上の該第2の導入口のうちの最上段の導入口の段より下部の段であり、下段のトレイの数の割合は、全段数のうち45~55%であり、
(7)下段の各段トレイにおいて、下記式(i)で算出されるアクティブエリアの割合は40~80%であり、下記式(ii)で算出されるオープンエリアの割合は1.0~5.0%であり、アクティブエリアの割合(%)=アクティブエリア面積(cm)/トレイ面積(cm)×100・・・(i)
(式(i)中、アクティブエリア面積とは、トレイデッキ部分のうち孔がある区画(全ての孔を含む最小の区域の境界からさらに外側に4インチまでの範囲)の面積であり、トレイ面積とは、トレイデッキ部分の面積であり、アクティブエリア面積を含み、ダウンカマー部分を含まない面積である。)
オープンエリアの割合(%)=オープンエリア面積(cm)/アクティブエリア面積(cm)×100・・・(ii)
(式(ii)中、オープンエリア面積とは、アクティブエリアにおける全ての孔の合計面積であり、アクティブエリア面積とは、式(i)と同義である。)
(8)上段及び中段の各段トレイにおいて、上記式(i)で算出されるアクティブエリアの割合は40~80%であり、上記式(ii)で算出されるオープンエリアの割合は下段の各段トレイにおける上記式(ii)で算出されるオープンエリアの割合の1.0倍以上であり
(9)該均一系触媒が、アルカリ金属とエチレングリコールとの混合物からなり、該均一系触媒においてアルカリ金属とエチレングリコールとの質量比(アルカリ金属/エチレングリコール)が0.05~0.5であり、蒸留塔に供給する環状カーボネートに対して触媒濃度(アルカリ金属濃度換算)が0.05~2.0質量%である。
 本実施形態の製造方法は、上記構成とすることにより、ジアルキルカーボネートとジオール類とを工業的に製造するにあたり、安定してさらに高い生産性(例えば、ジアルキルカーボネートを1時間あたり4.5トン以上、ジオール類を1時間あたり2.7トン以上)で、長期間(例えば、1000時間以上、好ましくは3000時間以上、より好ましくは5000時間以上)安定的に高選択率及び高収率で製造できる。
 本実施形態の製造方法に用いる反応は、環状カーボネート(A)と脂肪族1価アルコール類(B)とから、ジアルキルカーボネート(C)とジオール類(D)とが生成する下記式で表わされる可逆平衡なエステル交換反応である。
Figure JPOXMLDOC01-appb-C000001
 (式中、Rは2価の基-(CH)m-(mは2~6の整数)を表わし、その1個以上の水素は炭素数1~10のアルキル基やアリール基によって置換されていてもよい。また、Rは炭素数1~12の1価の脂肪族基を表わし、その1個以上の水素は炭素数1~10のアルキル基やアリール基で置換されていてもよい。)
 本実施形態の製造方法において、原料として用いられる環状カーボネートとは、上式において(A)で表される化合物である。環状カーボネートとしては、例えば、エチレンカーボネート、プロピレンカーボネート等のアルキレンカーボネ-ト類や、1,3-ジオキサシクロヘキサー2-オン、1,3-ジオキサシクロヘプタ-2-オンなどが好ましく用いられ、エチレンカーボネート及びプロピレンカーボネートが入手の容易さなどの点から更に好ましく使用され、エチレンカーボネートが特に好ましく使用される。
 また、もう一方の原料である脂肪族1価アルコール類とは、上式において(B)で表わされる化合物である。脂肪族1価アルコール類としては、生成するジオール類より沸点が低いものが用いられることが好ましい。したがって、脂肪族1価アルコール類としては、使用する環状カーボネートの種類によっても変わり得るが、例えば、メタノール、エタノール、プロパノール(各異性体)、アリルアルコール、ブタノール(各異性体)、3-ブテン-1-オール、アミルアルコール(各異性体)、-キシルアルコール(各異性体)、-ブチルアルコール(各異性体)、オクチルアルコール(各異性体)、ノニルアルコール(各異性体)、デシルアルコール(各異性体)、ウンデシルアルコール(各異性体)、ドデシルアルコール(各異性体)、シクロペンタノール、シクロ-キサノール、シクロ-ブタノール、シクロオクタノール、メチルシクロペンタノール(各異性体)、エチルシクロペンタノール(各異性体)、メチルシクロ-キサノール(各異性体)、エチルシクロ-キサノール(各異性体)、ジメチルシクロ-キサノール(各異性体)、ジェチルシクロ-キサノール(各異性体)、フェニルシクロ-キサノール(各異性体)、ベンジルアルコール、フェネチルアルコール(各異性体)、フェニルプロパノール(各異性体)などが挙げられ、さらにこれらの脂肪族1価アルコール類において、ハロゲン、低級アルコキシ基、シアノ基、アルコキシカルボニル基、アリーロキシカルボニル基、アシロキシ基、ニトロ基等の置換基によって置換されていてもよい。
 このような脂肪族1価アルコール類の中で、好ましく用いられるのは炭素数1-6のアルコール類であり、さらに好ましいのはメタノール、エタノール、プロパノール(各異性体)、ブタノール(各異性体)の炭素数1-4のアルコール類である。環状カーボネートとしてエチレンカーボネートやプロピレンカーボネ-トを使用する場合に好ましいのはメタノール、エタノールであり、特に好ましいのはメタノールである。
 本実施形態の製造方法において、原料である環状カーボネートは、1つ以上の第1の導入口から連続多段蒸留塔に連続的に導入され、また、原料である脂肪族1価アルコールは、1つ以上の第2の導入口から連続多段蒸留塔に連続的に導入される。各原料をこのような位置から連続多段蒸留塔に連続的に導入することにより、最適なジアルキルカーボネートとジオール類との反応効率を達成し充分な生産量を確保でき、また最適な分離性能を達成しジアルキルカーボネートとジオール類とを充分に確保できる。
 本実施形態の製造方法においては、反応蒸留塔内に均一系触媒を存在させる。均一系触媒を存在させる方法はどのような方法であってもよいが、反応蒸留塔内に連続的に触媒を供給することにより、反応蒸留塔内の液相に触媒を存在させることが好ましい。
 均一系触媒を反応蒸留塔内に連続的に供給する場合には、環状カーボネート及び/又は脂肪族1価アルコールと同時に供給してもよいし、原料とは異なる位置に供給してもよい。該蒸留塔内で実際に反応が進行するのは触媒供給位置から下の領域であることから、塔頂から原料供給位置までの間の領域に該触媒を供給することが好ましい。そして該触媒が存在する段は5段以上あることが好ましく、より好ましくは7段以上であり、さらに好ましくは10段以上である。
 本実施形態の製造方法において用いられる触媒としてはアルカリ金属とエチレングリコールとの混合物からなる化合物である。また、該均一系触媒においてアルカリ金属とエチレングリコールとの質量比(アルカリ金属/エチレングリコール)は、0.05~0.5であり、0.1~0.4であることが好ましく、0.2~0.3であることがより好ましい。アルカリ金属とエチレングリコールとの質量比(アルカリ金属/エチレングリコール)が前記範囲であると、ジアルキルカーボネートとジオール類との生成を促進するとともに不純物の生成を抑制できる。また、蒸留塔に供給する環状カーボネート(例えば、エチレンカーボネート(EC))に対して触媒濃度(アルカリ金属濃度換算)は、0.05~2.0質量%である。
 本実施形態の製造方法において用いられる触媒中のアルカリ金属としては、特に限定されないが、例えば、リチウム、カリウム、ナトリウム、セシウムが挙げられ、好ましくはカリウム、ナトリウムである。
 本実施形態の製造方法で用いられる触媒の量(アルカリ金属濃度換算)は、供給原料である環状カーボネートの質量に対する割合で表わして、通常0.05~2.0質量%であり、好ましくは0.1~1.0質量%であり、さらに好ましくは0.5~1.0質量%である。
 触媒の量が前記下限値以上であると、反応及び収率が十分となり、生産量が向上する。また、触媒の量が前記上限値以下であると、不純物(高沸点成分)が抑制され、製品純度が向上する。また、不純物(高沸点成分)とともに触媒の一部が系外への抜出されることが抑制でき、触媒のロスが減少する。
 本実施形態の製造方法において反応蒸留塔である連続多段蒸留塔(例えば、段数n)に、環状カーボネートを連続的に供給する場合、特定の段に供給することが好ましい。例えば、原料である該環状カーボネートは、該連続多段蒸留塔の上から3段目以下であって、該連続多段蒸留塔の上から(n/3)段目までの間に設けられた1つ以上の導入口から該連続多段蒸留塔に連続的に導入することが好ましい。環状カーボネート導入口から上の段は、該環状カーボネート、ジオール類などの高沸点化合物が塔頂成分中に含まれないようにすることが好ましい。この意味で、環状カーボネート導入口から上の段は3段以上あることが好ましく、より好ましくは4段~10段であり、さらに好ましくは5段~8段である。
 本実施形態の製造方法において、連続多段蒸留塔内のインターナルは、上段、中段及び下段の3種類のトレイからなる。
 上段は、1つ以上の第1の導入口のうちの最上段の導入口の段より上部の段であり、中段は、1つ以上の第2の導入口のうちの最上段の導入口の段から、1つ以上の第1の導入口のうちの最上段の導入口までの段であり、下段は、1つ以上の第2の導入口のうちの最上段の導入口の段より下部の段である。
 本実施形態の製造方法において、上段、中段及び下段を合計した段数nは、好ましくは10~100段であり、より好ましくは30~100段、さらに好ましくは30~80段である。
 また、本実施形態の製造方法において、上段のトレイの数の割合は、全段数のうち1~10%であり、3~10%であることが好ましく、5~10%であることがより好ましい。また、中段のトレイの数の割合は、全段数のうち40~50%であり、40~45%であることが好ましく、40~43%であることがより好ましい。また、下段のトレイの数の割合は、全段数のうち45~55%であり、48~55%であることが好ましく、50~55%であることがより好ましい。上段、中段及び下段の割合を前記範囲とすると、最適なジアルキルカーボネートとジオール類との反応効率を達成し生産量を充分に確保でき、また最適な分離性能を達成しジアルキルカーボネートとジオール類とを充分に確保できる。
 本実施形態に用いられる好ましい環状カーボネートは、例えば、エチレンオキシド、プロピレンオキシド、スチレンオキシドなどのアルキレンオキシドと二酸化炭素との反応によって製造されたハロゲンを含まない環状カーボネートである。したがって、これらの原料化合物や、ジオール類などを少量含む環状カーボネートを、本実施形態の原料として用いることもできる。環状カーボネートとしてはバイオマス由来のものであってもよい。例えばバイオエタノールを原料として得られる環状カーボネートが挙げられる。
 本実施形態において、原料である脂肪族1価アルコールは、純度の高い脂肪族1価アルコールであってもよいし、他の化合物を含む脂肪族1価アルコールであってもよい。具体的には、例えば、脂肪族1価アルコールとジアルキルカーボネ-トとの合計質量に対して、ジアルキルカーボネ-トが1~15質量%含有する脂肪族1価アルコールが好ましく用いられ、ジアルキルカーボネ-トが1.5~12質量%含有する脂肪族1価アルコールがより好ましく用いられ、さらに好ましくはジアルキルカーボネ-トが2~10質量%含有する脂肪族1価アルコールが用いられる。
 本反応を工業的に実施する場合、新規に反応系に導入される環状カーボネート及び/又は脂肪族1価アルコールに加え、この工程及び/又は他の工程で回収された、環状カーボネート及び/又は脂肪族1価アルコールを主成分とする物質が、これらの原料として使用できることは好ましいことである。本実施形態の製造方法はこのことを可能にし、これは本実施形態の製造方法の優れた特徴の一つである。他の工程とは、特に限定されないが、例えば、ジアルキルカーボネ-トと芳香族モノヒドロキシ化合物とからジアリールカーボネ-トを製造する工程が挙げられる。この工程では、脂肪族1価アルコールが副生し、回収される。この回収副生脂肪族1価アルコールには、通常ジアルキルカーボネ-トが含まれているが、その含有量が上記の範囲である場合、本実施形態の製造方法の優れた効果が一層発現することができる。さらには、この回収副生脂肪族1価アルコールには、芳香族モノヒドロキシ化合物、アルキルアリールエーテル、少量のアルキルアリールカーボネ-ト、ジアリールカーボネ-トなどが含まれる場合がある。本実施形態の製造方法では、この副生脂肪族1価アルコールをそのままで原料として用いることもできるし、蒸留等により該脂肪族1価アルコールよりも沸点の高い含有物質量を減少させた後に原料とすることもできる。
 本実施形態の製造方法において反応蒸留塔である連続多段蒸留塔(例えば、段数n)に、脂肪族1価アルコールを連続的に供給する場合、特定の段に供給することが好ましい。例えば、本実施形態の製造方法では、原料である脂肪族1価アルコールが、該連続多段蒸留塔の上から(n/3)段目から下であって、該連続多段蒸留塔の上から(2n/3)段目までの間に設けられた1つ以上の導入口から該連続多段蒸留塔に連続的に導入されることが好ましい。本実施形態の製造方法で原料として用いられる脂肪族1価アルコールが特定量のジアルキルカーボネートを含有している場合、その導入口を特定の段にすることによって、本実施形態の製造方法の優れた効果が一層発現することができる。より好ましくは、脂肪族1価アルコールが、該連続多段蒸留塔の上から(2n/5)段目から下であって、該連続多段蒸留塔の上から(3n/5)段目までの間に設けられた1つ以上の導入口から該連続多段蒸留塔に連続的に導入される場合である。
 原料は液状、ガス状又は液とガスとの混合物として該蒸留塔に連続的に供給されることが好ましい。このようにして原料を該蒸留塔に供給する以外に、付加的にガス状の原料を該蒸留塔の中央部及び/又は下部から断続的又は連続的に供給することも好ましい方法である。また、環状カーボネートを触媒の存在する段よりも上部の段に液状又は気液混合状態で該蒸留塔に連続的に供給し、該蒸留塔の上記の段に設置された1つ以上の導入口から該脂肪族1価アルコールをガス状及び/又は液状で連続的に供給する方法も好ましい方法である。そしてこれらの原料が該蒸留塔の少なくとも5段以上、好ましくは7段以上、より好ましくは10段以上の領域において触媒と接触させるようにすることが好ましい。
 本実施形態の製造方法において、反応蒸留塔に供給する環状カーボネートと脂肪族1価アルコール類との量比は、エステル交換触媒の種類や量及び反応条件によっても異なるが、好ましくは、供給される環状カーボネートに対して、脂肪族1価アルコール類はモル比で0.01~1,000倍の範囲で供給することができる。環状カーボネートの反応率を上げるためには脂肪族1価アルコール類を2倍モル以上の過剰量供給することが好ましいが、あまり大過剰に用いると装置を大きくすることが必要な場合がある。このような意味において、環状カーボネートに対する脂肪族1価アルコール類のモル比は、2~20が好ましく、さらに好ましくは3~15、さらにより好ましくは5~12である。なお、未反応環状カーボネートが多く残存していると、生成物であるジオール類と反応して2量体、3量体などの多量体を副生するので、工業的に実施する場合、未反応環状カーボネートの残存量をできるだけ減少させることが好ましい。本実施形態の製造方法では、このモル比が10以下であっても、環状カーボネートの反応率を98%以上、好ましくは99%以上、さらに好ましくは99.9%以上にすることが可能である。このことも本実施形態の製造方法の特徴のひとつである。
 本実施形態の製造方法においては、好ましくは1時間あたり4.5トン以上のジアルキルカーボネートを連続的に製造することができるが、そのために連続的に供給される環状カーボネートの最低量は、製造すべきジアルキルカーボネ-トの量(pトン/時間)に対して、通常2.0pトン/時間、好ましくは、1.5pトン/時間、より好ましくは1.3pトン/時間である。さらに好ましい場合は、1.0pトン/時間よりも少なくできる。
 図1は、本実施形態に係る製造方法に用いる連続多段蒸留塔の一例を示す概略図である。ここで、本実施形態の製造方法において用いられる連続多段蒸留塔10とは、長さL(cm)、内径D(cm)の円筒形の胴部7の上下に鏡板部5を有し、内部に段数nをもつインターナルを有する構造をしており、該インターナルが複数の孔をもつトレイである棚段塔式蒸留塔であって、塔項部又はそれに近い塔の上部に内径d(cm)のガス抜出し口1と、塔底部又はそれに近い塔の下部に内径d(cm)の液抜出し口2と、該ガス抜出し口1より下部であって該連続多段蒸留塔の上から3段目以下であって、該連続多段蒸留塔の上から(n/3)段目までの間に設けられた1つ以上の導入口第1の導入口3(a、e)と、該液抜出し口2より上部であって、該連続多段蒸留塔の上から(n/3)段目から下であって、該連続多段蒸留塔の上から(2n/3)段目までの間に設けられた1つ以上の第2の導入口3(b、c)、4(a、b)とを有するものであるが、蒸留だけでなく反応も同時に行って、1時間あたり好ましくは4.5トン以上のジアルキルカーボネ-ト及び/又は1時間あたり好ましくは2.5トン以上のジオール類を長期間安定的に製造できるものとするには種々の条件を満足させることが好ましい。なお、図1は、本実施形態に係る製造方法に用いる連続多段蒸留塔の一つの実施態様であるため、棚段の配置は、図1に示す構成に限定されるものではない。
 本実施形態に係る連続多段蒸留塔は、単なる蒸留機能からの条件だけではなく、安定的に高反応率でしかも高選択率で反応を進行させるために必要な条件を複合したものである。具体的には、本実施形態の連続多段蒸留塔は、環状カーボネートと脂肪族1価アルコールとのエステル交換反応及び蒸留を行うための連続多段蒸留塔であって、
(a)長さL(cm)、内径D(cm)の円筒形の胴部と、
 該胴部の内部にインターナルとして配設される複数の孔をもつトレイと、
 塔項部又はそれに近い塔の上部にガス抜出し口と、
 塔底部又はそれに近い塔の下部に液抜出し口と、
 該ガス抜出し口より下部であって塔の上部及び/又は中間部に1つ以上の第1の導入口と、
 該液抜出し口より上部であって塔の中間部及び/又は下部に1つ以上の第2の導入口と、
を備え、
(1)塔の長さL(cm)が式(1)を満足するものであり、
1,500 ≦ L ≦ 12,000     式(1)
(2)塔の内径D(cm)が式(2)を満足するものであり、
120 ≦ D ≦ 3,000     式(2)
(3)該インターナルは、上段、中段及び下段の3種類のトレイからなり、
(4)原料である環状カーボネートが、1つ以上の該第1の導入口から該連続多段蒸留塔に連続的に導入され、上段は、1つ以上の該第1の導入口のうちの最上段の導入口の段より上部の段であり、上段のトレイの数の割合は、全段数のうち1~10%であり、
(5)原料である脂肪族1価アルコールが、1つ以上の該第2の導入口から該連続多段蒸留塔に連続的に導入され、中段は、1つ以上の該第2の導入口のうちの最上段の導入口の段から、1つ以上の該第1の導入口のうちの最上段の導入口までの段であり、中段のトレイの数の割合は、全段数のうち40~50%であり、
(6)下段は、1つ以上の該第2の導入口のうちの最上段の導入口の段より下部の段であり、下段のトレイの数の割合は、全段数のうち45~55%であり、
(7)下段の各段トレイにおいて、下記式(i)で算出されるアクティブエリアの割合は40~80%であり、下記式(ii)で算出されるオープンエリアの割合は1.0~5.0%であり、
アクティブエリアの割合(%)=アクティブエリア面積(cm)/トレイ面積(cm)×100・・・(i)
(式(i)中、アクティブエリア面積とは、トレイデッキ部分のうち孔がある区画(全ての孔を含む最小の区域の境界からさらに外側に4インチまでの範囲)の面積であり、トレイ面積とは、トレイデッキ部分の面積であり、アクティブエリア面積を含み、ダウンカマー部分を含まない面積である。)
オープンエリアの割合(%)=オープンエリア面積(cm)/アクティブエリア面積(cm)×100・・・(ii)
(式(ii)中、オープンエリア面積とは、アクティブエリアにおける全ての孔の合計面積であり、アクティブエリア面積とは、式(i)と同義である。)
(8)上段及び中段の各段トレイにおいて、上記式(i)で算出されるアクティブエリアの割合は40~80%であり、上記式(ii)で算出されるオープンエリアの割合は下段の各段トレイにおける上記式(ii)で算出されるオープンエリアの割合の1.0倍以上である。
 なお、本実施形態の連続多段蒸留塔における上記要件(1)~(8)については、本実施形態の製造方法における要件(1)~(8)と同様である。
 また、本実施形態の製造方法は、上段において、ガス流量が5,000~45,000kg/時間であることが好ましく、液流量が1,000~15,000kg/時間であることが好ましい。
 また、本実施形態の製造方法は、中段において、ガス流量が5,000~30,000kg/時間であることが好ましく、液流量が1,000~15,000kg/時間であることが好ましい。
 また、本実施形態の製造方法は、下段において、ガス流量が5,000~20,000kg/時間であることが好ましく、液流量が1,000~30,000kg/時間であることが好ましい。
 また、本実施形態の製造方法において、製造されるジアルキルカーボネートが1時間あたり、4.5トン以上であることが好ましい。
 また、本実施形態の製造方法において、製造されるジオール類が1時間あたり、2.5トン以上であることが好ましい。
 なお、本実施形態で用いる用語「塔項部又はそれに近い塔の上部」とは、塔項部から下方に約0.25Lまでの部分を意味し、用語「塔底部又はそれに近い塔の下部」とは、塔底部から上方に約0.25Lまでの部分を意味する。また、「L」は、前述の定義とおりである。
 本実施形態の製造方法は、単なる蒸留だけではなく、反応も同時に行う反応蒸留法であって、しかも高反応率及び高選択率(高収率)を達成しているが、そのためには、上記式(1)~(2)に加えて、この各原料の導入口の段、及び各トレイのアクティブエリアとオープンエリアとを特定の範囲にすることが重要であることが見出されたのである。なお、各々の要因の好ましい範囲は下記に示される。
 L(cm)が1,500以上であると、反応率が向上するため目的とする生産量を達成でき、L(cm)が12,000以下であると、目的の生産量を達成できる反応率を確保しつつ設備費を低下させることができる。好ましいL(cm)の範囲は、2,000≦L≦10,000であり、より好ましくは、2,200≦L≦15,000であり、さらに好ましくは、2,500≦L≦5,000である。
 また、D(cm)が120以上であると、目的とする生産量を達成でき、D(cm)が3,000以下であると、目的の生産量を達成しつつ設備費を低下させることができる。好ましいD(cm)の範囲は、150≦D≦2,000であり、より好ましくは、180≦D≦1,200、さらに好ましくは、210≦D≦800である。
 本実施形態で用いられる連続多段蒸留塔は、インターナルとして複数の孔をもつトレイをn段有する棚段塔式蒸留塔であることが好ましい。本実施形態でいうインターナルとは、蒸留塔において実際に気液の接触を行なわせる部分のことを意味する。このようなトレイとしては、例えば泡鍾トレイ、多孔板トレイ、リップルトレイ、バラストトレイ、バルブトレイ、向流トレイ、ユニフラックストレイ、スーパーフラックトレイ、マックスフラックトレイ、デュアルフロートレイ、グリッドプレートトレイ、ターボグリッドプレートトレイ、キッテルトレイ、UFM(Sulzer社製)等のハイパフォーマンストレイ等が好ましい。この連続多段蒸留塔において触媒が存在せず、実質的に反応が起こらない段(たとえば、触媒導入段より上部の段)がある場合、この段に充填物を充填した蒸留塔、すなわち、トレイ部と充填物の充填された部分とを合わせ持つ多段蒸留塔とすることも好ましい。このような充填物としては、例えば、ラシヒリング、レッシングリング、ポールリング、ベルルサドル、インタロックスサドル、ディクソンパッキング、マクマホンパッキング、ヘリパック等の不規則充填物やメラパック、ジェムパック、テクノパック、フレキシパック、スルザーパッキング、グッドロールパッキング、グリッチグリッド等の規則充填物が好ましい。なお、本実施形態でいう用語「段数n」とは、トレイの場合は、トレイの数を意味し、充填物の場合は、理論段数を意味する。したがって、トレイ部と充填物の充填された部分とを合わせ持つ多段蒸留塔の場合の段数nは、トレイの数と理論段数の合計である。
 本実施形態の製造方法においては、n段の上記のトレイのいずれを用いても、高反応率、高選択率及び高生産性を達成することができるが、該トレイが多孔板部(トレイデッキ部分)とダウンカマ一部とを有する多孔板トレイが機能と設備費との関係で特に好ましい。また、該多孔板トレイは、該多孔板部の面積1mあたり100~1,000個の孔を有していることが好ましい。より好ましい孔数は該多孔板部の面積1mあたり120~900個であり、さらに好ましくは、150~800個である。また、該多孔板トレイの孔1個あたりの断面積は0.5~5cmであることが好ましい。より好ましい孔1個あたりの断面積は、0.7~4cmであり、さらに好ましくは0.9~3cmである。さらには、該多孔板トレイが該多孔板部の面積1mあたり100~1,000個の孔を有しており、かつ、孔1個あたりの断面積が0.5~5cmである場合、特に好ましい。また、該多孔板部の孔数は、上記(7)及び(8)の要件を満たしていれば、全ての多孔板において同じであってもよいし、異なるものであってもよい。
 図2に本実施形態に用いる連続多段蒸留塔内のトレイの構造の一例の概念図を示す。図2に示すとおり、蒸留塔内のトレイは、ダウンカマー部分11及びトレイデッキ部分13を有し、トレイデッキ部分13のうち孔14(図2中、小丸で示される部分が各孔を示す)がある区画(全ての孔を含む最小の区域の境界15からさらに外側に4インチまでの範囲)がアクティブエリア12である。該アクティブエリア12で蒸留中、実際に液と蒸気とが接触し、また、該ダウンカマー部分13で、トレイデッキ部分13上で泡立った液を、液と蒸気とに分け、液だけを下の段に送る。
 本実施形態に用いる各段トレイにおけるアクティブエリアの割合は、下記式(i)で算出される。
アクティブエリアの割合(%)=アクティブエリア面積(cm)/トレイ面積(cm)×100・・・(i)
(式(i)中、アクティブエリア面積とは、トレイデッキ部分のうち孔がある区画(全ての孔を含む最小の区域の境界からさらに外側に4インチまでの範囲)の面積であり、トレイ面積とは、トレイデッキ部分の面積であり、アクティブエリア面積を含み、ダウンカマー部分を含まない面積である。)
 また、本実施形態に用いる各段トレイにおけるオープンエリアの割合は、下記式(ii)で算出される。
オープンエリアの割合(%)=オープンエリア面積(cm)/アクティブエリア面積(cm)×100・・・(ii)
(式(ii)中、オープンエリア面積とは、アクティブエリアにおける全ての孔の合計面積であり、アクティブエリア面積とは、式(i)と同義である。)
 また、本実施形態に用いる上段及び中段の各段トレイにおいて、上記式(i)で算出されるアクティブエリアの割合(%)は、40~80%であり、好ましくは、40~70%であり、さらに好ましくは45~65%であり、特に好ましくは、45~55%である。また、本実施形態に用いる下段の各段トレイにおいて、上記式(i)で算出されるアクティブエリアの割合(%)は、40~80%であり、好ましくは、40~70%であり、さらに好ましくは45~65%、特に好ましくは、45~55%である。また、本実施形態に用いる下段の各段トレイにおいて、上記式(ii)で算出されるオープンエリアの割合(%)は、1.0~5.0%であり、好ましくは、1.0~4.0%であり、さらに好ましくは2.0~3.5%である。また、本実施形態に用いる上段及び中段の各段トレイにおいて、上記式(ii)で算出されるオープンエリアの割合(%)は、下段の各段トレイにおける上記式(ii)で算出されるオープンエリアの割合の1.0倍以上であり、好ましくは1.0~6.0倍であり、より好ましくは、1.0~3.0倍、さらに好ましくは1.0~1.5倍である。
 上段、中段及び下段それぞれの各段トレイにおいて、アクティブエリア及びオープンエリアの割合を上記下限値以上とすることにより、塔内差圧が低下し、処理能力が向上し、反応が十分に進行し、収率が向上し、生産量が向上する。また、上段、中段及び下段それぞれの各段トレイにおいて、アクティブエリア及びオープンエリアの割合を上記上限値以下とすることにより、反応生成物の分離が十分となり、製品純度が向上し、反応が十分に進行し、収率が向上し、生産量が向上する。
 本実施形態の製造方法を実施する場合、上段、中段及び下段それぞれにおいて、ガス流量及び液流量を制御することが好ましい。
 本実施形態に用いる上段において、ガス流量(kg/時間)は、好ましくは、5,000~45,000kg/時間であり、より好ましくは、10,000~25,000kg/時間であり、さらに好ましくは15,000~25,000kg/時間である。
 本実施形態に用いる中段において、ガス流量(kg/時間)は、好ましくは、5,000~30,000kg/時間であり、より好ましくは、10,000~25,000kg/時間であり、さらに好ましくは10,000~20,000kg/時間である。
 本実施形態に用いる下段において、ガス流量(kg/時間)は、好ましくは、5,000~20,000kg/時間であり、より好ましくは、5,000~10,000kg/時間である。
 本実施形態に用いる上段において、液流量(kg/時間)は、好ましくは、1,000~15,000kg/時間であり、より好ましくは、3,000~10,000kg/時間であり、さらに好ましくは4,000~8,000kg/時間である。
 本実施形態に用いる中段において、液流量(kg/時間)は、好ましくは、1,000~15,000kg/時間であり、より好ましくは、3,000~10,000kg/時間であり、さらに好ましくは3,000~8,000kg/時間である。
 本実施形態に用いる下段において、液流量(kg/時間)は、好ましくは、1,000~30,000kg/時間であり、より好ましくは、5,000~20,000kg/時間であり、さらに好ましくは5,000~15,000kg/時間である。
 本実施形態に用いる上段、中段及び下段それぞれのガス流量及び液流量を上記下限値以上とすると、反応生成物の分離が十分となり、製品純度が向上し、反応が十分に進行し、収率が向上し、生産量が向上する。また、本実施形態に用いる上段、中段及び下段それぞれのガス流量及び液流量を上記上限値以下とすると、塔内差圧が低下し、処理能力が向上し、反応が十分に進行し、収率が向上し、生産量が向上する。
 連続多段蒸留塔に上記の条件を付加することによって、本発明の課題が、より容易に達成される。
 本実施形態の製造方法を実施する場合、原料である環状カーボネートと脂肪族1価アルコール類とを触媒が存在する連続多段蒸留塔内に連続的に供給し、該塔内で反応と蒸留を同時に行い、生成するジアルキルカーボネ-トを含む低沸点反応混合物を塔上部よりガス状で連続的に抜出し、ジオール類を含む高沸点反応混合物を塔下部より液状で連続的に抜出すことによりジアルキルカーボネ-トとジオール類とが連続的に製造される。
 本実施形態の製造方法で行われるエステル交換反応の反応時間は連続多段蒸留塔内での反応液の平均滞留時間に相当すると考えられるが、これは蒸留塔のインターナルの形状や、段数、原料供給量、触媒の種類や量、反応条件などによって異なるが、好ましくは0.1~20時間、より好ましくは0.5~15時間、さらに好ましくは1~10時間である。
 本実施形態の製造方法で行われるエステル交換反応の反応温度は、用いる原料化合物の種類や触媒の種類や量によって異なるが、好ましくは30~300℃である。反応速度を高めるためには反応温度を高くすることが好ましいが、反応温度が高いと副反応も起こりやすくなる。そのため、より好ましい反応温度は40~250℃、さらに好ましくは50~200℃、特に好ましくは、60~150℃の範囲である。本実施形態の製造方法においては、塔底温度として、好ましくは150℃以下、より好ましくは130℃以下、さらに好ましくは110℃以下、特により好ましくは100℃以下にして反応蒸留を実施することが可能である。このような低い塔底温度であっても高反応率、高選択率及び高生産性を達成できることは、本発明の優れた特徴のひとつである。また、本実施形態の製造方法で行われるエステル交換反応の反応圧力は、用いる原料化合物の種類や組成、反応温度などにより異なるが、減圧、常圧、加圧のいずれであってもよく、好ましくは1Pa~2×10Paであり、より好ましくは、10Pa~10Paであり、さらに好ましくは10~5×10Paである。
 本実施形態で用いられる連続多段蒸留塔を構成する材料は、特に限定されないが、例えば、主に炭素鋼、ステンレススチールなどの金属材料が挙げられ、製造するジアルキルカーボネートとジオール類との品質の面からは、ステンレススチールが好ましい。
 以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
<連続多段蒸留塔>
 図1に示されるような塔の長さL:3300cm、塔の内径D:300cm、L/D:11、段数n:60、塔の内径Dとガス抜出し口の内径dとの比(D/d):7.5、塔の内径Dと液抜出し口の内径dとの比(D/d):12である連続多段蒸留塔(棚段塔式蒸留塔)を用いた。この蒸留塔のトレイは複数の孔をもつ多孔板トレイであり、多孔板部の孔1個あたりの断面積は、約1.3cmであった。また、この蒸留塔のインターナル(トレイ)の構造は設置する箇所で異なり上段、中段及び下段の3種のトレイの構造があった。上段は環状カーボネート(エチレンカーボネート)の導入口(蒸留塔の上から5段目に設置された導入口(3-a))より上部の段であった。上段のトレイの数は、5であり、全段数60のうちの8.3%であった。また、上段の各段トレイのアクティブエリアの割合は45%であり、且つオープンエリアの割合は4.5%であった。また、中段は環状カーボネート(エチレンカーボネート)の導入口(蒸留塔の上から5段目に設置された導入口(3-a))の段及びそれより下部の段であって、脂肪族1価アルコール(メタノール)の導入口(蒸留塔の上から30段目に設置された導入口(3-b)及び(3-c))の段及びそれより上部の段であった。中段のトレイの数は、24であり、全段数60のうちの40%であった。また、中段の各段トレイのアクティブエリアの割合は45%であり、且つオープンエリアの割合は3.5%であった。また、下段は脂肪族1価アルコール(メタノール)の導入口(蒸留塔の上から30段目に設置された導入口(3-b)及び(3-c))の段より下部の段であった。下段のトレイの数は、31であり、全段数60のうちの51.7%であった。また、下段の各段トレイのアクティブエリアの割合は45%であり、且つオープンエリアの割合は3.0%であった。
<反応蒸留>
 図1に示される連続多段蒸留塔において、液状のエチレンカーボネートが4.7トン/時間の流量で、蒸留塔の上から5段目に設置された導入口(3-a)から蒸留塔に連続的に導入された。ガス状のメタノール(ジメチルカーボネ-トを8.8質量%含む)が4.622トン/時間の流量で、蒸留塔の上から30段目に設置された導入口(3-b)から蒸留塔に連続的に導入され、液状のメタノール(ジメチルカーボネ-トを6.5質量%含む)が10.695トン/時間の流量で、蒸留塔の上から30段目に設置された導入口(3-c)から蒸留塔に連続的に導入された。
 触媒はアルカリ金属とエチレングリコールとの混合物からなり、当該触媒においてエチレングリコールに対するアルカリ金属の質量比(アルカリ金属/エチレングリコール)は0.2~0.3の範囲にあった。当該触媒は、アルカリ金属(カリウム)2.5トンにエチレングリコール4.8トンを加え、約130℃に加熱し約1300Paで約3時間加熱処理し均一溶液にすることにより合成した均一系触媒であった。この均一系触媒溶液を、蒸留塔の下から54段目に設けられた導入口(3-e)から、蒸留塔に連続的に導入した(触媒濃度(アルカリ金属濃度換算):供給エチレンカーボネートに対して1.0質量%)。塔底部の温度が98℃で、塔項部の圧力が約1.118×10Pa、還流比が0.52の条件下で連続的に反応蒸留が行われた。
 反応蒸留が行われた際の塔の上段では、ガス流量が19600~23000kg/時間、液流量が6000~7700kg/時間の範囲にあり、塔の中段では、ガス流量が9250~16000kg/時間、液流量が5800~6500kg/時間の範囲にあり、塔の下段ではガス流量が5280~10000kg/時間、液流量が7980~14900kg/時間の範囲にあった。
 24時間後には安定的な定常運転が達成できた。塔項部のガス抜出し口1からガス状で抜き出された低沸点反応混合物は熱交換器で冷却され液体にされた。蒸留塔から15.246トン/時間で連続的に抜き出された液状の低沸点反応混合物中のジメチルカーボネートの割合は5.283トン/時間で、メタノールの割合は8.429トン/時間であった。塔底部の液抜出し口2から4.883トン/時間で連続的に抜出された液中の、エチレングリコールの割合は、3.027トン/時間であり、メタノールの割合は1.303トン/時間であり、未反応エチレンカーボネートの割合は7.6kg/時間であった。原料に含まれるジメチルカーボネートを除いた、ジメチルカーボネ-トの1時間あたりの実質生産量は4.651トンであり、触媒溶液に含まれるエチレングリコールを除いた、エチレングリコールの1時間あたりの実質生産量は2.955トンであった。エチレンカーボネートの反応率は99.7%であり、ジメチルカーボネートの選択率は99.99%以上であり、エチレングリコールの選択率は99.99%以上であった。
 この条件で長期間の連続運転を行った。当該連続運転の500時間後、2000時間後、4000時間後、5000時間後及び6000時間後において、ジメチルカーボネートの1時間あたりの実質生産量は、順に4.661トン、4.682トン、4.661トン、4.661トン及び4.692トンであり、エチレングリコールの1時間あたりの実質生産量は、順に2.982トン、2.955トン、2.9222トン、2.952トン及び2.996トンであり、エチレンカーボネートの反応率は、順に99.89%、99.90%、99.90%、99.88%及び99.92%であり、ジメチルカーボネートの選択率は、順に99.99%以上、99.99%以上、99.99%以上、99.99%以上及び99.99%以上であり、エチレングリコールの選択率は、順に99.99%以上、99.99%以上、99.99%以上、99.99%以上及び99.99%以上であった。
[実施例2]
<連続多段蒸留塔>
 実施例1と同じ連続多段蒸留塔を用いて、トレイ構造を以下のとおり変更して反応蒸留を行った。上段の各段トレイでは、アクティブエリアの割合は60%であり、且つオープンエリアの割合は5.0%であった。また、中段の各段トレイでは、アクティブエリアの割合は60%であり、且つオープンエリアの割合は4.0%であった。また、下段の各段トレイでは、アクティブエリアの割合は45%あり、且つオープンエリアの割合は3.5%であった。
<反応蒸留>
 以下の記載条件以外は実施例1と同条件下で連続的に反応蒸留を行った。
 触媒は、実施例1と同様に合成し、蒸留塔の下から54段目に設けられた導入口(3-e)から、蒸留塔に連続的に導入した(触媒濃度(アルカリ金属濃度換算):供給エチレンカーボネートに対して0.5質量%)。塔底部の温度が98℃で、塔項部の圧力が約1.118×10Pa、還流比が0.6の条件下で連続的に反応蒸留が行われた。
 反応蒸留が行われた際の塔上段では、ガス流量が21200~24500kg/時間、液流量が4730~6250kg/時間の範囲にあり、中段では、ガス流量が10040~19200kg/時間、液流量が4630~6000kg/時間の範囲にあり、下段ではガス流量が6170~9490kg/時間、液流量が7200~14100kg/時間の範囲であった。
 24時間後には安定的な定常運転が達成できた。塔項部のガス抜出し口1からガス状で抜き出された低沸点反応混合物は熱交換器で冷却され液体にされた。蒸留塔から15.246トン/時間で連続的に抜き出された液状の低沸点反応混合物中のジメチルカーボネートの割合は5.577トン/時間であり、メタノールの割合は8.898トン/時間であった。塔底部の液抜出し口2から4.639トン/時間で連続的に抜出された液中の、エチレングリコールの割合は、3.200トン/時間であり、メタノールの割合は1.376トン/時間であり、未反応エチレンカーボネートの割合は5.6kg/時間であった。原料に含まれるジメチルカーボネートを除いたジメチルカーボネ-トの1時間あたりの実質生産量は4.920トンであり、触媒溶液に含まれるエチレングリコールを除いた、エチレングリコールの1時間あたりの実質生産量は3.119トンであった。エチレンカーボネートの反応率は99.88%であり、ジメチルカーボネートの選択率は99.99%以上であり、エチレングリコールの選択率は99.99%以上であった。
 この条件で長期間の連続運転を行った。当該連続運転の500時間後、2000時間後、4000時間後、5000時間後及び6000時間後において、ジメチルカーボネートの1時間あたりの実質生産量は、順に4.630トン、4.828トン、4.639トン及び4.635トン、4.728トンであり、エチレングリコールの1時間あたりの実質生産量は、順に3.222トン、3.283トン、3.265トン、3.226トン及び3.232トンであり、エチレンカーボネートの反応率は、順に99.99%、99.99%、99.99%、99.99%及び99.99%であり、ジメチルカーボネートの選択率は、順に99.99%以上、99.99%以上、99.99%以上、99.99%以上及び99.99%以上であり、エチレングリコールの選択率は、順に99.99%以上、99.99%以上、99.99%以上、99.99%以上及び99.99%以上であった。
[実施例3]
<連続多段蒸留塔>
 実施例1と同じ連続多段蒸留塔を用いて、トレイ構造を以下のとおり実施例1と同じ状態とし、蒸留塔に導入する原料の量を変更して反応蒸留を行った。
 上段の各段トレイでは、アクティブエリアの割合は45%であり、且つオープンエリアの割合は4.5%であった。また、中段の各段トレイでは、アクティブエリアの割合は45%であり且つオープンエリアの割合は3.5%であった。また、下段の各段トレイでは、アクティブエリアの割合は45%あり且つオープンエリアの割合は3.0%であった。
 図1に示される連続多段蒸留塔において、液状のエチレンカーボネートが8.68トン/時間の流量で、蒸留塔の上から5段目に設置された導入口(3-a)から蒸留塔に連続的に導入された。ガス状のメタノール(ジメチルカーボネ-トを8.8質量%含む)が8.53トン/時間の流量で、蒸留塔の上から30段目に設置された導入口(3-b)から蒸留塔に連続的に導入され、液状のメタノール(ジメチルカーボネ-トを6.5質量%含む)が19.74トン/時間の流量で、蒸留塔の上から30段目に設置された導入口(3-c)から蒸留塔に連続的に導入された。
<反応蒸留>
 以下の記載条件以外は実施例1と同条件下で連続的に反応蒸留を行った。
 触媒は、実施例1と同様に合成し、蒸留塔の下から54段目に設けられた導入口(3-e)から、蒸留塔に連続的に導入した(触媒濃度(アルカリ金属濃度換算):供給エチレンカーボネートに対して0.6質量%)。塔底部の温度が98℃で、塔項部の圧力が約1.118×10Pa、還流比が0.45の条件下で連続的に反応蒸留が行われた。
 反応蒸留が行われた際の塔上段では、ガス流量が36260~42550kg/時間、液流量が11100~14250kg/時間の範囲にあり、中段では、ガス流量が17110~29600kg/時間、液流量が10730~12030kg/時間の範囲にあり、下段ではガス流量が9770~18500kg/時間、液流量が14760~27570kg/時間の範囲であった。
 24時間後には安定的な定常運転が達成できた。塔項部のガス抜出し口1からガス状で抜き出された低沸点反応混合物は熱交換器で冷却され液体にされた。蒸留塔から28.205トン/時間で連続的に抜き出された液状の低沸点反応混合物中のジメチルカーボネートの割合は9.774トン/時間であり、メタノールの割合は15.594トン/時間であった。塔底部の液抜出し口2から9.034トン/時間で連続的に抜出された液中の、エチレングリコールの割合は、5.600トン/時間であり、メタノールの割合は2.411トン/時間であり、未反応エチレンカーボネートの割合は14.06kg/時間であった。原料に含まれるジメチルカーボネートを除いたジメチルカーボネ-トの1時間あたりの実質生産量は8.604トン、触媒溶液に含まれるエチレングリコールを除いた、エチレングリコールの1時間あたりの実質生産量は5.467トンであった。エチレンカーボネートの反応率は99.88%であり、ジメチルカーボネートの選択率は99.99%以上であり、エチレングリコールの選択率は99.99%以上であった。
 この条件で長期間の連続運転を行った。当該連続運転の500時間後、2000時間後、4000時間後、5000時間後及び6000時間後において、ジメチルカーボネートの1時間あたりの実質生産量は、順に8.604トン、8.604トン、8.604トン、8.604トン及び8.604トンであり、エチレングリコールの1時間あたりの実質生産量は、順に5.467トン、5.467トン、5.467トン、5.467トン及び5.467トンであり、エチレンカーボネートの反応率は、順に99.99%、99.99%、99.99%、99.99%及び99.99%であり、ジメチルカーボネートの選択率は、順に99.99%以上、99.99%以上、99.99%以上、99.99%以上及び99.99%以上であり、エチレングリコールの選択率は、順に99.99%以上、99.99%以上、99.99%以上、99.99%以上及び99.99%以上であった。
[比較例1]
<連続多段蒸留塔>
 実施例1と同じ連続多段蒸留塔を用いて、トレイ構造を以下のとおり変更して反応蒸留を行った。上段の各段トレイでは、アクティブエリアの割合は38%であり、且つオープンエリアの割合は4.5%であった。また、中段の各段トレイでは、アクティブエリアの割合は38%であり、且つオープンエリアの割合は4.5%であった。また、下段の各段トレイは、アクティブエリアの割合は38%あり、且つオープンエリアの割合は4.8%であった。
<反応蒸留>
 以下の記載条件以外は実施例1と同条件下で連続的に反応蒸留を行った。
 図1に示される連続多段蒸留塔において、液状のエチレンカーボネートが7.546トン/時間の流量で、蒸留塔の上から5段目に設置された導入口(3-a)から蒸留塔に連続的に導入された。ガス状のメタノール(ジメチルカーボネ-トを8.8質量%含む)が7.742トン/時間の流量で、蒸留塔の上から30段目に設置された導入口(3-b)から蒸留塔に連続的に導入され、液状のメタノール(ジメチルカーボネ-トを6.5質量%含む)が17.282トン/時間の流量で、蒸留塔の上から30段目に設置された導入口(3-c)から蒸留塔に連続的に導入された。
 触媒は、実施例1と同様に合成し、蒸留塔の下から54段目に設けられた導入口(3-e)から、蒸留塔に連続的に導入した(触媒濃度(アルカリ金属濃度換算):供給エチレンカーボネートに対して0.6質量%)。
 塔底部の温度が98℃で、塔項部の圧力が約1.118×10Pa、還流比が0.45の条件下で連続的に反応蒸留が行われた。
 反応蒸留が行われた際の塔上段では、ガス流量が31523~36991kg/時間、液流量が9906~12384kg/時間の範囲にあり、中段では、ガス流量が15272~25733kg/時間、液流量が9575~10454kg/時間の範囲にあり、下段ではガス流量が8717~16083kg/時間、液流量が13174~23964kg/時間の範囲であった。
 24時間後には安定的な定常運転が達成できた。塔項部のガス抜出し口1からガス状で抜き出された低沸点反応混合物は熱交換器で冷却され液体にされた。蒸留塔から24.642トン/時間で連続的に抜き出された液状の低沸点反応混合物中のジメチルカーボネートの割合は4.109トン/時間であり、メタノールの割合は15.115トン/時間であった。塔底部の液抜出し口2から7.804トン/時間で連続的に抜出された液中の、エチレングリコールの割合は、5.436トン/時間であり、メタノールの割合は2.34トン/時間であり、未反応エチレンカーボネートの割合は14.122kg/時間であった。原料に含まれるジメチルカーボネートを除いたジメチルカーボネートの1時間あたりの実質生産量は7.708トンであり、触媒溶液に含まれるエチレングリコールを除いた、エチレングリコールの1時間あたりの実質生産量は5.310トンであった。エチレンカーボネートの反応率は99.7%であり、ジメチルカーボネートの選択率は99.99%以上であり、エチレングリコールの選択率は99.99%以上であった。
 この条件で長期間の連続運転を行った。当該連続運転の500時間後、2000時間後、4000時間後、5000時間後及び6000時間後において、ジメチルカーボネートの1時間あたりの実質生産量は、順に7.708トン、7.708トン、7.706トン、7.706トン及び7.708トンであり、エチレングリコールの1時間あたりの実質生産量は、順に5.310トン、5.312トン、5.310トン、5.310トン及び5.310トンであり、エチレンカーボネートの反応率は、順に99.7%、99.7%、99.7%、99.7%及び99.7%であり、ジメチルカーボネートの選択率は、順に99.99%、99.99%、99.99%、99.99%及び99.99%であり、エチレングリコールの選択率は、順に99.99%、99.99%、99.99%、99.99%及び99.99%であった。
[比較例2]
<連続多段蒸留塔>
 以下の記載条件以外は実施例1と同条件下で連続的に反応蒸留を行った。蒸留塔には実施例3と同量の原料が連続的に導入された。
 連続多段蒸留塔のトレイ構造は、上段の各段トレイでは、アクティブエリアの割合は82%であり、且つオープンエリアの割合は4.9%であった。また、中段の各段トレイでは、アクティブエリアの割合は82%であり、且つオープンエリアの割合は4.9%であった。また、下段の各段トレイは、アクティブエリアの割合は85%あり、且つオープンエリアの割合は3.3%であった。
 図1に示される連続多段蒸留塔において、液状のエチレンカーボネートが8.68トン/時間の流量で、蒸留塔の上から5段目に設置された導入口(3-a)から蒸留塔に連続的に導入された。ガス状のメタノール(ジメチルカーボネ-トを8.8質量%含む)が8.53トン/時間の流量で、蒸留塔の上から30段目に設置された導入口(3-b)から蒸留塔に連続的に導入され、液状のメタノール(ジメチルカーボネ-トを6.5質量%含む)が19.74トン/時間の流量で、蒸留塔の上から30段目に設置された導入口(3-c)から蒸留塔に連続的に導入された。
<反応蒸留>
 実施例3と同条件下で連続的に反応蒸留を行った。
 触媒は、実施例1と同様に合成し、蒸留塔の下から54段目に設けられた導入口(3-e)から、蒸留塔に連続的に導入した(触媒濃度(アルカリ金属濃度換算):供給エチレンカーボネートに対して0.6質量%)。塔底部の温度が98℃で、塔項部の圧力が約1.118×10Pa、還流比が0.45の条件下で連続的に反応蒸留が行われた。
 反応蒸留が行われた際の塔上段では、ガス流量が33250~40200kg/時間、液流量が12520~40200kg/時間の範囲にあり、中段では、ガス流量が15420~25200kg/時間、液流量が12320~14250kg/時間の範囲にあり、下段ではガス流量が8270~14200kg/時間、液流量が13750~24450kg/時間の範囲であった。
 24時間後には安定的な定常運転が達成できた。塔項部のガス抜出し口1からガス状で抜き出された低沸点反応混合物は熱交換器で冷却され液体にされた。蒸留塔から28.036トン/時間で連続的に抜き出された液状の低沸点反応混合物中のジメチルカーボネートの割合は9.715トン/時間であり、メタノールの割合は15.500トン/時間であった。塔底部の液抜出し口2から8.979トン/時間で連続的に抜出された液中の、エチレングリコールの割合は、5.634トン/時間であり、メタノールの割合は2.396トン/時間であり、未反応エチレンカーボネートの割合は14.153kg/時間であった。原料に含まれるジメチルカーボネートを除いたジメチルカーボネ-トの1時間あたりの実質生産量は8.543トン、触媒溶液に含まれるエチレングリコールを除いた、エチレングリコールの1時間あたりの実質生産量は5.431トンであった。エチレンカーボネートの反応率は99.33%であり、ジメチルカーボネートの選択率は99.33%であり、エチレングリコールの選択率は99.33%であった。
 この条件で長期間の連続運転を行った。当該連続運転の500時間後、1000時間後、2000時間後において、ジメチルカーボネートの1時間あたりの実質生産量は、順に8.547トン、8.547トン、8.546トンであり、エチレングリコールの1時間あたりの実質生産量は、順に5.431トン、5.430トン、5.431トンであり、エチレンカーボネートの反応率は、順に99.33%、99.33%、99.32%であり、ジメチルカーボネートの選択率は、順に99.43%、99.43%、99.53%であり、エチレングリコールの選択率は、順に99.43%、99.43%、99.43%であった。
[比較例3]
<連続多段蒸留塔>
 以下の記載条件以外は実施例1と同条件下で連続的に反応蒸留を行った。蒸留塔には比較例1と同量の原料が連続的に導入された。
 連続多段蒸留塔のトレイ構造は、上段の各段トレイでは、アクティブエリアの割合は82%であり、且つオープンエリアの割合は4.9%であった。また、中段の各段トレイでは、アクティブエリアの割合は82%であり、且つオープンエリアの割合は4.9%であった。また、下段の各段トレイは、アクティブエリアの割合は85%あり、且つオープンエリアの割合は3.3%であった。
 図1に示される連続多段蒸留塔において、液状のエチレンカーボネートが7.546トン/時間の流量で、蒸留塔の上から5段目に設置された導入口(3-a)から蒸留塔に連続的に導入された。ガス状のメタノール(ジメチルカーボネ-トを8.8質量%含む)7.742トン/時間の流量で、蒸留塔の上から30段目に設置された導入口(3-b)から蒸留塔に連続的に導入され、液状のメタノール(ジメチルカーボネ-トを6.5質量%含む)が17.282トン/時間の流量で、蒸留塔の上から30段目に設置された導入口(3-c)から蒸留塔に連続的に導入された。
<反応蒸留>
 比較例1と同条件下で連続的に反応蒸留を行った。
 触媒は、実施例1と同様に合成し、蒸留塔の下から54段目に設けられた導入口(3-e)から、蒸留塔に連続的に導入した(触媒濃度(アルカリ金属濃度換算):供給エチレンカーボネートに対して0.6質量%)。塔底部の温度が98℃で、塔項部の圧力が約1.118×10Pa、還流比が0.45の条件下で連続的に反応蒸留が行われた。
反応蒸留が行われた際の塔上段では、ガス流量が31544~36975kg/時間、液流量が9912~12348kg/時間の範囲にあり、中段では、ガス流量が15274~25733kg/時間、液流量が9572~10448kg/時間の範囲にあり、下段ではガス流量が8720~16078kg/時間、液流量が13180~23928kg/時間の範囲であった。
 24時間後には安定的な定常運転が達成できた。塔項部のガス抜出し口1からガス状で抜き出された低沸点反応混合物は熱交換器で冷却され液体にされた。蒸留塔から26.669トン/時間で連続的に抜き出された液状の低沸点反応混合物中のジメチルカーボネートの割合は4.113トン/時間であり、メタノールの割合は15.130トン/時間であった。塔底部の液抜出し口2から7.796トン/時間で連続的に抜出された液中の、エチレングリコールの割合は、5.441トン/時間であり、メタノールの割合は2.338トン/時間であり、未反応エチレンカーボネートの割合は14.082kg/時間であった。原料に含まれるジメチルカーボネートを除いたジメチルカーボネ-トの1時間あたりの実質生産量は7.716トン、触媒溶液に含まれるエチレングリコールを除いた、エチレングリコールの1時間あたりの実質生産量は5.315トンであった。エチレンカーボネートの反応率は99.80%であり、ジメチルカーボネートの選択率は99.89%であり、エチレングリコールの選択率は99.90%であった。
 この条件で長期間の連続運転を行った。当該連続運転の500時間後、1000時間後、2000時間後において、ジメチルカーボネートの1時間あたりの実質生産量は、順に7.716トン、7.716トン、7.716トンであり、エチレングリコールの1時間あたりの実質生産量は、順に5.315トン、5.315トン、5.315トンであり、エチレンカーボネートの反応率は、順に99.80%、99.80%、99.80%であり、ジメチルカーボネートの選択率は、順に99.90%、99.90%、99.90%であり、エチレングリコールの選択率は、順に99.90%、99.89%、99.90%であった。
 本出願は、2021年1月8日出願の日本特許出願(特願2021-002028号)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、環状カーボネートと脂肪族1価アルコールとから、ジアルキルカーボネートとジオール類とが、それぞれ97%以上、好ましくは99%以上、さらに好ましくは99.99%以上の高選択率で、ジアルキルカーボネートを1時間あたり4.5トン以上、好ましくは1時間あたり5トン以上、さらに好ましくは1時間あたり5.2トン以上、ジオール類を1時間あたり2.5トン以上、好ましくは1時間あたり3.0トン以上、さらに好ましくは1時間あたり3.2トン以上の工業的規模で、1000時間以上、好ましくは3000時間以上、さらに好ましくは5000時間以上の長期間、安定的に高収率で製造でき、産業上の利用可能性がある。なお、ジアルキルカーボネートの生産量の上限は特に限定されないが、例えば、1時間あたり12トン以下であり、ジオール類の生産量の上限は特に限定されないが、例えば、1時間あたり8トン以下である。
1:ガス抜出し口、2:液抜出し口、3-aから3-e:導入口、4-aから4-b:導入口、5:鏡板部、6:インターナル、7:胴体部分、10:連続多段蒸留塔、L:胴部長さ(cm)、D:胴部内径(cm)、d:ガス抜出し口の内径(cm)、d:液抜出し口の内径(cm)、11:ダウンカマー部分、12:アクティブエリア、13:トレイデッキ部分、14:孔の一つ(小丸で示される部分が孔であり、孔の合計面積がオープンエリアである)、15:全ての孔を含む最小の区域の境界
 

Claims (5)

  1.  環状カーボネートと脂肪族1価アルコールとを原料とし、この原料を均一系触媒が存在する連続多段蒸留塔内に連続的に供給し、該塔内で反応と蒸留とを同時に行い、生成するジアルキルカーボネートを含む低沸点反応混合物を塔上部よりガス状で連続的に抜出し、ジオール類を含む高沸点反応混合物を塔下部より液状で連続的に抜出す反応蒸留方式によって、ジアルキルカーボネートとジオール類とを連続的に製造するにあたり、
    (a)該連続多段蒸留塔が、長さL(cm)、内径D(cm)の円筒形の胴部を有し、内部にインターナルを有する構造をしており、該インターナルが複数の孔をもつトレイである棚段塔式蒸留塔であり、塔項部又はそれに近い塔の上部にガス抜出し口、塔底部又はそれに近い塔の下部に液抜出し口、該ガス抜出し口より下部であって塔の上部及び/又は中間部に1つ以上の第1の導入口、該液抜出し口より上部であって塔の中間部及び/又は下部に1つ以上の第2の導入口を有し、
    (1)塔の長さL(cm)が式(1)を満足するものであり、
    1,500 ≦ L ≦ 12,000     式(1)
    (2)塔の内径D(cm)が式(2)を満足するものであり、
    120 ≦ D ≦ 3,000     式(2)
    (3)該インターナルは、上段、中段及び下段の3種類のトレイからなり、
    (4)原料である環状カーボネートが、1つ以上の該第1の導入口から該連続多段蒸留塔に連続的に導入されており、上段は、1つ以上の該第1の導入口のうちの最上段の導入口の段より上部の段であり、上段のトレイの数の割合は、全段数のうち1~10%であり、
    (5)原料である脂肪族1価アルコールが、1つ以上の該第2の導入口から該連続多段蒸留塔に連続的に導入されており、中段は、1つ以上の該第2の導入口のうちの最上段の導入口の段から、1つ以上の該第1の導入口のうちの最上段の導入口までの段であり、中段のトレイの数の割合は、全段数のうち40~50%であり、
    (6)下段は、1つ以上の該第2の導入口のうちの最上段の導入口の段より下部の段であり、下段のトレイの数の割合は、全段数のうち45~55%であり、
    (7)下段の各段トレイにおいて、下記式(i)で算出されるアクティブエリアの割合は40~80%であり、下記式(ii)で算出されるオープンエリアの割合は1.0~5.0%であり、
    アクティブエリアの割合(%)=アクティブエリア面積(cm)/トレイ面積(cm)×100・・・(i)
    (式(i)中、アクティブエリア面積とは、トレイデッキ部分のうち孔がある区画(全ての孔を含む最小の区域の境界からさらに外側に4インチまでの範囲)の面積であり、トレイ面積とは、トレイデッキ部分の面積であり、アクティブエリア面積を含み、ダウンカマー部分を含まない面積である。)
    オープンエリアの割合(%)=オープンエリア面積(cm)/アクティブエリア面積(cm)×100・・・(ii)
    (式(ii)中、オープンエリア面積とは、アクティブエリアにおける全ての孔の合計面積であり、アクティブエリア面積とは、式(i)と同義である。)
    (8)上段及び中段の各段トレイにおいて、上記式(i)で算出されるアクティブエリアの割合は40~80%であり、上記式(ii)で算出されるオープンエリアの割合は下段の各段トレイにおける上記式(ii)で算出されるオープンエリアの割合の1.0倍以上であり、
    (9)該均一系触媒が、アルカリ金属とエチレングリコールとの混合物からなり、該均一系触媒においてアルカリ金属とエチレングリコールとの質量比(アルカリ金属/エチレングリコール)が0.05~0.5であり、蒸留塔に供給する環状カーボネートに対して触媒濃度(アルカリ金属濃度換算)が0.05~2.0質量%である、
    ジアルキルカーボネートとジオール類とを工業的に製造する方法。
  2.  上段において、ガス流量が5,000~45,000kg/時間であり、液流量が1,000~15,000kg/時間であり、
     中段において、ガス流量が5,000~30,000kg/時間であり、液流量が1,000~15,000kg/時間であり、
     下段において、ガス流量が5,000~20,000kg/時間であり、液流量が1,000~30,000kg/時間である、
    請求項1に記載の方法。
  3.  製造されるジアルキルカーボネートの量が1時間あたり、4.5トン以上である、請求項1又は2に記載の方法。
  4.  製造されるジオール類の量が1時間あたり、2.5トン以上である、請求項1~3のいずれか一項に記載の方法。
  5.  環状カーボネートと脂肪族1価アルコールとのエステル交換反応及び蒸留を行うための連続多段蒸留塔であって、
    (a)長さL(cm)、内径D(cm)の円筒形の胴部と、
     該胴部の内部にインターナルとして配設される複数の孔をもつトレイと、
     塔項部又はそれに近い塔の上部にガス抜出し口と、
     塔底部又はそれに近い塔の下部に液抜出し口と、
     該ガス抜出し口より下部であって塔の上部及び/又は中間部に1つ以上の第1の導入口と、
     該液抜出し口より上部であって塔の中間部及び/又は下部に1つ以上の第2の導入口と、
    を備え、
    (1)塔の長さL(cm)が式(1)を満足するものであり、
    1,500 ≦ L ≦ 12,000     式(1)
    (2)塔の内径D(cm)が式(2)を満足するものであり、
    120 ≦ D ≦ 3,000     式(2)
    (3)該インターナルは、上段、中段及び下段の3種類のトレイからなり、
    (4)原料である環状カーボネートが、1つ以上の該第1の導入口から該連続多段蒸留塔に連続的に導入され、上段は、1つ以上の該第1の導入口のうちの最上段の導入口の段より上部の段であり、上段のトレイの数の割合は、全段数のうち1~10%であり、
    (5)原料である脂肪族1価アルコールが、1つ以上の該第2の導入口から該連続多段蒸留塔に連続的に導入され、中段は、1つ以上の該第2の導入口のうちの最上段の導入口の段から、1つ以上の該第1の導入口のうちの最上段の導入口までの段であり、中段のトレイの数の割合は、全段数のうち40~50%であり、
    (6)下段は、1つ以上の該第2の導入口のうちの最上段の導入口の段より下部の段であり、下段のトレイの数の割合は、全段数のうち45~55%であり、
    (7)下段の各段トレイにおいて、下記式(i)で算出されるアクティブエリアの割合は40~80%であり、下記式(ii)で算出されるオープンエリアの割合は1.0~5.0%であり、
    アクティブエリアの割合(%)=アクティブエリア面積(cm)/トレイ面積(cm)×100・・・(i)
    (式(i)中、アクティブエリア面積とは、トレイデッキ部分のうち孔がある区画(全ての孔を含む最小の区域の境界からさらに外側に4インチまでの範囲)の面積であり、トレイ面積とは、トレイデッキ部分の面積であり、アクティブエリア面積を含み、ダウンカマー部分を含まない面積である。)
    オープンエリアの割合(%)=オープンエリア面積(cm)/アクティブエリア面積(cm)×100・・・(ii)
    (式(ii)中、オープンエリア面積とは、アクティブエリアにおける全ての孔の合計面積であり、アクティブエリア面積とは、式(i)と同義である。)
    (8)上段及び中段の各段トレイにおいて、上記式(i)で算出されるアクティブエリアの割合は40~80%であり、上記式(ii)で算出されるオープンエリアの割合は下段の各段トレイにおける上記式(ii)で算出されるオープンエリアの割合の1.0倍以上である、
    連続多段蒸留塔。
PCT/JP2021/042494 2021-01-08 2021-11-18 ジアルキルカーボネート類とジオール類を工業的に製造する方法 WO2022149357A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US18/271,084 US20240051911A1 (en) 2021-01-08 2021-11-18 Method for industrially producing dialkyl carbonate and diol
CN202180073206.5A CN116367901A (zh) 2021-01-08 2021-11-18 工业上制造碳酸二烷基酯类和二元醇类的方法
EP21917582.5A EP4275776A4 (en) 2021-01-08 2021-11-18 PROCESS FOR THE INDUSTRIAL PRODUCTION OF DIALKYL CARBONATES AND DIOLS
KR1020237018375A KR20230098307A (ko) 2021-01-08 2021-11-18 디알킬카보네이트류와 디올류를 공업적으로 제조하는 방법
JP2022573935A JP7451771B2 (ja) 2021-01-08 2021-11-18 ジアルキルカーボネート類とジオール類を工業的に製造する方法
CA3202747A CA3202747A1 (en) 2021-01-08 2021-11-18 Method for industrially producing dialkyl carbonate and diol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021002028 2021-01-08
JP2021-002028 2021-01-08

Publications (1)

Publication Number Publication Date
WO2022149357A1 true WO2022149357A1 (ja) 2022-07-14

Family

ID=82357390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042494 WO2022149357A1 (ja) 2021-01-08 2021-11-18 ジアルキルカーボネート類とジオール類を工業的に製造する方法

Country Status (8)

Country Link
US (1) US20240051911A1 (ja)
EP (1) EP4275776A4 (ja)
JP (1) JP7451771B2 (ja)
KR (1) KR20230098307A (ja)
CN (1) CN116367901A (ja)
CA (1) CA3202747A1 (ja)
TW (1) TWI806278B (ja)
WO (1) WO2022149357A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000300903A (ja) * 1999-02-18 2000-10-31 Nippon Shokubai Co Ltd 無堰多孔板、無堰多孔板塔、および蒸留方法
WO2007060894A1 (ja) * 2005-11-25 2007-05-31 Asahi Kasei Chemicals Corporation ジアルキルカーボネートとジオール類の工業的製造方法
WO2007069514A1 (ja) * 2005-12-14 2007-06-21 Asahi Kasei Chemicals Corporation ジアルキルカーボネートとジオール類を工業的に高収率で製造する方法
JP2021002028A (ja) 2019-06-21 2021-01-07 富士ゼロックス株式会社 定着装置及び画像形成装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101068854B (zh) * 2004-11-30 2011-06-08 旭化成化学株式会社 成型体的制造方法和制造装置
TW200738601A (en) * 2005-12-27 2007-10-16 Asahi Kasei Chemicals Corp Industrial process for production of dialkyl carbonate and diol

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000300903A (ja) * 1999-02-18 2000-10-31 Nippon Shokubai Co Ltd 無堰多孔板、無堰多孔板塔、および蒸留方法
WO2007060894A1 (ja) * 2005-11-25 2007-05-31 Asahi Kasei Chemicals Corporation ジアルキルカーボネートとジオール類の工業的製造方法
WO2007069514A1 (ja) * 2005-12-14 2007-06-21 Asahi Kasei Chemicals Corporation ジアルキルカーボネートとジオール類を工業的に高収率で製造する方法
JP2021002028A (ja) 2019-06-21 2021-01-07 富士ゼロックス株式会社 定着装置及び画像形成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4275776A4

Also Published As

Publication number Publication date
US20240051911A1 (en) 2024-02-15
CA3202747A1 (en) 2022-07-14
TWI806278B (zh) 2023-06-21
EP4275776A4 (en) 2024-04-10
JP7451771B2 (ja) 2024-03-18
KR20230098307A (ko) 2023-07-03
CN116367901A (zh) 2023-06-30
EP4275776A1 (en) 2023-11-15
TW202231620A (zh) 2022-08-16
JPWO2022149357A1 (ja) 2022-07-14

Similar Documents

Publication Publication Date Title
JP4260212B2 (ja) ジアルキルカーボネートの工業的分離方法
JP4937140B2 (ja) ジアルキルカーボネートとジオール類の工業的製造方法
JP2006206497A (ja) ジアルキルカーボネートおよびジオールを製造する方法
JP2010241811A (ja) ジアルキルカーボネートからジアリールカーボネートまたはアルキルアリールカーボネートを調製するための方法
JP4236208B2 (ja) ジアルキルカーボネートとジオール類の工業的製造方法
JP4236277B2 (ja) ジアルキルカーボネートとジオール類を工業的に高収率で製造する方法
KR100941560B1 (ko) 디올의 공업적 제조 방법
JP4236207B2 (ja) ジアルキルカーボネートとジオール類の工業的製造法
WO2022149357A1 (ja) ジアルキルカーボネート類とジオール類を工業的に製造する方法
JP4246779B2 (ja) ジアルキルカーボネートとジオール類を工業的に製造する方法
JP4236276B2 (ja) ジアルキルカーボネートとジオール類の工業的製造方法
JP2006182683A (ja) ジオールおよびジアルキルカーボネートを製造する方法
KR100901675B1 (ko) 디알킬카보네이트와 디올류의 공업적 제조 방법
JP2003342236A (ja) ジメチルカーボネートの製造方法
KR20230159594A (ko) 디알킬카르보네이트의 제조 방법 및 디알킬카르보네이트의 제조 장치
KR20170129909A (ko) 아릴 카보네이트의 제조를 위한 통합된 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022573935

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237018375

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3202747

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023012615

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 18271084

Country of ref document: US

ENP Entry into the national phase

Ref document number: 112023012615

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230622

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021917582

Country of ref document: EP

Effective date: 20230808