WO2022147690A1 - 弹性成像方法和超声成像系统 - Google Patents

弹性成像方法和超声成像系统 Download PDF

Info

Publication number
WO2022147690A1
WO2022147690A1 PCT/CN2021/070504 CN2021070504W WO2022147690A1 WO 2022147690 A1 WO2022147690 A1 WO 2022147690A1 CN 2021070504 W CN2021070504 W CN 2021070504W WO 2022147690 A1 WO2022147690 A1 WO 2022147690A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
tissue
ultrasonic
elastography
target tissue
Prior art date
Application number
PCT/CN2021/070504
Other languages
English (en)
French (fr)
Inventor
李双双
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2021/070504 priority Critical patent/WO2022147690A1/zh
Priority to CN202180079842.9A priority patent/CN116528771A/zh
Publication of WO2022147690A1 publication Critical patent/WO2022147690A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings

Definitions

  • the present application relates to the technical field of ultrasound imaging, and more particularly, to an elastic imaging method and an ultrasound imaging system.
  • Ultrasound elastography is an ultrasound imaging method aiming at extracting parameters related to tissue hardness. It has been widely used in clinical research and diagnosis in recent years. At present, ultrasound elastography is usually used in the examination of thyroid, breast, musculoskeletal, liver, blood vessels and other parts. Judging the degree of tissue softness and hardness can effectively assist in the discovery of early lesions, the identification of benign and malignant tumors, and the evaluation of postoperative recovery.
  • Shear wave elastography generates acoustic radiation force by launching special ultrasonic pulses into the tissue, forming a shear wave source in the tissue and generating shear waves propagating in the tissue, and then identifying and detecting the shear wave propagation information inside the tissue through ultrasonic waves. , and then calculate the shear wave propagation velocity, Young's modulus and other quantitative parameters for imaging, so as to achieve quantitative elastography of the tissue, which is the most used and most concerned elastography method by doctors.
  • the stiffness of the target tissue is higher and the shear wave decays faster.
  • breast cancer lesions usually not only have high hardness (mostly more than 100kPa, and even reach 300-400kPa), but also have a large area.
  • the shear wave source is not easy to generate; even if the shear wave is generated, the amplitude is very weak, and it is not easy to propagate and penetrate the entire lesion area, resulting in inaccurate elastic measurement values, or incomplete elastic measurement values, resulting in elastic images There are holes, which seriously affect the user experience.
  • a first aspect of the embodiments of the present application provides an elastography method, the method comprising:
  • the The penetration force of the second ultrasonic wave to the target sub-tissue is greater than the penetration force of the first ultrasonic wave to the target sub-tissue, and/or the penetration of the second shear wave to the target sub-tissue The force is greater than the penetration force of the first shear wave to the target sub-tissue;
  • the second elastic image is output.
  • a second aspect of the embodiments of the present application provides an elastography method, the method comprising:
  • the The penetration force of the second ultrasonic wave to the target sub-tissue is greater than the penetration force of the first ultrasonic wave to the target sub-tissue, and/or the penetration of the second shear wave to the target sub-tissue The force is greater than the penetration force of the first shear wave to the target sub-tissue;
  • the second elastic image is output.
  • a third aspect of the embodiments of the present application provides an elastography method, the method comprising:
  • the at least two elastography modes include a first elastography mode and a second elastography mode, the first elastography mode corresponding to the first push pulse and the first ultrasound, the second elastography mode corresponds to the second push pulse and the second ultrasonic wave;
  • the second ultrasonic wave tracking the second shear wave is transmitted to the target tissue, and the ultrasonic echo returned by the target tissue is received to obtain ultrasonic echo data; wherein, the effect of the second ultrasonic wave on the target tissue is
  • the penetration force is greater than the penetration force of the first ultrasonic wave to the target tissue, and/or the penetration force of the second shear wave to the target tissue is greater than the first shear wave generated by the first push pulse. the penetration power of the shear wave to the target tissue;
  • the second elastic image is output.
  • a fourth aspect of the embodiments of the present application provides an elastography method, the method comprising:
  • the first ultrasound image includes a tissue structure image
  • the at least two elastography modes include a first elastography mode and a second elastography mode, the first elastography mode corresponding to the first push pulse and the first ultrasound, the second elastography mode corresponds to the second push pulse and the second ultrasonic wave;
  • the second ultrasonic wave tracking the second shear wave is transmitted to the target tissue, and the ultrasonic echo returned by the target tissue is received to obtain ultrasonic echo data; wherein, the effect of the second ultrasonic wave on the target tissue is
  • the penetration force is greater than the penetration force of the first ultrasonic wave to the target tissue, and/or the penetration force of the second shear wave to the target tissue is greater than the first shear wave generated by the first push pulse. the penetration power of the shear wave to the target tissue;
  • the elastic image is output.
  • a fifth aspect of the embodiments of the present application provides an ultrasound imaging system, where the ultrasound imaging system includes:
  • a transmitting circuit configured to excite the ultrasonic probe to transmit a first push pulse to the target tissue of the object to be measured, so as to generate a first shear wave propagating in the target tissue; and excite the ultrasonic probe to the target tissue transmitting a first ultrasonic wave tracking the first shear wave;
  • a receiving circuit configured to control the ultrasonic probe to receive the first ultrasonic echo returned by the target tissue to obtain first ultrasonic echo data
  • processor for:
  • the transmitting circuit is further configured to excite the ultrasound probe to transmit a second push pulse to the target tissue based on the target region, so as to generate a second shear wave propagating in the target sub-tissue corresponding to the target region; and Exciting the ultrasonic probe to emit a second ultrasonic wave tracking the second shear wave to the target tissue;
  • the receiving circuit is further configured to receive the second ultrasonic echo returned by the target tissue, so as to obtain second ultrasonic echo data of the target sub-tissue; wherein, the penetration of the second ultrasonic wave on the target sub-tissue is performed.
  • the penetrating force is greater than the penetrating force of the first ultrasonic wave on the target sub-tissue, and/or the penetrating force of the second shear wave on the target sub-tissue is greater than the penetrating force of the first shear wave on the target sub-tissue Penetration of the target sub-tissue;
  • the processor is further configured to generate a second elasticity image of the target sub-tissue based on the second ultrasound echo data
  • a sixth aspect of the embodiments of the present application provides an ultrasound imaging system, where the ultrasound imaging system includes:
  • processor for:
  • a transmitting circuit configured to excite the ultrasonic probe to transmit a push pulse to the target sub-tissue based on the target region, to generate a second shear wave propagating in the target sub-tissue corresponding to the target region; and excite the target sub-tissue;
  • the ultrasonic probe transmits a second ultrasonic wave that tracks the second shear wave to the target tissue;
  • a receiving circuit configured to control the ultrasonic probe to receive the second ultrasonic echo returned by the target tissue, so as to obtain the second ultrasonic echo data of the target self-organization;
  • the penetrating force of the tissue is greater than the penetrating force of the first ultrasonic wave on the target sub-tissue, and/or the penetrating force of the second shear wave on the target sub-tissue is greater than the first shear wave penetration into the target sub-tissue;
  • the processor is further configured to obtain a second elasticity image of the target sub-tissue based on the second ultrasonic echo data
  • a seventh aspect of the embodiments of the present application provides an ultrasound imaging system, the ultrasound imaging system comprising:
  • a human-computer interaction device for providing options of at least two elastography modes, wherein the at least two elastography modes include a first elastography mode and a second elastography mode, the first elastography mode corresponds to the first elastography mode Pushing pulses and a first ultrasonic wave, the second elastography mode corresponds to the second pushing pulses and the second ultrasonic wave;
  • the transmitting circuit is used to excite the ultrasonic probe to transmit a second push pulse to the target tissue of the object to be measured when receiving a selection instruction for the second elastography mode, so as to generate a second shear wave propagating in the target tissue and exciting the ultrasonic probe to emit a second ultrasonic wave tracking the second shear wave to the target tissue;
  • a receiving circuit configured to receive ultrasonic echoes returned by the target tissue to obtain ultrasonic echo data; wherein, the penetration force of the second ultrasonic waves to the target tissue is greater than that of the first ultrasonic waves to the target tissue and/or the penetration force of the second shear wave to the target tissue is greater than the penetration force of the first shear wave generated by the first push pulse to the target tissue;
  • a processor for obtaining an elasticity image of the target tissue based on the ultrasonic echo data
  • An eighth aspect of the embodiments of the present application provides an ultrasound imaging system, where the ultrasound imaging system includes:
  • a processor configured to acquire a first ultrasound image of the target tissue of the measured object, wherein the first ultrasound image includes a tissue structure image; the processor is further configured to determine in the first ultrasound image that a preset condition is met the target area of the condition;
  • a human-computer interaction device for providing options of at least two elastography modes, wherein the at least two elastography modes include a first elastography mode and a second elastography mode, the first elastography mode corresponds to the first elastography mode Pushing pulses and a first ultrasonic wave, the second elastography mode corresponds to the second pushing pulses and the second ultrasonic wave;
  • a transmitting circuit configured to excite the ultrasound probe to transmit a second push pulse to the target tissue based on the target region in the second elastography mode, so as to generate a second shear wave propagating in the target tissue; and exciting the ultrasonic probe to emit a second ultrasonic wave tracking the second shear wave to the target tissue;
  • a receiving circuit for controlling the ultrasonic probe to receive ultrasonic echoes returned by the target tissue to obtain ultrasonic echo data; wherein the penetration force of the second ultrasonic waves on the target tissue is greater than that of the first ultrasonic waves
  • the penetration force to the target tissue, and/or the penetration force of the second shear wave to the target tissue is greater than the penetration force of the first shear wave generated by the first push pulse to the target tissue. penetration;
  • the processor is further configured to obtain an elasticity image of the target tissue based on the ultrasonic echo data
  • the elastography method and ultrasonic imaging system can realize elastography with high penetrating power, and solve the problem of inaccurate measurement or occurrence of voids due to insufficient penetrating power during elastography.
  • FIG. 1 shows a schematic block diagram of an ultrasound imaging system according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of an elastography method according to an embodiment of the present application
  • 3A and 3B are schematic diagrams of a first elastic image according to an embodiment of the present application.
  • FIG. 4 shows a schematic diagram of determining a target area according to a first elastic image according to an embodiment of the present application
  • FIG. 5 shows a schematic diagram of determining a target area according to the reliability of the first elastic image according to an embodiment of the present application
  • FIG. 6 shows a schematic diagram of determining a target area according to a tissue structure image corresponding to the first elasticity image according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of the sound field of the first push pulse and the second push pulse according to an embodiment of the present application
  • FIG. 8 shows a schematic diagram of the sound field of the first push pulse and the second push pulse according to another embodiment of the present application
  • FIG. 9 shows a schematic diagram of the sound field of the second push pulse according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of the sound field boundary of the first ultrasonic wave and the second ultrasonic wave according to an embodiment of the present application
  • FIG. 11 shows a schematic diagram of a first elastic image and a second elastic image according to an embodiment of the present application
  • FIG. 12 is a schematic flowchart of an elastography method according to another embodiment of the present application.
  • FIG. 13 is a schematic flowchart of an elastography method according to still another embodiment of the present application.
  • FIG. 14 is a schematic flowchart of an elastography method according to still another embodiment of the present application.
  • FIG. 1 shows a schematic structural block diagram of an ultrasound imaging system 100 according to an embodiment of the present application.
  • the ultrasound imaging system 100 includes an ultrasound probe 110 , a transmitting circuit 112 , a receiving circuit 114 , a processor 116 and a display 118 . Further, the ultrasound imaging system may further include a transmit/receive selection switch 120 and a beam forming module 122 , and the transmit circuit 112 and the reception circuit 114 may be connected to the ultrasound probe 110 through the transmit/receive selection switch 120 .
  • the ultrasonic probe 110 includes a plurality of transducer array elements, and the plurality of transducer array elements can be arranged in a row to form a linear array, or arranged in a two-dimensional matrix to form an area array, and a plurality of transducer array elements can also form a convex array. .
  • the transducer array element is used to transmit ultrasonic waves according to the excitation electrical signal, or convert the received ultrasonic waves into electrical signals, so each transducer array element can be used to realize the mutual conversion of electrical pulse signals and ultrasonic waves, so as to realize the transmission to the measured object.
  • the tissue in the target area transmits ultrasonic waves, and can also be used to receive ultrasonic echoes reflected by the tissue.
  • the transducer elements in the ultrasound probe 110 are used to transmit push pulses to the target tissue to generate shear waves propagating within the target tissue.
  • the transducer array elements in the ultrasonic probe 110 are also used to transmit ultrasonic waves tracking shear waves to the target tissue, and receive ultrasonic echoes of the ultrasonic waves. Which transducer elements are used to transmit ultrasonic waves and which transducer elements are used to receive ultrasonic waves can be controlled through the transmission sequence and the receiving sequence, or the transducer elements can be divided into time slots for transmitting ultrasonic waves or receiving ultrasonic echoes .
  • the transducer elements participating in ultrasonic emission can be excited by electrical signals at the same time, so as to emit ultrasonic waves at the same time; Ultrasound at certain time intervals.
  • the transmit circuit 112 transmits the delayed-focused transmit pulses to the ultrasound probe 110 through the transmit/receive selection switch 120 .
  • the ultrasonic probe 110 is stimulated by the transmission pulse to transmit an ultrasonic beam to the tissue in the target area of the object to be measured, and after a certain delay, receives the ultrasonic echo with tissue information reflected from the tissue in the target area, and sends the ultrasonic wave back to the target area.
  • the waves are reconverted into electrical signals.
  • the receiving circuit 114 receives the electrical signals converted and generated by the ultrasonic probe 110, obtains ultrasonic echo signals, and sends these ultrasonic echo signals to the beamforming module 122, and the beamforming module 122 performs focus delay, weighting and channeling on the ultrasonic echo data Summation, etc., are then sent to processor 116.
  • the processor 116 performs signal detection, signal enhancement, data conversion, logarithmic compression, etc. on the ultrasonic echo signal to form an ultrasonic image, such as a tissue structure image or an elasticity image.
  • the ultrasound images obtained by the processor 116 may be displayed on the display 118 or stored in the memory 124 .
  • the processor 116 may be implemented as software, hardware, firmware, or any combination thereof, and may use single or multiple application specific integrated circuits (ASICs), single or multiple general-purpose integrated circuits, single or multiple microprocessors, single or multiple programmable logic devices, or any combination of the foregoing circuits and/or devices, or other suitable circuits or devices. Also, the processor 116 may control other components in the ultrasound imaging system 100 to perform corresponding steps of the methods in the various embodiments in this specification.
  • ASICs application specific integrated circuits
  • the processor 116 may control other components in the ultrasound imaging system 100 to perform corresponding steps of the methods in the various embodiments in this specification.
  • the display 118 is connected to the processor 116, and the display 118 may be a touch display screen, a liquid crystal display screen, etc.; or, the display 118 may be an independent display such as a liquid crystal display, a TV set, etc. independent of the ultrasound imaging system 100; or, the display 118 may It is the display screen of electronic devices such as smartphones, tablets, etc.
  • the number of displays 118 may be one or more.
  • the display 118 may include a main screen mainly used for displaying ultrasound images and a touch screen mainly used for human-computer interaction.
  • Display 118 may display ultrasound images obtained by processor 116 .
  • the display 118 can also provide the user with a graphical interface for human-computer interaction while displaying the ultrasound image, set one or more controlled objects on the graphical interface, and provide the user with the human-computer interaction device to input operating instructions to control these objects.
  • the controlled object so as to perform the corresponding control operation.
  • an icon is displayed on the graphical interface, and the icon can be operated by using a human-computer interaction device to perform a specific function, such as drawing a region of interest frame on the ultrasound image.
  • the ultrasound imaging system 100 may also include other human-computer interaction devices other than the display 118, which are connected to the processor 116.
  • the processor 116 may be connected to the human-computer interaction device through an external input/output port.
  • the output port can be a wireless communication module, a wired communication module, or a combination of the two.
  • External input/output ports may also be implemented based on USB, bus protocols such as CAN, and/or wired network protocols, and the like.
  • the human-computer interaction device may include an input device for detecting the user's input information, for example, the input information may be a control instruction for the ultrasonic transmission/reception sequence, or a point, line or frame drawn on the ultrasonic image. Manipulate input instructions, or may also include other instruction types.
  • Input devices may include one or a combination of keyboards, mice, scroll wheels, trackballs, mobile input devices (eg, mobile devices with touch display screens, cell phones, etc.), multifunction knobs, and the like.
  • the human-computer interaction apparatus may also include an output device such as a printer.
  • the ultrasound imaging system 100 may also include a memory 124 for storing instructions executed by the processor, storing received ultrasound echoes, storing ultrasound images, and the like.
  • the memory may be a flash memory card, solid state memory, hard disk, or the like. It may be volatile memory and/or non-volatile memory, removable memory and/or non-removable memory, and the like.
  • the components included in the ultrasound imaging system 100 shown in FIG. 1 are only illustrative, and may include more or less components. This application is not limited to this.
  • FIG. 2 is a schematic flowchart of an elastography method 200 according to an embodiment of the present application.
  • an elastography method 200 includes the following steps:
  • step S210 a first push pulse is emitted to the target tissue of the measured object to generate a first shear wave propagating in the target tissue;
  • step S220 transmitting a first ultrasonic wave tracking the first shear wave to the target tissue, and receiving a first ultrasonic echo returned by the target tissue to obtain first ultrasonic echo data;
  • step S230 generating a first elasticity image of the target tissue based on the first ultrasound echo data
  • step S240 a target area that satisfies a preset condition is determined in the first elastic image
  • step S250 transmitting a second push pulse to the target tissue based on the target region to generate a second shear wave propagating in the target sub-tissue corresponding to the target region;
  • step S260 a second ultrasonic wave tracking the second shear wave is transmitted to the target tissue, and a second ultrasonic wave returned by the target tissue is received, so as to obtain second ultrasonic echo data of the target sub-tissue ; wherein, the penetrating power of the second ultrasonic wave to the target sub-tissue is greater than the penetrating power of the first ultrasonic wave to the target sub-tissue, and/or the second shear wave is to the target sub-tissue The penetrating force of the tissue is greater than the penetrating force of the first shear wave to the target sub-tissue;
  • step S270 generating a second elasticity image of the target sub-tissue based on the second ultrasound echo data
  • step S280 the second elastic image is output.
  • a second elastography with high penetrating power is performed on the target area in the first elastography imaging, which solves the problem of problems caused by insufficient penetrating force. Problems that lead to incomplete or poor quality first elastic images.
  • a first elastography process is performed first, and elastography is performed on the target tissue of the measured object based on conventional elastography parameters to generate a first elastography image.
  • the measured object may be a person, or the measured object may also be an animal, such as a cat, a dog, a rabbit, and the like.
  • the target area includes, for example, a focal area of tissue.
  • the penetration force of the first pushing pulse and the first ultrasonic wave of the first elastic image is relatively weak, and the measurement may be inaccurate or a cavity may appear in areas with too large depth or too high hardness, such as the lesion area, as shown in FIG. 3A and FIG. 3B .
  • Fig. 3A shows the first elasticity image in which the measured value of the center of the lesion is inaccurate and the measured value is too low
  • Fig. 3B shows the first elasticity image in which the measurement value is incomplete and causes the cavity to appear.
  • a tissue structure image is firstly generated, and a region of interest of the first elasticity image is determined based on the tissue structure image, and the tissue structure image includes a B image, a C image, and the like.
  • the transmitting circuit 112 sends an appropriately delayed electrical signal to each transducer array element in the ultrasound probe 110, and the transducer converts the electrical signal into a first ultrasonic wave and transmits it to the tissue to be measured of the measured object.
  • the transducer in the ultrasonic probe 110 receives the ultrasonic echo of the ultrasonic wave returned by the tissue to be tested and converts it into an electrical signal to obtain an ultrasonic echo signal, which is transmitted to the beam forming circuit 122 after signal amplification, analog-to-digital conversion, etc. for processing. Then, the beam-synthesized ultrasonic echo signal is sent to the processor 116, and the processor 116 performs logarithmic compression, dynamic range adjustment, digital scan conversion and other processing on the ultrasonic echo signal, so as to form a signal for reflecting the to-be-received signal.
  • the tissue structure image of the tissue structure of the tissue is measured, and the tissue structure image is output to the display 118 for display. The user can observe the tissue structure image in real time, thereby adjusting the inspection range and the placement angle of the ultrasound probe 110 as required.
  • a region of interest for generating the first elasticity image is determined based on the tissue structure image.
  • the user may manually select the region of interest frame, and determine the position of the region of interest according to the received user input instruction.
  • the location of the region of interest can be automatically determined on the tissue structure image based on a relevant machine recognition algorithm, that is, the region of interest frame can be automatically generated.
  • the region of interest can also be acquired by means of semi-automatic detection.
  • the processor 116 performs a first elastography of the target tissue corresponding to the region of interest.
  • a first push pulse is first emitted by the ultrasound probe 110 to generate shear waves propagating within the target tissue of the subject.
  • the transmitting circuit 112 excites the ultrasonic probe 110 to transmit the first ultrasonic wave tracking the first shear wave to the determined region of interest and receive the echo of the first ultrasonic wave to obtain the first ultrasonic echo data.
  • the ultrasonic echo data calculates elastic parameter distributions, such as shear wave velocity distribution, shear modulus distribution, Young's modulus distribution or tissue viscosity distribution, etc.
  • a first elastic image is generated based on the distribution of elastic parameters, and in the first elastic image, the distribution of elastic parameters can be identified by different colors, grayscales or filling methods.
  • the following method can be used to calculate the elastic parameter: calculate the displacement of a certain point on the propagation path of the first shear wave according to the received first ultrasonic echo data, when the displacement of the point is the largest, it is considered that the first shear wave The wave reaches this point.
  • the propagation path or propagation trajectory of the first shear wave can be located by the time when the first shear wave reaches each point, so that the shear wave trajectory diagram can be drawn. According to the trajectory of the first shear wave, the first shear wave can be obtained.
  • the slope of each point on the shear wave propagation path the slope is the shear wave velocity. According to the relationship between shear wave velocity and Young's modulus and shear modulus, after the shear wave velocity is obtained, other elastic parameters, such as Young's modulus and shear modulus, can be further calculated.
  • the processor 116 may combine the first elasticity image and the tissue structure image corresponding to the first elasticity image into one frame of image.
  • the tissue structure image corresponding to the first elasticity image is not only the tissue structure image generated before the first elasticity imaging process for determining the region of interest, but also the tissue structure image generated during the process of generating the first elasticity image. Structural image.
  • the processor 116 may output the synthesized image data to the display 118 for display on the display interface of the display 118 .
  • a target area satisfying a preset condition is determined in the first elastic image.
  • the target area is an area with poor imaging effect due to insufficient penetrating power of the first pushing pulse or the first ultrasonic wave during the first elastography.
  • the target area may be the above-mentioned hollow area or an area with inaccurate measurements.
  • the target area may be determined based on the first elasticity image. Specifically, referring to FIG. 4 , a cavity area in the first elastic image can be identified, and if the area of the cavity area is larger than a preset threshold, the cavity area is determined as the target area, and the cavity area is the first shear wave failed to penetrate The area where the first ultrasonic wave cannot penetrate, or the area where the signal-to-noise ratio is lower than the preset threshold, wherein the area where the first shear wave cannot penetrate or the area where the first ultrasonic wave cannot penetrate is due to the The hollow area formed by the elastic parameters can be measured, and the area with too low signal-to-noise ratio is the hollow area formed because the elastic parameters cannot be detected correctly.
  • the reliability of the first elasticity image may be acquired, and the target area may be determined based on the reliability of the first elasticity image.
  • the reliability of the first elastic image includes the reliability of elastic parameters of each particle of the first elastic image.
  • the reliability of elastic parameters may be affected by various factors, such as the shear wave amplitude is too small or not generated, the shear wave cannot propagate, the signal-to-noise ratio of the first ultrasonic echo data is too low, etc. The root causes are all associated with insufficient penetration.
  • the reliability of the first elasticity image may be calculated according to the above-mentioned first ultrasound echo data.
  • the processor 116 acquires the first ultrasonic echo data corresponding to each position in the first elastic image, calculates a marker value of each position for representing the degree of influence of the position by interference according to the first ultrasonic echo data, and calculates a marker value of each position according to the marker value of each position. reliability to each location.
  • the processor 116 may calculate a flag value of each position according to the acceleration curve of each position, and the flag value is used to represent the degree to which the position is affected by the disturbance.
  • the flag value representing the degree of influence of the position by the disturbance is the amplitude of the acceleration curve of the position
  • the amplitude of the acceleration curve is the maximum value of the acceleration curve or the maximum value of the absolute value of the amplitude of the acceleration curve.
  • the amplitude of the acceleration curve at each position can be directly used as the reliability of the position, or the amplitude can be further calculated to obtain the reliability.
  • the acceleration curve can be generated in the following way: by comparing the difference of the first ultrasonic echo data of each position at different times, the displacement of each position at different times can be obtained to generate a displacement curve; according to the displacement of each position at different times, calculate The vibration velocity of each position at different times is used to generate a velocity curve; according to the vibration velocity of each position at different times, the time gradient of the velocity is calculated, the acceleration of each position at different times is calculated, and the acceleration curve of each position is finally obtained.
  • a reliability distribution map corresponding to the first elastic image can be obtained according to the reliability of each position. Among them, different reliability can be represented by different colors or grayscales in the reliability distribution diagram. As shown in FIG. 5 , the first elasticity image and the reliability distribution map can be displayed on the display interface at the same time, so as to determine the target area in the first elastic image according to the reliability distribution map. Alternatively, the processor 116 may directly determine the target area in the first elastic image according to the reliability information without generating the reliability distribution map.
  • determining the target area in the first elastic image according to the reliability may include: determining an area whose reliability is lower than the first preset threshold as the target area, that is, if the reliability of a certain area is is too low, use it as the target area.
  • a single area whose reliability is lower than a second preset threshold and whose area exceeds the preset area may be determined as the target area, and the second preset threshold may be lower than the first preset threshold. That is to say, if an area with low reliability is too large, it will be used as the target area.
  • the target area may also be determined based on the tissue structure image corresponding to the first elasticity image. For example, as shown in Fig. 6, due to the high hardness and large area of the lesion tissue, it is difficult for the first shear wave to penetrate. Therefore, the lesion area can be identified in the tissue structure image corresponding to the first elastic image, and the lesion area can be placed in the first elastic image. The corresponding area in an elastic image is used as the target area.
  • the target area may be determined automatically by the processor 116 or manually by the user.
  • the processor can automatically draw the target area according to the preset shape or size when the above determination conditions are satisfied.
  • the target area is determined manually, a user instruction for selecting the target area is received, and the target area is determined according to the received user instruction.
  • the size and shape of the target area can be various, such as a rectangle, a circle, a convex shape, a fan shape, etc., or an irregular shape traced according to the image information, for example, for an area whose reliability is lower than the first preset threshold
  • the obtained shape is traced, or the shape obtained by tracing the lesion area in the tissue structure image corresponding to the first elasticity image.
  • a second elastography process is performed based on the target area to achieve elastography with high penetration.
  • the first elastography and the second elastography are performed sequentially in time, in order to ensure the stability of the scanning section as much as possible, before the second elastography, that is, before the second push pulse is emitted, you can also The tissue structure image of the target tissue is generated and displayed in real time, and the user is guided to adjust the ultrasound probe 110 through the tissue structure image generated in real time, so as to find the scanning slice with the first elastic image.
  • the transmitting circuit 112 excites the ultrasonic probe 110 to transmit ultrasonic waves to the target tissue; the receiving circuit receives the ultrasonic echoes returned by the target tissue and converts them into electrical signals to obtain ultrasonic echo data, and the processor 116 performs logarithm of the ultrasonic echo data Compression, dynamic range adjustment, digital scan conversion, etc. are processed to form a tissue structure image for reflecting the tissue structure of the tissue to be tested, and output the tissue structure image to the display 118 for real-time display.
  • the matching degree between the tissue structure image of the target tissue and the tissue structure image corresponding to the first elastic image can also be determined in real time, and the matching degree can be displayed in real time.
  • a high degree of matching indicates a high consistency between the scanning slice of the current ultrasound probe and the slice of the first elastic image.
  • the matching degree of the image can be determined by means of feature extraction. Specifically, the first image feature of the tissue structure image corresponding to the first elasticity image is extracted in advance, the second image feature of the currently collected tissue structure image is extracted in real time, and the first image feature and the second image feature are compared in real time , in order to obtain the matching degree of the two.
  • traditional feature extraction algorithms can be used to extract image features such as gradient features, Haar feature extraction, texture features, etc., or deep neural networks can be used for feature extraction.
  • a machine learning model can also be used to determine the matching degree between the tissue structure image corresponding to the first elastic image and the currently collected tissue structure image in real time, and the machine learning model can be a trained deep learning neural network model , which can be trained to directly output the matching degree between two input images.
  • the second elastography includes the transmission of a second push pulse, as well as the transmission of a second ultrasonic wave and the reception of a second ultrasonic echo.
  • the second push pulse is used to generate the second shear wave propagating in the target sub-tissue corresponding to the target area
  • the second ultrasonic wave is used to detect the tissue motion information caused by the second shear wave.
  • the target sub-tissue is the part of the tissue corresponding to the target area, that is, the part of the tissue that cannot be penetrated by the first shear wave or the first ultrasonic wave during the first elastography process.
  • the target sub-tissue generally has a relatively large hardness. For example, it may be focal tissue. Improving the penetrating power of the second shear wave or the second ultrasonic wave can help to achieve elastography with high penetrating power.
  • the penetration force of the second ultrasonic wave to the target sub-tissue is greater than the penetration force of the first ultrasonic wave to the target sub-tissue, or the penetration force of the second shear wave to the target sub-tissue
  • the penetrating force is greater than the penetrating force of the first shear wave on the target sub-tissue, or the penetrating force of the second ultrasonic wave on the target sub-tissue is greater than the penetrating force of the first ultrasonic wave on the target sub-tissue, and the second shear wave
  • the penetration force to the target sub-tissue is greater than the penetration force of the first shear wave to the target sub-tissue.
  • step S250 a second push pulse is sent to the target tissue to generate a second shear wave that propagates in the target sub-tissue corresponding to the target area. If the penetrating force of the second shear wave to the target sub-tissue is greater than the penetrating force of the first shear wave to the target sub-tissue, the implementation methods include but are not limited to the following:
  • the second push pulse since the target area is generally smaller than the original area of interest, and the range of the target sub-tissue is smaller than the range of the target tissue, the second push pulse only needs to ensure that the second shear wave covers the new target sub-tissue. , so the focus intensity of the sound field of the second push pulse can be more concentrated. A more concentrated sound field focusing intensity can increase the amplitude of the generated second shear wave, so that the second shear wave travels farther, the detected signal is stronger, and it is easier to resist noise interference, thereby improving the first shear wave.
  • the penetration force includes penetration distance or penetration depth.
  • the delay of each array element in the transmit aperture of the ultrasonic probe can be adjusted based on the target area, so as to The sound field shape of the second push pulse is adjusted so that the focus intensity of the second push pulse is higher than that of the first push pulse.
  • At least one of the focus point position and the number of focus points of the second push pulse can be adjusted based on the target area, thereby making the focus intensity of the second push pulse higher than that of the first push pulse.
  • the focus strength of the push pulse can be adjusted based on the target area, thereby making the focus intensity of the second push pulse higher than that of the first push pulse.
  • Both of the above two methods can make the focusing intensity of the second push pulse stronger, thereby improving the penetrating power of the second shear wave.
  • At least two positions can be located near the target sub-tissue based on the target area.
  • a second push pulse is emitted at each of the target sub-tissues, thereby generating shear wave sources at at least two locations near the target sub-tissue.
  • the second push pulses can be emitted at the left, center, and right sides of the target sub-tissue to generate the second shear wave, and the number and interval of the positions where the second push pulses are emitted can be preset. .
  • a second ultrasonic wave that tracks the second shear wave is respectively emitted, so as to obtain at least two sets of second ultrasonic echo data corresponding to the at least two second shear waves, respectively, Thereby, the relevant information of the propagation of each second shear wave is detected separately.
  • the second push pulses are generated at the two positions, respectively, at least two sets of elastic parameters of the target tissue are obtained according to the at least two sets of second ultrasonic echo data, a final elastic parameter is obtained according to the at least two sets of elastic parameters, and based on the The final elasticity parameters generate a second elasticity image.
  • the first way is to splicing at least two sets of elastic parameters to obtain the final elastic parameters, thus, if the second shear wave The propagation distance is insufficient, and a complete result can be obtained by splicing the detection results of the second shear wave at multiple locations.
  • the second method is to average at least two sets of elastic parameters to obtain the final elastic parameters, so that the errors of the elastic parameters can be shared and the accuracy of the measurement results can be improved.
  • the third way is to select at least one set of elastic parameters with the highest reliability among the at least two sets of elastic parameters as the final elastic parameters. Therefore, if the source of the second shear wave generated at the individual position is not good or the propagation is not ideal, There are also second shear waves at other locations that can be used as an alternative to increase the probability of obtaining a reliable result as much as possible.
  • respectively transmitting the second push pulses at at least two positions near the target sub-tissue based on the target area includes sequentially transmitting the second push pulses at the at least two positions. Due to the safety limitations of the ultrasonic probe, the simultaneous emission of second push pulses at multiple positions may reduce the intensity of a single second push pulse, which is not conducive to improving the penetration force of the second shear wave. produce this problem.
  • step S260 a second ultrasonic wave tracking the second shear wave is transmitted to the target tissue, and the second ultrasonic wave echo returned by the target tissue is received, so as to obtain second ultrasonic echo data of the target sub-tissue.
  • the second ultrasonic wave in order to completely record the propagation process of the second shear wave in the target tissue, the second ultrasonic wave generally needs to be continuously emitted for a period of time.
  • the detection range of the second ultrasonic wave can be sufficiently reduced, and the sound field range of the second ultrasonic wave only needs to cover the target sub-tissue, as shown in FIG. 10 , so it can be A stronger focusing method is adopted to increase the sound energy of the second ultrasonic wave, thereby increasing the signal-to-noise ratio of the second ultrasonic echo data.
  • the emission frequency of the second ultrasonic wave in order to improve the penetrating power of the second ultrasonic wave, can be controlled to be lower than the emission frequency of the first ultrasonic wave.
  • Low-frequency ultrasound consumes less energy to propagate in the tissue, which is manifested as stronger penetrating power.
  • the transmission frequency is lower, the waveform length of the second ultrasonic wave is longer, so the anti-interference ability is stronger.
  • the interval between the emission of the second ultrasonic wave and the reception of its echo is relatively short, and two adjacent second ultrasonic waves are The transmission interval between them can also be shorter, so the transmission interval of the second ultrasonic wave can be controlled to be shorter than the transmission interval of the first ultrasonic wave, so as to improve the detection rate.
  • the propagation speed of shear wave in high hardness tissue is often very fast. For shear wave propagation within a certain distance, it means that the time of shear wave reaching two positions is very close. If the detection rate is not enough, it cannot be accurately distinguished. The interval time, it is impossible to accurately calculate the shear wave propagation velocity. Therefore, increasing the detection rate helps to improve the accuracy of elastic parameter calculation, and avoid underestimation of elastic parameters or voids in elastic images.
  • the emission voltage of the second ultrasonic wave can be controlled to be higher than the emission voltage of the first ultrasonic wave. The higher the emission voltage, the stronger the penetration.
  • tissue structure image and the elasticity image can be acquired simultaneously, for example, the tissue structure image corresponding to the first elasticity image can be acquired simultaneously with the acquisition of the first elasticity image.
  • the transmission frequency of the ultrasonic wave used for generating the tissue structure image is usually relatively high, so that the energy of the ultrasonic wave used for generating the elastic image is limited.
  • the tissue structure image does not need to be generated, so it is not necessary to transmit the ultrasonic wave for generating the tissue structure image, and only the ultrasonic wave for generating the tissue structure image needs to be transmitted.
  • the ultrasonic waves of two elastic images namely the second push pulse and the second ultrasonic wave, make the energy of the second push pulse and the second ultrasonic wave no longer affected by other emission, and the emission voltage can be improved as much as possible within a safe range, thereby further Improve the penetrating power of the second shear wave and the second ultrasonic wave.
  • a second elasticity image of the target sub-tissue is generated based on the second ultrasound echo data.
  • Generating the second elasticity image based on the second ultrasonic echo data is similar to the above-mentioned method of generating the first elasticity image based on the first ultrasonic echo data, that is, calculating a certain point on the propagation path of the second shear wave according to the second ultrasonic echo signal
  • the propagation path or propagation trajectory of the second shear wave can be located by the time when the second shear wave arrives at each point, so that the shear wave trajectory diagram can be drawn.
  • the slope of each point on the shear wave propagation path, the slope is the shear wave velocity.
  • one way of outputting the second elastic image may include: replacing the part located in the target area in the first elastic image with the second elastic image, as shown in FIG. 11 .
  • the elasticity parameters in the target area can be directly replaced.
  • the elastic parameters obtained during the first elastography are displayed in the target area of the first elastography, eg, in a color-coded manner.
  • the atlas used for color coding may be different from the first elastic image, or may be the same.
  • Another way of outputting the second elastic image may include displaying the second elastic image superimposed on the target area in the first elastic image.
  • a certain transparency may be set for the second elastic image, so as to facilitate the user to compare and observe the second elastic image and the first elastic image.
  • the second elastic image can also be displayed separately in an area other than the first elastic image, and displayed simultaneously with the first elastic image or switched to facilitate the user's comparison and observation.
  • the above exemplarily shows the elastography method 200 according to an embodiment of the present application.
  • the elastography method 200 according to the embodiment of the present application performs elastography with high penetration force on the target area in the first elastic image, which solves the problem of Problems such as voids and inaccurate measurements caused by insufficient penetration.
  • Embodiments of the present application further provide an ultrasound imaging system, which is used to implement the above-mentioned elastic imaging method 200.
  • the ultrasonic imaging system includes an ultrasonic probe, a transmitting circuit, a receiving circuit, a processor and a display.
  • the ultrasound imaging system may be implemented as ultrasound imaging system 100 as shown in FIG. 1 .
  • the ultrasound imaging system 100 may include an ultrasound probe 110 , a transmit circuit 112 , a receive circuit 114 , a processor 116 and a display 118 , wherein the transmit circuit 112 is used to excite the ultrasound probe 110 to transmit push pulses to the target tissue of the subject.
  • the ultrasound imaging system may further include a transmit/receive selection switch 120 and a beamforming module 122, and the relevant descriptions of the respective components can be referred to above.
  • the transmitting circuit 112 is used to excite the ultrasound probe 110 to transmit a first push pulse to the target tissue of the measured object, so as to generate a first shear wave propagating in the target tissue; and to excite the ultrasound
  • the probe 110 transmits a first ultrasonic wave that tracks the first shear wave to the target tissue;
  • the receiving circuit 114 is used to control the ultrasonic probe 110 to receive the first ultrasonic echo returned by the target tissue to obtain first ultrasonic echo data.
  • the processor 116 is configured to generate a first elasticity image of the target tissue based on the first ultrasonic echo data, and determine a target area satisfying a preset condition in the first elasticity image.
  • the transmitting circuit 112 is further configured to excite the ultrasonic probe 110 to transmit a second push pulse to the target tissue based on the target area, so as to generate a second shear wave propagating in the target sub-tissue corresponding to the target area; and to excite the ultrasonic probe 110 to transmit to the target tissue A second ultrasonic wave that tracks the second shear wave.
  • the receiving circuit 114 is further configured to receive the second ultrasonic echo returned by the target tissue, so as to obtain the second ultrasonic echo data of the target sub-tissue; wherein, the penetration force of the second ultrasonic wave to the target sub-tissue is greater than that of the first ultrasonic wave to the target sub-tissue.
  • the penetrating force of the tissue, and/or the penetrating force of the second shear wave to the target sub-tissue is greater than the penetrating force of the first shear wave to the target sub-tissue.
  • the processor 116 is further configured to generate a second elasticity image of the target sub-tissue based on the second ultrasound echo data.
  • the display 118 is used to output the second elastic image.
  • the ultrasonic imaging system of the embodiment of the present application After generating the conventional first elasticity image, the ultrasonic imaging system of the embodiment of the present application performs high-penetration elasticity imaging on the target area in the first elasticity image, which solves the problem of insufficient penetration during the elasticity imaging process. Holes, inaccurate measurements, etc.
  • FIG. 12 shows a schematic flowchart of an elastography method 1200 according to another embodiment of the present application.
  • the elastography method 1200 according to the embodiment of the present application includes the following steps:
  • Step S1210 acquiring a first elasticity image and a first tissue structure image of the target tissue of the measured object, the first elasticity image and the first tissue structure image keep corresponding to the same tissue section, and the first elasticity image is obtained by detecting The first ultrasonic wave of the first shear wave propagating in the target tissue is obtained based on the first ultrasonic echo of the first ultrasonic wave;
  • Step S1220 determining a target area that satisfies a preset condition in the first elasticity image or the first tissue structure image
  • Step S1230 transmitting a push pulse to the target tissue based on the target area to generate a second shear wave propagating in the target sub-tissue corresponding to the target area;
  • Step S1240 transmitting a second ultrasonic wave tracking the second shear wave to the target tissue, and receiving a second ultrasonic echo returned by the target tissue, to obtain second ultrasonic echo data of the target sub-tissue;
  • the penetration force of the second ultrasonic wave to the target sub-tissue is greater than the penetration force of the first ultrasonic wave to the target sub-tissue, and/or the second shear wave to the target sub-tissue
  • the penetrating power is greater than the penetrating power of the first shear wave to the target sub-tissue;
  • Step S1250 obtaining a second elasticity image of the target sub-tissue based on the second ultrasound echo data
  • Step S1260 outputting the second elastic image.
  • the elastography method 1200 of this embodiment of the present application is different from the elastography method 200 described above in that, in step S1210 of the elastography method 1200, not only the first elastography image is acquired, but also the first elastography image corresponding to the same tissue section is acquired.
  • the first elasticity image and the first tissue structure image are not limited to be acquired in real time, but may be pre-acquired images extracted from a storage medium or received through remote transmission.
  • steps S210 to S230 of the elasticity imaging method 200 wherein the first tissue structure image is the same as the The tissue structure image corresponding to the elastic image.
  • a target area that satisfies a preset condition is determined in the first elasticity image or the first tissue structure image.
  • Determining the target region in the first elastic image may include: identifying a cavity region in the first elastic image, and if the area of the cavity region is greater than a preset threshold, determining the cavity region as the target region, and the cavity region is the first shear wave The area that can penetrate, the area that the first ultrasonic wave cannot penetrate, or the area where the signal-to-noise ratio is lower than a preset threshold.
  • the elastography method 1200 may further include generating and displaying a second tissue structure image of the target tissue in real time to guide the firing of the push pulses according to the second tissue structure image. Since the first elasticity image and the second elasticity image are generated successively, the second tissue structure image can assist the user to find the same tissue section corresponding to the first elasticity image to generate the second elasticity image. Exemplarily, while displaying the second tissue structure image, the matching degree between the second tissue structure image and the first tissue structure image can also be determined and displayed in real time, so that the user can search for the matching degree corresponding to the first elastic image by referring to the matching degree. The same tissue section, and high penetrating elastography. For the specific details of elastography with high penetration force, reference may be made to steps S250 to S270 in the elastography method 200 .
  • the manner of outputting the second elastic image includes at least one of the following: replacing the part located in the target area in the first elastic image with the second elastic image; The elastic image is displayed superimposed on the target area in the first elastic image; the second elastic image is displayed separately in the area outside the first elastic image.
  • the elastography method 1200 in this embodiment of the present application has many similar or similar contents to the elastography method 200 described above. For details, reference may be made to the above, which will not be repeated here.
  • the above exemplarily shows the elastography method 1200 according to an embodiment of the present application.
  • the elasticity imaging method 1200 after acquiring the first elasticity image and the first tissue structure image, the elasticity imaging method 1200 according to the embodiment of the present application performs high penetrating power on the target area in the first elasticity image or the first tissue structure image.
  • Elastography solves the problems of voids and inaccurate measurement values caused by insufficient penetration during elastography.
  • Embodiments of the present application further provide an ultrasound imaging system, which is used to implement the above-mentioned elastic imaging method 1200.
  • the ultrasonic imaging system includes an ultrasonic probe, a transmitting circuit, a receiving circuit, a processor and a display.
  • the ultrasound imaging system may be implemented as ultrasound imaging system 100 as shown in FIG. 1 .
  • the ultrasound imaging system 100 may include an ultrasound probe 110 , a transmit circuit 112 , a receive circuit 114 , a processor 116 and a display 118 , wherein the transmit circuit 112 is used to excite the ultrasound probe 110 to transmit push pulses to the target tissue of the subject.
  • the ultrasound imaging system may further include a transmit/receive selection switch 120 and a beamforming module 122, and the relevant descriptions of the respective components can be referred to above.
  • the processor 116 is configured to: acquire a first elasticity image and a first tissue structure image of the target tissue of the measured object, where the first elasticity image and the first tissue structure image correspond to the same tissue section , the first elastic image is obtained by detecting the first ultrasonic wave of the first shear wave propagating in the target tissue and based on the first ultrasonic echo of the first ultrasonic wave; the processor 116 is further configured to display the first elastic image or the first ultrasonic wave Determine the target area in the tissue image that meets the preset conditions.
  • the transmitting circuit 112 is used to excite the ultrasonic probe 110 to transmit a push pulse to the target tissue based on the target area, so as to generate a second shear wave propagating in the target sub-tissue corresponding to the target area; and to excite the ultrasonic probe 110 to transmit a tracking second wave to the target tissue.
  • the second ultrasonic wave of the shear wave is used to excite the ultrasonic probe 110 to transmit a push pulse to the target tissue based on the target area, so as to generate a second shear wave propagating in the target sub-tissue corresponding to the target area; and to excite the ultrasonic probe 110 to transmit a tracking second wave to the target tissue.
  • the second ultrasonic wave of the shear wave is used to excite the ultrasonic probe 110 to transmit a push pulse to the target tissue based on the target area, so as to generate a second shear wave propagating in the target sub-tissue corresponding to the target area; and to excite the ultrasonic probe 110 to transmit a tracking second
  • the receiving circuit 114 is used to control the ultrasonic probe 110 to receive the second ultrasonic echo returned by the target tissue to obtain second ultrasonic echo data; wherein, the penetration force of the second ultrasonic wave to the target sub-tissue is greater than that of the first ultrasonic wave.
  • the penetration force of an ultrasonic wave to the target sub-tissue, and/or the penetration force of the second shear wave to the target sub-tissue is greater than the penetration of the first shear wave to the target sub-tissue force.
  • the processor 116 is further configured to obtain a second elasticity image of the target sub-tissue based on the second ultrasound echo data.
  • the display 118 is used to output the second elastic image.
  • the ultrasound imaging system of the embodiment of the present application After acquiring the first elastic image and the first tissue structure image, the ultrasound imaging system of the embodiment of the present application performs high-penetrating elastic imaging on the first elastic image or the target area in the first tissue structure image, which solves the problem of elastic imaging. During the process, there are problems such as voids and inaccurate measurement values caused by insufficient penetration.
  • FIG. 13 shows a schematic flowchart of an elastography method 1300 according to another embodiment of the present application.
  • the elastography method 1300 according to the embodiment of the present application includes the following steps:
  • Step S1310 providing options of at least two elastography modes, wherein the at least two elastography modes include a first elastography mode and a second elastography mode, and the first elastography mode corresponds to the first push pulse and the second elastography mode.
  • an ultrasonic wave the second elastography mode corresponds to the second pushing pulse and the second ultrasonic wave;
  • Step S1320 when receiving a selection instruction for the second elastography mode, transmitting a second push pulse to the target tissue of the measured object to generate a second shear wave propagating in the target tissue;
  • Step S1330 transmitting a second ultrasonic wave tracking the second shear wave to the target tissue, and receiving ultrasonic echoes returned by the target tissue to obtain ultrasonic echo data;
  • the penetration force of the target tissue is greater than the penetration force of the first ultrasonic wave to the target tissue, and/or the penetration force of the second shear wave to the target tissue is greater than that generated by the first push pulse. the penetration force of the first shear wave to the target tissue;
  • Step S1340 obtaining a second elasticity image of the target tissue based on the ultrasound echo data
  • Step S1350 outputting the second elastic image.
  • the elastography method 1300 in this embodiment of the present application is mainly used to provide elastography modes with different penetrating powers for the target tissue, wherein the second elastography mode is used to perform elastography with high penetrating power on the target tissue, which solves the problem of conventional elastography.
  • providing options for at least two elastography modes may include providing options for at least two elastography modes on the display interface of the ultrasound imaging system, each elastography mode corresponding to a push pulse and A type of ultrasound.
  • the options for the at least two elastography modes may be icon options, menu bar options, or the like.
  • the first elastography mode is a conventional elastography mode, and its imaging mode can refer to the first elastography in the elastography method 200 ;
  • the second elastography mode is a high-penetration elastography mode, and its imaging mode is similar to elastography
  • the penetration force of the second shear wave generated in the target tissue by the second push pulse in the second elastography mode is greater than that of the first push pulse in the target tissue in the first elastography mode
  • the penetrating force of the first shear wave generated in the internal environment, or the penetrating force of the second ultrasonic wave in the second elastography mode to the target tissue is greater than the penetrating force of the first ultrasonic wave in the first elastography mode to the target tissue.
  • other human-computer interaction devices may also provide options for at least two elastography modes, such as controlling the selection of elastography modes through a knob, or Whether to enable the second elastography mode can be controlled by an on-off key.
  • options for at least two elastography modes such as controlling the selection of elastography modes through a knob, or Whether to enable the second elastography mode can be controlled by an on-off key.
  • a first elastography image of the target tissue may be first generated in the first elastography mode, and the second elastography mode may be entered when a target region satisfying a preset condition exists in the first elastography image.
  • the following steps are performed in the first elastography mode: transmitting a first push pulse to the target tissue of the measured object to generate a first shear wave propagating in the target tissue; transmitting a tracking first shear wave to the target tissue wave first ultrasonic waves, receive ultrasonic echoes returned by the target tissue, and generate a first elasticity image; determine a target area that satisfies a preset condition in the first elasticity image, so that a second push pulse is emitted to the target tissue based on the target area .
  • the target area that satisfies the preset condition may be determined based on the first elasticity image, or may be determined based on the tissue structure image corresponding to the first elasticity image.
  • the target area satisfying the preset conditions may include at least one of the following in addition to identifying the hollow area, reliability or manual confirmation by the user (for details, please refer to the relevant description of step S240, which will not be repeated here): the target area
  • the tissue types contained in the target area, the boundary morphology of the lesions contained in the target area, the area size of the lesions contained in the target area, the grayscale of the target area, and the brightness of the target area may include at least one of the following in addition to identifying the hollow area, reliability or manual confirmation by the user (for details, please refer to the relevant description of step S240, which will not be repeated here): the target area
  • the tissue types contained in the target area the boundary morphology of the lesions contained in the target area, the area size of the lesions contained in the target area, the grayscale of the target area, and the brightness of the target area.
  • some types of tissue have relatively high hardness, such as breast, so the second elastography mode can be entered when the target area includes a preset tissue type
  • the tissue with greater hardness is relatively irregular, so the second elastography mode can be entered when the boundary of the lesions in the target area has a preset shape.
  • the size of the lesions contained in the target area the larger the area of the lesion, the greater its hardness, and the harder it is for shear waves and ultrasound to penetrate. Therefore, the size of the lesion contained in the target area can be judged. If the area of the included lesions exceeds the preset threshold, the second elastography mode is entered.
  • the grayscale and brightness of the target area generally the lower the grayscale and brightness, the greater the hardness, and the more difficult it is for shear waves and ultrasonic waves to penetrate.
  • the system may determine whether the target area satisfies the preset conditions, and when the preset conditions are met, the system automatically enters the second elastography mode. It can also be that the user judges whether the target area satisfies the preset conditions, and when the preset conditions are met, enters the second elastic imaging mode through manual operation, wherein the specific method of manual operation can be icon selection, switch key selection, button selection. Or the selection of knobs, etc., which are not specifically limited here.
  • the delay time of each array element in the emission aperture of the ultrasonic probe can be adjusted , to adjust the sound field shape of the second push pulse, so that the focus intensity of the second push pulse is higher than that of the first push pulse, so that the penetrating force of the second shear wave is greater than that of the first shear wave. Penetration.
  • the focus position and the number of focus points of the second push pulse can be adjusted, so that the focus intensity of the second push pulse is higher than that of the first push pulse, thereby making the second shear wave The penetrating force is greater than the penetrating force of the first shear wave.
  • the second push pulses may be sequentially emitted at at least two positions near the target tissue, so that the penetrating force of the second shear wave is greater than the penetrating force of the first shear wave.
  • transmitting the ultrasonic waves for tracking the second shear waves to the target tissue comprises: respectively transmitting ultrasonic waves for tracking each of the second shear waves, so as to obtain at least two groups of ultrasonic echoes corresponding to the at least two second push pulses respectively.
  • wave data; obtaining an elastic image of the target tissue based on the ultrasonic echo data includes obtaining the elastic image based on at least two sets of ultrasonic echo data.
  • the emission interval of the second ultrasonic wave can be made smaller than the emission interval of the first ultrasonic wave, and the emission frequency of the second ultrasonic wave can be made smaller than that of the first ultrasonic wave.
  • the transmission frequency of an ultrasonic wave, or the transmission voltage of the second ultrasonic wave is greater than the voltage of the first ultrasonic wave, so that the penetrating force of the second ultrasonic wave is greater than that of the first ultrasonic wave.
  • the above exemplarily shows the elastography method 1300 according to one embodiment of the present application.
  • the elastography method 1300 according to the embodiment of the present application can realize elastography with high penetrating power, and solve the problems of voids and inaccurate measured values caused by insufficient penetrating power during elastography.
  • Embodiments of the present application further provide an ultrasound imaging system, which is used to implement the above-mentioned elastic imaging method 1300 .
  • the ultrasonic imaging system includes an ultrasonic probe, a transmitting circuit, a receiving circuit, a processor and a human-computer interaction device, and the human-computer interaction device includes a display.
  • the ultrasound imaging system may be implemented as ultrasound imaging system 100 as shown in FIG. 1 .
  • the ultrasound imaging system 100 may include an ultrasound probe 110 , a transmit circuit 112 , a receive circuit 114 , a processor 116 and a display 118 , wherein the transmit circuit 112 is used to excite the ultrasound probe 110 to transmit push pulses to the target tissue of the subject.
  • the ultrasound imaging system may further include a transmit/receive selection switch 120 and a beamforming module 122, and the relevant descriptions of the respective components can be referred to above.
  • the human-computer interaction device is configured to provide options of at least two elastography modes, wherein the at least two elastography modes include a first elastography mode and a second elastography mode, The first elastography mode corresponds to the first push pulse and the first ultrasonic wave, and the second elastography mode corresponds to the second push pulse and the second ultrasonic wave; the transmitting circuit 112 is used to select the second elastography mode when received
  • the ultrasonic probe 110 is excited to transmit a first push pulse to the target tissue of the measured object to generate a second shear wave propagating in the target tissue; and the ultrasonic probe 110 is excited to transmit a tracking pulse to the target tissue
  • the receiving circuit 114 is configured to receive the ultrasonic echo returned by the target tissue to obtain ultrasonic echo data; wherein, the penetration of the target tissue by the second ultrasonic wave The force is greater than the penetration force of
  • the ultrasonic imaging system of the embodiment of the present application can realize elastography with high penetrating power, and solve the problems of voids and inaccurate measured values caused by insufficient penetrating power in the process of elastography.
  • FIG. 14 shows a schematic flowchart of an elastography method 1400 according to another embodiment of the present application.
  • the elastography method 1400 according to the embodiment of the present application includes the following steps:
  • step S1410 a first ultrasound image of the target tissue of the measured object is acquired, wherein the first ultrasound image includes a tissue structure image;
  • step S1420 a target area that satisfies a preset condition is determined in the first ultrasound image
  • step S1430 options of at least two elastography modes are provided, wherein the at least two elastography modes include a first elastography mode and a second elastography mode, the first elastography mode corresponding to the first push pulse and the first ultrasonic wave, the second elastography mode corresponds to the second pushing pulse and the second ultrasonic wave;
  • step S1440 in the second elastography mode, transmitting a second push pulse to the target tissue based on the target region to generate a second shear wave propagating in the target tissue;
  • a second ultrasonic wave that tracks the second shear wave is transmitted to the target tissue, and ultrasonic echoes returned by the target tissue are received to obtain ultrasonic echo data, wherein the second ultrasonic wave affects the target tissue.
  • the penetration force of the target tissue is greater than the penetration force of the first ultrasonic wave to the target tissue, and/or the penetration force of the second shear wave to the target tissue is greater than that generated by the first push pulse The penetration force of the first shear wave to the target tissue;
  • step S1460 an elastic image of the target tissue is obtained based on the ultrasonic echo data
  • step S1470 the elasticity image is output.
  • the elastography method 1400 of this embodiment of the present application after the first ultrasound image is generated, options of at least two elastography modes are provided, and in the second elastography mode, a high penetration is performed on the target area in the first ultrasound image.
  • the elastic imaging of penetration force solves the problem of voids or inaccurate measurement values in elastic images due to insufficient penetration.
  • the second elastography mode may be automatically entered when the target area satisfies a preset condition.
  • the target area satisfying the preset condition includes at least one of the following satisfying the preset condition: the tissue category contained in the target area, the boundary shape of the lesion contained in the target area, the area size of the lesion contained in the target area, the target area and the brightness of the target area.
  • the tissue types included in the target area some types of tissue have relatively high hardness, such as breast, so the second elastography mode can be entered when the target area includes a preset tissue type.
  • the tissue with greater hardness is relatively irregular, so the second elastography mode can be entered when the boundary of the lesions in the target area has a preset shape.
  • the size of the lesions contained in the target area the larger the area of the lesions, the more difficult it is for shear waves and ultrasound to penetrate. Therefore, the size of the lesions contained in the target area can be judged. If the area of the lesions contained in the target area is If the preset threshold is exceeded, the second elastography mode is entered.
  • the first ultrasound image may also include other ultrasound images other than the tissue structure image, for example, an elasticity image corresponding to the tissue structure image, and the like.
  • the second elastography mode may also be entered when a selection instruction for the second elastography mode is received.
  • options of at least two elastography modes may be provided on the display interface of the ultrasound imaging system, and each elastography mode corresponds to one imaging mode.
  • the options for the at least two elastography modes may be icon options, menu bar options, or the like.
  • the specific details of the second elastography mode refer to the second elastography in the elastography method 200 ; for the specific details of the first elastography mode, refer to the first elastography in the elastography method 200 .
  • other human-computer interaction devices can also provide options for at least two elastography modes, for example, the selection of elastography modes can be controlled by a knob, or It is also possible to control whether the high penetration imaging mode is enabled or not through the switch key.
  • the above exemplarily shows the elastography method 1400 according to an embodiment of the present application.
  • the elastography method 1400 according to the embodiment of the present application can realize elastography with high penetration power, and solve problems such as voids and inaccurate measurement values caused by insufficient penetration power during the elastography process.
  • Embodiments of the present application further provide an ultrasound imaging system, which is used to implement the above elastic imaging method 1400 .
  • the ultrasonic imaging system includes an ultrasonic probe, a transmitting circuit, a receiving circuit, a processor and a human-computer interaction device, and the human-computer interaction device includes a display.
  • the ultrasound imaging system may be implemented as ultrasound imaging system 100 as shown in FIG. 1 .
  • the ultrasound imaging system 100 may include an ultrasound probe 110 , a transmit circuit 112 , a receive circuit 114 , a processor 116 and a display 118 , wherein the transmit circuit 112 is used to excite the ultrasound probe 110 to transmit push pulses to the target tissue of the subject.
  • the ultrasound imaging system may further include a transmit/receive selection switch 120 and a beamforming module 122, and the relevant descriptions of the respective components can be referred to above.
  • the processor 116 is configured to acquire a first ultrasound image of the target tissue of the measured object, wherein the first ultrasound image includes a tissue structure image; the processor 116 is further configured to A target area that satisfies a preset condition is determined in the first ultrasound image;
  • the human-computer interaction device is configured to provide options of at least two elastography modes, wherein the at least two elastography modes include a first elastography mode and The second elastography mode, the first elastography mode corresponds to the first push pulse and the first ultrasonic wave, and the second elastography mode corresponds to the second push pulse and the second ultrasonic wave; the transmitting circuit 112 is used for the second elastography In the elastography mode, the ultrasonic probe 110 is excited to transmit a second push pulse to the target tissue based on the target region to generate a second shear wave propagating in the target tissue; and the ultrasonic probe 110 is excited to the target tissue.
  • the target tissue transmits a second ultrasonic wave that tracks the second shear wave;
  • the receiving circuit 114 is configured to control the ultrasonic probe 110 to receive the ultrasonic echo returned by the target tissue to obtain ultrasonic echo data; wherein, the The penetrating force of the second ultrasonic wave to the target tissue is greater than the penetrating force of the first ultrasonic wave to the target tissue, and/or the penetrating force of the second shear wave to the target tissue is greater than that of the first ultrasonic wave
  • the processor 116 is further configured to obtain an elastic image of the target tissue based on the ultrasonic echo data;
  • the display 118 is configured to output the target tissue. described elastic image.
  • the ultrasonic imaging system of the embodiment of the present application can realize elastography with high penetrating power, and solve the problems of voids and inaccurate measured values caused by insufficient penetrating power in the process of elastography.
  • a storage medium is also provided, and program instructions are stored on the storage medium, and when the program instructions are run by a computer or a processor, the elastography method of the embodiment of the present application is executed. 200. Corresponding steps of elastography method 1200, elastography method 1300, or elastography method 1400.
  • the storage medium may include, for example, a memory card of a smartphone, a storage component of a tablet computer, a hard disk of a personal computer, read only memory (ROM), erasable programmable read only memory (EPROM), portable compact disk read only memory (CD-ROM), USB memory, or any combination of the above storage media.
  • the computer-readable storage medium can be any combination of one or more computer-readable storage media.
  • a computer program is also provided, and the computer program can be stored in the cloud or on a local storage medium.
  • the computer program is run by a computer or a processor, it is used to execute the corresponding steps of the elastography method of the embodiments of the present application.
  • the disclosed apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or May be integrated into another device, or some features may be omitted, or not implemented.
  • Various component embodiments of the present application may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some modules according to the embodiments of the present application.
  • DSP digital signal processor
  • the present application can also be implemented as a program of apparatus (eg, computer programs and computer program products) for performing part or all of the methods described herein.
  • Such a program implementing the present application may be stored on a computer-readable medium, or may be in the form of one or more signals. Such signals may be downloaded from Internet sites, or provided on carrier signals, or in any other form.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种弹性成像方法(200)和超声成像系统。该方法(200)包括:向目标组织发射第一推动脉冲,以产生第一剪切波(S210);发射跟踪第一剪切波的第一超声波,并接收第一超声回波,以获得第一超声回波数据(S220);基于第一超声回波数据生成第一弹性图像(S230);在第一弹性图像中确定目标区域(S240);基于目标区域发射第二推动脉冲,以产生在目标区域对应的目标子组织内传播的第二剪切波(S250);发射跟踪第二剪切波的第二超声波,接收第二超声回波,以获得第二超声回波数据,其中,第二超声波的穿透力大于第一超声波,和/或第二剪切波的穿透力大于第一剪切波(S260);基于第二超声回波数据生成第二弹性图像(S270);输出第二弹性图像(S280)。该方法(200)能够解决弹性成像过程中穿透力不足的问题。

Description

弹性成像方法和超声成像系统
说明书
技术领域
本申请涉及超声成像技术领域,更具体地涉及一种弹性成像方法和超声成像系统。
背景技术
超声弹性成像是以提取组织硬度相关参数为目标的一种超声成像方式,近年来已经被广泛的应用到临床研究和诊断中。目前,超声弹性成像通常被应用于甲状腺、乳腺、肌骨、肝脏、血管等部位的检查。对于组织软硬程度的判断可以有效辅助早期病变的发现、肿瘤良恶性鉴别、术后恢复评价等。
剪切波弹性成像通过向组织内发射特殊超声脉冲形成声辐射力,在组织内形成剪切波源并产生在组织内传播的剪切波,再通过超声波识别和检测组织内部的剪切波传播信息,进而计算出剪切波传播速度、杨氏模量等定量参数进行成像,从而实现对组织的定量弹性成像,是医生使用最多、最为关注的一种弹性成像方法。
临床中许多情况下,目标组织的硬度较高,剪切波衰减较快。例如乳腺癌病灶,通常不仅硬度高(多数超过100kPa,甚至达到300-400kPa),而且面积大。在此类病灶内部,剪切波源不容易产生;即便产生了剪切波幅度也非常微弱,不易传播穿透整个病灶区域,从而造成弹性测值不准确,或弹性测值不完整而导致弹性图像存在空洞,严重影响用户体验。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
本申请实施例第一方面提供一种弹性成像方法,所述方法包括:
向被测对象的目标组织发射第一推动脉冲,以产生在所述目标组织内传播的第一剪切波;
向所述目标组织发射跟踪所述第一剪切波的第一超声波,并接收所述目标组织返回的第一超声回波,以获得第一超声回波数据;
基于所述第一超声回波数据生成所述目标组织的第一弹性图像;
在所述第一弹性图像中确定满足预设条件的目标区域;
基于所述目标区域向所述目标组织发射第二推动脉冲,以产生在所述目标区域对应的目标子组织内传播的第二剪切波;
向所述目标组织发射跟踪所述第二剪切波的第二超声波,接收所述目标组织返回的第二超声回波,以获得所述目标子组织的第二超声回波数据;其中,所述第二超声波对所述目标子组织的穿透力大于所述第一超声波对所述目标子组织的穿透力,和/或所述第二剪切波对所述目标子组织的穿透力大于所述第一剪切波对所述目标子组织的穿透力;
基于所述第二超声回波数据生成所述目标子组织的第二弹性图像;
输出所述第二弹性图像。
本申请实施例第二方面提供一种弹性成像方法,所述方法包括:
获取被测对象的目标组织的第一弹性图像和第一组织结构图像,所述第一弹性图像和第一组织结构图像对应同一组织切面,所述第一弹性图像是通过检测在所述目标组织内传播的第一剪切波的第一超声波并基于所述第一超声波的第一超声回波得到;
在所述第一弹性图像或所述第一组织结构图像中确定满足预设条件的目标区域;
基于所述目标区域向所述目标组织发射推动脉冲,以产生在所述目标区域对应的目标子组织内传播的第二剪切波;
向所述目标组织发射跟踪所述第二剪切波的第二超声波,接收所述目标组织返回的第二超声回波,以获得所述目标子组织的第二超声回波数据;其中,所述第二超声波对所述目标子组织的穿透力大于所述第一超声波对所述目标子组织的穿透力,和/或所述第二剪切波对所述目标子组织的穿透力大于所述第一剪切波对所述目标子组织的穿透力;
基于所述第二超声回波数据得到所述目标子组织的第二弹性图像;
输出所述第二弹性图像。
本申请实施例第三方面提供一种弹性成像方法,所述方法包括:
提供至少两种弹性成像模式的选项,其中,所述至少两种弹性成像模式包括第一弹性成像模式和第二弹性成像模式,所述第一弹性成像模式对应第一推动脉冲和第一超声波,所述第二弹性成像模式对应第二推动脉冲和第二超声波;
当接收到对第二弹性成像模式的选择指令时,向被测对象的目标组织发射第二推动脉冲,以产生在所述目标组织内传播的第二剪切波;
向所述目标组织发射跟踪所述第二剪切波的第二超声波,接收所述目标组织返回的超声回波,以获得超声回波数据;其中,所述第二超声波对所述目标组织的穿透力大于所述第一超声波对所述目标组织的穿透力,和/或所述第二剪切波对所述目标组织的穿透力大于所述第一推动脉冲产生的第一剪切波对所述目标组织的穿透力;
基于所述超声回波数据得到所述目标组织的第二弹性图像;
输出所述第二弹性图像。
本申请实施例第四方面提供一种弹性成像方法,所述方法包括:
获取被测对象的目标组织的第一超声图像,其中,所述第一超声图像包括组织结构图像;
在所述第一超声图像中确定满足预设条件的目标区域;
提供至少两种弹性成像模式的选项,其中,所述至少两种弹性成像模式包括第一弹性成像模式和第二弹性成像模式,所述第一弹性成像模式对应第一推动脉冲和第一超声波,所述第二弹性成像模式对应第二推动脉冲和第二超声波;
在所述第二弹性成像模式下,基于所述目标区域向所述目标组织发射第一推动脉冲,以产生在所述目标组织内传播的第二剪切波;
向所述目标组织发射跟踪所述第二剪切波的第二超声波,接收所述目标组织返回的超声回波,以获得超声回波数据;其中,所述第二超声波对所述目标组织的穿透力大于所述第一超声波对所述目标组织的穿透力,和/或所述第二剪切波对所述目标组织的穿透力大于所述第一推动脉冲产生的 第一剪切波对所述目标组织的穿透力;
基于所述超声回波数据得到所述目标组织的弹性图像;
输出所述弹性图像。
本申请实施例第五方面提供一种超声成像系统,所述超声成像系统包括:
超声探头;
发射电路,用于激励所述超声探头向被测对象的目标组织发射第一推动脉冲,以产生在所述目标组织内传播的第一剪切波;以及激励所述超声探头向所述目标组织发射跟踪所述第一剪切波的第一超声波;
接收电路,用于控制所述超声探头接收所述目标组织返回的第一超声回波,以获得第一超声回波数据;
处理器,用于:
基于所述第一超声回波数据生成所述目标组织的第一弹性图像;
在所述第一弹性图像中确定满足预设条件的目标区域;
所述发射电路还用于激励所述超声探头基于所述目标区域向所述目标组织发射第二推动脉冲,以产生在所述目标区域对应的目标子组织内传播的第二剪切波;以及激励所述超声探头向所述目标组织发射跟踪所述第二剪切波的第二超声波;
所述接收电路还用于接收所述目标组织返回的第二超声回波,以获得所述目标子组织的第二超声回波数据;其中,所述第二超声波对所述目标子组织的穿透力大于所述第一超声波对所述目标子组织的穿透力,和/或所述第二剪切波对所述目标子组织的穿透力大于所述第一剪切波对所述目标子组织的穿透力;
所述处理器还用于基于所述第二超声回波数据生成所述目标子组织的第二弹性图像;
显示器,用于显示所述第二弹性图像。
本申请实施例第六方面提供一种超声成像系统,所述超声成像系统包括:
处理器,用于:
获取被测对象的目标组织的第一弹性图像和第一组织结构图像, 所述第一弹性图像和第一组织结构图像对应同一组织切面,所述第一弹性图像是通过检测在所述目标组织内传播的第一剪切波的第一超声波并基于所述第一超声波的第一超声回波得到;
在所述第一弹性图像或所述第一组织结构图像中确定满足预设条件的目标区域;
发射电路,用于激励所述超声探头基于所述目标区域向所述目标子组织发射推动脉冲,以产生在所述目标区域对应的目标子组织内传播的第二剪切波;以及激励所述超声探头向所述目标组织发射跟踪所述第二剪切波的第二超声波;
接收电路,用于控制所述超声探头接收所述目标组织返回的第二超声回波,以获得所述目标自组织的第二超声回波数据;其中,所述第二超声波对所述目标子组织的穿透力大于所述第一超声波对所述目标子组织的穿透力,和/或所述第二剪切波对所述目标子组织的穿透力大于所述第一剪切波对所述目标子组织的穿透力;
所述处理器还用于基于所述第二超声回波数据得到所述目标子组织的第二弹性图像;
显示器,用于显示所述第二弹性图像。
本申请实施例第七方面提供一种超声成像系统,所述超声成像系统包括:
人机交互装置,用于提供至少两种弹性成像模式的选项,其中,所述至少两种弹性成像模式包括第一弹性成像模式和第二弹性成像模式,所述第一弹性成像模式对应第一推动脉冲和第一超声波,所述第二弹性成像模式对应第二推动脉冲和第二超声波;
发射电路,用于当接收到对第二弹性成像模式的选择指令时,激励超声探头向被测对象的目标组织发射第二推动脉冲,以产生在所述目标组织内传播的第二剪切波;以及激励所述超声探头向所述目标组织发射跟踪所述第二剪切波的第二超声波;
接收电路,用于接收所述目标组织返回的超声回波,以获得超声回波数据;其中,所述第二超声波对所述目标组织的穿透力大于所述第一超声波对所述目标组织的穿透力,和/或所述第二剪切波对所述目标组织的穿透 力大于所述第一推动脉冲产生的第一剪切波对所述目标组织的穿透力;
处理器,用于基于所述超声回波数据得到所述目标组织的弹性图像;
显示器,用于输出所述弹性图像。
本申请实施例第八方面提供一种超声成像系统,所述超声成像系统包括:
处理器,用于获取被测对象的目标组织的第一超声图像,其中,所述第一超声图像包括组织结构图像;所述处理器还用于在所述第一超声图像中确定满足预设条件的目标区域;
人机交互装置,用于提供至少两种弹性成像模式的选项,其中,所述至少两种弹性成像模式包括第一弹性成像模式和第二弹性成像模式,所述第一弹性成像模式对应第一推动脉冲和第一超声波,所述第二弹性成像模式对应第二推动脉冲和第二超声波;
发射电路,用于在所述第二弹性成像模式下,激励超声探头基于所述目标区域向所述目标组织发射第二推动脉冲,以产生在所述目标组织内传播的第二剪切波;以及激励所述超声探头向所述目标组织发射跟踪所述第二剪切波的第二超声波;
接收电路,用于控制所述超声探头接收所述目标组织返回的超声回波,以获得超声回波数据;其中,所述第二超声波对所述目标组织的穿透力大于所述第一超声波对所述目标组织的穿透力,和/或所述第二剪切波对所述目标组织的穿透力大于所述第一推动脉冲产生的第一剪切波对所述目标组织的穿透力;
所述处理器还用于基于所述超声回波数据得到所述目标组织的弹性图像;
显示器,用于输出所述弹性图像。
根据本申请实施例的弹性成像方法和超声成像系统能够实现高穿透力的弹性成像,解决弹性成像过程中由于穿透力不足而导致测量不准确或出现空洞的问题。
附图说明
图1示出了根据本申请一个实施例的超声成像系统的示意性框图;
图2为根据本申请一个实施例的弹性成像方法的示意性流程图;
图3A、图3B为根据本申请一个实施例的第一弹性图像的示意图;
图4示出了根据本申请一个实施例的根据第一弹性图像确定目标区域的示意图;
图5示出了根据本申请一个实施例的根据第一弹性图像的可信度确定目标区域的示意图;
图6示出了根据本申请一个实施例的根据与第一弹性图像对应的组织结构图像确定目标区域的示意图;
图7示出了根据本申请一个实施例的第一推动脉冲和第二推动脉冲的声场的示意图;
图8示出了根据本申请另一个实施例的第一推动脉冲和第二推动脉冲的声场的示意图;
图9示出了根据本申请一个实施例的第二推动脉冲的声场的示意图;
图10示出了根据本申请一个实施例的第一超声波和第二超声波的声场边界的示意图;
图11示出了根据本申请一个实施例的第一弹性图像和第二弹性图像的示意图;
图12为根据本申请另一个实施例的弹性成像方法的示意性流程图;
图13为根据本申请又一个实施例的弹性成像方法的示意性流程图;
图14为根据本申请再一个实施例的弹性成像方法的示意性流程图。
具体实施方式
为了使得本申请的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。基于本申请中描述的本申请实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本申请的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本申请更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本申请可以无需 一个或多个这些细节而得以实施。在其他的例子中,为了避免与本申请发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本申请能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本申请的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本申请的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本申请,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本申请提出的技术方案。本申请的较佳实施例详细描述如下,然而除了这些详细描述外,本申请还可以具有其他实施方式。
为了彻底理解本申请,将在下列的描述中提出详细的结构,以便阐释本申请提出的技术方案。本申请的可选实施例详细描述如下,然而除了这些详细描述外,本申请还可以具有其他实施方式。
下面,首先参考图1描述根据本申请一个实施例的超声成像系统,图1示出了根据本申请实施例的超声成像系统100的示意性结构框图。
如图1所示,超声成像系统100包括超声探头110、发射电路112、接收电路114、处理器116和显示器118。进一步地,超声成像系统还可以包括发射/接收选择开关120和波束合成模块122,发射电路112和接收电路114可以通过发射/接收选择开关120与超声探头110连接。
超声探头110包括多个换能器阵元,多个换能器阵元可以排列成一排构成线阵,或排布成二维矩阵构成面阵,多个换能器阵元也可以构成凸阵列。换能器阵元用于根据激励电信号发射超声波,或将接收的超声波转换为电信号,因此每个换能器阵元可用于实现电脉冲信号和超声波的相互转换,从而实现向被测对象的目标区域的组织发射超声波、也可用于接收经组织反射回 的超声波回波。在进行剪切波弹性成像时,超声探头110中的换能器阵元用于向目标组织发射推动脉冲,以产生在目标组织内传播的剪切波。超声探头110中的换能器阵元还用于向目标组织发射跟踪剪切波的超声波,以及接收超声波的超声回波。可通过发射序列和接收序列控制哪些换能器阵元用于发射超声波,哪些换能器阵元用于接收超声波,或者控制换能器阵元分时隙用于发射超声波或接收超声波的回波。参与超声波发射的换能器阵元可以同时被电信号激励,从而同时发射超声波;或者,参与超声波束发射的换能器阵元也可以被具有一定时间间隔的若干电信号激励,从而持续发射具有一定时间间隔的超声波。
在超声成像过程中,发射电路112将经过延迟聚焦的发射脉冲通过发射/接收选择开关120发送到超声探头110。超声探头110受发射脉冲的激励而向被测对象的目标区域的组织发射超声波束,经一定延时后接收从目标区域的组织反射回来的带有组织信息的超声回波,并将此超声回波重新转换为电信号。接收电路114接收超声探头110转换生成的电信号,获得超声回波信号,并将这些超声回波信号送入波束合成模块122,波束合成模块122对超声回波数据进行聚焦延时、加权和通道求和等处理,然后送入处理器116。处理器116对超声回波信号进行信号检测、信号增强、数据转换、对数压缩等处理形成超声图像,例如组织结构图像或弹性图像。处理器116得到的超声图像可以在显示器118上显示,也可以存储于存储器124中。
可选地,处理器116可以实现为软件、硬件、固件或其任意组合,并且可以使用单个或多个专用集成电路(Application Specific Integrated Circuit,ASIC)、单个或多个通用集成电路、单个或多个微处理器、单个或多个可编程逻辑器件、或者前述电路和/或器件的任意组合、或者其他适合的电路或器件。并且,处理器116可以控制所述超声成像系统100中的其它组件以执行本说明书中的各个实施例中的方法的相应步骤。
显示器118与处理器116连接,显示器118可以为触摸显示屏、液晶显示屏等;或者,显示器118可以为独立于超声成像系统100之外的液晶显示器、电视机等独立显示器;或者,显示器118可以是智能手机、平板电脑等电子设备的显示屏,等等。其中,显示器118的数量可以为一个或多个。例如,显示器118可以包括主屏和触摸屏,主屏主要用于显示超声图像,触摸 屏主要用于人机交互。
显示器118可以显示处理器116得到的超声图像。此外,显示器118在显示超声图像的同时还可以提供给用户进行人机交互的图形界面,在图形界面上设置一个或多个被控对象,提供给用户利用人机交互装置输入操作指令来控制这些被控对象,从而执行相应的控制操作。例如,在图形界面上显示图标,利用人机交互装置可以对该图标进行操作,用来执行特定的功能,例如在超声图像上绘制出感兴趣区域框等。
可选地,超声成像系统100还可以包括显示器118之外的其他人机交互装置,其与处理器116连接,例如,处理器116可以通过外部输入/输出端口与人机交互装置连接,外部输入/输出端口可以是无线通信模块,也可以是有线通信模块,或者两者的组合。外部输入/输出端口也可基于USB、如CAN等总线协议、和/或有线网络协议等来实现。
其中,人机交互装置可以包括输入设备,用于检测用户的输入信息,该输入信息例如可以是对超声波发射/接收时序的控制指令,可以是在超声图像上绘制出点、线或框等的操作输入指令,或者还可以包括其他指令类型。输入设备可以包括键盘、鼠标、滚轮、轨迹球、移动式输入设备(例如带触摸显示屏的移动设备、手机等等)、多功能旋钮等等其中之一或者多个的结合。人机交互装置还可以包括诸如打印机之类的输出设备。
超声成像系统100还可以包括存储器124,用于存储处理器执行的指令、存储接收到的超声回波、存储超声图像,等等。存储器可以为闪存卡、固态存储器、硬盘等。其可以为易失性存储器和/或非易失性存储器,为可移除存储器和/或不可移除存储器等。
应理解,图1所示的超声成像系统100所包括的部件只是示意性的,其可以包括更多或更少的部件。本申请对此不限定。
下面,将参考图2描述根据本申请实施例的弹性成像方法。图2是本申请实施例的弹性成像方法200的一个示意性流程图。
如图2所示,本申请一个实施例的弹性成像方法200包括如下步骤:
在步骤S210,向被测对象的目标组织发射第一推动脉冲,以产生在所述目标组织内传播的第一剪切波;
在步骤S220,向所述目标组织发射跟踪所述第一剪切波的第一超声波,并接收所述目标组织返回的第一超声回波,以获得第一超声回波数据;
在步骤S230,基于所述第一超声回波数据生成所述目标组织的第一弹性图像;
在步骤S240,在所述第一弹性图像中确定满足预设条件的目标区域;
在步骤S250,基于所述目标区域向所述目标组织发射第二推动脉冲,以产生在所述目标区域对应的目标子组织内传播的第二剪切波;
在步骤S260,向所述目标组织发射跟踪所述第二剪切波的第二超声波,接收所述目标组织返回的第二超声回波,以获得所述目标子组织的第二超声回波数据;其中,所述第二超声波对所述目标子组织的穿透力大于所述第一超声波对所述目标子组织的穿透力,和/或所述第二剪切波对所述目标子组织的穿透力大于所述第一剪切波对所述目标子组织的穿透力;
在步骤S270,基于所述第二超声回波数据生成所述目标子组织的第二弹性图像;
在步骤S280,输出所述第二弹性图像。
本申请实施例的弹性成像方法200在进行弹性成像以生成第一弹性图像之后,针对第一弹性成像中的目标区域进行第二次高穿透力的弹性成像,解决了由于穿透力不足而导致第一弹性图像不完整或质量不佳的问题。
在步骤S210至步骤S230中,首先进行第一次弹性成像过程,基于常规的弹性成像参数对被测对象的目标组织进行弹性成像,以生成第一弹性图像。其中,被测对象可以是人,或者,被测对象也可以是动物,例如猫、狗、兔子等。目标区域例如包括组织的病灶区域。该第一弹性图像的第一推动脉冲和第一超声波的穿透力相对较弱,在例如病灶区域等深度过大或硬度过高的区域可能测量不准确或出现空洞,如图3A、图3B所示,其中图3A示出了病灶中心测值不准确导致测值过低的第一弹性图像,图3B示出了测值不完整导致出现空洞的第一弹性图像。
示例性地,在生成第一弹性图像之前,首先生成组织结构图像,并基于组织结构图像确定第一弹性图像的感兴趣区域,组织结构图像包括B图像、C图像等。结合图1,发射电路112向超声探头110中的每个换能器阵元发送经过适当延时的电信号,由换能器将电信号转化为第一超声波发射至被测对 象的待测组织;超声探头110中的换能器接收待测组织返回的超声波的超声回波并转换为电信号,以获得超声回波信号,经过信号放大、模数变换等处理后传递给波束合成电路122进行波束合成处理,然后将该波束合成后的超声回波信号送入处理器116,处理器116对超声回波信号进行对数压缩、动态范围调整、数字扫描变换等处理,以形成用于体现待测组织的组织结构的组织结构图像,并输出该组织结构图像至显示器118进行显示,用户可以实时观测组织结构图像,从而根据需要调节检查的范围、超声探头110放置的角度等。
之后,基于组织结构图像确定用于生成第一弹性图像的感兴趣区域。其中,可以由用户手动框选出感兴趣区域框,并根据接收到的用户输入指令确定感兴趣区域的位置。或者,可以基于相关的机器识别算法在组织结构图像上自动确定感兴趣区域的位置,即自动生成感兴趣区域框。在其他示例中,还可以通过半自动检测的方式来获取感兴趣区域。
之后,处理器116对于与感兴趣区域对应的目标组织进行第一次弹性成像。在第一次弹性成像阶段,首先通过超声探头110发射第一推动脉冲以生成在被测对象的目标组织内传播的剪切波。之后,发射电路112激励超声探头110向确定的感兴趣区域发射追踪第一剪切波的第一超声波并接收第一超声波的回波,以获得第一超声回波数据,处理器116根据第一超声回波数据计算弹性参数分布,例如剪切波速度分布、剪切模量分布、杨氏模量分布或组织粘性分布等。之后,基于弹性参数分布生成第一弹性图像,在第一弹性图像中,可以通过不同的颜色、灰度或填充方式标识出弹性参数分布。
示例性地,可以采用以下方法计算弹性参数:根据所接收的第一超声回波数据计算第一剪切波传播路径上某点的位移量,当该点的位移最大时,认为第一剪切波到达了该点。通过第一剪切波到达各点的时间可定位出第一剪切波的传播路径或传播轨迹,从而可绘制出剪切波轨迹图,根据第一剪切波的轨迹线可得到第一剪切波传播路径上各点的斜率,斜率即为剪切波速度。根据剪切波速度与杨氏模量、剪切模量之间的关系,当得到剪切波速度后,可进一步计算出其他弹性参数,比如杨氏模量、剪切模量等。
之后,处理器116可以将第一弹性图像和与第一弹性图像对应的组织结构图像合并为一帧图像。示例性地,与第一弹性图像对应的组织结构图像既 是在第一次弹性成像过程之前生成的用于确定感兴趣区域的组织结构图像,也可以在生成第一弹性图像的过程中生成的组织结构图像。之后,处理器116可以将合成后的图像数据输出到显示器118,以便在显示器118的显示界面上进行显示。
之后,在步骤S240中,在第一弹性图像中确定满足预设条件的目标区域。目标区域为第一次弹性成像过程中由于第一推动脉冲或第一超声波的穿透力不足而导致成像效果不佳的区域。例如,目标区域可以是上述空洞区域或测值不准确的区域。
在一个实施例中,可以基于第一弹性图像确定目标区域。具体地,参见图4,可以识别第一弹性图像中的空洞区域,若空洞区域的面积大于预设阈值,则将空洞区域确定为目标区域,该空洞区域为第一剪切波未能穿透的区域、第一超声波未能穿透的区域或者信噪比低于预设阈值的区域,其中,第一剪切波未能穿透的区域或者第一超声波未能穿透的区域是由于未能测得弹性参数而形成的空洞区域,而信噪比过低的区域为由于无法正确地检测弹性参数而形成的空洞区域。
在另一个实施例中,可以获取第一弹性图像的可信度,并基于第一弹性图像的可信度确定目标区域。其中,第一弹性图像的可信度包括第一弹性图像各质点的弹性参数的可信度。弹性参数的可信度可能受到多种因素的影响,例如剪切波的幅度过小或没有产生,剪切波无法传播,第一超声回波数据的信噪比过低等,其根本原因均与穿透力不足相关。
示例性地,可以根据上述第一超声回波数据计算第一弹性图像的可信度。处理器116获取第一弹性图像内各位置对应的第一超声回波数据,根据第一超声回波数据计算各位置的用于表征该位置受干扰影响程度的标志值,根据各位置的标志值得到各位置的可信度。
处理器116可以根据各位置的加速度曲线计算各位置的标志值,标志值用于表征位置受干扰影响的程度。示例性地,表征该位置受干扰影响程度的标志值是该位置加速度曲线的幅值,加速度曲线的幅值为加速度曲线的最大值或加速度曲线的幅度绝对值的最大值。加速度曲线的幅值越大,说明剪切应力越大,当遇到干扰时,被干扰影响的程度就越小,因此采用加速度曲线的幅值可表征该位置受干扰影响的程度。例如,可以直接将各 位置处加速度曲线的幅值作为该位置处的可信度,或对幅值进一步运算以得到可信度。
其中,加速度曲线可以采用如下方式生成:通过比较不同时刻各位置的第一超声回波数据的差异,可得到各位置在不同时刻的位移,以生成位移曲线;根据各位置在不同时刻的位移计算各位置在不同时刻的振动速度,生成速度曲线;根据各位置在不同时刻的振动速度,对速度求时间梯度,计算出各位置在不同时刻的加速度,最终得到各位置的加速度曲线。
根据各位置的可信度可以得到与第一弹性图像对应的可信度分布图。其中,在可信度分布图中可以通过不同的颜色或灰度表示不同的可信度。如图5所示,可以将第一弹性图像和可信度分布图同时显示在显示界面上,以便于根据可信度分布图确定第一弹性图像中的目标区域。或者,处理器116也可以不生成可信度分布图,直接根据可信度信息在第一弹性图像中确定目标区域。
可选地,根据可信度确定第一弹性图像中的目标区域可以包括:将可信度低于第一预设阈值的区域确定为目标区域,也就是说,若某一区域的可信度过低,则将其作为目标区域。或者,可以将可信度低于第二预设阈值的面积超过预设面积的单个区域确定为目标区域,该第二预设阈值可以低于第一预设阈值。也就是说,若某一可信度较低的区域面积过大,则将其作为目标区域。
在其他实施例中,还可以基于与第一弹性图像对应的组织结构图像确定目标区域。例如,如图6所示,病灶组织由于硬度高、面积大,第一剪切波难以穿透,因此可以在与第一弹性图像对应的组织结构图像中识别病灶区域,并将病灶区域在第一弹性图像中对应的区域作为目标区域。
无论是基于第一弹性图像、基于第一弹性图像的可信度还是基于与第一弹性图像对应的组织结构图像确定目标区域,均可以由处理器116自动确定或由用户手动确定。当由处理器116自动确定时,处理器可以在满足上述判定条件时,根据预设的形态或大小,自动绘制目标区域。当采用手动方式确定目标区域时,接收选择目标区域的用户指令,并根据接收到的用户指令确定目标区域。目标区域的大小和形态可以是多样的,例如矩形、圆形、凸形、扇形等,或者是根据图像信息描迹所得的不规则形状,例如 对可信度低于第一预设阈值的区域描迹所得的形状,或对与第一弹性图像对应的组织结构图像中的病灶区域描迹所得的形状。
确定目标区域后,在步骤S250至步骤S270,基于目标区域进行第二次弹性成像过程,实现高穿透力的弹性成像。
由于第一次弹性成像与第二次弹性成像在时间上是先后进行的,为了尽可能保证扫查切面的稳定性,在进行第二次弹性成像之前,即发射第二推动脉冲之前,还可以实时生成并显示目标组织的组织结构图像,通过实时生成的组织结构图像引导用户调节超声探头110,以寻找到与第一弹性图像的扫查切面。具体地,发射电路112激励超声探头110向目标组织发射超声波;接收电路接收目标组织返回的超声回波并转换为电信号,以获得超声回波数据,处理器116对超声回波数据进行对数压缩、动态范围调整、数字扫描变换等处理,以形成用于体现待测组织的组织结构的组织结构图像,并输出该组织结构图像至显示器118进行实时显示。
进一步地,还可以实时确定目标组织的组织结构图像与第一弹性图像对应的组织结构图像之间的匹配度,并实时显示匹配度。匹配度高说明当前超声探头的扫查切面与第一弹性图像的切面之间的一致性高。在一个示例中,可以通过特征提取的方式确定图像的匹配度。具体地,预先提取与第一弹性图像对应的组织结构图像的第一图像特征,并实时提取当前采集的组织结构图像的第二图像特征,实时比对第一图像特征和所述第二图像特征,以得到二者的匹配度。其中,可以采用传统的特征提取算法提取梯度特征、哈尔特征提取、纹理特征等图像特征,也可以采用深度神经网络来进行特征提取。
在另一个示例中,也可以采用机器学习模型实时确定与第一弹性图像对应的组织结构图像和当前采集的组织结构图像之间的匹配度,机器学习模型可以是训练好的深度学习神经网络模型,其可以被训练为直接输出两幅输入图像之间的匹配度。
用户在实时显示的组织结构图像和匹配度提示的帮助下将超声探头110放置于合适的位置和角度并保持稳定之后,再触发第二次弹性成像。第二次弹性成像包括第二推动脉冲的发射,以及第二超声波的发射和第二超声回波的接收。其中,第二推动脉冲用于产生在与目标区域对应的目标 子组织内传播的第二剪切波,第二超声波用于检测第二剪切波引起的组织运动信息。
其中,目标子组织为与目标区域对应的部分组织,也就是第一次弹性成像过程中第一剪切波或第一超声波未能穿透的部分组织,目标子组织一般具有较大的硬度,例如可能是病灶组织。提高第二剪切波或第二超声波的穿透力均有助于实现高穿透力的弹性成像。因此,在本申请实施例的弹性成像方法200中,第二超声波对目标子组织的穿透力大于第一超声波对目标子组织的穿透力,或者第二剪切波对目标子组织的穿透力大于第一剪切波对所述目标子组织的穿透力,或者第二超声波对目标子组织的穿透力大于第一超声波对目标子组织的穿透力、并且第二剪切波对目标子组织的穿透力大于第一剪切波对所述目标子组织的穿透力。
在步骤S250中,向目标组织发射第二推动脉冲,以产生在目标区域对应的目标子组织内产生传播的第二剪切波。若使第二剪切波对目标子组织的穿透力大于第一剪切波对目标子组织的穿透力,其实现方式包括但不限于以下几种:
作为一种实现方式,由于目标区域一般会小于原有的感兴趣区域,目标子组织的范围小于目标组织的范围,第二推动脉冲仅需保证第二剪切波覆盖新的目标子组织即可,因此第二推动脉冲的声场聚焦强度可以更加集中。更集中的声场聚焦强度可以增大所产生的第二剪切波的幅度,使第二剪切波传播得更远,检测到的信号更强,也更容易抵御噪声的干扰,从而提升了第二剪切波穿透力。其中,穿透力包括穿透距离或穿透深度。
为了使第二推动脉冲的聚焦强度高于第一推动脉冲的聚焦强度,在一个实施例中,如图7所示,可以基于目标区域调节超声探头的发射孔径内各阵元的延时,以调节第二推动脉冲的声场形态,使第二推动脉冲的聚焦强度高于第一推动脉冲的聚焦强度。
在另一个实施例中,如图8所示,可以基于目标区域调节第二推动脉冲的聚焦点位置和聚焦点数目中的至少一项,由此使第二推动脉冲的聚焦强度高于第一推动脉冲的聚焦强度。
以上两种方式均能够使第二推动脉冲的聚焦强度更强,从而提高第二剪切波的穿透力。
作为另外一种实现方式,由于剪切波在高硬组织内部衰减较快,传播距离较近,为了提升第二剪切波的穿透力,可以基于目标区域在目标子组织附近至少两个位置处分别发射第二推动脉冲,从而在目标子组织附近至少两个位置处产生剪切波源。例如,如图9所示,可以在目标子组织的左侧、中心、右侧分别发射第二推动脉冲以产生第二剪切波,发射第二推动脉冲的位置的数目和间隔可以预先设定。对每个第二剪切波,都分别发射跟踪该第二剪切波的第二超声波,以分别获得与至少两个所述第二剪切波对应的至少两组第二超声回波数据,从而分别检测每个第二剪切波传播的相关信息。
当在两个位置处分别生成第二推动脉冲时,分别根据至少两组第二超声回波数据得到目标组织的至少两组弹性参数,根据至少两组弹性参数获得最终弹性参数,以及基于所述最终弹性参数生成第二弹性图像。其中,根据至少两组弹性参数获得最终的弹性参数可以采用以下至少一种方式:第一种方式为将至少两组弹性参数拼接以得到所述最终弹性参数,由此,如果第二剪切波的传播距离不足,可以通过将多个位置处的第二剪切波的检测结果进行拼接的方式获得完整的结果。第二种方式为平均至少两组弹性参数以得到最终弹性参数,由此可以分摊弹性参数的误差,提高测量结果的准确性。第三种方式为选择至少两组弹性参数中可信度最高的至少一组弹性参数作为最终弹性参数,由此,如果个别位置处产生的第二剪切波波源不佳,或者传播不理想,还有其他位置处的第二剪切波可以作为替代,可以尽可能地增加获得可信结果的概率。
进一步地,基于目标区域在目标子组织附近至少两个位置处分别发射所述第二推动脉冲包括依次在所述至少两个位置处发射所述第二推动脉冲。出于超声探头的安全限制,同时在多个位置发射第二推动脉冲可能降低单个第二推动脉冲的强度,不利于提升第二剪切波的穿透力,而依次发射第二推动脉冲可以避免产生这一问题。
在步骤S260,向目标组织发射跟踪第二剪切波的第二超声波,接收目标组织返回的第二超声回波,以获得目标子组织的第二超声回波数据。可选地,为了完整地记录第二剪切波在目标组织内的传播过程,第二超声波一般需持续发射一段时间。
本申请实施例中,由于目标子组织的范围较小,第二超声波的检测范围可以充分地缩小,第二超声波的声场范围仅需保证覆盖目标子组织即可,如图10所示,因此可以采用更强的聚焦方式,提升第二超声波的声能量,从而增加第二超声回波数据的信噪比。
在另一个实施例中,为了提高第二超声波的穿透力,可以控制第二超声波的发射频率小于第一超声波的发射频率。低频率的超声波在组织中传播消耗的能量较少,表现为穿透力较强。并且当发射频率较低时,第二超声波的波形长度更长,因而抗干扰能力更强。
在一个实施例中,由于小的目标子组织的深度一般较浅,小于目标组织的深度,因而第二超声波的发射和其回波的接收之间的间隔较短,相邻两次第二超声波之间的发射间隔也可以更短,因此可以控制第二超声波的发射间隔时间小于第一超声波的发射间隔时间,以提高检测速率。高硬度组织内的剪切波传播速度往往非常快,对于某固定距离内的剪切波传播,意味着剪切波到达两个位置的时刻非常接近,若检测速率不够,则无法准确地分辨出其间隔时间,也就无法准确计算出剪切波的传播速度。因此,提高检测速率有助于提升弹性参数计算的准确性,避免弹性图像中出现弹性参数被低估或出现空洞现象。
在又一实施例中,可以控制第二超声波的发射电压高于第一超声波的发射电压。发射电压更高时,穿透力也就更强。
值得一提的是,在常规弹性成像过程中,为了同步观察组织结构图像,往往需要同时发射和接收组织结构图像的成像序列,例如B图像的成像序列或C图像的成像序列,因而常规弹性成像时可以同时获得组织结构图像与弹性图像,例如在获取第一弹性图像的同时可以获取与第一弹性图像对应的组织结构图像。为了获得实时观察的效果,用于生成组织结构图像的超声波的发射频率通常比较高,从而使得用于生成弹性图像的超声波的能量受到限制。
而在本申请实施例中,在第二次弹性成像过程中只需要生成第二弹性图像,无需生成组织结构图像,因而不需要发射用于生成组织结构图像的超声波,只需要发射用于生成第二弹性图像的超声波,即第二推动脉冲与第二超声波,使第二推动脉冲与第二超声波的能量不再受到其他发射的影 响,发射电压可以在安全范围内得到尽可能的提升,从而进一步提升第二剪切波与第二超声波的穿透力。
在步骤S270,基于第二超声回波数据生成目标子组织的第二弹性图像。基于第二超声回波数据生成第二弹性图像与上文中基于第一超声回波数据生成第一弹性图像的方式类似,即根据第二超声回波信号计算第二剪切波传播路径上某点的位移量,通过第二剪切波到达各点的时间可定位出第二剪切波的传播路径或传播轨迹,从而可绘制出剪切波轨迹图,根据剪切波的轨迹线可得到第二剪切波传播路径上各点的斜率,斜率即为剪切波速度。根据剪切波速度与杨氏模量、剪切模量之间的关系,当得到剪切波速度后,可进一步计算出其他弹性参数,比如杨氏模量、剪切模量等。之后,以不同的灰度、颜色等表示目标区域内各位置处的弹性参数分布,即得到第二弹性图像。
在步骤S280,输出第二弹性图像的一种方式可以包括:利用第二弹性图像替换第一弹性图像中位于目标区域内的部分,如图11所示。具体地,基于第二超声回波数据计算出目标区域各位置处的弹性参数后,由于该弹性参数比第一次弹性成像过程中获取的弹性参数更加准确,因而可以直接替换该目标区域的在第一次弹性成像过程中获得的弹性参数,并以例如彩色编码的方式在第一弹性图像的目标区域内进行显示。其中,用于彩色编码的图谱可以与第一弹性图像不同,也可以相同。
输出第二弹性图像的另一种方式可以包括:将第二弹性图像叠加显示在第一弹性图像中的目标区域。示例性地,在叠加显示时,可以对第二弹性图像设置一定的透明度,方便用户对第二弹性图像与第一弹性图像进行对比观察。
除以上两种方式以外,还可以在第一弹性图像以外的区域单独显示第二弹性图像,与第一弹性图像同时显示或切换显示,方便用户对比观察。
以上示例性地示出了根据本申请一个实施例的弹性成像方法200。基于上面的描述,根据本申请实施例的弹性成像方法200在生成常规的第一弹性图像后,对第一弹性图像中的目标区域进行高穿透力的弹性成像,解决了弹性成像过程中由于穿透力不足而导致的空洞、测值不准确等问题。
本申请实施例还提供一种超声成像系统,用于实现上述的弹性成像方 法200。该超声成像系统包括超声探头、发射电路、接收电路、处理器和显示器。现在重新参照图1,该超声成像系统可以实现为如图1所示的超声成像系统100。如上所述,超声成像系统100可以包括超声探头110、发射电路112、接收电路114、处理器116以及显示器118,其中,发射电路112用于激励超声探头110向被测对象的目标组织发射推动脉冲,以产生在所述目标组织内传播的剪切波;发射电路112还用于激励超声探头110向目标组织发射跟踪剪切波的超声波;接收电路控制超声探头110接收目标组织返回的超声回波,以获得超声回波数据;处理器,用于执行弹性成像方法200的各步骤;显示器112用于输出处理器得到的弹性图像。超声成像系统还可以包括发射/接收选择开关120和波束合成模块122,各个部件的相关描述可以参照上文。
具体地,当实现弹性成像方法200时,发射电路112用于激励超声探头110向被测对象的目标组织发射第一推动脉冲,以产生在目标组织内传播的第一剪切波;以及激励超声探头110向目标组织发射跟踪第一剪切波的第一超声波;接收电路114用于控制超声探头110接收目标组织返回的第一超声回波,以获得第一超声回波数据。
处理器116用于基于第一超声回波数据生成目标组织的第一弹性图像,以及在第一弹性图像中确定满足预设条件的目标区域。
发射电路112还用于激励超声探头110基于目标区域向目标组织发射第二推动脉冲,以产生在目标区域对应的目标子组织内传播的第二剪切波;以及激励超声探头110向目标组织发射跟踪第二剪切波的第二超声波。
接收电路114还用于接收目标组织返回的第二超声回波,以获得目标子组织的第二超声回波数据;其中,第二超声波对目标子组织的穿透力大于第一超声波对目标子组织的穿透力,和/或第二剪切波对目标子组织的穿透力大于第一剪切波对目标子组织的穿透力。
处理器116还用于基于第二超声回波数据生成目标子组织的第二弹性图像。
显示器118用于输出第二弹性图像。
以上仅描述了超声成像系统100各部件的主要功能,更多细节参见对弹性成像方法200进行的相关描述。本申请实施例的超声成像系统在生成 常规的第一弹性图像后,对第一弹性图像中的目标区域进行高穿透力的弹性成像,解决了弹性成像过程中由于穿透力不足而导致的空洞、测值不准确等问题。
下面参照附图12描述根据本申请另一个实施例的弹性成像方法。图12示出了根据本申请另一个实施例的弹性成像方法1200的示意性流程图。如图12所示,本申请实施例的弹性成像方法1200包括以下步骤:
步骤S1210,获取被测对象的目标组织的第一弹性图像和第一组织结构图像,所述第一弹性图像和第一组织结构图像保持对应同一组织切面,所述第一弹性图像是通过检测在所述目标组织内传播的第一剪切波的第一超声波并基于所述第一超声波的第一超声回波得到;
步骤S1220,在所述第一弹性图像或所述第一组织结构图像中确定满足预设条件的目标区域;
步骤S1230,基于所述目标区域向所述目标组织发射推动脉冲,以产生在所述目标区域对应的目标子组织内传播的第二剪切波;
步骤S1240,向所述目标组织发射跟踪所述第二剪切波的第二超声波,接收所述目标组织返回的第二超声回波,以获得所述目标子组织的第二超声回波数据;其中,所述第二超声波对所述目标子组织的穿透力大于所述第一超声波对所述目标子组织的穿透力,和/或所述第二剪切波对所述目标子组织的穿透力大于所述第一剪切波对所述目标子组织的穿透力;
步骤S1250,基于所述第二超声回波数据得到所述目标子组织的第二弹性图像;
步骤S1260,输出所述第二弹性图像。
本申请实施例的弹性成像方法1200与上述弹性成像方法200的不同之处在于,弹性成像方法1200的步骤S1210中不但获取第一弹性图像,还获取与第一弹性图像保持对应同一组织切面的第一组织结构图像。并且,第一弹性图像和第一组织结构图像不限于实时采集的,而可以是从存储介质中提取的或通过远程传输接收到的预先采集好的图像。生成第一弹性图像和第一组织结构图像的具体细节可以参见弹性成像方法200的步骤S210至步骤S230,其中第一组织结构图像即上文中的在第一次弹性成像过程中 生成的与第一弹性图像对应的组织结构图像。
之后,步骤S1220中,在第一弹性图像或第一组织结构图像中确定满足预设条件的目标区域。在第一弹性图像中确定目标区域可以包括:识别第一弹性图像中的空洞区域,若空洞区域的面积大于预设阈值,则将空洞区域确定为目标区域,空洞区域为第一剪切波未能穿透的区域、第一超声波未能穿透的区域或者信噪比低于预设阈值的区域。或者,第一弹性图像中确定目标区域可以包括:获取第一弹性图像的可信度,并根据可信度确定所述目标区域。在第一组织结构中确定目标区域可以包括:识别组织结构图像中的病灶区域,将病灶区域确定为目标区域。
在确定目标区域之后,弹性成像方法1200还可以包括:实时生成并显示目标组织的第二组织结构图像,以根据第二组织结构图像引导推动脉冲的发射。由于第一弹性图像和第二弹性图像是先后生成的,因而可以通过第二组织结构图像辅助用户寻找到与第一弹性图像对应的同一组织切面,以生成第二弹性图像。示例性地,显示第二组织结构图像的同时,还可以实时确定并显示第二组织结构图像与第一组织结构图像之间的匹配度,以便于用户参照匹配度寻找与第一弹性图像对应的同一组织切面,并进行高穿透力的弹性成像。高穿透力的弹性成像的具体细节可以参照弹性成像方法200中的步骤S250至步骤S270。
可选地,生成第二弹性图像之后,在步骤S1260中,输出第二弹性图像的方式包括以下至少一项:利用第二弹性图像替换第一弹性图像中位于目标区域内的部分;将第二弹性图像叠加显示在第一弹性图像中的所述目标区域;在第一弹性图像以外的区域单独显示第二弹性图像。
除此之外,本申请实施例的弹性成像方法1200与上述弹性成像方法200还有许多相同或相似的内容,具体可以参照上文,在此不做赘述。
以上示例性地示出了根据本申请一个实施例的弹性成像方法1200。基于上面的描述,根据本申请实施例的弹性成像方法1200在获取第一弹性图像和第一组织结构图像后,对第一弹性图像或第一组织结构图像中的目标区域进行高穿透力的弹性成像,解决了弹性成像过程中由于穿透力不足而导致的空洞、测值不准确等问题。
本申请实施例还提供一种超声成像系统,用于实现上述的弹性成像方 法1200。该超声成像系统包括超声探头、发射电路、接收电路、处理器和显示器。现在重新参照图1,该超声成像系统可以实现为如图1所示的超声成像系统100。如上所述,超声成像系统100可以包括超声探头110、发射电路112、接收电路114、处理器116以及显示器118,其中,发射电路112用于激励超声探头110向被测对象的目标组织发射推动脉冲,以产生在所述目标组织内传播的剪切波;发射电路112还用于激励超声探头110向目标组织发射跟踪剪切波的超声波;接收电路控制超声探头110接收目标组织返回的超声回波,以获得超声回波数据;处理器,用于执行弹性成像方法1200的各步骤;显示器112用于输出处理器得到的弹性图像。超声成像系统还可以包括发射/接收选择开关120和波束合成模块122,各个部件的相关描述可以参照上文。
具体地,当实现弹性成像方法1200时,处理器116用于:获取被测对象的目标组织的第一弹性图像和第一组织结构图像,第一弹性图像和第一组织结构图像对应同一组织切面,第一弹性图像是通过检测在目标组织内传播的第一剪切波的第一超声波并基于第一超声波的第一超声回波得到;处理器116还用于在第一弹性图像或第一组织结构图像中确定满足预设条件的目标区域。
发射电路112用于激励超声探头110基于目标区域向目标组织发射推动脉冲,以产生在目标区域对应的目标子组织内传播的第二剪切波;以及激励超声探头110向目标组织发射跟踪第二剪切波的第二超声波。
接收电路114用于控制超声探头110接收目标组织返回的第二超声回波,以获得第二超声回波数据;其中,所述第二超声波对所述目标子组织的穿透力大于所述第一超声波对所述目标子组织的穿透力,和/或所述第二剪切波对所述目标子组织的穿透力大于所述第一剪切波对所述目标子组织的穿透力。
处理器116还用于基于第二超声回波数据得到目标子组织的第二弹性图像。显示器118用于输出第二弹性图像。
以上仅描述了超声成像系统100各部件的主要功能,更多细节参见对弹性成像方法1200进行的相关描述。本申请实施例的超声成像系统在获取第一弹性图像和第一组织结构图像后,对第一弹性图像或第一组织结构图 像中的目标区域进行高穿透力的弹性成像,解决了弹性成像过程中由于穿透力不足而导致的空洞、测值不准确等问题。
下面参照附图13描述根据本申请另一个实施例的弹性成像方法。图13示出了根据本申请另一个实施例的弹性成像方法1300的示意性流程图。如图13所示,本申请实施例的弹性成像方法1300包括以下步骤:
步骤S1310,提供至少两种弹性成像模式的选项,其中,所述至少两种弹性成像模式包括第一弹性成像模式和第二弹性成像模式,所述第一弹性成像模式对应第一推动脉冲和第一超声波,所述第二弹性成像模式对应第二推动脉冲和第二超声波;
步骤S1320,当接收到对第二弹性成像模式的选择指令时,向被测对象的目标组织发射第二推动脉冲,以产生在所述目标组织内传播的第二剪切波;
步骤S1330,向所述目标组织发射跟踪所述第二剪切波的第二超声波,接收所述目标组织返回的超声回波,以获得超声回波数据;其中,所述第二超声波对所述目标组织的穿透力大于所述第一超声波对所述目标组织的穿透力,和/或所述第二剪切波对所述目标组织的穿透力大于所述第一推动脉冲产生的第一剪切波对所述目标组织的穿透力;
步骤S1340,基于所述超声回波数据得到所述目标组织的第二弹性图像;
步骤S1350,输出所述第二弹性图像。
本申请实施例的弹性成像方法1300主要用于针对目标组织提供不同穿透力的弹性成像模式,其中第二弹性成像模式用于对目标组织进行高穿透力的弹性成像,解决常规的弹性成像无法有效地穿透目标组织的问题。示例性地,在步骤S1310中,提供至少两种弹性成像模式的选项可以包括在超声成像系统的显示界面上提供至少两种弹性成像模式的选项,每一种弹性成像模式对应一种推动脉冲和一种超声波。至少两种弹性成像模式的选项可以是图标选项,或者是菜单栏选项等。其中,第一弹性成像模式为常规弹性成像模式,其成像方式可以参照弹性成像方法200中的第一次弹性成像;第二弹性成像模式为高穿透弹性成像模式,其成像方式类似于弹 性成像方法200中的第二次弹性成像,第二弹性成像模式下的第二推动脉冲在目标组织内产生的第二剪切波的穿透力大于第一弹性成像模式下第一推动脉冲在目标组织内产生的第一剪切波的穿透力,或者第二弹性成像模式下的第二超声波对目标组织的穿透力大于第一弹性成像模式下的第一超声波对目标组织的穿透力。
可选地,除了在显示界面上显示至少两种弹性成像模式的选项以外,也可以通过其他人机交互装置提供至少两种弹性成像模式的选项,例如通过旋钮控制弹性成像模式的选择,或者也可以通过开关键控制是否启用第二弹性成像模式。或者,也可以在采用第一弹性成像模式进行第一次弹性成像之后,根据第一次弹性成像的结果自动判断是否启用第二弹性成像模式以进行高穿透力的弹性成像。
在一些实施例中,可以首先在第一弹性成像模式下生成目标组织的第一弹性图像,并在第一弹性图像中存在满足预设条件的目标区域时进入第二弹性成像模式。具体地,在第一弹性成像模式下执行以下步骤:向被测对象的目标组织发射第一推动脉冲,以产生在目标组织内传播的第一剪切波;向目标组织发射跟踪第一剪切波的第一超声波,接收目标组织返回的超声回波,并生成第一弹性图像;在第一弹性图像中确定满足预设条件的目标区域,以使得基于目标区域向目标组织发射第二推动脉冲。满足预设条件的目标区域可以是基于第一弹性图像确定的,也可以是基于与第一弹性图像对应的组织结构图像确定的。
示例性地,目标区域满足预设条件除了识别空洞区域,可信度或者用户手动确认外(具体可参阅步骤S240的相关描述,此处不再赘述),还可以包括以下至少一项:目标区域中包含的组织类别、目标区域中包含的病灶的边界形态、目标区域中包含的病灶的面积大小、目标区域的灰度以及目标区域的亮度。其中,对于目标区域中包含的组织类别来说,某些类别的组织硬度较大,例如乳腺等,因而可以在目标区域包含预设组织类别时进入第二弹性成像模式。对于目标区域中包含的病灶的边界形态来说,硬度较大的组织形态相对不规则,因而可以在目标区域的病灶的边界具有预设形态时进入第二弹性成像模式。对于目标区域中包含的病灶的面积大小来说,病灶的面积越大,通常其硬度越大,剪切波和超声波越难穿透,因 而可以判断目标区域包含的病灶的面积大小,若目标区域包含的病灶的面积超过预设阈值,则进入第二弹性成像模式。对于目标区域的灰度和亮度来说,通常灰度和亮度越低,则硬度越大,剪切波和超声波越难穿透,因而可以在目标区域的灰度或亮度低于预设阈值时进入第二弹性成像模式。需要说明的是,在具体实现过程中,可以是系统判断该目标区域是否满足预设条件,当满足预设条件后,系统自动进入第二弹性成像模式。也可以是用户判断该目标区域是否满足预设条件,当满足预设条件后,通过手动操作进入第二弹性成像模式,其中,手动操作的具体方式可以是图标的选择,开关键的选择,按钮或者旋钮的选择等,此处不做具体限定。
若使第二剪切波对目标组织的穿透力大于第一剪切波对目标组织的穿透力,则在一些实施例中,可以通过调节超声探头的发射孔径内各阵元的延时,以调节所述第二推动脉冲的声场形态,使第二推动脉冲的聚焦强度高于第一推动脉冲的聚焦强度,由此使得第二剪切波的穿透力大于第一剪切波的穿透力。在另一些实施例中,可以调节第二推动脉冲的聚焦点位置和聚焦点数目,使所述第二推动脉冲的聚焦强度高于第一推动脉冲的聚焦强度,由此使得第二剪切波的穿透力大于第一剪切波的穿透力。
或者,还可以依次在目标组织附近至少两个位置处分别发射第二推动脉冲,以使得第二剪切波的穿透力大于第一剪切波的穿透力。相应地,向目标组织发射跟踪第二剪切波的超声波包括:分别发射跟踪每个所述第二剪切波的超声波,以分别获得与至少两个第二推动脉冲对应的至少两组超声回波数据;基于超声回波数据得到目标组织的弹性图像包括基于至少两组超声回波数据得到所述弹性图像。
若使第二超声波的穿透力大于第一超声波的穿透力,则在一些实施例中,可以使第二超声波的发射间隔小于第一超声波的发射间隔、使第二超声波的发射频率小于第一超声波的发射频率、或使第二超声波的发射电压大于第一超声波的电压,由此使第二超声波的穿透力大于第一超声波的穿透力。
以上示例性地示出了根据本申请一个实施例的弹性成像方法1300。基于上面的描述,根据本申请实施例的弹性成像方法1300能够实现高穿透力的弹性成像,解决弹性成像过程中由于穿透力不足而导致的空洞、测值不 准确等问题。
本申请实施例还提供一种超声成像系统,用于实现上述的弹性成像方法1300。该超声成像系统包括超声探头、发射电路、接收电路、处理器和人机交互装置,人机交互装置包括显示器。现在重新参照图1,该超声成像系统可以实现为如图1所示的超声成像系统100。如上所述,超声成像系统100可以包括超声探头110、发射电路112、接收电路114、处理器116以及显示器118,其中,发射电路112用于激励超声探头110向被测对象的目标组织发射推动脉冲,以产生在所述目标组织内传播的剪切波;发射电路112还用于激励超声探头110向目标组织发射跟踪剪切波的超声波;接收电路控制超声探头110接收目标组织返回的超声回波,以获得超声回波数据;处理器,用于执行弹性成像方法1300的各步骤;显示器112用于输出处理器得到的弹性图像。超声成像系统还可以包括发射/接收选择开关120和波束合成模块122,各个部件的相关描述可以参照上文。
具体地,当实现弹性成像方法1300时,人机交互装置用于提供至少两种弹性成像模式的选项,其中,所述至少两种弹性成像模式包括第一弹性成像模式和第二弹性成像模式,所述第一弹性成像模式对应第一推动脉冲和第一超声波,所述第二弹性成像模式对应第二推动脉冲和第二超声波;发射电路112用于当接收到对第二弹性成像模式的选择指令时,激励超声探头110向被测对象的目标组织发射第一推动脉冲,以产生在所述目标组织内传播的第二剪切波;以及激励所述超声探头110向所述目标组织发射跟踪所述第二剪切波的第二超声波;接收电路114用于接收所述目标组织返回的超声回波,以获得超声回波数据;其中,所述第二超声波对所述目标组织的穿透力大于所述第一超声波对所述目标组织的穿透力,和/或所述第二剪切波对所述目标组织的穿透力大于所述第一推动脉冲产生的第一剪切波对所述目标组织的穿透力;处理器116用于基于所述超声回波数据得到所述目标组织的弹性图像;显示器118用于输出所述弹性图像。
以上仅描述了超声成像系统100各部件的主要功能,更多细节参见对弹性成像方法1300进行的相关描述。本申请实施例的超声成像系统能够实现高穿透力的弹性成像,解决弹性成像过程中由于穿透力不足而导致的空洞、测值不准确等问题。
下面参照附图14描述根据本申请另一个实施例的弹性成像方法。图14示出了根据本申请另一个实施例的弹性成像方法1400的示意性流程图。如图14所示,本申请实施例的弹性成像方法1400包括以下步骤:
在步骤S1410,获取被测对象的目标组织的第一超声图像,其中,所述第一超声图像包括组织结构图像;
在步骤S1420,在所述第一超声图像中确定满足预设条件的目标区域;
在步骤S1430,提供至少两种弹性成像模式的选项,其中,所述至少两种弹性成像模式包括第一弹性成像模式和第二弹性成像模式,所述第一弹性成像模式对应第一推动脉冲和第一超声波,所述第二弹性成像模式对应第二推动脉冲和第二超声波;
在步骤S1440,在所述第二弹性成像模式下,基于所述目标区域向所述目标组织发射第二推动脉冲,以产生在所述目标组织内传播的第二剪切波;
在步骤S1450,向所述目标组织发射跟踪所述第二剪切波的第二超声波,接收所述目标组织返回的超声回波,以获得超声回波数据,其中,所述第二超声波对所述目标组织的穿透力大于所述第一超声波对所述目标组织的穿透力,和/或所述第二剪切波对所述目标组织的穿透力大于所述第一推动脉冲产生的第一剪切波对所述目标组织的穿透力;
在步骤S1460,基于所述超声回波数据得到所述目标组织的弹性图像;
在步骤S1470,输出所述弹性图像。
在本申请实施例的弹性成像方法1400中,在生成第一超声图像后,提供至少两种弹性成像模式的选项,并在第二弹性成像模式下针对第一超声图像中的目标区域进行高穿透力的弹性成像,解决由于穿透力不足而导致弹性图像中出现空洞或测值不准确的问题。
在一个实施例中,可以在目标区域满足预设条件时自动进入第二弹性成像模式。其中,目标区域满足预设条件包括以下至少一项满足预设条件:目标区域中包含的组织类别、目标区域中包含的病灶的边界形态、所述目标区域中包含的病灶的面积大小、目标区域的灰度以及目标区域的亮度。其中,对于目标区域中包含的组织类别来说,某些类别的组织硬度较大, 例如乳腺等,因而可以在目标区域包含预设组织类别时进入第二弹性成像模式。对于目标区域中包含的病灶的边界形态来说,硬度较大的组织形态相对不规则,因而可以在目标区域的病灶的边界具有预设形态时进入第二弹性成像模式。对于目标区域中包含的病灶的面积大小来说,则病灶的面积越大,剪切波和超声波越难穿透,因而可以判断目标区域包含的病灶的面积大小,若目标区域包含的病灶的面积超过预设阈值,则进入第二弹性成像模式。对于目标区域的灰度和亮度来说,灰度和亮度越低,剪切波和超声波越难穿透,因而可以在目标区域的灰度或亮度低于预设阈值时进入第二弹性成像模式。可选地,第一超声图像也可以包括除组织结构图像以外的其他超声图像,例如与组织结构图像对应的弹性图像等。
或者,也可以在接收到对第二弹性成像模式的选择指令时进入第二弹性成像模式。例如,可以在超声成像系统的显示界面上提供至少两种弹性成像模式的选项,每一种弹性成像模式对应一种成像方式。至少两种弹性成像模式的选项可以是图标选项,或者是菜单栏选项等。第二弹性成像模式的具体细节可以参照弹性成像方法200中的第二次弹性成像;第一弹性成像模式的具体细节可以参照弹性成像方法200中的第一次弹性成像。
可选地,除了在显示界面上显示至少两种弹性成像模式的选项以外,也可以通过其他人机交互装置提供至少两种弹性成像模式的选项,例如可以通过旋钮控制弹性成像模式的选择,或者也可以通过开关键控制是否启用高穿透成像模式。
以上示例性地示出了根据本申请一个实施例的弹性成像方法1400。基于上面的描述,根据本申请实施例的弹性成像方法1400能够实现高穿透力的弹性成像,解决弹性成像过程中由于穿透力不足而导致的空洞、测值不准确等问题。
本申请实施例还提供一种超声成像系统,用于实现上述的弹性成像方法1400。该超声成像系统包括超声探头、发射电路、接收电路、处理器和人机交互装置,人机交互装置包括显示器。现在重新参照图1,该超声成像系统可以实现为如图1所示的超声成像系统100。如上所述,超声成像系统100可以包括超声探头110、发射电路112、接收电路114、处理器116以及显示器118,其中,发射电路112用于激励超声探头110向被测对象 的目标组织发射推动脉冲,以产生在所述目标组织内传播的剪切波;发射电路112还用于激励超声探头110向目标组织发射跟踪剪切波的超声波;接收电路控制超声探头110接收目标组织返回的超声回波,以获得超声回波数据;处理器,用于执行弹性成像方法1400的各步骤;显示器112用于输出处理器得到的弹性图像。超声成像系统还可以包括发射/接收选择开关120和波束合成模块122,各个部件的相关描述可以参照上文。
具体地,当实现弹性成像方法1400时,处理器116用于获取被测对象的目标组织的第一超声图像,其中,所述第一超声图像包括组织结构图像;所述处理器116还用于在所述第一超声图像中确定满足预设条件的目标区域;人机交互装置用于提供至少两种弹性成像模式的选项,其中,所述至少两种弹性成像模式包括第一弹性成像模式和第二弹性成像模式,所述第一弹性成像模式对应第一推动脉冲和第一超声波,所述第二弹性成像模式对应第二推动脉冲和第二超声波;发射电路112用于在所述第二弹性成像模式下,激励超声探头110基于所述目标区域向所述目标组织发射第二推动脉冲,以产生在所述目标组织内传播的第二剪切波;以及激励所述超声探头110向所述目标组织发射跟踪所述第二剪切波的第二超声波;接收电路114用于控制所述超声探头110接收所述目标组织返回的超声回波,以获得超声回波数据;其中,所述第二超声波对所述目标组织的穿透力大于所述一超声波对所述目标组织的穿透力,和/或所述第二剪切波对所述目标组织的穿透力大于所述第一推动脉冲产生的第一剪切波对所述目标组织的穿透力;所述处理器116还用于基于所述超声回波数据得到所述目标组织的弹性图像;显示器118用于输出所述弹性图像。
以上仅描述了超声成像系统100各部件的主要功能,更多细节参见对弹性成像方法1400进行的相关描述。本申请实施例的超声成像系统能够实现高穿透力的弹性成像,解决弹性成像过程中由于穿透力不足而导致的空洞、测值不准确等问题。
此外,根据本申请实施例,还提供了一种存储介质,在所述存储介质上存储了程序指令,在所述程序指令被计算机或处理器运行时用于执行本申请实施例的弹性成像方法200、弹性成像方法1200、弹性成像方法1300或弹性成像方法1400的相应步骤。所述存储介质例如可以包括智能电话的 存储卡、平板电脑的存储部件、个人计算机的硬盘、只读存储器(ROM)、可擦除可编程只读存储器(EPROM)、便携式紧致盘只读存储器(CD-ROM)、USB存储器、或者上述存储介质的任意组合。所述计算机可读存储介质可以是一个或多个计算机可读存储介质的任意组合。
此外,根据本申请实施例,还提供了一种计算机程序,该计算机程序可以存储在云端或本地的存储介质上。在该计算机程序被计算机或处理器运行时用于执行本申请实施例的弹性成像方法的相应步骤。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本申请的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本申请的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本申请的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本申请并帮助理解各个发明方面中的一个或多个,在对本申请的示例性实施例的描述中,本申请的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本申请的方法解释成反映如下意图:即所要求保护的本申请要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求 书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本申请的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者装置的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本申请的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的一些模块的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本申请进行说明而不是对本申请进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述,仅为本申请的具体实施方式或对具体实施方式的说明,本 申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以权利要求的保护范围为准。

Claims (32)

  1. 一种弹性成像方法,其特征在于,所述方法包括:
    向被测对象的目标组织发射第一推动脉冲,以产生在所述目标组织内传播的第一剪切波;
    向所述目标组织发射跟踪所述第一剪切波的第一超声波,并接收所述目标组织返回的第一超声回波,以获得第一超声回波数据;
    基于所述第一超声回波数据生成所述目标组织的第一弹性图像;
    在所述第一弹性图像中确定满足预设条件的目标区域;
    基于所述目标区域向所述目标组织发射第二推动脉冲,以产生在所述目标区域对应的目标子组织内传播的第二剪切波;
    向所述目标组织发射跟踪所述第二剪切波的第二超声波,接收所述目标组织返回的第二超声回波,以获得所述目标子组织的第二超声回波数据;其中,所述第二超声波对所述目标子组织的穿透力大于所述第一超声波对所述目标子组织的穿透力,和/或所述第二剪切波对所述目标子组织的穿透力大于所述第一剪切波对所述目标子组织的穿透力;
    基于所述第二超声回波数据生成所述目标子组织的第二弹性图像;
    输出所述第二弹性图像。
  2. 根据权利要求1所述的弹性成像方法,其特征在于,所述向所述目标组织发射第二推动脉冲,包括:
    基于所述目标区域调节超声探头的发射孔径内各阵元的延时,以调节所述第二推动脉冲的声场形态,使所述第二推动脉冲的聚焦强度高于所述第一推动脉冲的聚焦强度。
  3. 根据权利要求1所述的弹性成像方法,其特征在于,所述向所述目标组织发射第二推动脉冲,包括:
    基于所述目标区域调节所述第二推动脉冲的聚焦点位置和/或聚焦点数目,使所述第二推动脉冲的聚焦强度高于所述第一推动脉冲的聚焦强度。
  4. 根据权利要求1所述的弹性成像方法,其特征在于,所述向所述目标组织发射第二推动脉冲包括:
    基于所述目标区域在所述目标子组织附近至少两个位置处分别发射所述第二推动脉冲;
    所述向所述目标组织发射跟踪所述第二剪切波的第二超声波包括:分别发射跟踪每个所述第二剪切波的第二超声波,以分别获得与至少两个所述第二剪切波对应的至少两组第二超声回波数据。
  5. 根据权利要求4所述的弹性成像方法,其特征在于,所述基于所述目标区域在所述目标组织附近至少两个位置处分别发射所述第二推动脉冲,包括:
    依次在所述至少两个位置处发射所述第二推动脉冲。
  6. 根据权利要求4所述的弹性成像方法,其特征在于,所述基于所述第二超声回波数据生成所述目标组织的第二弹性图像包括:
    分别根据所述至少两组第二超声回波数据得到所述目标组织的至少两组弹性参数,根据所述至少两组弹性参数获得最终弹性参数,以及基于所述最终弹性参数生成所述第二弹性图像;
    其中,所述根据所述至少两组弹性参数获得最终弹性参数包括以下至少一项:
    将所述至少两组弹性参数拼接以得到所述最终弹性参数;
    平均所述至少两组弹性参数以得到所述最终弹性参数;
    选择所述至少两组弹性参数中可信度最高的至少一组弹性参数作为所述最终弹性参数。
  7. 根据权利要求1所述的弹性成像方法,其特征在于,所述在所述第一弹性图像中确定满足预设条件的目标区域,包括:
    识别所述第一弹性图像中的空洞区域,若所述空洞区域的面积大于预设阈值,则将所述空洞区域确定为所述目标区域,所述空洞区域为所述第一剪切波未能穿透的区域、所述第一超声波未能穿透的区域或者信噪比低于预设阈值的区域。
  8. 根据权利要求1所述的弹性成像方法,其特征在于,所述在所述第一弹性图像中确定满足预设条件的目标区域,包括:
    获取所述第一弹性图像的可信度,根据所述可信度确定所述目标区域。
  9. 根据权利要求8所述的弹性成像方法,其特征在于,所述根据所述可信度确定所述目标区域包括:
    将可信度低于第一预设阈值的区域确定为所述目标区域,或者,将可 信度低于第二预设阈值的面积超过预设面积的单个区域确定为所述目标区域。
  10. 根据权利要求1所述的弹性成像方法,其特征在于,所述在所述第一弹性图像中确定满足预设条件的目标区域,包括:
    接收选择所述目标区域的用户指令,并根据接收到的用户指令确定所述目标区域。
  11. 根据权利要求1所述的弹性成像方法,其特征在于,所述向所述目标组织发射跟踪所述第二剪切波的第二超声波包括:
    控制所述第二超声波的发射频率小于所述第一超声波的发射频率。
  12. 根据权利要求1所述的弹性成像方法,其特征在于,所述向所述目标组织发射跟踪所述第二剪切波的第二超声波包括:
    控制所述第二超声波的发射间隔时间小于所述第一超声波的发射间隔时间。
  13. 根据权利要求1所述的弹性成像方法,其特征在于,所述向所述目标组织发射跟踪所述第二剪切波的第二超声波包括:
    控制所述第二超声波的发射电压高于所述第一超声波的发射电压。
  14. 根据权利要求1所述的弹性成像方法,其特征在于,输出所述第二弹性图像包括以下至少一项:
    利用所述第二弹性图像替换所述第一弹性图像中位于所述目标区域内的部分;
    将所述第二弹性图像叠加显示在所述第一弹性图像中的所述目标区域;
    在所述第一弹性图像以外的区域单独显示所述第二弹性图像。
  15. 根据权利要求1所述的弹性成像方法,其特征在于,发射所述第二推动脉冲之前,所述方法还包括:
    实时生成并显示所述目标组织的组织结构图像。
  16. 根据权利要求15所述的弹性成像方法,其特征在于,所述方法还包括:
    实时确定所述组织结构图像与所述第一弹性图像对应的组织结构图像之间的匹配度,并实时显示所述匹配度。
  17. 一种弹性成像方法,其特征在于,所述方法包括:
    获取被测对象的目标组织的第一弹性图像和第一组织结构图像,所述第一弹性图像和第一组织结构图像对应同一组织切面,所述第一弹性图像是通过检测在所述目标组织内传播的第一剪切波的第一超声波并基于所述第一超声波的第一超声回波得到;
    在所述第一弹性图像或所述第一组织结构图像中确定满足预设条件的目标区域;
    基于所述目标区域向所述目标组织发射推动脉冲,以产生在所述目标区域对应的目标子组织内传播的第二剪切波;
    向所述目标组织发射跟踪所述第二剪切波的第二超声波,接收所述目标组织返回的第二超声回波,以获得所述目标子组织的第二超声回波数据;其中,所述第二超声波对所述目标子组织的穿透力大于所述第一超声波对所述目标子组织的穿透力,和/或所述第二剪切波对所述目标子组织的穿透力大于所述第一剪切波对所述目标子组织的穿透力;
    基于所述第二超声回波数据得到所述目标子组织的第二弹性图像;
    输出所述第二弹性图像。
  18. 根据权利要求17所述的弹性成像方法,其特征在于,在确定所述目标区域之后,所述方法还包括:
    实时生成并显示所述目标组织的第二组织结构图像,以根据所述第二组织结构图像引导所述推动脉冲的发射。
  19. 根据权利要求18所述的弹性成像方法,其特征在于,所述方法还包括:
    实时确定并显示所述第二组织结构图像与所述第一组织结构图像之间的匹配度。
  20. 根据权利要求17所述的弹性成像方法,其特征在于,输出所述第二弹性图像包括以下至少一项:
    利用所述第二弹性图像替换所述第一弹性图像中位于所述目标区域内的部分;
    将所述第二弹性图像叠加显示在所述第一弹性图像中的所述目标区域;
    在所述第一弹性图像以外的区域单独显示所述第二弹性图像。
  21. 一种弹性成像方法,其特征在于,所述方法包括:
    提供至少两种弹性成像模式的选项,其中,所述至少两种弹性成像模式包括第一弹性成像模式和第二弹性成像模式,所述第一弹性成像模式对应第一推动脉冲和第一超声波,所述第二弹性成像模式对应第二推动脉冲和第二超声波;
    当接收到对所述第二弹性成像模式的选择指令时,向被测对象的目标组织发射第二推动脉冲,以产生在所述目标组织内传播的第二剪切波;
    向所述目标组织发射跟踪所述第二剪切波的第二超声波,接收所述目标组织返回的超声回波,以获得超声回波数据;其中,所述第二超声波对所述目标组织的穿透力大于所述第一超声波对所述目标组织的穿透力,和/或所述第二剪切波对所述目标组织的穿透力大于所述第一推动脉冲产生的第一剪切波对所述目标组织的穿透力;
    基于所述超声回波数据得到所述目标组织的第二弹性图像;
    输出所述第二弹性图像。
  22. 根据权利要求21所述的弹性成像方法,其特征在于,所述向被测对象的目标组织发射第二推动脉冲,包括:
    调节超声探头的发射孔径内各阵元的延时,以调节所述第二推动脉冲的声场形态,使所述第二推动脉冲的聚焦强度高于第一推动脉冲的聚焦强度。
  23. 根据权利要求21所述的弹性成像方法,其特征在于,所述向被测对象的目标组织发射第二推动脉冲,包括:
    调节所述推动脉冲的聚焦点位置和聚焦点数目,使所述第二推动脉冲的聚焦强度高于第一推动脉冲的聚焦强度。
  24. 根据权利要求21所述的弹性成像方法,其特征在于,所述向被测对象的目标组织发射第二推动脉冲,包括:
    依次在所述目标组织附近至少两个位置处分别发射所述第二推动脉冲;
    所述向所述目标组织发射跟踪所述第二剪切波的第二超声波包括:分别发射跟踪每个所述第二剪切波的超声波,以分别获得与至少两个所述第 二推动脉冲对应的至少两组超声回波数据;
    所述基于所述超声回波数据得到所述目标组织的弹性图像包括:基于所述至少两组超声回波数据得到所述弹性图像。
  25. 根据权利要求21所述的弹性成像方法,其特征在于,还包括:
    向被测对象的目标组织发射第一推动脉冲,以产生在所述目标组织内传播的第一剪切波;
    向所述目标组织发射跟踪所述第一剪切波的第一超声波,接收所述目标组织返回的超声回波,并生成第一弹性图像;
    在所述第一弹性图像中确定满足预设条件的目标区域,以使得基于所述目标区域向所述目标组织发射所述第二推动脉冲。
  26. 根据权利要求25所述的弹性成像方法,其特征在于,所述在所述第一弹性图像中确定满足预设条件的目标区域包括:
    识别所述第一弹性图像中的空洞区域,若所述空洞区域的面积大于预设阈值,则将所述空洞区域确定为所述目标区域,所述空洞区域为所述第一剪切波未能穿透的区域、所述第一超声波未能穿透的区域或者信噪比低于预设阈值的区域;
    或者,获取所述第一弹性图像的可信度,根据所述可信度确定所述目标区域;
    或者,接收选择所述目标区域的用户指令,并根据接收到的用户指令确定所述目标区域。
  27. 一种弹性成像方法,其特征在于,所述方法包括:
    获取被测对象的目标组织的第一超声图像,其中,所述第一超声图像包括组织结构图像;
    在所述第一超声图像中确定满足预设条件的目标区域;
    提供至少两种弹性成像模式的选项,其中,所述至少两种弹性成像模式包括第一弹性成像模式和第二弹性成像模式,所述第一弹性成像模式对应第一推动脉冲和第一超声波,所述第二弹性成像模式对应第二推动脉冲和第二超声波;
    在所述第二弹性成像模式下,基于所述目标区域向所述目标组织发射第二推动脉冲,以产生在所述目标组织内传播的第二剪切波;
    向所述目标组织发射跟踪所述第二剪切波的第二超声波,接收所述目标组织返回的超声回波,以获得超声回波数据;其中,所述第二超声波对所述目标组织的穿透力大于所述第一超声波对所述目标组织的穿透力,和/或所述第二剪切波对所述目标组织的穿透力大于所述第一推动脉冲产生的第一剪切波对所述目标组织的穿透力;
    基于所述超声回波数据得到所述目标组织的弹性图像;
    输出所述弹性图像。
  28. 根据权利要求27所述的弹性成像方法,其特征在于,所述目标区域满足预设条件包括以下至少一项满足预设条件:
    所述目标区域中包含的组织类别、所述目标区域中包含的病灶的边界形态、所述目标区域中包含的病灶的面积大小、所述目标区域的灰度以及所述目标区域的亮度。
  29. 一种超声成像系统,其特征在于,所述超声成像系统包括:
    超声探头;
    发射电路,用于激励所述超声探头向被测对象的目标组织发射推动脉冲,以产生在所述目标组织内传播的剪切波;所述发射电路还用于激励所述超声探头向所述目标组织发射跟踪所述剪切波的超声波;
    接收电路,用于控制所述超声探头接收所述目标组织返回的超声回波,以获得超声回波数据;
    处理器,用于执行如权利要求1-16中任一项所述的弹性成像方法;
    显示器,用于显示所述处理器得到的弹性图像。
  30. 一种超声成像系统,其特征在于,所述超声成像系统包括:
    超声探头;
    发射电路,用于激励所述超声探头向被测对象的目标组织发射推动脉冲,以产生在所述目标组织内传播的剪切波;所述发射电路还用于激励所述超声探头向所述目标组织发射跟踪所述剪切波的超声波;
    接收电路,用于控制所述超声探头接收所述目标组织返回的超声回波,以获得超声回波数据;
    处理器,用于执行如权利要求17-20中任一项所述的弹性成像方法;
    显示器,用于显示所述处理器得到的弹性图像。
  31. 一种超声成像系统,其特征在于,所述超声成像系统包括:
    超声探头;
    发射电路,用于激励所述超声探头向被测对象的目标组织发射推动脉冲,以产生在所述目标组织内传播的剪切波;所述发射电路还用于激励所述超声探头向所述目标组织发射跟踪所述剪切波的超声波;
    接收电路,用于控制所述超声探头接收所述目标组织返回的超声回波,以获得超声回波数据;
    人机交互装置,用于提供至少两种弹性成像模式的选项,其中,所述至少两种弹性成像模式包括第一弹性成像模式和第二弹性成像模式,所述第一弹性成像模式对应第一推动脉冲和第一超声波,所述第二弹性成像模式对应第二推动脉冲和第二超声波;
    处理器,用于执行如权利要求21-26中任一项所述的弹性成像方法;
    显示器,用于显示所述处理器得到的弹性图像。
  32. 一种超声成像系统,其特征在于,所述超声成像系统包括:
    超声探头;
    发射电路,用于激励所述超声探头向被测对象的目标组织发射推动脉冲,以产生在所述目标组织内传播的剪切波;所述发射电路还用于激励所述超声探头向所述目标组织发射跟踪所述剪切波的超声波;
    接收电路,用于控制所述超声探头接收所述目标组织返回的超声回波,以获得超声回波数据;
    人机交互装置,用于提供至少两种弹性成像模式的选项,其中,所述至少两种弹性成像模式包括第一弹性成像模式和第二弹性成像模式,所述第一弹性成像模式对应第一推动脉冲和第一超声波,所述第二弹性成像模式对应第二推动脉冲和第二超声波;
    处理器,用于执行如权利要求27和28中任一项所述的弹性成像方法;
    显示器,用于显示所述处理器得到的弹性图像。
PCT/CN2021/070504 2021-01-06 2021-01-06 弹性成像方法和超声成像系统 WO2022147690A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/070504 WO2022147690A1 (zh) 2021-01-06 2021-01-06 弹性成像方法和超声成像系统
CN202180079842.9A CN116528771A (zh) 2021-01-06 2021-01-06 弹性成像方法和超声成像系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/070504 WO2022147690A1 (zh) 2021-01-06 2021-01-06 弹性成像方法和超声成像系统

Publications (1)

Publication Number Publication Date
WO2022147690A1 true WO2022147690A1 (zh) 2022-07-14

Family

ID=82356993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070504 WO2022147690A1 (zh) 2021-01-06 2021-01-06 弹性成像方法和超声成像系统

Country Status (2)

Country Link
CN (1) CN116528771A (zh)
WO (1) WO2022147690A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100016719A1 (en) * 2008-07-16 2010-01-21 Siemens Medical Solutions Usa, Inc. Adaptive regulation of acoustic output power in medical ultrasound imaging
CN103156636A (zh) * 2011-12-15 2013-06-19 深圳迈瑞生物医疗电子股份有限公司 一种超声成像装置和方法
CN105662473A (zh) * 2016-01-11 2016-06-15 无锡海斯凯尔医学技术有限公司 组织参数检测方法和系统
CN108733857A (zh) * 2017-04-21 2018-11-02 深圳迈瑞生物医疗电子股份有限公司 超声弹性成像装置及弹性成像结果评价方法
CN109259801A (zh) * 2018-09-12 2019-01-25 深圳开立生物医疗科技股份有限公司 一种剪切波弹性成像方法及装置
CN109890296A (zh) * 2016-10-27 2019-06-14 皇家飞利浦有限公司 具有组织类型分析器的超声系统
CN110353731A (zh) * 2019-06-12 2019-10-22 深圳迈瑞生物医疗电子股份有限公司 超声弹性成像方法及系统
WO2019205167A1 (zh) * 2018-04-28 2019-10-31 深圳迈瑞生物医疗电子股份有限公司 一种超声瞬时弹性测量设备及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100016719A1 (en) * 2008-07-16 2010-01-21 Siemens Medical Solutions Usa, Inc. Adaptive regulation of acoustic output power in medical ultrasound imaging
CN103156636A (zh) * 2011-12-15 2013-06-19 深圳迈瑞生物医疗电子股份有限公司 一种超声成像装置和方法
CN105662473A (zh) * 2016-01-11 2016-06-15 无锡海斯凯尔医学技术有限公司 组织参数检测方法和系统
CN109890296A (zh) * 2016-10-27 2019-06-14 皇家飞利浦有限公司 具有组织类型分析器的超声系统
CN108733857A (zh) * 2017-04-21 2018-11-02 深圳迈瑞生物医疗电子股份有限公司 超声弹性成像装置及弹性成像结果评价方法
WO2019205167A1 (zh) * 2018-04-28 2019-10-31 深圳迈瑞生物医疗电子股份有限公司 一种超声瞬时弹性测量设备及方法
CN109259801A (zh) * 2018-09-12 2019-01-25 深圳开立生物医疗科技股份有限公司 一种剪切波弹性成像方法及装置
CN110353731A (zh) * 2019-06-12 2019-10-22 深圳迈瑞生物医疗电子股份有限公司 超声弹性成像方法及系统

Also Published As

Publication number Publication date
CN116528771A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
WO2014002963A1 (ja) 超音波診断装置及び画像処理方法
US20130096429A1 (en) Ultrasonic diagnosis apparatus, operation method of the same, and computer readable recording medium
JP2013166059A (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5066306B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP7490840B2 (ja) 解析装置及び解析プログラム
WO2022147689A1 (zh) 弹性测量方法、装置和存储介质
JPWO2012011414A1 (ja) 超音波診断装置
JP2020103883A (ja) 超音波撮像システムおよび対象物体品質レベルを表示するための方法
US20190328363A1 (en) Ultrasound diagnostic apparatus and ultrasound signal processing method
WO2022141081A1 (zh) 一种光声成像方法及光声成像系统
CN113749690A (zh) 血管的血流量测量方法、装置及存储介质
WO2020042020A1 (zh) 一种超声弹性检测设备及剪切波弹性成像方法、装置
WO2022147690A1 (zh) 弹性成像方法和超声成像系统
CN108852416A (zh) 一种剪切波传播速度的确定方法及装置
CN112773403A (zh) 一种超声成像方法和系统
CN106037820A (zh) 超声波诊断装置
JP2021007512A (ja) 超音波診断装置及び解析装置
US10492762B2 (en) Ultrasound diagnostic device, ultrasound diagnostic method, and program
JP2019208971A (ja) 超音波解析装置、超音波解析方法および超音波解析プログラム
JP5128149B2 (ja) 超音波診断装置
WO2020037673A1 (zh) 一种超声弹性成像装置及对弹性图像进行处理的方法
CN111839583A (zh) 超声波诊断装置以及分析装置
WO2022087787A1 (zh) 基于超声成像的穿刺引导方法和超声成像系统
CN113545806A (zh) 前列腺弹性成像方法和超声弹性成像系统
CN114072066A (zh) 弹性成像方法、系统及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21916748

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180079842.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21916748

Country of ref document: EP

Kind code of ref document: A1