WO2022149188A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2022149188A1
WO2022149188A1 PCT/JP2021/000100 JP2021000100W WO2022149188A1 WO 2022149188 A1 WO2022149188 A1 WO 2022149188A1 JP 2021000100 W JP2021000100 W JP 2021000100W WO 2022149188 A1 WO2022149188 A1 WO 2022149188A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
way valve
state
compressor
Prior art date
Application number
PCT/JP2021/000100
Other languages
English (en)
French (fr)
Inventor
駿哉 行徳
仁隆 門脇
伸英 坂本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US18/251,746 priority Critical patent/US20240019186A1/en
Priority to PCT/JP2021/000100 priority patent/WO2022149188A1/ja
Priority to JP2022573817A priority patent/JP7427116B2/ja
Priority to CN202180087848.0A priority patent/CN116783433A/zh
Priority to EP21917416.6A priority patent/EP4276387A4/en
Publication of WO2022149188A1 publication Critical patent/WO2022149188A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/004Outdoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0292Control issues related to reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves

Definitions

  • This disclosure relates to a refrigeration cycle device.
  • Patent Document 1 discloses a refrigerant circuit in which a refrigerant container functions as an accumulator (liquid separator) from the start of heating until a predetermined time elapses, and after a predetermined time elapses, the refrigerant container functions as a receiver (receiver). Has been done.
  • switching between the accumulator (liquid separator) and the receiver (liquid receiver) is performed by controlling the first flow path switching means and the second flow path switching means. Since the first flow path switching means and the second flow path switching means are each composed of three solenoid valves, the control is complicated and the device is also large.
  • An object of the present disclosure is to provide a compact refrigerating cycle device in which switching control between a liquid separator and a liquid receiver is easy.
  • the refrigeration cycle device of the present disclosure is a refrigeration cycle device in which a refrigerant circulates.
  • the refrigerating cycle device includes a compressor, a first heat exchanger, a second side heat exchanger, a first flow control valve, and a flow path of the refrigerant by switching the state between the first state and the second state. Controls the first four-way valve that switches between the two, the second four-way valve that switches the flow path of the refrigerant by switching the state between the third state and the fourth state, the refrigerant container, and the first four-way valve and the second four-way valve. It is equipped with a control device.
  • the control device when the heating is started, sets the first four-way valve in the first state and the second four-way valve in the fourth state, so that the refrigerant is a compressor, a second side heat exchanger, and a first state.
  • a flow path is formed to return to the compressor via the flow control valve, the first heat exchanger, and the refrigerant container.
  • the control device sets the first four-way valve as the first state and the second four-way valve as the third state. By doing so, a flow path is formed in which the refrigerant returns to the compressor via the compressor, the second side heat exchanger, the first flow control valve, the refrigerant container, and the first heat exchanger.
  • FIG. It is a figure which shows the refrigeration cycle apparatus at the time of operation stop which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the flow of control at the time of operation stop which concerns on Embodiment 1.
  • FIG. It is the figure which simplified the refrigerating cycle apparatus at the time of operation stop which concerns on Embodiment 1.
  • FIG. It is a figure which shows the refrigerant container.
  • FIG. It is a figure which shows the refrigeration cycle apparatus at the time of heating activation which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the flow of control at the time of heating activation which concerns on Embodiment 1.
  • FIG. It is a figure which shows the refrigeration cycle apparatus at the time of a heating operation which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the flow of control at the time of a heating operation which concerns on Embodiment 1.
  • FIG. It is a figure which simplified the refrigerating cycle apparatus at the time of a heating operation which concerns on Embodiment 1.
  • FIG. It is a figure which shows the refrigerating cycle apparatus at the time of cooling activation which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the flow of control at the time of cooling activation which concerns on Embodiment 1.
  • FIG. It is a figure which shows the refrigeration cycle apparatus at the time of operation stop which concerns on Embodiment 2.
  • FIG. It is a figure which simplified the refrigerating cycle apparatus at the time of heating activation which concerns on Embodiment 2. It is a figure which simplified the refrigerating cycle apparatus at the time of a heating operation which concerns on Embodiment 2. It is the figure which simplified the refrigerating cycle apparatus at the time of cooling activation which concerns on Embodiment 2.
  • FIG. 1 is a diagram showing a refrigeration cycle device 100 when the operation is stopped according to the first embodiment.
  • FIG. 2 is a flowchart showing a control flow when the operation is stopped according to the first embodiment.
  • FIG. 3 is a simplified view of the refrigeration cycle device 100 at the time of shutdown according to the first embodiment.
  • Each of the figures described below functionally shows the connection relationship and the arrangement configuration of each device in the refrigeration cycle apparatus 100, and does not necessarily show the arrangement in the physical space.
  • the refrigeration cycle apparatus 100 includes a compressor 1, a heat source side heat exchanger 2 as a first heat exchanger, a load side heat exchanger 3 as a second heat exchanger, and a second. It has 1 expansion valve 4, a second expansion valve 5, a first four-way valve 6, a second four-way valve 7, a refrigerant container 8, and a control device 10.
  • the heat source side heat exchanger 2 exchanges heat between air and the refrigerant using a fan (not shown).
  • the load side heat exchanger 3 is a plate heat exchanger that exchanges heat with a heat medium such as water or brine.
  • a pump (not shown), a heat exchanger, and a fan are connected to the utilization-side piping of the load-side heat exchanger 3.
  • An electronically controlled expansion valve (LEV: Linear Expansion Valve) is used for the first expansion valve 4 and the second expansion valve 5.
  • LEV Linear Expansion Valve
  • the first expansion valve 4 and the second expansion valve 5 function as a flow rate control valve for adjusting the flow rate of the refrigerant.
  • the first expansion valve 4 may be referred to as LEV1 and the second expansion valve 5 may be referred to as LEV2.
  • the first four-way valve 6 has a first port P1, a second port P2, a third port P3, and a fourth port P4.
  • the second four-way valve 7 has a fifth port P5, a sixth port P6, a seventh port P7, and an eighth port P8.
  • a compressor 1, a first expansion valve 4, a second expansion valve 5, a first four-way valve 6, a second four-way valve 7, various sensors, and the like are connected to the control device 10.
  • the control device 10 adjusts the flow rate of the refrigerant by controlling the opening degree of the first expansion valve 4 and the second expansion valve 5.
  • the control device 10 switches the flow path of the refrigerant by controlling the ports of the first four-way valve 6 and the second four-way valve 7.
  • the first four-way valve 6 has a first state in which the first port P1 and the second port P2 communicate with each other and the third port P3 and the fourth port P4 communicate with each other, and the first port P1 and the third port P3. And are in communication with each other, and can be switched to a second state in which the second port P2 and the fourth port P4 communicate with each other.
  • the first four-way valve 6 is controlled to either the ON state, which is the first state, or the OFF state, which is the second state, based on the control of the control device 10.
  • the second four-way valve 7 has a third state in which the fifth port P5 and the seventh port P7 communicate with each other and the sixth port P6 and the eighth port P8 communicate with each other, and the fifth port P5 and the sixth port P6. It is configured to be able to switch to a fourth state in which the 7th port P7 and the 8th port P8 communicate with each other.
  • the second four-way valve 7 is controlled to either the ON state, which is the third state, or the OFF state, which is the fourth state, based on the control of the control device 10.
  • the ON state is a state in which the first four-way valve 6 or the second four-way valve 7 is energized.
  • the OFF state is a state in which the first four-way valve 6 or the second four-way valve 7 is not energized.
  • the control device 10 switches between the cooling operation and the heating operation by switching the states of the first four-way valve 6 and the second four-way valve 7.
  • the refrigerant container 8 functions as an accumulator (liquid separator) that separates gas from the refrigerant or a receiver (receiver) that stores the liquefied refrigerant depending on the operating state of the refrigeration cycle device 100.
  • the first four-way valve 6 is turned on and the second four-way valve 7 is turned off when the operation shown in FIG. 1 is stopped.
  • the refrigerant container 8 functions as an accumulator.
  • the control device 10 executes the following processing when the operation is stopped.
  • the control device 10 controls the compressor 1 to operate at the lowest frequency (step S11).
  • the control device 10 reduces the opening degree of the valve in order to reduce the pressure of LEV1 which is the first expansion valve 4 (step S12).
  • the control device 10 fully opens LEV2, which is the second expansion valve 5, (step S13).
  • step S14 the control device 10 determines whether or not the second four-way valve 7 is in the ON state (step S14).
  • the control device 10 determines in step S14 that the second four-way valve 7 is in the OFF state (No in step S14)
  • the control device 10 stops the operation of the compressor 1 (step S16), and ends the process.
  • step S15 the control device 10 controls the second four-way valve 7 from the ON state to the OFF state (step S15).
  • step S15 the control device 10 executes the process of step S16, and then ends the process.
  • the control device 10 has not executed the process of determining whether the state of the first four-way valve 6 is in the ON state or the OFF state when the operation is stopped.
  • the first four-way valve 6 can use the refrigerant container 8 as an accumulator regardless of whether it is in the ON state or the OFF state.
  • the refrigerating cycle device 100 omits the first four-way valve 6 and the second four-way valve 7 when the first four-way valve 6 is turned on and the second four-way valve 7 is turned off by the control device 10. Is described, the refrigerant circuit is as shown in FIG.
  • the refrigerating cycle device 100 shown in FIG. 3 includes a refrigerant circuit connected in the order of a compressor 1, a load side heat exchanger 3, a first expansion valve 4, a heat source side heat exchanger 2, a second expansion valve 5, and an accumulator 8A. Become.
  • the refrigerant container 8 is used as an accumulator when the operation is stopped.
  • FIG. 4 is a diagram showing a refrigerant container 8.
  • the refrigerant container 8 includes an inflow pipe 8a, an outflow pipe 8b, an oil return hole 8c, and a straw pipe 8d.
  • a mixed liquid L of oil and a refrigerant is stored in the refrigerant container 8.
  • the refrigerant container 8 functions as an accumulator, the gas of the gas-liquid two-phase refrigerant is separated and the liquid refrigerant is accumulated.
  • the refrigerant container 8 returns the liquid refrigerant to the compressor 1 by returning the oil from the oil return hole 8c in the low flow rate region shown on the left side of FIG. 4, and prevents the liquid backing that causes the capacity and reliability of the compressor 1 to decrease. There is. It is preferable that the diameter of the oil return hole 8c is small in order to prevent the occurrence of liquid back. In the high flow rate region shown on the right side of FIG. 4, the amount of oil returned from the refrigerant container 8 is insufficient for the amount of oil discharged from the compressor 1 when the oil is returned only to the oil return hole 8c. Secure the amount of oil return.
  • the amount of the refrigerant to the heat exchanger acting as an evaporator is appropriately maintained by accumulating the refrigerant discharged from the heat exchanger acting as a condenser.
  • FIG. 5 is a diagram showing a refrigeration cycle device 100 at the time of starting heating according to the first embodiment.
  • FIG. 6 is a flowchart showing a control flow at the time of heating activation according to the first embodiment.
  • FIG. 7 is a simplified view of the refrigeration cycle device 100 at the time of starting heating according to the first embodiment.
  • the first four-way valve 6 is turned on and the second four-way valve 7 is turned off when the heating shown in FIG. 5 is started.
  • the refrigerant container 8 functions as an accumulator.
  • the control device 10 executes the following processing at the time of starting heating.
  • the control device 10 controls to start the compressor 1 (step S21).
  • the control device 10 reduces the opening degree of the valve in order to reduce the pressure of LEV1 which is the first expansion valve 4 (step S22).
  • the control device 10 fully opens LEV2, which is the second expansion valve 5, (step S23).
  • step S24 the control device 10 determines whether or not the first four-way valve 6 is in the ON state (step S24).
  • the control device 10 determines in step S24 that the first four-way valve 6 is in the ON state (Yes in step S24)
  • the control device 10 ends the process.
  • the control device 10 determines in step S24 that the first four-way valve 6 is in the OFF state (No in step S24)
  • the control device 10 controls the first four-way valve 6 from the OFF state to the ON state (step S25), and performs processing. finish.
  • the refrigerating cycle device 100 omits the first four-way valve 6 and the second four-way valve 7 when the first four-way valve 6 is turned on and the second four-way valve 7 is turned off by the control device 10.
  • the refrigerant circuit is as shown in FIG.
  • the refrigerant passes through the compressor 1, the load side heat exchanger 3, the first expansion valve 4, the heat source side heat exchanger 2, the second expansion valve 5, and the accumulator 8A to the compressor 1. It is a refrigerant circuit that forms a return flow path.
  • the refrigerant container 8 is used as an accumulator when heating is started.
  • the high temperature and high pressure gas refrigerant discharged from the compressor 1 is condensed by the load side heat exchanger 3.
  • the liquid refrigerant condensed in the load side heat exchanger 3 is then depressurized by the first expansion valve 4.
  • the depressurized liquid refrigerant is then evaporated in the heat source side heat exchanger 2.
  • the gas-liquid two-phase refrigerant evaporated in the heat source side heat exchanger 2 then passes through the second expansion valve 5, is treated by the accumulator 8A, and then the gas refrigerant is sucked into the compressor 1.
  • FIG. 8 is a diagram showing a refrigeration cycle device 100 during a heating operation according to the first embodiment.
  • FIG. 9 is a flowchart showing a control flow during the heating operation according to the first embodiment.
  • FIG. 10 is a simplified view of the refrigeration cycle device 100 during the heating operation according to the first embodiment.
  • the first four-way valve 6 is in the ON state and the second four-way valve 7 is in the ON state during the heating operation shown in FIG.
  • the refrigerant container 8 functions as a receiver.
  • the control device 10 executes the following processing during the heating operation.
  • the control device 10 determines whether or not the degree of superheat (SH: SuperHeat) of the refrigerant at the inlet of the accumulator 8A at the start of heating shown in FIG. 7 is 2 ° C. or higher (step S31).
  • Step S31 is a process at the time of starting heating before starting the heating operation.
  • the degree of superheat refers to the temperature difference between superheated steam and dry saturated steam.
  • the temperature of superheated steam is measured by a temperature sensor (not shown).
  • a reference value for the degree of superheat is set in advance, and if the degree of superheat is lower than the reference value, it is determined that liquid backing has occurred.
  • step S31 If the control device 10 determines in step S31 that SH ⁇ 2 ° C. (No in step S31), the control device 10 repeats the process of step S31. When the control device 10 determines in step S31 that SH ⁇ 2 ° C. (Yes in step S31), the control device 10 repeats the process of step S31.
  • step S31 When the control device 10 determines in step S31 that SH ⁇ 2 ° C. (Yes in step S31), the control device 10 controls the second four-way valve 7 from the OFF state to the ON state (step S32). After step S32, the control device 10 reduces the opening degree of the valve in order to reduce the pressure of LEV1 which is the first expansion valve 4 (step S33). After step S33, the control device 10 reduces the opening degree of the valve in order to reduce the pressure of LEV2 which is the second expansion valve 5 (step S34), and ends the process.
  • the refrigerant container 8 functions as the accumulator 8A at the start of heating, it is possible to prevent the liquid refrigerant from flowing into the compressor 1 by storing the refrigerant in the refrigerant container 8. Since the refrigerating cycle apparatus 100 can increase the frequency of the compressor 1 and execute a steady heating operation on the condition that the degree of superheat (SH) is SH ⁇ 2 ° C. by the process of step S31. It is possible to shorten the heating start-up time in low outside air.
  • SH degree of superheat
  • the refrigerating cycle device 100 omits the first four-way valve 6 and the second four-way valve 7 when the first four-way valve 6 is turned on and the second four-way valve 7 is turned on by the control device 10.
  • the refrigerant passes through the compressor 1, the load side heat exchanger 3, the first expansion valve 4, the receiver 8B, the second expansion valve 5, and the heat source side heat exchanger 2 to the compressor 1.
  • It is a refrigerant circuit that forms a return flow path.
  • the refrigerant container 8 is used as a receiver during the heating operation.
  • the high temperature and high pressure gas refrigerant discharged from the compressor 1 is condensed by the load side heat exchanger 3.
  • the liquid refrigerant condensed in the load side heat exchanger 3 is then depressurized by the first expansion valve 4.
  • the decompressed liquid refrigerant then passes through the receiver 8B, is further depressurized in the second expansion valve 5, and is evaporated in the heat source side heat exchanger 2.
  • the gas refrigerant evaporated in the heat source side heat exchanger 2 is sucked into the compressor 1.
  • the amount of refrigerant used in the refrigerant circuit is smaller than during cooling operation.
  • the receiver 8B can store a surplus refrigerant during the heating operation.
  • the control device 10 adjusts the amount of the refrigerant stored in the receiver 8B by controlling the first expansion valve 4.
  • the capacity of the load side heat exchanger 3 can be secured by adjusting the amount of the refrigerant used to the optimum amount of the refrigerant.
  • FIG. 11 is a diagram showing a refrigeration cycle device 100 at the time of starting cooling according to the first embodiment.
  • FIG. 12 is a flowchart showing a control flow at the time of starting cooling according to the first embodiment.
  • FIG. 13 is a simplified view of the refrigeration cycle device 100 at the time of starting cooling according to the first embodiment.
  • the first four-way valve 6 is in the OFF state and the second four-way valve 7 is in the OFF state when the cooling is started as shown in FIG.
  • the refrigerant container 8 functions as an accumulator.
  • the control device 10 executes the following processing at the time of starting the refrigerant.
  • the control device 10 controls to start the compressor 1 (step S41).
  • the control device 10 reduces the opening degree of the valve in order to reduce the pressure of LEV1 which is the first expansion valve 4 (step S42).
  • the control device 10 fully opens LEV2, which is the second expansion valve 5, (step S43).
  • step S44 the control device 10 determines whether or not the first four-way valve 6 is in the ON state.
  • step S44 determines whether or not the first four-way valve 6 is in the ON state.
  • the control device 10 determines in step S44 that the first four-way valve 6 is in the OFF state (No in step S44)
  • the control device 10 ends the process.
  • step S45 determines in step S44 that the first four-way valve 6 is in the ON state (Yes in step S44)
  • the control device 10 controls the first four-way valve 6 from the ON state to the OFF state (step S45), and performs processing. finish.
  • the refrigerating cycle device 100 omits the first four-way valve 6 and the second four-way valve 7 when the first four-way valve 6 is turned off and the second four-way valve 7 is turned off by the control device 10.
  • the refrigerant circuit is as shown in FIG.
  • the refrigerant passes through the compressor 1, the second expansion valve 5, the heat source side heat exchanger 2, the first expansion valve 4, the load side heat exchanger 3, and the accumulator 8A to the compressor 1. It is a refrigerant circuit that forms a return flow path.
  • the refrigerant container 8 is used as an accumulator at the time of starting cooling.
  • the high temperature and high pressure gas refrigerant discharged from the compressor 1 is condensed by the heat source side heat exchanger 2.
  • the liquid refrigerant condensed in the heat source side heat exchanger 2 is then depressurized by the first expansion valve 4.
  • the depressurized liquid refrigerant is then evaporated in the load side heat exchanger 3.
  • the gas-liquid two-phase refrigerant evaporated in the load-side heat exchanger 3 is then treated by the accumulator 8A, and then the gas refrigerant is sucked into the compressor 1.
  • the refrigerating cycle device 100 forms a refrigerant circuit similar to that at the time of starting the cooling in the cooling operation. During the cooling operation, the amount of refrigerant used in the refrigerant circuit is larger than that during the heating operation.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is condensed by the heat source side heat exchanger 2.
  • the liquid refrigerant condensed in the heat source side heat exchanger 2 is then depressurized by the first expansion valve 4.
  • the depressurized liquid refrigerant is then evaporated in the load side heat exchanger 3.
  • the gas-liquid two-phase refrigerant evaporated in the load-side heat exchanger 3 is then treated by the accumulator 8A, and then the gas refrigerant is sucked into the compressor 1.
  • FIG. 14 is a diagram showing a refrigeration cycle device 200 at the time of starting heating according to the second embodiment.
  • FIG. 15 is a simplified view of the refrigeration cycle device 200 at the time of starting heating according to the second embodiment.
  • FIG. 16 is a simplified view of the refrigeration cycle device 200 during the heating operation according to the second embodiment.
  • FIG. 17 is a simplified view of the refrigerating cycle device 200 at the time of starting cooling according to the second embodiment.
  • the various devices used in the refrigeration cycle device 200 according to the second embodiment are the same as the various devices used in the refrigeration cycle device 100 according to the first embodiment.
  • the refrigerating cycle device 200 is different from the refrigerating cycle device 100 in the position of the second expansion valve 5.
  • the second expansion valve 5 is located between the first four-way valve 6 and the heat source side heat exchanger 2.
  • the second expansion valve 5 is located between the first four-way valve 6 and the refrigerant container 8.
  • the refrigerating cycle device 200 omits the first four-way valve 6 and the second four-way valve 7 when the first four-way valve 6 is turned on and the second four-way valve 7 is turned off by the control device 10.
  • the refrigerant passes through the compressor 1, the load side heat exchanger 3, the first expansion valve 4, the heat source side heat exchanger 2, the second expansion valve 5, and the accumulator 8A to the compressor 1.
  • It is a refrigerant circuit that forms a return flow path.
  • the refrigerant container 8 is used as an accumulator when heating is started.
  • the arrangement of the refrigerant circuit and the equipment shown in FIG. 7 is the same.
  • the refrigerating cycle device 200 omits the first four-way valve 6 and the second four-way valve 7 when the first four-way valve 6 is turned on and the second four-way valve 7 is turned on by the control device 10.
  • the refrigerant passes through the compressor 1, the load side heat exchanger 3, the first expansion valve 4, the receiver 8B, the second expansion valve 5, and the heat source side heat exchanger 2 to the compressor 1.
  • It is a refrigerant circuit that forms a return flow path.
  • the refrigerant container 8 is used as a receiver during the heating operation.
  • the refrigerating cycle device 200 shown in FIG. 16 has the same arrangement of the refrigerant circuit and the equipment shown in FIG.
  • the refrigerating cycle device 200 omits the first four-way valve 6 and the second four-way valve 7 when the first four-way valve 6 is turned off and the second four-way valve 7 is turned off by the control device 10.
  • the refrigerant circuit is as shown in FIG.
  • the refrigerant passes through the compressor 1, the heat source side heat exchanger 2, the first expansion valve 4, the load side heat exchanger 3, the second expansion valve 5, and the accumulator 8A to the compressor 1. It is a refrigerant circuit that forms a return flow path.
  • the refrigerant container 8 is used as an accumulator at the time of starting cooling.
  • the refrigerating cycle device 200 shown in FIG. 17 has the same function as the refrigerant circuit shown in FIG. 13 although the position of the second expansion valve 5 is different.
  • the refrigerating cycle device 200 forms a refrigerant circuit similar to that at the time of starting the cooling in the cooling operation. During the cooling operation, the amount of refrigerant used in the refrigerant circuit is larger than that during the heating operation.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is condensed by the heat source side heat exchanger 2.
  • the liquid refrigerant condensed in the heat source side heat exchanger 2 is then depressurized by the first expansion valve 4.
  • the depressurized liquid refrigerant is then evaporated in the load side heat exchanger 3.
  • the gas-liquid two-phase refrigerant evaporated in the load-side heat exchanger 3 is then treated by the accumulator 8A, and then the gas refrigerant is sucked into the compressor 1.
  • the present disclosure relates to a refrigeration cycle device 100 in which a refrigerant circulates.
  • the refrigeration cycle device 100 includes a compressor 1, a heat source side heat exchanger 2, a load side heat exchanger 3, a first expansion valve 4 as a first flow control valve, and an ON state as a first state.
  • the first four-way valve 6 that switches the flow path of the refrigerant by switching the state to the OFF state as the second state, and the refrigerant by switching the state between the ON state as the third state and the OFF state as the fourth state.
  • a second four-way valve 7 for switching the flow path of the above, a refrigerant container 8, and a control device 10 for controlling the first four-way valve 6 and the second four-way valve 7 are provided.
  • the control device 10 when the heating is started, the control device 10 turns on the first four-way valve 6 and turns off the second four-way valve 7, so that the refrigerant is in the compressor 1, the load side heat exchanger 3, and so on.
  • a flow path is formed to return to the compressor 1 via the first expansion valve 4, the heat source side heat exchanger 2, and the refrigerant container 8 functioning as the accumulator 8A, and the control device 10 turns on the first four-way valve 6 during the heating operation.
  • the second four-way valve 7 By setting the second four-way valve 7 to the ON state, the refrigerant makes the compressor 1, the load side heat exchanger 3, the first expansion valve 4, the refrigerant container 8 functioning as the receiver 8B, and the heat source side heat exchanger 2.
  • a flow path is formed to return to the compressor 1 through the process.
  • the refrigerating cycle device 100 can easily switch the refrigerant container 8 between the accumulator 8A which is a liquid separator and the receiver 8B which is a liquid receiver. Therefore, the refrigeration cycle device 100 can be a small and suitable refrigeration cycle device according to the operating state by a simple control of switching between the first four-way valve 6 and the second four-way valve 7.
  • the control device 10 when the cooling is started, the control device 10 turns off the first four-way valve 6 and turns off the second four-way valve 7, so that the refrigerant exchanges heat with the compressor 1 and the heat source side. It forms a flow path that returns to the compressor 1 via the vessel 2, the first expansion valve 4, the load side heat exchanger 3, and the refrigerant container 8 that functions as the accumulator 8A.
  • the refrigerating cycle device 100 can be a compact and suitable refrigerating cycle device according to the operating state by simple control for switching between the first four-way valve 6 and the second four-way valve 7. ..
  • the refrigerant container 8 is used as an accumulator 8A, which is a liquid separator that separates the liquid and the gas contained in the refrigerant at the time of starting heating and at the time of starting the refrigerant, and stores the liquid contained in the refrigerant during the heating operation. It is used as a receiver 8B which is a receiver.
  • the refrigerant container 8 can switch the functions of the accumulator 8A and the receiver 8B according to the operating state, so that the refrigerating cycle device can be made smaller than if it is provided separately.
  • the refrigeration cycle device 100 further includes a second expansion valve 5 as a second flow control valve.
  • the first expansion valve 4 is arranged between the heat source side heat exchanger 2 and the load side heat exchanger 3, and the second expansion valve 5 is arranged with the compressor 1 as shown in FIG. It is arranged between the heat exchanger 2 on the heat source side.
  • the first expansion valve 4 is arranged between the second four-way valve 7 and the load side heat exchanger 3, and the second expansion valve 5 is arranged as shown in FIG. It is arranged between the first four-way valve 6 and the heat source side heat exchanger 2.
  • the refrigerating cycle device 100 can set the positions of the first expansion valve 4 and the second expansion valve 5 to appropriate positions where the flow rate of the refrigerant can be controlled according to the operating state.
  • the refrigeration cycle device 200 further includes a second expansion valve 5 as a second flow control valve.
  • the first expansion valve 4 is arranged between the heat source side heat exchanger 2 and the load side heat exchanger 3, and the second expansion valve 5 is the load side heat exchange, as shown in FIG. It is arranged between the vessel 3 and the refrigerant container 8 that functions as the accumulator 8A.
  • the first expansion valve 4 is arranged between the second four-way valve 7 and the load side heat exchanger 3, and the second expansion valve 5 is arranged as shown in FIG. It is arranged between the first four-way valve 6 and the refrigerant container 8 that functions as the accumulator 8A.
  • the refrigerating cycle device 100 can set the positions of the first expansion valve 4 and the second expansion valve 5 to appropriate positions where the flow rate of the refrigerant can be controlled according to the operating state.
  • control device 10 controls the opening degree of the first expansion valve 4 and the second expansion valve 5, and at the time of heating start-up and the refrigerant start-up, as shown in FIGS. 6 and 12, the first expansion valve 4
  • the opening degree of the second expansion valve 5 is made smaller than the fully opened portion, and the opening degree of the second expansion valve 5 is fully opened.
  • the refrigerating cycle device 100 can suitably adjust the opening degrees of the first expansion valve 4 and the second expansion valve 5 according to the operating state.
  • the control device 10 makes the opening degree of the first expansion valve 4 smaller than the fully open position and the opening degree of the second expansion valve 5 smaller than the fully open position, as shown in FIG. ..
  • the refrigerating cycle device 100 can suitably adjust the opening degrees of the first expansion valve 4 and the second expansion valve 5 according to the operating state.
  • control device 10 sets the second four-way valve 7 when the degree of superheat (SH) on the suction side of the compressor 1 becomes 2 ° C. or higher at the time of starting heating, as shown in step S31 of FIG. Control to the ON state.
  • SH degree of superheat
  • the refrigerating cycle apparatus 100 can perform a steady heating operation by increasing the frequency of the compressor 1 on condition that the degree of superheat (SH) is SH ⁇ 2 ° C. Therefore, it is possible to shorten the heating start-up time in low outside air.
  • SH degree of superheat
  • the refrigerating cycle device 100 may be a refrigerant circuit in which the second expansion valve 5 is eliminated and only the first expansion valve 4 is provided.
  • load side heat exchanger 3 various heat exchangers other than the plate heat exchanger may be used.
  • 1 Compressor 1 Compressor, 2 Heat source side heat exchanger, 3 Load side heat exchanger, 4 1st expansion valve, 5 2nd expansion valve, 6 1st four-way valve, 7 2nd four-way valve, 8 refrigerant container, 8A accumulator, 8B Receiver, 8a inflow pipe, 8b outflow pipe, 8c oil return hole, 8d straw pipe, 10 control device, 100, 200 refrigeration cycle device, L mixture, P1 1st port, P2 2nd port, P3 3rd port, P4 4th port, P5 5th port, P6 6th port, P7 7th port, P8 8th port.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

冷凍サイクル装置(100)は、暖房起動時において、制御装置(10)が第1四方弁(6)をON状態とし第2四方弁(7)をOFF状態とすることにより、冷媒が圧縮機(1)、負荷側熱交換器(3)、第1膨張弁(4)、熱源側熱交換器(2)、アキュムレータ(8A)を経て圧縮機(1)へ戻る流路を形成し、暖房運転時において、制御装置(10)が第1四方弁(6)をON状態とし第2四方弁(7)をON状態とすることにより、冷媒が圧縮機(1)、負荷側熱交換器(3)、第1膨張弁(4)、レシーバ(8B)、熱源側熱交換器(2)を経て圧縮機(1)へ戻る流路を形成する。

Description

冷凍サイクル装置
 本開示は、冷凍サイクル装置に関する。
 従来、冷媒が循環する冷媒回路を備えた冷凍サイクル装置があった。特許文献1には、暖房起動時から所定時間経過するまでは冷媒容器がアキュムレータ(液分離器)として機能し、所定時間経過後は冷媒容器がレシーバ(受液器)として機能する冷媒回路が開示されている。
特開平10-259963号公報
 従来の冷凍サイクル装置においては、アキュムレータ(液分離機)とレシーバ(受液器)との切替えを第1の流路切換手段および第2の流路切換手段を制御することにより行っていた。第1の流路切換手段および第2の流路切換手段は、各々3つの電磁弁をから構成されているため、制御が複雑になり装置も大型化していた。
 本開示の目的は、液分離機と受液器との切替え制御が容易な小型の冷凍サイクル装置を提供することである。
 本開示の冷凍サイクル装置は、冷媒が循環する冷凍サイクル装置である。冷凍サイクル装置は、圧縮機と、第1熱交換器と、第2側熱交換器と、第1の流量制御弁と、第1状態と第2状態とに状態を切替えることにより冷媒の流路を切替える第1四方弁と、第3状態と第4状態とに状態を切替えることにより冷媒の流路を切替える第2四方弁と、冷媒容器と、第1四方弁および第2四方弁を制御する制御装置と、を備える。冷凍サイクル装置は、暖房起動時において、制御装置が第1四方弁を第1状態とし第2四方弁を第4状態とすることにより、冷媒が圧縮機、第2側熱交換器、第1の流量制御弁、第1熱交換器、冷媒容器を経て圧縮機へ戻る流路を形成し、暖房運転時において、制御装置が第1四方弁を第1状態とし第2四方弁を第3状態とすることにより、冷媒が圧縮機、第2側熱交換器、第1の流量制御弁、冷媒容器、第1熱交換器を経て圧縮機へ戻る流路を形成する。
 本開示によれば、液分離機と受液器との切替え制御が容易な小型の冷凍サイクル装置を提供することができる。
実施の形態1に係る運転停止時の冷凍サイクル装置を示す図である。 実施の形態1に係る運転停止時の制御の流れを示すフローチャートである。 実施の形態1に係る運転停止時の冷凍サイクル装置を簡略化した図である。 冷媒容器を示す図である。 実施の形態1に係る暖房起動時の冷凍サイクル装置を示す図である。 実施の形態1に係る暖房起動時の制御の流れを示すフローチャートである。 実施の形態1に係る暖房起動時の冷凍サイクル装置を簡略化した図である。 実施の形態1に係る暖房運転時の冷凍サイクル装置を示す図である。 実施の形態1に係る暖房運転時の制御の流れを示すフローチャートである。 実施の形態1に係る暖房運転時の冷凍サイクル装置を簡略化した図である。 実施の形態1に係る冷房起動時の冷凍サイクル装置を示す図である。 実施の形態1に係る冷房起動時の制御の流れを示すフローチャートである。 実施の形態1に係る冷房起動時の冷凍サイクル装置を簡略化した図である。 実施の形態2に係る運転停止時の冷凍サイクル装置を示す図である。 実施の形態2に係る暖房起動時の冷凍サイクル装置を簡略化した図である。 実施の形態2に係る暖房運転時の冷凍サイクル装置を簡略化した図である。 実施の形態2に係る冷房起動時の冷凍サイクル装置を簡略化した図である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本開示の範囲は必ずしもその個数、量などに限定されない。同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。実施の形態における構成を適宜組み合わせて用いることは当初から予定されている。
 実施の形態1.
 図1は、実施の形態1に係る運転停止時の冷凍サイクル装置100を示す図である。図2は、実施の形態1に係る運転停止時の制御の流れを示すフローチャートである。図3は、実施の形態1に係る運転停止時の冷凍サイクル装置100を簡略化した図である。これから説明する各図は、冷凍サイクル装置100における各機器の接続関係および配置構成を機能的に示しており、物理的な空間における配置を必ずしも示すものではない。
 <冷凍サイクル装置100の構成>
 実施の形態1に係る冷凍サイクル装置100について説明する。図1に示されるように、冷凍サイクル装置100は、圧縮機1と、第1熱交換器としての熱源側熱交換器2と、第2熱交換器としての負荷側熱交換器3と、第1膨張弁4と、第2膨張弁5と、第1四方弁6と、第2四方弁7と、冷媒容器8と、制御装置10と、を有する。
 熱源側熱交換器2は、図示しないファンを用いて空気と冷媒との間で熱交換を行なう。負荷側熱交換器3は、水またはブライン等の熱媒体との間で熱交換を行なうプレート熱交換器である。負荷側熱交換器3の利用側配管には、図示しないポンプと、熱交換器およびファンとが接続されている。第1膨張弁4および第2膨張弁5には、電子制御式膨張弁(LEV:Linear Expansion Valve)が用いられる。図面上では、第1膨張弁4をLEV1、第2膨張弁5をLEV2として表している。第1膨張弁4および第2膨張弁5は、冷媒の流量を調整する流量制御弁として機能する。以下の説明では、第1膨張弁4をLEV1、第2膨張弁5をLEV2として説明する場合がある。
 第1四方弁6は、第1ポートP1と、第2ポートP2と、第3ポートP3と、第4ポートP4と、を有する。第2四方弁7は、第5ポートP5と、第6ポートP6と、第7ポートP7と、第8ポートP8と、を有する。
 制御装置10には、圧縮機1、第1膨張弁4、第2膨張弁5、第1四方弁6、第2四方弁7、および各種センサ等が接続される。制御装置10は、第1膨張弁4および第2膨張弁5の開度を制御することにより冷媒の流量を調整する。制御装置10は、第1四方弁6および第2四方弁7の各ポートを切替える制御により冷媒の流路を切替える。
 第1四方弁6は、第1ポートP1と第2ポートP2とが連通し、かつ、第3ポートP3と第4ポートP4とが連通する第1状態と、第1ポートP1と第3ポートP3とが連通し、かつ、第2ポートP2と第4ポートP4とが連通する第2状態とに切替可能に構成される。第1四方弁6は、制御装置10の制御に基づき、第1状態であるON状態あるいは第2状態であるOFF状態のいずれかの状態に制御される。
 第2四方弁7は、第5ポートP5と第7ポートP7とが連通し、かつ、第6ポートP6と第8ポートP8とが連通する第3状態と、第5ポートP5と第6ポートP6とが連通し、かつ、第7ポートP7と第8ポートP8とが連通する第4状態とに切替可能に構成される。第2四方弁7は、制御装置10の制御に基づき、第3状態であるON状態あるいは第4状態であるOFF状態のいずれかの状態に制御される。
 ON状態は、第1四方弁6または第2四方弁7が通電されている状態である。OFF状態は、第1四方弁6または第2四方弁7が非通電の状態である。制御装置10は、第1四方弁6および第2四方弁7の状態を切替えることにより冷房運転と暖房運転とを切替える。冷媒容器8は、冷凍サイクル装置100の運転状態により冷媒からガスを分離するアキュムレータ(液分離器)あるいは液化した冷媒を溜めるレシーバ(受液器)として機能する。
 <運転停止時について>
 冷凍サイクル装置100は、図1に示す運転停止時において第1四方弁6がON状態となり、第2四方弁7がOFF状態となる。運転停止時の冷凍サイクル装置100では、冷媒容器8がアキュムレータとして機能する。
 制御装置10は、図2に示すように運転停止時において、以下の処理を実行する。制御装置10は、圧縮機1を最低周波数で運転するように制御する(ステップS11)。冷凍サイクル装置100では、ステップS11の処理により第2四方弁7の状態が切り替わる際に弁が安定して作動するための最低作動差圧を確保する。制御装置10は、ステップS11の後、第1膨張弁4であるLEV1を減圧するために弁の開度を小さくする(ステップS12)。制御装置10は、ステップS12の後、第2膨張弁5であるLEV2を全開にする(ステップS13)。
 制御装置10は、ステップS13の後、第2四方弁7がON状態であるか否かを判定する(ステップS14)。制御装置10は、ステップS14において第2四方弁7がOFF状態であると判定した場合(ステップS14のNo)、圧縮機1の運転を停止し(ステップS16)、処理を終了する。制御装置10は、ステップS14において第2四方弁7がON状態であると判定した場合(ステップS14のYes)、第2四方弁7をON状態からOFF状態へ制御する(ステップS15)。制御装置10は、ステップS15の後、ステップS16の処理を実行し、その後処理を終了する。
 制御装置10は、運転停止時において第1四方弁6の状態がON状態であるかOFF状態であるかを判定する処理を実行していない。第1四方弁6は、ON状態であってもOFF状態であっても冷媒容器8をアキュムレータとして使用することが可能である。
 冷凍サイクル装置100は、制御装置10により第1四方弁6がON状態、第2四方弁7がOFF状態とされたときに、第1四方弁6および第2四方弁7を省略して冷媒回路を記載すると図3のような冷媒回路となる。図3に示す冷凍サイクル装置100は、圧縮機1、負荷側熱交換器3、第1膨張弁4、熱源側熱交換器2、第2膨張弁5、アキュムレータ8Aの順に接続される冷媒回路となる。冷媒容器8は、運転停止時においてアキュムレータとして使用される。
 <冷媒容器8について>
 図4は、冷媒容器8を示す図である。冷媒容器8は、流入管8aと、流出管8bと、油戻し穴8cと、ストロー管8dと、を備える。冷媒容器8には、油と冷媒との混合液Lが溜められている。冷媒容器8は、アキュムレータとして機能する場合、気液二相冷媒のうち気体が分離されて液冷媒が溜まっていく。
 冷媒容器8は、図4の左側に示す低流量域において油戻し穴8cから返油することにより圧縮機1へ液冷媒が還り圧縮機1の能力低下や信頼性低下となる液バックを防いでいる。油戻し穴8cは、液バックの発生を防ぐために穴の径を小さくしておくことが好ましい。冷媒容器8は、図4の右側に示す高流量域では油戻し穴8cのみの返油では圧縮機1の吐出油量に対して返油量が足りないため、ストロー管8dからの返油により油戻し量を確保する。
 冷媒容器8は、レシーバとして機能する場合において、凝縮器として作用する熱交換器から排出される冷媒を溜めることにより蒸発器として作用する熱交換器への冷媒の量を適正に保つ。
 <暖房起動時について>
 図5は、実施の形態1に係る暖房起動時の冷凍サイクル装置100を示す図である。図6は、実施の形態1に係る暖房起動時の制御の流れを示すフローチャートである。図7は、実施の形態1に係る暖房起動時の冷凍サイクル装置100を簡略化した図である。
 冷凍サイクル装置100は、図5に示す暖房起動時において第1四方弁6がON状態となり、第2四方弁7がOFF状態となる。暖房起動時の冷凍サイクル装置100では、冷媒容器8がアキュムレータとして機能する。
 制御装置10は、図6に示すように暖房起動時において、以下の処理を実行する。制御装置10は、圧縮機1を起動するように制御する(ステップS21)。制御装置10は、ステップS21の後、第1膨張弁4であるLEV1を減圧するために弁の開度を小さくする(ステップS22)。制御装置10は、ステップS22の後、第2膨張弁5であるLEV2を全開にする(ステップS23)。
 制御装置10は、ステップS23の後、第1四方弁6がON状態であるか否かを判定する(ステップS24)。制御装置10は、ステップS24において第1四方弁6がON状態であると判定した場合(ステップS24のYes)、処理を終了する。制御装置10は、ステップS24において第1四方弁6がOFF状態であると判定した場合(ステップS24のNo)、第1四方弁6をOFF状態からON状態へ制御し(ステップS25)、処理を終了する。
 冷凍サイクル装置100は、制御装置10により第1四方弁6がON状態、第2四方弁7がOFF状態とされたときに、第1四方弁6および第2四方弁7を省略して冷媒回路を記載すると図7のような冷媒回路となる。図7に示す冷凍サイクル装置100は、冷媒が圧縮機1、負荷側熱交換器3、第1膨張弁4、熱源側熱交換器2、第2膨張弁5、アキュムレータ8Aを経て圧縮機1へ戻る流路を形成する冷媒回路となる。冷媒容器8は、暖房起動時においてアキュムレータとして使用される。
 暖房起動時の冷凍サイクル装置100において、圧縮機1より吐出される高温高圧のガス冷媒は、負荷側熱交換器3で凝縮される。負荷側熱交換器3で凝縮された液冷媒は、その後、第1膨張弁4により減圧される。減圧された液冷媒は、その後、熱源側熱交換器2で蒸発される。熱源側熱交換器2で蒸発された気液二相冷媒は、その後、第2膨張弁5を通過し、アキュムレータ8Aで処理された後、ガス冷媒が圧縮機1に吸入される。
 <暖房運転時について>
 図8は、実施の形態1に係る暖房運転時の冷凍サイクル装置100を示す図である。図9は、実施の形態1に係る暖房運転時の制御の流れを示すフローチャートである。図10は、実施の形態1に係る暖房運転時の冷凍サイクル装置100を簡略化した図である。
 冷凍サイクル装置100は、図8に示す暖房運転時において第1四方弁6がON状態となり、第2四方弁7がON状態となる。暖房運転時の冷凍サイクル装置100では、冷媒容器8がレシーバとして機能する。
 制御装置10は、図9に示すように暖房運転時において、以下の処理を実行する。制御装置10は、図7に示す暖房起動時のアキュムレータ8Aの入口における冷媒の過熱度(SH:SuperHeat)が2℃以上であるか否かを判定する(ステップS31)。ステップS31は、暖房運転を開始する前の暖房起動時における処理である。過熱度とは、過熱蒸気と乾燥飽和蒸気との温度差をいう。過熱蒸気の温度は、図示しない温度センサにより計測される。液バックが発生すると、圧縮機1へは液冷媒が送り込まれるため、圧縮機1から吐出する冷媒の温度が下がり、それに対応して過熱度が下がることになる。冷凍サイクル装置100では、過熱度の基準値をあらかじめ設定しておき、過熱度がその基準値よりも低くなれば、液バックが発生したと判断している。
 制御装置10は、ステップS31においてSH≧2℃でない(ステップS31のNo)と判定した場合は、ステップS31の処理を繰り返す。制御装置10は、ステップS31においてSH≧2℃である(ステップS31のYes)と判定した場合は、ステップS31の処理を繰り返す。
 制御装置10は、ステップS31においてSH≧2℃であると判定した場合(ステップS31のYes)、第2四方弁7をOFF状態からON状態へ制御する(ステップS32)。制御装置10は、ステップS32の後、第1膨張弁4であるLEV1を減圧するために弁の開度を小さくする(ステップS33)。制御装置10は、ステップS33の後、第2膨張弁5であるLEV2を減圧するために弁の開度を小さくし(ステップS34)、処理を終了する。
 従来の冷凍サイクル装置では、低外気(例えば、-20℃の外気)時に熱源側熱交換器において冷媒が溜まり込む現象(冷媒寝込み)が発生し、暖房の起動直後に圧縮機へ液冷媒が流れる可能性があるため圧縮機周波数を増加させることができず、定常運転となるまでに時間を要していた。
 冷凍サイクル装置100では、暖房起動時に冷媒容器8がアキュムレータ8Aとして機能するため、冷媒容器8に冷媒を溜めることで圧縮機1内に液冷媒が流れることを防止することができる。冷凍サイクル装置100は、ステップS31の処理により過熱度(SH)がSH≧2℃であることを条件に圧縮機1の周波数を増加させて定常の暖房運転を実行することが可能となるため、低外気における暖房起動時間を短縮することができる。
 冷凍サイクル装置100は、制御装置10により第1四方弁6がON状態、第2四方弁7がON状態とされたときに、第1四方弁6および第2四方弁7を省略して冷媒回路を記載すると図10のような冷媒回路となる。図10に示す冷凍サイクル装置100は、冷媒が圧縮機1、負荷側熱交換器3、第1膨張弁4、レシーバ8B、第2膨張弁5、熱源側熱交換器2を経て圧縮機1へ戻る流路を形成する冷媒回路となる。冷媒容器8は、暖房運転時においてレシーバとして使用される。
 暖房運転時の冷凍サイクル装置100において、圧縮機1より吐出される高温高圧のガス冷媒は、負荷側熱交換器3で凝縮される。負荷側熱交換器3で凝縮された液冷媒は、その後、第1膨張弁4により減圧される。減圧された液冷媒は、その後、レシーバ8Bを通り、第2膨張弁5においてさらに減圧され、熱源側熱交換器2で蒸発される。熱源側熱交換器2で蒸発されたガス冷媒は、圧縮機1に吸入される。
 暖房運転時は、冷房運転時に比べ冷媒回路において使用する冷媒量が少ない。レシーバ8Bは、暖房運転時に余剰となる冷媒を溜めることができる。制御装置10は、第1膨張弁4を制御することによりレシーバ8Bに溜める冷媒量を調整する。負荷側熱交換器3は、使用する冷媒が最適な冷媒量に調整されることにより能力確保が可能となる。
 <冷房起動時について>
 図11は、実施の形態1に係る冷房起動時の冷凍サイクル装置100を示す図である。図12は、実施の形態1に係る冷房起動時の制御の流れを示すフローチャートである。図13は、実施の形態1に係る冷房起動時の冷凍サイクル装置100を簡略化した図である。
 冷凍サイクル装置100は、図11に示す冷房起動時において第1四方弁6がOFF状態となり、第2四方弁7がOFF状態となる。冷房起動時の冷凍サイクル装置100では、冷媒容器8がアキュムレータとして機能する。
 制御装置10は、図12に示すように冷媒起動時において、以下の処理を実行する。制御装置10は、圧縮機1を起動するように制御する(ステップS41)。制御装置10は、ステップS41の後、第1膨張弁4であるLEV1を減圧するために弁の開度を小さくする(ステップS42)。制御装置10は、ステップS42の後、第2膨張弁5であるLEV2を全開にする(ステップS43)。
 制御装置10は、ステップS43の後、第1四方弁6がON状態であるか否かを判定する(ステップS44)。制御装置10は、ステップS44において第1四方弁6がOFF状態であると判定した場合(ステップS44のNo)、処理を終了する。制御装置10は、ステップS44において第1四方弁6がON状態であると判定した場合(ステップS44のYes)、第1四方弁6をON状態からOFF状態へ制御し(ステップS45)、処理を終了する。
 冷凍サイクル装置100は、制御装置10により第1四方弁6がOFF状態、第2四方弁7がOFF状態とされたときに、第1四方弁6および第2四方弁7を省略して冷媒回路を記載すると図13のような冷媒回路となる。図13に示す冷凍サイクル装置100は、冷媒が圧縮機1、第2膨張弁5、熱源側熱交換器2、第1膨張弁4、負荷側熱交換器3、アキュムレータ8Aを経て圧縮機1へ戻る流路を形成する冷媒回路となる。冷媒容器8は、冷房起動時においてアキュムレータとして使用される。
 冷房起動時の冷凍サイクル装置100において、圧縮機1より吐出される高温高圧のガス冷媒は、熱源側熱交換器2で凝縮される。熱源側熱交換器2で凝縮された液冷媒は、その後、第1膨張弁4により減圧される。減圧された液冷媒は、その後、負荷側熱交換器3で蒸発される。負荷側熱交換器3で蒸発された気液二相冷媒は、その後、アキュムレータ8Aで処理された後、ガス冷媒が圧縮機1に吸入される。
 <冷房運転時について>
 冷凍サイクル装置100は、冷房運転時において冷房起動時と同様の冷媒回路を形成する。冷房運転時は、暖房運転時に比べ冷媒回路において使用する冷媒量が多い。冷房運転時の冷凍サイクル装置100において、圧縮機1より吐出される高温高圧のガス冷媒は、熱源側熱交換器2で凝縮される。熱源側熱交換器2で凝縮された液冷媒は、その後、第1膨張弁4により減圧される。減圧された液冷媒は、その後、負荷側熱交換器3で蒸発される。負荷側熱交換器3で蒸発された気液二相冷媒は、その後、アキュムレータ8Aで処理された後、ガス冷媒が圧縮機1に吸入される。
 実施の形態2.
 図14は、実施の形態2に係る暖房起動時の冷凍サイクル装置200を示す図である。図15は、実施の形態2に係る暖房起動時の冷凍サイクル装置200を簡略化した図である。図16は、実施の形態2に係る暖房運転時の冷凍サイクル装置200を簡略化した図である。図17は、実施の形態2に係る冷房起動時の冷凍サイクル装置200を簡略化した図である。
 <冷凍サイクル装置200の構成>
 実施の形態2に係る冷凍サイクル装置200に用いられる各種機器は、実施の形態1に係る冷凍サイクル装置100に用いられる各種機器と同じである。冷凍サイクル装置200は、冷凍サイクル装置100と比較し、第2膨張弁5の位置が異なる。冷凍サイクル装置100では、第2膨張弁5が第1四方弁6と熱源側熱交換器2との間に位置する。冷凍サイクル装置200では、第2膨張弁5が第1四方弁6と冷媒容器8との間に位置する。
 <暖房起動時について>
 冷凍サイクル装置200は、制御装置10により第1四方弁6がON状態、第2四方弁7がOFF状態とされたときに、第1四方弁6および第2四方弁7を省略して冷媒回路を記載すると図15のような冷媒回路となる。図15に示す冷凍サイクル装置200は、冷媒が圧縮機1、負荷側熱交換器3、第1膨張弁4、熱源側熱交換器2、第2膨張弁5、アキュムレータ8Aを経て圧縮機1へ戻る流路を形成する冷媒回路となる。冷媒容器8は、暖房起動時においてアキュムレータとして使用される。図15に示す冷凍サイクル装置200は、図7に示した冷媒回路と機器の配置が同様となる。
 <暖房運転時について>
 冷凍サイクル装置200は、制御装置10により第1四方弁6がON状態、第2四方弁7がON状態とされたときに、第1四方弁6および第2四方弁7を省略して冷媒回路を記載すると図16のような冷媒回路となる。図16に示す冷凍サイクル装置200は、冷媒が圧縮機1、負荷側熱交換器3、第1膨張弁4、レシーバ8B、第2膨張弁5、熱源側熱交換器2を経て圧縮機1へ戻る流路を形成する冷媒回路となる。冷媒容器8は、暖房運転時においてレシーバとして使用される。図16に示す冷凍サイクル装置200は、図10に示した冷媒回路と機器の配置が同様となる。
 <冷房起動時について>
 冷凍サイクル装置200は、制御装置10により第1四方弁6がOFF状態、第2四方弁7がOFF状態とされたときに、第1四方弁6および第2四方弁7を省略して冷媒回路を記載すると図17のような冷媒回路となる。図17に示す冷凍サイクル装置200は、冷媒が圧縮機1、熱源側熱交換器2、第1膨張弁4、負荷側熱交換器3、第2膨張弁5、アキュムレータ8Aを経て圧縮機1へ戻る流路を形成する冷媒回路となる。冷媒容器8は、冷房起動時においてアキュムレータとして使用される。図17に示す冷凍サイクル装置200は、図13に示した冷媒回路と第2膨張弁5の位置が異なっているが、同様の機能を有する。
 <冷房運転時について>
 冷凍サイクル装置200は、冷房運転時において冷房起動時と同様の冷媒回路を形成する。冷房運転時は、暖房運転時に比べ冷媒回路において使用する冷媒量が多い。冷房運転時の冷凍サイクル装置200において、圧縮機1より吐出される高温高圧のガス冷媒は、熱源側熱交換器2で凝縮される。熱源側熱交換器2で凝縮された液冷媒は、その後、第1膨張弁4により減圧される。減圧された液冷媒は、その後、負荷側熱交換器3で蒸発される。負荷側熱交換器3で蒸発された気液二相冷媒は、その後、アキュムレータ8Aで処理された後、ガス冷媒が圧縮機1に吸入される。
 <まとめ>
 本開示は、冷媒が循環する冷凍サイクル装置100に関する。冷凍サイクル装置100は、圧縮機1と、熱源側熱交換器2と、負荷側熱交換器3と、第1の流量制御弁としての第1膨張弁4と、第1状態としてのON状態と第2状態としてのOFF状態とに状態を切替えることにより冷媒の流路を切替える第1四方弁6と、第3状態としてのON状態と第4状態としてのOFF状態とに状態を切替えることにより冷媒の流路を切替える第2四方弁7と、冷媒容器8と、第1四方弁6および第2四方弁7を制御する制御装置10と、を備える。冷凍サイクル装置100は、暖房起動時において、制御装置10が第1四方弁6をON状態とし第2四方弁7をOFF状態とすることにより、冷媒が圧縮機1、負荷側熱交換器3、第1膨張弁4、熱源側熱交換器2、アキュムレータ8Aとして機能する冷媒容器8を経て圧縮機1へ戻る流路を形成し、暖房運転時において、制御装置10が第1四方弁6をON状態とし第2四方弁7をON状態とすることにより、冷媒が圧縮機1、負荷側熱交換器3、第1膨張弁4、レシーバ8Bとして機能する冷媒容器8、熱源側熱交換器2を経て圧縮機1へ戻る流路を形成する。
 このような構成を備えることによって、冷凍サイクル装置100は、冷媒容器8を液分離機であるアキュムレータ8Aと受液器であるレシーバ8Bとに容易に切替えることができる。このため、冷凍サイクル装置100は、第1四方弁6と第2四方弁7とを切替える簡単な制御により運転状態に応じた小型の好適な冷凍サイクル装置とすることができる。
 好ましくは、冷凍サイクル装置100は、冷房起動時において、制御装置10が第1四方弁6をOFF状態とし第2四方弁7をOFF状態とすることにより、冷媒が圧縮機1、熱源側熱交換器2、第1膨張弁4、負荷側熱交換器3、アキュムレータ8Aとして機能する冷媒容器8を経て圧縮機1へ戻る流路を形成する。
 このような構成を備えることによって、冷凍サイクル装置100は、第1四方弁6と第2四方弁7とを切替える簡単な制御により運転状態に応じた小型の好適な冷凍サイクル装置とすることができる。
 好ましくは、冷媒容器8は、暖房起動時および冷媒起動時において冷媒に含まれる液とガスとを分離する液分離器であるアキュムレータ8Aとして用いられ、暖房運転時において冷媒に含まれる液を貯留する受液器であるレシーバ8Bとして用いられる。
 このような構成を備えることによって、冷媒容器8は、運転状態に応じてアキュムレータ8Aとレシーバ8Bとの機能を切替えることができるため、別々に設けるよりも冷凍サイクル装置を小型化することができる。
 好ましくは、冷凍サイクル装置100は、第2の流量制御弁としての第2膨張弁5をさらに備える。冷房起動時において、第1膨張弁4は、図13に示すように、熱源側熱交換器2と負荷側熱交換器3との間に配置され、第2膨張弁5は、圧縮機1と熱源側熱交換器2との間に配置される。より具体的に、冷房起動時において、第1膨張弁4は、図11に示すように、第2四方弁7と負荷側熱交換器3との間に配置され、第2膨張弁5は、第1四方弁6と熱源側熱交換器2との間に配置される。
 このような構成を備えることによって、冷凍サイクル装置100は、運転状態に応じて第1膨張弁4および第2膨張弁5の位置を冷媒の流量を制御可能な適切な位置とすることができる。
 好ましくは、冷凍サイクル装置200は、第2の流量制御弁としての第2膨張弁5をさらに備える。冷房起動時において、第1膨張弁4は、図17に示すように、熱源側熱交換器2と負荷側熱交換器3との間に配置され、第2膨張弁5は、負荷側熱交換器3とアキュムレータ8Aとして機能する冷媒容器8との間に配置される。より具体的に、冷房起動時において、第1膨張弁4は、図14に示すように、第2四方弁7と負荷側熱交換器3との間に配置され、第2膨張弁5は、第1四方弁6とアキュムレータ8Aとして機能する冷媒容器8との間に配置される。
 このような構成を備えることによって、冷凍サイクル装置100は、運転状態に応じて第1膨張弁4および第2膨張弁5の位置を冷媒の流量を制御可能な適切な位置とすることができる。
 好ましくは、制御装置10は、第1膨張弁4および第2膨張弁5の開度を制御し、暖房起動時および冷媒起動時において、図6,図12に示すように、第1膨張弁4の開度を全開よりも小さくし、第2膨張弁5の開度を全開とする。
 このような構成を備えることによって、冷凍サイクル装置100は、運転状態に応じて好適に第1膨張弁4および第2膨張弁5の開度を調整することができる。
 好ましくは、制御装置10は、暖房運転時において、図9に示すように、第1膨張弁4の開度を全開よりも小さくするとともに、第2膨張弁5の開度を全開よりも小さくする。
 このような構成を備えることによって、冷凍サイクル装置100は、運転状態に応じて好適に第1膨張弁4および第2膨張弁5の開度を調整することができる。
 好ましくは、制御装置10は、暖房起動時において図9のステップS31に示すように、圧縮機1の吸入側の過熱度(SH)が2℃以上となったときに、第2四方弁7をON状態へ制御する。
 このような構成を備えることによって、冷凍サイクル装置100は、過熱度(SH)がSH≧2℃であることを条件に圧縮機1の周波数を増加させて定常の暖房運転を実行することが可能となるため、低外気における暖房起動時間を短縮することができる。
 <変形例>
 冷凍サイクル装置100は、第2膨張弁5を無くし、第1膨張弁4のみを備えた冷媒回路としてもよい。
 負荷側熱交換器3は、プレート熱交換器以外の各種の熱交換器が用いられるようにしてもよい。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 圧縮機、2 熱源側熱交換器、3 負荷側熱交換器、4 第1膨張弁、5 第2膨張弁、6 第1四方弁、7 第2四方弁、8 冷媒容器、8A アキュムレータ、8B レシーバ、8a 流入管、8b 流出管、8c 油戻し穴、8d ストロー管、10 制御装置、100,200 冷凍サイクル装置、L 混合液、P1 第1ポート、P2 第2ポート、P3 第3ポート、P4 第4ポート、P5 第5ポート、P6 第6ポート、P7 第7ポート、P8 第8ポート。

Claims (8)

  1.  冷媒が循環する冷凍サイクル装置であって、
     圧縮機と、
     第1熱交換器と、
     第2熱交換器と、
     第1の流量制御弁と、
     第1状態と第2状態とに状態を切替えることにより前記冷媒の流路を切替える第1四方弁と、
     第3状態と第4状態とに状態を切替えることにより前記冷媒の流路を切替える第2四方弁と、
     冷媒容器と、
     前記第1四方弁および前記第2四方弁を制御する制御装置と、を備え、
     前記冷凍サイクル装置は、
      暖房起動時において、前記制御装置が前記第1四方弁を前記第1状態とし前記第2四方弁を前記第4状態とすることにより、前記冷媒が前記圧縮機、前記第2熱交換器、前記第1の流量制御弁、前記第1熱交換器、前記冷媒容器を経て前記圧縮機へ戻る流路を形成し、
      暖房運転時において、前記制御装置が前記第1四方弁を前記第1状態とし前記第2四方弁を前記第3状態とすることにより、前記冷媒が前記圧縮機、前記第2熱交換器、前記第1の流量制御弁、前記冷媒容器、前記第1熱交換器を経て前記圧縮機へ戻る流路を形成する、冷凍サイクル装置。
  2.  前記冷凍サイクル装置は、冷房起動時において、前記制御装置が前記第1四方弁を前記第2状態とし前記第2四方弁を前記第4状態とすることにより、前記冷媒が前記圧縮機、前記第1熱交換器、前記第1の流量制御弁、前記第2熱交換器、前記冷媒容器を経て前記圧縮機へ戻る流路を形成する、請求項1に記載の冷凍サイクル装置。
  3.  前記冷媒容器は、前記暖房起動時および前記冷媒起動時において前記冷媒に含まれる液とガスとを分離する液分離器として用いられ、前記暖房運転時において前記冷媒に含まれる前記液を貯留する受液器として用いられる、請求項2に記載の冷凍サイクル装置。
  4.  前記冷凍サイクル装置は、第2の流量制御弁をさらに備え、
     前記冷房起動時において、前記第1の流量制御弁は、前記第1熱交換器と前記第2熱交換器との間に配置され、前記第2の流量制御弁は、前記圧縮機と前記第1熱交換器との間に配置される、請求項2または請求項3に記載の冷凍サイクル装置。
  5.  前記冷凍サイクル装置は、第2の流量制御弁をさらに備え、
     前記冷房起動時において、前記第1の流量制御弁は、前記第1熱交換器と前記第2熱交換器との間に配置され、前記第2の流量制御弁は、前記第2熱交換器と前記冷媒容器との間に配置される、請求項2または請求項3に記載の冷凍サイクル装置。
  6.  前記制御装置は、
      前記第1の流量制御弁および前記第2の流量制御弁の開度を制御し、
      前記暖房起動時および前記冷媒起動時において、前記第1の流量制御弁の開度を全開よりも小さくし、前記第2の流量制御弁の開度を全開とする、請求項4または請求項5に記載の冷凍サイクル装置。
  7.  前記制御装置は、前記暖房運転時において、前記第1の流量制御弁の開度を全開よりも小さくするとともに、前記第2の流量制御弁の開度を全開よりも小さくする、請求項6に記載の冷凍サイクル装置。
  8. 前記制御装置は、前記暖房起動時において前記圧縮機の吸入側の過熱度が2℃以上となったときに、前記第2四方弁を前記第3状態へ制御する、請求項1から請求項7のいずれか1項に記載の冷凍サイクル装置。
PCT/JP2021/000100 2021-01-05 2021-01-05 冷凍サイクル装置 WO2022149188A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/251,746 US20240019186A1 (en) 2021-01-05 2021-01-05 Refrigeration cycle apparatus
PCT/JP2021/000100 WO2022149188A1 (ja) 2021-01-05 2021-01-05 冷凍サイクル装置
JP2022573817A JP7427116B2 (ja) 2021-01-05 2021-01-05 冷凍サイクル装置
CN202180087848.0A CN116783433A (zh) 2021-01-05 2021-01-05 制冷循环装置
EP21917416.6A EP4276387A4 (en) 2021-01-05 2021-01-05 REFRIGERATION CYCLE DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/000100 WO2022149188A1 (ja) 2021-01-05 2021-01-05 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2022149188A1 true WO2022149188A1 (ja) 2022-07-14

Family

ID=82358124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000100 WO2022149188A1 (ja) 2021-01-05 2021-01-05 冷凍サイクル装置

Country Status (5)

Country Link
US (1) US20240019186A1 (ja)
EP (1) EP4276387A4 (ja)
JP (1) JP7427116B2 (ja)
CN (1) CN116783433A (ja)
WO (1) WO2022149188A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259963A (ja) 1997-03-19 1998-09-29 Mitsubishi Electric Corp 冷凍サイクル装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20005576D0 (no) * 2000-09-01 2000-11-03 Sinvent As Reversibel fordampningsprosess
US7137270B2 (en) * 2004-07-14 2006-11-21 Carrier Corporation Flash tank for heat pump in heating and cooling modes of operation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259963A (ja) 1997-03-19 1998-09-29 Mitsubishi Electric Corp 冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4276387A4

Also Published As

Publication number Publication date
JP7427116B2 (ja) 2024-02-02
EP4276387A4 (en) 2024-03-06
CN116783433A (zh) 2023-09-19
US20240019186A1 (en) 2024-01-18
JPWO2022149188A1 (ja) 2022-07-14
EP4276387A1 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
JP4715561B2 (ja) 冷凍装置
JP3894221B1 (ja) 空気調和装置
JP4725387B2 (ja) 空気調和装置
WO2013088590A1 (ja) 室外機及び空気調和装置
JP3982548B2 (ja) 冷凍装置
KR102350935B1 (ko) 공기조화기
WO2014091909A1 (ja) ヒートポンプ式加熱装置
JPWO2006003925A1 (ja) 冷凍装置及び空気調和装置
JP2002081767A (ja) 空気調和装置
WO2011135630A1 (ja) ヒートポンプシステム
CN113167517A (zh) 空调装置
WO2017138108A1 (ja) 空気調和装置
JP2015068564A (ja) ヒートポンプシステム、及び、ヒートポンプ式給湯器
WO2014103407A1 (ja) 空気調和装置
CN114270111B (zh) 热源机组和制冷装置
JP4100052B2 (ja) 空気調和機
WO2022149188A1 (ja) 冷凍サイクル装置
CN111919073B (zh) 制冷装置
JPH04340046A (ja) 空気調和装置の運転制御装置
JP2017166709A (ja) 冷凍サイクル装置及びそれを備えた温水暖房装置
JP2004020070A (ja) ヒートポンプ式冷温水機
JP6797262B2 (ja) 冷凍サイクル装置
CN114402171A (zh) 热泵
JP6588645B2 (ja) 冷凍サイクル装置
WO2013073070A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917416

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18251746

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022573817

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180087848.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021917416

Country of ref document: EP

Effective date: 20230807