WO2022148060A1 - 一种高熵铸铁及其制备方法 - Google Patents

一种高熵铸铁及其制备方法 Download PDF

Info

Publication number
WO2022148060A1
WO2022148060A1 PCT/CN2021/119588 CN2021119588W WO2022148060A1 WO 2022148060 A1 WO2022148060 A1 WO 2022148060A1 CN 2021119588 W CN2021119588 W CN 2021119588W WO 2022148060 A1 WO2022148060 A1 WO 2022148060A1
Authority
WO
WIPO (PCT)
Prior art keywords
entropy
cast iron
alloy
preparation
iron
Prior art date
Application number
PCT/CN2021/119588
Other languages
English (en)
French (fr)
Inventor
陈正
樊宇
刘爽
肖刚
王立栋
刘金柱
刘猛
刘维
陈波
Original Assignee
中国矿业大学
山东永乐机械制造有限公司
江苏徐工工程机械研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学, 山东永乐机械制造有限公司, 江苏徐工工程机械研究院有限公司 filed Critical 中国矿业大学
Publication of WO2022148060A1 publication Critical patent/WO2022148060A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/08Manufacture of cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys
    • C22C33/10Making cast-iron alloys including procedures for adding magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon

Definitions

  • the invention belongs to the application field of casting material forming and advanced manufacturing, in particular to a high-entropy cast iron with a eutectic high-entropy alloy as a design concept, which can form high-entropy gray iron and high-entropy ductile iron after inoculation and spheroidization, and is mainly used for sand molds Casting, special casting, 3D printing molding, etc.
  • High-entropy alloys are a new class of metallic materials composed of a variety of main elements, which have the characteristics of high mixing entropy and severe lattice distortion. Compared with single-element-based alloys, its unique design concept and microstructure make it exhibit a series of excellent properties such as high strength, high hardness, high wear resistance and high radiation resistance, and become potential structural materials in the future. . However, the high-entropy alloys with single-phase FCC structure have strong plasticity but insufficient strength, while those with single-phase BCC structure have high strength but insufficient plasticity.
  • high-entropy alloys have solid solution as the main structure, poor casting fluidity, difficult to feed, and serious macro- and micro-segregation of casting, which limit the large-scale industrial application of high-entropy alloys.
  • the melting point of eutectic alloy is lower than that of pure component, the fluidity is better, the casting process is simple, and the casting quality is good.
  • the structure is composed of FCC and BCC or FCC and hard intermetallic compound dual-phase structure, the alloy will have the common advantages of eutectic and high-entropy alloy to obtain more excellent performance.
  • Cast iron is an iron-carbon alloy with a carbon content of more than 2%.
  • Industrial cast iron generally has a carbon content of 2.5% to 3.5%, and its main element is iron. According to the content of carbon in cast iron, cast iron can be classified into hypoeutectic cast iron. , eutectic cast iron and hypereutectic cast iron.
  • cast iron contains many trace elements such as Si, Mn, Al, Cr, and Co. Cast iron is easy to smelt, low cost, has good casting performance, high wear resistance, good shock absorption and cutting performance, and is widely used. However, the requirements for cast iron in practical production are getting higher and higher, and traditional cast iron materials have been difficult to meet the needs.
  • the present invention uses the idea of high entropy alloys to design cast iron components, so that the main elements are changed from a single iron element to a multi-component.
  • Co, Cr, Fe, Ni and other elements By adding C to the high-entropy alloy and changing the concentration of Co, Cr, Fe, Ni, etc. and other trace elements, high-entropy cast iron can be prepared.
  • the matrix is composed of FCC and hard intermetallic compounds or graphite, which can have both hardness. And the advantages of high ductility and good mechanical properties.
  • Adding carbon to high-entropy alloys to form high-entropy cast irons is a new design concept for cast iron alloys.
  • the addition of carbon can reduce the liquidus, that is, the melting temperature, during the solidification process, thereby reducing the casting temperature of high-entropy cast iron. In the atmospheric environment, the reduction of the casting temperature is very beneficial to the cost control of the preparation of high-entropy cast iron alloys.
  • adding carbon to high-entropy alloys can reduce solidification shrinkage and reduce defects when the alloy is cast. Therefore, the new cast iron based on the concept of high entropy is a new alloy that can combine the advantages of eutectic high entropy alloy and cast iron.
  • the final high-entropy cast iron has the performance advantages of high-entropy alloys, and can be cast in conventional atmospheric environment. It is an innovative manifestation of cast iron system alloys in the field of high-entropy, and has a wide range of applications and production prospects.
  • the present invention provides a high-entropy cast iron and a preparation method thereof, which can combine the advantages of high-entropy alloy and cast iron.
  • the technical scheme adopted in the present invention is:
  • a high-entropy cast iron the alloy composition of which is Co a Cr b Fe c Ni d C e X f , wherein X is a trace element, a, b, c, d, e, f are the mole percentages of the corresponding elements, respectively, a>5%, b>5%, c>5%, d>5% and a+b+c+d>90%, 0.2% ⁇ e ⁇ 0.4%, f ⁇ 0%.
  • the X is one or more of Si, Al, B, Mo, and Cr.
  • the microstructure of the cobalt-chromium-iron-nickel high-entropy cast iron is a lamellar eutectic or a dissociated eutectic with a spherical graphite structure.
  • a preparation method of high entropy cast iron comprising the following steps:
  • Step 1 taking by weighing raw materials according to the mol ratio of each element in the alloy composition of the high-entropy cast iron;
  • step 2 the raw materials are put into an induction melting furnace, an inert gas is introduced during melting or a covering agent is added to prevent oxidation, and the cobalt-chromium-iron-nickel high-entropy cast iron is obtained by melting.
  • High-entropy cast iron is obtained by adjusting the distribution of carbon elements in the raw material to control its microstructure.
  • the method for adding a nodularizing agent to assist the nodularizing treatment is as follows: during smelting, adding a nodularizing agent to the molten high-entropy cast iron liquid at 1300-1350° C., and reacting for 30-40 seconds to obtain high-entropy nodular cast iron, wherein, The addition amount of the nodulizer is 0.8% to 1.5% of the mass of the molten high-entropy cast iron.
  • the eutectic high-entropy structure can be obtained by adjusting the content of each main component, or by adding a ferrosilicon inoculant to assist the inoculation treatment to obtain high-entropy gray cast iron.
  • the method of adding ferrosilicon inoculant to assist inoculation treatment is as follows: adding ferrosilicon inoculant to molten high-entropy cast iron liquid at 1300-1360° C. to obtain high-entropy gray cast iron, wherein the addition amount of ferrosilicon inoculant is It is 0.15% to 0.2% of the mass of the molten high-entropy cast iron.
  • the cobalt-chromium-iron-nickel high-entropy cast iron provided by the present invention can form favorable properties due to the complex arrangement of different atomic species in the high-entropy alloy, including the serious lattice distortion caused by the high-entropy effect. effect, slow diffusion effect and cocktail effect. Adding carbon to high-entropy alloys can reduce shrinkage during solidification and lower the solidification temperature, making it more convenient to produce.
  • high-entropy cast iron corresponding to traditional cast iron such as gray cast iron.
  • the original single main element of cast iron is replaced with multiple main elements, so that the matrix structure can be composed of two phases of FCC and compound or FCC and graphite phase, and excellent mechanical properties can be obtained.
  • the positive effects of trace elements on the oxidation resistance, corrosion resistance and high temperature stability of the alloy are fully utilized, and the alloy has excellent comprehensive properties.
  • its alloy composition is Co a Cr b Fe c Ni d C e X f , wherein X is a trace element, and a, b, c, d, e, and f are the corresponding elements, respectively.
  • Molar percentage a>5%, b>5%, c>5%, d>5% and a+b+c+d>90%, 0.2% ⁇ e ⁇ 0.4%, f ⁇ 0%.
  • X is one or more of Si, Al, B, Mo, and Cr.
  • the microstructure of the high-entropy cast iron of the present invention is a lamellar eutectic or a dissociated eutectic with a spherical graphite structure.
  • a preparation method of high entropy cast iron comprising the following steps:
  • Step 1 according to the mol ratio of each element in the alloy composition of high-entropy cast iron, take the raw material
  • step 2 the raw materials are put into an induction melting furnace, an inert gas is introduced during melting or a covering agent is added to prevent oxidation, and the cobalt-chromium-iron-nickel high-entropy cast iron is obtained by melting.
  • high-entropy cast iron is obtained by adjusting the distribution state of carbon element in the raw material to control its microstructure.
  • the distribution state of carbon element refers to the form of carbon element in the alloy. If the carbon element is distributed in a spherical shape, high-entropy ductile iron is obtained. , if the carbon element is distributed in flakes, high-entropy gray cast iron is obtained.
  • high-entropy ductile iron or high-entropy gray cast iron is obtained by adding spheroidizing agent and inoculant for spheroidizing treatment and inoculating treatment.
  • the method of adding a nodularizing agent to assist the nodularizing treatment is as follows: during smelting, adding a nodularizing agent to the molten high-entropy cast iron liquid at 1300-1350° C., and reacting for 30-40 seconds to obtain high-entropy nodular cast iron, wherein the nodularizing agent is spheroidized.
  • the additive amount of the agent is 0.8% to 1.5% of the mass of the molten high-entropy cast iron.
  • the eutectic high-entropy structure is obtained by adjusting the content of each main component, or the high-entropy gray cast iron is obtained by adding a ferrosilicon inoculant to assist the inoculation treatment.
  • the method of adding a ferrosilicon inoculant to assist the inoculation treatment is as follows: adding a ferrosilicon inoculant to the molten high-entropy cast iron liquid at 1300-1360° C. to obtain a high-entropy gray cast iron, wherein the addition amount of the ferrosilicon inoculant is the amount of molten iron.
  • the mass of the high-entropy cast iron is 0.15% to 0.2%.
  • the preparation method of the cobalt-chromium-iron-nickel high-entropy cast iron of the present embodiment is as follows: pre-treating the high-purity raw materials to reduce the content of harmful impurities; weighing the raw materials according to the molar ratio of each element; placing the raw materials in an induction melting furnace for heating After being completely melted at 1350°C, add ferrosilicon inoculant (brand: FeSi75-A, the amount added is 0.15% to 0.2% of the quality of the high-entropy alloy.) and rare earth magnesium ferrosilicon alloy nodularizer (brand: FeSiMg8Re3, the amount added is 0.8%-1.5% of the mass of the high-entropy alloy) for 30-40 seconds, and finally obtain a 50g high-entropy cast iron ingot, in which the graphite exists in the high-entropy cast iron matrix in the form of nodular graphite after inoculation and spheroidization.
  • the eutectic high-entropy structure is obtained by adjusting the content of each main component, so that the high-entropy cast iron obtains the eutectic structure, and the high-entropy ductile iron is obtained by inoculation and spheroidization.
  • the preparation method of the cobalt-chromium-iron-nickel high-entropy cast iron of the present embodiment is as follows: pre-treating the high-purity raw materials to reduce the content of harmful impurities; weighing the raw materials according to the molar ratio of each element; placing the raw materials in an induction melting furnace for heating After being completely melted at 1350°C, a ferrosilicon inoculant (the amount added is 0.15% to 0.2% of the quality of the high-entropy alloy) is added to react for 30 to 40 seconds, and the finally obtained eutectic high-entropy cast iron ingot, in which the graphite is inoculated After treatment, it exists in the high-entropy cast iron matrix in the form of flake graphite.
  • the eutectic high-entropy structure is obtained by adjusting the content of each main component, so that the high-entropy cast iron obtains the eutectic structure, and the high-entropy gray cast iron is obtained by inoculation treatment.

Abstract

本发明公开了一种高熵铸铁及其制备方法,高熵铸铁的合金组分为CoaCrbFecNidCeXf,其中,X为微量元素,a、b、c、d、e、f分别为对应元素的摩尔百分比,a>5%,b>5%,c>5%,d>5%且a+b+c+d>90%,0.2%<e<0.4%,f≥0%。本发明将原先铸铁的单一主元图展为多主元,能使基体组织由FCC和化合物或FCC和石墨相两相构成,获得优良的机械性能。在合金设计过程中,充分利用了微量元素对合金抗氧化、抗腐蚀、高温稳定性的积极影响,合金综合性能优异。

Description

一种高熵铸铁及其制备方法 技术领域
本发明属于铸造材料成型及先进制造应用领域,具体涉及一种以共晶高熵合金为设计理念的高熵铸铁,经孕育和球化后可形成高熵灰铁和高熵球铁,主要用于砂型铸造、特种铸造、3D打印成型等。
背景技术
高熵合金是由多种主要元素组成的一类新型金属材料,具有高混合熵与严重晶格畸变等特点。与单元素基合金相比,其独特的设计理念和微观组织形态使其表现出高强度、高硬度、高耐磨性及高抗辐照性等一系列优异的性能,成为未来潜在的结构材料。但单相FCC结构的高熵合金塑性强而强度不足,单相BCC结构的高熵合金强度高但塑性不足。并且高熵合金以固溶体为主要结构,铸造流动性差,难以补缩,铸造的宏观和微观偏析严重,限制了高熵合金的规模化工业化应用。而共晶合金熔点比纯组元低,流动性较好,铸造过程简单,铸件质量好,若能将高熵合金和共晶合金的概念结合,获得具有共晶结构的高熵合金,使合金结构由FCC和BCC或者FCC和硬质金属间化合物双相结构组成,该合金将具有共晶和高熵合金共同优势从而获得更加优异的性能。
铸铁是含碳量在2%以上的铁碳合金,工业用铸铁一般含碳量为2.5%~3.5%,其主要元素为铁,根据碳在铸铁中含量分类,铸铁可分为亚共晶铸铁、共晶铸铁和过共晶铸铁。为了得到不同的性能,铸铁中多含有Si、Mn、Al、Cr、Co等微量元素。铸铁熔炼简便,成本低廉,具有良好的铸造性能,很高的耐磨性,良好的减震性以及切削加工性能,获得较为广泛的应用。但实际生产中应用中对铸铁的要求越来越高,传统的铸铁材料已经难以满足需要,因而本发明利用高熵合金的思想设计铸铁成分,使其主要元素由单一的铁元素转变为多元的Co、Cr、Fe、Ni等元素。通过在高熵合金中添加C并改变Co、Cr、Fe、Ni等以及其他微量元素的浓度,可以制备出高熵铸铁,基体由FCC和硬质的金属间化合物或者石墨构成,能够兼具硬度和延展性高的优点,具有良好机械性能。
在高熵合金中添加碳形成高熵铸铁是铸铁合金的新型设计理念。碳的添加在凝固过程中能够降低液相线也就是熔融温度,从而降低高熵铸铁的铸造温度,在大气环境下,铸造温度的降低对高熵铸铁合金制备的成本控制是非常有利的。另外,向高熵合金中添加碳可以减少凝固收缩率,使合金铸造时减少缺陷。因此,基于高熵理念的新型铸铁是 一种能够结合共晶高熵合金与铸铁两种合金优点的新型合金。
现有的高熵合金制备方法表明,部分高熵合金可以用常规铸造手段制备,无需特殊设备和技术。文献(Lu Y,Gao X,Dong Y,et al.Preparing bulk ultrafine-microstructure high-entropy alloys via direct solidification[J].Nanoscale,2017:10.1039.C7NR07281C.)表明通过传统铸造工艺就能够成功获得高质量的新型工业规模的AlCoCr xFeNi(1.8<x<2.0)高熵合金铸锭。能够在大气条件下成功铸造高熵铸铁使这一合金更具有成本效益。最终得到的高熵铸铁具有高熵合金的性能优点,同时可在常规大气环境下铸造而成,是铸铁体系合金在高熵领域的创新体现,并且具有广泛的应用和生产前景。
发明内容
为了克服现有技术中存在的不足,本发明提供一种高熵铸铁及其制备方法,能够结合高熵合金与铸铁两种合金优点。
为实现上述目的,本发明采用的技术方案为:
一种高熵铸铁,其合金组分为Co aCr bFe cNi dC eX f,其中,X为微量元素,a、b、c、d、e、f分别为对应元素的摩尔百分比,a>5%,b>5%,c>5%,d>5%且a+b+c+d>90%,0.2%<e<0.4%,f≥0%。
所述的X为Si、Al、B、Mo、Cr的一种或几种。
所述钴铬铁镍高熵铸铁的微观组织为层片状共晶或具有球状石墨结构的离异共晶。
一种高熵铸铁的制备方法,包括以下步骤:
步骤1,按照所述高熵铸铁的合金组分中各元素的摩尔比称取原料;
步骤2,将原料放入感应熔炼炉,熔炼时通入惰性气体或者加覆盖剂防止氧化,经熔炼得到所述钴铬铁镍高熵铸铁。
通过调节原料中碳元素的分布状态来调控其微观组织得到高熵铸铁。
通过加入球化剂和孕育剂进行球化处理和孕育处理,得到高熵球墨铸铁或高熵灰铸铁。
所述加入球化剂辅助球化处理的方法为:熔炼时,在1300~1350℃时向熔融的高熵铸铁液体中加入球化剂,反应30~40秒,得到高熵球墨铸铁,其中,球化剂的添加量为熔融的高熵铸铁的质量的0.8%~1.5%。
通过调节各主元成分的含量获得共晶高熵组织,或者加入硅铁孕育剂辅助孕育处理,得到高熵灰口铸铁。
所述加入硅铁孕育剂辅助孕育处理的方法是:在1300~1360℃时向熔融的高熵铸铁液体中加入硅铁孕育剂,得到高熵灰口铸铁,其中,硅铁孕育剂的添加量为熔融的高熵铸铁的质量的0.15%~0.2%。
本发明的高熵铸铁在砂型铸造、特种铸造、3D打印成型中的用途。
有益效果:本发明提供的钴铬铁镍高熵铸铁,与普通单主元合金相比,高熵合金中不同原子种类的复杂排列能够形成有利的性能,其中包括高熵效应严重的晶格畸变效应,缓慢的扩散效应和鸡尾酒效应。在高熵合金中添加碳元素能够减少凝固过程中的收缩,降低凝固温度,使其生产更为便利。由此提出高熵铸铁的概念,即用多主元来替换铸铁中单一主元铁元素,通过成分调控改变石墨数量、大小、形状以及分布状况,再通过球化处理及孕育处理得到与球墨铸铁、灰铸铁等传统铸铁对应的高熵铸铁。
本发明中,将原先铸铁的单一主元替换为多主元,能使基体组织由FCC和化合物或FCC和石墨相两相构成,获得优良的机械性能。在合金设计过程中,充分利用了微量元素对合金抗氧化、抗腐蚀、高温稳定性的积极影响,合金综合性能优异。
具体实施方式
本发明的一种高熵铸铁,其合金组分为Co aCr bFe cNi dC eX f,其中,X为微量元素,a、b、c、d、e、f分别为对应元素的摩尔百分比,a>5%,b>5%,c>5%,d>5%且a+b+c+d>90%,0.2%<e<0.4%,f≥0%。
其中,X为Si、Al、B、Mo、Cr的一种或几种。
本发明的高熵铸铁的微观组织为层片状共晶或具有球状石墨结构的离异共晶。
一种高熵铸铁的制备方法,包括以下步骤:
步骤1,按照高熵铸铁的合金组分中各元素的摩尔比称取原料;
步骤2,将原料放入感应熔炼炉,熔炼时通入惰性气体或者加覆盖剂防止氧化,经熔炼得到所述钴铬铁镍高熵铸铁。
其中,通过调节原料中碳元素的分布状态来调控其微观组织得到高熵铸铁,碳元素的分布状态是指碳元素分布于合金中的形态,若碳元素呈球状分布,则得到高熵球墨铸铁,若碳元素为呈片状分布,则得到高熵灰口铸铁。
其中,通过加入球化剂和孕育剂进行球化处理和孕育处理,得到高熵球墨铸铁或高熵灰铸铁。
加入球化剂辅助球化处理的方法为:熔炼时,在1300~1350℃时向熔融的高熵铸铁 液体中加入球化剂,反应30~40秒,得到高熵球墨铸铁,其中,球化剂的添加量为熔融的高熵铸铁的质量的0.8%~1.5%。
其中,通过调节各主元成分的含量获得共晶高熵组织,或者加入硅铁孕育剂辅助孕育处理,得到高熵灰口铸铁。
加入硅铁孕育剂辅助孕育处理的方法是:在1300~1360℃时向熔融的高熵铸铁液体中加入硅铁孕育剂,得到高熵灰口铸铁,其中,硅铁孕育剂的添加量为熔融的高熵铸铁的质量的0.15%~0.2%。
下面结合实施例对本发明作更进一步的说明。
实施例1
本实施例的钴铬铁镍高熵铸铁的合金成为Co aCr bFe cNi dC eX f,其中a=24.85%、b=24.85%、c=24.85%、d=24.85%、e=0.6%、f=0%,即CoCrFeNiC 0.6
本实施例的钴铬铁镍高熵铸铁的制备方法为:对高纯原料进行前处理,使其有害杂质含量降低;按照各元素的摩尔比称取原料;将原料放入感应熔炼炉中加热至1350℃完全熔化后,加入硅铁孕育剂(牌号:FeSi75-A,加入量为高熵合金质量的0.15%~0.2%。)和稀土镁硅铁合金球化剂(牌号:FeSiMg8Re3,加入量为高熵合金质量的0.8%~1.5%)反应30~40秒,最终得到的50g高熵铸铁铸锭,其中的石墨经孕育和球化处理后以球墨的形式存在高熵铸铁基体中。
本实施例中,通过调节各主元成分的含量获得共晶高熵组织,使高熵铸铁获得共晶组织,又通过孕育和球化处理,获得了高熵球墨铸铁。
实施例2
本实施例的钴铬铁镍高熵铸铁的合金成为Co aCr bFe cNi dC eX f,其中X为Mo,a=24.86%、b=24.86%、c=24.86%、d=24.86%、e=24.86%、f=0.36%以及g=0.2%,即CoCrFeNiC 0.36Mo 0.2
本实施例的钴铬铁镍高熵铸铁的制备方法为:对高纯原料进行前处理,使其有害杂质含量降低;按照各元素的摩尔比称取原料;将原料放入感应熔炼炉中加热至1350℃完全熔化后,加入硅铁孕育剂(加入量为高熵合金质量的0.15%~0.2%。)反应30~40秒,最终得到的共晶高熵铸铁铸锭,其中的石墨经孕育处理后以片状石墨的形式存在高熵铸铁基体中。
本实施例中,通过调节各主元成分的含量获得共晶高熵组织,使高熵铸铁获得共晶组织,又通过孕育处理,获得了高熵灰口铸铁。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

  1. 一种高熵铸铁,其特征在于:其合金组分为Co aCr bFe cNi dC eX f,其中,X为微量元素,a、b、c、d、e、f分别为对应元素的摩尔百分比,a>5%,b>5%,c>5%,d>5%且a+b+c+d>90%,0.2%<e<0.4%,f≥0%;所述高熵铸铁的微观组织为层片状共晶或具有球状石墨结构的离异共晶。
  2. 根据权利要求1所述的高熵铸铁,其特征在于:所述的X为Si、Al、B、Mo、Cr的一种或几种。
  3. 一种权利要求1-2任一所述的高熵铸铁的制备方法,其特征在于:包括以下步骤:
    步骤1,按照所述高熵铸铁的合金组分中各元素的摩尔比称取原料;
    步骤2,将原料放入感应熔炼炉,熔炼时通入惰性气体或者加覆盖剂防止氧化,经熔炼得到所述钴铬铁镍高熵铸铁。
  4. 根据权利要求3所述的高熵铸铁的制备方法,其特征在于:通过调节原料中碳元素的分布状态来调控其微观组织得到高熵铸铁。
  5. 根据权利要求3所述的高熵铸铁的制备方法,其特征在于:通过加入球化剂和孕育剂进行球化处理和孕育处理,得到高熵球墨铸铁或高熵灰铸铁。
  6. 根据权利要求5所述的高熵铸铁的制备方法,其特征在于:所述加入球化剂辅助球化处理的方法为:熔炼时,在1300~1350℃时向熔融的高熵铸铁液体中加入球化剂,反应30~40秒,得到高熵球墨铸铁,其中,球化剂的添加量为熔融的高熵铸铁的质量的0.8%~1.5%。
  7. 根据权利要求3所述的高熵铸铁的制备方法,其特征在于:通过调节各主元成分的含量获得共晶高熵组织,或者加入硅铁孕育剂辅助孕育处理,得到高熵灰口铸铁。
  8. 根据权利要求7所述的高熵铸铁的制备方法,其特征在于:所述加入硅铁孕育剂辅助孕育处理的方法是:在1300~1360℃时向熔融的高熵铸铁液体中加入硅铁孕育剂,得到高熵灰口铸铁,其中,硅铁孕育剂的添加量为熔融的高熵铸铁的质量的0.15%~0.2%。
  9. 权利要求1-2任一所述的高熵铸铁在砂型铸造、特种铸造、3D打印成型中的用途。
PCT/CN2021/119588 2021-01-05 2021-09-22 一种高熵铸铁及其制备方法 WO2022148060A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110007600.0A CN112853190B (zh) 2021-01-05 2021-01-05 一种高熵铸铁及其制备方法
CN202110007600.0 2021-01-05

Publications (1)

Publication Number Publication Date
WO2022148060A1 true WO2022148060A1 (zh) 2022-07-14

Family

ID=76001782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119588 WO2022148060A1 (zh) 2021-01-05 2021-09-22 一种高熵铸铁及其制备方法

Country Status (3)

Country Link
CN (1) CN112853190B (zh)
LU (1) LU502642B1 (zh)
WO (1) WO2022148060A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115612875A (zh) * 2022-10-10 2023-01-17 三峡大学 一种具有高强性能的NiAlVCrB共晶高熵合金及制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112853190B (zh) * 2021-01-05 2021-09-24 中国矿业大学 一种高熵铸铁及其制备方法
CN114717462B (zh) * 2022-04-11 2023-02-03 大连理工大学 一种含c类共晶高熵合金及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107675061A (zh) * 2017-11-09 2018-02-09 湖南理工学院 一种含碳的Fe‑Co‑Cr‑Ni高熵合金及其制备工艺
CN108315630A (zh) * 2018-04-02 2018-07-24 湖南理工学院 一种Fe-Co-Cr-Ni-C高熵合金及其制备工艺
CN108396199A (zh) * 2018-02-05 2018-08-14 三峡大学 一种钴铬镍合金材料及其粉末冶金制备方法
CN109252083A (zh) * 2018-11-07 2019-01-22 安阳工学院 一种多相高熵合金及其制备方法
CN111636027A (zh) * 2020-06-12 2020-09-08 上海大学 兼具二次屈服和高强高塑的共晶高熵合金及其制备方法
CN112853190A (zh) * 2021-01-05 2021-05-28 中国矿业大学 一种高熵铸铁及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103757514A (zh) * 2014-01-27 2014-04-30 沈阳大学 一种高熵AlCoCrFeNiCuC合金及其制备方法
US20190024198A1 (en) * 2017-07-19 2019-01-24 The Industry & Academic Cooperation In Chungnam National University (Iac) Precipitation Hardening High Entropy Alloy and Method of Manufacturing the Same
US20190226065A1 (en) * 2018-01-25 2019-07-25 Ut-Battelle, Llc Low-cost cast creep-resistant austenitic stainless steels that form alumina for high temperature oxidation resistance
CN111979465B (zh) * 2020-08-07 2021-09-17 宁波中大力德智能传动股份有限公司 一种用于制造柔轮的高熵合金及柔轮的加工方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107675061A (zh) * 2017-11-09 2018-02-09 湖南理工学院 一种含碳的Fe‑Co‑Cr‑Ni高熵合金及其制备工艺
CN108396199A (zh) * 2018-02-05 2018-08-14 三峡大学 一种钴铬镍合金材料及其粉末冶金制备方法
CN108315630A (zh) * 2018-04-02 2018-07-24 湖南理工学院 一种Fe-Co-Cr-Ni-C高熵合金及其制备工艺
CN109252083A (zh) * 2018-11-07 2019-01-22 安阳工学院 一种多相高熵合金及其制备方法
CN111636027A (zh) * 2020-06-12 2020-09-08 上海大学 兼具二次屈服和高强高塑的共晶高熵合金及其制备方法
CN112853190A (zh) * 2021-01-05 2021-05-28 中国矿业大学 一种高熵铸铁及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XU ZEZHOU, ET AL.: "Research Progress of CoCrFeNi High Entropy Alloy", LIAONING KEJI DAXUE XUEBAO, LIAONING KEJI DAXUE XUEBAO (2013), 36(6), 569-572 CODEN: LKDXA5; ISSN: 1674-1048, LIAONING KEJI DAXUE XUEBAO (2013), 36(6), 569-572CODEN: LKDXA5; ISSN: 1674-1048, vol. 42, no. 5, 31 October 2019 (2019-10-31), Liaoning Keji Daxue Xuebao (2013), 36(6), 569-572CODEN: LKDXA5; ISSN: 1674-1048 , pages 350 - 356, XP055949495, ISSN: 1674-1048, DOI: 10.13988/j.ustl.2019.05.006 *
ZHANG L.J.; YU P.F.; FAN J.T.; ZHANG M.D.; ZHANG C.Z.; CUI H.Z.; LI G.: "Investigating the micro and nanomechanical properties of CoCrFeNi-Cx high-entropy alloys containing eutectic carbides", MATERIALS SCIENCE, ELSEVIER, AMSTERDAM, NL, vol. 796, 7 August 2020 (2020-08-07), AMSTERDAM, NL, XP086268235, ISSN: 0921-5093, DOI: 10.1016/j.msea.2020.140065 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115612875A (zh) * 2022-10-10 2023-01-17 三峡大学 一种具有高强性能的NiAlVCrB共晶高熵合金及制备方法
CN115612875B (zh) * 2022-10-10 2023-08-25 三峡大学 一种具有高强性能的NiAlVCrB共晶高熵合金及制备方法

Also Published As

Publication number Publication date
LU502642B1 (en) 2022-12-13
CN112853190B (zh) 2021-09-24
LU502642A1 (en) 2022-08-17
CN112853190A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
WO2022148060A1 (zh) 一种高熵铸铁及其制备方法
CN100577835C (zh) 一种生产高硅铝合金的方法
CN101608280B (zh) 用于生产d型石墨铸铁的复合孕育剂及其制备方法
CN102717035B (zh) 一种低硅/镁比、低稀土镁球化剂
CN103484753A (zh) 一种新型铸态500-7球墨铸铁
CN102400032B (zh) 一种大断面球墨铸铁
WO2018166248A1 (zh) 一种球墨铸铁的球化孕育处理工艺
CN105385935A (zh) 一种高硅钼蠕墨铸铁及其生产方法
CN102382924B (zh) 一种球墨铸铁用球化剂的制备方法
CN109536664B (zh) 一种蠕状石墨铸铁涡旋盘及其生产工艺
CN114774768A (zh) 一种新型高性能乘用车缸体材料生产方法
CN112813331A (zh) 一种钴铬铁镍锰共晶高熵铸铁、制备方法及用途
CN104862450A (zh) 纳米铁水净化变质剂用于奥铁体球铁耐磨铸件的方法
CN102392094B (zh) 球墨铸铁用球化剂及其制备方法
CN101181745B (zh) 一种钛合金铸锭的制备方法
CN103484794B (zh) 一种多元合金铸铁的制备方法
CN110423937B (zh) 一种耐高温铝、锌液腐蚀的合金化灰铸铁及其熔炼工艺
CN112725681B (zh) 一种铁钴镍锰铜高熵铸铁及其制备方法和用途
KR20130087213A (ko) 희토류 원소를 이용한 고강도 편상 흑연 주철 및 그 제조방법
CN109594007B (zh) 一种蠕状石墨铸铁及其制备工艺和应用
CN114369756A (zh) 一种铸态qt700-8材料及其铸造方法和应用
CN110438281B (zh) 一种不含Si的稀土镁合金球化剂及其制备方法与应用
CN106011567A (zh) 一种镁合金铸件及其制备方法
CN111575429A (zh) 一种含镧的球化剂及其制备方法
CN113355609B (zh) 一种变质高硼铁基耐磨合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917102

Country of ref document: EP

Kind code of ref document: A1