WO2022147689A1 - 弹性测量方法、装置和存储介质 - Google Patents

弹性测量方法、装置和存储介质 Download PDF

Info

Publication number
WO2022147689A1
WO2022147689A1 PCT/CN2021/070503 CN2021070503W WO2022147689A1 WO 2022147689 A1 WO2022147689 A1 WO 2022147689A1 CN 2021070503 W CN2021070503 W CN 2021070503W WO 2022147689 A1 WO2022147689 A1 WO 2022147689A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
interest
elasticity
region
ultrasonic
Prior art date
Application number
PCT/CN2021/070503
Other languages
English (en)
French (fr)
Inventor
李双双
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN202180054055.9A priority Critical patent/CN116133597A/zh
Priority to PCT/CN2021/070503 priority patent/WO2022147689A1/zh
Publication of WO2022147689A1 publication Critical patent/WO2022147689A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings

Definitions

  • the present application relates to the technical field of ultrasound imaging, and more particularly, to an elasticity measurement method, device and storage medium.
  • Ultrasound elastography is an ultrasound imaging method aiming at extracting parameters related to tissue hardness. In recent years, it has been more widely used in clinical research and diagnosis. At present, it is usually used in the auxiliary diagnosis of thyroid, breast, musculoskeletal, liver, blood vessels and other related diseases. elasticity, etc. clinically. Judging the degree of tissue softness and hardness can effectively assist in the discovery of early lesions, the identification of benign and malignant tumors, and the evaluation of postoperative recovery.
  • Shear wave elastography generates acoustic radiation force by launching special ultrasonic pulses into the tissue, forming a shear wave source in the tissue and generating shear waves to propagate in the tissue. Then, ultrasonic waves are used to identify and detect the shear wave propagation information inside the tissue, and then quantitative parameters such as shear wave propagation velocity and Young's modulus are calculated for imaging, so as to achieve quantitative elastography of the tissue, which is the most used by doctors and the most concerned about. A method of elastography.
  • the progression of the disease course in the clinic is often not only caused by changes in hardness, but also accompanied by changes in morphological structure, changes in blood supply and microcirculation, etc., especially in the early stage of the disease course, these changes may be very subtle and gradual, involving a small area ( Usually size ⁇ 5mm). Therefore, clinicians hope to accurately identify the hardness parameters of tissues under special microstructures or special blood supply abnormalities. In addition, in some special application areas, such as imaging of burned skin layers, the target area is often very small (usually ⁇ 1mm in size), and the doctor needs to observe the hardness difference within the subtle target.
  • an elasticity measurement method comprising: controlling an ultrasonic probe to transmit a first ultrasonic wave to a target tissue of a measured object, receiving an echo of the first ultrasonic wave, and based on the echo of the first ultrasonic wave obtaining a first ultrasonic echo signal; generating a first image based on the first ultrasonic echo signal, and obtaining at least two regions of interest based on the first image, wherein the first image includes a tissue structure image, at least one of a blood flow image and a contrast image; controlling the ultrasound probe to emit push pulses to the target tissue based on the at least two regions of interest to generate shear waves propagating within the target tissue; controlling The ultrasonic probe transmits a second ultrasonic wave for detecting the shear wave to the target tissue, receives the echo of the second ultrasonic wave, and obtains a second ultrasonic echo signal based on the echo of the second ultrasonic wave; The second ultrasonic echo signal generates elasticity images corresponding to
  • an elasticity measurement method comprising: controlling an ultrasonic probe to transmit a first ultrasonic wave to a target tissue of a measured object, receiving an echo of the first ultrasonic wave, and based on the first ultrasonic wave obtain a first ultrasonic echo signal based on the echo of controlling the ultrasound probe to transmit a first push pulse to the target tissue based on the first region of interest to generate a first shear wave propagating within the target tissue; controlling the ultrasound probe to the target tissue The tissue transmits a second ultrasonic wave for detecting the first shear wave, receives the echo of the second ultrasonic wave, and obtains a second ultrasonic echo signal based on the echo of the second ultrasonic wave; based on the second ultrasonic echo generating a first elastic image corresponding to the first region of interest from the wave signal; acquiring a second region of interest based on the first image or the first elastic image; controlling the ultrasound probe based on the second region of interest Sending a second push pulse to the
  • an elasticity measurement method comprising: controlling an ultrasonic probe to transmit a first ultrasonic wave to a target tissue of a measured object, receiving an echo of the first ultrasonic wave, and based on the first ultrasonic wave obtain a first ultrasonic echo signal based on the echo of at least one of a flow image and a contrast image; controlling the ultrasound probe to emit push pulses to the target tissue based on the region of interest to generate shear waves propagating within the target tissue; controlling the ultrasound probe Sending a second ultrasonic wave for detecting the shear wave to the target tissue, receiving the echo of the second ultrasonic wave, and obtaining a second ultrasonic echo signal based on the echo of the second ultrasonic wave; based on the second ultrasonic wave
  • the ultrasonic echo signal generates an elasticity image of the region of interest, and outputs the elasticity image; wherein, the pixel resolution of the region of interest in the elasticity image is higher than that in the first image pixel resolution.
  • a method for measuring elasticity comprising: controlling an ultrasonic probe to emit a first push pulse to a target tissue of an object to be measured, so as to generate a first shear wave propagating in the target tissue; Controlling the ultrasonic probe to transmit the first ultrasonic wave for detecting the first shear wave to the target tissue, receiving the echo of the first ultrasonic wave, and obtaining the first ultrasonic echo based on the echo of the first ultrasonic wave a signal; generating first elasticity data of the target tissue based on the first ultrasonic echo signal, generating a first elasticity image based on the first elasticity data, and acquiring a region of interest in the first elasticity image; Controlling the ultrasound probe to transmit a second push pulse to the target tissue based on the region of interest to generate a second shear wave propagating in the target tissue; controlling the ultrasound probe to transmit detection to the target tissue The second ultrasonic wave of the second shear wave receives the echo of the second ultrasonic wave
  • an elasticity measurement method comprising: providing a first imaging mode and a second imaging mode, wherein the first imaging mode is used to generate a first image, and the second imaging mode is used to generate an elasticity image , the pixel resolution of the elastic image is higher than the pixel resolution of the first image; in the second imaging mode, the ultrasound probe is controlled to transmit a push pulse to the target tissue of the object to be measured, so as to generate a pulse in the target tissue Shear waves propagating in the interior; control the ultrasonic probe to transmit ultrasonic waves for detecting the shear waves to the target tissue, receive the echoes of the ultrasonic waves, and obtain ultrasonic echo signals based on the echoes of the ultrasonic waves; The ultrasound echo signal generates an elasticity image of the target tissue, and outputs the elasticity image.
  • an elasticity measurement method includes: acquiring a first image of a target tissue of a measured object, wherein the first image includes a tissue structure image, a blood flow image, and an angiographic image. At least one of: acquiring a region of interest based on the first image; acquiring an elastic image of the region of interest, wherein the pixel resolution of the region of interest in the elastic image is higher than that in the first image pixel resolution in ; output the elastic image.
  • an elasticity measurement method includes: acquiring a first image of a target tissue of a measured object, wherein the first image includes a tissue structure image, a blood flow image, and an angiography image. At least one of: acquiring a region of interest based on the first image; generating a first elastic image of the region of interest; performing interpolation on the first elastic image or performing image parameter enhancement to generate a second elastic image; outputting the the second elastic image.
  • an elasticity measurement method includes: acquiring a first image of a target tissue of a measured object, wherein the first image includes a tissue structure image, a blood flow image, and an angiographic image. At least one of: acquiring at least two regions of interest based on the first image; acquiring elastic images of the at least two regions of interest, wherein pixel resolution of the at least two regions of interest in the elastic image higher than the pixel resolution in the first image; outputting the elastic image.
  • an elasticity measurement method comprising: acquiring a tissue structure image of a target tissue of a measured object; acquiring a first region of interest based on the tissue structure image; acquiring the first region of interest obtaining a second region of interest based on the tissue structure image or the first elastic image; obtaining a second elastic image of the second region of interest, the pixel resolution of the second elastic image
  • the ratio is higher than the pixel resolution of the first elasticity image, wherein the first elasticity image and the second elasticity image are shear wave elasticity images; and the second elasticity image is output.
  • an elasticity measurement method includes: acquiring a first image of a target tissue of a measured object, the first image including a tissue structure image; acquiring a second image of the target tissue, The second image includes a blood flow image or a contrast image; a region of interest is acquired based on the first image or the second image; an elasticity image of the region of interest is acquired, wherein the pixel resolution of the elasticity image is higher than the pixel resolution of the region of interest in the first image and in the second image, the first image, the second image and the elasticity image corresponding to the same tissue of the target tissue slice; output the elastic image.
  • an elasticity measuring device which includes an ultrasonic probe, a transmitting circuit, a receiving circuit and a processor, wherein: the transmitting circuit is used to excite the ultrasonic probe to transmit to the target tissue of the measured object ultrasound; the receiving circuit is configured to control the ultrasound probe to receive the ultrasound echo returned from the target tissue to obtain ultrasound echo signals; the processor is configured to generate ultrasound image data according to the ultrasound echo signals; The processor is further configured to execute the above elasticity measurement method.
  • an elasticity measurement apparatus includes a memory and a processor, the memory is used for storing a computer program, and the processor invokes the computer program stored in the memory to execute the above elasticity measurement method.
  • a storage medium is provided, and a computer program is stored on the storage medium, and the computer program executes the above elasticity measurement method when running.
  • the elasticity measurement method, device and storage medium according to the embodiments of the present application can realize high-resolution shear wave elasticity imaging, which is helpful for doctors to obtain more accurate elasticity results of small lesions, and is of great significance for elasticity detection of small lesions.
  • FIG. 1 shows a schematic block diagram of an exemplary ultrasound imaging apparatus for implementing an elasticity measurement method according to an embodiment of the present application.
  • FIG. 2 shows a schematic flowchart of an elasticity measurement method according to an embodiment of the present application.
  • FIG. 3 shows a schematic diagram of acquiring two regions of interest in the elasticity measurement method according to an embodiment of the present application.
  • FIG. 4 shows a schematic diagram of enhancing the focus intensity of the push pulse in the elasticity measurement method according to an embodiment of the present application.
  • FIG. 5A shows a schematic diagram of an example of the emission position of the push pulse in the elasticity measurement method according to the embodiment of the present application.
  • FIG. 5B shows a schematic diagram of another example of the emission position of the push pulse in the elasticity measurement method according to the embodiment of the present application.
  • FIG. 6 is a schematic diagram illustrating that the detection pulse covers all regions of interest in the elasticity measurement method according to an embodiment of the present application.
  • FIG. 7A shows a schematic diagram of a common push pulse in an elasticity measurement method according to an embodiment of the present application.
  • FIG. 7B shows a schematic diagram of simultaneously transmitting multiple push pulses in the elasticity measurement method according to an embodiment of the present application.
  • FIG. 7C shows a schematic diagram of sequentially transmitting a push pulse and a detection pulse in the elasticity measurement method according to an embodiment of the present application.
  • FIG. 8A shows a schematic diagram of dividing a region of interest into a plurality of local points in an elasticity measurement method according to an embodiment of the present application.
  • FIG. 8B shows a schematic diagram of high-resolution detection calculation in the elasticity measurement method according to an embodiment of the present application.
  • FIG. 8C shows a schematic diagram of an example of propagation velocity calculation in the elasticity measurement method according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram illustrating an example of displaying an elasticity image in the elasticity measurement method according to an embodiment of the present application.
  • FIG. 10 shows a schematic flowchart of an elasticity measurement method according to another embodiment of the present application.
  • FIG. 11 is a schematic diagram illustrating an example of displaying an elasticity image in an elasticity measurement method according to another embodiment of the present application.
  • FIG. 12 shows a schematic flowchart of an elasticity measurement method according to still another embodiment of the present application.
  • FIG. 13 shows a schematic flowchart of an elasticity measurement method according to yet another embodiment of the present application.
  • FIG. 14 shows a schematic flowchart of an elasticity measurement method according to still another embodiment of the present application.
  • FIG. 15 shows a schematic flowchart of an elasticity measurement method according to yet another embodiment of the present application.
  • FIG. 16 shows a schematic flowchart of an elasticity measurement method according to still another embodiment of the present application.
  • FIG. 17 shows a schematic flowchart of an elasticity measurement method according to yet another embodiment of the present application.
  • FIG. 18 shows a schematic block diagram of an elasticity measuring apparatus according to an embodiment of the present application.
  • FIG. 19 shows a schematic block diagram of an elasticity measuring apparatus according to another embodiment of the present application.
  • FIG. 1 is a schematic structural block diagram of an exemplary ultrasonic imaging apparatus 10 for implementing the elasticity measurement method according to the embodiment of the present application.
  • the ultrasound imaging apparatus 10 may include an ultrasound probe 100 , a transmit/receive selection switch 101 , a transmit/receive sequence controller 102 , a processor 103 , a display 104 and a memory 105 .
  • the transmit/receive sequence controller 102 can excite the ultrasonic probe 100 to transmit ultrasonic waves to the target object (measured object), and can also control the ultrasonic probe 100 to receive ultrasonic echoes returned from the target object, thereby obtaining ultrasonic echo signals/data.
  • the processor 103 processes the ultrasound echo signals/data to obtain tissue-related parameters and ultrasound images of the target object.
  • the ultrasound images obtained by the processor 103 may be stored in the memory 105 , and these ultrasound images may be displayed on the display 104 .
  • the measured object can be a human being or an animal, such as a cat or a dog.
  • the display 104 of the aforementioned ultrasound imaging device 10 may be a touch display screen, a liquid crystal display screen, or the like, or may be an independent display device such as a liquid crystal display, a TV, or the like independent of the ultrasound imaging device 10 , or It is a display screen on electronic devices such as mobile phones and tablet computers.
  • the memory 105 of the aforementioned ultrasonic imaging device 10 may be a flash memory card, a solid-state memory, a hard disk, or the like.
  • Embodiments of the present application further provide a computer-readable storage medium, where a plurality of program instructions are stored in the computer-readable storage medium, and after the plurality of program instructions are invoked and executed by the processor 103, the elasticity of the various embodiments of the present application can be executed. Some or all of the steps or any combination of steps in the measurement method.
  • the computer-readable storage medium may be the memory 105, which may be a non-volatile storage medium such as a flash memory card, a solid-state memory, and a hard disk.
  • the processor 103 of the aforementioned ultrasound imaging apparatus 10 may be implemented by software, hardware, firmware, or a combination thereof, and may use a circuit, a single or multiple application specific integrated circuits (ASIC), a single or General-purpose integrated circuits, single or multiple microprocessors, single or multiple programmable logic devices, or a combination of the foregoing circuits or devices, or other suitable circuits or devices, thereby enabling the processor 103 to perform various embodiments Corresponding steps in the elasticity measurement method in .
  • ASIC application specific integrated circuits
  • microprocessors single or multiple programmable logic devices
  • a combination of the foregoing circuits or devices or other suitable circuits or devices
  • the elasticity measurement method of the present application will be described in detail below with reference to FIGS. 2 to 17 , and the method may be performed by the aforementioned ultrasonic imaging apparatus 10 .
  • FIG. 2 shows a schematic flowchart of an elasticity measurement method 200 according to an embodiment of the present application. As shown in FIG. 2, the elasticity measurement method 200 includes the following steps:
  • step S210 the ultrasonic probe is controlled to transmit a first ultrasonic wave to the target tissue of the measured object, receive an echo of the first ultrasonic wave, and obtain a first ultrasonic echo signal based on the echo of the first ultrasonic wave.
  • a first image is generated based on the first ultrasonic echo signal, and at least two regions of interest are acquired based on the first image, wherein the first image includes a tissue structure image, a blood flow image and angiography at least one of the images.
  • step S230 the ultrasound probe is controlled to transmit a push pulse to the target tissue based on the at least two regions of interest, so as to generate shear waves propagating within the target tissue.
  • step S240 the ultrasonic probe is controlled to transmit a second ultrasonic wave for detecting the shear wave to the target tissue, an echo of the second ultrasonic wave is received, and a second ultrasonic wave is acquired based on the echo of the second ultrasonic wave echo signal.
  • step S250 an elasticity image corresponding to the at least two regions of interest is generated based on the second ultrasonic echo signal, and the elasticity image is output, wherein the at least two regions of interest are in the elasticity image
  • the pixel resolution is higher than the pixel resolution in the first image.
  • the purpose of controlling the ultrasound probe to transmit the first ultrasound to the target tissue (ie, the tissue to be measured elastic data) of the measured object (such as a human or animal) is to acquire a first image (such as a tissue structure image, blood flow images, contrast images, etc.).
  • a region of interest for elastic measurement can be acquired from the first image.
  • the region of interest can be identified and acquired based on tissue structure images (eg, B-images).
  • tissue structure images eg, B-images
  • Conventional B images often need to completely display images within a large depth range in the entire scanning field of view of the probe. The resolution of the image pixels is low, and it is difficult to accurately identify the target. At this time, the image can be enlarged and marked for elasticity measurement. area of interest.
  • the blood supply information can also be obtained based on the contrast image or the blood flow image to identify the region of interest.
  • Conventional blood flow images can observe the position of coarse blood vessels inside the tissue, while contrast images or some high-resolution blood flow images can observe the position of capillaries and changes in blood supply.
  • the abnormal blood supply can be identified, or the observation area of interest can be identified to obtain the area of interest.
  • one or more regions of interest may be acquired for elasticity measurement (through manual marking by the user or automatic identification of the marking, wherein the user may first zoom in on the first image for marking manually) It is shown in FIG.
  • two regions of interest can be acquired, one is a normal region (eg, a normal blood supply region) and one is an abnormal region (eg, an abnormal blood supply region) for control and reference.
  • a normal region eg, a normal blood supply region
  • an abnormal region eg, an abnormal blood supply region
  • two regions of interest labeled R1 and R2 were acquired in the tissue structure image.
  • the two regions of interest are relatively small in size relative to the entire image area, so the elasticity measurement method of the present application is of great significance for the elasticity measurement of small lesions.
  • the purpose of transmitting the push pulse to the target tissue is to generate shear waves in the target tissue; the purpose of transmitting the second ultrasonic wave to the target tissue is to detect the shear wave (so the second ultrasonic wave can also be referred to as a detection pulse). ); therefore, based on the second ultrasonic echo signal obtained according to the echo of the second ultrasonic wave, the obtained elasticity measurement result (elasticity image and/or elasticity parameter) of each region of interest can be generated.
  • a region of interest with a smaller size is obtained from the aforementioned first image with a larger size, so that the energy of generating shear waves and detecting shear waves can be concentrated, and the Image elastography with higher pixel resolution.
  • the pixel resolution is based on the number of pixels in a unit area under the same zoom size. Therefore, the pixel resolution of the region of interest in the elastic image is higher than its pixel resolution in the first image refers to, (with the sense of The number of pixels in the elastic image with the region of interest having the same scaling size is greater than the number of pixels in the region of interest in the first image.
  • the region of interest it is assumed that a region of interest is intercepted in the first image, and the region of interest has N pixels; when the elastic image obtained by elastography of the region of interest has the same size as the region of interest, the elastic image has M pixels, where M is greater than N.
  • the process of generating shear waves and/or the process of detecting shear waves can be controlled when generating an elastic image, so that the pixel resolution of the at least two regions of interest in the elastic image can be achieved. rate higher than the pixel resolution in the first image.
  • controlling the process of generating shear waves and/or the process of detecting shear waves may include controlling at least one of transmission parameters, reception parameters and scanning rules of the ultrasound probe.
  • the size of the transmission aperture of the ultrasonic probe and/or the transmission delay parameter between the array elements in the aperture can be controlled to enhance the focus intensity of the push pulse (phase than a conventional push pulse), as shown in Figure 4, the sound field of the push pulse is more focused, resulting in a more concentrated source of shear waves. Enhancing the focal intensity of the push pulse can improve the signal-to-noise ratio of the generated elastic images, thereby improving the resolution of the elastic images.
  • the number of times of pushing the push pulse can be significantly reduced, so the intensity of the push pulse can be enhanced, for example, the emission voltage can be further increased. promote.
  • the pushing effect can be further enhanced by repeatedly transmitting the pushing pulses at the same position.
  • the frequency range of the generated shear wave source can also be adjusted. In general, higher frequencies result in higher spatial resolution, but faster decay, thus reducing the time interval for which pulse repetitions are driven. These measures can improve the accuracy of elasticity measurement.
  • the distance between the ultrasonic probe and the position where the push pulse is emitted to the target tissue can also be controlled to satisfy a preset range. 5A and 5B are described below.
  • Figure 5A shows a schematic diagram of the firing position of the push pulse with one region of interest.
  • the transmission position of the push pulse can be selected at a distance (eg, 5 mm, generally preset by the system) near the region of interest. If the distance is too far, the shear wave will be attenuated greatly during propagation, and the amplitude will be too small when passing through the region of interest, and the signal-to-noise ratio will be reduced; if the distance is too short, the propagation of the shear wave will be easily affected by the push pulse, and the calculation of the propagation speed will be inaccurate.
  • a preset range can be set, such as the aforementioned emission position is 5 mm away from the region of interest, to avoid problems caused by too far or too close.
  • Figure 5B shows a preset range
  • Figure 5B shows a schematic diagram of the firing position of the push pulse when there are two regions of interest.
  • a certain judgment can be made according to the distance between the two regions of interest. If the same shear wave source can propagate through the two regions of interest at the same time, the push pulse can be shared . Otherwise, it is necessary to transmit the push pulses separately near the two regions of interest, respectively, to generate shear wave sources that propagate through the two regions of interest. Launched, it can also be launched successively. It will be appreciated that this is also true for situations involving more than two regions of interest.
  • the region of interest is small, the detection range can be sufficiently narrowed, and the sound field range of the detection pulse only needs to cover the width of the region of interest.
  • the sound field range of the detection pulse needs to cover the width of all regions of interest, so as to improve the detection rate as much as possible, as shown in Figure 6. As the detection rate increases, the detected data increases, and the imaging resolution can be improved.
  • the transmission frequency of the detection pulses (than conventional detection pulses) is higher, the length of the transmission waveform is shorter, and at the same time, the spacing between the receiving lines (compared to the case of conventional detection detection pulses) needs to be smaller, and the number of receiving lines is also smaller.
  • the width of the region of interest is 5mm and the line interval is 0.05mm, then the number of receiving lines is 100 (5 divided by 0.05 equals 100).
  • ultrasonic waves are emitted to a position to form a scanning line, and then the position reflects echoes, that is, a receiving line is formed; but here in this application, the sound field of the detection pulse is a wide range, as shown in Figure 6
  • one shot is not in one position, but in one area, so the number of scan lines and receiving lines is not equal at this time, it can be considered that there is only one scan line, and the received echo is originally reflected back from a region as a whole, but in the beam
  • the signal reflected from the whole area is divided into data of multiple receiving positions, so the number of receiving lines is more than that in the conventional shear wave detection.
  • the firing interval between detection pulses It can also be shorter, so detection can be performed at a higher rate, resulting in higher temporal resolution, further improving the spatial resolution and accuracy of shear wave velocity calculations.
  • the detection pulse In order to completely record the propagation process of the shear wave in the region of interest, the detection pulse generally needs to be continuously transmitted for a period of time.
  • a common push pulse P (which can be repeated multiple times) can be transmitted first, and then a detection pulse D wave can be transmitted to detect shear wave propagation information in multiple regions of interest, as shown in Figure 7A .
  • a plurality of push pulse P waves can be transmitted simultaneously or successively. If multiple push pulses P waves are emitted at the same time, as shown in Figure 7B, each array element group composed of different array elements of the ultrasonic probe can be controlled to simultaneously transmit push pulses to their corresponding regions of interest, and then transmit detection pulses D.
  • the sequence can be to first launch one of the push pulse P waves to detect its propagation process (detect the pulse D wave), and then launch another push pulse P wave to detect its propagation.
  • the process detection of pulsed D wave
  • the above scanning process can be repeated at specific time intervals, so as to obtain continuous multi-frame scanning and echo data acquisition.
  • an elasticity result (elasticity parameter and/or an elasticity image) of the region of interest may be generated based on the echo signal of the detection pulse (ie the second ultrasonic echo signal).
  • the propagation velocity of the shear wave in the region of interest may be calculated based on the second ultrasonic echo signal, and elastic parameters of the region of interest may be calculated and/or an elastic image of the region of interest may be generated according to the propagation speed.
  • the propagation time of the wave or the propagation distance of the shear wave at two different times can be calculated, the corresponding propagation speed can be calculated, and the elastic parameters such as shear modulus/Young's modulus can be further calculated.
  • the echo signal at each moment corresponds to the state at each position, which is equivalent to a static image, so the motion information of a certain position can only be calculated from the echo signals of at least two times; then, the motion information of the two positions A value of the shear wave propagation velocity can be obtained; therefore, multiple positions can be calculated in this way, and multiple velocity values can be obtained, and each velocity value can be mapped to a pixel of the elastic image, that is, the elastic image can be obtained; Each velocity value is calculated as Young's modulus and then mapped to pixels to obtain an elastic image; the mean value of all velocities or the mean value of all Young's moduli is the final numerical parameter result of the region of interest. In general, both elastic images and numerical results can be displayed.
  • the region of interest in order to achieve high-resolution detection, can be divided into more (relative to the local pixels of the same area in the first image) when calculating tissue motion information , for example, a preset number of local pixels (as shown in FIG. 8A ), the denser the local pixels, the higher the spatial resolution of the motion information calculation.
  • the region of interest can be divided into more local pixel points by means of interpolation.
  • the first propagation velocity is calculated using the motion information data separated by a certain interval (such as a pair of red dots, marked P1 and P4), and then use the motion information data separated by a certain distance to calculate the second propagation velocity (such as a pair of yellow points, marked as P2 and P5).
  • the position offset of the motion information data corresponding to two adjacent propagation velocity calculations is small (for example, the interval between P1 and P2), thereby ensuring that the velocity calculation has a higher spatial resolution. Since the distance between the two positions increases during the speed calculation (such as between a pair of red points, marked as P1 and P4), the resulting propagation time between the two positions will also be extended, which is more suitable for detection of low time resolution. Case.
  • the propagation velocity of shear waves can be calculated based on the tissue motion information at two adjacent positions (local points) in the region of interest, or based on the propagation velocity of shear waves at two positions (local points) separated by a predetermined interval in the region of interest
  • Tissue motion information calculates shear wave propagation velocities, which can be applied to different scenarios, as shown earlier.
  • the elasticity data of the region of interest after calculating the elasticity data of the region of interest, it can be displayed in the region of interest in a color-coded manner or displayed separately, and the average elasticity results in the region of interest can also be calculated at the same time (such as Shear wave velocity results or Young's modulus results, etc.) are displayed.
  • the ratio of the elastic results of the two regions of interest can be further calculated and displayed.
  • FIG. 9 shows an example of displaying an elastic image.
  • the elasticity image and the tissue structure image (the first image) are superimposed and displayed, wherein the elasticity image M1 of the region of interest R1 is superimposed and displayed at the region of interest R1 of the tissue structure image, and the elasticity image M2 of the region of interest R2 is superimposed and displayed Displayed at the region of interest R2 of the tissue image.
  • the respective elastic parameters E1 and E2 of the two regions of interest R1 and R2 are simultaneously displayed on the graph.
  • the elastic image can also be displayed separately.
  • the elastic image can also be enlarged and displayed. Since the elastic image is of high resolution, it can still be clear due to the larger number of pixels after the enlarged display. At least, the pixel resolution of the enlarged and displayed elastic image is not lower than that of the first image, or lower than that of the first image but similar to that of the first image (for example, higher than that of the first image). The pixel resolution is slightly smaller by a certain value).
  • the method 200 may further include: determining and displaying in real time the matching degree between the tissue section corresponding to the elasticity image and the tissue section corresponding to the first image, and adjusting the probe so that all The elastic image and the first image are images corresponding to the same tissue section of the target tissue.
  • the matching degree prompt ensures that the elasticity image and the first image are the results of the same slice, which facilitates the doctor to perform accurate multi-dimensional analysis on the slice of the lesion (this embodiment will be described later in conjunction with FIG. 17 ).
  • the method 200 may further include: acquiring a first region of interest on the first image; generating an elasticity image of the region of interest; acquiring a second sense of interest on the elasticity image a region of interest, wherein the second region of interest corresponds to the same tissue region as the first region of interest; acquiring and displaying parameters related to the first region of interest and parameters related to the second region of interest parameter.
  • various measurement parameters of the same tissue area on different images can be obtained, such as the brightness parameter of the B image, the blood supply richness of the blood flow image (such as the ratio of the blood flow area to the total area), and the elasticity image.
  • the Young's modulus parameters, etc. are displayed together by multiple parameters, which is convenient for doctors to diagnose.
  • the above exemplarily shows the elasticity measurement method according to an embodiment of the present application.
  • the elasticity measurement method 200 can acquire a region of interest from a tissue structure image, a blood flow image, or an angiography image, and realize high-resolution elasticity imaging of the region of interest, which is helpful for doctors to clearly view small
  • the elasticity results of the lesions are of great significance for the elasticity detection of small lesions.
  • FIG. 10 shows a schematic flowchart of an elasticity measurement method 1000 according to another embodiment of the present application.
  • the elasticity measurement method 1000 may include the following steps:
  • step S1010 the ultrasonic probe is controlled to transmit the first ultrasonic wave to the target tissue of the measured object, receive the echo of the first ultrasonic wave, and obtain the first ultrasonic echo signal based on the echo of the first ultrasonic wave.
  • step S1020 a first image is generated based on the first ultrasound echo signal, and a first region of interest is acquired based on the first image, wherein the first image includes a tissue structure image.
  • step S1030 the ultrasound probe is controlled to transmit a first push pulse to the target tissue based on the first region of interest, so as to generate a first shear wave propagating in the target tissue.
  • step S1040 control the ultrasonic probe to transmit a second ultrasonic wave for detecting the first shear wave to the target tissue, receive the echo of the second ultrasonic wave, and obtain the first ultrasonic wave based on the echo of the second ultrasonic wave. 2. Ultrasonic echo signal.
  • step S1050 a first elasticity image corresponding to the first region of interest is generated based on the second ultrasonic echo signal, and a second region of interest is acquired based on the first image or the first elasticity image.
  • step S1060 the ultrasound probe is controlled to transmit a second push pulse to the target tissue based on the second region of interest, so as to generate a second shear wave propagating in the target tissue.
  • step S1070 control the ultrasonic probe to transmit a third ultrasonic wave for detecting the second shear wave to the target tissue, receive the echo of the third ultrasonic wave, and obtain the first ultrasonic wave based on the echo of the third ultrasonic wave.
  • Three ultrasonic echo signals control the ultrasonic probe to transmit a third ultrasonic wave for detecting the second shear wave to the target tissue, receive the echo of the third ultrasonic wave, and obtain the first ultrasonic wave based on the echo of the third ultrasonic wave.
  • step S1080 a second elasticity image corresponding to the second region of interest is generated and output based on the third ultrasonic echo signal, and the pixel resolution of the second elasticity image is higher than that of the first elasticity image. resolution.
  • the elasticity measurement method 1000 according to the embodiment of the present application is substantially similar to the elasticity measurement method 200 according to the embodiment of the present application described above, except that the elasticity measurement method 200 acquires the region of interest according to the first image and performs elasticity measurement , and after the elasticity measurement method 1000 generates the first image to obtain the first region of interest, forms a first elasticity image of the first region of interest according to the conventional shear wave imaging method, and then obtains the second region of interest from the first elasticity image , and then generate a second elastic image of the second region of interest according to the high-resolution imaging method in this paper.
  • Both the first elastic image and the second elastic image are shear wave elastic images, but the pixel resolution of the second elastic image is higher than The pixel resolution of the first elastic image.
  • the process of generating shear waves and/or the process of detecting shear waves when the second elastic image is generated may be controlled, so that the pixel resolution of the second elastic image is higher than that of the first elastic image. resolution.
  • an elasticity parameter corresponding to the second region of interest may also be generated based on the third ultrasonic echo signal, and the elasticity parameter may be output.
  • outputting the second elastic image may include: displaying the second elastic image in a superimposed manner with the first image, superimposing and displaying the second elastic image and the first elastic image, or displaying all the elastic images in a superimposed manner. The second elastic image is displayed separately; when superimposed and displayed, the second elastic image is superimposed on the first image or the region of interest of the first elastic image.
  • FIG. 11 shows an example of displaying an elastic image in this embodiment.
  • the elasticity image on the left is a conventional shear wave elasticity image.
  • high-resolution elastography is performed on the region of interest R, and the right side shows A magnified display of the high-resolution elastic image of the region of interest R (alternatively, the high-resolution elastic image of the region of interest R can be displayed by superimposing it on the tissue structure image or the conventional shear wave elastic image on the left).
  • the region of interest R Due to the high-resolution elastic image of the region of interest R, the region of interest R has more pixels than when it is on the left elastic image, so it can still be clearly displayed after zooming in, which also It is convenient for users to observe, which is different from directly enlarging and displaying the original image (the elastic image on the left) (direct enlargement will lose the image clarity).
  • the elasticity measurement method 1000 can acquire the first region of interest from a tissue structure image, a blood flow image, or an angiography image, and realize conventional shear wave elasticity imaging of the first region of interest, and then obtain the first region of interest from the tissue structure image,
  • the blood flow image, angiography image, and conventional elasticity image can obtain the second region of interest, and realize high-resolution imaging of the second region of interest, which is helpful for doctors to clearly view the elasticity results of small lesions, and is of great significance for the elasticity detection of small lesions .
  • FIG. 12 shows a schematic flowchart of an elasticity measurement method 1200 according to still another embodiment of the present application. As shown in FIG. 12, the elasticity measurement method 1200 may include the following steps:
  • step S1210 the ultrasonic probe is controlled to transmit a first push pulse to the target tissue of the measured object, so as to generate a first shear wave propagating in the target tissue.
  • step S1220 control the ultrasonic probe to transmit a first ultrasonic wave for detecting the first shear wave to the target tissue, receive the echo of the first ultrasonic wave, and obtain the first ultrasonic wave based on the echo of the first ultrasonic wave. an ultrasonic echo signal.
  • step S1230 first elasticity data of the target tissue is generated based on the first ultrasonic echo signal, a first elasticity image is generated based on the first elasticity data, and an interesting point in the first elasticity image is acquired area.
  • step S1240 the ultrasound probe is controlled to transmit a second push pulse to the target tissue based on the region of interest, so as to generate a second shear wave propagating in the target tissue.
  • step S1250 control the ultrasonic probe to transmit a second ultrasonic wave for detecting the second shear wave to the target tissue, receive the echo of the second ultrasonic wave, and obtain the first ultrasonic wave based on the echo of the second ultrasonic wave. 2. Ultrasonic echo signal.
  • step S1260 second elasticity data of the region of interest is generated based on the second ultrasonic echo signal, elasticity parameters are generated based on the second elasticity data, and the elasticity parameters are output, wherein the second elasticity
  • the data point resolution of the elastic data is higher than the data point resolution of the first elastic data.
  • the elasticity measurement method 1200 is substantially similar to the elasticity measurement method 1000 according to the embodiment of the present application described above, except that the elasticity measurement method 1000 generates an elasticity image of the region of interest, while the elasticity measurement method 1000 generates an elasticity image of the region of interest.
  • the method 1200 may not necessarily generate an elastic image of the region of interest, but still have data capable of generating a high-resolution elastic image, in the form of a higher data point resolution for the second elastic data than for the first elastic data.
  • the second elasticity data is the data used to generate the second elasticity image in the previous link of generating the second elasticity image
  • the first elasticity data is used to generate the first elasticity image and is used to generate the first elasticity image.
  • the data point resolution refers to the resolution of the data points of the elastic data before generating the elastic image.
  • the high resolution of the data points can mean that there are more data points per unit area. Therefore, the data point resolution of the second elastic data is higher than the data point resolution of the first elastic data, so that the elastic parameters generated based on the second elastic data have higher accuracy, and the The elastic image has a higher pixel resolution than the first image generated based on the first elastic data.
  • the first elasticity image may be obtained directly from a local or other device, and the region of interest in the first elasticity image may be acquired, which is not detailed here. limited.
  • the elasticity measurement method 1200 can acquire a region of interest from a conventional shear wave elasticity image, and realize high-resolution elasticity measurement of the region of interest, which is beneficial for doctors to obtain more accurate elasticity results for small lesions.
  • the elasticity detection of lesions is of great significance.
  • FIG. 13 shows a schematic flowchart of an elasticity measurement method 1300 according to yet another embodiment of the present application. As shown in FIG. 13, the elasticity measurement method 1300 may include the following steps:
  • a first imaging mode and a second imaging mode are provided, wherein the first imaging mode is used to generate a first image, and the second imaging mode is used to generate an elasticity image, and the pixel resolution of the elasticity image is higher than that of the first imaging mode.
  • the pixel resolution of an image is higher than that of the first imaging mode.
  • step S1320 in the second imaging mode, the ultrasound probe is controlled to transmit a push pulse to the target tissue of the object to be measured, so as to generate shear waves propagating in the target tissue.
  • step S1330 the ultrasonic probe is controlled to transmit the ultrasonic wave for detecting the shear wave to the target tissue, receive the echo of the ultrasonic wave, and obtain an ultrasonic echo signal based on the echo of the ultrasonic wave.
  • step S1340 an elasticity image of the target tissue is generated based on the ultrasonic echo signal, and the elasticity image is output.
  • the elasticity measurement method 1300 according to the embodiment of the present application is substantially similar to the elasticity measurement method 200 according to the embodiment of the present application described above, except that the elasticity measurement method 200 generates a first image (such as a tissue structure image, blood flow image or angiography image) and then obtain the region of interest according to the first image for elastography, while the elastometric method 1300 provides two imaging modes, the first imaging mode is used to generate a first image (such as a tissue structure image, a blood flow image, Contrast image or conventional shear wave elasticity image), the second imaging mode is used to generate high-resolution elastic images, and the image obtained by the second imaging mode has higher pixel resolution than the image obtained by the first imaging mode, so in the first imaging mode The elasticity images obtained by imaging in two imaging modes have high resolution.
  • a first image such as a tissue structure image, blood flow image or angiography image
  • the elastometric method 1300 provides two imaging modes
  • the first imaging mode is used to generate a first image
  • mode selection may be provided by providing icons, knobs, menu bars, switch keys, and the like.
  • switching between the first imaging mode and the second imaging mode is performed by turning the switch on and off; for another example, two icons are provided, one of which corresponds to the first imaging mode and the other icon corresponds to the second imaging mode,
  • the corresponding imaging mode can be selected by selecting any one of the icons; for another example, the first imaging mode and the second imaging mode can be switched by rotating the knob to different directions; another example, the buttons of different imaging modes are displayed through the menu bar, The desired imaging mode can be selected by clicking on the corresponding button.
  • the first imaging mode may be manually selected, or the system automatically activates the first imaging mode by default to generate the first image; then, the region of interest in the first image is acquired; then, the first imaging mode may be manually selected
  • the second imaging mode or automatically switch to the second imaging mode, perform high-resolution elastography on the region of interest, and the pixel resolution of the resulting elastic image of the region of interest is higher than the pixel resolution of the region of interest in the first image. Rate.
  • the elasticity measurement method 1300 can realize high-resolution elasticity measurement of the region of interest, which is helpful for doctors to obtain more accurate elasticity results of small lesions, and is of great significance for elasticity detection of small lesions.
  • FIG. 14 shows a schematic flowchart of an elasticity measurement method 1400 according to still another embodiment of the present application.
  • the elasticity measurement method 1400 may include the following steps:
  • a first image of the target tissue of the measured object is acquired, wherein the first image includes at least one of a tissue structure image, a blood flow image, and an angiography image.
  • step S1420 a region of interest is acquired based on the first image, and a first elasticity image of the region of interest is generated.
  • step S1430 interpolation or image parameter enhancement is performed on the first elastic image to generate a second elastic image.
  • step S1440 the second elasticity image is output.
  • the elasticity measurement method 1400 acquires a region of interest from a first image (a tissue structure image, a blood flow image, or an angiography image), generates a conventional shear wave elasticity image of the region of interest, and then analyzes the generated elasticity image. Through interpolation processing or enhancement of image parameters (such as image sharpness), the processed elastic image has an increased pixel resolution compared to the pre-processing elastic image.
  • a first image a tissue structure image, a blood flow image, or an angiography image
  • image parameters such as image sharpness
  • performing interpolation processing on the generated elastic image may refer to: generating new pixels according to existing pixels in the elastic image, such as generating a new pixel between the two pixels by using two adjacent pixels;
  • the image parameter enhancement of elastic image can refer to: by modifying the image parameters to purposefully emphasize the characteristics of the image, make the original unclear image clear, improve the image quality, enrich the amount of information, and strengthen the image interpretation and recognition effect. , to meet the needs of image analysis.
  • FIG. 15 shows a schematic flowchart of an elasticity measurement method 1500 according to yet another embodiment of the present application.
  • the elasticity measurement method 1500 may include the following steps:
  • a first image of the target tissue of the measured object is acquired, wherein the first image includes at least one of a tissue structure image, a blood flow image, and an angiographic image.
  • step S1520 at least two regions of interest are acquired based on the first image.
  • step S1530 elastic images of the at least two regions of interest are acquired, wherein the pixel resolution of the at least two regions of interest in the elastic image is higher than that in the first image ;
  • step S1540 the elasticity image is output.
  • the elasticity measurement method 1500 according to the embodiment of the present application is substantially similar to the elasticity measurement method 200 according to the embodiment of the present application described above, except that the elasticity measurement method 1500 is not limited to real-time processing.
  • FIG. 16 shows a schematic flowchart of an elasticity measurement method 1600 according to still another embodiment of the present application.
  • the elasticity measurement method 1600 may include the following steps:
  • step S1610 a tissue structure image of the target tissue of the measured object is acquired.
  • step S1620 a first region of interest is acquired based on the tissue structure image.
  • step S1630 a first elasticity image of the first region of interest is acquired.
  • step S1640 a second region of interest is acquired based on the tissue structure image or the first elasticity image.
  • step S1650 a second elastic image of the second region of interest is acquired, and the pixel resolution of the second elastic image is higher than the pixel resolution of the first elastic image, wherein the first elastic image and The second elastic image is a shear wave elastic image.
  • step S1660 the second elasticity image is output.
  • the elasticity measurement method 1600 according to the embodiment of the present application is generally similar to the elasticity measurement method 1000 according to the embodiment of the present application described above, except that the elasticity measurement method 1600 is not limited to real-time processing.
  • FIG. 17 shows a schematic flowchart of an elasticity measurement method 1700 according to yet another embodiment of the present application. As shown in FIG. 17, the elasticity measurement method 1700 may include the following steps:
  • step S1710 a first image of the target tissue of the measured object is acquired, where the first image includes a tissue structure image.
  • step S1720 a second image of the target tissue is acquired, where the second image includes a blood flow image or a contrast image.
  • step S1730 a region of interest is acquired based on the first image or the second image.
  • step S1740 an elastic image of the region of interest is acquired, wherein the pixel resolution of the elastic image is higher than the pixel resolution of the region of interest in the first image and the second image,
  • the first image, the second image and the elasticity image correspond to the same tissue section of the target tissue.
  • step S1750 the elasticity image is output.
  • the elasticity measurement method 1700 according to the embodiment of the present application is generally similar to the elasticity measurement method 200 according to the embodiment of the present application described above, except that the elasticity measurement method 1700 of the embodiment of the present application is not limited to real-time processing, and the elasticity In the measurement method 1700, the first image (tissue structure image), the second image (blood flow image or angiography image) and the elasticity image are defined to correspond to the same tissue section of the target tissue. As mentioned above, each image is under the same section. The results are convenient for doctors to carry out accurate multi-dimensional analysis of the lesion section.
  • the process of generating shear waves and/or the process of detecting shear waves when generating an elastic image may be controlled, so that the pixel resolution of the elastic image is higher than that of the region of interest in the first image or pixel resolution in the second image.
  • the matching degree between the tissue section corresponding to the second image and the tissue section corresponding to the first image can be determined and displayed in real time (when the matching degree is lower than a preset threshold, the user can be automatically adjusted or prompted to manually adjust probe position to improve the matching degree), so that the second image and the first image correspond to the same tissue section of the target tissue; and/or determine and display in real time the tissue section corresponding to the elasticity image and the The degree of matching between the tissue sections corresponding to the first image and/or the second image (when the degree of matching is lower than the preset threshold, the user may be automatically or prompted to manually adjust the probe position to improve the degree of matching), so that all The elastic image and the first image and/or the second image belong to the same tissue section of the target tissue.
  • the first image, the second image and the elasticity image may be displayed simultaneously.
  • the area to be measured may also be acquired based on at least one of the first image, the second image, and the elastic image, and the area to be measured may be obtained in the first image, the second image, and the elastic image.
  • the respective measurement parameters in the second image and the elasticity image are displayed simultaneously.
  • the area to be measured can be selected based on the above images (can be redrawn by the user, or the system can directly set a small area of interest with high resolution as the area to be measured), and obtain the above different images
  • Various measurement parameters of the same area to be measured such as the brightness parameter of the B image, the blood supply richness of the blood flow image (such as the ratio of the blood flow area to the total area), the Young's modulus parameter on the elasticity image, etc.
  • the parameters are displayed together, which is convenient for doctors to diagnose.
  • the above exemplarily shows the elasticity measurement method according to the embodiment of the present application.
  • the elasticity measurement method according to the embodiments of the present application can realize high-resolution shear wave elasticity imaging, which is helpful for doctors to obtain more accurate elasticity results of small lesions, and is of great significance for elasticity detection of small lesions.
  • FIG. 18 shows a schematic block diagram of an elasticity measuring apparatus 1800 according to an embodiment of the present application.
  • the elasticity measuring apparatus 1800 may include an ultrasonic probe 1810 , a transmitting circuit 1820 , a receiving circuit 1830 and a processor 1840 .
  • the transmitting circuit 1820 is used to excite the ultrasonic probe 1810 to transmit ultrasonic waves to the target tissue of the measured object.
  • the receiving circuit 1830 is used to control the ultrasonic probe 1810 to receive the ultrasonic echoes returned from the target tissue to obtain ultrasonic echo signals.
  • the processor 1840 is configured to generate ultrasound image data according to the ultrasound echo signal, and is further configured to execute the elasticity measurement method according to the embodiment of the present application.
  • FIG. 19 shows a schematic block diagram of an elasticity measuring apparatus 1900 according to another embodiment of the present application.
  • the elasticity measurement device 1900 may include a memory 1910 and a processor 1920 .
  • the memory 1910 stores programs for implementing corresponding steps of the elasticity measurement method according to the embodiment of the present application.
  • the processor 1920 is configured to run the program stored in the memory 1910 to execute corresponding steps of the elasticity measurement method according to the embodiment of the present application.
  • a storage medium in which program instructions are stored, and when the program instructions are run by a computer or a processor, the program instructions are used to execute corresponding steps of the elasticity measurement method of the embodiments of the present application.
  • the storage medium may include, for example, a memory card for a smartphone, a storage unit for a tablet computer, a hard disk for a personal computer, a read only memory (ROM), an erasable programmable read only memory (EPROM), a portable compact disk read only memory (CD). - ROM), USB memory, or any combination of the above storage media.
  • a computer-readable storage medium can be any combination of one or more computer-readable storage media.
  • a computer program is also provided, and the computer program can be stored in the cloud or on a local storage medium.
  • the computer program is run by a computer or a processor, it is used to execute the corresponding steps of the elasticity measurement method of the embodiments of the present application.
  • the elasticity measurement method device and storage medium can realize high-resolution shear wave elasticity imaging, which is helpful for doctors to obtain more accurate elasticity results of small lesions, and is important for elasticity detection of small lesions significance.
  • Various component embodiments of the present application may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some modules according to the embodiments of the present application.
  • DSP digital signal processor
  • the present application can also be implemented as a program of apparatus (eg, computer programs and computer program products) for performing part or all of the methods described herein.
  • Such a program implementing the present application may be stored on a computer-readable medium, or may be in the form of one or more signals. Such signals may be downloaded from Internet sites, or provided on carrier signals, or in any other form.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种弹性测量方法(200)、装置(10)和存储介质。该方法(200)包括:控制超声探头(100)向被测对象的目标组织发射第一超声波,获取第一超声回波信号(S210);基于第一超声回波信号生成第一图像,获取至少两个感兴趣区域,其中,第一图像包括组织结构图像、血流图像和造影图像中的至少一种(S220);基于至少两个感兴趣区域控制超声探头向目标组织发射推动脉冲,以产生在目标组织内传播的剪切波(S230);控制超声探头向目标组织发射检测剪切波的第二超声波,获取第二超声回波信号(S240);基于第二超声回波信号生成至少两个感兴趣区域对应的弹性图像,并输出弹性图像,其中,至少两个感兴趣区域在弹性图像中的像素分辨率高于在第一图像中的像素分辨率(S250)。该方法可以实现高分辨率弹性成像。

Description

弹性测量方法、装置和存储介质
说明书
技术领域
本申请涉及超声成像技术领域,更具体地涉及一种弹性测量方法、装置和存储介质。
背景技术
超声弹性成像是以提取组织硬度相关参数为目标的一种超声成像方式,近年来已经更为广泛的被应用到临床研究和诊断中。目前通常被应用于甲状腺、乳腺、肌骨、肝脏、血管等部位相关疾病的辅助诊断。弹性等方面的临床上。对于组织软硬程度的判断可以有效辅助对于早期病变的发现、肿瘤良恶性鉴别、术后恢复评价等。
剪切波弹性成像,通过向组织内发射特殊超声脉冲形成声辐射力,在组织内形成剪切波源并产生剪切波在组织内传播。再通过超声波识别和检测组织内部的剪切波传播信息,进而计算出剪切波传播速度、杨氏模量等定量参数进行成像,从而实现对组织的定量弹性成像,是医生使用最多最为关注的一种弹性成像方法。
临床中病程的进展往往并不仅仅引起硬度的变化,通常也伴随着形态结构的改变、血供微循环的改变等,尤其在病程早期,这些变化可能是很细微渐进的,涉及区域较小(通常尺寸<5mm)。因此,临床中医生希望能准确识别出特殊的细微结构下或者特殊的血供异常处组织的硬度参数。此外,有些特殊应用领域,比如对烧伤的皮肤层进行成像时,目标区域往往特别小(通常尺寸<1mm),医生需要观察到细微目标内部的硬度差异。
但是,为了更好的观察组织的硬度分布,常规的剪切波弹性图像通常需获取较大范围ROI内的弹性结果进行显示,由于声能量、数据计算量等限制,市面上大多数剪切波弹性图像的分辨率往往很有限。即便是设定较小的ROI区域进行弹性图像的显示,实际也无法获得小ROI内精确的结果。因此,临床中剪切波弹性图像对小病灶的成像效果受到较多的抱怨。
发明内容
本申请一方面,提供了一种弹性测量方法,该方法包括:控制超声探头向被测对象的目标组织发射第一超声波,接收所述第一超声波的回波,基于所述第一超声波的回波获取第一超声回波信号;基于所述第一超声回波信号生成第一图像,并基于所述第一图像获取至少两个感兴趣区域,其中,所述第一图像包括组织结构图像、血流图像和造影图像中的至少一种;基于所述至少两个感兴趣区域控制所述超声探头向所述目标组织发射推动脉冲,以产生在所述目标组织内传播的剪切波;控制所述超声探头向所述目标组织发射检测所述剪切波的第二超声波,接收所述第二超声波的回波,并基于所述第二超声波的回波获取第二超声回波信号;基于所述第二超声回波信号生成所述至少两个感兴趣区域对应的弹性图像,并输出所述弹性图像;其中,所述至少两个感兴趣区域在所述弹性图像中的像素分辨率高于在所述第一图像中的像素分辨率。
本申请另一方面,提供了一种弹性测量方法,该方法包括:控制超声探头向被测对象的目标组织发射第一超声波,接收所述第一超声波的回波,并基于所述第一超声波的回波获取第一超声回波信号;基于所述第一超声回波信号生成第一图像,并基于所述第一图像获取第一感兴趣区域,其中,所述第一图像包括组织结构图像;基于所述第一感兴趣区域控制所述超声探头向所述目标组织发射第一推动脉冲,以产生在所述目标组织内传播的第一剪切波;控制所述超声探头向所述目标组织发射检测所述第一剪切波的第二超声波,接收所述第二超声波的回波,并基于所述第二超声波的回波获取第二超声回波信号;基于所述第二超声回波信号生成所述第一感兴趣区域对应的第一弹性图像;基于所述第一图像或者所述第一弹性图像获取第二感兴趣区域;基于所述第二感兴趣区域控制所述超声探头向所述目标组织发射第二推动脉冲,以产生在所述目标组织内传播的第二剪切波;控制所述超声探头向所述目标组织发射检测所述第二剪切波的第三超声波,接收所述第三超声波的回波,并基于所述第三超声波的回波获取第三超声回波信号;基于所述第三超声回波信号生成所述第二感兴趣区域对应的第二弹性图像,所述第二弹性图像的像素分辨率高于所述第一弹性图像的像 素分辨率;输出所述第二弹性图像。
本申请再一方面,提供了一种弹性测量方法,该方法包括:控制超声探头向被测对象的目标组织发射第一超声波,接收所述第一超声波的回波,并基于所述第一超声波的回波获取第一超声回波信号;基于所述第一超声回波信号生成第一图像,并基于所述第一图像获取感兴趣区域,其中,所述第一图像包括组织结构图像、血流图像和造影图像中的至少一种;基于所述感兴趣区域控制所述超声探头向所述目标组织发射推动脉冲,以产生在所述目标组织内传播的剪切波;控制所述超声探头向所述目标组织发射检测所述剪切波的第二超声波,接收所述第二超声波的回波,并基于所述第二超声波的回波获取第二超声回波信号;基于所述第二超声回波信号生成所述感兴趣区域的弹性图像,并输出所述弹性图像;其中,其中,所述感兴趣区域在所述弹性图像中的像素分辨率高于在所述第一图像中的像素分辨率。
本申请又一方面,提供了一种弹性测量方法,该方法包括:控制超声探头向被测对象的目标组织发射第一推动脉冲,以产生在所述目标组织内传播的第一剪切波;控制所述超声探头向所述目标组织发射检测所述第一剪切波的第一超声波,接收所述第一超声波的回波,并基于所述第一超声波的回波获取第一超声回波信号;基于所述第一超声回波信号生成所述目标组织的第一弹性数据,并基于所述第一弹性数据生成第一弹性图像,并获取所述第一弹性图像中的感兴趣区域;基于所述感兴趣区域控制所述超声探头向所述目标组织发射第二推动脉冲,以产生在所述目标组织内传播的第二剪切波;控制所述超声探头向所述目标组织发射检测所述第二剪切波的第二超声波,接收所述第二超声波的回波,并基于所述第二超声波的回波获取第二超声回波信号;基于所述第二超声回波信号生成所述感兴趣区域的第二弹性数据,并基于所述第二弹性数据生成弹性参数,并输出所述弹性参数;其中,所述第二弹性数据的数据点分辨率高于所述第一弹性数据的数据点分辨率。
本申请再一方面,提供了一种弹性测量方法,该方法包括:提供第一成像模式和第二成像模式,其中第一成像模式用于生成第一图像,第二成像模式用于生成弹性图像,所述弹性图像的像素分辨率高于所述第一图像 的像素分辨率;在所述第二成像模式下控制超声探头向被测对象的目标组织发射推动脉冲,以产生在所述目标组织内传播的剪切波;控制所述超声探头向所述目标组织发射检测所述剪切波的超声波,接收所述超声波的回波,并基于所述超声波的回波获取超声回波信号;基于所述超声回波信号生成所述目标组织的弹性图像,并输出所述弹性图像。
本申请再一方面,提供了一种弹性测量方法,该方法包括:获取被测对象的目标组织的第一图像,其中,所述第一图像包括组织结构图像、血流图像和造影图像中的至少一种;基于所述第一图像获取感兴趣区域;获取所述感兴趣区域的弹性图像,其中,所述感兴趣区域在所述弹性图像中的像素分辨率高于在所述第一图像中的像素分辨率;输出所述弹性图像。
本申请又一方面,提供了一种弹性测量方法,该方法包括:获取被测对象的目标组织的第一图像,其中,所述第一图像包括组织结构图像、血流图像和造影图像中的至少一种;基于所述第一图像获取感兴趣区域;生成所述感兴趣区域的第一弹性图像;对所述第一弹性图像进行插值或者进行图像参数增强以生成第二弹性图像;输出所述第二弹性图像。
本申请再一方面,提供了一种弹性测量方法,该方法包括:获取被测对象的目标组织的第一图像,其中,所述第一图像包括组织结构图像、血流图像和造影图像中的至少一种;基于所述第一图像获取至少两个感兴趣区域;获取所述至少两个感兴趣区域的弹性图像,其中,所述至少两个感兴趣区域在所述弹性图像中的像素分辨率高于在所述第一图像中的像素分辨率;输出所述弹性图像。
本申请又一方面,提供了一种弹性测量方法,该方法包括:获取被测对象的目标组织的组织结构图像;基于所述组织结构图像获取第一感兴趣区域;获取所述第一感兴趣区域的第一弹性图像;基于所述组织结构图像或所述第一弹性图像获取第二感兴趣区域;获取所述第二感兴趣区域的第二弹性图像,所述第二弹性图像的像素分辨率高于所述第一弹性图像的像素分辨率,其中,所述第一弹性图像和所述第二弹性图像为剪切波弹性图像;输出所述第二弹性图像。
本申请再一方面,提供了一种弹性测量方法,该方法包括:获取被测对象的目标组织的第一图像,所述第一图像包括组织结构图像;获取所述 目标组织的第二图像,所述第二图像包括血流图像或造影图像;基于所述第一图像或所述第二图像获取感兴趣区域;获取所述感兴趣区域的弹性图像,其中,所述弹性图像的像素分辨率高于所述感兴趣区域在所述第一图像和在所述第二图像中的像素分辨率,所述第一图像、所述第二图像和所述弹性图像对应所述目标组织的同一组织切面;输出所述弹性图像。
本申请又一方面,提供了一种弹性测量装置,该装置包括超声探头、发射电路、接收电路和处理器,其中:所述发射电路用于激励所述超声探头向被测对象的目标组织发射超声波;所述接收电路用于控制所述超声探头接收自所述目标组织返回的超声回波,以获取超声回波信号;所述处理器用于根据所述超声回波信号生成超声图像数据;所述处理器还用于执行上述弹性测量方法。
本申请再一方面,提供了一种弹性测量装置,该装置包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器调用所述存储器存储的计算机程序以执行上述弹性测量方法。
本申请又一方面,提供了一种存储介质,所述存储介质上存储有计算机程序,所述计算机程序在运行时执行上述弹性测量方法。
根据本申请实施例的弹性测量方法、装置和存储介质可以实现高分辨率剪切波弹性成像,有利于医生获取小病灶的更准确的弹性结果,对于小病灶的弹性检测具有重要意义。
附图说明
图1示出用于实现根据本申请实施例的弹性测量方法的示例性超声成像装置的示意性框图。
图2示出根据本申请一个实施例的弹性测量方法的示意性流程图。
图3示出根据本申请实施例的弹性测量方法中获取两个感兴趣区域的示意图。
图4示出根据本申请实施例的弹性测量方法中增强推动脉冲的聚焦强度的示意图。
图5A示出根据本申请实施例的弹性测量方法中推动脉冲的发射位置的一个示例的示意图。
图5B示出根据本申请实施例的弹性测量方法中推动脉冲的发射位置的另一个示例的示意图。
图6示出根据本申请实施例的弹性测量方法中检测脉冲覆盖所有感兴趣区域的示意图。
图7A示出根据本申请实施例的弹性测量方法中共用推动脉冲的示意图。
图7B示出根据本申请实施例的弹性测量方法中同时发射多个推动脉冲的示意图。
图7C示出根据本申请实施例的弹性测量方法中依次发射推动脉冲和检测脉冲的示意图。
图8A示出根据本申请实施例的弹性测量方法中感兴趣区域分割成多个局部点的示意图。
图8B示出根据本申请实施例的弹性测量方法中高分辨率检测计算的示意图。
图8C示出根据本申请实施例的弹性测量方法中传播速度计算的一个示例的示意图。
图9示出根据本申请实施例的弹性测量方法中显示弹性图像的一个示例的示意图。
图10示出根据本申请另一个实施例的弹性测量方法的示意性流程图。
图11示出根据本申请另一个实施例的弹性测量方法中显示弹性图像的一个示例的示意图。
图12示出根据本申请再一个实施例的弹性测量方法的示意性流程图。
图13示出根据本申请又一个实施例的弹性测量方法的示意性流程图。
图14示出根据本申请再一个实施例的弹性测量方法的示意性流程图。
图15示出根据本申请又一个实施例的弹性测量方法的示意性流程图。
图16示出根据本申请再一个实施例的弹性测量方法的示意性流程图。
图17示出根据本申请又一个实施例的弹性测量方法的示意性流程图。
图18示出根据本申请一个实施例的弹性测量装置的示意性框图。
图19示出根据本申请另一实施例的弹性测量装置的示意性框图。
具体实施方式
为了使得本申请的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。基于本申请中描述的本申请实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其他实施例都应落入本申请的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本申请更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本申请可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本申请发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本申请能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本申请的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本申请的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其他的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本申请,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本申请提出的技术方案。本申请的较佳实施例详细描述如下,然而除了这些详细描述外,本申请还可以具有其他实施方式。
首先,参照图1来描述用于实现本申请实施例的弹性测量方法的示例性超声成像装置。
图1为用于实现本申请实施例的弹性测量方法的示例性超声成像装置10的结构框图示意图。如图1所示,该超声成像装置10可以包括超声探头100、发射/接收选择开关101、发射/接收序列控制器102、处理器103、显示器104和存储器105。发射/接收序列控制器102可以激励超声探头100 向目标对象(被测对象)发射超声波,还可以控制超声探头100接收从目标对象返回的超声回波,从而获得超声回波信号/数据。处理器103对该超声回波信号/数据进行处理,以获得目标对象的组织相关参数和超声图像。处理器103获得的超声图像可以存储于存储器105中,这些超声图像可以在显示器104上显示。其中,被测对象可以是人,也可以是动物,诸如猫或狗等。
本申请实施例中,前述的超声成像装置10的显示器104可为触摸显示屏、液晶显示屏等,也可以是独立于超声成像装置10之外的液晶显示器、电视机等独立显示装置,也可为手机、平板电脑等电子装置上的显示屏。
本申请实施例中,前述的超声成像装置10的存储器105可为闪存卡、固态存储器、硬盘等。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有多条程序指令,该多条程序指令被处理器103调用执行后,可执行本申请各个实施例中的弹性测量方法中的部分步骤或全部步骤或其中步骤的任意组合。
一个实施例中,该计算机可读存储介质可为存储器105,其可以是闪存卡、固态存储器、硬盘等非易失性存储介质。
本申请实施例中,前述的超声成像装置10的处理器103可以通过软件、硬件、固件或者其组合实现,可以使用电路、单个或多个专用集成电路(application specific integrated circuits,ASIC)、单个或多个通用集成电路、单个或多个微处理器、单个或多个可编程逻辑器件、或者前述电路或器件的组合、或者其他适合的电路或器件,从而使得该处理器103可以执行各个实施例中的弹性测量方法的相应步骤。
下面结合图2到图17对本申请的弹性测量方法进行详细描述,该方法可由前述的超声成像装置10来执行。
图2示出了根据本申请一个实施例的弹性测量方法200的示意性流程图。如图2所示,弹性测量方法200包括如下步骤:
在步骤S210,控制超声探头向被测对象的目标组织发射第一超声波,接收所述第一超声波的回波,并基于所述第一超声波的回波获取第一超声回波信号。
在步骤S220,基于所述第一超声回波信号生成第一图像,并基于所述第一图像获取至少两个感兴趣区域,其中,所述第一图像包括组织结构图像、血流图像和造影图像中的至少一种。
在步骤S230,基于所述至少两个感兴趣区域控制所述超声探头向所述目标组织发射推动脉冲,以产生在所述目标组织内传播的剪切波。
在步骤S240,控制所述超声探头向所述目标组织发射检测所述剪切波的第二超声波,接收所述第二超声波的回波,并基于所述第二超声波的回波获取第二超声回波信号。
在步骤S250,基于所述第二超声回波信号生成所述至少两个感兴趣区域对应的弹性图像,并输出所述弹性图像,其中,所述至少两个感兴趣区域在所述弹性图像中的像素分辨率高于在所述第一图像中的像素分辨率。
在本申请的实施例中,控制超声探头向被测对象(诸如人或动物)的目标组织(即待测量弹性数据的组织)发射第一超声波是为了获取第一图像(诸如组织结构图像、血流图像、造影图像等等)。根据第一图像可以获取用于进行弹性测量的感兴趣区域。其中,可以基于组织结构图像(例如B图像)识别并获取感兴趣区域。常规B图像往往需要完整显示整个探头扫描视野内较大深度范围内的图像,图像像素的分辨率是较低的,难以准确识别目标,此时可以通过图像放大处理,标记出用于进行弹性测量的感兴趣区域。或者,也可以基于造影图像或血流图像获得血供信息从而识别感兴趣区域。常规血流图像可以观察组织内部的较粗大的血管位置,而造影图像或部分高分辨血流图像可以观察到毛细血管的位置及血供变化。可根据病灶处的血供特点,识别血供异常处,或者识别感兴趣的观察区域,以获取感兴趣区域。在本申请的实施例中,可(通过用户手动标记或者自动识别标记,其中用户手动标记时可以先放大第一图像以便于进行标记)获取一个或更多个感兴趣区域进行弹性测量(虽然在图2中示出为获取至少两个感兴趣区域,但应理解,本申请不限定获取的感兴趣区域的数目,仅是在一些实施例中可以获取至少两个感兴趣区域)。例如,可以获取两个感兴趣区域,一个为正常区域(例如正常血供区)、一个为异常区域(例如异常血供区),以进行对照和参考。例如,如图3所示,在组织结构图像中获取了两个感兴趣区域,分别标记为R1和R2。在图3所示的示例中,两 个感兴趣区域相对于整个图像区域来说尺寸较小,因此本申请的弹性测量方法对于小病灶的弹性测量有着重要意义。
在本申请的实施例中,向目标组织发射推动脉冲是为了在目标组织内产生剪切波;向目标组织发射第二超声波是为了检测该剪切波(因此第二超声波也可称为检测脉冲);因此,基于根据第二超声波的回波所得到的第二超声回波信号,可生成前述获取的各感兴趣区域的弹性测量结果(弹性图像和/或弹性参数)。在本申请的实施例中,从前述的尺寸较大的第一图像中获取尺寸较小的感兴趣区域,使得产生剪切波和检测剪切波的能量能够很集中,能够实现相对于第一图像具有更高像素分辨率的弹性成像。其中,像素分辨率是基于相同缩放尺寸下单位面积内的像素点的数量,因此,感兴趣区域在弹性图像的像素分辨率高于其在第一图像中的像素分辨率是指,(与感兴趣区域具有相同缩放尺寸的)弹性图像中的像素点的数量大于第一图像中感兴趣区域的像素点的数量。换言之,假定在第一图像中截取一个感兴趣区域,该感兴趣区域具有N个像素点;对该感兴趣区域进行弹性成像后得到的弹性图像与该感兴趣区域具有相同尺寸时,弹性图像具有M个像素点,其中M大于N。
在本申请的实施例中,可以通过控制生成弹性图像时产生剪切波的过程和/或检测剪切波的过程,以使得所述至少两个感兴趣区域在所述弹性图像中的像素分辨率高于在所述第一图像中的像素分辨率。具体地,控制产生剪切波的过程和/或检测剪切波的过程可以包括控制超声探头的发射参数、接收参数和扫描规则中的至少一项。
下面首先描述产生剪切波的过程中的控制。
在本申请的实施例中,为了实现高分辨率弹性成像,可以控制超声探头的发射孔径的大小和/或孔径内各阵元之间的发射延时参数,以增强推动脉冲的聚焦强度(相比常规推动脉冲来说),如图4所示的,推动脉冲的声场更聚焦,产生更集中的剪切波源。增强推动脉冲的聚焦强度可以提高生成的弹性图像的信噪比,从而提高弹性图像的分辨率。
此外,在本申请的实施例中,由于无需在较大的范围内产生剪切波源,因此推动脉冲的发射次数可以得到明显的减少,因此,推动脉冲的强度可以得以加强,比如发射电压可进一步提升。当然,也可以通过在同一个位 置重复发射推动脉冲以进一步增强推动效果,另一方面通过调节推动脉冲重复发射的间隔,也可调节所产生的剪切波源的频率范围。一般来说,频率高则空间分辨率更高,但衰减更快,因此可以减小推动脉冲重复发射的时间间隔。这些措施均可提高弹性测量的准确性。进一步地,还可以控制超声探头与向目标组织发射推动脉冲的位置之间的距离满足预设范围。下面结合图5A和图5B来描述。
图5A示出了具有一个感兴趣区域时推动脉冲的发射位置的示意图。如图5A所示,在具有一个感兴趣区域时,推动脉冲的发射位置可以选在离该感兴趣区域附近一段距离(比如5mm,一般由系统预先设定)。距离太远,则剪切波传播时衰减较大,经过感兴趣区域时幅度太小,信噪比降低;距离太近,则剪切波的传播容易受到推动脉冲的影响,传播速度计算不准确。因此,可设定预设范围,诸如前述的发射位置距离感兴趣区域5mm,以避免距离太远或太近各自产生的问题。如图5B所示,
图5B示出了具有两个感兴趣区域时推动脉冲的发射位置的示意图。如图5B所示,在具有两个感兴趣区域时,可根据两个感兴趣区域的距离进行一定的判断,如果同一个剪切波源可以同时传播经过两个感兴趣区域,则可以共用推动脉冲。否则,需要单独分别在两个感兴趣区域附近进行推动脉冲的发射,各自产生剪切波源传播经过各个两个感兴趣区域,此时,多个推动脉冲可以是同时由探头的不同子阵元组发射的,也可以是先后发射的。应理解,这对于包括两个以上的感兴趣区域的情况也是适用的。
下面描述检测剪切波的过程中的控制。
在本申请的实施例中,感兴趣区域较小,检测范围可以充分地缩小,检测脉冲的声场范围仅需保证覆盖感兴趣区域的宽度范围即可。在共用剪切波源的情况下,检测脉冲的声场范围需要保证覆盖所有感兴趣区域的宽度范围,以尽可能提升检测速率,如图6所示的。检测速率提高,则检测的数据增多,则成像的分辨率就能提高。
此外,检测脉冲的发射频率(比常规检测脉冲)更高、发射波形的长度更短,同时,接收线之间的间距(比常规检测检测脉冲时的情况)需要更小,接收线的数目也会相对较高。比如感兴趣区域宽度5mm,线间隔0.05mm,则接收线的数目为100(5除以0.05等于100)。对于B图像来说, 是对一个位置发射超声波,形成一条扫描线,然后该位置反射回波,即形成一条接收线;但是本申请此处,检测脉冲的声场是一个宽范围的,如图6所示的,一次并不是打在一个位置,而是一个区域,所以此时扫描线和接收线数目不对等,可以认为扫描线就一条,接收回波本来也是一个区域整体反射回来,但是在波束合成环节计算时,是将整个区域反射回来的信号分成多个接收位置的数据,所以接收线的数目比常规检测剪切波时的多。
此外,由于小感兴趣区域的深度位置一般较浅(一般小于B图像视野,或C图像感兴趣区域深度,或小于常规剪切波弹性图像的感兴趣区域深度),检测脉冲之间的发射间隔也可以更短,因此可以用更高的速率进行检测,从而实现更高的时间分辨率,进一步提升剪切波速度计算的空间分辨率和准确度。为了完整地记录剪切波在感兴趣区域内的传播过程,检测脉冲一般需持续发射一段时间。
以上从产生剪切波和检测剪切波各自过程中的发射参数和接收参数的控制进行了描述。下面结合图7A到图7C描述超声探头扫描规则的控制。
如前所述的,对于至少两个感兴趣区域,可能存在共用或不共用推动脉冲的情况。在共用推动脉冲的情况下,可以先发射共用的推动脉冲P(可重复多次),然后发射检测脉冲D波,检测多个感兴趣区域内的剪切波传播信息,如图7A所示的。在不共用推动脉冲P波的情况下,可以同时或先后发射多个推动脉冲P波。如果是同时发射多个推动脉冲P波,则如图7B所示的,可以控制超声探头的不同阵元组成的各阵元组同时向各自对应的感兴趣区域发射推动脉冲,再发射检测脉冲D波;如果是先后发射推动脉冲产生剪切波源,则顺序可以是先发射其中一个推动脉冲P波,检测其传播过程(检测脉冲D波),然后再发射另一个推动脉冲P波,检测其传播过程(检测脉冲D波),如图7C所示的。上述扫描过程可以特定的时间间隔重复进行,从而获得连续的多帧扫描及回波数据采集。
在本申请的实施例中,基于检测脉冲的回波信号(即第二超声回波信号)可以生成所述感兴趣区域的弹性结果(弹性参数和/或弹性图像)。其中,可以基于第二超声回波信号计算感兴趣区域内剪切波的传播速度,并根据所述传播速度计算感兴趣区域的弹性参数和/或生成感兴趣区域的弹性图像。具体地,可以计算在感兴趣区域内各局部位置处计算出剪切波传 播引起的组织的运动信息,比如位移、速度、加速度数据等,接着计算出某局部点附近两个不同位置处剪切波的传播时间或者计算出两个不同时刻下剪切波的传播距离,即可计算出对应的传播速度,并进一步计算出剪切模量/杨氏模量等弹性参数。
应理解,每个时刻的回波信号,对应于各位置处的状态,相当于一个静态图,所以至少两个时刻的回波信号才能算出某位置的运动信息;然后,两个位置的运动信息能得到剪切波传播速度的一个值;因此,多个位置如此计算,可以得到多个速度值,将每个速度值映射到弹性图像的一个像素上,即得到弹性图像;或者,也可以将每个速度值计算成杨氏模量再映射到像素上,得到弹性图像;所有速度的均值或者所有杨氏模量的均值即为最终给出的该感兴趣区域的数值参数结果。一般地,可以既显示弹性图像,又显示数值结果。
在本申请的实施例中,为了实现高分辨率的检测,组织运动信息计算时感兴趣区域(ROI)可以分割成更多(相对于第一图像中相同面积区域的局部像素点来说更多,例如设置为预设数目)的局部像素点(如图8A所示),局部像素点越密集,运动信息计算的空间分辨率越高。示例性地,可以通过插值的方式来将感兴趣区域分割成更多局部像素点。在计算传播速度时,所取不同位置之间的间距越小,其速度计算的空间分辨率越高,如图8B所示。可以看到,在传播速度不变的情况下,间距△d越小,对应的△t也会越小,对剪切波检测时间分辨率的要求也越高。
在另一个计算传播速度的实施例中,如图8C所示,假设剪切波从左往右传播,使用相隔一定间距的运动信息数据计算第1个传播速度(比如一对红色点位,标记为P1和P4),再使用相隔一定间距的运动信息数据计算第2个传播速度(比如一对黄色点位,标记为P2和P5)。此时,两次相邻的传播速度计算所对应的运动信息数据的位置偏移量较小(比如P1和P2之间的间隔),从而保证速度计算有较高的空间分辨率。由于速度计算时两个位置的间距增加了(比如一对红色点位之间,标记为P1和P4),所得的两个位置之间的传播时间也会延长,更加适合检测时间分辨率不高的情况。
因此,可以基于感兴趣区域内相邻两个位置(局部点)处的组织运动 信息计算剪切波的传播速度,也可以基于感兴趣区域内相隔预定间隔的两个位置(局部点)处的组织运动信息计算剪切波的传播速度,它们可以适用于不同的场景,如前文所示的。
在本申请的实施例中,在计算得到感兴趣区域的弹性数据后,可以彩色编码的方式在感兴趣区域内进行显示或单独显示,还可同时计算出感兴趣区域内的平均弹性结果(比如剪切波速度结果或杨氏模量结果等)进行显示。对于双感兴趣区域对比的情况,还可进一步计算出两个感兴趣区域的弹性结果比值进行显示。
图9示出了显示弹性图像的一个示例。在该示例中,弹性图像与组织结构图像(第一图像)叠加显示,其中感兴趣区域R1的弹性图像M1叠加显示在组织结构图像的感兴趣区域R1处,感兴趣区域R2的弹性图像M2叠加显示在组织结构图像的感兴趣区域R2处。此外,还在图上同时显示了两个感兴趣区域R1和R2各自的弹性参数E1和E2。在其他示例中,弹性图像也可以单独显示。
进一步地,还可以放大显示弹性图像,由于弹性图像是高分辨率的,因此放大显示后其仍因具有较多像素数而可以是清晰的。至少地,放大显示后的弹性图像的像素分辨率不低于第一图像的像素分辨率,或者低于第一图像的像素分辨率但与第一图像的像素分辨率相近(例如比第一图像的像素分辨率略小一定的数值)。
在本申请的进一步的实施例中,方法200还可以包括:确定并实时显示所述弹性图像对应的组织切面与所述第一图像对应的组织切面之间的匹配度,通过调整探头以使得所述弹性图像与所述第一图像属于所述目标组织的同一组织切面对应的图像。在该实施例中,通过匹配度提示保证弹性图像和第一图像是同一个切面下的结果,方便医生对病灶切面进行多维度的准确分析(稍后将结合图17描述该实施例)。
在本申请的进一步的实施例中,方法200还可以包括:获取所述第一图像上的第一感兴趣区域;生成所述感兴趣区域的弹性图像;获取所述弹性图像上的第二感兴趣区域,其中所述第二感兴趣区域与所述第一感兴趣区域对应于相同的组织区域;获取并显示与所述第一感兴趣区域相关的参数以及与所述第二感兴趣区域相关的参数。在该实施例中,可以获取不同 图像上相同组织区域的多种测量参数,比如B图像的亮度参数、血流图像的血供丰富度(比如血流面积占总面积的比例)、弹性图像上的杨氏模量参数等,多参数共同显示,便于医生诊断。
以上示例性地示出了根据本申请一个实施例的弹性测量方法。基于上面的描述,根据本申请实施例的弹性测量方法200可以从组织结构图像、血流图像或造影图像获取感兴趣区域,并实现感兴趣区域的高分辨率弹性成像,有利于医生清晰查看小病灶的弹性结果,对于小病灶的弹性检测具有重要意义。
下面结合图10到图17描述根据本申请其他实施例的弹性测量方法,这些弹性测量方法中的部分内容可能与前文所述实施例中的内容相同,为了简洁,下文中描述的实施例重点描述与前文所述实施例不同之处,相同或相似之处不再赘述。
图10示出了根据本申请另一个实施例的弹性测量方法1000的示意性流程图。如图10所示,弹性测量方法1000可以包括如下步骤:
在步骤S1010,控制超声探头向被测对象的目标组织发射第一超声波,接收所述第一超声波的回波,并基于所述第一超声波的回波获取第一超声回波信号。
在步骤S1020,基于所述第一超声回波信号生成第一图像,并基于所述第一图像获取第一感兴趣区域,其中,所述第一图像包括组织结构图像。
在步骤S1030,基于所述第一感兴趣区域控制所述超声探头向所述目标组织发射第一推动脉冲,以产生在所述目标组织内传播的第一剪切波。
在步骤S1040,控制所述超声探头向所述目标组织发射检测所述第一剪切波的第二超声波,接收所述第二超声波的回波,并基于所述第二超声波的回波获取第二超声回波信号。
在步骤S1050,基于所述第二超声回波信号生成所述第一感兴趣区域对应的第一弹性图像,并基于所述第一图像或者所述第一弹性图像获取第二感兴趣区域。
在步骤S1060,基于所述第二感兴趣区域控制所述超声探头向所述目标组织发射第二推动脉冲,以产生在所述目标组织内传播的第二剪切波。
在步骤S1070,控制所述超声探头向所述目标组织发射检测所述第二 剪切波的第三超声波,接收所述第三超声波的回波,并基于所述第三超声波的回波获取第三超声回波信号。
在步骤S1080,基于所述第三超声回波信号生成并输出所述第二感兴趣区域对应的第二弹性图像,所述第二弹性图像的像素分辨率高于所述第一弹性图像的像素分辨率。
根据本申请实施例的弹性测量方法1000与前文所述的根据本申请实施例的弹性测量方法200大体上类似,不同之处在于,弹性测量方法200是根据第一图像获取感兴趣区域进行弹性测量,而弹性测量方法1000生成第一图像获取第一感兴趣区域后,按照常规剪切波成像方法形成第一感兴趣区域的第一弹性图像,再从第一弹性图像中获取第二感兴趣区域,再根据本文的高分辨率成像方法生成第二感兴趣区域的第二弹性图像,第一弹性图像和第二弹性图像均是剪切波弹性图像,但第二弹性图像的像素分辨率高于第一弹性图像的像素分辨率。
在本申请的实施例中,可以控制生成第二弹性图像时产生剪切波的过程和/或检测剪切波的过程,以使得第二弹性图像的像素分辨率高于第一弹性图像的像素分辨率。在本申请的实施例中,还可以基于所述第三超声回波信号生成所述第二感兴趣区域对应的弹性参数,并输出所述弹性参数。其中,输出所述第二弹性图像可以包括:将所述第二弹性图像与所述第一图像进行叠加显示,将所述第二弹性图像与所述第一弹性图像进行叠加显示,或将所述第二弹性图像单独显示;当叠加显示时,所述第二弹性图像叠加在所述第一图像或所述第一弹性图像的所述感兴趣区域处。
图11示出了该实施例中显示弹性图像的一个示例。如图11所示,左侧弹性图像为常规剪切波弹性图像,在该弹性图像中选择了感兴趣区域R后,对该感兴趣区域R进行了高分辨率弹性成像,右侧示出了感兴趣区域R的高分辨率弹性图像的放大显示(或者也可将感兴趣区域R的高分辨率弹性图像叠加在组织结构图像或左侧的常规剪切波弹性图像上显示)。由于对了感兴趣区域R进行了高分辨率弹性图像,因此感兴趣区域R相对于感其在左侧弹性图像上时具有了更多的像素,因此放大显示后仍然可以是清晰的,这也便于用户观察,这不同于将原有图像(左侧弹性图像)直接放大显示(直接放大会损失图像清晰度)。
根据本申请实施例的弹性测量方法1000可以从组织结构图像、血流图像或造影图像获取第一感兴趣区域,并实现第一感兴趣区域的常规剪切波弹性成像,再从组织结构图像、血流图像、造影图像、常规弹性图像获取第二感兴趣区域,并实现第二感兴趣区域的高分辨率成像,有利于医生清晰查看小病灶的弹性结果,对于小病灶的弹性检测具有重要意义。
图12示出了根据本申请再一个实施例的弹性测量方法1200的示意性流程图。如图12所示,弹性测量方法1200可以包括如下步骤:
在步骤S1210,控制超声探头向被测对象的目标组织发射第一推动脉冲,以产生在所述目标组织内传播的第一剪切波。
在步骤S1220,控制所述超声探头向所述目标组织发射检测所述第一剪切波的第一超声波,接收所述第一超声波的回波,并基于所述第一超声波的回波获取第一超声回波信号。
在步骤S1230,基于所述第一超声回波信号生成所述目标组织的第一弹性数据,并基于所述第一弹性数据生成第一弹性图像,并获取所述第一弹性图像中的感兴趣区域。
在步骤S1240,基于所述感兴趣区域控制所述超声探头向所述目标组织发射第二推动脉冲,以产生在所述目标组织内传播的第二剪切波。
在步骤S1250,控制所述超声探头向所述目标组织发射检测所述第二剪切波的第二超声波,接收所述第二超声波的回波,并基于所述第二超声波的回波获取第二超声回波信号。
在步骤S1260,基于所述第二超声回波信号生成所述感兴趣区域的第二弹性数据,并基于所述第二弹性数据生成弹性参数,并输出所述弹性参数,其中,所述第二弹性数据的数据点分辨率高于所述第一弹性数据的数据点分辨率。
根据本申请实施例的弹性测量方法1200与前文所述的根据本申请实施例的弹性测量方法1000大体上类似,不同之处在于,弹性测量方法1000是生成感兴趣区域的弹性图像,而弹性测量方法1200可以不是必须生成感兴趣区域的弹性图像,但仍具有能够生成高分辨率弹性图像的数据,表现为第二弹性数据的数据点分辨率高于第一弹性数据的数据点分辨率。其中,第二弹性数据是用于生成第二弹性图像的、在生成第二弹性图像的前一个 环节的数据,第一弹性数据是用于生成第一弹性图像的、在生成第一弹性图像的前一个环节的数据,数据点分辨率是指是生成弹性图像之前的弹性数据的数据点的分辨率,数据点分辨率高可以指代单位面积下数据点的数据更多。因此,第二弹性数据的数据点分辨率高于第一弹性数据的数据点分辨率,使得基于第二弹性数据生成的弹性参数具有更高的准确性,且能够实现基于第二弹性数据生成的弹性图像比基于第一弹性数据生成的第一图像具有更高的像素分辨率。
在一些实施例中,可以取代弹性测量方法1200的步骤S1210-S1230,可以直接从本地或者其他设备获取该第一弹性图像,并获取该第一弹性图像中的感兴趣区域,此处不做具体限定。
根据本申请实施例的弹性测量方法1200可以从常规剪切波弹性图像获取感兴趣区域,并实现感兴趣区域的高分辨率弹性测量,有利于医生获取小病灶的更准确的弹性结果,对于小病灶的弹性检测具有重要意义。
图13示出了根据本申请又一个实施例的弹性测量方法1300的示意性流程图。如图13所示,弹性测量方法1300可以包括如下步骤:
在步骤S1310,提供第一成像模式和第二成像模式,其中第一成像模式用于生成第一图像,第二成像模式用于生成弹性图像,所述弹性图像的像素分辨率高于所述第一图像的像素分辨率。
在步骤S1320,在所述第二成像模式下控制超声探头向被测对象的目标组织发射推动脉冲,以产生在所述目标组织内传播的剪切波。
在步骤S1330,控制所述超声探头向所述目标组织发射检测所述剪切波的超声波,接收所述超声波的回波,并基于所述超声波的回波获取超声回波信号。
在步骤S1340,基于所述超声回波信号生成所述目标组织的弹性图像,并输出所述弹性图像。
根据本申请实施例的弹性测量方法1300与前文所述的根据本申请实施例的弹性测量方法200大体上类似,不同之处在于,弹性测量方法200是生成第一图像(诸如组织结构图像、血流图像或造影图像)后根据第一图像获取感兴趣区域进行弹性成像,而弹性测量方法1300提供两种成像模式,第一成像模式用于生成第一图像(诸如组织结构图像、血流图像、造 影图像或常规剪切波弹性图像),第二成像模式用于生成高分辨率弹性图像,第二成像模式得到的图像比第一成像模式得到的图像具有更高的像素分辨率,因此在第二成像模式下进行成像得到的弹性图像具有高分辨率。
其中,在一个实施例中,可以通过提供图标、旋钮、菜单栏、开关键等等方式来提供模式选择。例如,通过开关键的开与关进行第一成像模式与第二成像模式的切换;再如,提供两个图标,其中一个图标对应于第一成像模式,另一个图标对应于第二成像模式,通过对任意一个图标的选择可选择相应的成像模式;又如,通过将旋钮旋转到不同方向进行第一成像模式与第二成像模式的切换;再如,通过菜单栏显示不同成像模式的按钮,点击相应的按钮可以选择期望的成像模式。在另一实施例中,可以手动选择第一成像模式,或者系统默认自动启动第一成像模式,以生成第一图像;接着,获取该第一图像中的感兴趣区域;然后,可以手动选择第二成像模式,或者自动切换至第二成像模式,对感兴趣区域进行高分辨率弹性成像,最终得到的感兴趣区域的弹性图像的像素分辨率高于感兴趣区域在第一图像中的像素分辨率。
根据本申请实施例的弹性测量方法1300可以实现感兴趣区域的高分辨率弹性测量,有利于医生获取小病灶的更准确的弹性结果,对于小病灶的弹性检测具有重要意义。
图14示出了根据本申请再一个实施例的弹性测量方法1400的示意性流程图。如图14所示,弹性测量方法1400可以包括如下步骤:
在步骤S1410,获取被测对象的目标组织的第一图像,其中,所述第一图像包括组织结构图像、血流图像和造影图像中的至少一种。
在步骤S1420,基于所述第一图像获取感兴趣区域,生成所述感兴趣区域的第一弹性图像。
在步骤S1430,对所述第一弹性图像进行插值或者进行图像参数增强以生成第二弹性图像。
在步骤S1440,输出所述第二弹性图像。
根据本申请实施例的弹性测量方法1400从第一图像(组织结构图像、血流图像或造影图像)获取感兴趣区域,并生成感兴趣区域的常规剪切波弹性图像,然后对生成的弹性图像通过插值处理或图像参数(诸如图像锐 度)增强处理,使得处理后的弹性图像与处理前的弹性图像相比,提高了像素分辨率。其中,对生成的弹性图像进行插值处理可以是指:根据弹性图像中已有像素生成新的像素,诸如通过相邻两个像素生成一个新的介于这两个像素之间的像素;对生成的弹性图像进行图像参数增强可以是指:通过修改图像参数而有目的地强调图像的特性,将原来不清晰的图像变得清晰,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足对图像进行分析的需要。
图15示出了根据本申请又一个实施例的弹性测量方法1500的示意性流程图。如图15所示,弹性测量方法1500可以包括如下步骤:
在步骤S1510,获取被测对象的目标组织的第一图像,其中,所述第一图像包括组织结构图像、血流图像和造影图像中的至少一种。
在步骤S1520,基于所述第一图像获取至少两个感兴趣区域。
在步骤S1530,获取所述至少两个感兴趣区域的弹性图像,其中,所述至少两个感兴趣区域在所述弹性图像中的像素分辨率高于在所述第一图像中的像素分辨率;
在步骤S1540,输出所述弹性图像。
根据本申请实施例的弹性测量方法1500与前文所述的根据本申请实施例的弹性测量方法200大体上类似,不同之处在于,弹性测量方法1500不限于实时处理。
图16示出了根据本申请再一个实施例的弹性测量方法1600的示意性流程图。如图16所示,弹性测量方法1600可以包括如下步骤:
在步骤S1610,获取被测对象的目标组织的组织结构图像。
在步骤S1620,基于所述组织结构图像获取第一感兴趣区域。
在步骤S1630,获取所述第一感兴趣区域的第一弹性图像。
在步骤S1640,基于所述组织结构图像或所述第一弹性图像获取第二感兴趣区域。
在步骤S1650,获取所述第二感兴趣区域的第二弹性图像,所述第二弹性图像的像素分辨率高于所述第一弹性图像的像素分辨率,其中,所述第一弹性图像和所述第二弹性图像为剪切波弹性图像。
在步骤S1660,输出所述第二弹性图像。
根据本申请实施例的弹性测量方法1600与前文所述的根据本申请实施例的弹性测量方法1000大体上类似,不同之处在于,弹性测量方法1600不限于实时处理。
图17示出了根据本申请又一个实施例的弹性测量方法1700的示意性流程图。如图17所示,弹性测量方法1700可以包括如下步骤:
在步骤S1710,获取被测对象的目标组织的第一图像,所述第一图像包括组织结构图像。
在步骤S1720,获取所述目标组织的第二图像,所述第二图像包括血流图像或造影图像。
在步骤S1730,基于所述第一图像或所述第二图像获取感兴趣区域。
在步骤S1740,获取所述感兴趣区域的弹性图像,其中,所述弹性图像的像素分辨率高于所述感兴趣区域在所述第一图像和在所述第二图像中的像素分辨率,所述第一图像、所述第二图像和所述弹性图像对应所述目标组织的同一组织切面。
在步骤S1750,输出所述弹性图像。
根据本申请实施例的弹性测量方法1700与前文所述的根据本申请实施例的弹性测量方法200大体上类似,不同之处在于,本申请实施例的弹性测量方法1700不限于实时处理,并且弹性测量方法1700中限定第一图像(组织结构图像)、第二图像(血流图像或造影图像)和弹性图像对应目标组织的同一组织切面,如前所述的,各图像都是同一个切面下的结果方便医生对病灶切面进行多维度的准确分析。
在本申请的实施例中,可以控制生成弹性图像时产生剪切波的过程和/或检测剪切波的过程,以使得弹性图像的像素分辨率高于感兴趣区域在所述第一图像或在所述第二图像中的像素分辨率。此外,可以通过确定并实时显示所述第二图像对应的组织切面与所述第一图像对应的组织切面之间的匹配度(当匹配度低于预设阈值时,可以自动或者提示用户手动调整探头位置以提高其匹配度),以使得所述第二图像和所述第一图像对应所述目标组织的同一组织切面;和/或确定并实时显示所述弹性图像对应的组织切面与所述第一图像和/或所述第二图像对应的组织切面之间的匹配度(当匹配度低于预设阈值时,可以自动或者提示用户手动调整探头位置以提高其 匹配度),以使得所述弹性图像与所述第一图像和/或所述第二图像属于所述目标组织的同一组织切面对应的图像。
在本申请的实施例中,可以同时显示所述第一图像、所述第二图像和所述弹性图像。在本申请的实施例中,还可以基于所述第一图像、所述第二图像和所述弹性图像中的至少一个图像获取待测区域,获取所述待测区域在所述第一图像、所述第二图像和所述弹性图像中各自的测量参数,并同时显示所述测量参数。如前所述的,可以基于上述各图像选择待测区域(可由用户重新绘制选定,或者系统直接设定高分辨率的某个小感兴趣区域即为待测区域),并获取上述不同图像上相同待测区域的多种测量参数,比如B图像的亮度参数、血流图像的血供丰富度(比如血流面积占总面积的比例)、弹性图像上的杨氏模量参数等,多参数共同显示,这便于医生诊断。
以上示例性地示出了根据本申请实施例的弹性测量方法。基于上面的描述,根据本申请实施例的弹性测量方法可以实现高分辨率剪切波弹性成像,有利于医生获取小病灶的更准确的弹性结果,对于小病灶的弹性检测具有重要意义。
下面结合图18和图19描述根据本申请另一方面提供的弹性测量装置,其可以用于实现前文所述的根据本申请实施例的弹性测量方法。本领域技术人员可以结合前文所述理解根据本申请实施例的弹性测量装置各部件的结构和操作,为了简洁,此处不再赘述。
图18示出了根据本申请一个实施例的弹性测量装置1800的示意性框图。如图18所示,弹性测量装置1800可以包括超声探头1810、发射电路1820、接收电路1830和处理器1840。其中,发射电路1820用于激励超声探头1810向被测对象的目标组织发射超声波。接收电路1830用于控制超声探头1810接收自所述目标组织返回的超声回波,以获取超声回波信号。处理器1840用于根据所述超声回波信号生成超声图像数据,还用于执行根据本申请实施例的弹性测量方法。
图19示出了根据本申请另一个实施例的弹性测量装置1900的示意性框图。弹性测量装置1900可以包括存储器1910以及处理器1920。其中,存储器1910存储用于实现根据本申请实施例的弹性测量方法的相应步骤 的程序。处理器1920用于运行存储器1910中存储的程序,以执行根据本申请实施例的弹性测量方法的相应步骤。
此外,根据本申请实施例,还提供了一种存储介质,在存储介质上存储了程序指令,在程序指令被计算机或处理器运行时用于执行本申请实施例的弹性测量方法的相应步骤。存储介质例如可以包括智能电话的存储卡、平板电脑的存储部件、个人计算机的硬盘、只读存储器(ROM)、可擦除可编程只读存储器(EPROM)、便携式紧致盘只读存储器(CD-ROM)、USB存储器、或者上述存储介质的任意组合。计算机可读存储介质可以是一个或多个计算机可读存储介质的任意组合。
此外,根据本申请实施例,还提供了一种计算机程序,该计算机程序可以存储在云端或本地的存储介质上。在该计算机程序被计算机或处理器运行时用于执行本申请实施例的弹性测量方法的相应步骤。
基于上面的描述,根据本申请实施例的弹性测量方法装置和存储介质可以实现高分辨率剪切波弹性成像,有利于医生获取小病灶的更准确的弹性结果,对于小病灶的弹性检测具有重要意义。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本申请的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本申请的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本申请的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其他的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本申请并帮助理解各个发明方面中的一个或多个,在对本申请的示例性实施例的描述中,本申请的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本申请的方法解释成反映如下意图:即所要求保护的本申请要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本申请的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者装置的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此的一些实施例包括其他实施例中所包括的某些特征而不是其他特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本申请的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的一些模块的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本申请进行说明而不是对本申请进行限 制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上,仅为本申请的具体实施方式或对具体实施方式的说明,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以权利要求的保护范围为准。

Claims (52)

  1. 一种弹性测量方法,其特征在于,所述方法包括:
    控制超声探头向被测对象的目标组织发射第一超声波,接收所述第一超声波的回波,并基于所述第一超声波的回波获取第一超声回波信号;
    基于所述第一超声回波信号生成第一图像,并基于所述第一图像获取至少两个感兴趣区域,其中,所述第一图像包括组织结构图像、血流图像和造影图像中的至少一种;
    基于所述至少两个感兴趣区域控制所述超声探头向所述目标组织发射推动脉冲,以产生在所述目标组织内传播的剪切波;
    控制所述超声探头向所述目标组织发射检测所述剪切波的第二超声波,接收所述第二超声波的回波,并基于所述第二超声波的回波获取第二超声回波信号;
    基于所述第二超声回波信号生成所述至少两个感兴趣区域对应的弹性图像,并输出所述弹性图像;
    其中,所述至少两个感兴趣区域在所述弹性图像中的像素分辨率高于在所述第一图像中的像素分辨率。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:控制生成所述弹性图像时产生剪切波的过程和/或检测剪切波的过程,以使得所述至少两个感兴趣区域在所述弹性图像中的像素分辨率高于在所述第一图像中的像素分辨率。
  3. 根据权利要求1所述的方法,其特征在于,所述输出所述弹性图像包括:
    将所述弹性图像与所述第一图像进行叠加显示或单独显示;
    当叠加显示时,所述弹性图像叠加在所述第一图像的所述感兴趣区域处。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    基于所述第二超声回波信号生成所述至少两个感兴趣区域对应的弹性参数,并输出所述弹性参数。
  5. 一种弹性测量方法,其特征在于,所述方法包括:
    控制超声探头向被测对象的目标组织发射第一超声波,接收所述第一 超声波的回波,并基于所述第一超声波的回波获取第一超声回波信号;
    基于所述第一超声回波信号生成第一图像,并基于所述第一图像获取第一感兴趣区域,其中,所述第一图像包括组织结构图像;
    基于所述第一感兴趣区域控制所述超声探头向所述目标组织发射第一推动脉冲,以产生在所述目标组织内传播的第一剪切波;
    控制所述超声探头向所述目标组织发射检测所述第一剪切波的第二超声波,接收所述第二超声波的回波,并基于所述第二超声波的回波获取第二超声回波信号;
    基于所述第二超声回波信号生成所述第一感兴趣区域对应的第一弹性图像;
    基于所述第一图像或者所述第一弹性图像获取第二感兴趣区域;
    基于所述第二感兴趣区域控制所述超声探头向所述目标组织发射第二推动脉冲,以产生在所述目标组织内传播的第二剪切波;
    控制所述超声探头向所述目标组织发射检测所述第二剪切波的第三超声波,接收所述第三超声波的回波,并基于所述第三超声波的回波获取第三超声回波信号;
    基于所述第三超声回波信号生成所述第二感兴趣区域对应的第二弹性图像,所述第二弹性图像的像素分辨率高于所述第一弹性图像的像素分辨率;
    输出所述第二弹性图像。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:控制生成所述第二弹性图像时产生剪切波的过程和/或检测剪切波的过程,以使得所述第二弹性图像的像素分辨率高于所述第一弹性图像的像素分辨率。
  7. 根据权利要求5所述的方法,其特征在于,所述方法还包括:基于所述第三超声回波信号生成所述第二感兴趣区域对应的弹性参数,并输出所述弹性参数。
  8. 根据权利要求5所述的方法,其特征在于,所述输出所述第二弹性图像包括:
    将所述第二弹性图像与所述第一图像进行叠加显示,或将所述第二弹性图像与所述第一弹性图像进行叠加显示,或将所述第二弹性图像单独显 示;
    当叠加显示时,所述第二弹性图像叠加在所述第一图像或所述第一弹性图像的所述感兴趣区域处。
  9. 一种弹性测量方法,其特征在于,所述方法包括:
    控制超声探头向被测对象的目标组织发射第一超声波,接收所述第一超声波的回波,并基于所述第一超声波的回波获取第一超声回波信号;
    基于所述第一超声回波信号生成第一图像,并基于所述第一图像获取感兴趣区域,其中,所述第一图像包括组织结构图像、血流图像和造影图像中的至少一种;
    基于所述感兴趣区域控制所述超声探头向所述目标组织发射推动脉冲,以产生在所述目标组织内传播的剪切波;
    控制所述超声探头向所述目标组织发射检测所述剪切波的第二超声波,接收所述第二超声波的回波,并基于所述第二超声波的回波获取第二超声回波信号;
    基于所述第二超声回波信号生成所述感兴趣区域的弹性图像,并输出所述弹性图像;
    其中,所述感兴趣区域在所述弹性图像中的像素分辨率高于在所述第一图像中的像素分辨率。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:控制产生剪切波的过程和/或检测剪切波的过程,以使得所述感兴趣区域在所述弹性图像中的像素分辨率高于在所述第一图像中的像素分辨率。
  11. 根据权利要求10所述的方法,其特征在于,所述控制产生剪切波的过程和/或检测剪切波的过程包括控制超声探头的发射参数、接收参数和扫描规则中的至少一项。
  12. 根据权利要求11所述的方法,其特征在于,所述控制超声探头的发射参数包括以下至少一项:
    控制所述超声探头的发射孔径的大小和/或孔径内各阵元之间的发射延时参数,以增强推动脉冲的聚焦强度;
    加大所述第二超声波的发射频率;
    减小所述第二超声波的波长。
  13. 根据权利要求11所述的方法,其特征在于,所述控制超声探头的接收参数包括以下至少一项:
    加大所述第二超声波的回波的接收线的数目;
    减小所述第二超声波的回波的接收线之间的间距。
  14. 根据权利要求11所述的方法,其特征在于,所述控制超声探头的扫描规则包括以下至少一项:
    减少所述第二超声波重复发射的时间间隔。
  15. 根据权利要求9所述的方法,其特征在于,所述方法还包括以下中的至少一项:
    控制所述超声探头与向所述目标组织发射推动脉冲的位置之间的距离满足预设范围;
    加大所述推动脉冲的发射电压;
    减少所述第二超声波的发射时间;
    控制所述第二超声波的声场范围覆盖所述感兴趣区域;
    控制所述超声探头向所述目标组织重复发射推动脉冲;
    控制减小所述推动脉冲重复发射的时间间隔。
  16. 根据权利要求9所述的方法,其特征在于,所述感兴趣区域的数目为一个或多个。
  17. 根据权利要求16所述的方法,其特征在于,所述感兴趣区域的数目为至少两个,所述基于所述感兴趣区域控制所述超声探头向所述目标组织发射推动脉冲包括以下中的任一项;
    控制所述超声探头向所述至少两个感兴趣区域发射共用的推动脉冲;
    控制所述超声探头逐个向感兴趣区域发射推动脉冲;
    控制所述超声探头的不同阵元组成的各阵元组同时向各自对应的感兴趣区域发射推动脉冲。
  18. 根据权利要求17所述的方法,其特征在于,所述控制所述超声探头发射的第二超声波的声场范围同时覆盖所述至少两个感兴趣区域。
  19. 根据权利要求17所述的方法,其特征在于,当控制所述超声探头逐个向各感兴趣区域发射推动脉冲时,每当所述超声探头向一个感兴趣区域发射推动脉冲后,则控制所述超声探头向该感兴趣区域发射所述第二 超声波。
  20. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    基于所述第二超声回波信号生成所述感兴趣区域对应的弹性参数。
  21. 根据权利要求20所述的方法,其特征在于,所述基于所述第二超声回波信号计算所述感兴趣区域内剪切波的传播速度,包括:
    基于所述第二超声回波信号计算所述感兴趣区域内因剪切波传播引起的组织运动信息;
    基于所述感兴趣区域内相邻两个位置处的所述组织运动信息计算所述剪切波的传播速度。
  22. 根据权利要求20所述的方法,其特征在于,所述基于所述第二超声回波信号计算所述感兴趣区域内剪切波的传播速度,包括:
    基于所述第二超声回波信号计算所述感兴趣区域内因剪切波传播引起的组织运动信息;
    基于所述感兴趣区域内相隔预定间隔的两个位置处的所述组织运动信息计算所述剪切波的传播速度。
  23. 根据权利要求9所述的方法,其特征在于,所述输出所述弹性图像包括:
    将所述弹性图像与所述第一图像进行叠加显示或单独显示;
    当叠加显示时,所述弹性图像叠加在所述第一图像的所述感兴趣区域处。
  24. 根据权利要求23所述的方法,其特征在于,所述输出所述弹性图像包括:
    放大显示所述弹性图像,以使得放大后的所述弹性图像的像素分辨率不低于所述第一图像的像素分辨率,或者低于所述第一图像的像素分辨率但与所述第一图像的像素分辨率相近。
  25. 根据权利要求21或22所述的方法,其特征在于,所述感兴趣区域内的每个所述位置处为一个局部像素点,所述方法还包括:将所述感兴趣区域分割为预定数目的局部像素点,以用于计算所述剪切波的传播速度,所述预定数目大于在第一图像中具有相同面积区域的局部像素点数目。
  26. 根据权利要求16所述的方法,其特征在于,当所述感兴趣区域 的数量为至少两个时,所述方法还包括:
    计算并显示所述感兴趣区域的弹性结果之间的对比结果。
  27. 根据权利要求16所述的方法,其特征在于,所述感兴趣区域的数目为两个,其中一个感兴趣区域对应于异常组织区域,另一个感兴趣区域对应于正常组织区域。
  28. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    生成所述感兴趣区域的弹性图像:
    确定并实时显示所述弹性图像对应的组织切面与所述第一图像对应的组织切面之间的匹配度,通过调整探头以使得所述弹性图像与所述第一图像属于所述目标组织的同一组织切面对应的图像。
  29. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    获取所述第一图像上的第一感兴趣区域;
    生成所述感兴趣区域的弹性图像;
    获取所述弹性图像上的第二感兴趣区域,其中所述第二感兴趣区域与所述第一感兴趣区域对应于相同的组织区域;
    获取并显示与所述第一感兴趣区域相关的参数以及与所述第二感兴趣区域相关的参数。
  30. 一种弹性测量方法,其特征在于,所述方法包括:
    控制超声探头向被测对象的目标组织发射第一推动脉冲,以产生在所述目标组织内传播的第一剪切波;
    控制所述超声探头向所述目标组织发射检测所述第一剪切波的第一超声波,接收所述第一超声波的回波,并基于所述第一超声波的回波获取第一超声回波信号;
    基于所述第一超声回波信号生成所述目标组织的第一弹性数据,并基于所述第一弹性数据生成第一弹性图像,并获取所述第一弹性图像中的感兴趣区域;
    基于所述感兴趣区域控制所述超声探头向所述目标组织发射第二推动脉冲,以产生在所述目标组织内传播的第二剪切波;
    控制所述超声探头向所述目标组织发射检测所述第二剪切波的第二超声波,接收所述第二超声波的回波,并基于所述第二超声波的回波获取 第二超声回波信号;
    基于所述第二超声回波信号生成所述感兴趣区域的第二弹性数据,并基于所述第二弹性数据生成弹性参数,并输出所述弹性参数;
    其中,所述第二弹性数据的数据点分辨率高于所述第一弹性数据的数据点分辨率。
  31. 根据权利要求30所述的方法,其特征在于,所述方法还包括:控制产生第二剪切波的过程和/或检测第二剪切波的过程,以使得所述第二弹性数据的数据点分辨率高于所述第一弹性数据的数据点分辨率。
  32. 根据权利要求30所述的方法,其特征在于,所述方法还包括:
    基于所述第二弹性数据生成所述感兴趣区域的第二弹性图像,并输出所述第二弹性图像。
  33. 根据权利要求32所述的方法,其特征在于,所述输出所述弹性图像包括:
    将所述第二弹性图像与所述第一弹性图像进行叠加显示或单独显示;
    当叠加显示时,所述第二弹性图像叠加在所述第一弹性图像的所述感兴趣区域处。
  34. 一种弹性测量方法,其特征在于,所述方法包括:
    提供第一成像模式和第二成像模式,其中第一成像模式用于生成第一图像,第二成像模式用于生成弹性图像,所述弹性图像的像素分辨率高于所述第一图像的像素分辨率;
    在所述第二成像模式下控制超声探头向被测对象的目标组织发射推动脉冲,以产生在所述目标组织内传播的剪切波;
    控制所述超声探头向所述目标组织发射检测所述剪切波的超声波,接收所述超声波的回波,并基于所述超声波的回波获取超声回波信号;
    基于所述超声回波信号生成所述目标组织的弹性图像,并输出所述弹性图像。
  35. 根据权利要求34所述的方法,其特征在于,在所述第一成像模式下生成所述第一图像,并获取所述第一图像中的感兴趣区域;
    在获取所述感兴趣区域后,基于用户对所述第二成像模式的选择切换到所述第二成像模式,或者自动切换到所述第二成像模式,以生成所述感 兴趣区域的弹性图像。
  36. 一种弹性测量方法,其特征在于,所述方法包括:
    获取被测对象的目标组织的第一图像,其中,所述第一图像包括组织结构图像、血流图像和造影图像中的至少一种;
    基于所述第一图像获取感兴趣区域;
    生成所述感兴趣区域的第一弹性图像;
    对所述第一弹性图像进行插值或者进行图像参数增强以生成第二弹性图像;
    输出所述第二弹性图像。
  37. 根据权利要求36所述的方法,其特征在于,所述输出所述第二弹性图像包括:
    将所述第二弹性图像与所述第一图像进行叠加显示或单独显示;
    当叠加显示时,所述第二弹性图像叠加在所述第一图像的所述感兴趣区域处。
  38. 一种弹性测量方法,其特征在于,所述方法包括:
    获取被测对象的目标组织的第一图像,其中,所述第一图像包括组织结构图像、血流图像和造影图像中的至少一种;
    基于所述第一图像获取至少两个感兴趣区域;
    获取所述至少两个感兴趣区域的弹性图像,其中,所述至少两个感兴趣区域在所述弹性图像中的像素分辨率高于在所述第一图像中的像素分辨率;
    输出所述弹性图像。
  39. 根据权利要求38所述的方法,其特征在于,所述方法还包括:控制生成所述弹性图像时产生剪切波的过程和/或检测剪切波的过程,以使得所述至少两个感兴趣区域在所述弹性图像中的像素分辨率高于在所述第一图像中的像素分辨率。
  40. 根据权利要求38所述的方法,其特征在于,所述输出所述第二弹性图像包括:
    将所述弹性图像与所述第一图像进行叠加显示或单独显示;
    当叠加显示时,所述弹性图像叠加在所述第一图像的所述感兴趣区域 处。
  41. 一种弹性测量方法,其特征在于,所述方法包括:
    获取被测对象的目标组织的组织结构图像;
    基于所述组织结构图像获取第一感兴趣区域;
    获取所述第一感兴趣区域的第一弹性图像;
    基于所述组织结构图像或所述第一弹性图像获取第二感兴趣区域;
    获取所述第二感兴趣区域的第二弹性图像,所述第二弹性图像的像素分辨率高于所述第一弹性图像的像素分辨率,其中,所述第一弹性图像和所述第二弹性图像为剪切波弹性图像;
    输出所述第二弹性图像。
  42. 根据权利要求41所述的方法,其特征在于,所述方法还包括:控制生成所述第二弹性图像时产生剪切波的过程和/或检测剪切波的过程,以使得所述第二弹性图像的像素分辨率高于所述第一弹性图像的像素分辨率。
  43. 根据权利要求41所述的方法,其特征在于,所述输出所述第二弹性图像包括:
    将所述第二弹性图像与所述组织结构图像进行叠加显示或单独显示;
    当叠加显示时,所述第二弹性图像叠加在所述组织结构图像的所述感兴趣区域处。
  44. 一种弹性测量方法,其特征在于,所述方法包括:
    获取被测对象的目标组织的第一图像,所述第一图像包括组织结构图像;
    获取所述目标组织的第二图像,所述第二图像包括血流图像或造影图像;
    基于所述第一图像或所述第二图像获取感兴趣区域;
    获取所述感兴趣区域的弹性图像,其中,所述弹性图像的像素分辨率高于所述感兴趣区域在所述第一图像和在所述第二图像中的像素分辨率,所述第一图像、所述第二图像和所述弹性图像对应所述目标组织的同一组织切面;
    输出所述弹性图像。
  45. 根据权利要求44所述的方法,其特征在于,所述方法还包括:控制生成所述弹性图像时产生剪切波的过程和/或检测剪切波的过程,以使得所述弹性图像的像素分辨率高于所述感兴趣区域在所述第一图像或在所述第二图像中的像素分辨率。
  46. 根据权利要求44所述的方法,其特征在于,所述方法还包括:
    确定并实时显示所述第二图像对应的组织切面与所述第一图像对应的组织切面之间的匹配度,通过调整探头以使得所述第二图像和所述第一图像对应所述目标组织的同一组织切面;和/或
    确定并实时显示所述弹性图像对应的组织切面与所述第一图像和/或所述第二图像对应的组织切面之间的匹配度,通过调整探头以使得所述弹性图像与所述第一图像和/或所述第二图像属于所述目标组织的同一组织切面对应的图像。
  47. 根据权利要求44所述的方法,其特征在于,所述方法还包括:
    基于所述第一图像、所述第二图像和所述弹性图像中的至少一个图像获取待测区域,获取所述待测区域在所述第一图像、所述第二图像和所述弹性图像中各自的测量参数,并同时显示所述测量参数。
  48. 根据权利要求44所述的方法,其特征在于,所述方法还包括:同时显示所述第一图像、所述第二图像和所述弹性图像。
  49. 根据权利要求2、5、31、39、42、45中的任一项所述的方法,控制产生剪切波和/或检测剪切波的过程包括控制超声探头的发射参数、接收参数和扫描规则中的至少一项。
  50. 一种弹性测量装置,其特征在于,所述弹性测量装置包括超声探头、发射电路、接收电路和处理器,其中:
    所述发射电路用于激励所述超声探头向被测对象的目标组织发射超声波;
    所述接收电路用于控制所述超声探头接收自所述目标组织返回的超声回波,以获取超声回波信号;
    所述处理器用于根据所述超声回波信号生成超声图像数据;
    所述处理器还用于执行权利要求1-35中的任一项所述的弹性测量方法。
  51. 一种弹性测量装置,其特征在于,所述弹性测量装置包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器调用所述存储器存储的计算机程序以执行权利要求36-49中的任一项所述的弹性测量方法。
  52. 一种存储介质,其特征在于,所述存储介质上存储有计算机程序,所述计算机程序在运行时执行如权利要求36-49中的任一项所述的弹性测量方法。
PCT/CN2021/070503 2021-01-06 2021-01-06 弹性测量方法、装置和存储介质 WO2022147689A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180054055.9A CN116133597A (zh) 2021-01-06 2021-01-06 弹性测量方法、装置和存储介质
PCT/CN2021/070503 WO2022147689A1 (zh) 2021-01-06 2021-01-06 弹性测量方法、装置和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/070503 WO2022147689A1 (zh) 2021-01-06 2021-01-06 弹性测量方法、装置和存储介质

Publications (1)

Publication Number Publication Date
WO2022147689A1 true WO2022147689A1 (zh) 2022-07-14

Family

ID=82356990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070503 WO2022147689A1 (zh) 2021-01-06 2021-01-06 弹性测量方法、装置和存储介质

Country Status (2)

Country Link
CN (1) CN116133597A (zh)
WO (1) WO2022147689A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117379093A (zh) * 2023-12-11 2024-01-12 深圳英美达医疗技术有限公司 一种基于环阵换能器的超声成像方法及超声探头系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116712101B (zh) * 2023-08-04 2023-11-21 深圳市联影高端医疗装备创新研究院 超声图像生成方法、装置、计算机设备和存储介质
CN117409245B (zh) * 2023-10-23 2024-04-02 广东省农业科学院动物科学研究所 一种脆肉鱼的自动识别方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005806A (zh) * 2004-08-25 2007-07-25 株式会社日立医药 超声波诊断装置
KR20080073058A (ko) * 2007-02-05 2008-08-08 주식회사 메디슨 탄성영상을 형성하는 초음파 시스템 및 방법
CN101390758A (zh) * 2002-10-28 2009-03-25 株式会社日立医药 生物组织弹性测量方法和超声波诊断设备
CN103156636A (zh) * 2011-12-15 2013-06-19 深圳迈瑞生物医疗电子股份有限公司 一种超声成像装置和方法
CN109259801A (zh) * 2018-09-12 2019-01-25 深圳开立生物医疗科技股份有限公司 一种剪切波弹性成像方法及装置
CN109890296A (zh) * 2016-10-27 2019-06-14 皇家飞利浦有限公司 具有组织类型分析器的超声系统
WO2019205167A1 (zh) * 2018-04-28 2019-10-31 深圳迈瑞生物医疗电子股份有限公司 一种超声瞬时弹性测量设备及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101390758A (zh) * 2002-10-28 2009-03-25 株式会社日立医药 生物组织弹性测量方法和超声波诊断设备
CN101005806A (zh) * 2004-08-25 2007-07-25 株式会社日立医药 超声波诊断装置
KR20080073058A (ko) * 2007-02-05 2008-08-08 주식회사 메디슨 탄성영상을 형성하는 초음파 시스템 및 방법
CN103156636A (zh) * 2011-12-15 2013-06-19 深圳迈瑞生物医疗电子股份有限公司 一种超声成像装置和方法
CN109890296A (zh) * 2016-10-27 2019-06-14 皇家飞利浦有限公司 具有组织类型分析器的超声系统
WO2019205167A1 (zh) * 2018-04-28 2019-10-31 深圳迈瑞生物医疗电子股份有限公司 一种超声瞬时弹性测量设备及方法
CN109259801A (zh) * 2018-09-12 2019-01-25 深圳开立生物医疗科技股份有限公司 一种剪切波弹性成像方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117379093A (zh) * 2023-12-11 2024-01-12 深圳英美达医疗技术有限公司 一种基于环阵换能器的超声成像方法及超声探头系统
CN117379093B (zh) * 2023-12-11 2024-03-15 深圳英美达医疗技术有限公司 一种基于环阵换能器的超声成像方法及超声探头系统

Also Published As

Publication number Publication date
CN116133597A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
WO2022147689A1 (zh) 弹性测量方法、装置和存储介质
WO2020077598A1 (zh) 一种超声弹性检测方法及其系统
US11432803B2 (en) Method and system for generating a visualization plane from 3D ultrasound data
CN108882914B (zh) 超声造影成像方法及超声成像系统
JP6139186B2 (ja) 超音波診断装置、画像処理装置及び画像処理プログラム
JP2010124842A (ja) 超音波診断装置
JP5525693B2 (ja) 超音波診断装置、及び超音波診断装置の制御プログラム
JP7309355B2 (ja) 医用画像生成装置、及び医用画像生成プログラム
JP7195374B2 (ja) 音響波計測装置及び音響波計測装置の作動方法
CN110573084B (zh) 一种超声弹性检测设备及剪切波弹性成像方法、装置
CN113017682B (zh) 一种超声成像设备及方法
JP2021007512A (ja) 超音波診断装置及び解析装置
KR20150104457A (ko) 선택 정보에 기초하여 관심 영역에 포함된 혈류에 대한 정보를 출력하는 방법, 장치 및 시스템.
JP2021090724A (ja) パルス波ドップラー撮像においてアーチファクト警告を自動的に提供するための方法およびシステム
CN111839583A (zh) 超声波诊断装置以及分析装置
JP5481261B2 (ja) 超音波診断装置及び多重検出プログラム
JP2021049129A (ja) 超音波診断装置、及び画像処理装置
WO2020037673A1 (zh) 一种超声弹性成像装置及对弹性图像进行处理的方法
CN113545806A (zh) 前列腺弹性成像方法和超声弹性成像系统
JP6780976B2 (ja) 超音波診断装置
JP6786260B2 (ja) 超音波診断装置及び画像生成方法
WO2022147690A1 (zh) 弹性成像方法和超声成像系统
WO2020082229A1 (zh) 一种检查模式的确定方法及超声设备
US20220079553A1 (en) Ultrasound diagnosis apparatus, measurement condition setting method, and non-transitory computer-readable storage medium
JP7483327B2 (ja) 超音波診断装置及び解析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21916747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21916747

Country of ref document: EP

Kind code of ref document: A1