WO2022145109A1 - Die-casting manufacturing method and apparatus - Google Patents

Die-casting manufacturing method and apparatus Download PDF

Info

Publication number
WO2022145109A1
WO2022145109A1 PCT/JP2021/038260 JP2021038260W WO2022145109A1 WO 2022145109 A1 WO2022145109 A1 WO 2022145109A1 JP 2021038260 W JP2021038260 W JP 2021038260W WO 2022145109 A1 WO2022145109 A1 WO 2022145109A1
Authority
WO
WIPO (PCT)
Prior art keywords
runner
pressurizing means
pressurizing
cavity
die casting
Prior art date
Application number
PCT/JP2021/038260
Other languages
French (fr)
Japanese (ja)
Inventor
典裕 岩本
理 長澤
圭司 谷口
Original Assignee
株式会社ダイレクト21
リョービ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020219547A external-priority patent/JP7090254B1/en
Priority claimed from JP2021067389A external-priority patent/JP2022162483A/en
Application filed by 株式会社ダイレクト21, リョービ株式会社 filed Critical 株式会社ダイレクト21
Priority to CN202180094708.6A priority Critical patent/CN117500621A/en
Publication of WO2022145109A1 publication Critical patent/WO2022145109A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies

Definitions

  • the present invention relates to a die casting manufacturing method and an apparatus, and more particularly to a die casting manufacturing method and an apparatus capable of accurately pressurizing a runner which is a molten metal inlet / outlet of a mold toward a cavity.
  • the casting method for die-cast products is to push molten metal such as aluminum into the cavity made with a mold with a plunger, cool the product in a shape that follows the cavity, and then take it out for casting.
  • a method of further pressurizing the runner has been proposed in accordance with the pressurizing operation of the plunger so that a nest is not formed when the product is cooled and molded.
  • the runner consists of a runner part along the extrusion direction of the diversion element connected to the plunger and a rising runner part where the runner orthogonal to this and directly connected to the cavity rises upward, but locally pressurizes the molten metal in the runner.
  • a pressure pin is provided in the rising runner section that is directly connected to the cavity, and after the molten metal filling and pressure increase in the cavity by the plunger is completed, the pressure pin that enters and exits the runner is operated to further pressurize.
  • a cylinder-shaped portion is processed and installed in a runner portion directly connected to a cavity, and a gap between the inner diameter thereof and the outer diameter of a pressure pin is formed.
  • the diameter is set to 0.5 to 3.0 mm so that the backflow prevention function is exhibited and the pushing effect can be obtained.
  • a cylinder-shaped part is processed and installed in the runner part, and a pressure pin is pushed in to divide the runner into a runner part that is directly connected to the product part and a runner part that is connected to the plunger, thereby realizing a backflow prevention function.
  • Patent Document 1 and Patent Document 2 pay attention to the fact that the pressurization from the runner portion is performed by installing a pressurizing pin in the direction perpendicular to the mold opening direction in the rising runner portion near the shunt.
  • a pressurizing pin In die casting product casting, especially when the product shape is complicated, it is often the case that multiple branch runners are provided so that the molten metal spreads as evenly as possible throughout the cavity along the product shape. Pressurization from the rising runner part closest to the shunt is premised.
  • This technology provides a die-casting method and equipment that can produce die-cast products with high product density by secondarily pressurizing the runner with high pressure after the injection of the molten metal by the plunger and continuously applying high pressure to the molten metal to solidify it. It is what we are trying to provide.
  • the rising runner part is processed to provide a cylinder on which the pressure pin slides, and between the inner diameter and the outer diameter of the pressure pin.
  • the gap is set to a value that has the effect of preventing backflow, the method focusing only on the existing gap has the following problems and is not realistic.
  • the product is taken out after casting by grasping the biscuit part, but the product part and biscuit part of the cast product solidified by pushing the pressure pin into the cylinder installed by processing the runner part are the cylinder inner diameter and pressurization. It is in a state of being connected by a thin cylindrical shape formed by a gap with the outer diameter of the pin. Therefore, if the moving length L of the pressure pin of the runner part that moves the rising runner part cylinder becomes long, the strength of the part connecting the biscuit part and the product decreases, and it is damaged at the time of taking out the product and the product taking out fails continuously. Production will be hindered.
  • the flow rate Q of the annular gap is proportional to the cube of the annular gap ⁇ and inversely proportional to its length L. Therefore, reducing the gap ⁇ is effective in preventing backflow, and the limit value at which pressure can be applied to the product portion by the pressure pin from the runner portion is determined by this gap ⁇ and its length L.
  • the amount of movement of the pressure pin is determined by the predicted amount of cavities generated in the product part.
  • the shrinkage rate of aluminum is 6%, and it is necessary to move the pressure pin to push in the molten metal of about 6% of the product volume in order to prevent the occurrence of shrinkage cavities.
  • the value of the gap ⁇ between the rising runner section and the pressurizing pin, the movement amount L of the pressurizing pin, and the biscuits and products required for product removal after backflow casting It is necessary to set the optimum value of the three elements of strength that connect the two, and continuous casting is difficult only with the element that the gap ⁇ between the inner diameter of the rising runner and the outer diameter of the pressure pin is 0.5 to 3.0 mm. There is a problem that the expected effect cannot be obtained.
  • the present invention is configured as follows in order to solve the above problems. That is, in the die casting manufacturing method according to the present invention, after the molten metal is injected into the molded mold by the first pressurizing means, the cylinder-shaped portion is processed and installed in the runner directly connected to the cavity by the second pressurizing means.
  • the second pressurization is performed by the pressurizing pin that moves there, but the second pressurization is performed while preventing the backflow of the molten metal by providing an orifice with a convex groove in the cylinder of the second pressurizing means and using a metal seal at the orifice part. It is characterized in that the cavity is pressurized by a pressurizing means.
  • the convex groove orifice has an effect of preventing backflow, and the length of the thin portion connecting the biscuit portion and the product portion after solidification can be minimized, and the strength can be improved.
  • the required stroke of the pressure pin of the runner part correlates with the expected capacity for shrinkage cavities and is determined by the volume of the product part. I could't.
  • the backflow prevention effect increases as the pressure pin stroke length increases.
  • the backflow prevention effect is determined only by the gap ⁇ and is not affected by the pressure pin stroke length. That is, the backflow effect determining factor changes from the variable value gap length L and the gap ⁇ that change with the stroke movement amount to the fixed value gap length L and the gap ⁇ , and is the optimum runner for obtaining a stable backflow prevention effect.
  • Part Pressurization pin Cylinder design is easy.
  • a pressure pin is installed on the specific branch runner where the density decrease occurs to pressurize the branch runner part. ..
  • the pressurizing pin is characterized in a direction perpendicular to or parallel to the plunger direction.
  • the molten metal is pushed at low speed through the runner part via the runner part until just before the product part (cavity), then switched to high speed and pushed into the cavity at once, and after filling is completed, the pressure is increased at about 70 MPa by the plunger. And cool.
  • secondary pressurization is performed by the pressurizing pin installed in the runner portion before and after the pressurization by the last plunger.
  • the cavity is already filled with molten metal due to filling with a plunger, and stroke movement for filling the molten metal is not required for secondary pressurization with a pressure pin, and the volume of the product part is to suppress the formation of cavities.
  • the secondary pressure that can be pressurized by the pressure pin from the runner part is determined by the size of the gap ⁇ composed of the inner diameter of the cylinder shape and the outer diameter of the pressure pin provided in the runner part and the length of the convex groove orifice part inside the cylinder.
  • the convex groove orifice part it is easy to grasp it as a "combination of the pressurization limit pressure and the gap ⁇ and the convex groove orifice part length", and it is easy to divert it as an experience value when designing a new mold.
  • a branch runner is installed in the product mold where a specific part where density reduction is likely to occur depending on the product shape, but in the conventional method, the pressurization is only the plunger, or the secondary pressurization from the runner part immediately after the shunting element. In either case, the pressure is applied to the entire product, so the pressure applied to the target portion is low.
  • the method of installing the pressure pin on the branch runner proposed this time has a great effect of improving the product density of the part because the pressure pin effect is directly connected to the target part. It is possible to set the timing at which the pressure pin is pushed in most effectively according to the characteristics of that part.
  • FIG. 1 shows a cross-sectional view of a main part of the die casting manufacturing apparatus according to the first embodiment.
  • the die casting manufacturing apparatus 10 includes a movable mold 14 attached to the moving plate 12 and a fixed mold 18 attached to the fixed plate 16, and is formed in a cavity 20 formed by abutting the molds 14 and 18.
  • the molten metal is injected to produce a product having a shape that resembles the cavity 20.
  • the product can be taken out from the cavity 20 by separating the molds 14 and 18 and operating the extrusion pin 22 provided on the back surface of the movable mold 14.
  • the hot water supply means 24 is arranged below the cavity 20 as an injection unit for supplying the molten metal to the cavity 20 of the die casting manufacturing apparatus 10.
  • This includes an injection sleeve 26 that is mounted horizontally through the fixing plate 16 and reaches the fixed mold 18, a plunger 28 disposed inside the injection sleeve 26, and a plunger 28 behind the plunger 28. It is composed of a first pressurizing means 30 including a pressurizing device (not shown) that can be pushed and pulled.
  • a runner 32 which is a passage leading to the cavity 20, is formed at the front end of the injection sleeve 26, and the runner 32 is directly connected to the shunter runner portion 34 extending substantially horizontally from the injection sleeve 26 and the lower part of the cavity 20.
  • the molten metal extruded by the plunger 28 of the first pressurizing means 30 passes through the shunter runner section 34 and is upward by the rising runner section 36, which is composed of the rising runner section 36 whose direction is changed upward. It is configured to turn to and inject into the cavity 20.
  • the rising runner portion 36 in such a runner 32 is provided with a second pressurizing means 38 for secondarily pressurizing the molten metal in the cavity 20.
  • the second pressurizing means 38 includes an actuator (hydraulic cylinder) 40 mounted on the lower portions of the dies 14 and 18, and a pressurizing pin attached so as to move in and out from the lower portion to the upper portion of the rising runner portion 36. It is composed of (actuating piston) 42.
  • the diameter d of the pressure pin 42 is made smaller than the inner diameter D of the rising runner portion 36 so that the pressure pin 42 can slide up and down in the rising runner portion 36. Therefore, the amount of press-fitting of the pressure pin 42 into the rising runner portion 36 improves the density of the product by the cavity 20.
  • the inner diameter thereof is particularly on the rising runner portion 36 side (B portion in FIG. 2) above the intersection (AB section in FIG. 2) between the rising runner portion 36 and the shunt runner portion 34.
  • An orifice 44 is formed to squeeze.
  • This is an annular protrusion 46 having a rectangular cross section formed on the inner diameter portion of the rising runner portion 36, and the height of the protrusion 46 (that is, the inner diameter dimension of the rising runner portion 36) is adjusted to the outer diameter d of the pressure pin 42 as much as possible. It is possible to make a metal seal in the gap.
  • the lower limit is the value when the metal seal is damaged.
  • the axial length L of the annular protrusion 46 is set to about 10 mm to ensure that the metal seal is performed.
  • the second pressurizing means 38 configured in this way starts pressurizing from the position shown in FIG. 3 (1) after the injection by the plunger 28 of the first pressurizing means 30 is completed, and the pressurizing pin 42 (FIG. 3 (2)), the upper molten metal is inserted into the orifice 44 portion to form a metal seal, and a shielding function is exhibited at that portion. Therefore, the metal seal at the orifice 44 portion increases the amount of molten metal filled in the cavity 20, and the pushing operation by the pressure pin 42 increases the stroke to complete the work (FIG. 3 (3)). ).
  • the annular projection 46 forming the orifice 44 may have a square cross section as in the embodiment, but may have a V-shaped or arc-shaped cross section. In this case, if the V-shaped or arc-shaped cutting edge is sharp, the metal seal cannot be removed, so it is desirable to have a shape with the tip cut off.
  • a cooling means can be arranged on the annular projection 46 forming the orifice 44. This can be done by the horizontal method, the water cooling method, or the oil cooling method, and when the injection by the first pressurizing means 30 is completed and the pressurization by the second pressurizing means 38 is applied to the annular projection 46 (FIG. 3 (FIG. 3). 2)) Cool it. This makes it easier to form a metal seal.
  • the annular projection 46 forming the orifice 44 may be formed as a separate component, and may be attached by an inset structure when forming the runner 32. This is because the runner 32 is split by the dividing line of the mold, so that it can be easily attached to the rising runner portion 36 having a semicircular structure. Further, the above embodiment can be applied to push the runner of the hot chamber and also to mold plastic.
  • the injection into the cavity 20 is performed by the first pressurizing means 30, and the second pressurizing means 38 is operated from the state where the runner 32 is filled with the molten metal. Then, while the pressurizing pin 42 reaches the intersection (FIG. 2A ⁇ B) between the shunt runner portion 34 and the rising runner portion 36, a normal pushing action is performed, but the shunting element runner portion 34 is cut off and the rising runner portion is cut. As soon as it reaches 36, it reaches the annular projection 46 portion, and the molten metal is solidified by the metal seal in the gap ⁇ , where the pressure is cut off (FIG. 3 (2)). Therefore, the runner molten metal on the cavity 20 side, which is located above the pressure pin 42 and has not yet solidified, is pushed toward the cavity 20 side against the background of the cutoff pressure.
  • the pressurizing pin 42 can be advanced more than the conventional stroke, and the second pressurizing means 38 can manufacture a more precise product.
  • the effect at this time is a weight increase of 1.7% when the molten metal is filled in the cavity 20 having the same volume, which is an amazing value in this industry.
  • Figures 4 to 5 show AsCast (die-cast products manufactured by die-casting equipment, branch runners to products) by partial ultra-high pressure according to this embodiment, and installation of ultra-high pressure pressure cylinders mounted on the specific branch runners.
  • a schematic front view and a schematic side view showing the position are shown.
  • the die-cast product 110 has the biscuit 112 extruded from the plunger side as the front end, and the runner, which is the passage from the biscuit 112 to the cavity, bends and rises upward (shunter base runner 114).
  • a plurality of runners are further branched (branched runners 116a, 116b, 116c, 116d), and gates 118a, 118b, 118c, 118d are formed at four locations of the die casting product 110. It is open through.
  • this branch runner 116a was selected as the runner connected to the intended product part.
  • the second pressurizing means 122 (see FIG. 6) provided in the selected branch runner 116a is used.
  • the secondary pressurization is performed at an ultra-high pressure that is about four times the primary pressurization.
  • a runner is formed to serve as a passage leading to the cavity 128, which is composed of a shunt base runner 114 before branching and four branch runners 116a, 116b, 116c, 116d, followed by the branch runners 116a, 116b, 116c, 116d.
  • the gates 118a, 118b, 118c, and 118d inject molten metal into the cavity 128 to form the die-cast product 110.
  • the die-cast product 110 has a problem that many nests are generated in the product portion ejected from the branch runner 116a at the left end of FIG.
  • the branch runner 116a is selected, and the secondary pressurization is performed by the selected branch runner 116a portion.
  • the second pressurizing means 122 is arranged on the mold clamping surface of the mold, and the operating direction of the pressurizing pin 134 constituting the second pressurizing means 122 is defined as the pushing direction of the plunger 132. It is set to be orthogonal to the upward direction (see FIG. 5).
  • the selective branch runner 116a is a first shunt runner 136 that is branched from a shunt base runner 114 that is substantially extended from the injection sleeve 130 and extends diagonally upward, followed by a vertical. It has a bent shape consisting of a rising runner 138 following.
  • the rising runner 138 is connected by turning upward so as to be finally directly connected to the lower part of the cavity 128, and the molten metal extruded by the plunger 132 passes through the shunter base runner 114 and is connected by the rising runner 138. It is configured to turn upward and inject from the gate 118a into the cavity 128.
  • the first shunting runner 136 in such a branch runner 116a is provided with a second pressurizing means 122 for secondarily pressurizing the molten metal in the cavity 128.
  • the second pressurizing means 122 is provided along the mold clamping surface, and is provided from the lower actuator 140 and the pressurizing pin 134 attached so as to move in and out along the rising runner 138 (pressurizing path). It is configured.
  • the stroke amount of the pressurizing pin 134 in the rising runner 138 of the selective branch runner 116a becomes a hot water pool required for secondary pressurization.
  • the diameter d of the pressure pin 134 is made smaller than the inner diameter D of the rising runner 138 so that the pressure pin 134 can slide up and down in the rising runner 138. Therefore, the amount of press-fitting of the pressure pin 134 into the rising runner 138 (the amount of hot water that is pushed away) improves the density of the product due to the cavity 128.
  • the first shunting runner 136 side (FIG. 6) from the intersection of the first shunting runner 136 and the rising runner 138 (AB section in FIG. 6) in the selected branch runner 116a.
  • An orifice 144 is formed in the B portion) to narrow the inner diameter thereof.
  • an annular protrusion 146 having a rectangular cross section is formed on the inner diameter portion of the rising runner 138, and the height of the annular protrusion 146 is adjusted to the outer diameter d of the pressure pin 134 as much as possible so that a metal seal can be formed here. ing.
  • the gap between the pressure pin 134 and the annular protrusion 146 in the rising runner 138 is empirically about 1 mm from which the metal sealing effect by solidification of the molten metal can be obtained.
  • This optimum value varies depending on the axial length of the annular protrusion 146, the mold shape, the injection pressure, and the speed, but is often about 0.5 mm to 1.0 mm on average.
  • the axial length L of the annular protrusion 146 is often about 10 mm on average in order to obtain a high metal sealing effect, but it varies depending on the mold shape, injection pressure, speed, and the like. These ensure that the metal seal is performed.
  • the second pressurizing means 122 configured in this way is higher than the orifice 144 portion.
  • the molten metal is inserted to form a metal seal, which exerts a shielding function. Therefore, the metal seal at the orifice 144 portion increases the amount of molten metal filled in the cavity 128, and the pushing operation by the pressure pin 134 lengthens the stroke to complete the work.
  • the start time of the second pressurizing means 122 after the injection by the first pressurizing means 120 is completed (about 70 MPa) can be set by providing the control unit 148 (see FIG. 5).
  • the second pressurizing means 122 is started with a delay of about 0.1 seconds after the injection by the first pressurizing means is completed. In the example, it is about 0.1 second, but the optimum value of this delay time differs depending on various conditions such as the mold shape, the first pressurizing pressure, and the pressurizing speed, so it is determined by some trial.
  • the time of this device can be set by mSec order.
  • This time setting may be the time during which the metal seal at the injection port of the non-selective branch runners 116b, 116c, 116d not provided with the second pressurizing means 122 is exhibited.
  • the molten metal comes into contact with the mold and solidifies, and the part that does not come into contact is in a state of semi-solidification. Therefore, the partial pressurization by the second pressurizing means 122 is performed at an ultrahigh pressure (about 250 MPa) by performing the metal seal at the orifice 144 while aiming at the metal seal at the non-selective branch runners 116b, 116c, 116d. Can be done. That is, it is possible to partially pressurize about four times as much as the first pressurizing means 120.
  • the injection into the cavity 128 is performed by the first pressurizing means 120, and the second pressurizing means 122 is operated with a slight delay from the state where the runner 116a is filled with the molten metal. Then, while the pressurizing pin 134 reaches the intersection of the first shunt runner 136 and the rising runner 138 (FIG. 6A ⁇ B), the normal pushing action is performed, but the first shunt runner 136 is cut and the orifice 144 is cut. As soon as it reaches, the annular projection 146 reaches the portion, and the molten metal is solidified by the metal seal in the gap ⁇ , where the pressure is cut off.
  • the injection ports of the non-selective branch runners 116b to 116d are in a solidified state, and the mouth is closed. Therefore, the runner molten metal on the cavity 128 side, which is located above the pressure pin 134 and has not yet solidified, is pushed toward the cavity 128 side against the background of the cutoff pressure.
  • the pressurizing pin 134 can be advanced more than the conventional stroke, and the second pressurizing means 122 can produce a partially high-strength and more precise product.
  • the effect at this time is that when the cavity 128 of the same volume is filled with the molten metal, the weight increases by 1.7%, which is an amazing value in this industry.
  • the second pressurizing means 122 is arranged along the direction perpendicular to the plunger stroke (mold tightening surface), but the second pressurizing means 122 can be pressurized along the fixed mold 126 side. It may be provided.
  • Figures 7 to 8 show modified examples of this second embodiment.
  • the mold clamping line is perpendicular to the plate surface.
  • the plunger 132 which is the first pressurizing means 120, is configured to move from the front side to the back side in FIG. 7, and passes through the routes from the four branch runners 116a, 116b, 116c, 116d, and the die casting product 110. It will be extruded to.
  • the second pressurizing means 122 which is performed after the extrusion by the first pressurizing means 120 is completed, forms a runner formed in the selected branch runner 116a in parallel with the operating direction of the plunger 132, and is attached to the parallel runner 150.
  • the pressure is increased in parallel with the plunger 132.
  • the parallel runner 150 is provided with an orifice 144, on which the pressurizing pin 134 slides.
  • the pressurization start time by the second pressurizing means 122 is also slightly delayed after the completion of the injection by the first pressurizing means 120, and is configured to operate after the delay time set in the control unit 148 (see FIG. 5). This enables partial ultrahigh pressure (250 MPa) by the second pressurizing means 122.
  • the second pressurizing means 122 has the pressurizing pin 134 attached together with the actuator 140 in the fixed mold, but if this does not fit, the actuator 140 is located on the fixed plate side. May be extended and arranged.
  • the product has branch runners 116a to 116d from the beginning, but if a relatively large number of new nests are found in the product apart from the branch runner portion, the location is assumed.
  • a new branch runner may be provided, and the new runner portion may be subjected to partial pressurization (about 250 MPa) higher than the plunger pressure (about 70 MPa) by the second pressurizing means 122.
  • partial pressurization about 250 MPa
  • the plunger pressure about 70 MPa
  • a shunter base runner is used to combine these, and a second pressurizing means is provided on the shunter base runner, whereby the plurality of branch runners are formed. Secondary pressurization is also possible.
  • the second pressurizing means is operated after the first pressurizing means for injecting the molten metal into the die casting die completes the injection.
  • the time when the casting by the first pressurizing means for injecting the molten metal into the die-casting die is completed is grasped from the injection speed or the injection pressure of the first pressurizing means, and when the injection speed decreases or the injection pressure increases, the casting is performed.
  • a second pressurizing means for pressurizing the runner communicating with the cavity is operated. From this casting point to the operation of the second pressurizing means, the runner may be pressurized after the set time has elapsed.
  • the injection speed of the plunger rises to a certain speed as it approaches the completion of casting, and then a point that can be confirmed by the sudden start of descent, or a point that can confirm a sudden rise in the die casting machine chip pressure is sought, and a certain period of time is obtained from that point.
  • This can be achieved by activating the second pressurizing means after the lapse of time (about 0.1 seconds).
  • the stroke amount of the pressurizing pin of the secondary pressurizing means is measured.
  • a pressure cylinder that operates this pressure pin is built in, and here a cylinder body that measures the amount of discharged oil is provided in the hydraulic oil discharge path of the pressure cylinder, and a check valve is attached to the piston of this measurement cylinder body.
  • An orifice (throttle valve) is integrally provided, and drainage is provided via a solenoid valve in a path branching from the discharge path side of the pressure cylinder.
  • a cylinder body for measuring the amount of discharged oil is provided in the hydraulic oil discharge path of the pressure cylinder, and a check valve and an orifice (throttle valve) are provided in the path bypassing the measurement cylinder body to provide the local pressure cylinder.
  • a drain drain may be provided via a solenoid valve in the path branching from the discharge path side.
  • a cylinder body for measuring the amount of discharged oil is provided in the hydraulic oil discharge path of the pressure cylinder, and an orifice (throttle valve) is integrally provided with the piston of the measurement cylinder body from the discharge path side of the local pressure cylinder.
  • a drain drain may be provided in the branching path via a solenoid valve.
  • FIG. 9 shows an example of a stroke detection device provided in the discharge oil system of the pressure cylinder 410 having a built-in pressure pin 416.
  • the pressurizing cylinder 410 has a cylinder body 412 and a built-in piston 414, and a pressurizing pin 416 integrated with the piston 414 is projected from the cylinder body 412 to pressurize the cavity of a casting device (not shown). It is attached so that the pin 416 can be moved in and out.
  • the pressure pin 416 of the pressure cylinder 410 is inserted into the cavity just before the molten metal cast in the cavity solidifies, and the pressure pin 416 pressurizes the cavity by the volume pushed away.
  • hydraulic oil is supplied to the oil supply passage on the cylinder head side via the pump 418, the direction switching valve 420, and the throttle valve 422, and the hydraulic oil on the cylinder rod side passes through the direction switching valve 420. Then, it returns to the tank 424.
  • a stroke detection device 426 is provided between the hydraulic oil outlet of the pressure cylinder 410 and the direction switching valve 420 in order to measure the push stroke of the pressure cylinder 410. It is arranged and is designed to measure the amount of hydraulic oil discharged from the room on the cylinder rod side of the pressure cylinder 410.
  • the stroke detection device 426 is composed of a cylinder piston structure, which is composed of a cylinder body 428 and a piston 430 that can slide inside the cylinder body 428.
  • One chamber partitioned by the piston 430 of the cylinder body 428 is connected to the hydraulic oil outlet of the pressure cylinder 410, and the other chamber is connected to the direction switching valve 420.
  • the piston 430 is integrally provided with a pressure pin 432, which projects from one end of the cylinder body 428 and is connected to a linear potentiometer 434.
  • the operation start point of the pressurizing pin 432 is set to one end side (left end in FIG. 9) of the cylinder body 428, and at this time, coincides with the pressurizing start point (upper end in FIG. 9) of the piston 414 of the local pressurizing cylinder 410. There is. Therefore, when the pressure operation of the local pressure cylinder 410 is in the start position, the piston 430 of the stroke detection device 426 is located at the operation start point, and the piston of the stroke detection device 426 is located together with the pressure operation by the pressure cylinder 410. In 430, the hydraulic oil moves by injection and moves proportionally.
  • the linear potentiometer 434 is arranged in parallel with the pressurizing pin 432 and moves together with the pressurizing pin 432 to obtain the moving distance. Therefore, the movement of the pressure pin 432 appears as the output of the linear potentiometer 434.
  • a limit switch 436 is arranged at the operation start point of the pressure pin 432. The limit switch 436 is turned on when the pressurizing pin 32 is located at the operation start point, that is, the piston 430 is located at the left end of the cylinder body 428, whereby the stroke detection start position is detected.
  • the piston 430 is provided with a through hole that communicates the rooms partitioned by the piston 430, and a check valve 438 and an orifice (throttle valve) 439 are attached to the through hole.
  • This check valve 438 is a one-way valve that blocks the flow of hydraulic oil pushed out from the room where the hydraulic oil of the local pressure cylinder 410 enters to the room on the direction switching valve 420 side, and allows the flow in the opposite direction. Will be done.
  • the total amount of hydraulic oil when the local pressure cylinder 410 performs the pressurization operation is detected by the stroke detection device 426, and when the stroke detection device 426 returns to the origin position, that is, the operation start point, or the local pressure cylinder 410
  • the stroke detection device 426 returns to the origin position, that is, the operation start point, or the local pressure cylinder 410
  • the orifice (throttle valve) 439 regulates the flow rate of the check valve 438. Further, if the cracking pressure (spring force) of the check valve 438 is weak, the check valve flows in a state where the piston is stopped, so that the problem can be solved by reducing the flow rate.
  • the orifice (throttle valve) 439 may be a variable throttle, or may be a fixed throttle if necessary.
  • a branch path 440 leading to the tank 424 is provided in the path leading to the discharge oil outlet of the local pressure cylinder 410 and the stroke detection device 426, and the check valve 442 and the solenoid valve 444 are interposed in the branch path 440.
  • This branch path 440 acts as a drain drain, and when the pressurizing pin 432 of the stroke detection device 426 does not press the limit switch 436, it is considered that gas in the hydraulic oil in the path is mixed, and the limit switch 436 is set.
  • the solenoid valve 444 is operated every shot or periodically until it enters to vent the gas.
  • the direction switching valve 420 is switched, the return operation of the local pressurizing cylinder 410 is started, the pressure of the pump 418 is applied to the piston 430 of the stroke detection device 426, and the operation used for pressurization by the local pressurizing cylinder 410.
  • the entire amount of oil is pushed back.
  • the amount of push-back oil moves the piston 430 of the stroke detection device 426 to the origin position, and pushes the piston 414 of the local pressure cylinder 410 back to the origin position.
  • the stop position is detected by the limit switch 436, and the pump 418 stops and ends.
  • the check valve 438 is provided on the piston 430 of the stroke detection device 426, the amount of oil from the piston discharge path of the local pressure cylinder 410 to the stroke detection device 426 is reduced due to oil leakage or the like. If so, it is replenished through the check valve 438, and the piston 430 of the stroke detection device 426 and the piston 414 of the local pressure cylinder 410 are returned to the origin position.
  • the solenoid valve 444 provided in the branch path 440 is used for each shot or periodically. It is opened and the origin position of the piston 430 of the stroke detection device 426 and the piston 414 of the local pressurizing cylinder 410 are returned.
  • the check valve 438 and the orifice (throttle valve) 439 are provided on the piston 430, but this can be realized by the orifice (throttle valve) 439 alone.
  • FIG. 10 shows another example. This modification is different in that a bypass path 446 is provided in the cylinder body 428, and a check valve 438A and an orifice (throttle valve) 439A are provided in the bypass path 446. Even in this way, the same effect as in the previous example can be obtained. That is, when the amount of oil from the piston discharge path of the local pressure cylinder 410 to the stroke detection device 426 is low due to oil leakage or the like, it is replenished through this check valve 438A, and the piston 430 of the stroke detection device 426 or The origin position of the piston 414 of the local pressure cylinder 410 is returned to the original position.
  • a check valve 438A and an orifice (throttle valve) 439A are provided in the bypass path 446.
  • the present invention is a method and device capable of pressurizing a runner by a second pressurizing means following the plunger pressurization of the first pressurizing means for die casting production, and can improve the product density.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

Provided are a die-casting method and a die-casting apparatus that enable effective prevention of backward flow of molten metal when the pressure in a runner is to be increased after ejection of the molten metal by a plunger and thereby enable effective application of additional pressure to a product having been ejected into a cavity. The die-casting apparatus is provided with an ejection part comprising: a first pressure application means for ejecting molten metal into a die-casting die; a second pressure application means for applying pressure in a runner which is contiguous with a cavity; and an orifice which is formed in the surface of the runner that corresponds to a rising portion of the runner directly connected to the cavity. When a second pressure is to be applied by the second pressure application means through the runner directly connected to the cavity after ejection of the molten metal by the first pressure application means, the pressure application is carried out by the second pressure application means while backward flowing of the molten metal is prevented by the orifice in a pressure application channel of the second pressure application means.

Description

ダイカスト製造方法及び装置Die casting manufacturing method and equipment
 本発明はダイカスト製造方法及び装置に係り、特に金型の溶湯出入口であるランナーの加圧をキャビティに向かって的確に行うことができるダイカスト製造方法及び装置に関する。 The present invention relates to a die casting manufacturing method and an apparatus, and more particularly to a die casting manufacturing method and an apparatus capable of accurately pressurizing a runner which is a molten metal inlet / outlet of a mold toward a cavity.
 ダイカスト製品の鋳造方法は、金型で作ったキャビティにアルミ等の溶湯をプランジャーで押し込み、キャビティに倣った形状の製品を冷却後取り出すことで鋳造を行う。製品として冷却成形するときに巣が出来ないように、プランジャーを加圧動作することに合わせ、ランナーを更に加圧する方法が提案されている。 The casting method for die-cast products is to push molten metal such as aluminum into the cavity made with a mold with a plunger, cool the product in a shape that follows the cavity, and then take it out for casting. A method of further pressurizing the runner has been proposed in accordance with the pressurizing operation of the plunger so that a nest is not formed when the product is cooled and molded.
 ランナーは、プランジャーにつながる分流子の押し出し方向に沿うランナー部分とこれに直交しキャビティに直結するランナーが上方に立ち上がった立上りランナー部分とからなるが、ランナー内溶湯への局部的な加圧を行うために、キャビティに直結する立上りランナー部に出入りする加圧ピンを設け、プランジャーによるキャビティへの溶湯充填および増圧が完了した後にランナーに出入りする加圧ピンを作動させて更なる加圧を行うようにしている(特許文献1)。 The runner consists of a runner part along the extrusion direction of the diversion element connected to the plunger and a rising runner part where the runner orthogonal to this and directly connected to the cavity rises upward, but locally pressurizes the molten metal in the runner. In order to do this, a pressure pin is provided in the rising runner section that is directly connected to the cavity, and after the molten metal filling and pressure increase in the cavity by the plunger is completed, the pressure pin that enters and exits the runner is operated to further pressurize. (Patent Document 1).
 特許文献1のランナーからの加圧では、加圧部分とプランジャー先端チップ面がつながった状態となっており、加圧できる圧力はプランジャーが溶湯充填後に静止状態を維持できる耐圧圧力が限界となる。このプランジャーの耐圧限界を超えた圧力をランナー部に加えると、プランジャーが後退してしまいランナー部には耐圧限界以上の圧力を加えることができない。通常の鋳造機ではこの限界圧力は70MPa程度でありこれを超えた加圧ができない。このような観点から、特許文献2に掲げる技術が提案されており、キャビティに直結するランナー部にシリンダー形状部分を加工設置し、その内径と、加圧ピンの外径との間の隙間を、0.5~3.0mmとして、逆流防止機能を発揮させるようにし、押し込み効果が得られるようにしている。ランナー部にシリンダー形状部分を加工設置し加圧ピンを押し込んで、ランナーを製品部分に直結するランナー部とプランジャーにつながるランナー部に分断することで逆流防止機能を実現している。 In the pressurization from the runner of Patent Document 1, the pressurized portion and the tip surface of the plunger tip are connected, and the pressure that can be pressurized is limited to the pressure pressure that allows the plunger to maintain a stationary state after filling the molten metal. Become. If a pressure exceeding the pressure resistance limit of this plunger is applied to the runner portion, the plunger retracts and the pressure exceeding the pressure resistance limit cannot be applied to the runner portion. In a normal casting machine, this limit pressure is about 70 MPa, and pressurization exceeding this limit is not possible. From this point of view, the technique described in Patent Document 2 has been proposed. A cylinder-shaped portion is processed and installed in a runner portion directly connected to a cavity, and a gap between the inner diameter thereof and the outer diameter of a pressure pin is formed. The diameter is set to 0.5 to 3.0 mm so that the backflow prevention function is exhibited and the pushing effect can be obtained. A cylinder-shaped part is processed and installed in the runner part, and a pressure pin is pushed in to divide the runner into a runner part that is directly connected to the product part and a runner part that is connected to the plunger, thereby realizing a backflow prevention function.
 特許文献1および特許文献2共に、ランナー部からの加圧は、分流子直近の立上りランナー部に型開き方向と直行する方向の加圧ピンを設置して加圧することに着目している。ダイカスト製品鋳造では特に製品形状が複雑な場合に溶湯が製品形状に沿ったキャビティの全体にできるだけ均一に行き渡るよう複数の分岐ランナーを設ける場合が多くあるが、この場合もランナー部を加圧する際は分流子直近の立上りランナー部分からの加圧が前提となっている。 Both Patent Document 1 and Patent Document 2 pay attention to the fact that the pressurization from the runner portion is performed by installing a pressurizing pin in the direction perpendicular to the mold opening direction in the rising runner portion near the shunt. In die casting product casting, especially when the product shape is complicated, it is often the case that multiple branch runners are provided so that the molten metal spreads as evenly as possible throughout the cavity along the product shape. Pressurization from the rising runner part closest to the shunt is premised.
特開2000-117411JP 2000-117411 特開2011-224650JP 2011-224650
 上記既存技術に着目し、それの現状課題を改善するために課題を明確にする。本技術は、プランジャーによる溶湯射出終了後に二次的にランナーへ高圧で加圧を行ない、溶湯に高圧力を加え続けて凝固させることで製品密度の高いダイカスト製品を生産できるダイカスト方法及び装置を提供しようとするものである。ランナー部への高圧加圧を加えたことによるプランジャーの後退を回避するために立上りランナー部を加工して加圧ピンが摺動するシリンダーを設けてその内径と加圧ピン外径との間の隙間を逆流防止効果のある値に設定するが、既存の隙間のみに着目した方法では以下の不具合があり現実的ではない。通常鋳造後の製品取り出しは、ビスケット部を掴んで行われるが、ランナー部を加工して設置したシリンダーへ加圧ピンを押し込んで凝固した鋳造品の製品部とビスケット部は、シリンダー内径と加圧ピン外径との隙間で形成される肉厚の薄い円筒形で繋がれた状態となる。そのため、立上りランナー部シリンダーを移動するランナー部加圧ピンの移動長さLが長くなるとビスケット部と製品をつないでいる部分の強度が低下し、製品取り出し時に破損して製品取り出しに失敗し、連続生産に支障が生じる。一般的に、環状隙間の流量Qは環状隙間Δの3乗に比例し、その長さLに反比例する。したがって隙間Δを小さくすることは逆流防止に効果があり、ランナー部からの加圧ピンによる製品部分への加圧可能限界値はこの隙間Δおよびその長さLによって決定する。一方、加圧ピンの移動量は製品部分の鋳巣発生容積予測量によって決定される。アルミの収縮率は6%であり引け巣の発生防止には製品容積の6%程度の溶湯を押し込める加圧ピン移動が必要となる。ランナー部からの加圧による連続鋳造を可能とするためには、立上りランナー部と加圧ピンの隙間Δの値、加圧ピンの移動量L、逆流鋳造後の製品取り出しに必要なビスケットと製品をつなぐ強度の3要素の最適な値設定が必要となり、立上りランナーの内径と加圧ピンの外径との間の隙間Δを0.5~3.0mmとする要素だけでは連続鋳造は困難であり、期待する効果は得られないという課題がある。 Focusing on the above existing technology, clarify the issues in order to improve the current issues. This technology provides a die-casting method and equipment that can produce die-cast products with high product density by secondarily pressurizing the runner with high pressure after the injection of the molten metal by the plunger and continuously applying high pressure to the molten metal to solidify it. It is what we are trying to provide. In order to avoid the retracting of the plunger due to high pressure applied to the runner part, the rising runner part is processed to provide a cylinder on which the pressure pin slides, and between the inner diameter and the outer diameter of the pressure pin. Although the gap is set to a value that has the effect of preventing backflow, the method focusing only on the existing gap has the following problems and is not realistic. Normally, the product is taken out after casting by grasping the biscuit part, but the product part and biscuit part of the cast product solidified by pushing the pressure pin into the cylinder installed by processing the runner part are the cylinder inner diameter and pressurization. It is in a state of being connected by a thin cylindrical shape formed by a gap with the outer diameter of the pin. Therefore, if the moving length L of the pressure pin of the runner part that moves the rising runner part cylinder becomes long, the strength of the part connecting the biscuit part and the product decreases, and it is damaged at the time of taking out the product and the product taking out fails continuously. Production will be hindered. Generally, the flow rate Q of the annular gap is proportional to the cube of the annular gap Δ and inversely proportional to its length L. Therefore, reducing the gap Δ is effective in preventing backflow, and the limit value at which pressure can be applied to the product portion by the pressure pin from the runner portion is determined by this gap Δ and its length L. On the other hand, the amount of movement of the pressure pin is determined by the predicted amount of cavities generated in the product part. The shrinkage rate of aluminum is 6%, and it is necessary to move the pressure pin to push in the molten metal of about 6% of the product volume in order to prevent the occurrence of shrinkage cavities. In order to enable continuous casting by pressurization from the runner section, the value of the gap Δ between the rising runner section and the pressurizing pin, the movement amount L of the pressurizing pin, and the biscuits and products required for product removal after backflow casting. It is necessary to set the optimum value of the three elements of strength that connect the two, and continuous casting is difficult only with the element that the gap Δ between the inner diameter of the rising runner and the outer diameter of the pressure pin is 0.5 to 3.0 mm. There is a problem that the expected effect cannot be obtained.
 また、分岐ランナーを設けた金型では溶湯の流れ経路が複雑となるため製品全体への均一な溶湯充填、および製品全体への均一な増圧が困難でアンバランスが発生しやすく、特定の分岐ランナーにつながる製品部分に密度の低下が発生するという課題があった。従来の方法で分岐ランナー金型の分流子直近に加圧ピンを設置して製品密度向上を行うことも可能だが、加圧が製品全体に及ぶため製品密度の低い特定の分岐ランナーへの加圧効果が得られにくいという課題があった。また、単一ランナー金型に於いても製品の特定部分に鋳巣が発生する場合があった。この場合も、従来の方法で分岐ランナー金型の分流子直近に加圧ピンを設置して製品密度向上を行うことも可能だが、加圧が製品全体に及ぶため特定部分の製品密度向上効果が限定的となる課題があった。 In addition, in a mold provided with a branch runner, the flow path of the molten metal becomes complicated, so it is difficult to uniformly fill the entire product with the molten metal and uniformly increase the pressure on the entire product, and imbalance is likely to occur. There was a problem that the density of the product part connected to the runner decreased. It is possible to improve the product density by installing a pressurizing pin near the shunt element of the branch runner mold by the conventional method, but since the pressurization extends to the entire product, pressurization is applied to a specific branch runner with a low product density. There was a problem that it was difficult to obtain the effect. In addition, even in a single runner mold, cavities may occur in a specific part of the product. In this case as well, it is possible to improve the product density by installing a pressure pin near the shunt element of the branch runner mold by the conventional method, but since the pressure is applied to the entire product, the effect of improving the product density of a specific part is obtained. There were limited challenges.
 本発明は、上記課題を解決するため、以下のように構成したものである。すなわち、本発明に係るダイカスト製造方法は、型締された金型に第1加圧手段により溶湯を射出した後、第2加圧手段によりキャビティに直結するランナーにシリンダー形状部分を加工設置し、そこを移動する加圧ピンにて第2加圧を行うが、第2加圧手段のシリンダー内に凸溝によるオリフィスを設け、当該オリフィス部分でのメタルシールにより溶湯の逆流を防止しつつ第2加圧手段によりキャビティ加圧を成すことを特徴とする。この凸溝オリフィスにより逆流防止効果が得られ、また、凝固後のビスケット部と製品部分がつながる薄い部分の長さを極小化でき強度向上が可能となる。ランナー部の加圧ピン必要ストロークは、引け巣発生予想容量と相関しており製品部容積によって決まるが、従来は必要ストロークを得るためにビスケット部と製品部をつなぐ部分が長くなって強度が得られなかった。凸溝オリフィスを設置することで必要加圧ピンストローク長の影響を受けないで、隙間Δと凸溝オリフィス幅のみを決めることで逆流防止効果と製品取り出し時の折損防止強度の両方の効果を得ることができる。また、従来技術では加圧ピンがシリンダーに挿入された部分の隙間長さは加圧ピンの移動量によって変化する。環状隙間の流量Qは環状隙間Δの3乗に比例し、その長さLに反比例するため逆流防止効果は、加圧ピンストローク長が大きくなるほど大きくなる。一方凸溝オリフィスを設置した場合は、逆流防止効果は隙間Δのみで決定され加圧ピンストローク長の影響は受けない。すなわち逆流効果決定要素が、ストローク移動量と共に変化する可変値の隙間長さLと隙間Δから、固定値の隙間長さLと隙間Δになり、安定した逆流防止効果を得るための最適なランナー部加圧ピンシリンダー設計が容易になることを示している。 The present invention is configured as follows in order to solve the above problems. That is, in the die casting manufacturing method according to the present invention, after the molten metal is injected into the molded mold by the first pressurizing means, the cylinder-shaped portion is processed and installed in the runner directly connected to the cavity by the second pressurizing means. The second pressurization is performed by the pressurizing pin that moves there, but the second pressurization is performed while preventing the backflow of the molten metal by providing an orifice with a convex groove in the cylinder of the second pressurizing means and using a metal seal at the orifice part. It is characterized in that the cavity is pressurized by a pressurizing means. The convex groove orifice has an effect of preventing backflow, and the length of the thin portion connecting the biscuit portion and the product portion after solidification can be minimized, and the strength can be improved. The required stroke of the pressure pin of the runner part correlates with the expected capacity for shrinkage cavities and is determined by the volume of the product part. I couldn't. By installing the convex groove orifice, it is not affected by the required pressure pin stroke length, and by determining only the gap Δ and the convex groove orifice width, both the backflow prevention effect and the breakage prevention strength at the time of product removal are obtained. be able to. Further, in the prior art, the gap length of the portion where the pressure pin is inserted into the cylinder changes depending on the amount of movement of the pressure pin. Since the flow rate Q of the annular gap is proportional to the cube of the annular gap Δ and inversely proportional to its length L, the backflow prevention effect increases as the pressure pin stroke length increases. On the other hand, when the convex groove orifice is installed, the backflow prevention effect is determined only by the gap Δ and is not affected by the pressure pin stroke length. That is, the backflow effect determining factor changes from the variable value gap length L and the gap Δ that change with the stroke movement amount to the fixed value gap length L and the gap Δ, and is the optimum runner for obtaining a stable backflow prevention effect. Part Pressurization pin Cylinder design is easy.
 また、特定の分岐ランナーにつながる製品部分に密度の低下が発生することに対する解決手段として、密度の低下が発生する特定の分岐ランナーに加圧ピンを設置して分岐ランナー部を加圧する手段を行う。この加圧ピンは、プランジャー方向と直行あるいは平行な方向であることを特徴とする。分岐ランナー設計時に製品密度を向上させたい部分の直近の分岐ランナーと分流子部分ランナーがつながる溶湯経路途中部分にプランジャー方向と直行あるいは平行な方向に折り曲がる部分を設けその部分に立上りランナー部に加工設置したシリンダー、及び加圧ピンと同様のかたちでシリンダー、及び加圧ピンを加工設置する。シリンダーには凸溝オリフィスを設置して逆流防止効果を得る。このことで加圧ピンを設置した分岐ランナーにつながる部分の製品密度向上が可能となる。単一ランナー金型の製品の特定部分の密度を向上させたい場合も、その部分につながる分岐ランナーを新規に追加加工し、その部分に前記と同様にシリンダー、加圧ピンを設置することで特定部分の製品密度向上が可能となる。
 更に、シリンダー凸溝オリフィス部分に空冷・水冷若しくは油冷の冷却手段を設けて溶湯を凝固(半凝固)させることも有効である。
In addition, as a solution to the problem that the density of the product part connected to the specific branch runner decreases, a pressure pin is installed on the specific branch runner where the density decrease occurs to pressurize the branch runner part. .. The pressurizing pin is characterized in a direction perpendicular to or parallel to the plunger direction. When designing a branch runner, a part that bends in the direction perpendicular to or parallel to the plunger direction is provided in the middle of the molten metal path where the nearest branch runner and the shunt runner are connected to the part where the product density is to be improved. Process and install the cylinder and pressure pin in the same way as the installed cylinder and pressure pin. A convex groove orifice is installed in the cylinder to prevent backflow. This makes it possible to improve the product density of the part connected to the branch runner on which the pressure pin is installed. If you want to improve the density of a specific part of a single runner mold product, you can specify it by newly processing a branch runner connected to that part and installing a cylinder and pressure pin in that part in the same way as above. It is possible to improve the product density of parts.
Further, it is also effective to provide an air-cooled / water-cooled or oil-cooled cooling means in the cylinder convex groove orifice portion to solidify (semi-solidify) the molten metal.
 既存のダイカスト鋳造機ではプランジャーによりランナー部経由で製品部分(キャビティ)直前まで溶湯を低速で押し込み、その後高速に切り替えて一気にキャビティ内に押し込み、充填完了後にプランジャーにより70MPa程度の圧力で増圧して冷却を行う。今回考案の構成によれば、最後のプランジャーによる増圧の前後にランナー部に設置した加圧ピンにより二次的加圧を行う。プランジャーによる充填によりキャビティ内は既に溶湯が充満した状態となっており、加圧ピンによる二次的な加圧では溶湯充填のためのストローク移動は不要で鋳巣発生抑制のために製品部容積の引け巣発生率6%以内程度の溶湯充填ストロークがあれば良い。従って、高圧をかけやすい小さな径の加圧ピンにより大きな圧力をかけることが可能となり、おおよそ鋼材強度限界の250MPa程度の加圧が可能である。従来の方法で、冷却時に製品部に加わっていた圧力70MPaが250MPaとなり、製品密度を大きく向上させる効果がある。ランナー部からの加圧ピンによる二次的加圧可能圧力は、ランナー部に設けたシリンダー形状内径と加圧ピン外径で構成される隙間△の大きさとシリンダー内部の凸溝オリフィス部長さで決定されるが、凸溝オリフィス部を設けたことで加圧限界圧力と「隙間△と凸溝オリフィス部長さの組合わせ」として捉えやすく、新規金型設計時に経験値として流用しやすい。 In the existing die casting machine, the molten metal is pushed at low speed through the runner part via the runner part until just before the product part (cavity), then switched to high speed and pushed into the cavity at once, and after filling is completed, the pressure is increased at about 70 MPa by the plunger. And cool. According to the configuration devised this time, secondary pressurization is performed by the pressurizing pin installed in the runner portion before and after the pressurization by the last plunger. The cavity is already filled with molten metal due to filling with a plunger, and stroke movement for filling the molten metal is not required for secondary pressurization with a pressure pin, and the volume of the product part is to suppress the formation of cavities. It suffices if there is a molten metal filling stroke with a shrinkage nest occurrence rate of about 6% or less. Therefore, it is possible to apply a large pressure by a pressure pin having a small diameter that easily applies a high pressure, and it is possible to pressurize about 250 MPa, which is the limit of the strength of the steel material. By the conventional method, the pressure of 70 MPa applied to the product part at the time of cooling becomes 250 MPa, which has the effect of greatly improving the product density. The secondary pressure that can be pressurized by the pressure pin from the runner part is determined by the size of the gap Δ composed of the inner diameter of the cylinder shape and the outer diameter of the pressure pin provided in the runner part and the length of the convex groove orifice part inside the cylinder. However, by providing the convex groove orifice part, it is easy to grasp it as a "combination of the pressurization limit pressure and the gap Δ and the convex groove orifice part length", and it is easy to divert it as an experience value when designing a new mold.
 製品形状により密度低下が発生しやすい特定部分が生じてしまう製品金型に分岐ランナーを設置するが、従来方法では加圧がプランジャーのみ、あるいはそれに分流子直後のランナー部からの二次加圧を加えた加圧鋳造するが、いずれの場合も加圧は製品全体に及ぶためねらった部分への加圧が低くなる。今回提案の分岐ランナーに加圧ピンを設置する方法では、加圧ピン効果がねらった部分へ直結するためその部分の製品密度向上効果が大きい。加圧ピン押し込みタイミングもその部分の特性に合わせて最も効果が出るタイミング設定が可能となる。分岐ランナー部へ設置するシリンダー形状部加工にも凸溝オリフィス部を設けることで加圧限界圧力と「隙間△と凸溝オリフィス部長さの組合わせ」との関係として捉えやすくなる。 A branch runner is installed in the product mold where a specific part where density reduction is likely to occur depending on the product shape, but in the conventional method, the pressurization is only the plunger, or the secondary pressurization from the runner part immediately after the shunting element. In either case, the pressure is applied to the entire product, so the pressure applied to the target portion is low. The method of installing the pressure pin on the branch runner proposed this time has a great effect of improving the product density of the part because the pressure pin effect is directly connected to the target part. It is possible to set the timing at which the pressure pin is pushed in most effectively according to the characteristics of that part. By providing the convex groove orifice portion in the processing of the cylinder shape portion installed in the branch runner portion, it becomes easy to grasp the relationship between the pressurizing limit pressure and the "combination of the gap Δ and the convex groove orifice portion length".
実施例に係るダイカスト製造装置の要部断面図である。It is sectional drawing of the main part of the die casting manufacturing apparatus which concerns on Example. 図1のダイカスト製造装置の射出部の溶湯断面図である。It is sectional drawing of the molten metal of the injection part of the die casting manufacturing apparatus of FIG. 第2加圧手段による動作系統図である。It is an operation system diagram by the 2nd pressurizing means. 第2実施例に係る超高圧によるダイカスト製造装置によるダイカスト製品のランナーを含む射出された概略正面図である。It is a schematic front view which included the runner of the die-casting product by the die-casting manufacturing apparatus by the ultra-high pressure which concerns on 2nd Embodiment. 図4の概略側面図である。It is a schematic side view of FIG. 分岐ランナー部分に取り付けられる第2加圧手段の断面図である。It is sectional drawing of the 2nd pressurizing means attached to the branch runner part. 他の変形例に係る超高圧によるダイカスト製造装置によるダイカスト製品のランナーを含む射出された概略正面図である。It is a schematic front view which included the runner of the die-casting product by the die-casting manufacturing apparatus by the ultra-high pressure which concerns on another modification. 図7の概略側面図である。It is a schematic side view of FIG. ストローク検出装置の油圧系統図である。It is a hydraulic system diagram of a stroke detection device. ストローク検出装置の変形例に係る油圧系統図である。It is a hydraulic system diagram which concerns on the modification of the stroke detection apparatus.
 以下に、本発明の実施例に係るダイカスト製造方法と製造装置を、図面を参照しつつ、詳細に説明する。なお、以下の説明は一つの実施例に過ぎず、本発明の趣旨を変えない限り、本発明には種々の変形例を含み得るものである。 Hereinafter, the die casting manufacturing method and the manufacturing apparatus according to the embodiment of the present invention will be described in detail with reference to the drawings. It should be noted that the following description is merely an embodiment, and the present invention may include various modifications as long as the gist of the present invention is not changed.
 図1に第1実施例に係るダイカスト製造装置の要部断面図を示している。ダイカスト製造装置10は、移動盤12に取り付けた可動金型14と、固定盤16に取り付けた固定金型18とを備え、両金型14,18を当接することにより形成されるキャビティ20内に溶湯を射出し、キャビティ20に倣った形状の製品ができあがる。製品は金型14,18を離反させ、可動金型14の背面部に設けた押し出しピン22を作動させてキャビティ20から取り出すことができる。 FIG. 1 shows a cross-sectional view of a main part of the die casting manufacturing apparatus according to the first embodiment. The die casting manufacturing apparatus 10 includes a movable mold 14 attached to the moving plate 12 and a fixed mold 18 attached to the fixed plate 16, and is formed in a cavity 20 formed by abutting the molds 14 and 18. The molten metal is injected to produce a product having a shape that resembles the cavity 20. The product can be taken out from the cavity 20 by separating the molds 14 and 18 and operating the extrusion pin 22 provided on the back surface of the movable mold 14.
 このようなダイカスト製造装置10のキャビティ20に溶湯を供給するための射出部として給湯手段24がキャビティ20の下位に位置して配置されている。これは固定盤16を水平に貫通して取り付けられ固定金型18に達する射出スリーブ26と、射出スリーブ26内に配設されたプランジャー28と、プランジャー28の後方にあってプランジャー28を押し引き出来る加圧装置(図示せず)と、からなる第1加圧手段30から構成される。 The hot water supply means 24 is arranged below the cavity 20 as an injection unit for supplying the molten metal to the cavity 20 of the die casting manufacturing apparatus 10. This includes an injection sleeve 26 that is mounted horizontally through the fixing plate 16 and reaches the fixed mold 18, a plunger 28 disposed inside the injection sleeve 26, and a plunger 28 behind the plunger 28. It is composed of a first pressurizing means 30 including a pressurizing device (not shown) that can be pushed and pulled.
 射出スリーブ26の前端にはキャビティ20に至る通路となるランナー32が形成されており、このランナー32は、射出スリーブ26からほぼ水平に延長された分流子ランナー部34と、キャビティ20の下部に直結するように上方向に向きを変えた立上りランナー部36とからなり、第1加圧手段30のプランジャー28によって押し出された溶湯が、分流子ランナー部34を経由し、立上りランナー部36によって上方に向きを変え、キャビティ20に射出噴射するように構成されている。 A runner 32, which is a passage leading to the cavity 20, is formed at the front end of the injection sleeve 26, and the runner 32 is directly connected to the shunter runner portion 34 extending substantially horizontally from the injection sleeve 26 and the lower part of the cavity 20. The molten metal extruded by the plunger 28 of the first pressurizing means 30 passes through the shunter runner section 34 and is upward by the rising runner section 36, which is composed of the rising runner section 36 whose direction is changed upward. It is configured to turn to and inject into the cavity 20.
 このようなランナー32における立上りランナー部36には、キャビティ20内の溶湯を二次的に加圧せしめる第2加圧手段38が設けられている。この第2加圧手段38は、金型14、18の下部に装備されたアクチュエータ(油圧シリンダー)40と、これによって立上りランナー部36の下部から上部にかけて出入り動作するように取り付けられた加圧ピン(作動ピストン)42とから構成されている。加圧ピン42の直径dは立上りランナー部36の内径Dより小さくして、加圧ピン42の立上りランナー部36における上下摺動を可能としている。したがって、加圧ピン42の立上りランナー部36への圧入量がキャビティ20による製品の密度を向上させることになる。 The rising runner portion 36 in such a runner 32 is provided with a second pressurizing means 38 for secondarily pressurizing the molten metal in the cavity 20. The second pressurizing means 38 includes an actuator (hydraulic cylinder) 40 mounted on the lower portions of the dies 14 and 18, and a pressurizing pin attached so as to move in and out from the lower portion to the upper portion of the rising runner portion 36. It is composed of (actuating piston) 42. The diameter d of the pressure pin 42 is made smaller than the inner diameter D of the rising runner portion 36 so that the pressure pin 42 can slide up and down in the rising runner portion 36. Therefore, the amount of press-fitting of the pressure pin 42 into the rising runner portion 36 improves the density of the product by the cavity 20.
 ところで、本実施例では、特に、立上りランナー部36と分流子ランナー部34の交差部(図2のA-B区間)より上方の立上りランナー部36側(図2のB部分)に、その内径を絞るオリフィス44を形成している。これは立上りランナー部36の内径部分に断面矩形の環状突起46を形成したもので、その突起46の高さ(すなわち立上りランナー部36の内径寸法)をできるだけ加圧ピン42の外径dに合わせて、隙間でメタルシールができるようにしている。具体的には、キャビティ20の大きさにもよるが、立上りランナー部36の内径Dと加圧ピン42の外径dの差の1/2が隙間寸法Δであるが、その隙間寸法Δが1/2~1/3以下となるように環状突起46の高さを決めている。すなわち環状突起46の内径と加圧ピン42の外径dの差の1/2がメタルシール部分の隙間寸法δであり、δ=Δ×1/2とし、望ましくはδ=Δ×1/3としており、下限値はメタルシールが破損するときの値である。また、環状突起46の軸方向長さLは10mm程度として、メタルシールが確実におこなわれるようにしている。 By the way, in this embodiment, the inner diameter thereof is particularly on the rising runner portion 36 side (B portion in FIG. 2) above the intersection (AB section in FIG. 2) between the rising runner portion 36 and the shunt runner portion 34. An orifice 44 is formed to squeeze. This is an annular protrusion 46 having a rectangular cross section formed on the inner diameter portion of the rising runner portion 36, and the height of the protrusion 46 (that is, the inner diameter dimension of the rising runner portion 36) is adjusted to the outer diameter d of the pressure pin 42 as much as possible. It is possible to make a metal seal in the gap. Specifically, although it depends on the size of the cavity 20, half of the difference between the inner diameter D of the rising runner portion 36 and the outer diameter d of the pressure pin 42 is the gap dimension Δ, but the gap dimension Δ is The height of the annular protrusion 46 is determined so as to be 1/2 to 1/3 or less. That is, 1/2 of the difference between the inner diameter of the annular protrusion 46 and the outer diameter d of the pressure pin 42 is the gap dimension δ of the metal seal portion, and δ = Δ × 1/2, preferably δ = Δ × 1/3. The lower limit is the value when the metal seal is damaged. Further, the axial length L of the annular protrusion 46 is set to about 10 mm to ensure that the metal seal is performed.
 このように構成された第2加圧手段38は、第1加圧手段30のプランジャー28による射出が完了した後に、図3(1)に示すような位置から加圧し始め、加圧ピン42が環状突起46に差し掛かると(図3(2))、オリフィス44部分に上位の溶湯が差し込んでメタルシールを形成し、その部分で遮蔽機能を発揮する。このため、このオリフィス44部分でのメタルシールによって、キャビティ20内への溶湯充填量が増し、加圧ピン42による押し込み動作により、ストロークが長くなって作業を完了するのである(図3(3))。 The second pressurizing means 38 configured in this way starts pressurizing from the position shown in FIG. 3 (1) after the injection by the plunger 28 of the first pressurizing means 30 is completed, and the pressurizing pin 42 (FIG. 3 (2)), the upper molten metal is inserted into the orifice 44 portion to form a metal seal, and a shielding function is exhibited at that portion. Therefore, the metal seal at the orifice 44 portion increases the amount of molten metal filled in the cavity 20, and the pushing operation by the pressure pin 42 increases the stroke to complete the work (FIG. 3 (3)). ).
 この結果、ランナー加圧をしない通常の鋳造方式で製品を作った場合を「0」として、従来のキャビティ20の中央部を加圧する局部加圧方式では+4gの増加がみられたが(0.5%)、本実施例方式のランナー加圧方式によれば+14gの増加がみられ(1.7%)、本実施例による効果は顕著なものであった。 As a result, the case where the product was made by the normal casting method without pressurizing the runner was regarded as "0", and the increase of + 4 g was observed in the conventional local pressurizing method in which the central portion of the cavity 20 was pressurized (0. 5%), an increase of + 14 g was observed according to the runner pressurization method of this example (1.7%), and the effect of this example was remarkable.
 なお、オリフィス44を形成する環状突起46は、実施例のように角形断面としてもよいが、V字型、円弧型の断面形状とすることができる。この場合、V字型、円弧型の切っ先部分が鋭利となっているとメタルシールが取れないので、先端を削った形状とすることが望ましい。 The annular projection 46 forming the orifice 44 may have a square cross section as in the embodiment, but may have a V-shaped or arc-shaped cross section. In this case, if the V-shaped or arc-shaped cutting edge is sharp, the metal seal cannot be removed, so it is desirable to have a shape with the tip cut off.
 また、オリフィス44を形成している環状突起46には、冷却手段を配置することができる。これは水平方式・水冷方式でも、あるいは油冷方式でも可能で、第1加圧手段30による射出が完了し、第2加圧手段38による加圧が環状突起46にかかった時に(図3(2))冷却するとよい。こうすることによってメタルシールが形成しやすくなる。 Further, a cooling means can be arranged on the annular projection 46 forming the orifice 44. This can be done by the horizontal method, the water cooling method, or the oil cooling method, and when the injection by the first pressurizing means 30 is completed and the pressurization by the second pressurizing means 38 is applied to the annular projection 46 (FIG. 3 (FIG. 3). 2)) Cool it. This makes it easier to form a metal seal.
 上記実施例ではオリフィス44を形成する環状突起46を別部品として形成し、ランナー32を形成する際にはめ込み構造で取り付けるようにしてもよい。これは金型の分割線でランナー32が割れる構造であるため、半円構造とした立上りランナー部36への装着が簡単にできるからである。
 また、上記実施例はホットチャンバーのランナーを押すことにも、またプラスチックを成形する際にも応用できる。
In the above embodiment, the annular projection 46 forming the orifice 44 may be formed as a separate component, and may be attached by an inset structure when forming the runner 32. This is because the runner 32 is split by the dividing line of the mold, so that it can be easily attached to the rising runner portion 36 having a semicircular structure.
Further, the above embodiment can be applied to push the runner of the hot chamber and also to mold plastic.
 このように本実施例によれば、キャビティ20への射出を第1加圧手段30により行い、ランナー32に溶湯が充満した状態から第2加圧手段38を作動させる。そうすると、加圧ピン42が分流子ランナー部34と立上りランナー部36の交差部(図2A→B)に達する間は、通常の押し出し作用をなすが、分流子ランナー部34が切れて立上りランナー部36に達した途端に環状突起46部分に達し、隙間δでメタルシールにより溶湯金属が固化し、ここで圧力が遮断する(図3(2))。したがって、加圧ピン42の上位に位置するまだ固まらないキャビティ20側のランナー溶湯は遮断された圧力を背景にキャビティ20側に押し込まれる。 As described above, according to the present embodiment, the injection into the cavity 20 is performed by the first pressurizing means 30, and the second pressurizing means 38 is operated from the state where the runner 32 is filled with the molten metal. Then, while the pressurizing pin 42 reaches the intersection (FIG. 2A → B) between the shunt runner portion 34 and the rising runner portion 36, a normal pushing action is performed, but the shunting element runner portion 34 is cut off and the rising runner portion is cut. As soon as it reaches 36, it reaches the annular projection 46 portion, and the molten metal is solidified by the metal seal in the gap δ, where the pressure is cut off (FIG. 3 (2)). Therefore, the runner molten metal on the cavity 20 side, which is located above the pressure pin 42 and has not yet solidified, is pushed toward the cavity 20 side against the background of the cutoff pressure.
 これによって、加圧ピン42を、従来のストロークより多く前進させることができ、第2加圧手段38により、より緻密な製品を製造することができる。この時の効果は同じ容積のキャビティ20に溶湯を充填した場合、1.7%の重量増になり、この業界では驚異的な値である。 Thereby, the pressurizing pin 42 can be advanced more than the conventional stroke, and the second pressurizing means 38 can manufacture a more precise product. The effect at this time is a weight increase of 1.7% when the molten metal is filled in the cavity 20 having the same volume, which is an amazing value in this industry.
 次に、本発明の第2実施例を説明する。
 図4~5に本実施例に係る部分超高圧によるAsCast(ダイカスト製造装置により製造されたダイカスト製品、製品までの分岐ランナー)、及びその特定の分岐ランナーに装着された超高圧加圧シリンダーの取付位置を表す概略正面図と概略側面図を示す。これらの図に示すように、ダイカスト製品110はプランジャー側から押し出されたビスケット112を前端とし、ビスケット112からキャビティに至る通路となるランナーが屈曲して上方に立上り(分流子基部ランナー114)、更に分岐して複数(図示の例では4つに分岐)のランナーが形成されており(分岐ランナー116a、116b、116c、116d)、ダイカスト製品110の4か所にゲート118a、118b、118c、118dを介して開口している。
Next, a second embodiment of the present invention will be described.
Figures 4 to 5 show AsCast (die-cast products manufactured by die-casting equipment, branch runners to products) by partial ultra-high pressure according to this embodiment, and installation of ultra-high pressure pressure cylinders mounted on the specific branch runners. A schematic front view and a schematic side view showing the position are shown. As shown in these figures, the die-cast product 110 has the biscuit 112 extruded from the plunger side as the front end, and the runner, which is the passage from the biscuit 112 to the cavity, bends and rises upward (shunter base runner 114). A plurality of runners (branched into four in the illustrated example) are further branched (branched runners 116a, 116b, 116c, 116d), and gates 118a, 118b, 118c, 118d are formed at four locations of the die casting product 110. It is open through.
 図4に示す左側の分岐ランナー116aから射出された溶湯が製品内で凝固するときに巣が発生しやすいとの問題をかかえていたため、この分岐ランナー116aを意図した製品部分に繋がるランナーとして選択し、ダイカスト製品110に必要な量の溶湯を第1加圧手段120(図5参照)で射出した後に、当該選択された分岐ランナー116aに設けた第2加圧手段122(図6参照)により、1次加圧の約4倍の超高圧で二次的加圧を行うようにしている。 Since there was a problem that nests were likely to occur when the molten metal ejected from the left branch runner 116a shown in FIG. 4 solidified in the product, this branch runner 116a was selected as the runner connected to the intended product part. After injecting the required amount of molten metal into the die casting product 110 by the first pressurizing means 120 (see FIG. 5), the second pressurizing means 122 (see FIG. 6) provided in the selected branch runner 116a is used. The secondary pressurization is performed at an ultra-high pressure that is about four times the primary pressurization.
 射出スリーブ130の前端上方にはキャビティ128に至る通路となるランナーが形成され、これは分岐前の分流子基部ランナー114と、4つの分岐ランナー116a、116b、116c、116dから構成され、これに続くゲート118a、118b、118c、118dによってキャビティ128に溶湯が射出されてダイカスト製品110が形成される。いま、このダイカスト製品110では、図4の左端における分岐ランナー116aから射出した製品部分に巣が多く発生するという問題があったとする。 Above the front end of the injection sleeve 130, a runner is formed to serve as a passage leading to the cavity 128, which is composed of a shunt base runner 114 before branching and four branch runners 116a, 116b, 116c, 116d, followed by the branch runners 116a, 116b, 116c, 116d. The gates 118a, 118b, 118c, and 118d inject molten metal into the cavity 128 to form the die-cast product 110. Now, it is assumed that the die-cast product 110 has a problem that many nests are generated in the product portion ejected from the branch runner 116a at the left end of FIG.
 そこで、この分岐ランナー116aを選択し、この選択された分岐ランナー116a部分で二次的加圧を行うことにしている。この実施例では第2加圧手段122は、金型の型締面に配置されており、第2加圧手段122を構成している加圧ピン134の作動方向をプランジャー132の押し出し方向と直交する上向き方向となるように設定している(図5参照)。 Therefore, the branch runner 116a is selected, and the secondary pressurization is performed by the selected branch runner 116a portion. In this embodiment, the second pressurizing means 122 is arranged on the mold clamping surface of the mold, and the operating direction of the pressurizing pin 134 constituting the second pressurizing means 122 is defined as the pushing direction of the plunger 132. It is set to be orthogonal to the upward direction (see FIG. 5).
 図4~6において、この選択分岐ランナー116aは、射出スリーブ130からほぼ延長された分流子基部ランナー114から分岐され、斜め上方に向きを伸びた第1分流子ランナー136と、これに続いて垂直に続く立上りランナー138とからなる屈曲形状としている。立上りランナー138は、最終的にキャビティ128の下部に直結するように上方向に向きを変えて接続され、プランジャー132によって押し出された溶湯が、分流子基部ランナー114を経由し、立上りランナー138によって上方に向きを変え、ゲート118aからキャビティ128に射出噴射するように構成されている。 In FIGS. 4-6, the selective branch runner 116a is a first shunt runner 136 that is branched from a shunt base runner 114 that is substantially extended from the injection sleeve 130 and extends diagonally upward, followed by a vertical. It has a bent shape consisting of a rising runner 138 following. The rising runner 138 is connected by turning upward so as to be finally directly connected to the lower part of the cavity 128, and the molten metal extruded by the plunger 132 passes through the shunter base runner 114 and is connected by the rising runner 138. It is configured to turn upward and inject from the gate 118a into the cavity 128.
 このような分岐ランナー116aにおける第1分流子ランナー136には、キャビティ128内の溶湯を二次的に加圧せしめる第2加圧手段122が設けられている。第2加圧手段122は型締め面に沿って設けており、下部のアクチュエータ140と、これによって立上りランナー138(加圧経路)に沿って出入り動作するように取り付けられた加圧ピン134とから構成されている。この選択分岐ランナー116aの立上りランナー138における加圧ピン134のストローク量が二次的加圧に必要な湯だまりとなる。加圧ピン134の直径dは立上りランナー138の内径Dより小さくして、加圧ピン134の立上りランナー138における上下摺動を可能としている。したがって、加圧ピン134の立上りランナー138への圧入量(押しのける湯だまり量)がキャビティ128による製品の密度を向上させることになる。 The first shunting runner 136 in such a branch runner 116a is provided with a second pressurizing means 122 for secondarily pressurizing the molten metal in the cavity 128. The second pressurizing means 122 is provided along the mold clamping surface, and is provided from the lower actuator 140 and the pressurizing pin 134 attached so as to move in and out along the rising runner 138 (pressurizing path). It is configured. The stroke amount of the pressurizing pin 134 in the rising runner 138 of the selective branch runner 116a becomes a hot water pool required for secondary pressurization. The diameter d of the pressure pin 134 is made smaller than the inner diameter D of the rising runner 138 so that the pressure pin 134 can slide up and down in the rising runner 138. Therefore, the amount of press-fitting of the pressure pin 134 into the rising runner 138 (the amount of hot water that is pushed away) improves the density of the product due to the cavity 128.
 ところで、本実施例では、特に、選択された分岐ランナー116aにおける第1分流子ランナー136と立上りランナー138の交差部(図6のA-B区間)より第1分流子ランナー136側(図6のB部分)に、その内径を絞るオリフィス144を形成している。これは立上りランナー138の内径部分に断面矩形の環状突起146を形成したもので、その環状突起146の高さをできるだけ加圧ピン134の外径dに合わせて、ここでメタルシールができるようにしている。具体的には、キャビティ128の大きさにもよるが、加圧ピン134と立上りランナー138における環状突起146との隙間は経験的に溶湯の凝固によるメタルシール効果が得られる1mm程度が望ましい。この最適な値は環状突起146の軸方向長さ・金型形状・射出圧力・速度によって異なるが、平均的に0.5mm~1.0mm程度となる場合が多い。また、環状突起146の軸方向長さLは高いメタルシール効果を得るには、平均的に10mm程度が多いが、金型形状・射出圧力・速度などによって異なる。これらによってメタルシールが確実に行われるようにしている。 By the way, in this embodiment, in particular, the first shunting runner 136 side (FIG. 6) from the intersection of the first shunting runner 136 and the rising runner 138 (AB section in FIG. 6) in the selected branch runner 116a. An orifice 144 is formed in the B portion) to narrow the inner diameter thereof. In this case, an annular protrusion 146 having a rectangular cross section is formed on the inner diameter portion of the rising runner 138, and the height of the annular protrusion 146 is adjusted to the outer diameter d of the pressure pin 134 as much as possible so that a metal seal can be formed here. ing. Specifically, although it depends on the size of the cavity 128, it is desirable that the gap between the pressure pin 134 and the annular protrusion 146 in the rising runner 138 is empirically about 1 mm from which the metal sealing effect by solidification of the molten metal can be obtained. This optimum value varies depending on the axial length of the annular protrusion 146, the mold shape, the injection pressure, and the speed, but is often about 0.5 mm to 1.0 mm on average. Further, the axial length L of the annular protrusion 146 is often about 10 mm on average in order to obtain a high metal sealing effect, but it varies depending on the mold shape, injection pressure, speed, and the like. These ensure that the metal seal is performed.
 このように構成された第2加圧手段122は、第1加圧手段120のプランジャー132による射出が完了した後に、加圧ピン134が環状突起146に差し掛かると、オリフィス144部分に上位の溶湯が差し込んでメタルシールを形成し、その部分で遮蔽機能を発揮する。このため、このオリフィス144部分でのメタルシールによって、キャビティ128内への溶湯充填量が増し、加圧ピン134による押し込み動作により、ストロークが長くなって作業を完了するのである。 When the pressurizing pin 134 approaches the annular projection 146 after the injection by the plunger 132 of the first pressurizing means 120 is completed, the second pressurizing means 122 configured in this way is higher than the orifice 144 portion. The molten metal is inserted to form a metal seal, which exerts a shielding function. Therefore, the metal seal at the orifice 144 portion increases the amount of molten metal filled in the cavity 128, and the pushing operation by the pressure pin 134 lengthens the stroke to complete the work.
 この時、前記第1加圧手段120による射出完了後(約70MPa)の第2加圧手段122のスタート時間は、制御部148を設けて時間設定を可能としているが(図5参照)、この場合、実施例では前記第1加圧手段による射出完了後、0.1秒前後遅れて第2加圧手段122をスタートさせるようにしている。実施例では0.1秒前後であるが、この遅れ時間の最適な値は金型形状、第一加圧圧力、加圧速度など諸条件によってmSecオーダで異なってくるためある程度の試行によって決定が必要であるが、本装置の時間設定はmSecオーダにより設定が可能としている。この時間設定は、第2加圧手段122の設けられていない非選択分岐ランナー116b、116c、116dの射出口でのメタルシールが発揮される時間でよい。溶湯が金型に接触して凝固し、接触していないところは半凝固になりかかっている状態である。したがって、この非選択分岐ランナー116b、116c、116dでのメタルシールを図りつつ、オリフィス144でメタルシールを図ることにより、第2加圧手段122による部分加圧を超高圧(約250MPa)で行うことができる。すなわち、第1加圧手段120の約4倍の部分加圧を可能としているのである。 At this time, the start time of the second pressurizing means 122 after the injection by the first pressurizing means 120 is completed (about 70 MPa) can be set by providing the control unit 148 (see FIG. 5). In this case, in the embodiment, the second pressurizing means 122 is started with a delay of about 0.1 seconds after the injection by the first pressurizing means is completed. In the example, it is about 0.1 second, but the optimum value of this delay time differs depending on various conditions such as the mold shape, the first pressurizing pressure, and the pressurizing speed, so it is determined by some trial. Although necessary, the time of this device can be set by mSec order. This time setting may be the time during which the metal seal at the injection port of the non-selective branch runners 116b, 116c, 116d not provided with the second pressurizing means 122 is exhibited. The molten metal comes into contact with the mold and solidifies, and the part that does not come into contact is in a state of semi-solidification. Therefore, the partial pressurization by the second pressurizing means 122 is performed at an ultrahigh pressure (about 250 MPa) by performing the metal seal at the orifice 144 while aiming at the metal seal at the non-selective branch runners 116b, 116c, 116d. Can be done. That is, it is possible to partially pressurize about four times as much as the first pressurizing means 120.
 このように本実施例によれば、キャビティ128への射出を第1加圧手段120により行い、ランナー116aに溶湯が充満した状態から少し遅れて第2加圧手段122を作動させる。そうすると、加圧ピン134が第1分流子ランナー136と立上りランナー138の交差部(図6A→B)に達する間は、通常の押し出し作用をなすが、第1分流子ランナー136が切れてオリフィス144に達した途端に環状突起146が部分に達し、隙間δでメタルシールにより溶湯金属が固化し、ここで圧力が遮断する。このとき非選択分岐ランナー116b~116dの射出口では凝固状態となっており、口が塞がれる。したがって、加圧ピン134の上位に位置するまだ固まらないキャビティ128側のランナー溶湯は遮断された圧力を背景にキャビティ128側に押し込まれる。 As described above, according to the present embodiment, the injection into the cavity 128 is performed by the first pressurizing means 120, and the second pressurizing means 122 is operated with a slight delay from the state where the runner 116a is filled with the molten metal. Then, while the pressurizing pin 134 reaches the intersection of the first shunt runner 136 and the rising runner 138 (FIG. 6A → B), the normal pushing action is performed, but the first shunt runner 136 is cut and the orifice 144 is cut. As soon as it reaches, the annular projection 146 reaches the portion, and the molten metal is solidified by the metal seal in the gap δ, where the pressure is cut off. At this time, the injection ports of the non-selective branch runners 116b to 116d are in a solidified state, and the mouth is closed. Therefore, the runner molten metal on the cavity 128 side, which is located above the pressure pin 134 and has not yet solidified, is pushed toward the cavity 128 side against the background of the cutoff pressure.
 これによって、加圧ピン134を、従来のストロークより多く前進させることができ、第2加圧手段122により、部分的に強度が高く、より緻密な製品を製造することができる。この時の効果は同じ容積のキャビティ128に溶湯を充填した場合、1.7%の重量増となり、この業界では驚異的な値となっている。
 上記実施例では第2加圧手段122をプランジャストローク直角方向(型締め面)に沿って配置する例を示したが、第2加圧手段122を固定金型126側に沿って加圧可能に設けてもよい。
As a result, the pressurizing pin 134 can be advanced more than the conventional stroke, and the second pressurizing means 122 can produce a partially high-strength and more precise product. The effect at this time is that when the cavity 128 of the same volume is filled with the molten metal, the weight increases by 1.7%, which is an amazing value in this industry.
In the above embodiment, the second pressurizing means 122 is arranged along the direction perpendicular to the plunger stroke (mold tightening surface), but the second pressurizing means 122 can be pressurized along the fixed mold 126 side. It may be provided.
 この第2実施例の変形例を図7~8に示す。この例は製品部133が平板形状となっているため型締ラインは板面に直角となる。そして、第1加圧手段120であるプランジャー132は図7の手前側から奥側に移動するように構成され、4つの分岐ランナー116a、116b、116c、116dからの経路を経て、ダイカスト製品110に押し出されるものとなる。第1加圧手段120による押し出し完了後に行われる第2加圧手段122は、選択された分岐ランナー116aにプランジャー132の作動方向と平行に形成されたランナーを形成し、この平行ランナー150に取り付けられ、プランジャー132と平行に加圧するものとなっている。このケースの場合は、平行ランナー150にオリフィス144を設け、これを加圧ピン134が摺動することになる。この第2加圧手段122による加圧スタート時間も第1加圧手段120による射出完了後に少し遅れ、制御部148(図5参照)に設定された遅れ時間後に作動するように構成する。これによって、第2加圧手段122による部分超高圧(250MPa)が可能となるのである。 Figures 7 to 8 show modified examples of this second embodiment. In this example, since the product portion 133 has a flat plate shape, the mold clamping line is perpendicular to the plate surface. The plunger 132, which is the first pressurizing means 120, is configured to move from the front side to the back side in FIG. 7, and passes through the routes from the four branch runners 116a, 116b, 116c, 116d, and the die casting product 110. It will be extruded to. The second pressurizing means 122, which is performed after the extrusion by the first pressurizing means 120 is completed, forms a runner formed in the selected branch runner 116a in parallel with the operating direction of the plunger 132, and is attached to the parallel runner 150. The pressure is increased in parallel with the plunger 132. In this case, the parallel runner 150 is provided with an orifice 144, on which the pressurizing pin 134 slides. The pressurization start time by the second pressurizing means 122 is also slightly delayed after the completion of the injection by the first pressurizing means 120, and is configured to operate after the delay time set in the control unit 148 (see FIG. 5). This enables partial ultrahigh pressure (250 MPa) by the second pressurizing means 122.
 なお、図7~8に示した例では、第2加圧手段122は固定型内にアクチュエータ140とともに加圧ピン134を取り付けているが、これで収まらない場合には、固定盤側にアクチュエータ140を延長して配置するようにしてもよい。 In the examples shown in FIGS. 7 to 8, the second pressurizing means 122 has the pressurizing pin 134 attached together with the actuator 140 in the fixed mold, but if this does not fit, the actuator 140 is located on the fixed plate side. May be extended and arranged.
 また、上記実施例では当初から製品に分岐ランナー116a~116dがある場合を想定しているが、製品に分岐ランナー部とは別に新たな巣が比較的多く発見される場合には、当該箇所に向けて新規分岐ランナーを設け、この新規ランナー部分を第2加圧手段122により、プランジャー圧(約70MPa)より高い部分加圧(約250MPa)を発揮するようにしてもよい。また、単一のランナーで製品を形成する金型の場合には、新規にランナー部を形成し、ここに第2加圧手段122を形成することによっても部分的に巣の形成を防止でき、製品ごとに細やかに対応することが可能である。 Further, in the above embodiment, it is assumed that the product has branch runners 116a to 116d from the beginning, but if a relatively large number of new nests are found in the product apart from the branch runner portion, the location is assumed. A new branch runner may be provided, and the new runner portion may be subjected to partial pressurization (about 250 MPa) higher than the plunger pressure (about 70 MPa) by the second pressurizing means 122. Further, in the case of a mold for forming a product with a single runner, the formation of a nest can be partially prevented by forming a new runner portion and forming the second pressurizing means 122 here. It is possible to respond in detail to each product.
 更に、前記密度を上げたい箇所に通じている分岐ランナーが複数あった場合、これらをまとめる分流子基部ランナーとし、この分流子基部ランナーに第2加圧手段を設け、これによって複数の分岐ランナーを二次的加圧することも可能である。 Further, when there are a plurality of branch runners leading to the portion where the density is desired to be increased, a shunter base runner is used to combine these, and a second pressurizing means is provided on the shunter base runner, whereby the plurality of branch runners are formed. Secondary pressurization is also possible.
 ところで、上記いずれの実施例におけるダイカスト製造方法及び装置ではダイカスト金型に溶湯を射出する第1加圧手段が射出を完了した後に、第2加圧手段を作動させるようにしている。この場合、ダイカスト金型に溶湯を射出する第1加圧手段による鋳込み完了時点を前記第1加圧手段の射出速度または射出圧力から捉え、前記射出速度の低下時または射出圧力の上昇時を鋳込み起点ポイントとしてキャビティに連通するランナーを加圧する第2加圧手段を作動させるようにしている。この鋳込みポイントから第2加圧手段を作動させるまでは設定時間経過後にランナーを加圧すればよい。例えば、プランジャーの射出速度は鋳込み完了に近づくと一定速度まで上昇したのち、急激に降下開始したことで確認できるポイント、またはダイカストマシンチップ圧力の急上昇を確認できるポイントを求め、当該ポイントから一定時間経過(0.1秒程度)の後に第2加圧手段を作動させるようにすることで達成できる。 By the way, in the die casting manufacturing method and the apparatus in any of the above embodiments, the second pressurizing means is operated after the first pressurizing means for injecting the molten metal into the die casting die completes the injection. In this case, the time when the casting by the first pressurizing means for injecting the molten metal into the die-casting die is completed is grasped from the injection speed or the injection pressure of the first pressurizing means, and when the injection speed decreases or the injection pressure increases, the casting is performed. As a starting point, a second pressurizing means for pressurizing the runner communicating with the cavity is operated. From this casting point to the operation of the second pressurizing means, the runner may be pressurized after the set time has elapsed. For example, the injection speed of the plunger rises to a certain speed as it approaches the completion of casting, and then a point that can be confirmed by the sudden start of descent, or a point that can confirm a sudden rise in the die casting machine chip pressure is sought, and a certain period of time is obtained from that point. This can be achieved by activating the second pressurizing means after the lapse of time (about 0.1 seconds).
 ここで、前述したいずれの実施例においても二次的加圧手段の加圧ピンのストローク量を計測するようになっている。この加圧ピンを作動させる加圧シリンダーが内蔵されており、ここでは加圧シリンダーの作動油の排出経路に排出油量を計測するシリンダー本体を設け、この計測シリンダー本体のピストンに逆止弁とオリフィス(絞り弁)を一体に設け、前記加圧シリンダーの排出経路側から分岐する経路にソレノイドバルブを介してドレン抜きを設けている。また、加圧シリンダーの作動油の排出経路に排出油量を計測するシリンダー本体を設け、この計測シリンダー本体をバイパスする経路に逆止弁及びオリフィス(絞り弁)を設け、前記局部加圧シリンダーの排出経路側から分岐する経路にソレノイドバルブを介してドレン抜きを設けるようにしてもよい。あるいは、加圧シリンダーの作動油の排出経路に排出油量を計測するシリンダー本体を設け、この計測シリンダー本体のピストンにオリフィス(絞り弁)を一体に設け、前記局部加圧シリンダーの排出経路側から分岐する経路にソレノイドバルブを介してドレン抜きを設けるようにしてもよい。 Here, in any of the above-described embodiments, the stroke amount of the pressurizing pin of the secondary pressurizing means is measured. A pressure cylinder that operates this pressure pin is built in, and here a cylinder body that measures the amount of discharged oil is provided in the hydraulic oil discharge path of the pressure cylinder, and a check valve is attached to the piston of this measurement cylinder body. An orifice (throttle valve) is integrally provided, and drainage is provided via a solenoid valve in a path branching from the discharge path side of the pressure cylinder. Further, a cylinder body for measuring the amount of discharged oil is provided in the hydraulic oil discharge path of the pressure cylinder, and a check valve and an orifice (throttle valve) are provided in the path bypassing the measurement cylinder body to provide the local pressure cylinder. A drain drain may be provided via a solenoid valve in the path branching from the discharge path side. Alternatively, a cylinder body for measuring the amount of discharged oil is provided in the hydraulic oil discharge path of the pressure cylinder, and an orifice (throttle valve) is integrally provided with the piston of the measurement cylinder body from the discharge path side of the local pressure cylinder. A drain drain may be provided in the branching path via a solenoid valve.
 図9には、加圧ピン416を内蔵する加圧シリンダー410の排出油系統に設けたストローク検出装置の例を示す。まず、加圧シリンダー410は、シリンダー本体412と内蔵するピストン414とを有し、ピストン414と一体にされた加圧ピン416をシリンダー本体412から突出させ、図示しない鋳造装置のキャビティに当該加圧ピン416を出入りさせるように取り付けられる。加圧シリンダー410の加圧ピン416はキャビティに鋳込まれた溶湯が、ほぼ凝固する直前にキャビティ内に挿入し、この加圧ピン416が押しのけた容積分でキャビティを加圧するようにしている。このため、シリンダヘッド側の供給する給油路には、ポンプ418、方向切替バルブ420、絞り弁422を介して、作動油が供給され、シリンダロッド側の作動油が前記方向切替バルブ420を経由して、タンク424に戻るようになっている。 FIG. 9 shows an example of a stroke detection device provided in the discharge oil system of the pressure cylinder 410 having a built-in pressure pin 416. First, the pressurizing cylinder 410 has a cylinder body 412 and a built-in piston 414, and a pressurizing pin 416 integrated with the piston 414 is projected from the cylinder body 412 to pressurize the cavity of a casting device (not shown). It is attached so that the pin 416 can be moved in and out. The pressure pin 416 of the pressure cylinder 410 is inserted into the cavity just before the molten metal cast in the cavity solidifies, and the pressure pin 416 pressurizes the cavity by the volume pushed away. Therefore, hydraulic oil is supplied to the oil supply passage on the cylinder head side via the pump 418, the direction switching valve 420, and the throttle valve 422, and the hydraulic oil on the cylinder rod side passes through the direction switching valve 420. Then, it returns to the tank 424.
 この局部加圧シリンダー410の排油系統には、加圧シリンダー410の押し込みストロークを計測するために、加圧シリンダー410の作動油出口と前記方向切替バルブ420との間に、ストローク検出装置426が配置され、加圧シリンダー410のシリンダロッド側の部屋から排出した作動油の油量を計測するようにしている。 In the oil drainage system of the local pressure cylinder 410, a stroke detection device 426 is provided between the hydraulic oil outlet of the pressure cylinder 410 and the direction switching valve 420 in order to measure the push stroke of the pressure cylinder 410. It is arranged and is designed to measure the amount of hydraulic oil discharged from the room on the cylinder rod side of the pressure cylinder 410.
 ストローク検出装置426は、シリンダピストン構造によって構成され、これはシリンダー本体428とこの内部を摺動できるピストン430から構成されている。シリンダー本体428のピストン430で区画された一方の部屋は、加圧シリンダー410の作動油出口と接続され、他方の部屋は方向切替バルブ420と接続されている。これによって、局部加圧シリンダー410から出た作動油は、その出た分だけストローク検出装置426に入り込み、ピストン430が動かされる。ピストン430には加圧ピン432が一体的に設けられ、これはシリンダー本体428の一方の端部から突出してリニア型のポテンショメータ434に連結されている。加圧ピン432の作動開始点はシリンダー本体428の一端部側(図9において左端)とされ、このとき局部加圧シリンダー410のピストン414の加圧開始点(図9において上端)に一致している。したがって、局部加圧シリンダー410の加圧動作の開始位置にあるとき、ストローク検出装置426のピストン430は作動開始点に位置して、加圧シリンダー410による加圧動作とともに、ストローク検出装置426のピストン430は作動油が注入により移動し、比例移動するものとなる。 The stroke detection device 426 is composed of a cylinder piston structure, which is composed of a cylinder body 428 and a piston 430 that can slide inside the cylinder body 428. One chamber partitioned by the piston 430 of the cylinder body 428 is connected to the hydraulic oil outlet of the pressure cylinder 410, and the other chamber is connected to the direction switching valve 420. As a result, the hydraulic oil discharged from the local pressure cylinder 410 enters the stroke detection device 426 by the amount discharged, and the piston 430 is moved. The piston 430 is integrally provided with a pressure pin 432, which projects from one end of the cylinder body 428 and is connected to a linear potentiometer 434. The operation start point of the pressurizing pin 432 is set to one end side (left end in FIG. 9) of the cylinder body 428, and at this time, coincides with the pressurizing start point (upper end in FIG. 9) of the piston 414 of the local pressurizing cylinder 410. There is. Therefore, when the pressure operation of the local pressure cylinder 410 is in the start position, the piston 430 of the stroke detection device 426 is located at the operation start point, and the piston of the stroke detection device 426 is located together with the pressure operation by the pressure cylinder 410. In 430, the hydraulic oil moves by injection and moves proportionally.
 リニア型ポテンショメータ434は加圧ピン432と平行に配置され、加圧ピン432とともに移動し、その移動距離を求める。したがって、加圧ピン432の動きはリニア型ポテンショメータ434の出力として表れる。また、加圧ピン432の作動開始点には、リミットスイッチ436が配置されている。このリミットスイッチ436は加圧ピン32が作動開始点、すなわちピストン430がシリンダー本体428の左端に位置したときにスイッチが投入されるようになっており、これによりストローク検出開始位置が検出される。 The linear potentiometer 434 is arranged in parallel with the pressurizing pin 432 and moves together with the pressurizing pin 432 to obtain the moving distance. Therefore, the movement of the pressure pin 432 appears as the output of the linear potentiometer 434. Further, a limit switch 436 is arranged at the operation start point of the pressure pin 432. The limit switch 436 is turned on when the pressurizing pin 32 is located at the operation start point, that is, the piston 430 is located at the left end of the cylinder body 428, whereby the stroke detection start position is detected.
 このようなストローク検出装置426において、そのピストン430には、当該ピストン430よって仕切られる部屋同士を連通する貫通孔が設けられ、この貫通孔に逆止弁438及びオリフィス(絞り弁)439が取り付けられている。この逆止弁438は局部加圧シリンダー410の作動油の入る部屋から方向切替バルブ420側の部屋に押し出される作動油の通流を阻止し、逆方向への通流を許容する一方向弁とされる。これにより、局部加圧シリンダー410が加圧動作をなすときの作動油の全量がストローク検出装置426により検出され、ストローク検出装置426が原点位置すなわち作動開始点に戻るとき、あるいは局部加圧シリンダー410が作動開始点に戻るときに、作動油漏れなど何らかの原因で局部加圧シリンダー410からストローク検出装置426までの油量が足りないときにポンプ418を通じて補給するようになっている。オリフィス(絞り弁)439は逆止弁438の流量を規制する。また逆止弁438のクラッキング圧力(ばね力)が弱いとピストンが止まった状態で逆止弁を流れてしまうので、流量を絞ることで解決できるようになっている。このオリフィス(絞り弁)439は可変絞りでよく、あるいは必要に応じて固定絞りにしてもよい。 In such a stroke detection device 426, the piston 430 is provided with a through hole that communicates the rooms partitioned by the piston 430, and a check valve 438 and an orifice (throttle valve) 439 are attached to the through hole. ing. This check valve 438 is a one-way valve that blocks the flow of hydraulic oil pushed out from the room where the hydraulic oil of the local pressure cylinder 410 enters to the room on the direction switching valve 420 side, and allows the flow in the opposite direction. Will be done. As a result, the total amount of hydraulic oil when the local pressure cylinder 410 performs the pressurization operation is detected by the stroke detection device 426, and when the stroke detection device 426 returns to the origin position, that is, the operation start point, or the local pressure cylinder 410 When returning to the operation start point, when the amount of oil from the local pressure cylinder 410 to the stroke detection device 426 is insufficient for some reason such as hydraulic oil leakage, the oil is replenished through the pump 418. The orifice (throttle valve) 439 regulates the flow rate of the check valve 438. Further, if the cracking pressure (spring force) of the check valve 438 is weak, the check valve flows in a state where the piston is stopped, so that the problem can be solved by reducing the flow rate. The orifice (throttle valve) 439 may be a variable throttle, or may be a fixed throttle if necessary.
 また、局部加圧シリンダー410の排出油出口とストローク検出装置426に至る経路にはタンク424に至る分岐経路440を設け、この分岐経路440に逆止弁442とソレノイドバルブ444を介在させている。この分岐経路440はドレン抜きの作用をなし、ストローク検出装置426の加圧ピン432がリミットスイッチ436を押さない時、経路中の作動油中のガスが混入しているとみて、リミットスイッチ436が入るまで毎ショットごと、もしくは定期的にソレノイドバルブ444を作動させて、ガス抜きを行うようにしている。 Further, a branch path 440 leading to the tank 424 is provided in the path leading to the discharge oil outlet of the local pressure cylinder 410 and the stroke detection device 426, and the check valve 442 and the solenoid valve 444 are interposed in the branch path 440. This branch path 440 acts as a drain drain, and when the pressurizing pin 432 of the stroke detection device 426 does not press the limit switch 436, it is considered that gas in the hydraulic oil in the path is mixed, and the limit switch 436 is set. The solenoid valve 444 is operated every shot or periodically until it enters to vent the gas.
 このようなストローク検出装置426では、局部加圧シリンダー410による加圧作業を開始すると、図9において、ピストン414は押し下がり、その加圧に使用された作動油の全量はストローク検出装置426の一方の部屋に入り、そのピストン430を方向切替バルブ420側に押し付ける。このときピストン430に設けられた逆止弁438は遮蔽状態にあり、したがってピストン30の移動量は局部加圧シリンダー410の移動量に比例する。ピストン430にはポテンショメータ434が連結されているので、ポテンショメータ434を読み取れば局部加圧シリンダー410の作動ピストン414の移動量を正確に読み取ることができる。 In such a stroke detection device 426, when the pressurization work by the local pressurizing cylinder 410 is started, the piston 414 is pushed down in FIG. 9, and the total amount of the hydraulic oil used for the pressurization is one of the stroke detection devices 426. Enter the room and press the piston 430 toward the direction switching valve 420. At this time, the check valve 438 provided on the piston 430 is in a shielded state, so that the amount of movement of the piston 30 is proportional to the amount of movement of the local pressure cylinder 410. Since the potentiometer 434 is connected to the piston 430, the movement amount of the operating piston 414 of the local pressure cylinder 410 can be accurately read by reading the potentiometer 434.
 そして、方向切替バルブ420が切り替わることにより、局部加圧シリンダー410の戻り動作に入り、ポンプ418の圧力はストローク検出装置426のピストン430に加わり、局部加圧シリンダー410で加圧に利用された作動油の全量が押し戻される。その押戻し油量はストローク検出装置426のピストン430を原点位置まで移動させ、局部加圧シリンダー410のピストン414を原点位置まで押し戻す。停止位置はリミットスイッチ436により検知され、ポンプ418が停止して終了する。 Then, when the direction switching valve 420 is switched, the return operation of the local pressurizing cylinder 410 is started, the pressure of the pump 418 is applied to the piston 430 of the stroke detection device 426, and the operation used for pressurization by the local pressurizing cylinder 410. The entire amount of oil is pushed back. The amount of push-back oil moves the piston 430 of the stroke detection device 426 to the origin position, and pushes the piston 414 of the local pressure cylinder 410 back to the origin position. The stop position is detected by the limit switch 436, and the pump 418 stops and ends.
 ここで、ストローク検出装置426のピストン430には逆止弁438を設けているので、局部加圧シリンダー410のピストン排出経路からストローク検出装置426までの油量が油漏れなどを原因として少なくなっている場合、この逆止弁438を通じて補充され、ストローク検出装置426のピストン430や局部加圧シリンダー410のピストン414の原点位置復帰が図られる。 Here, since the check valve 438 is provided on the piston 430 of the stroke detection device 426, the amount of oil from the piston discharge path of the local pressure cylinder 410 to the stroke detection device 426 is reduced due to oil leakage or the like. If so, it is replenished through the check valve 438, and the piston 430 of the stroke detection device 426 and the piston 414 of the local pressure cylinder 410 are returned to the origin position.
 また、逆に、局部加圧シリンダー410のピストン排出経路からストローク検出装置426までの油量が内部ガスの膨張などにより増大した場合、分岐経路440に設けたソレノイドバルブ444をショット毎あるいは定期的に開け、ストローク検出装置426のピストン430や局部加圧シリンダー410のピストン414の原点位置復帰が図られる。
 上記例では、ピストン430に逆止弁438及びオリフィス(絞り弁)439を設けた例を示しているが、これはオリフィス(絞り弁)439の単独でも実現できる。
On the contrary, when the amount of oil from the piston discharge path of the local pressurizing cylinder 410 to the stroke detection device 426 increases due to the expansion of the internal gas or the like, the solenoid valve 444 provided in the branch path 440 is used for each shot or periodically. It is opened and the origin position of the piston 430 of the stroke detection device 426 and the piston 414 of the local pressurizing cylinder 410 are returned.
In the above example, the check valve 438 and the orifice (throttle valve) 439 are provided on the piston 430, but this can be realized by the orifice (throttle valve) 439 alone.
 次に、図10にはその他の例を示す。この変形例はシリンダー本体428にバイパス経路446を設け、このバイパス経路446中に逆止弁438A及びオリフィス(絞り弁)439Aを設けている点が異なる。このようにしても先の例と同様に効果が得られる。即ち、局部加圧シリンダー410のピストン排出経路からストローク検出装置426までの油量が油漏れなどを原因として少なくなっている場合、この逆止弁438Aを通じて補充され、ストローク検出装置426のピストン430や局部加圧シリンダー410のピストン414の原点位置復帰が図られるのである。 Next, FIG. 10 shows another example. This modification is different in that a bypass path 446 is provided in the cylinder body 428, and a check valve 438A and an orifice (throttle valve) 439A are provided in the bypass path 446. Even in this way, the same effect as in the previous example can be obtained. That is, when the amount of oil from the piston discharge path of the local pressure cylinder 410 to the stroke detection device 426 is low due to oil leakage or the like, it is replenished through this check valve 438A, and the piston 430 of the stroke detection device 426 or The origin position of the piston 414 of the local pressure cylinder 410 is returned to the original position.
 本発明は、ダイカスト製造を第1加圧手段のプランジャー加圧に引き続き、第2加圧手段によりランナーを加圧することができ、製品密度を向上できる方法と装置である。 The present invention is a method and device capable of pressurizing a runner by a second pressurizing means following the plunger pressurization of the first pressurizing means for die casting production, and can improve the product density.
10……ダイカスト製造装置、12……移動盤、14……可動金型、16……固定盤、18……固定金型、20……キャビティ、22……押し出しピン、24……給湯手段、26……射出スリーブ、28……プランジャー、30……第1加圧手段、32……ランナー、34……分流子ランナー部、36……立上りランナー部、38……第2加圧手段、40……アクチュエータ、42……加圧ピン、44……オリフィス、46……環状突起、110……ダイカスト製品、112……ビスケット、114……分流子基部ランナー、116a、116b、116c、116d……分岐ランナー、118a、118b、118c、118d……ゲート、120……第1加圧手段、122……第2加圧手段、124……可動金型、126……固定金型、128……キャビティ、130……射出スリーブ、132……プランジャー、134……加圧ピン、136……第1分流子ランナー、138……立上りランナー、140……アクチュエータ、144……オリフィス、146……環状突起、148……制御部、150……平行ランナー、410……加圧シリンダー、412……シリンダー本体、414……ピストン、416……加圧ピン、418……ポンプ、420……方向切替バルブ、422……絞り弁、424……タンク、426……ストローク検出装置、428……シリンダー本体、430……ピストン、432……加圧ピン、434……ポテンショメータ、436……リミットスイッチ、438……逆止弁、439……オリフィス(絞り弁)、440……分岐経路、442……逆止弁、444……ソレノイドバルブ、446……バイパス経路。 10 ... Die cast manufacturing equipment, 12 ... Moving plate, 14 ... Movable mold, 16 ... Fixed plate, 18 ... Fixed mold, 20 ... Cavity, 22 ... Extruded pin, 24 ... Hot water supply means, 26 ... Injection sleeve, 28 ... Plunger, 30 ... First pressurizing means, 32 ... Runner, 34 ... Divider runner section, 36 ... Rising runner section, 38 ... Second pressurizing means, 40 ... actuator, 42 ... pressure pin, 44 ... orifice, 46 ... annular protrusion, 110 ... die cast product, 112 ... biscuits, 114 ... branch base runner, 116a, 116b, 116c, 116d ... ... Branch runner, 118a, 118b, 118c, 118d ... Gate, 120 ... First pressurizing means, 122 ... Second pressurizing means, 124 ... Movable mold, 126 ... Fixed mold, 128 ... Cavity, 130 ... Injection sleeve, 132 ... Plunger, 134 ... Pressurized pin, 136 ... 1st branch runner runner, 138 ... Rising runner, 140 ... Actuator, 144 ... orifice, 146 ... Circular Projection 148 ... Control unit, 150 ... Parallel runner, 410 ... Pressurized cylinder, 412 ... Cylinder body, 414 ... Piston, 416 ... Pressurized pin, 418 ... Pump, 420 ... Direction switching valve 422 ... Squeeze valve, 424 ... Tank, 426 ... Stroke detector, 428 ... Cylinder body, 430 ... Piston, 432 ... Pressure pin, 434 ... Potential meter, 436 ... Limit switch, 438 ... ... check valve, 439 ... orifice (throttle valve), 440 ... branch path, 442 ... check valve, 444 ... solenoid valve, 446 ... bypass path.

Claims (14)

  1.   型締された金型に第1加圧手段により溶湯を射出した後、第2加圧手段によりキャビティに直結するランナーを通じて第2加圧を行うに際し、第2加圧手段の加圧経路にオリフィスを設け、当該オリフィス部分でのメタルシールにより溶湯の逆流を防止しつつ第2加圧手段によりキャビティ加圧を成すことを特徴とするダイカスト製造方法。 After injecting the molten metal into the molded mold by the first pressurizing means, when performing the second pressurization through the runner directly connected to the cavity by the second pressurizing means, an orifice is applied to the pressurizing path of the second pressurizing means. A die casting manufacturing method, characterized in that a cavity is pressurized by a second pressurizing means while preventing backflow of molten metal by a metal seal at the orifice portion.
  2. 前記オリフィスはランナーにおけるキャビティに直結する立上りランナー部に対応する面に形成してメタルシールにより溶湯の逆流を防止したことを特徴とする請求項1に記載のダイカスト製造方法。 The die casting manufacturing method according to claim 1, wherein the orifice is formed on a surface corresponding to a rising runner portion directly connected to a cavity in the runner, and a metal seal is used to prevent backflow of molten metal.
  3.  前記キャビティへは複数の分岐ランナーを介して射出されるようになっており、前記オリフィスは選択された分岐ランナーの立上りランナー部若しくはその近傍部に対応する面に形成してメタルシールにより溶湯の逆流を防止したことを特徴とする請求項1に記載のダイカスト製造方法。 The orifice is injected into the cavity via a plurality of branch runners, and the orifice is formed on the surface corresponding to the rising runner portion or the vicinity portion of the selected branch runner, and the backflow of the molten metal is performed by the metal seal. The die casting manufacturing method according to claim 1, wherein the die casting method is characterized in that.
  4.  前記第2加圧手段の加圧ピンの移動方向は、第1加圧手段のプランジャー方向と交差する方向であることを特徴とする請求項1に記載のダイカスト製造方法。 The die casting manufacturing method according to claim 1, wherein the moving direction of the pressurizing pin of the second pressurizing means is a direction intersecting the plunger direction of the first pressurizing means.
  5.  前記第2加圧手段の加圧ピンの移動方向は、第1加圧手段のプランジャー方向と平行な方向であることを特徴とする請求項1に記載のダイカスト製造方法。 The die casting manufacturing method according to claim 1, wherein the moving direction of the pressurizing pin of the second pressurizing means is a direction parallel to the plunger direction of the first pressurizing means.
  6.  密度向上を図りたい部分に繋がる新たな分岐ランナーによりキャビティへの第2加圧を行う、ことを特徴とする請求項1又は3に記載のダイカスト製造方法。 The die casting manufacturing method according to claim 1 or 3, wherein a second pressurization is performed on the cavity by a new branch runner connected to a portion where the density is desired to be improved.
  7. 型締された金型に第1加圧手段により溶湯を射出した後、第2加圧手段によりキャビティに直結するランナーを通じて第2加圧を行うに際し、
    前記ランナーは、第1加圧手段によりキャビティに充填された溶湯がオーバーフローする箇所に設けられた補助ランナーとし、
    第1加圧手段の加圧終了後に第2加圧手段を作動させて補助ランナーからキャビティへ加圧せしめることを特徴とするダイカスト製造方法。
    After injecting the molten metal into the molded mold by the first pressurizing means, the second pressurizing is performed through the runner directly connected to the cavity by the second pressurizing means.
    The runner is an auxiliary runner provided at a position where the molten metal filled in the cavity overflows by the first pressurizing means.
    A die casting manufacturing method, characterized in that a second pressurizing means is operated to pressurize the cavity from an auxiliary runner after the pressurization of the first pressurizing means is completed.
  8. ダイカスト金型に溶湯を射出する第1加圧手段と、
     キャビティに連通するランナーを加圧する第2加圧手段と、
     前記キャビティに直結するランナーに対応する面に形成し前記第2加圧手段の加圧ピンが挿通されるオリフィスと、
    からなる射出部を設けたことを特徴とするダイカスト製造装置。
    The first pressurizing means for injecting molten metal into the die casting mold,
    A second pressurizing means that pressurizes the runner that communicates with the cavity,
    An orifice formed on the surface corresponding to the runner directly connected to the cavity and through which the pressurizing pin of the second pressurizing means is inserted.
    A die casting manufacturing device characterized by having an injection section made of.
  9. 前記オリフィスは、第2加圧手段からの溶湯射出をキャビティに導く分流子ランナー部と立上りランナー部との境界部近傍に形成してなることを特徴とする請求項8に記載のダイカスト製造装置。 The die casting manufacturing apparatus according to claim 8, wherein the orifice is formed in the vicinity of a boundary portion between the shunt runner portion and the rising runner portion that guide the molten metal injection from the second pressurizing means to the cavity.
  10. 前記ランナーは複数の分岐ランナーからなり、選択された分岐ランナーに対応する面にオリフィスを形成し、当該オリフィスに第2加圧手段の加圧ピンを挿通可能としてなることを特徴とする請求項8に記載のダイカスト製造装置。 8. The runner is composed of a plurality of branch runners, an orifice is formed on a surface corresponding to the selected branch runner, and a pressurizing pin of a second pressurizing means can be inserted into the orifice. The die casting manufacturing apparatus described in.
  11. 前記第2加圧手段の加圧ピンの移動方向は、第1加圧手段のプランジャー方向と交差する方向であることを特徴とする請求項8又は請求項10に記載のダイカスト製造装置。 The die casting manufacturing apparatus according to claim 8 or 10, wherein the moving direction of the pressurizing pin of the second pressurizing means intersects with the plunger direction of the first pressurizing means.
  12.  前記第2加圧手段の加圧ピンの移動方向は、第1加圧手段のプランジャー方向と平行な方向であることを特徴とする請求項8又は請求項10に記載のダイカスト製造装置。 The die casting manufacturing apparatus according to claim 8 or 10, wherein the moving direction of the pressurizing pin of the second pressurizing means is a direction parallel to the plunger direction of the first pressurizing means.
  13. 前記第1加圧手段に密度向上を図りたい部分に繋がる新たな分岐ランナーを設け、この新規分岐ランナー内を溶湯の流れと同じ方向へ移動する加圧ピンを有する第2加圧手段を設けたことを特徴とする請求項8又は請求項10に記載のダイカスト製造装置。 The first pressurizing means is provided with a new branch runner connected to a portion where the density is to be improved, and a second pressurizing means having a pressurizing pin that moves in the new branch runner in the same direction as the flow of the molten metal is provided. The die casting manufacturing apparatus according to claim 8 or 10.
  14. ダイカスト金型に溶湯を射出する第1加圧手段と、
     キャビティに連通するランナーを加圧する第2加圧手段と、
     前記ランナーは第1加圧手段によりキャビティに充填された溶湯がオーバーフローする箇所に設けられた補助ランナーとし、
    第1加圧手段の加圧終了後に第2加圧手段を作動させて補助ランナーからキャビティを加圧せしめる制御部と、
    を設けたことを特徴とする請求項8に記載のダイカスト装置。
    The first pressurizing means for injecting molten metal into the die casting mold,
    A second pressurizing means that pressurizes the runner that communicates with the cavity,
    The runner is an auxiliary runner provided at a place where the molten metal filled in the cavity overflows by the first pressurizing means.
    A control unit that activates the second pressurizing means to pressurize the cavity from the auxiliary runner after the pressurization of the first pressurizing means is completed.
    The die casting apparatus according to claim 8, wherein the die casting apparatus is provided.
PCT/JP2021/038260 2020-12-28 2021-10-15 Die-casting manufacturing method and apparatus WO2022145109A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180094708.6A CN117500621A (en) 2020-12-28 2021-10-15 Die casting manufacturing method and device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020219547A JP7090254B1 (en) 2020-12-28 2020-12-28 Die casting manufacturing method and equipment
JP2020-219547 2020-12-28
JP2021067389A JP2022162483A (en) 2021-04-12 2021-04-12 Method and apparatus for manufacturing die cast by partial ultra-high pressure
JP2021-067389 2021-04-12

Publications (1)

Publication Number Publication Date
WO2022145109A1 true WO2022145109A1 (en) 2022-07-07

Family

ID=82260342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038260 WO2022145109A1 (en) 2020-12-28 2021-10-15 Die-casting manufacturing method and apparatus

Country Status (1)

Country Link
WO (1) WO2022145109A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115889726A (en) * 2023-03-13 2023-04-04 宁波鑫林模具科技有限公司 Die casting die with in-die material handle and stub bar separating function
WO2023145876A1 (en) * 2022-01-28 2023-08-03 株式会社ダイレクト21 Die-cast manufacturing method and apparatus, and pressurization means

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129817A (en) * 1975-05-07 1976-11-11 Nissan Motor Metal mould casting apparatus with pressure device
WO1980001658A1 (en) * 1979-02-14 1980-08-21 Nippon Denso Co Die casting method
WO1980001656A1 (en) * 1979-02-14 1980-08-21 Nippon Denso Co Die-casting method and apparatus
WO1980001657A1 (en) * 1979-02-14 1980-08-21 Nippon Denso Co Die casting method
WO1980001655A1 (en) * 1979-02-14 1980-08-21 Nippon Denso Co Die casting machines
JPS5997749A (en) * 1982-11-24 1984-06-05 Toyota Central Res & Dev Lab Inc Casting method of die casting product
JPS59156560A (en) * 1983-02-25 1984-09-05 Toyota Motor Corp Local pressurizing method for die casting
JPS6138770A (en) * 1984-07-31 1986-02-24 Hitachi Metals Ltd Vent combined part pressure equipment of pressure casting
JPS6478664A (en) * 1987-09-21 1989-03-24 Ube Industries Injection molding machine
JPH03138062A (en) * 1989-10-23 1991-06-12 Hitachi Ltd Apparatus and method for pressurized casting
JPH03155444A (en) * 1989-11-13 1991-07-03 Ube Ind Ltd Method and apparatus for vertical type casting
JPH08281408A (en) * 1995-04-17 1996-10-29 Aisan Ind Co Ltd Die casting method and its apparatus
JPH10146662A (en) * 1996-11-13 1998-06-02 Denso Corp Die casting method and die casting apparatus
JP2011224650A (en) * 2010-03-30 2011-11-10 Ryobi Ltd Die casting device and die casting method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129817A (en) * 1975-05-07 1976-11-11 Nissan Motor Metal mould casting apparatus with pressure device
WO1980001658A1 (en) * 1979-02-14 1980-08-21 Nippon Denso Co Die casting method
WO1980001656A1 (en) * 1979-02-14 1980-08-21 Nippon Denso Co Die-casting method and apparatus
WO1980001657A1 (en) * 1979-02-14 1980-08-21 Nippon Denso Co Die casting method
WO1980001655A1 (en) * 1979-02-14 1980-08-21 Nippon Denso Co Die casting machines
JPS5997749A (en) * 1982-11-24 1984-06-05 Toyota Central Res & Dev Lab Inc Casting method of die casting product
JPS59156560A (en) * 1983-02-25 1984-09-05 Toyota Motor Corp Local pressurizing method for die casting
JPS6138770A (en) * 1984-07-31 1986-02-24 Hitachi Metals Ltd Vent combined part pressure equipment of pressure casting
JPS6478664A (en) * 1987-09-21 1989-03-24 Ube Industries Injection molding machine
JPH03138062A (en) * 1989-10-23 1991-06-12 Hitachi Ltd Apparatus and method for pressurized casting
JPH03155444A (en) * 1989-11-13 1991-07-03 Ube Ind Ltd Method and apparatus for vertical type casting
JPH08281408A (en) * 1995-04-17 1996-10-29 Aisan Ind Co Ltd Die casting method and its apparatus
JPH10146662A (en) * 1996-11-13 1998-06-02 Denso Corp Die casting method and die casting apparatus
JP2011224650A (en) * 2010-03-30 2011-11-10 Ryobi Ltd Die casting device and die casting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145876A1 (en) * 2022-01-28 2023-08-03 株式会社ダイレクト21 Die-cast manufacturing method and apparatus, and pressurization means
CN115889726A (en) * 2023-03-13 2023-04-04 宁波鑫林模具科技有限公司 Die casting die with in-die material handle and stub bar separating function

Similar Documents

Publication Publication Date Title
WO2022145109A1 (en) Die-casting manufacturing method and apparatus
CN101497117B (en) Die and method of manufacturing cast product
KR101025716B1 (en) In-mold degassing structure, and mold having the structure
TWI486223B (en) The hydraulic circuit of the injection cylinder of the die casting device
KR100567696B1 (en) Apparatus and method for manufacturing die-cast product
WO2023145876A1 (en) Die-cast manufacturing method and apparatus, and pressurization means
US20080164002A1 (en) Die casting machine with reduced static injection pressure
EP0040919B1 (en) Pressure casting process and machine for carrying out the process
JP7090254B1 (en) Die casting manufacturing method and equipment
WO2023228390A1 (en) Die cast manufacturing method and apparatus
JP7068714B2 (en) Injection assembly for pressurized die casting system
US2808627A (en) Die casting apparatus
US4446907A (en) Die-casting method
JP2022134173A (en) Die casting device and die casting method
JP2022162483A (en) Method and apparatus for manufacturing die cast by partial ultra-high pressure
JP2023120942A (en) Die cast manufacturing method and apparatus
WO1980001657A1 (en) Die casting method
JP3713416B2 (en) Die casting machine
JPH0451261B2 (en)
JPH03264148A (en) Die instrument in die casting for rotor of induction motor
JPH08215824A (en) Method and device for extruding product of high pressure casting machine and the like
JP7490516B2 (en) Die Casting Machine
JP3063954B2 (en) Die casting machine injection equipment
CN109228177A (en) The mechanism and method for preventing mould gate melt from flowing backwards
KR840001143B1 (en) Die-casting apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 202180094708.6

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 21914970

Country of ref document: EP

Kind code of ref document: A1