WO2022145478A2 - 移動式処理タンク、廃棄物処理設備及び資源回収設備 - Google Patents
移動式処理タンク、廃棄物処理設備及び資源回収設備 Download PDFInfo
- Publication number
- WO2022145478A2 WO2022145478A2 PCT/JP2021/048982 JP2021048982W WO2022145478A2 WO 2022145478 A2 WO2022145478 A2 WO 2022145478A2 JP 2021048982 W JP2021048982 W JP 2021048982W WO 2022145478 A2 WO2022145478 A2 WO 2022145478A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- waste
- steam
- mobile
- body container
- treatment tank
- Prior art date
Links
- 239000002699 waste material Substances 0.000 title claims abstract description 89
- 238000011084 recovery Methods 0.000 title claims abstract description 34
- 238000003756 stirring Methods 0.000 claims abstract description 18
- 238000010793 Steam injection (oil industry) Methods 0.000 claims abstract description 10
- 239000007789 gas Substances 0.000 description 66
- 238000010438 heat treatment Methods 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 24
- 239000007788 liquid Substances 0.000 description 22
- 238000002347 injection Methods 0.000 description 19
- 239000007924 injection Substances 0.000 description 19
- 239000003595 mist Substances 0.000 description 18
- 239000010815 organic waste Substances 0.000 description 13
- 230000002093 peripheral effect Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000002341 toxic gas Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 239000011449 brick Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000003779 heat-resistant material Substances 0.000 description 3
- 230000003137 locomotive effect Effects 0.000 description 3
- 229910001120 nichrome Inorganic materials 0.000 description 3
- HGUFODBRKLSHSI-UHFFFAOYSA-N 2,3,7,8-tetrachloro-dibenzo-p-dioxin Chemical compound O1C2=CC(Cl)=C(Cl)C=C2OC2=C1C=C(Cl)C(Cl)=C2 HGUFODBRKLSHSI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000010425 asbestos Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229910052895 riebeckite Inorganic materials 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000010891 toxic waste Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
- B09B3/40—Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
- B09B3/45—Steam treatment, e.g. supercritical water gasification or oxidation
Definitions
- the present invention relates to an environmental treatment technique for thermally decomposing organic waste such as biomass and industrial waste with steam and recovering it as a resource.
- Patent Document 1 A technique for thermally decomposing organic waste (garbage) with steam is already known and is proposed in Patent Document 1.
- Patent Document 2 describes a technique in which a plurality of baskets or trays containing waste are thermally decomposed by blowing high-temperature steam into a sealed structure in whole or in part, and moved inside a waste treatment facility. Is disclosed.
- Patent Document 2 since the waste treatment apparatus described in Patent Document 2 has a structure in which the whole or a part thereof is sealed and released, there is a problem that the apparatus becomes complicated and large in size. Especially when the waste is exposed to high temperature steam at different temperatures and tried to be treated step by step, the problem becomes remarkable and becomes unwieldy.
- the mobile treatment tank for organic waste is provided with a waste input port that can be opened and closed on the upper surface and a waste discharge port that can be opened and closed on the bottom surface.
- a stirring blade arranged inside the main body container, a power connector for freely connecting the electric heater to the power supply means, a gas injection port for freely connecting the main body container to the steam supply means, and a rotating shaft of the stirring blade. It is characterized by having a power connector for freely connecting the main body container to the power supply means and a gas discharge port for freely connecting the main body container to the exhaust gas recovery means, and being combined with a moving means for moving the main body container according to a predetermined route. do.
- the mobile tank type waste treatment facility is composed of the mobile treatment tank and a plurality of steam supply stations arranged in order along the movement path, and each of the plurality of steam supply stations is composed of a plurality of steam supply stations.
- the station is provided with a steam injection means for injecting steam at a predetermined temperature by connecting to a mobile processing tank transported to the station.
- the resource recovery facility is a facility added to the waste treatment facility, and receives the treated waste discharged and dropped from the waste discharge port at a specific position of the route to recover the specific resource. It is characterized in that it is configured to do so.
- the mobile processing tank according to the present invention has an electric heater built in the wall surface of the main body container, it does not take time to heat up to a target temperature, and the electricity cost is low.
- the waste treatment equipment can perform stepwise heat treatment with steam while moving the mobile treatment tank according to a predetermined route. Further, the waste treatment equipment can be added to the waste treatment equipment to recover specific resources from the treated waste.
- It is a basic block diagram of a waste treatment facility. It is a top view which shows an example of a processing station. It is a basic block diagram of a waste treatment facility and a resource recovery facility. It is a vertical sectional view explaining the connection between a mobile processing tank and a steam supply station. It is a vertical sectional view explaining the connection between a mobile processing tank and a water mist supply station.
- (A) is a vertical sectional view explaining a state of putting waste into a mobile processing tank, and
- (b) is a vertical sectional view explaining a state of discharging treated waste from a mobile processing tank.
- It is a whole perspective transmission view which shows the structure of another example of a mobile processing tank. It is a perspective view of another example of an electric heater.
- the mobile processing tank A according to the present invention is for accommodating organic waste such as industrial waste in an airtight main body container 1 and injecting steam to thermally decompose and reduce the volume of the main body container 1.
- the feature is that the electric heater 3 is built in the wall surface of the above. If a part of the steam injected into the main body container 1 is superheated steam exceeding 100 degrees Celsius, the organic waste can be effectively decomposed.
- the structure of the main body container 1 will be described in detail.
- FIG. 1 is a cross-sectional view of a main body container forming a main part of the mobile processing tank A
- FIG. 2 is a cross-sectional view of a wall surface of the main body container.
- the wall surface of the main body container 1 shown in this figure has the following features. 1. 1.
- the wall surface of the main body container 1 has a SUS double structure. 2.
- Organic waste enters the inside 2 of the main body container 1.
- 3. 3 A plurality of electric heaters 3 are embedded so that the temperature of the wall surface can be raised to 600 to 700 ° C. 4.
- a refractory heat insulating brick 4 is incorporated for heat insulation. 5. Hold the refractory insulation brick 4 as a whole with asbestos wool 5. 6. Hold the asbestos wool 5 with the wire mesh 6 with screws.
- the outer surface of the wall is composed of SUS304 (9).
- the inner surface of the wall is composed of SUS316 (10).
- the electric heater 3 is supported by the spacer 11.
- FIG. 3 is a cross-sectional view of the electric heater.
- the electric heater 3 has the following features. 1)
- the heating element 3b is a ribbon-shaped metal plate coated with a heat-resistant material.
- a metal wire may be used instead of the ribbon-shaped metal plate.
- SUS304 can be used.
- the heating element 3b is housed inside the support tube 3c in a spirally curved state.
- the support tube 3c can be, for example, a copper tube.
- the heating element 3b is fed through the tube wiring 7.
- FIG. 4 is a table showing the heat conversion efficiency of various heater wires. As shown in this table, the heat conversion efficiency of the nichrome wire is 95.8%, the heat conversion efficiency of the SUS304 is 87.2%, and the heat conversion efficiency of the electric heater 3 is 92%.
- FIG. 5 is a table showing the calorific value of various heater wires.
- Calorific value of SUS304 heater Voltage V 20 [V]
- current I 4.6 [A]
- resistance value R 4.35 [Q]
- the electric heater 3 can generate a larger amount of heat than the nichrome wire heater or the SUS304 heater.
- the calorific value can be easily adjusted by the width and length of the plate material of SUS304, which is a heating element 3b. It is considered that the reason why the amount of heat generated by the electric heater 3 is large is that the resistance R of the heating element 3b is small and a large current flows, and the contribution of infrared radiation from the heat-resistant material is large. If the electric heater 3 is used, the surrounding area can be heated up to 1200 ° C.
- the electric heater 3 since the electric heater 3 is embedded in the wall surface, heat generation is effectively utilized, and the cost is lower than that of a configuration in which a gas heater, an oil heater, or the like is provided outside.
- it has the feature that it generates heat immediately after energization and instantly returns to the normal temperature (about 3 seconds) when the energization is cut off, and the wall surface can be heated in a short time.
- FIGS. 7 (a) to 7 (c) are front cross sections corresponding to them. It is a figure, a plan sectional view and a side sectional view. Further, FIG. 8A is a front sectional view in a state where the waste inlet is open, and FIG. 8B is a front sectional view in a state where the waste discharge port is open.
- This main body container 1 has a rectangular shape, and is provided with a waste input port 1a that can be opened and closed on the upper surface and a waste discharge port 1b that can be opened and closed on the bottom surface.
- the electric heater 3 embedded in the wall surface of the main body container 1 is of a different type from the above example.
- a plurality of gas injection ports 1c are provided on the front surface of the main body container 1.
- the gas injection port 1c has a structure that can be easily connected to and separated from the steam injection means installed outside, has a check valve for preventing the leakage of steam, and faces diagonally downward inside the main body container 1. It communicates with the nozzle 1d.
- a gas discharge port 1e is provided on the back surface of the main body container.
- the gas discharge port 1e has a structure that can be easily connected to and separated from an exhaust gas recovery means installed outside, and has a check valve for preventing leakage of exhaust gas.
- a plurality of waste liquid discharge ports 1f are provided on the bottom surface of the main body container 1.
- the waste liquid discharge port 1f has a check valve for preventing leakage of the waste liquid.
- a power connector (not shown) is provided on the side surface of the main body container 1.
- the power connector has a structure that can be easily connected to and separated from an externally installed power supply means, and power is supplied to the electric heater 3 from here.
- Inside the main body container 1 g of stirring blades for stirring organic waste are arranged.
- the shaft rod of 1 g of the stirring blade is rotatably supported by a bearing provided on the side surface of the main body container 1.
- the bearing is a power connector 1k that can be easily connected to and separated from the power supply means installed outside, and the stirring blade 1g is rotated by the power input to the power connector 1k.
- legs 1j corresponding to a means of transportation such as a trolley with wheels are provided. This means of transportation will be described later.
- FIG. 9 is an overall perspective view of another example of the electric heater. More specifically, the electric heater 3 is a ladder made of a heat-resistant support member formed of a mica plate and a silica plate so that a ribbon-shaped metal plate coated with a heat-resistant material forms a plate shape as a whole as a heating element 3b. It is a flat heater that is bent a plurality of times inside the support frame 3d of the shape. A tube wiring 7 is connected to the heating element 3b. Since the electric heater 3 having such a structure is a flat type, it is easy to embed it in the peripheral wall of the main body container 1, and the heating element 3b can be made dense, so that the amount of heat generated can be increased. If the electric heater 3 can be inserted and installed as a unit in the heater insertion port formed on the end surface of the peripheral wall of the main body container 1, the maintainability is greatly improved.
- FIG. 10 is a basic configuration diagram of a waste treatment facility configured by using a mobile treatment tank.
- the waste treatment facility B includes a plurality of mobile treatment tanks A that are moved while storing organic waste, and a plurality of treatment stations 20 that are sequentially arranged along the path R of the mobile treatment tank A. It is composed of and. At this time, it is efficient to make the route R a one-way loop. Further, if the processing stations 20 ... Are arranged at the same intervals as the mobile processing tanks A, it becomes possible to process a plurality of mobile processing tanks A in parallel at the same time.
- the treatment station 20 ... is provided corresponding to each stage of heat treatment of organic waste.
- the main body container 1 is mounted on a trolley 41 equipped with wheels, connected at equal intervals by a link arm (not shown) or the like, and an electric locomotive arranged in a suitable place (not shown). None), etc., all at once along the route R to move and stop.
- the trolley 41 of a part of the mobile processing container 10 may be electric.
- the waste treatment facility B includes the transportation means 40 of the mobile treatment tank A, that is, the trolley 41, the route R, and the like.
- the means of transportation 40 is not limited to this, and may be a conveyor or the like.
- each of the steam treatment furnaces ... may be mounted on a vehicle having an automatic operation function, or may be combined with a transportation means 40 such as a crane. That is, the mobile processing tank A corresponds to the transportation means 40 for freely transporting the inside of the processing facility.
- FIG. 11 is a plan view of the processing station.
- the processing station 20 is composed of a steam injection means 21 for injecting steam into the main body container 1, an exhaust gas recovery means 22 for collecting exhaust gas from the main body container 1, and a power supply means 25 for rotating 1 g of stirring blades. There is.
- the steam supply means 21 and the exhaust gas recovery means 22 are installed in a tunnel form with respect to the path R, and the power supply means 25 is installed in a form along the path R.
- the processing station 20 also includes a power supply device (not shown).
- the steam injection means 21 is provided with a boiler or the like (not shown), and is configured so that the heat-resistant tube 21a can be detachably connected to the gas injection port 1c to inject steam.
- the tip of the heat-resistant tube 21a is a communication connector.
- the exhaust gas recovery means 22 is provided with a gas separation means, a filter means, etc. (not shown), and is configured so that the heat-resistant tube 22a can be detachably connected to the gas discharge port 1e to recover the exhaust gas.
- the tip of the heat-resistant tube 22a is a communication connector.
- the power supply means 25 includes an electric motor and a power transmission mechanism, and is configured so that the shaft 25a can be detachably connected to the power connector 1k so that the stirring blade 1g can be rotated.
- the power supply means includes an AC or DC power supply circuit, and is configured to detachably connect a power cable to the power connector to supply power to the electric heater 3.
- the mobile processing tank A according to the present invention can be combined with a processing station 20 having a function of supplying steam to the main body container 1 to convert organic waste with steam. It is possible to heat-treat. Then, at the same time as injecting steam, the surface wall of the main body container 1 is heated by the electric heater 3, so that the temperature drop of steam is suppressed and efficient heat treatment becomes possible. Since this heat treatment is performed without supplying oxygen, a large amount of resources such as combustible gas contained in the exhaust gas can be recovered. Further, by appropriately setting the number of mobile treatment tanks A and the number and configuration of treatment stations 20 according to the type and amount of waste, it is possible to construct a waste treatment facility A without waste.
- stepwise heat treatment is possible by gradually raising the temperature of steam and the like in one processing station 20.
- a plurality of processing stations 20 may be arranged along the path R of the mobile processing tank A, and the temperature of the steam may be set to be higher toward the processing station 20 on the downstream side.
- FIG. 12 is a basic configuration diagram of a waste treatment facility and a resource recovery facility.
- the mobile tank type waste treatment facility B includes a plurality of mobile treatment tanks A that are moved while storing the waste to be treated, and a plurality of mobile treatment tanks A that are sequentially arranged along the path R of the mobile treatment tank A. It is composed of processing stations 20A, 20B, 20C, and 30 of the above.
- the mobile processing tanks A are all mounted on a trolley 41 equipped with wheels, are connected at equal intervals by a link arm (not shown) or the like, and are electric locomotives arranged in place (not shown). It is moved and stopped all at once due to such factors.
- the carriage 41 of a part of the mobile processing tank A may be electric.
- the waste treatment facility B includes the transportation means 40 of the mobile treatment tank A. At this time, it is efficient to make the route R a one-way loop.
- the moving means 40 of the mobile processing tank A is not limited to the track, but may be a conveyor.
- the mobile processing tank A may be mounted on a vehicle having an automatic driving function.
- the treatment stations 20A, 20B, and 20C are configured as a steam supply station that supplies heated steam to the mobile treatment tank A, and the treatment station 30 is configured as a water mist supply station. Further, since the processing stations 20A, 20B, 20C, and 30 are arranged at the same intervals as the mobile processing tank A, it is possible to process a plurality of mobile processing tanks A in parallel at the same time.
- Each of the steam supply stations 20A, 20B, and 20C is provided with steam injection means 21 connected to the mobile processing tank A transported to the station to inject steam at a predetermined temperature.
- the steam supply station on the downstream side is set to supply higher temperature steam than the steam supply station on the upstream side, the same mobile processing tank A is gradually supplied with steam.
- Heat treatment is possible.
- the first steam supply station 20A supplies steam at 100 to 200 degrees Celsius
- the second steam supply station 20B supplies steam at 250 to 400 degrees Celsius
- the third steam supply station 20C supplies 400 degrees Celsius.
- a stepwise heat treatment at 100 to 700 degrees Celsius is performed, which is suitable for waste such as plastic.
- an electric heater 3 or the like is built in a gas pipe for transporting steam in a part of the steam injection means 21, it is possible to supply very high temperature steam.
- each of the steam supply stations 20A, 20B, and 20C further includes an exhaust gas recovery means 22 that is connected to the mobile processing tank A transported to the station to discharge the exhaust gas.
- an exhaust gas recovery means 22 is configured to prevent the diffusion of exhaust gas, and gas separation means, gas adsorption means, storage means, filter means and the like are appropriately installed on the downstream side thereof. Since the type of exhaust gas generated in each of the steam supply stations 20 can be predicted to some extent, it is also possible to optimize the types and configurations of the gas separation means, the storage means, and the filter means accordingly.
- At least one of the steam supply stations 20A, 20B, and 20C further includes a waste liquid recovery means 24 that is connected to the mobile processing tank A transported to the station to discharge the waste liquid.
- a waste liquid recovery means 24 is configured to prevent the diffusion of the waste liquid, and a filter means, a liquid separation means, and a storage means are appropriately installed on the downstream side thereof. Since the type of waste liquid generated in each of the steam supply stations 20 can be predicted to some extent, it is also possible to optimize the type and configuration of the filter means, the liquid release means, and the storage means accordingly.
- At least one of the steam supply stations 20A, 20B and 20C further includes an HHO gas injection means 23 connected to the mobile processing tank A transported to the station to inject HHO gas.
- HHO gas injection means 23 injects the HHO gas generated by electrolysis of water into the mobile processing tank A.
- the HHO gas may be injected separately from water vapor, or may be mixed with water vapor before injection.
- the water mist supply station 30 may be further arranged on the downstream side of the steam supply stations 20A, 20B, and 20C.
- the water mist supply station 30 includes a water mist injection means 31 that is connected to the mobile processing tank A transported to the station to inject the water mist.
- Water mist may be generated by applying ultrasonic waves to water at room temperature. The water mist is for cooling the treated waste after the heat treatment, and the treated waste is cooled here to about 50 to 200 degrees Celsius.
- the waste treatment facility B is composed of a mobile treatment tank A having a simple structure and a steam supply station 20, and is capable of stepwise heat treatment with steam. Further, when the steam is injected into the mobile processing tank A at the steam supply station 20, it is possible to efficiently perform the heat treatment by generating heat of the peripheral wall portion 14 of the mobile processing tank A by electric power or the like by the electric heater 3. be. Further, if the water vapor injection amount, the temperature, the peripheral wall temperature of the mobile processing tank A, and the processing time are appropriately controlled in each of the steam supply stations 20, it is possible to suppress the generation of toxic gas and toxic waste liquid. In this case, it is preferable to set the type of waste in advance for the computer and automate so that the computer remotely controls a plurality of steam supply stations 20 and water mist supply stations 30 in parallel according to the settings.
- the waste treatment facility B with various resource recovery means to form the resource recovery facility C.
- the waste discharge port 1b is provided on the lower surface side, so that the resource recovery facility C discharges the treated waste discharged and dropped from the mobile processing tank A at a specific position on the route R.
- It can be configured to accept and recover specific resources.
- the treated waste discharged and dropped from the mobile processing tank A at a specific position on the route R is received in the mobile pallet 40, and the pallet is moved according to the predetermined route R.
- It may be configured to collect specific resources at a plurality of resource recovery stations 50 arranged in order along the route R. For example, iron resources can be recovered by being attracted by a magnet at any of the resource recovery stations 50.
- the specific resource may be recovered from the exhaust gas released through the exhaust gas recovery means 22.
- the gas separation means, the gas adsorption means, the storage means, the filter means, and the like provided on the downstream side of the exhaust gas recovery means 22 constitute the resource recovery facility C.
- it may be configured to recover a specific resource from the waste liquid released through the waste liquid recovery means 24.
- the filter means, the liquid separation means, and the storage means provided on the downstream side of the waste liquid distribution means 24 constitute the resource recovery facility C.
- FIG. 13 is a vertical sectional view illustrating the connection between the mobile processing tank and the steam supply station
- FIG. 14 is a vertical sectional view illustrating the connection between the mobile processing tank and the water mist supply station.
- FIG. 15A is a vertical cross-sectional view illustrating a state in which the waste to be treated is put into the mobile processing tank
- FIG. 15B is a vertical section illustrating a state in which the treated waste is discharged from the mobile processing tank. It is a top view.
- the mobile processing tank A includes an airtight main body container 1 provided with an openable and closable waste input port 1a and a waste discharge port 1b on the upper surface and the lower surface. It is mounted on a dolly 41 equipped with wheels.
- the upper surface and the lower surface are formed of a stainless alloy or the like, and the peripheral wall portion is formed of a stainless alloy (surface portion) and a heat insulating material (inside).
- the heat insulating material glass wool, porous ceramic, heat-resistant brick or the like may be appropriately used.
- a plurality of electric heaters 3 are embedded near the inner surface of the peripheral wall portion of the main body container 1. Further, a gas injection port 1c, a power supply connector 1i, a gas discharge port 1e, a power connector 1k, a waste liquid discharge port 1f and the like are formed on the peripheral wall portion, and a stirring blade 1g is arranged in the internal space.
- the gas injection port 1c is detachable from the steam injection means 21 provided in the steam supply station 20, and is provided with a check valve (not shown) for preventing leakage of steam or exhaust gas to the surroundings. Further, the gas injection port 1c is also detachable from the water mist injection means 31 provided in the water mist supply station 30.
- the number of gas injection ports 1c is not particularly limited and may be 2 or more. Further, the position of the gas inlet 1c is not particularly limited.
- the power connector 1i is detachable from the power cable 26 derived from the power supply device (not shown) provided in the steam supply station 20, and the electric heater 3 is generated by the electric power supplied from the power supply device. If the peripheral wall portion 14 of the mobile processing tank A is heated to substantially the same temperature as the steam supplied from the steam supply station 20 by the electric heater 3, the temperature of the steam does not easily drop and the heat treatment becomes efficient.
- the gas discharge port 1e is detachable from the exhaust gas recovery means 22 of the steam supply station 20 and the water mist supply station 30, and is provided with a check valve (not shown) for preventing leakage of steam and exhaust gas to the surroundings. There is.
- the number of gas discharge ports 1e is not particularly limited and may be 2 or more. Further, the position of the gas discharge port 1e is not particularly limited.
- the power connector 1k is detachable from the power supply means 25 provided in the steam supply station 20 and the water mist supply station 30, and the stirring blade 1g is rotated by the driving force of the power supply means 25.
- the waste is stirred and pulverized by 1 g of the stirring blade, so that efficient heat treatment becomes possible.
- the waste liquid discharge port 1f is detachable from the waste liquid recovery means 24 provided in the steam supply station 20, and is provided with a check valve (not shown) for preventing the waste liquid from leaking to the surroundings.
- FIG. 16 is an overall perspective transmission view showing the structure of another example of the mobile processing tank.
- the mobile processing tank A is characterized in that it is provided with a plurality of gas injection ports 1c.
- one gas injection port 1c is provided on the front surface and one rear surface of the mobile processing tank A.
- the tip of the gas injection port 15 is a nozzle facing the bottom surface in the internal space of the mobile processing tank A.
- one gas discharge port 1e is provided on the front surface of the mobile processing tank A.
- Two stirring blades 1g are arranged in parallel so as to cross the internal space of the mobile processing tank A. Both ends of the stirring blade S are supported by bearings B, and one of the bearings is a power connector 1k.
- FIG. 17 is a perspective view of an electric heater incorporated in a mobile processing tank.
- the electric heater 3 has a structure in which a heat generating 3b obtained by winding a heat-resistant coated stainless alloy in a coil shape is housed in a copper support tube 3c.
- the support tube 3c is for enhancing thermal conductivity and preventing deformation and paint peeling of the heating element 3c. Durability is improved by such a configuration. Further, if it is a plate-shaped stainless alloy, it is easy to wind it into a coil, and the electric resistance can be freely set depending on the width.
Landscapes
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
廃棄物用の移動式処理タンクと、これを用いた廃棄物処理設備を提供する。 動式処理タンクは、上面に開閉自在な廃棄物投入口、底面に開閉自在な廃棄物放出口が設けられ、容器壁面に電気ヒーターが内蔵された本体容器と、この本体容器の内部に配置された攪拌羽と、前記電気ヒーターを電力供給手段に自在に接続させる電源コネクタと、本体容器を過熱水蒸気供給手段に自在に接続させるガス注入口と、攪拌羽の回転軸を動力供給手段に自在に接続させる動力コネクタと、本体容器を排ガス回収手段に自在に接続させるガス放出口とを備え、前記本体容器を所定の経路に従って移動させる移動手段に組み合わせられるように構成されている。 廃棄物処理設備は、前記経路に沿って順番に配置された複数の水蒸気供給ステーションを備え、前期複数の水蒸気供給ステーションのそれぞれは、該ステーションに輸送されてきた移動式処理タンクに接続して所定温度の水蒸気を注入する水蒸気注入手段を備えている。 資源回収設備は、前記経路の特定位置において前記廃棄物放出口から放出落下された処理済廃棄物を受け入れて特定資源を回収するように構成されている。
Description
本発明は、バイオマス、産業廃棄物等の有機廃棄物を水蒸気で熱分解処理し、資源として回収する環境処理技術に関する。
有機廃棄物(ゴミ)を水蒸気によって熱分解する技術は、すでに公知であり、特許文献1に提案されている。
一般に、有機廃棄物を水蒸気によって熱分解処理する場合、予め処理容器を適温に保持する必要があるが、特に、ガスや石油等の燃焼で炉(容器)を加熱する場合には、目的の温度に達するまで時間を要する上に燃料代も高くなり、処理容器を処理工程に従って輸送することも難しかった。
また、特許文献2には、廃棄物が入れられた複数のバスケット又はトレイを、全体又は一部を密閉構造にして高温蒸気を吹き込んで熱分解処理し、廃棄物処理設備の内部で移動させる技術が開示されている。
また、特許文献2には、廃棄物が入れられた複数のバスケット又はトレイを、全体又は一部を密閉構造にして高温蒸気を吹き込んで熱分解処理し、廃棄物処理設備の内部で移動させる技術が開示されている。
しかしながら、特許文献2に記載の廃棄物処理装置は、その全体又は一部を密閉、解除する構造であるため、装置が複雑化、大型化してしまうという問題があった。特に廃棄物を異なる温度の高温蒸気に曝して段階的に処理しようとすると、その問題が顕著になり、扱いにくいものになる。
これに対して本発明は、これらの問題を解決するために、廃棄物用の移動式処理タンクと、これを用いた廃棄物処理設備、及び資源回収設備を提供することを目的としている。
本発明による有機廃棄物用の移動式処理タンクは、上面に開閉自在な廃棄物投入口、底面に開閉自在な廃棄物放出口が設けられ、容器壁面に電気ヒーターが内蔵された本体容器と、この本体容器の内部に配置された攪拌羽と、前記電気ヒーターを電力供給手段に自在に接続させる電源コネクタと、本体容器を水蒸気供給手段に自在に接続させるガス注入口と、攪拌羽の回転軸を動力供給手段に自在に接続させる動力コネクタと、本体容器を排ガス回収手段に自在に接続させるガス放出口とを備え、前記本体容器を所定の経路に従って移動させる移動手段に組み合わせられることを特徴とする。
また本発明による移動タンク式の廃棄物処理設備は、前記移動式処理タンクと、前記移動経路に沿って順番に配置された複数の水蒸気供給ステーションとで構成され、複数の水蒸気供給ステーションのそれぞれは、該ステーションに輸送されてきた移動式処理タンクに接続して所定温度の水蒸気を注入する蒸気注入手段を備えていることを特徴とする。
また本発明による資源回収設備は、前記廃棄物処理設備に付加される設備であって、前記経路の特定位置において前記廃棄物放出口から放出落下された処理済廃棄物を受け入れて特定資源を回収するように構成されていることを特徴とする。
本発明による移動式処理タンクは、前記本体容器の壁面に電気ヒーターが内蔵されているので、目的の温度に加熱するまで時間がかからず、電気代も安価である。また廃棄物処理設備は、移動式処理タンクを所定の経路に従って移動させながら、水蒸気による段階的な熱処理が可能である。また廃棄物処理設備は、前記廃棄物処理設備に付加されて、処理済廃棄物から特定資源を回収できる。
以下本発明の一実施形態を説明する。
本発明に係る移動式処理タンクAは、産業廃棄物等の有機廃棄物を気密な本体容器1内に収容し、水蒸気を注入して熱分解、減容させるためのものであり、本体容器1の壁面に電気ヒーター3が内蔵されている点が特徴である。なお本体容器1に注入する水蒸気の一部を、摂氏100度を超える過熱水蒸気とすれば有機廃棄物を効果的に分解できる。
以下、本体容器1の構造を詳細に説明する。
本発明に係る移動式処理タンクAは、産業廃棄物等の有機廃棄物を気密な本体容器1内に収容し、水蒸気を注入して熱分解、減容させるためのものであり、本体容器1の壁面に電気ヒーター3が内蔵されている点が特徴である。なお本体容器1に注入する水蒸気の一部を、摂氏100度を超える過熱水蒸気とすれば有機廃棄物を効果的に分解できる。
以下、本体容器1の構造を詳細に説明する。
図1は、移動式処理タンクAの要部をなす本体容器の断面図、図2は本体容器の壁面の断面図である。この図に示す本体容器1の壁面は次のような特徴を有する。
1.本体容器1の壁面は、SUS二重構造となっている。
2.本体容器1の内部2に有機廃棄物が入る。
3.電気ヒーター3を複数本埋設し、壁面の温度を600~700°Cに上げることを可能にする。
4.断熱の為に耐火断熱レンガ4が組み込まれる。
5.石綿ウール5で耐火断熱レンガ4を全体で押さえる。
6.ビス付き金網6で石綿ウール5を押さえる。
9.SUS304(9)で壁外面を構成する。
10.SUS316(10)で壁内面を構成する。
11.スペーサー11によって電気ヒーター3を支持する。
1.本体容器1の壁面は、SUS二重構造となっている。
2.本体容器1の内部2に有機廃棄物が入る。
3.電気ヒーター3を複数本埋設し、壁面の温度を600~700°Cに上げることを可能にする。
4.断熱の為に耐火断熱レンガ4が組み込まれる。
5.石綿ウール5で耐火断熱レンガ4を全体で押さえる。
6.ビス付き金網6で石綿ウール5を押さえる。
9.SUS304(9)で壁外面を構成する。
10.SUS316(10)で壁内面を構成する。
11.スペーサー11によって電気ヒーター3を支持する。
図3は、電気ヒーターの断面図である。
この電気ヒーター3は次のような特徴を有する。
1)発熱体3bは、耐熱材をコーティングしたリボン状金属板である。リボン状金属板に替えて金属線材を用いてもよい。金属としては例えばSUS304を用いることができる。
2)発熱体3bは、らせん状に湾曲された状態で支持管3cの内側に収容されている。支持管3cは例えば銅菅にすることができる。
3)発熱体3bはチューブ配線7を通じて給電する。
この電気ヒーター3は次のような特徴を有する。
1)発熱体3bは、耐熱材をコーティングしたリボン状金属板である。リボン状金属板に替えて金属線材を用いてもよい。金属としては例えばSUS304を用いることができる。
2)発熱体3bは、らせん状に湾曲された状態で支持管3cの内側に収容されている。支持管3cは例えば銅菅にすることができる。
3)発熱体3bはチューブ配線7を通じて給電する。
図4は、各種ヒーター線の熱変換効率を示す表である。この表に示すように、ニクロム線の熱変換効率は95.8%、SUS304の熱変換効率は87.2%、電気ヒーター3の熱変換効率は92%である。
図5は、各種ヒーター線の発熱量を示す表である。この表の数値は電圧V=20[V]を90分間ヒーター線のそれぞれに印加したときに算出される発熱量である。
(1)ニクロム線ヒーターの発熱量
電圧V=20[V]、電流I=3.8[A]、抗値R=5.26[Ω]、
効率η=0.872
H=0.24×20×3.1×90×60×0.958=76977[CAL]
(2)SUS304ヒーターの発熱量
電圧V=20[V]、電流I=4.6[A]、抵抗値R=4.35[Q]、
効率η=0.872
H=0.24×20×4.6×90×60×0.872=103970[CAL]
(3)電気ヒーター3の発熱量
電圧V=20[V]、電流I=7.3[A]、抵抗値R=2.74[Ω]、
効率η=0.92
H=0.24×20×7.3×90×60×0.92=174079[CAL]
(1)ニクロム線ヒーターの発熱量
電圧V=20[V]、電流I=3.8[A]、抗値R=5.26[Ω]、
効率η=0.872
H=0.24×20×3.1×90×60×0.958=76977[CAL]
(2)SUS304ヒーターの発熱量
電圧V=20[V]、電流I=4.6[A]、抵抗値R=4.35[Q]、
効率η=0.872
H=0.24×20×4.6×90×60×0.872=103970[CAL]
(3)電気ヒーター3の発熱量
電圧V=20[V]、電流I=7.3[A]、抵抗値R=2.74[Ω]、
効率η=0.92
H=0.24×20×7.3×90×60×0.92=174079[CAL]
図5の表に示したように、電気ヒーター3は、ニクロム線ヒーターあるいはSUS304ヒーターよりも発熱量を多くできる。発熱量は、発熱体3bとされるSUS304の板材の幅、長さで容易に調節できる。電気ヒーター3の発熱量が大きいのは、発熱体3bの抵抗Rが小さく大電流が流れることに加えて、耐熱材からの赤外線輻射の寄与が大きいと考えられる。なお電気ヒーター3を用いると、その周囲を最高1200℃まで加熱できる。また、このような構造であれば、電気ヒーター3が壁面に埋設されているので発熱が有効利用され、外部にガスヒーター、石油ヒーター等を設けた構成よりも低コストで済む。また通電後直ぐに発熱し通電を遮断すると瞬時に通常温度(3秒程度)に戻るという特徴があり、壁面を短時間で加熱できる。
次いで本発明に係る他の移動式処理タンクを説明する。
図6(a)~(c)は、他の移動式処理タンクを構成する本体容器の正面図、平面図及び側面図であり、図7(a)~(c)はそれらに対応した正面断面図、平面断面図及び側面断面図である。また図8(a)は廃棄物投入口が開かれた状態の正面断面図、図8(b)は廃棄物放出口が開かれた状態の正面断面図である。
図6(a)~(c)は、他の移動式処理タンクを構成する本体容器の正面図、平面図及び側面図であり、図7(a)~(c)はそれらに対応した正面断面図、平面断面図及び側面断面図である。また図8(a)は廃棄物投入口が開かれた状態の正面断面図、図8(b)は廃棄物放出口が開かれた状態の正面断面図である。
この本体容器1は、長方体型であり、上面には開閉自在な廃棄物投入口1a、底面には開閉自在な廃棄物放出口1bが設けられている。
本体容器1の壁面に埋設する電気ヒーター3は、前記例とは別形式のものを用いている。
本体容器1の正面には、複数のガス注入口1cが設けられている。ガス注入口1cは、外部に設置された水蒸気注入手段に対して簡単に接続、分離できる構造であり、水蒸気の漏出を防止するチェック弁を有し、本体容器1の内部では斜め下を向いたノズル1dに連通されている。
本体容器の背面には、ガス放出口1eが設けられている。ガス放出口1eは、外部に設置された排ガス回収手段に対して簡単に接続、分離できる構造であり、排ガスの漏出を防止するチェック弁を有している。
本体容器1の底面には、複数の廃液放出口1fが設けられている。廃液放出口1fは、廃液の漏出を防止するチェック弁を有している。
本体容器1の側面には、図示しない電源コネクタが設けられている。電源コネクタは、外部に設置された電力供給手段に簡単に接続、分離できる構造であり、ここから電気ヒーター3に電源を供給する。
本体容器1の内部には、有機廃棄物を攪拌する攪拌羽1gが配置されている。攪拌羽1gの軸棒は本体容器1の側面に設けられた軸受によって回動可能に支持されている。軸受は、外部に設置された動力供給手段と簡単に接続・分離できる動力コネクタ1kになっており、動力コネクタ1kに入力された動力によって攪拌羽1gが回動される。本体容器1の底面の四隅には、車輪付台車等の移動手段に対応した脚部1jが設けられている。この移動手段については後述する。
本体容器1の正面には、複数のガス注入口1cが設けられている。ガス注入口1cは、外部に設置された水蒸気注入手段に対して簡単に接続、分離できる構造であり、水蒸気の漏出を防止するチェック弁を有し、本体容器1の内部では斜め下を向いたノズル1dに連通されている。
本体容器の背面には、ガス放出口1eが設けられている。ガス放出口1eは、外部に設置された排ガス回収手段に対して簡単に接続、分離できる構造であり、排ガスの漏出を防止するチェック弁を有している。
本体容器1の底面には、複数の廃液放出口1fが設けられている。廃液放出口1fは、廃液の漏出を防止するチェック弁を有している。
本体容器1の側面には、図示しない電源コネクタが設けられている。電源コネクタは、外部に設置された電力供給手段に簡単に接続、分離できる構造であり、ここから電気ヒーター3に電源を供給する。
本体容器1の内部には、有機廃棄物を攪拌する攪拌羽1gが配置されている。攪拌羽1gの軸棒は本体容器1の側面に設けられた軸受によって回動可能に支持されている。軸受は、外部に設置された動力供給手段と簡単に接続・分離できる動力コネクタ1kになっており、動力コネクタ1kに入力された動力によって攪拌羽1gが回動される。本体容器1の底面の四隅には、車輪付台車等の移動手段に対応した脚部1jが設けられている。この移動手段については後述する。
図9は、電気ヒーターの他例の全体斜視図である。
この電気ヒーター3は、より具体的には、耐熱材をコーティングしたリボン状金属板を発熱体3bとして全体として板形状をなすように、マイカ板、シリカ板で形成された耐熱支持部材からなる梯子形状の支持枠3dの内側で複数回屈曲させてなる平面型ヒーターである。発熱体3bには、チューブ配線7が接続されている。
このような構造の電気ヒーター3は平面型であるため、本体容器1の周壁に埋設するのが容易であり、また発熱体3bを高密度にできるので、発熱量を大きくできる。なおこの電気ヒーター3をユニットとして本体容器1の周壁の端面に形成されたヒーター挿入口に挿入設置できるようにすれば、メンテナンス性が大きく向上する。
この電気ヒーター3は、より具体的には、耐熱材をコーティングしたリボン状金属板を発熱体3bとして全体として板形状をなすように、マイカ板、シリカ板で形成された耐熱支持部材からなる梯子形状の支持枠3dの内側で複数回屈曲させてなる平面型ヒーターである。発熱体3bには、チューブ配線7が接続されている。
このような構造の電気ヒーター3は平面型であるため、本体容器1の周壁に埋設するのが容易であり、また発熱体3bを高密度にできるので、発熱量を大きくできる。なおこの電気ヒーター3をユニットとして本体容器1の周壁の端面に形成されたヒーター挿入口に挿入設置できるようにすれば、メンテナンス性が大きく向上する。
図10は、移動式処理タンクを用いて構成された廃棄物処理設備の基本構成図である。
この廃棄物処理設備Bは、有機廃棄物を格納した状態で移動される複数の移動式処理タンクAと、移動式処理タンクAの経路Rに沿って順番に配置された複数の処理ステーション20…とで構成されている。このとき経路Rを一方通行のループにすると効率的である。また処理ステーション20…は、移動式処理タンクAと同じ間隔で配置いておけば、複数の移動式処理タンクAを並列同時に処理することが可能になる。
処理ステーション20…は、有機廃棄物の熱処理の各段階に対応して設けられる。すなわち本体容器1に有機廃棄物等を投入するためのステーション、本体容器1に水蒸気あるいは特定ガスを注入するための1乃至複数のステーション、炉に冷却用の水ミスト等を注入するためのステーション、本体容器1から処理済廃棄物を放出させるためのステーション等がある。
この例の移動式処理タンクAは、本体容器1が車輪を備えた台車41に搭載され、リンクアーム(図示なし)等によって等間隔に連結されており、適所に配された電動機関車(図示なし)等によって、経路Rに沿って一斉に移動、停止される。なお電動機関車を用いずに、一部の移動式処理容器10の台車41を電動式にしてもよい。
このように廃棄物処理設備Bは、移動式処理タンクAの移動手段40、すなわち台車41や経路R等を含むものである。なお移動手段40はこれに限らず、コンベアー等でもよい。あるいは水蒸気処理炉…の各々を、自動運転機能を備えた車両に搭載してもよく、クレーン等の移動手段40と組み合わせてもよい。つまり移動式処理タンクAは、処理施設内を自在に輸送するための移動手段40に対応したものになっている。
この廃棄物処理設備Bは、有機廃棄物を格納した状態で移動される複数の移動式処理タンクAと、移動式処理タンクAの経路Rに沿って順番に配置された複数の処理ステーション20…とで構成されている。このとき経路Rを一方通行のループにすると効率的である。また処理ステーション20…は、移動式処理タンクAと同じ間隔で配置いておけば、複数の移動式処理タンクAを並列同時に処理することが可能になる。
処理ステーション20…は、有機廃棄物の熱処理の各段階に対応して設けられる。すなわち本体容器1に有機廃棄物等を投入するためのステーション、本体容器1に水蒸気あるいは特定ガスを注入するための1乃至複数のステーション、炉に冷却用の水ミスト等を注入するためのステーション、本体容器1から処理済廃棄物を放出させるためのステーション等がある。
この例の移動式処理タンクAは、本体容器1が車輪を備えた台車41に搭載され、リンクアーム(図示なし)等によって等間隔に連結されており、適所に配された電動機関車(図示なし)等によって、経路Rに沿って一斉に移動、停止される。なお電動機関車を用いずに、一部の移動式処理容器10の台車41を電動式にしてもよい。
このように廃棄物処理設備Bは、移動式処理タンクAの移動手段40、すなわち台車41や経路R等を含むものである。なお移動手段40はこれに限らず、コンベアー等でもよい。あるいは水蒸気処理炉…の各々を、自動運転機能を備えた車両に搭載してもよく、クレーン等の移動手段40と組み合わせてもよい。つまり移動式処理タンクAは、処理施設内を自在に輸送するための移動手段40に対応したものになっている。
図11は、処理ステーションの平面図である。
この処理ステーション20は、本体容器1に水蒸気を注入する水蒸気注入手段21と、本体容器1から排ガスを回収する排ガス回収手段22と、攪拌羽1gを回動させる動力供給手段25とで構成されている。
水蒸気供給手段21及び排ガス回収手段22は、経路Rに対してトンネル形態で設置されており、動力供給手段25は経路Rに沿う形態で設置されている。また処理ステーション20は、図示しない電源装置も備えている。
水蒸気注入手段21は、図示しないボイラー等を備えており、耐熱チューブ21aをガス注入口1cに着脱自在に接続して水蒸気を注入できるように構成されている。なお耐熱チューブ21aの先端は連通コネクタになっている。
排ガス回収手段22は、図示しないガス分離手段、フィルター手段等を備えており、耐熱チューブ22aをガス放出口1eに着脱自在に接続して排ガスを回収できるように構成されている。なお耐熱チューブ22aの先端は連通コネクタになっている。
動力供給手段25は、電動モーターや動力伝達機構を備えており、シャフト25aを動力コネクタ1kに着脱自在に接続して攪拌羽1gを回動できるように構成されている。
なお電力供給手段は、交流又は直流電源回路を備えており、電源ケーブルを電源コネクタに着脱自在に接続して電気ヒーター3に電力を供給するように構成されている。
この処理ステーション20は、本体容器1に水蒸気を注入する水蒸気注入手段21と、本体容器1から排ガスを回収する排ガス回収手段22と、攪拌羽1gを回動させる動力供給手段25とで構成されている。
水蒸気供給手段21及び排ガス回収手段22は、経路Rに対してトンネル形態で設置されており、動力供給手段25は経路Rに沿う形態で設置されている。また処理ステーション20は、図示しない電源装置も備えている。
水蒸気注入手段21は、図示しないボイラー等を備えており、耐熱チューブ21aをガス注入口1cに着脱自在に接続して水蒸気を注入できるように構成されている。なお耐熱チューブ21aの先端は連通コネクタになっている。
排ガス回収手段22は、図示しないガス分離手段、フィルター手段等を備えており、耐熱チューブ22aをガス放出口1eに着脱自在に接続して排ガスを回収できるように構成されている。なお耐熱チューブ22aの先端は連通コネクタになっている。
動力供給手段25は、電動モーターや動力伝達機構を備えており、シャフト25aを動力コネクタ1kに着脱自在に接続して攪拌羽1gを回動できるように構成されている。
なお電力供給手段は、交流又は直流電源回路を備えており、電源ケーブルを電源コネクタに着脱自在に接続して電気ヒーター3に電力を供給するように構成されている。
この例の説明から理解されるように、本発明に係る移動式処理タンクAは、本体容器1に水蒸気を供給する等の機能を備えた処理ステーション20と組み合わせることで、有機廃棄物を水蒸気で熱処理することを可能としている。そして水蒸気の注入と同時に、本体容器1の面壁を電気ヒーター3によって発熱させることで、水蒸気の温度低下が抑えられて効率的な熱処理が可能になる。この熱処理は酸素の供給無しに行われるので、排ガスに含まれる可燃ガス等の資源が多く回収できる。
また移動式処理タンクAの個数や、処理ステーション20の個数及び構成を、廃棄物の種別や量に応じて適切に設定することで、無駄のない廃棄物処理設備Aを構築することはできる。特に有機廃棄物の種別によってどのような温度のときにどのような排ガスを生じるかということは予め予測できるので、その種別に応じた段階的な熱処理を行うことが望ましい。段階的な熱処理は、1つの処理ステーション20において、水蒸気の温度等を段階的に上げていくことで可能になる。あるいは複数の処理ステーション20を移動式処理タンクAの経路Rに沿って配置し、下流側の処理ステーション20ほど、水蒸気の温度がより高くなるように設定しておいてもよい。
また移動式処理タンクAの個数や、処理ステーション20の個数及び構成を、廃棄物の種別や量に応じて適切に設定することで、無駄のない廃棄物処理設備Aを構築することはできる。特に有機廃棄物の種別によってどのような温度のときにどのような排ガスを生じるかということは予め予測できるので、その種別に応じた段階的な熱処理を行うことが望ましい。段階的な熱処理は、1つの処理ステーション20において、水蒸気の温度等を段階的に上げていくことで可能になる。あるいは複数の処理ステーション20を移動式処理タンクAの経路Rに沿って配置し、下流側の処理ステーション20ほど、水蒸気の温度がより高くなるように設定しておいてもよい。
次いで本発明の他の実施形態を説明する。
図12は、廃棄物処理設備及び資源回収設備の基本構成図である。
この移動タンク式の廃棄物処理設備Bは、処理対象廃棄物を格納した状態で移動される複数の移動式処理タンクAと、移動式処理タンクAの経路Rに沿って順番に配置された複数の処理ステーション20A、20B、20C、30とで構成されている。
この例では、移動式処理タンクAはいずれも車輪を備えた台車41に搭載され、リンクアーム(図示なし)等によって等間隔に連結されており、適所に配された電動機関車(図示なし)等によって一斉に移動、停止される。あるいは一部の移動式処理タンクAの台車41を電動式にしてもよい。このように廃棄物処理設備Bは、移動式処理タンクAの移動手段40を含むものである。このとき経路Rを一方通行のループにすると効率的である。なお移動式処理タンクAの移動手段40は軌道に限らず、コンベアーでもよい。あるいは移動式処理タンクAを、自動運転機能を備えた車両に搭載してもよい。
図12は、廃棄物処理設備及び資源回収設備の基本構成図である。
この移動タンク式の廃棄物処理設備Bは、処理対象廃棄物を格納した状態で移動される複数の移動式処理タンクAと、移動式処理タンクAの経路Rに沿って順番に配置された複数の処理ステーション20A、20B、20C、30とで構成されている。
この例では、移動式処理タンクAはいずれも車輪を備えた台車41に搭載され、リンクアーム(図示なし)等によって等間隔に連結されており、適所に配された電動機関車(図示なし)等によって一斉に移動、停止される。あるいは一部の移動式処理タンクAの台車41を電動式にしてもよい。このように廃棄物処理設備Bは、移動式処理タンクAの移動手段40を含むものである。このとき経路Rを一方通行のループにすると効率的である。なお移動式処理タンクAの移動手段40は軌道に限らず、コンベアーでもよい。あるいは移動式処理タンクAを、自動運転機能を備えた車両に搭載してもよい。
なお処理ステーション20A、20B、20Cは、移動式処理タンクAに加熱水蒸気を供給する水蒸気供給ステーション、処理ステーション30は、水ミスト供給ステーションとして構成されている。また処理ステーション20A、20B、20C、30は、移動式処理タンクAと同じ間隔で配置されているので、複数の移動式処理タンクAを同時並列的に処理することが可能である。
水蒸気供給ステーション20A、20B、20Cのそれぞれは、該ステーションに輸送されてきた移動式処理タンクAに接続して所定温度の水蒸気を注入する水蒸気注入手段21を備えている。ここで上流側の水蒸気供給ステーションよりも、下流側の水蒸気供給ステーションの方がより高温の水蒸気を供給するように設定しておけば、同一の移動式処理タンクAに対して水蒸気による段階的な熱処理が可能である。
例えば、第一の水蒸気供給ステーション20Aでは摂氏100~200度の水蒸気を供給し、第二の水蒸気供給ステーション20Bでは摂氏250~400度の水蒸気を供給し、第三の水蒸気供給ステーション20Cでは摂氏400~700度の水蒸気を供給する。すると摂氏100~700度の段階的な熱処理が行わることになるが、これはプラスチック等の廃棄物に対して好適である。
なお水蒸気注入手段21の一部において水蒸気を輸送するガス管内に電気ヒーター3等を内蔵させれば、非常に高温な水蒸気を供給することも可能になる。
例えば、第一の水蒸気供給ステーション20Aでは摂氏100~200度の水蒸気を供給し、第二の水蒸気供給ステーション20Bでは摂氏250~400度の水蒸気を供給し、第三の水蒸気供給ステーション20Cでは摂氏400~700度の水蒸気を供給する。すると摂氏100~700度の段階的な熱処理が行わることになるが、これはプラスチック等の廃棄物に対して好適である。
なお水蒸気注入手段21の一部において水蒸気を輸送するガス管内に電気ヒーター3等を内蔵させれば、非常に高温な水蒸気を供給することも可能になる。
また水蒸気供給ステーション20A、20B、20Cのそれぞれは、該ステーションに輸送されてきた移動式処理タンクAに接続して排ガスを放出させる排ガス回収手段22を更に備えている。移動処理タンクに水蒸気を注入すると、水蒸気以外に、処理対象廃棄物が加熱、熱分解されて水素ガス、一酸化炭素ガス等の資源ガスや、ダイオキシン等の有毒ガスが発生する。
排ガス回収手段22は排ガスの拡散が防止されるように構成されており、その下流側にはガス分離手段、ガス吸着手段、蓄積手段やフィルター手段等が適宜設置される。なお水蒸気供給ステーション20のそれぞれにおいて発生する排ガスの種類はある程度予想できるので、それに対応して、前記ガス分離手段、蓄積手段、フィルター手段の種別や構成を最適化することも可能である。
排ガス回収手段22は排ガスの拡散が防止されるように構成されており、その下流側にはガス分離手段、ガス吸着手段、蓄積手段やフィルター手段等が適宜設置される。なお水蒸気供給ステーション20のそれぞれにおいて発生する排ガスの種類はある程度予想できるので、それに対応して、前記ガス分離手段、蓄積手段、フィルター手段の種別や構成を最適化することも可能である。
また水蒸気供給ステーション20A、20B、20Cの少なくとも1つは、該ステーションに輸送されてきた移動式処理タンクAに接続して廃液を放出させる廃液回収手段24を更に備えている。移動処理タンクに水蒸気を注入すると、処理対象廃棄物の一部が溶融、熱分解されて油脂、合成樹脂等が廃液として発生する。
廃液回収手段24は廃液の拡散が防止されるように構成されており、その下流側にはフィルター手段、液分離手段や、蓄積手段が適宜設置される。なお水蒸気供給ステーション20のそれぞれにおいて発生する廃液の種別はある程度予測できるので、それに対応して前記フィルター手段、液離手段、蓄積手段の種別や構成を最適化することも可能である。
廃液回収手段24は廃液の拡散が防止されるように構成されており、その下流側にはフィルター手段、液分離手段や、蓄積手段が適宜設置される。なお水蒸気供給ステーション20のそれぞれにおいて発生する廃液の種別はある程度予測できるので、それに対応して前記フィルター手段、液離手段、蓄積手段の種別や構成を最適化することも可能である。
また水蒸気供給ステーション20A、20B、20Cの少なくとも1つは、該ステーションに輸送されてきた移動式処理タンクAに接続してHHOガスを注入するHHOガス注入手段23を更に備えている。
前記のように特定の段階(例えば摂氏250~400度の水蒸気を注入する段階)でダイオキシン等の有毒ガスが発生する。ところがこの段階のときにHHOガスを注入すると、有毒ガスとHHOガスとの間に何らかの反応が生じて、有毒ガスの無害化、低毒化ができることがわかっている。
HHOガス注入手段23は、水の電気分解によって生成させたHHOガスを移動式処理タンクAに注入する。HHOガスは、水蒸気と分離して注入してもよいし、水蒸気と混合してから注入してもよい。
前記のように特定の段階(例えば摂氏250~400度の水蒸気を注入する段階)でダイオキシン等の有毒ガスが発生する。ところがこの段階のときにHHOガスを注入すると、有毒ガスとHHOガスとの間に何らかの反応が生じて、有毒ガスの無害化、低毒化ができることがわかっている。
HHOガス注入手段23は、水の電気分解によって生成させたHHOガスを移動式処理タンクAに注入する。HHOガスは、水蒸気と分離して注入してもよいし、水蒸気と混合してから注入してもよい。
また水蒸気供給ステーション20A、20B、20Cの下流側には、水ミスト供給ステーション30が更に配置されていてもよい。水ミスト供給ステーション30は、該ステーションに輸送されてきた移動式処理タンクAに接続して水ミストを注入する水ミスト注入手段31を備えている。水ミストは、常温の水に超音波を作用させて発生させるとよい。水ミストは熱処理されたあとの処理済廃棄物を冷却するためのものであり、処理済廃棄物はここで摂氏50~200度程度まで冷却される。
前記のように、廃棄物処理設備Bは、簡単な構造の移動式処理タンクA及び水蒸気供給ステーション20で構成されており、かつ水蒸気による段階的な熱処理が可能である。また水蒸気供給ステーション20で水蒸気を移動式処理タンクAに注入するとき、電気ヒーター3によって移動式処理タンクAの周壁部分14を電力等によって発熱させることにより、熱処理を効率的に行うことも可能である。
また水蒸気供給ステーション20のそれぞれで、水蒸気の注入量、温度、移動式処理タンクAの周壁温度、処理時間を適切に制御すれば、有毒ガス、有毒廃液の発生を抑えることも可能である。この場合、コンピューターに対して廃棄物の種別を予め設定し、その設定に応じてコンピューターが複数の水蒸気供給ステーション20、水ミスト供給ステーション30を並列にリモート制御するように自動化するとよい。
また水蒸気供給ステーション20のそれぞれで、水蒸気の注入量、温度、移動式処理タンクAの周壁温度、処理時間を適切に制御すれば、有毒ガス、有毒廃液の発生を抑えることも可能である。この場合、コンピューターに対して廃棄物の種別を予め設定し、その設定に応じてコンピューターが複数の水蒸気供給ステーション20、水ミスト供給ステーション30を並列にリモート制御するように自動化するとよい。
またこの廃棄物処理設備Bに、種々の資源回収手段を組み合わせ資源回収設備Cを構成することも可能である。
例えば移動式処理タンクAは、廃棄物放出口1bが下面側に設けられているので、資源回収設備Cは、経路Rの特定位置において移動式処理タンクAから放出落下された処理済廃棄物を受け入れて特定資源を回収するように構成できる。
この場合、図12に示すように、経路Rの特定位置において移動式処理タンクAら放出落下されてきた処理済廃棄物を、移動式パレット40に受け入れて、そのパレットを所定の経路Rに従って移動させ、その経路Rに沿って順番に配置された複数の資源回収ステーション50において、特定資源を回収するように構成してもよい。例えば鉄資源は、いずれかの資源回収ステーション50においてマグネットで吸着するようにして回収できる。
例えば移動式処理タンクAは、廃棄物放出口1bが下面側に設けられているので、資源回収設備Cは、経路Rの特定位置において移動式処理タンクAから放出落下された処理済廃棄物を受け入れて特定資源を回収するように構成できる。
この場合、図12に示すように、経路Rの特定位置において移動式処理タンクAら放出落下されてきた処理済廃棄物を、移動式パレット40に受け入れて、そのパレットを所定の経路Rに従って移動させ、その経路Rに沿って順番に配置された複数の資源回収ステーション50において、特定資源を回収するように構成してもよい。例えば鉄資源は、いずれかの資源回収ステーション50においてマグネットで吸着するようにして回収できる。
また前記排ガス回収手段22を通じて放出された排ガスから特定資源を回収するように構成してもよい。この場合、排ガス回収手段22の下流側に設けられた前記ガス分離手段、ガス吸着手段、蓄積手段やフィルター手段等が、資源回収設備Cを構成する。
あるいは前記廃液回収手段24を通じて放出された廃液から特定資源を回収するように構成されてもよい。この場合、廃液配収手段24の下流側に設けられた前記フィルター手段、液分離手段や、蓄積手段が、資源回収設備Cを構成する。
あるいは前記廃液回収手段24を通じて放出された廃液から特定資源を回収するように構成されてもよい。この場合、廃液配収手段24の下流側に設けられた前記フィルター手段、液分離手段や、蓄積手段が、資源回収設備Cを構成する。
図13は移動式処理タンクと水蒸気供給ステーションとの接続を説明する縦断面図、図14は移動式処理タンクと水ミスト供給ステーションとの接続を説明する縦断面図である。また図15(a)は移動式処理タンクに処理対象廃棄物を投入する状態を説明する縦断面図、図15(b)は移動式処理タンクから処理済廃棄物を排出する状態を説明する縦断面図である。
図13~図15(b)に示すように、移動式処理タンクAは、上面、下面に開閉自在な廃棄物投入口1a、廃棄物放出口1bが設けられた気密な本体容器1を備え、車輪を備えた台車41に搭載されている。上面、下面部分はステンレス合金等で形成され、周壁部分はステンレス合金(表面部)と断熱材(内部)で形成されている。断熱材はグラスウール、多孔質セラミック、耐熱煉瓦等を適宜用いればよい。
本体容器1の周壁部分の内面近傍に複数の電気ヒーター3が埋設されている。また周壁部分には、ガス注入口1c、電源コネクタ1i、ガス放出口1e、動力コネクタ1k、廃液放出口1f等が形成され、内部空間には攪拌羽1gが配置されている。
ガス注入口1cは、水蒸気供給ステーション20に設けられた水蒸気注入手段21と着脱自在であり、水蒸気や排ガスの周囲への漏出を防止するための逆流防止弁(図示なし)を備えている。またガス注入口1cは、水ミスト供給ステーション30に設けられた水ミスト注入手段31とも着脱自在である。
なおガス注入口1cの個数は特に制限されず、2以上であってもよい。またガス注入口1cの位置も特に制限されない。
なおガス注入口1cの個数は特に制限されず、2以上であってもよい。またガス注入口1cの位置も特に制限されない。
電源コネクタ1iは、水蒸気供給ステーション20に設けられた電源装置(図示なし)から導出された電源ケーブル26と着脱自在であり、電源装置から供給された電力によって電気ヒーター3が発熱される。水蒸気供給ステーション20から供給する水蒸気と略同温度まで電気ヒーター3によって移動式処理タンクAの周壁部分14を発熱させれば、水蒸気の温度低下が生じにくく熱処理が効率的になる。
ガス放出口1eは、水蒸気供給ステーション20、水ミスト供給ステーション30の排ガス回収手段22と着脱自在であり、水蒸気や排ガスの周囲への漏出を防止するための逆流防止弁(図示なし)を備えている。なおガス放出口1eの個数は特に制限されず、2以上であってもよい。またガス放出口1eの位置も特に制限されない。
動力コネクタ1kは、水蒸気供給ステーション20、水ミスト供給ステーション30に設けられた動力供給手段25に着脱自在であり、動力供給手段25の駆動力によって攪拌羽1gが回動される。水蒸気による熱処理中に、攪拌羽1gによって廃棄物をかき混ぜ粉砕することにより、効率的な熱処理が可能になる。
廃液放出口1fは、水蒸気供給ステーション20に設けられた廃液回収手段24と着脱自在であり、廃液の周囲への漏出を防止するための逆流防止弁(図示なし)を備えている。
図16は移動式処理タンクの他例の構造を示す全体斜視透過図である。
この移動式処理タンクAは複数のガス注入口1cを備える点が特徴である。具体的にはガス注入口1cは移動式処理タンクA前面、後面にそれぞれ1つずつ設けられている。ガス注入口15の先端は移動式処理タンクAの内部空間で底面に向かうノズルになっている。またガス放出口1eは移動式処理タンクAの前面に1つ設けられている。
攪拌羽1gは移動式処理タンクAの内部空間を横断するように2つ平行に配置されている。攪拌羽Sの両端は軸受Bによって支持されており、その一方の軸受は動力コネクタ1kになっている。
この移動式処理タンクAは複数のガス注入口1cを備える点が特徴である。具体的にはガス注入口1cは移動式処理タンクA前面、後面にそれぞれ1つずつ設けられている。ガス注入口15の先端は移動式処理タンクAの内部空間で底面に向かうノズルになっている。またガス放出口1eは移動式処理タンクAの前面に1つ設けられている。
攪拌羽1gは移動式処理タンクAの内部空間を横断するように2つ平行に配置されている。攪拌羽Sの両端は軸受Bによって支持されており、その一方の軸受は動力コネクタ1kになっている。
図17は、移動式処理タンクに組み込まれる電気ヒーターの透視図である。
この図に示すように、電気ヒーター3は、耐熱塗装されたステンレス合金をコイル状に巻いた発熱3bを銅の支持管3cに収容した構造になっている。支持管3cは、熱伝導性を高めるとともに、発熱体3cの変形や塗装剥がれを防止するためのものである。このような構成にすることで耐久性がよくなる。また板状のステンレス合金であればコイル状に巻くことが容易であり、その幅によって電気抵抗も自在に設定できる。
この図に示すように、電気ヒーター3は、耐熱塗装されたステンレス合金をコイル状に巻いた発熱3bを銅の支持管3cに収容した構造になっている。支持管3cは、熱伝導性を高めるとともに、発熱体3cの変形や塗装剥がれを防止するためのものである。このような構成にすることで耐久性がよくなる。また板状のステンレス合金であればコイル状に巻くことが容易であり、その幅によって電気抵抗も自在に設定できる。
A 移動式処理タンク
B 廃棄物処理設備
C 資源回収設備
R 経路
1 本体容器
1a 廃棄物投入口
1b 廃棄物放出口
1c ガス注入口
1d ノズル
1e ガス放出口
1f 廃液放出口
1g 攪拌羽
1i 電源コネクタ
1j 脚部
1k 動力コネクタ
3 電気ヒーター
3b 発熱体
3d 支持枠
3c 支持管
20A、20B、20C 水蒸気供給ステーション
21 水蒸気注入手段
22 排ガス回収手段
23 HHOガス注入手段
24 廃液回収手段
25 動力供給手段
30 水ミスト供給ステーション
31 水ミスト注入手段
40 移動手段
41 台車
B 廃棄物処理設備
C 資源回収設備
R 経路
1 本体容器
1a 廃棄物投入口
1b 廃棄物放出口
1c ガス注入口
1d ノズル
1e ガス放出口
1f 廃液放出口
1g 攪拌羽
1i 電源コネクタ
1j 脚部
1k 動力コネクタ
3 電気ヒーター
3b 発熱体
3d 支持枠
3c 支持管
20A、20B、20C 水蒸気供給ステーション
21 水蒸気注入手段
22 排ガス回収手段
23 HHOガス注入手段
24 廃液回収手段
25 動力供給手段
30 水ミスト供給ステーション
31 水ミスト注入手段
40 移動手段
41 台車
Claims (3)
- 上面に開閉自在な廃棄物投入口、底面に開閉自在な廃棄物放出口が設けられ、容器壁面に電気ヒーターが内蔵された本体容器と、
この本体容器の内部に配置された攪拌羽と、
前記電気ヒーターを電力供給手段に自在に接続させる電源コネクタと、本体容器を過熱水蒸気供給手段に自在に接続させるガス注入口と、
攪拌羽の回転軸を動力供給手段に自在に接続させる動力コネクタと、
本体容器を排ガス回収手段に自在に接続させるガス放出口とを備え、
前記本体容器を所定の経路に従って移動させる移動手段に組み合わせられるように構成されていることを特徴とする、廃棄物用の移動式処理タンク。 - 請求項1に記載の移動式処理タンクと、前記経路に沿って順番に配置された複数の水蒸気供給ステーションとで構成された廃棄物処理設備であって、
複数の水蒸気供給ステーションのそれぞれは、該ステーションに輸送されてきた移動式処理タンクに接続して所定温度の水蒸気を注入する水蒸気注入手段を備えていることを特徴とする、移動タンク式の廃棄物処理設備。 - 請求項2に記載の廃棄物処理設備に付加される資源回収設備であって、
前記経路の特定位置において前記廃棄物放出口から放出落下された処理済廃棄物を受け入れて特定資源を回収するように構成されていることを特徴とする資源回収設備。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-219937 | 2020-12-30 | ||
JP2020219937A JP2022104844A (ja) | 2020-12-30 | 2020-12-30 | 過熱水蒸気を用いた移動タンク式廃棄物処理設備 |
JP2020-219936 | 2020-12-30 | ||
JP2020219936A JP2022104843A (ja) | 2020-12-30 | 2020-12-30 | 有機廃棄物の過熱水蒸気処理装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2022145478A2 true WO2022145478A2 (ja) | 2022-07-07 |
WO2022145478A3 WO2022145478A3 (ja) | 2022-09-01 |
Family
ID=82261145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/048982 WO2022145478A2 (ja) | 2020-12-30 | 2021-12-28 | 移動式処理タンク、廃棄物処理設備及び資源回収設備 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022145478A2 (ja) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000313884A (ja) * | 1999-03-03 | 2000-11-14 | Toyoda Techno Kk | 廃棄物の処理方法 |
WO2008113209A1 (fr) * | 2007-03-20 | 2008-09-25 | Jun Yang | Appareil et procédé pour l'élimination des déchets biologiques |
JP2008260832A (ja) * | 2007-04-11 | 2008-10-30 | Micro Energy:Kk | 廃棄物再生処理方法及び廃棄物再生処理システム |
JP2009087504A (ja) * | 2007-10-03 | 2009-04-23 | Tomoaki Ito | 情報記憶媒体破壊装置 |
JP2009263728A (ja) * | 2008-03-17 | 2009-11-12 | Hyo Sok Ahn | 還元処理方法及び還元処理装置 |
JP5311591B2 (ja) * | 2010-10-18 | 2013-10-09 | 国立大学法人信州大学 | 分離回収装置および分離回収方法 |
JP5891082B2 (ja) * | 2012-03-26 | 2016-03-22 | 学校法人同志社 | 炭素繊維の回収方法 |
JP2019013915A (ja) * | 2017-07-07 | 2019-01-31 | 海山 操 | 過熱水蒸気資源回収リサイクル設備 |
JP2021055938A (ja) * | 2019-09-30 | 2021-04-08 | 海山 操 | 炉の構造 |
-
2021
- 2021-12-28 WO PCT/JP2021/048982 patent/WO2022145478A2/ja active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2022145478A3 (ja) | 2022-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102831945B (zh) | 热等离子体处理低、中水平放射性固体废弃物装置与方法 | |
US7832344B2 (en) | Method and apparatus of treating waste | |
US9498807B2 (en) | Heat treatment method, heat-treating furnace, and heat treatment system | |
JP7510705B2 (ja) | 熱分解装置 | |
KR100572241B1 (ko) | 재자원화 방법 및 시스템, 컨테이너 | |
US10317070B2 (en) | Integrated combustion device power saving system | |
WO2022145478A2 (ja) | 移動式処理タンク、廃棄物処理設備及び資源回収設備 | |
KR101553475B1 (ko) | 플라즈마를 이용하여 구리함유폐기물로부터 유가금속을 회수하는 방법 | |
JP2022104844A (ja) | 過熱水蒸気を用いた移動タンク式廃棄物処理設備 | |
CN105992838B (zh) | 利用过量热进行电化学反应的系统 | |
CN117847545A (zh) | 一种低热值废气燃烧系统 | |
JP2022104843A (ja) | 有機廃棄物の過熱水蒸気処理装置 | |
CN207455597U (zh) | 等离子熔炉 | |
CN217437768U (zh) | 锂电负极材料的连续式石墨化炉及生产系统 | |
CN210624542U (zh) | 一种新型电加热油漆废渣处理装置 | |
CN210358515U (zh) | 油漆废渣处理炭化反应器 | |
CN207446941U (zh) | 等离子危废处理系统的螺旋式进料装置 | |
CN103008325B (zh) | 一种垃圾分解处理装置 | |
JP2004249203A (ja) | 被処理物処理システムおよび被処理物処理方法 | |
JP2006336955A (ja) | 医療系廃棄物の処理方法およびその処理設備 | |
CN113019263B (zh) | 一种SiOX@C复合材料热处理方法和系统 | |
JPH1036857A (ja) | 廃プラスチック熱減容分解装置 | |
JP2004156863A (ja) | 廃棄物処理設備と処理方法 | |
CN116514061A (zh) | 一种含氢有机液的放氢设备 | |
JPH04324001A (ja) | 発電プラント |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21915336 Country of ref document: EP Kind code of ref document: A2 |