WO2022145069A1 - 鋼材 - Google Patents

鋼材 Download PDF

Info

Publication number
WO2022145069A1
WO2022145069A1 PCT/JP2021/014784 JP2021014784W WO2022145069A1 WO 2022145069 A1 WO2022145069 A1 WO 2022145069A1 JP 2021014784 W JP2021014784 W JP 2021014784W WO 2022145069 A1 WO2022145069 A1 WO 2022145069A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
content
steel
recrystallization
steel material
Prior art date
Application number
PCT/JP2021/014784
Other languages
English (en)
French (fr)
Inventor
恭平 石川
謙 木村
靖之 荻巣
美百合 梅原
真吾 山▲崎▼
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2022145069A1 publication Critical patent/WO2022145069A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to steel materials.
  • Patent Document 1 by further coexisting B in addition to Nb, the recrystallization temperature of austenite is increased by 50 ° C. or more and the hardenability is significantly improved, and the values expected from the Nb and B single system are obtained. It is taught that the improvement of the strength / toughness balance is extremely large in comparison.
  • Patent Documents 2 and 3 describe that Nb is an element effective for refining austenite grains at a high temperature because it raises the recrystallization temperature.
  • Patent Document 4 describes that a small amount of Nb suppresses the recrystallization of austenite and contributes to the miniaturization of the metal structure.
  • Niobium (Nb) is known to be an element effective in suppressing recrystallization, but it is also an element that contributes to improvement of hardenability and strengthening of precipitation. Therefore, if the content of Nb is increased in order to obtain a higher recrystallization suppressing effect, the strength of the obtained steel material may become too high, or the toughness may decrease in connection therewith. Therefore, in the present technical field, for steel materials containing elements other than Nb, which have the same or higher recrystallization suppressing effect as Nb, depending on the application in which the steel material is used and the characteristics required in the application. There is a need.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a steel material having an improved recrystallization suppressing effect or an improved recrystallization suppressing effect due to a novel configuration. To provide.
  • the present inventors have investigated an element capable of suppressing or delaying the recrystallization of austenite crystal grains.
  • the present inventors suppress or delay recrystallization by increasing the amount of the specific element dissolved in the steel, and the temperature at which recrystallization starts (hereinafter, simply "recrystallization start temperature”).
  • recrystallization start temperature the temperature at which recrystallization starts
  • the steel materials that have achieved the above objectives are as follows. (1) By mass%, C: 0.001 to 1.000%, Si: 0.01-3.00%, Mn: 0.10 to 4.50%, P: 0.300% or less, S: 0.0300% or less, Al: 0.001-5.000%, N: 0.2000% or less, O: 0.0100% or less, At least one Z element selected from the group consisting of Zr: 0 to 0.8000% and Hf: 0 to 0.8000%.
  • Nb 0-3.000%, Ti: 0 to 0.500%, Ta: 0 to 0.500%, V: 0 to 1.00%, Cu: 0 to 3.00%, Ni: 0-60.00%, Cr: 0 to 30.00%, Mo: 0 to 5.00%, W: 0 to 2.00%, B: 0-0.0200%, Co: 0 to 3.00%, Be: 0 to 0.050%, Ag: 0 to 0.500%, Ca: 0-0.0500%, Mg: 0-0.0500%, At least one of La, Ce, Nd, Y, Pm, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc: 0 to 0.5000% in total.
  • [Zr], [Hf], [O], [N], and [S] are the content [mass%] of each element, and are 0 when the element is not contained.
  • the chemical composition is mass%.
  • Nb 0.003 to 3.000%, Ti: 0.005 to 0.500%, Ta: 0.001 to 0.500%, V: 0.001 to 1.00%, Cu: 0.001 to 3.00%, Ni: 0.001 to 60.00%, Cr: 0.001 to 30.00%, Mo: 0.001 to 5.00%, W: 0.001 to 2.00%, B: 0.0001-0.0200%, Co: 0.001 to 3.00%, Be: 0.0003 to 0.050%, Ag: 0.001 to 0.500%, Ca: 0.0001-0.0500%, Mg: 0.0001-0.0500%, At least one of La, Ce, Nd, Y, Pm, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc: 0.0001 to 0.5000% in total.
  • the steel material according to the embodiment of the present invention is based on mass%.
  • Nb 0-3.000%, Ti: 0 to 0.500%, Ta: 0 to 0.500%, V: 0 to 1.00%, Cu: 0 to 3.00%, Ni: 0-60.00%, Cr: 0 to 30.00%, Mo: 0 to 5.00%, W: 0 to 2.00%, B: 0-0.0200%, Co: 0 to 3.00%, Be: 0 to 0.050%, Ag: 0 to 0.500%, Ca: 0-0.0500%, Mg: 0-0.0500%, At least one of La, Ce, Nd, Y, Pm, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc: 0 to 0.5000% in total.
  • the rolling temperature is high at this time, the Fe atoms move by themselves so as to eliminate the deformation zone and the ledge, and try to return from the disturbed unstable state to a stable crystal in which the Fe atoms are neatly arranged. This is a phenomenon called recrystallization.
  • the rolling temperature is low (for example, when it is less than about 800 ° C.), Fe atoms cannot move, so that hot rolling is performed while leaving ledges and deformation bands at grain boundaries and many places in the grain. Will end.
  • the metallographic structure transforms from austenite to ferrite, and such transformation generally occurs from a place where the arrangement of Fe atoms in austenite is disturbed. Therefore, when austenite is recrystallized during hot rolling, the arrangement of Fe atoms is disturbed only at the grain boundaries, so that new ferrite crystals can only be generated from the austenite grain boundaries. ..
  • hot rolling is performed at a low temperature of less than about 800 ° C., it becomes possible to generate a large number of new ferrite crystals from ledges and deformation bands existing in many places of austenite.
  • the present inventors have investigated an element that can suppress or delay the recrystallization of austenite crystal grains.
  • the present inventors have found that the amount of specific elements that are solid-solved in the steel, that is, the elements of Zr and Hf (hereinafter, also referred to as "Z element"), is formed in the steel by the inclusions. More specifically, the effective amount of the Z element corresponding to the left side of the formula 1 is set within a predetermined range while considering the relationship between these elements with oxides, nitrides and sulfides.
  • the recrystallization of austenite crystal grains can be suppressed or delayed, and the recrystallization start temperature is shifted to the high temperature side due to the suppression or delay of such recrystallization. I found that I could do it. Therefore, according to the present invention, it is possible to obtain a steel material in which recrystallization is remarkably suppressed even when hot rolling, particularly finish rolling, is performed at a relatively high temperature, thereby improving productivity and improving productivity. It is possible to miniaturize the metal structure in the finally obtained steel material. As a result, it is possible to improve the properties related to the miniaturization of the metal structure, for example, toughness, and to reduce the manufacturing cost of the steel material and shorten the manufacturing process.
  • the Z element according to the embodiment of the present invention adheres to lattice defects such as dislocations introduced into steel during hot rolling. For example, it is considered that recrystallization is suppressed by inhibiting the rearrangement of the dislocations to move to a stable arrangement. Since all of the above Z elements have a larger atomic radius than Nb used in the prior art, dislocations are caused by fixing elements having such a relatively large atomic radius to lattice defects such as dislocations. It is considered that the inhibitory effect such as rearrangement of the above is enhanced, and as a result, at least the same or higher recrystallizing inhibitory effect can be achieved as compared with the conventional steel material using Nb. Therefore, in the present invention, it is extremely important to dissolve a large amount of such an element having a relatively large atomic radius in the steel.
  • the solid solution amount of the Z element in consideration of such inclusions is calculated as the effective amount of the Z element by the above formula 1 which will be described in detail later, and the effective amount is within a predetermined range, that is, By setting it to 0.0003% or more, it is possible to achieve a higher recrystallization suppressing effect.
  • the Z element in the present invention easily combines with O, N and S to form inclusions as described above, and therefore it is generally difficult to secure a predetermined solid solution amount in steel. Due to such circumstances, the recrystallization suppressing effect of the Z element has not been known so far. However, recent advances in refining technology have made it possible to reduce the content of elements such as O, N, and S, which are generally present in steel as impurities, to extremely low levels. It was possible to realize a solid solution within a predetermined range of the Z element. Therefore, the recrystallization inhibitory effect caused by the solid solution of the Z element has been clarified for the first time by the present inventors, and is extremely surprising and surprising.
  • Carbon (C) is an element necessary for stabilizing hardness and / or ensuring strength. In order to sufficiently obtain these effects, the C content is 0.001% or more. The C content may be 0.005% or more, 0.010% or more, or 0.020% or more. On the other hand, if C is excessively contained, toughness, bendability and / or weldability may decrease. Therefore, the C content is 1.000% or less. The C content may be 0.800% or less, 0.600% or less, or 0.500% or less.
  • Si is a deoxidizing element and is an element that also contributes to the improvement of strength. In order to sufficiently obtain these effects, the Si content is 0.01% or more. The Si content may be 0.05% or more, 0.10% or more, or 0.30% or more. On the other hand, if Si is excessively contained, the toughness may be lowered or surface quality defects called scale defects may occur. Therefore, the Si content is 3.00% or less. The Si content may be 2.00% or less, 1.00% or less, or 0.60% or less.
  • Manganese (Mn) is an element effective for improving hardenability and / or strength, and is also an effective austenite stabilizing element. In order to sufficiently obtain these effects, the Mn content is 0.10% or more. The Mn content may be 0.50% or more, 0.70% or more, or 1.00% or more. On the other hand, if Mn is excessively contained, MnS harmful to toughness may be generated or the oxidation resistance may be lowered. Therefore, the Mn content is 4.50% or less. The Mn content may be 4.00% or less, 3.50% or less, or 3.00% or less.
  • Phosphorus (P) is an element mixed in the manufacturing process.
  • the P content may be 0%.
  • the P content may be 0.0001% or more, 0.0005% or more, 0.001% or more, 0.003% or more, or 0.005% or more.
  • the P content may be 0.007% or more from the viewpoint of manufacturing cost.
  • the P content is 0.300% or less.
  • the P content may be 0.100% or less, 0.030% or less, or 0.010% or less.
  • S 0.0300% or less
  • Sulfur (S) is an element mixed in the manufacturing process, and is preferable from the viewpoint of reducing inclusions formed with the Z element according to the embodiment of the present invention, so that the S content is 0%. There may be. However, in order to reduce the S content to less than 0.0001%, it takes time for refining, which leads to a decrease in productivity. Therefore, the S content may be 0.0001% or more, 0.0005% or more, or 0.0010% or more. On the other hand, if S is excessively contained, the effective amount of the Z element may decrease and the toughness may decrease. Therefore, the S content is 0.0300% or less.
  • the S content is preferably 0.0100% or less, more preferably 0.0050% or less, and most preferably 0.0030% or less.
  • Aluminum (Al) is a deoxidizing element and is also an effective element for improving corrosion resistance and / or heat resistance.
  • the Al content is 0.001% or more.
  • the Al content may be 0.010% or more, 0.100% or more, or 0.200% or more.
  • the Al content may be 1.000% or more, 2.000% or more, or 3.000% or more.
  • the Al content is 5.000% or less.
  • the Al content may be 4.500% or less, 4000% or less, or 3.500% or less.
  • the Al content may be 1.500% or less, 1.000% or less, or 0.300% or less.
  • N Nitrogen (N) is an element mixed in the manufacturing process, and is preferable from the viewpoint of reducing inclusions formed with the Z element according to the embodiment of the present invention, so that the N content is 0%. There may be. However, in order to reduce the N content to less than 0.0001%, it takes time for refining, which leads to a decrease in productivity. Therefore, the N content may be 0.0001% or more, 0.0005% or more, or 0.0010% or more. On the other hand, N is also an element effective for stabilizing austenite, and may be intentionally contained if necessary. In this case, the N content is preferably 0.0100% or more, and may be 0.0200% or more and 0.0500% or more. However, if N is excessively contained, the effective amount of the Z element may decrease and the toughness may decrease. Therefore, the N content is 0.2000% or less. The N content may be 0.1500% or less, 0.1000% or less, or 0.0800% or less.
  • Oxygen (O) is an element mixed in the manufacturing process, and is preferable from the viewpoint of reducing inclusions formed with the Z element according to the embodiment of the present invention, so that the O content is 0%. There may be. However, in order to reduce the O content to less than 0.0001%, it takes time for refining, which leads to a decrease in productivity. Therefore, the O content may be 0.0001% or more, 0.0005% or more, or 0.0010% or more. On the other hand, if O is excessively contained, coarse inclusions may be formed, the effective amount of the Z element may be lowered, and the formability and / or toughness of the steel material may be lowered. Therefore, the O content is 0.0100% or less. The O content may be 0.0080% or less, 0.0060% or less, or 0.0040% or less.
  • the Z element according to the embodiment of the present invention is Zr: 0 to 0.8000% and Hf: 0 to 0.8000%, and zirconium (Zr) and hafnium (Hf) are present in austenite in a solid-dissolved state. By doing so, the effect of suppressing recrystallization can be exhibited. By exhibiting the recrystallization suppressing effect, the metal structure in the finally obtained steel material can be refined even when hot rolling, particularly finish rolling, is performed at a relatively high temperature. For example, it is possible to improve the toughness evaluated by the Charpy impact characteristics and the like, and to greatly improve the productivity.
  • any one element may be used alone, or both may be used. Further, the Z element may be present in an amount satisfying Equation 1, which will be described in detail later, and the lower limit thereof is not particularly limited. However, for example, the content of each Z element or the total content may be 0.0010% or more, preferably 0.0050% or more, more preferably 0.0150% or more, and even more. It is preferably 0.0300% or more, and most preferably 0.0500% or more. On the other hand, even if the Z element is excessively contained, the effect is saturated, and therefore, if the Z element is contained in the steel material more than necessary, the manufacturing cost may increase.
  • the content of each Z element is 0.8000% or less, for example, 0.7000% or less, 0.6000% or less, 0.5000% or less, 0.4000% or less, or 0.3000% or less. May be good.
  • the total content of the Z element is 1.6000% or less, for example, 1.2000% or less, 1.000% or less, 0.8000% or less, 0.6000% or less, or 0.5000% or less. You may.
  • the steel material may contain one or more of the following optional elements, if necessary.
  • the steel material has Nb: 0 to 3.000%, Ti: 0 to 0.500%, Ta: 0 to 0.500%, V: 0 to 1.00%, Cu: 0 to 3.00%, Ni: 0 to 60.00%, Cr: 0 to 30.00%, Mo: 0 to 5.00%, W: 0 to 2.00%, B: 0 to 0.0200%, Co: 0 to 3 It may contain one or more of 0.00%, Be: 0 to 0.050%, and Ag: 0 to 0.500%.
  • the steel materials include Ca: 0 to 0.0500%, Mg: 0 to 0.0500%, and La, Ce, Nd, Y, Pm, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er. At least one of Tm, Yb, Lu, and Sc: one or more of 0 to 0.5000% in total may be contained. Further, the steel material may contain one or two of Sn: 0 to 0.300% and Sb: 0 to 0.300%. The steel materials are Te: 0 to 0.100%, Se: 0 to 0.100%, As: 0 to 0.050%, Bi: 0 to 0.500%, and Pb: 0 to 0.500%. One or more of them may be contained. Hereinafter, these optional elements will be described in detail.
  • Niobium (Nb) is an element that contributes to strengthening precipitation and suppressing recrystallization.
  • the Nb content may be 0%, but in order to obtain these effects, the Nb content is preferably 0.003% or more.
  • the Nb content may be 0.005% or more or 0.010% or more.
  • the Nb content may be 1.000% or more or 1.500% or more from the viewpoint of sufficiently strengthening precipitation.
  • the Nb content is 3.000% or less.
  • the Nb content may be 2.800% or less, 2.500% or less, or 2.000% or less.
  • the Nb content is preferably 0.100% or less, 0.080% or less, 0.050% or less, or 0.030. It may be less than or equal to%.
  • Titanium (Ti) is an element that contributes to improving the strength of steel materials by strengthening precipitation.
  • the Ti content may be 0%, but in order to obtain such an effect, the Ti content is preferably 0.005% or more.
  • the Ti content may be 0.010% or more, 0.050% or more, or 0.080% or more.
  • the Ti content is 0.500% or less.
  • the Ti content may be 0.300% or less, 0.200% or less, or 0.100% or less.
  • Tantalum (Ta) is an element effective in controlling the morphology of carbides and increasing their strength.
  • the Ta content may be 0%, but in order to obtain these effects, the Ta content is preferably 0.001% or more.
  • the Ta content may be 0.005% or more, 0.010% or more, or 0.050% or more.
  • the Ta content is 0.500% or less.
  • the Ta content may be 0.300% or less, 0.100% or less, or 0.080% or less.
  • Vanadium (V) is an element that contributes to improving the strength of steel materials by strengthening precipitation.
  • the V content may be 0%, but in order to obtain such an effect, the V content is preferably 0.001% or more.
  • the V content may be 0.01% or more, 0.02% or more, 0.05% or more, or 0.10% or more.
  • the V content is 1.00% or less.
  • the V content may be 0.80% or less, 0.60% or less, or 0.50% or less.
  • Copper (Cu) is an element that contributes to the improvement of strength and / or corrosion resistance.
  • the Cu content may be 0%, but in order to obtain these effects, the Cu content is preferably 0.001% or more.
  • the Cu content may be 0.01% or more, 0.10% or more, 0.15% or more, 0.20% or more, or 0.30% or more.
  • the Cu content is 3.00% or less.
  • the Cu content may be 2.00% or less, 1.50% or less, 1.00% or less, or 0.50% or less.
  • Nickel (Ni) is an element that contributes to the improvement of strength and / or heat resistance, and is also an effective austenite stabilizing element.
  • the Ni content may be 0%, but in order to obtain these effects, the Ni content is preferably 0.001% or more.
  • the Ni content may be 0.01% or more, 0.10% or more, 0.50% or more, 0.70% or more, 1.00% or more, or 3.00% or more.
  • the Ni content may be 30.00% or more, 35.00% or more, or 40.00% or more.
  • the deformation resistance during hot working increases in addition to the increase in alloy cost, which may increase the equipment load.
  • the Ni content is 60.00% or less.
  • the Ni content may be 55.00% or less or 50.00% or less.
  • the Ni content is 15.00% or less, 10.00% or less, 6.00% or less, or 4.00% or less. You may.
  • Chromium (Cr) is an element that contributes to the improvement of strength and / or corrosion resistance.
  • the Cr content may be 0%, but in order to obtain these effects, the Cr content is preferably 0.001% or more.
  • the Cr content may be 0.01% or more, 0.05% or more, 0.10% or more, or 0.50% or more.
  • the Cr content may be 10.00% or more, 12.00% or more, or 15.00% or more.
  • the Cr content is 30.00% or less.
  • the Cr content may be 28.00% or less, 25.00% or less, or 20.00% or less.
  • the Cr content may be 10.00% or less, 9.00% or less, or 7.50% or less.
  • Molybdenum is an element that enhances the hardenability of steel and contributes to the improvement of strength, and is also an element that contributes to the improvement of corrosion resistance.
  • the Mo content may be 0%, but in order to obtain these effects, the Mo content is preferably 0.001% or more.
  • the Mo content may be 0.01% or more, 0.02% or more, 0.50% or more, or 1.00% or more.
  • Mo content is 5.00% or less.
  • the Mo content may be 4.50% or less, 4.00% or less, 3.00 or less, or 1.50% or less.
  • Tungsten is an element that enhances the hardenability of steel and contributes to the improvement of strength.
  • the W content may be 0%, but in order to obtain such an effect, the W content is preferably 0.001% or more.
  • the W content may be 0.01% or more, 0.02% or more, 0.05% or more, 0.10% or more, or 0.50% or more.
  • the W content is 2.00% or less.
  • the W content may be 1.80% or less, 1.50% or less, or 1.00% or less.
  • B is an element that contributes to the improvement of strength.
  • the B content may be 0%, but in order to obtain such an effect, the B content is preferably 0.0001% or more.
  • the B content may be 0.0003% or more, 0.0005% or more, or 0.0007% or more.
  • the B content is 0.0200% or less.
  • the B content may be 0.0100% or less, 0.0050% or less, 0.0030% or less, or 0.0020% or less.
  • Co is an element that contributes to the improvement of hardenability and / or heat resistance.
  • the Co content may be 0%, but in order to obtain these effects, the Co content is preferably 0.001% or more.
  • the Co content may be 0.01% or more, 0.02% or more, 0.05% or more, 0.10% or more, or 0.50% or more.
  • the Co content is 3.00% or less.
  • the Co content may be 2.50% or less, 2.00% or less, 1.50% or less, or 0.80% or less.
  • Beryllium (Be) is an element effective for increasing the strength of the base metal and refining the structure.
  • the Be content may be 0%, but in order to obtain such an effect, the Be content is preferably 0.0003% or more.
  • the Be content may be 0.0005% or more, 0.001% or more, or 0.010% or more.
  • the Be content is 0.050% or less.
  • the Be content may be 0.040% or less, 0.030% or less, or 0.020% or less.
  • Silver (Ag) is an element effective for increasing the strength of the base material and refining the structure.
  • the Ag content may be 0%, but in order to obtain such an effect, the Ag content is preferably 0.001% or more.
  • the Ag content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.050% or more.
  • the Ag content is 0.500% or less.
  • the Ag content may be 0.400% or less, 0.300% or less, or 0.200% or less.
  • Ca 0-0.0500%
  • Ca is an element that can control the morphology of sulfides.
  • the Ca content may be 0%, but in order to obtain such an effect, the Ca content is preferably 0.0001% or more.
  • the Ca content is 0.0500% or less.
  • Magnesium (Mg) is an element that can control the morphology of sulfides.
  • the Mg content may be 0%, but in order to obtain such an effect, the Mg content is preferably 0.0001% or more.
  • the Mg content may be greater than 0.0015%, greater than 0.0016%, greater than or equal to 0.0018% or greater than or equal to 0.0020%.
  • the Mg content is 0.0500% or less.
  • the Mg content may be 0.0400% or less, 0.0300% or less, or 0.0200% or less.
  • the total content of at least one of La, Ce, Nd, Y, Pm, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc is 0%. However, in order to obtain such an effect, it is preferably 0.0001% or more.
  • the total content of at least one of La, Ce, Nd, Y, Pm, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc is 0.0002% or more. It may be 0.0003% or more or 0.0004% or more.
  • the total content of at least one of La, Ce, Nd, Y, Pm, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc is 0.5000%. It may be less than or equal to 0.4000%, 0.3000% or less, or 0.2000% or less.
  • Tin (Sn) is an element effective for improving corrosion resistance.
  • the Sn content may be 0%, but in order to obtain such an effect, the Sn content is preferably 0.001% or more.
  • the Sn content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.050% or more.
  • the Sn content is 0.300% or less.
  • the Sn content may be 0.250% or less, 0.200% or less, or 0.150% or less.
  • Antimony (Sb) is an element effective for improving corrosion resistance like Sn, and the effect can be increased by including it in combination with Sn.
  • the Sb content may be 0%, but in order to obtain the effect of improving the corrosion resistance, the Sb content is preferably 0.001% or more.
  • the Sb content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.050% or more.
  • excessive content of Sb may lead to a decrease in toughness, particularly low temperature toughness. Therefore, the Sb content is 0.300% or less.
  • the Sb content may be 0.250% or less, 0.200% or less, or 0.150% or less.
  • Tellurium is an element effective for improving the machinability of steel because it forms a low melting point compound with Mn, S and the like to enhance the lubricating effect.
  • the Te content may be 0%, but in order to obtain such an effect, the Te content is preferably 0.001% or more.
  • the Te content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.040% or more.
  • the Te content is 0.100% or less.
  • the Te content may be 0.090% or less, 0.080% or less, or 0.070% or less.
  • Selenium (Se) is an effective element for improving the machinability of steel because the selenium produced in the steel changes the shear-plastic deformation of the work material and the chips are easily crushed. ..
  • the Se content may be 0%, but in order to obtain such an effect, the Se content is preferably 0.001% or more.
  • the Se content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.040% or more.
  • the Se content is 0.100% or less.
  • the Se content may be 0.090% or less, 0.080% or less, or 0.070% or less.
  • Arsenic (As) is an element effective in improving the machinability of steel.
  • the As content may be 0%, but in order to obtain such an effect, the As content is preferably 0.001% or more.
  • the As content may be 0.005% or more or 0.010% or more.
  • the As content is 0.050% or less.
  • the As content may be 0.040% or less, 0.030% or less, or 0.020% or less.
  • Bismuth (Bi) is an element effective in improving the machinability of steel.
  • the Bi content may be 0%, but in order to obtain such an effect, the Bi content is preferably 0.001% or more.
  • the Bi content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.050% or more.
  • the Bi content is 0.500% or less.
  • the Bi content may be 0.400% or less, 0.300% or less, or 0.200% or less.
  • Pb 0 to 0.500%
  • Lead (Pb) is an element effective for improving the machinability of steel because it melts when the temperature rises due to cutting and promotes the growth of cracks.
  • the Pb content may be 0%, but in order to obtain such an effect, the Pb content is preferably 0.001% or more.
  • the Pb content may be 0.010% or more, 0.020% or more, 0.030% or more, or 0.050% or more.
  • the Pb content is 0.500% or less.
  • the Pb content may be 0.400% or less, 0.300% or less, or 0.200% or less.
  • the balance other than the above elements consists of Fe and impurities.
  • Impurities are components that are mixed in by various factors in the manufacturing process, including raw materials such as ore and scrap, when steel materials are industrially manufactured.
  • the effective amount of the Z element consisting of Zr and Hf is determined by the left side of the following formula 1, and the value thereof satisfies the following formula 1. 0.61 [Zr] +0.31 [Hf] -1.75 [O] -3.99 [N] -1.74 [S] ⁇ 0.0003 ⁇ ⁇ ⁇ Equation 1
  • [Zr], [Hf], [O], [N], and [S] are the content [mass%] of each element, and are 0 when the element is not contained.
  • the effective amount of the Z element By making the effective amount of the Z element satisfy the above formula 1, the amount of these elements existing in the solid solution state in the steel can be increased, so that the recrystallization of the austenite crystal grains is suppressed. Alternatively, it can be delayed, and the recrystallization start temperature can be shifted to the higher temperature side due to such suppression or delay of recrystallization. More specifically, these Z elements (hereinafter, also simply referred to as “Z”) are combined with O (oxygen), N (nitrogen) and S (sulfur) present in steel to form an oxide (ZO 2 ). , Tends to form inclusions consisting of nitrides (ZN) and sulfides (ZS).
  • the amount of Z element existing in the steel in a solid solution state without forming inclusions is determined. Need to increase.
  • the solid solution amount of the Z element in the steel is obtained by subtracting the maximum amount that can be consumed to form inclusions (oxides, nitrides and sulfides) from the amount of the Z element contained in the steel. It is possible to make an approximation. Therefore, in the embodiment of the present invention, the solid solution amount of the Z element estimated in this way is the amount of the Z element effective for suppressing the recrystallization of the austenite crystal grains (that is, the "effective amount of the Z element". ), And specifically, it is defined by the following formula A.
  • Effective amount of Z element [atomic%] ⁇ (M [Fe] / M [Z] ) x [Z]-(M [Fe] / M [O] ) x [O] x 1 / 2- (M [ ] Fe] / M [N] ) x [N]-(M [Fe] / M [S] ) x [S] ... Equation A
  • Z represents each Z element of Zr and Hf
  • M [Z] is the atomic weight of the Z element
  • M [Fe] is the atomic weight of Fe
  • M [O] is the atomic weight of O
  • M [N] is N.
  • M [S] represents the atomic weight of S
  • [Z], [O], [N], and [S] are the corresponding element content [mass%], respectively, when no element is contained. Is 0.
  • the steel material according to the embodiment of the present invention contains various alloying elements, the steel material as a whole is almost composed of Fe or is an optional element.
  • the steel material when a certain Ni and / or Cr is contained in a relatively large amount (the maximum contents are 60.00% and 30.00%, respectively), it is clear that it is almost composed of Ni and / or Cr in addition to Fe. Is.
  • the atomic weights of Ni and Cr are equivalent to the atomic weights of Fe. Therefore, even when the steel material contains a relatively large amount of Ni and / or Cr, the atomic% of each Z element of Zr and Hf is approximately Fe in the content [mass%] of each Z element.
  • Effective amount of Z element [atomic%] ⁇ (M [Fe] / M [Z] ) x [Z]-(M [Fe] / M [O] ) x [O] x 1 / 2- (M [ ] Fe] / M [N] ) x [N]-(M [Fe] / M [S] ) x [S] ... Equation A
  • [Zr], [Hf], [O], [N], and [S] are the content [mass%] of each element, and are 0 when the element is not contained.
  • the effective amount of the Z element obtained by the above formula B is 0.0003% or more, that is, the following formula 1 is satisfied. .. 0.61 [Zr] +0.31 [Hf] -1.75 [O] -3.99 [N] -1.74 [S] ⁇ 0.0003 ⁇ ⁇ ⁇ Equation 1
  • the effective amount of the Z element may be, for example, 0.0005% or more or 0.0007% or more, preferably 0.0010% or more, more preferably 0.0015% or more, still more preferably 0.0030%. The above is most preferably 0.0050% or more or 0.0100% or more.
  • the effective amount of the Z element is 2.000% or less, for example, even if it is 1.8000% or less, 1.5000% or less, 1.2000% or less, 1.000% or less, or 0.8000% or less. good.
  • the steel material according to the embodiment of the present invention may be any steel material and is not particularly limited.
  • the steel material according to the embodiment of the present invention is, for example, a steel material before exhibiting the recrystallization suppressing effect, for example, slabs, billets, blooms which are steel materials before hot rolling, and a steel material after exhibiting the recrystallization suppressing effect.
  • it includes a steel material after hot rolling.
  • the steel material after hot rolling is not particularly limited, but includes, for example, thick steel plates, thin steel plates, steel bars, wire rods, shaped steels, steel pipes, and the like.
  • the steel material according to the embodiment of the present invention can be manufactured by any suitable method known to those skilled in the art, depending on the form of the final product and the like.
  • the manufacturing method includes a step generally applied when manufacturing the thick steel plate, for example, a step of casting a slab having the chemical composition described above, and casting.
  • a step of hot rolling the slab including a step of finish rolling ending at a temperature lower than the recrystallization start temperature, and a step of cooling the obtained rolled material, and an appropriate heat treatment step as necessary. It may further include a tempering step and the like.
  • the steel material according to the embodiment of the present invention is particularly suitable for applying a thermal processing control process (TMCP) that combines controlled rolling and accelerated cooling.
  • TMCP thermal processing control process
  • the manufacturing method includes a step generally applied when manufacturing the thin steel plate, for example, a step of casting a slab having the chemical composition described above, and casting.
  • a step of hot rolling a slab including a finish rolling that ends at a temperature lower than the recrystallization start temperature, a step of cooling and winding the obtained rolled material, and a cold rolling step if necessary.
  • the baking step and the like may be further included.
  • a step generally applied when manufacturing steel bars and other steel materials is included, and for example, a steelmaking process for forming a molten steel having the chemical composition described above is formed. A process of casting slabs, billets, blooms, etc.
  • molten steel having various chemical compositions was melted using a vacuum melting furnace, and an ingot of about 50 kg was manufactured by a lump formation method.
  • the chemical compositions obtained by analyzing the samples collected from each of the obtained ingots are as shown in Table 1 below.
  • a compression processing test was carried out using a cylindrical test material ( ⁇ 8 mm ⁇ height 12 mm) obtained from the ingot, and the recrystallization suppressing effect of the steel material was obtained based on the softening rate calculated from the result of the test. evaluated.
  • Comparative Examples 84 to 90 the effective amount of the Z element composed of Zr and Hf was low, so that a sufficient recrystallization suppressing effect could not be exhibited. More specifically, in Comparative Example 84, since the Z element was not contained, a sufficient recrystallization suppressing effect could not be exhibited. Further, in Comparative Examples 85 to 90, although the Z element was contained, the content thereof was small in the relative relationship with O, N and / or S, in other words, O, N and O, N with respect to the Z element. It is probable that a relatively large amount of inclusions were formed between the Z element and these elements due to the excessive content of / or S.
  • the steel material according to the embodiment of the present invention is, for example, a steel material before hot rolling, such as slab, billet, bloom, or a steel material after hot rolling.
  • Steel materials after hot rolling include, for example, thick steel plates used for bridges, construction, shipbuilding, pressure vessels, etc., thin steel plates used for automobiles, home appliances, etc., as well as steel bars, wire rods, and shaped steel. , And steel pipes and the like.
  • the steel material according to the embodiment of the present invention is applied to these materials, the steel material can be manufactured without impairing the productivity due to the recrystallization suppressing effect, and the metal structure in the steel material is miniaturized. Therefore, it is possible to remarkably improve the properties related to the miniaturization of such a metal structure, for example, toughness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

0.61[Zr]+0.31[Hf]-1.75[O]-3.99[N]-1.74[S] ≧ 0.0003(式中、[Zr]、[Hf]、[O]、[N]、[C]及び[S]は各元素の含有量[質量%])を満たす所定の化学組成を有する鋼材が提供される。

Description

鋼材
 本発明は、鋼材に関する。
 鋼材に求められる材料特性を向上させるためには、金属組織を微細化することが有効であることが一般に知られている。これに関連して、従来、金属組織を微細化するために、例えば、鋼材を熱間圧延、より具体的には仕上げ圧延する際の終了温度を制御することでオーステナイト結晶粒の再結晶を抑制し、このような再結晶の抑制に起因してフェライト変態の駆動力を高めてより多くの新しい結晶を生成させることが行われている(例えば、特許文献1~特許文献4、参照)。
 特許文献1では、Nbに加えてBをさらに共存させることで、オーステナイトの再結晶温度が50℃以上高くなるとともに焼入性が大幅に向上して、Nb、B単独系から予想される値に比べて強度/靭性バランスの向上が極めて大きくなると教示されている。特許文献2及び3には、Nbは再結晶温度を上昇させるため、高温でのオーステナイト粒の微細化に有効な元素であることが記載されている。特許文献4には、Nbが微量でオーステナイトの再結晶を抑制し、金属組織の微細化に寄与することが記載されている。
特開昭58-077528号公報 特開昭63-235430号公報 特開昭63-235431号公報 特開2004-269924号公報
 ニオブ(Nb)は、再結晶の抑制に有効な元素であることが知られているものの、焼入れ性の向上や析出強化にも寄与する元素である。それゆえ、より高い再結晶抑制効果を得るためにNbの含有量を増加させると、得られる鋼材の強度が高くなり過ぎたり、それに関連して靱性が低下したりする場合がある。したがって、当技術分野においては、Nb以外にも、鋼材が用いられる用途や当該用途において求められる特性等に応じて、Nbと同様の又はそれを超える再結晶抑制効果を有する元素を含む鋼材に対してニーズがある。
 本発明は、このような実情に鑑みてなされたものであり、その目的とするところは、新規な構成により、改善された再結晶抑制効果を有するか又は再結晶の抑制が改善された鋼材を提供することにある。
 本発明者らは、上記目的を達成するために、オーステナイト結晶粒の再結晶を抑制又は遅延させることのできる元素について検討を行った。その結果、本発明者らは、鋼中に固溶している特定元素の量を増加させることにより、再結晶を抑制又は遅延させて再結晶が開始する温度(以下、単に「再結晶開始温度」ともいう)を高温側にシフトさせることができることを見出し、本発明を完成させた。
 上記目的を達成し得た鋼材は、以下のとおりである。
 (1)質量%で、
 C:0.001~1.000%、
 Si:0.01~3.00%、
 Mn:0.10~4.50%、
 P:0.300%以下、
 S:0.0300%以下、
 Al:0.001~5.000%、
 N:0.2000%以下、
 O:0.0100%以下、
 Zr:0~0.8000%、及びHf:0~0.8000%からなる群より選択される少なくとも1種のZ元素、
 Nb:0~3.000%、
 Ti:0~0.500%、
 Ta:0~0.500%、
 V:0~1.00%、
 Cu:0~3.00%、
 Ni:0~60.00%、
 Cr:0~30.00%、
 Mo:0~5.00%、
 W:0~2.00%、
 B:0~0.0200%、
 Co:0~3.00%、
 Be:0~0.050%、
 Ag:0~0.500%、
 Ca:0~0.0500%、
 Mg:0~0.0500%、
 La、Ce、Nd、Y、Pm、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScの少なくとも1種:合計で0~0.5000%、
 Sn:0~0.300%、
 Sb:0~0.300%、
 Te:0~0.100%、
 Se:0~0.100%、
 As:0~0.050%、
 Bi:0~0.500%、
 Pb:0~0.500%、並びに
 残部:Fe及び不純物からなり、
 下記式1を満たす化学組成を有する、鋼材。
 0.61[Zr]+0.31[Hf]-1.75[O]-3.99[N]-1.74[S] ≧ 0.0003   ・・・式1
 ここで、[Zr]、[Hf]、[O]、[N]、及び[S]は、各元素の含有量[質量%]であり、元素を含有しない場合は0である。
 (2)前記化学組成が、質量%で、
 Nb:0.003~3.000%、
 Ti:0.005~0.500%、
 Ta:0.001~0.500%、
 V:0.001~1.00%、
 Cu:0.001~3.00%、
 Ni:0.001~60.00%、
 Cr:0.001~30.00%、
 Mo:0.001~5.00%、
 W:0.001~2.00%、
 B:0.0001~0.0200%、
 Co:0.001~3.00%、
 Be:0.0003~0.050%、
 Ag:0.001~0.500%、
 Ca:0.0001~0.0500%、
 Mg:0.0001~0.0500%、
 La、Ce、Nd、Y、Pm、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScの少なくとも1種:合計で0.0001~0.5000%、
 Sn:0.001~0.300%、
 Sb:0.001~0.300%、
 Te:0.001~0.100%、
 Se:0.001~0.100%、
 As:0.001~0.050%、
 Bi:0.001~0.500%、並びに
 Pb:0.001~0.500%
のうち1種又は2種以上を含む、上記(1)に記載の鋼材。
 本発明によれば、改善された再結晶抑制効果を有するか又は再結晶の抑制が改善された鋼材を提供することができる。
実施例における圧縮加工試験の試験条件を示すグラフである。 丸山直紀ら,「鋼の熱間加工オーステナイト組織の回復再結晶初期段階におけるNbの存在状態」,日本金属学会誌,第60巻第11号(1996),pp.1051-1057から抜粋した軟化率の決定方法を示すグラフである。
<鋼材>
 本発明の実施形態に係る鋼材は、質量%で、
 C:0.001~1.000%、
 Si:0.01~3.00%、
 Mn:0.10~4.50%、
 P:0.300%以下、
 S:0.0300%以下、
 Al:0.001~5.000%、
 N:0.2000%以下、
 O:0.0100%以下、
 Zr:0~0.8000%、及びHf:0~0.8000%からなる群より選択される少なくとも1種のZ元素、
 Nb:0~3.000%、
 Ti:0~0.500%、
 Ta:0~0.500%、
 V:0~1.00%、
 Cu:0~3.00%、
 Ni:0~60.00%、
 Cr:0~30.00%、
 Mo:0~5.00%、
 W:0~2.00%、
 B:0~0.0200%、
 Co:0~3.00%、
 Be:0~0.050%、
 Ag:0~0.500%、
 Ca:0~0.0500%、
 Mg:0~0.0500%、
 La、Ce、Nd、Y、Pm、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScの少なくとも1種:合計で0~0.5000%、
 Sn:0~0.300%、
 Sb:0~0.300%、
 Te:0~0.100%、
 Se:0~0.100%、
 As:0~0.050%、
 Bi:0~0.500%、
 Pb:0~0.500%、並びに
 残部:Fe及び不純物からなり、
 下記式1を満たす化学組成を有することを特徴としている。
 0.61[Zr]+0.31[Hf]-1.75[O]-3.99[N]-1.74[S] ≧ 0.0003   ・・・式1
 ここで、[Zr]、[Hf]、[O]、[N]、及び[S]は、各元素の含有量[質量%]であり、元素を含有しない場合は0である。
 オーステナイト結晶粒の再結晶を抑制するためには、先に述べたとおり、低温で仕上げ圧延を終了することが必要である。しかしながら、この場合には、鋼材が適切な温度に低下するまで仕上げ圧延の開始を待つ必要が生じることがあり、したがって生産性の低下を招く虞がある。特に製品が建材等の用途において用いられるような比較的厚い鋼材であるときには、例えば、仕上げ圧延の前に鋼材の中心部まで十分に温度を低下させるのにかなりの時間を要することがあり、このような場合には生産性の低下が特に顕著となる。このため、生産性を損なうことなく鋼材を製造するためには、より高温で熱間圧延を終了させることが一般に望ましいものの、一方で、金属組織の微細化には、再結晶を抑制することが求められる。
 したがって、金属組織を微細化しつつ生産性を向上させるためには、未再結晶温度域を拡大する必要があり、具体的にはオーステナイト結晶粒の再結晶が開始する温度を上昇させることが必要である。より詳しく説明すると、鋼材を熱間圧延すると、当該熱間圧延によって鋼中の結晶がつぶされ、結晶の中で整然と並んでいたFe原子の配列が乱れ、変形帯と呼ばれる不連続な組織が数多く生じるとともに、結晶粒界にも多数の階段状の凹凸(レッジ)が生成する。しかしながら、このときに圧延温度が高いと、変形帯やレッジをなくすようにFe原子が自ら動いて、乱れた不安定な状態からFe原子がきれいに並んだ安定的な結晶に戻ろうとする。これが再結晶と呼ばれる現象である。一方で、圧延温度が低いと(例えば約800℃未満であると)、Fe原子が動くことができないために、粒界や粒内の多くの場所にレッジや変形帯を残したまま熱間圧延が終わることになる。
 熱間圧延終了後の冷却過程において、金属組織はオーステナイトからフェライトに変態するが、このような変態は、一般的にオーステナイト中のFe原子の配列が乱れた場所から生じる。したがって、熱間圧延中にオーステナイトが再結晶した場合には、Fe原子の配列が乱れている場所は粒界のみとなるため、新しいフェライトの結晶はオーステナイトの粒界からしか生成させることができなくなる。一方で、例えば、約800℃未満の低温で熱間圧延した場合には、オーステナイトの多くの場所に存在するレッジや変形帯から新しいフェライトの結晶を数多く生成させることが可能となる。金属組織がオーステナイトである鋼材及び金属組織がマルテンサイトである鋼材は、フェライトに変態しないが、再結晶の抑制によって、熱間圧延過程においてオーステナイト粒に蓄積される歪みが増加し、結晶粒が微細化する。このように、低温での熱間圧延、より具体的には低温での仕上げ圧延は金属組織を微細化する上で非常に有効であるものの、上記のとおり生産性の観点からはより高温で熱間圧延を終了させることが求められている。したがって、金属組織を微細化しつつ生産性を向上させるためには、再結晶開始温度を上昇させることが好ましい。
 そこで、本発明者らは、オーステナイト結晶粒の再結晶を抑制又は遅延させることのできる元素について検討を行った。その結果、本発明者らは、鋼中に固溶している特定元素、すなわちZr及びHfの元素(以下、「Z元素」ともいう)の量をそれらの元素が鋼中で形成する介在物、より具体的にはこれらの元素の酸化物、窒化物及び硫化物との関係を考慮しつつ、所定の範囲内とすることにより(すなわち、式1の左辺に対応する当該Z元素の有効量を0.0003%以上とすることにより)、オーステナイト結晶粒の再結晶を抑制又は遅延させることができ、このような再結晶の抑制又は遅延に起因して再結晶開始温度を高温側にシフトさせることができることを見出した。したがって、本発明によれば、比較的高い温度で熱間圧延、特には仕上げ圧延を行った場合においても、再結晶が顕著に抑制された鋼材を得ることができるため、生産性を向上させるとともに、最終的に得られる鋼材中の金属組織を微細化することが可能となる。その結果として、金属組織の微細化に関連する特性、例えば靭性を向上させるとともに、鋼材の製造コストの低減や製造工程の短縮などを実現することも可能となる。
 何ら特定の理論に束縛されることを意図するものではないが、本発明の実施形態に係る上記のZ元素は、熱間圧延の際に鋼中に導入される転位などの格子欠陥に固着し、例えば、当該転位が再配列して安定な配置へ移動するのを阻害することで再結晶が抑制されるものと考えられる。上記のZ元素は、いずれも従来技術において用いられているNbと比べて原子半径が大きいことから、このような比較的大きな原子半径を有する元素を転位などの格子欠陥に固着させることで、転位の再配列等の阻害効果が高まり、その結果としてNbを用いた従来の鋼材と比較して、少なくとも同等の又はより高い再結晶抑制効果を達成することができるものと考えられる。したがって、本発明においては、このような比較的大きな原子半径を有する元素を鋼中に多く固溶させておくことが極めて重要といえる。
 しかしながら、これらのZ元素は、鋼中に存在するO(酸素)、N(窒素)、及びS(硫黄)と結びついて、酸化物、窒化物及び硫化物からなる介在物を形成しやすいという問題がある。Z元素が鋼中でこのような介在物を形成してしまうと、再結晶の抑制に寄与することができるZ元素の固溶量が少なくなり、当該Z元素が転位などの格子欠陥に固着することによって得られる再結晶抑制効果が十分に得られなくなる。本発明においては、このような介在物を考慮したZ元素の固溶量を、後で詳しく説明する上記式1によって当該Z元素の有効量として算出しそして当該有効量を所定の範囲内、すなわち0.0003%以上とすることで、より高い再結晶抑制効果を達成することが可能となる。
 本発明におけるZ元素は、上記のとおりO、N及びSと結びついて介在物を形成しやすく、それゆえ鋼中で所定の固溶量を確保することは一般に困難である。このような事情から、上記Z元素による再結晶抑制効果は従来知られていなかった。しかしながら、近年の精錬技術の進歩により、一般に不純物として鋼中に存在するO、N及びSなどの元素の含有量を非常に低いレベルにまで低減することが可能となったこともあり、今回、上記Z元素の所定範囲内における固溶を実現することができた。したがって、上記Z元素の固溶に起因する再結晶抑制効果は、今回、本発明者らによって初めて明らかにされたことであり、極めて意外であり、また驚くべきことである。
 以下、本発明の実施形態に係る鋼材についてより詳しく説明する。以下の説明において、各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味するものである。また、本明細書において、数値範囲を示す「~」とは、特に断りがない場合、その前後に記載される数値を下限値及び上限値として含む意味で使用される。
[C:0.001~1.000%]
 炭素(C)は、硬さの安定化及び/又は強度の確保に必要な元素である。これらの効果を十分に得るために、C含有量は0.001%以上である。C含有量は0.005%以上、0.010%以上又は0.020%以上であってもよい。一方で、Cを過度に含有すると、靭性、曲げ性及び/又は溶接性が低下する場合がある。したがって、C含有量は1.000%以下である。C含有量は0.800%以下、0.600%以下又は0.500%以下であってもよい。
[Si:0.01~3.00%]
 ケイ素(Si)は脱酸元素であり、強度の向上にも寄与する元素である。これらの効果を十分に得るために、Si含有量は0.01%以上である。Si含有量は0.05%以上、0.10%以上又は0.30%以上であってもよい。一方で、Siを過度に含有すると、靭性が低下したり、スケール疵と呼ばれる表面品質不良を発生したりする場合がある。したがって、Si含有量は3.00%以下である。Si含有量は2.00%以下、1.00%以下又は0.60%以下であってもよい。
[Mn:0.10~4.50%]
 マンガン(Mn)は、焼入れ性及び/又は強度の向上に有効な元素であり、有効なオーステナイト安定化元素でもある。これらの効果を十分に得るために、Mn含有量は0.10%以上である。Mn含有量は0.50%以上、0.70%以上又は1.00%以上であってもよい。一方で、Mnを過度に含有すると、靭性に有害なMnSが生成したり、耐酸化性を低下させたりする場合がある。したがって、Mn含有量は4.50%以下である。Mn含有量は4.00%以下、3.50%以下又は3.00%以下であってもよい。
[P:0.300%以下]
 リン(P)は製造工程で混入する元素である。P含有量は0%であってもよい。しかしながら、P含有量を0.0001%未満に低減するためには精錬に時間を要し、生産性の低下を招く。したがって、P含有量は0.0001%以上、0.0005%以上、0.001%以上、0.003%以上、又は、0.005%以上であってもよい。P含有量は、製造コストの観点から、0.007%以上であってもよい。一方で、Pを過度に含有すると、鋼材の加工性及び/又は靭性が低下する場合がある。したがって、P含有量は0.300%以下である。P含有量は0.100%以下、0.030%以下又は0.010%以下であってもよい。
[S:0.0300%以下]
 硫黄(S)は製造工程で混入する元素であり、本発明の実施形態に係るZ元素との間で形成される介在物を低減する観点からは少ないほど好ましく、よってS含有量は0%であってもよい。しかしながら、S含有量を0.0001%未満に低減するためには精錬に時間を要し、生産性の低下を招く。したがって、S含有量は0.0001%以上、0.0005%以上又は0.0010%以上であってもよい。一方で、Sを過度に含有すると、Z元素の有効量が低下するとともに、靭性が低下する場合がある。したがって、S含有量は0.0300%以下である。S含有量は好ましくは0.0100%以下、より好ましくは0.0050%以下、最も好ましくは0.0030%以下である。
[Al:0.001~5.000%]
 アルミニウム(Al)は、脱酸元素であり、耐食性及び/又は耐熱性を向上させるのに有効な元素でもある。これらの効果を得るために、Al含有量は0.001%以上である。Al含有量は0.010%以上、0.100%以上又は0.200%以上であってもよい。とりわけ、耐熱性を十分に向上させる観点からは、Al含有量は1.000%以上、2.000%以上又は3.000%以上であってもよい。一方で、Alを過度に含有すると、粗大な介在物が生成して靭性を低下させたり、製造過程で割れなどのトラブルが発生したり、及び/又は耐疲労特性を低下させたりする場合がある。したがって、Al含有量は5.000%以下である。Al含有量は4.500%以下、4.000%以下又は3.500%以下であってもよい。とりわけ、靭性の低下を抑制するという観点からは、Al含有量は1.500%以下、1.000%以下又は0.300%以下であってもよい。
[N:0.2000%以下]
 窒素(N)は製造工程で混入する元素であり、本発明の実施形態に係るZ元素との間で形成される介在物を低減する観点からは少ないほど好ましく、よってN含有量は0%であってもよい。しかしながら、N含有量を0.0001%未満に低減するためには精錬に時間を要し、生産性の低下を招く。したがって、N含有量は0.0001%以上、0.0005%以上又は0.0010%以上であってもよい。一方で、Nはオーステナイトの安定化に有効な元素でもあり、必要に応じて意図的に含有させてもよい。この場合には、N含有量は0.0100%以上であることが好ましく、0.0200%以上、0.0500%以上であってもよい。しかしながら、Nを過度に含有すると、Z元素の有効量が低下するとともに、靭性が低下する場合がある。したがって、N含有量は0.2000%以下である。N含有量は0.1500%以下、0.1000%以下又は0.0800%以下であってもよい。
[O:0.0100%以下]
 酸素(O)は製造工程で混入する元素であり、本発明の実施形態に係るZ元素との間で形成される介在物を低減する観点からは少ないほど好ましく、よってO含有量は0%であってもよい。しかしながら、O含有量を0.0001%未満に低減するためには精錬に時間を要し、生産性の低下を招く。したがって、O含有量は0.0001%以上、0.0005%以上又は0.0010%以上であってもよい。一方で、Oを過度に含有すると、粗大な介在物が形成され、Z元素の有効量が低下するとともに、鋼材の成形性及び/又は靭性が低下する場合がある。したがって、O含有量は0.0100%以下である。O含有量は0.0080%以下、0.0060%以下又は0.0040%以下であってもよい。
[Zr:0~0.8000%、及びHf:0~0.8000%からなる群より選択される少なくとも1種のZ元素]
 本発明の実施形態に係るZ元素は、Zr:0~0.8000%、及びHf:0~0.8000%であり、ジルコニウム(Zr)及びハフニウム(Hf)はオーステナイト中に固溶状態で存在することにより再結晶抑制効果を発現することができる。当該再結晶抑制効果を発現することで、比較的高い温度で熱間圧延、特には仕上げ圧延を行った場合においても、最終的に得られる鋼材中の金属組織を微細化することができるため、例えばシャルピー衝撃特性などによって評価される靭性を向上させるとともに、生産性を大幅に改善することが可能となる。
 上記Z元素は、いずれか1つの元素を単独で使用してもよいし、又は両方を使用してもよい。また、当該Z元素は、後で詳しく説明する式1を満たす量において存在すればよく、その下限値は特に限定されない。しかしながら、例えば、各Z元素の含有量又は合計の含有量は0.0010%以上であってもよく、好ましくは0.0050%以上であり、より好ましくは0.0150%以上であり、さらにより好ましくは0.0300%以上であり、最も好ましくは0.0500%以上である。一方で、Z元素を過度に含有しても効果が飽和し、それゆえ当該Z元素を必要以上に鋼材中に含有させることは製造コストの上昇を招く虞がある。したがって、各Z元素の含有量は0.8000%以下であり、例えば0.7000%以下、0.6000%以下、0.5000%以下、0.4000%以下又は0.3000%以下であってもよい。また、Z元素の含有量の合計は1.6000%以下であり、例えば1.2000%以下、1.0000%以下、0.8000%以下、0.6000%以下又は0.5000%以下であってもよい。
 本発明の実施形態に係る鋼材の基本化学組成は上記のとおりである。さらに、当該鋼材は、必要に応じて以下の任意選択元素のうち1種又は2種以上を含有してもよい。例えば、鋼材は、Nb:0~3.000%、Ti:0~0.500%、Ta:0~0.500%、V:0~1.00%、Cu:0~3.00%、Ni:0~60.00%、Cr:0~30.00%、Mo:0~5.00%、W:0~2.00%、B:0~0.0200%、Co:0~3.00%、Be:0~0.050%、及びAg:0~0.500%のうち1種又は2種以上を含有してもよい。また、鋼材は、Ca:0~0.0500%、Mg:0~0.0500%、並びにLa、Ce、Nd、Y、Pm、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScの少なくとも1種:合計で0~0.5000%のうち1種又は2種以上を含有してもよい。また、鋼材は、Sn:0~0.300%、及びSb:0~0.300%のうち1種又は2種を含有してもよい。また、鋼材は、Te:0~0.100%、Se:0~0.100%、As:0~0.050%、Bi:0~0.500%、及びPb:0~0.500%のうち1種又は2種以上を含有してもよい。以下、これらの任意選択元素について詳しく説明する。
[Nb:0~3.000%]
 ニオブ(Nb)は、析出強化及び再結晶の抑制等に寄与する元素である。Nb含有量は0%であってもよいが、これらの効果を得るためには、Nb含有量は0.003%以上であることが好ましい。例えば、Nb含有量は0.005%以上又は0.010%以上であってもよい。とりわけ、析出強化を十分に図る観点からは、Nb含有量は1.000%以上又は1.500%以上であってもよい。一方で、Nbを過度に含有すると、効果が飽和し、加工性及び/又は靭性を低下させる場合がある。したがって、Nb含有量は3.000%以下である。Nb含有量は2.800%以下、2.500%以下又は2.000%以下であってもよい。とりわけ、溶接熱影響部(HAZ)の靭性低下を抑制するという観点からは、Nb含有量は0.100%以下であることが好ましく、0.080%以下、0.050%以下又は0.030%以下であってもよい。
[Ti:0~0.500%]
 チタン(Ti)は、析出強化等により鋼材の強度向上に寄与する元素である。Ti含有量は0%であってもよいが、このような効果を得るためには、Ti含有量は0.005%以上であることが好ましい。Ti含有量は0.010%以上、0.050%以上又は0.080%以上であってもよい。一方で、Tiを過度に含有すると、多量の析出物が生成して靭性を低下させる場合がある。したがって、Ti含有量は0.500%以下である。Ti含有量は0.300%以下、0.200%以下又は0.100%以下であってもよい。
[Ta:0~0.500%]
 タンタル(Ta)は、炭化物の形態制御と強度の増加に有効な元素である。Ta含有量は0%であってもよいが、これらの効果を得るためには、Ta含有量は0.001%以上であることが好ましい。Ta含有量は0.005%以上、0.010%以上又は0.050%以上であってもよい。一方で、Taを過度に含有すると、微細なTa炭化物が多数析出し、鋼材の過度な強度上昇を招き、結果として延性の低下及び冷間加工性を低下させる場合がある。したがって、Ta含有量は0.500%以下である。Ta含有量は、0.300%以下、0.100%以下又は0.080%以下であってもよい。
[V:0~1.00%]
 バナジウム(V)は、析出強化等により鋼材の強度向上に寄与する元素である。V含有量は0%であってもよいが、このような効果を得るためには、V含有量は0.001%以上であることが好ましい。V含有量は0.01%以上、0.02%以上、0.05%以上又は0.10%以上であってもよい。一方で、Vを過度に含有すると、多量の析出物が生成して靭性を低下させる場合がある。したがって、V含有量は1.00%以下である。V含有量は0.80%以下、0.60%以下又は0.50%以下であってもよい。
[Cu:0~3.00%]
 銅(Cu)は強度及び/又は耐食性の向上に寄与する元素である。Cu含有量は0%であってもよいが、これらの効果を得るためには、Cu含有量は0.001%以上であることが好ましい。Cu含有量は0.01%以上、0.10%以上、0.15%以上、0.20%以上又は0.30%以上であってもよい。一方で、Cuを過度に含有すると、靭性や溶接性の劣化を招く場合がある。したがって、Cu含有量は3.00%以下である。Cu含有量は2.00%以下、1.50%以下、1.00%以下又は0.50%以下であってもよい。
[Ni:0~60.00%]
 ニッケル(Ni)は強度及び/又は耐熱性の向上に寄与する元素であり、有効なオーステナイト安定化元素でもある。Ni含有量は0%であってもよいが、これらの効果を得るためには、Ni含有量は0.001%以上であることが好ましい。Ni含有量は0.01%以上、0.10%以上、0.50%以上、0.70%以上、1.00%以上又は3.00%以上であってもよい。とりわけ、耐熱性を十分に向上させる観点からは、Ni含有量は30.00%以上、35.00%以上又は40.00%以上であってもよい。一方で、Niを過度に含有すると、合金コストの増加に加えて熱間加工時の変形抵抗が増大し、設備負荷が大きくなる場合がある。したがって、Ni含有量は60.00%以下である。Ni含有量は55.00%以下又は50.00%以下であってもよい。とりわけ、経済性の観点及び/又は溶接性の低下を抑制するという観点からは、Ni含有量は15.00%以下、10.00%以下、6.00%以下又は4.00%以下であってもよい。
[Cr:0~30.00%]
 クロム(Cr)は強度及び/又は耐食性の向上に寄与する元素である。Cr含有量は0%であってもよいが、これらの効果を得るためには、Cr含有量は0.001%以上であることが好ましい。Cr含有量は0.01%以上、0.05%以上、0.10%以上又は0.50%以上であってもよい。とりわけ、耐食性を十分に向上させる観点からは、Cr含有量は10.00%以上、12.00%以上又は15.00%以上であってもよい。一方で、Crを過度に含有すると、合金コストの増加に加えて靭性が低下する場合がある。したがって、Cr含有量は30.00%以下である。Cr含有量は28.00%以下、25.00%以下又は20.00%以下であってもよい。とりわけ、溶接性及び/又は加工性の低下を抑制するという観点からは、Cr含有量は10.00%以下、9.00%以下又は7.50%以下であってもよい。
[Mo:0~5.00%]
 モリブデン(Mo)は鋼の焼入れ性を高め、強度の向上に寄与する元素であり、耐食性の向上にも寄与する元素である。Mo含有量は0%であってもよいが、これらの効果を得るためには、Mo含有量は0.001%以上であることが好ましい。Mo含有量は0.01%以上、0.02%以上、0.50%以上又は1.00%以上であってもよい。一方で、Moを過度に含有すると、熱間加工時の変形抵抗が増大し、設備負荷が大きくなる場合がある。したがって、Mo含有量は5.00%以下である。Mo含有量は4.50%以下、4.00%以下、3.00以下又は1.50%以下であってもよい。
[W:0~2.00%]
 タングステン(W)は鋼の焼入れ性を高め、強度の向上に寄与する元素である。W含有量は0%であってもよいが、このような効果を得るためには、W含有量は0.001%以上であることが好ましい。W含有量は0.01%以上、0.02%以上、0.05%以上、0.10%以上又は0.50%以上であってもよい。一方で、Wを過度に含有すると、延性や溶接性が低下する場合がある。したがって、W含有量は2.00%以下である。W含有量は1.80%以下、1.50%以下又は1.00%以下であってもよい。
[B:0~0.0200%]
 ホウ素(B)は強度の向上に寄与する元素である。B含有量は0%であってもよいが、このような効果を得るためには、B含有量は0.0001%以上であることが好ましい。B含有量は0.0003%以上、0.0005%以上又は0.0007%以上であってもよい。一方で、Bを過度に含有すると、靭性及び/又は溶接性が低下する場合がある。したがって、B含有量は0.0200%以下である。B含有量は0.0100%以下、0.0050%以下、0.0030%以下又は0.0020%以下であってもよい。
[Co:0~3.00%]
 コバルト(Co)は焼入れ性及び/又は耐熱性の向上に寄与する元素である。Co含有量は0%であってもよいが、これらの効果を得るためには、Co含有量は0.001%以上であることが好ましい。Co含有量は0.01%以上、0.02%以上、0.05%以上、0.10%以上又は0.50%以上であってもよい。一方で、Coを過度に含有すると、熱間加工性が低下する場合があり、原料コストの増加にも繋がる。したがって、Co含有量は3.00%以下である。Co含有量は2.50%以下、2.00%以下、1.50%以下又は0.80%以下であってもよい。
[Be:0~0.050%]
 ベリリウム(Be)は、母材の強度の上昇及び組織の微細化に有効な元素である。Be含有量は0%であってもよいが、このような効果を得るためには、Be含有量は0.0003%以上であることが好ましい。Be含有量は0.0005%以上、0.001%以上又は0.010%以上であってもよい。一方で、Beを過度に含有すると、成形性が低下する場合がある。したがって、Be含有量は0.050%以下である。Be含有量は0.040%以下、0.030%以下又は0.020%以下であってもよい。
[Ag:0~0.500%]
 銀(Ag)は、母材の強度の上昇及び組織の微細化に有効な元素である。Ag含有量は0%であってもよいが、このような効果を得るためには、Ag含有量は0.001%以上であることが好ましい。Ag含有量は0.010%以上、0.020%以上、0.030%以上又は0.050%以上であってもよい。一方で、Agを過度に含有すると、成形性が低下する場合がある。したがって、Ag含有量は0.500%以下である。Ag含有量は0.400%以下、0.300%以下又は0.200%以下であってもよい。
[Ca:0~0.0500%]
 カルシウム(Ca)は、硫化物の形態を制御できる元素である。Ca含有量は0%であってもよいが、このような効果を得るためには、Ca含有量は0.0001%以上であることが好ましい。一方で、Caを過度に含有しても効果が飽和し、それゆえCaを必要以上に鋼材中に含有させることは製造コストの上昇を招く虞がある。したがって、Ca含有量は0.0500%以下である。
[Mg:0~0.0500%]
 マグネシウム(Mg)は、硫化物の形態を制御できる元素である。Mg含有量は0%であってもよいが、このような効果を得るためには、Mg含有量は0.0001%以上であることが好ましい。Mg含有量は0.0015%超、0.0016%以上、0.0018%以上又は0.0020%以上であってもよい。一方で、Mgを過度に含有しても効果が飽和し、粗大な介在物の形成に起因して冷間成形性及び/又は靭性が低下する場合がある。したがって、Mg含有量は0.0500%以下である。Mg含有量は0.0400%以下、0.0300%以下又は0.0200%以下であってもよい。
[La、Ce、Nd、Y、Pm、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScの少なくとも1種:合計で0~0.5000%]
 ランタン(La)、セリウム(Ce)、ネオジム(Nd)、イットリウム(Y)、プロメチウム(Pm)、プラセオジム(Pr)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、及びスカンジウム(Sc)は、Ca及びMgと同様に硫化物の形態を制御できる元素である。La、Ce、Nd、Y、Pm、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScの少なくとも1種の含有量の合計は0%であってもよいが、このような効果を得るためには0.0001%以上であることが好ましい。La、Ce、Nd、Y、Pm、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScの少なくとも1種の含有量の合計は0.0002%以上、0.0003%以上又は0.0004%以上であってもよい。一方で、これらの元素を過度に含有しても効果が飽和し、それゆえこれらの元素を必要以上に鋼材中に含有させることは製造コストの上昇を招く虞がある。したがって、La、Ce、Nd、Y、Pm、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScの少なくとも1種の含有量の合計は0.5000%以下であり、0.4000%以下、0.3000%以下又は0.2000%以下であってもよい。
[Sn:0~0.300%]
 錫(Sn)は耐食性の向上に有効な元素である。Sn含有量は0%であってもよいが、このような効果を得るためには、Sn含有量は0.001%以上であることが好ましい。Sn含有量は0.010%以上、0.020%以上、0.030%以上又は0.050%以上であってもよい。一方で、Snを過度に含有すると、靭性、特には低温靭性の低下を招く場合がある。したがって、Sn含有量は0.300%以下である。Sn含有量は0.250%以下、0.200%以下又は0.150%以下であってもよい。
[Sb:0~0.300%]
 アンチモン(Sb)は、Snと同様に耐食性の向上に有効な元素であり、特にSnと複合して含有させることにより効果を増大させることができる。Sb含有量は0%であってもよいが、耐食性向上の効果を得るためには、Sb含有量は0.001%以上であることが好ましい。Sb含有量は0.010%以上、0.020%以上、0.030%以上又は0.050%以上であってもよい。一方で、Sbを過度に含有すると、靭性、特には低温靭性の低下を招く場合がある。したがって、Sb含有量は0.300%以下である。Sb含有量は0.250%以下、0.200%以下又は0.150%以下であってもよい。
[Te:0~0.100%]
 テルル(Te)は、MnやSなどと低融点化合物を形成して潤滑効果を高めるため、鋼の被削性を改善するのに有効な元素である。Te含有量は0%であってもよいが、このような効果を得るためには、Te含有量は0.001%以上であることが好ましい。Te含有量は0.010%以上、0.020%以上、0.030%以上又は0.040%以上であってもよい。一方で、Teを過度に含有しても効果が飽和し、合金コストの増加を招く。したがって、Te含有量は0.100%以下である。Te含有量は0.090%以下、0.080%以下又は0.070%以下であってもよい。
[Se:0~0.100%]
 セレン(Se)は、鋼中に生成するセレン化物が被削材のせん断塑性変形に変化を与え、切りくずが破砕されやすくなるため、鋼の被削性を改善するのに有効な元素である。Se含有量は0%であってもよいが、このような効果を得るためには、Se含有量は0.001%以上であることが好ましい。Se含有量は0.010%以上、0.020%以上、0.030%以上又は0.040%以上であってもよい。一方で、Seを過度に含有しても効果が飽和し、合金コストの増加を招く。したがって、Se含有量は0.100%以下である。Se含有量は0.090%以下、0.080%以下又は0.070%以下であってもよい。
[As:0~0.050%]
 ヒ素(As)は、鋼の被削性を改善するのに有効な元素である。As含有量は0%であってもよいが、このような効果を得るためには、As含有量は0.001%以上であることが好ましい。As含有量は0.005%以上又は0.010%以上であってもよい。一方で、Asを過度に含有すると、熱間加工性が低下する場合がある。したがって、As含有量は0.050%以下である。As含有量は0.040%以下、0.030%以下又は0.020%以下であってもよい。
[Bi:0~0.500%]
 ビスマス(Bi)は、鋼の被削性を改善するのに有効な元素である。Bi含有量は0%であってもよいが、このような効果を得るためには、Bi含有量は0.001%以上であることが好ましい。Bi含有量は0.010%以上、0.020%以上、0.030%以上又は0.050%以上であってもよい。一方で、Biを過度に含有しても効果が飽和し、合金コストの増加を招く。したがって、Bi含有量は0.500%以下である。Bi含有量は0.400%以下、0.300%以下又は0.200%以下であってもよい。
[Pb:0~0.500%]
 鉛(Pb)は、切削による温度上昇で溶融してクラックの進展を促進するため、鋼の被削性を改善するのに有効な元素である。Pb含有量は0%であってもよいが、このような効果を得るためには、Pb含有量は0.001%以上であることが好ましい。Pb含有量は0.010%以上、0.020%以上、0.030%以上又は0.050%以上であってもよい。一方で、Pbを過度に含有すると、熱間加工性が低下する場合がある。したがって、Pb含有量は0.500%以下である。Pb含有量は0.400%以下、0.300%以下又は0.200%以下であってもよい。
 本発明の実施形態に係る鋼材において、上記の元素以外の残部は、Fe及び不純物からなる。不純物とは、鋼材を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分等である。
[Z元素の有効量]
 本発明の実施形態によれば、Zr及びHfからなるZ元素の有効量は、下記式1の左辺によって求められ、そしてその値は下記式1を満たすようにする。
 0.61[Zr]+0.31[Hf]-1.75[O]-3.99[N]-1.74[S] ≧ 0.0003   ・・・式1
 ここで、[Zr]、[Hf]、[O]、[N]、及び[S]は、各元素の含有量[質量%]であり、元素を含有しない場合は0である。
 上記Z元素の有効量を上記式1を満たすようにすることで、鋼中に固溶状態で存在しているこれらの元素の量を増加させることができるので、オーステナイト結晶粒の再結晶を抑制又は遅延させることができ、このような再結晶の抑制又は遅延に起因して再結晶開始温度を高温側にシフトさせることができる。より詳しく説明すると、これらのZ元素(以下、単に「Z」ともいう)は、鋼中に存在するO(酸素)、N(窒素)及びS(硫黄)と結びついて、酸化物(ZO2)、窒化物(ZN)及び硫化物(ZS)からなる介在物を形成する傾向がある。当該介在物を形成してしまうと、少なくともこれらの介在物中のZ元素はオーステナイト結晶粒の再結晶を抑制するのに寄与することはできない。したがって、オーステナイト結晶粒の再結晶を抑制するためには、介在物を形成せずに鋼中に固溶状態で存在しているZ元素の量(すなわち鋼中のZ元素の固溶量)を増加させる必要がある。
 ここで、鋼中のZ元素の固溶量は、鋼中に含まれるZ元素の量から介在物(酸化物、窒化物及び硫化物)を形成するのに消費され得る最大量を差し引くことによって概算することが可能である。そこで、本発明の実施形態においては、このようにして概算されるZ元素の固溶量をオーステナイト結晶粒の再結晶を抑制するのに有効なZ元素の量(すなわち「Z元素の有効量」)とし、具体的には下記式Aによって定義する。
 Z元素の有効量[原子%]=Σ(M[Fe]/M[Z])×[Z]-(M[Fe]/M[O])×[O]×1/2-(M[Fe]/M[N])×[N]-(M[Fe]/M[S])×[S]   ・・・式A
 ここで、ZはZr及びHfの各Z元素を表し、M[Z]はZ元素の原子量、M[Fe]はFeの原子量、M[O]はOの原子量、M[N]はNの原子量、M[S]はSの原子量を表し、[Z]、[O]、[N]、及び[S]は、それぞれ対応する元素の含有量[質量%]であり、元素を含有しない場合は0である。
 上記式Aについて以下に詳しく説明すると、まず、本発明の実施形態に係る鋼材には種々の合金元素が含有されているものの、鋼材全体としてはほぼFeによって構成されているか、あるいは任意選択元素であるNi及び/又はCrを比較的多く含む場合(それぞれの最大含有量は60.00%及び30.00%)には、Feに加えてNi及び/又はCrによってほぼ構成されていることが明らかである。一方で、Ni及びCrの原子量はFeの原子量と同等であることが周知である。このため、たとえ鋼材がNi及び/又はCrを比較的多く含む場合であっても、Zr及びHfの各Z元素の原子%は、近似的には各Z元素の含有量[質量%]にFeの原子量と当該各Z元素の原子量の比を掛け算すること、すなわち(M[Fe]/M[Z])×[Z]によって算出することができる。したがって、(M[Fe]/M[Z])×[Z]によって算出される各Z元素の量を合計することで(すなわちΣ(M[Fe]/M[Z])×[Z]を計算することで)、Z元素全体の原子%を算出することができる。
 次に、Z元素全体の原子%のうち、酸化物(ZO2)、窒化物(ZN)及び硫化物(ZS)を形成するのに消費され得る最大量(原子%)を差し引くことで、オーステナイト結晶粒の再結晶を抑制するのに有効に作用し得る鋼中のZ元素の量を算出することができる。ここで、酸化物(ZO2)、窒化物(ZN)及び硫化物(ZS)を形成するのに消費され得るZ元素の最大量(原子%)は、上で説明したのと同様の理由から近似的には鋼中のFe、O、N及びSの原子量並びにO、N及びSの含有量を用いて、それぞれ(M[Fe]/M[O])×[O]×1/2、(M[Fe]/M[N])×[N]、及び(M[Fe]/M[S])×[S]として算出することが可能である。したがって、オーステナイト結晶粒の再結晶を抑制するためのZ元素の有効量は、下記式Aによって定義することができる。
 Z元素の有効量[原子%]=Σ(M[Fe]/M[Z])×[Z]-(M[Fe]/M[O])×[O]×1/2-(M[Fe]/M[N])×[N]-(M[Fe]/M[S])×[S]   ・・・式A
 ここで、Fe、O、N及びS並びに各Z元素の原子量は、それぞれFe:55.845、O:15.9994、N:14.0069、S:32.068、Zr:91.224、Hf:178.49である。したがって、上記式Aに各元素の原子量を代入して整理すると、Z元素の原子%による有効量は近似的には下記式Bによって表すことが可能となる。
 有効量=0.61[Zr]+0.31[Hf]-1.75[O]-3.99[N]-1.74[S]   ・・・式B
 ここで、[Zr]、[Hf]、[O]、[N]、及び[S]は、各元素の含有量[質量%]であり、元素を含有しない場合は0である。
 本発明の実施形態においては、オーステナイト結晶粒の再結晶を抑制するためには、上記式Bによって求められるZ元素の有効量は0.0003%以上、すなわち下記式1を満たすことが必要である。
 0.61[Zr]+0.31[Hf]-1.75[O]-3.99[N]-1.74[S] ≧ 0.0003   ・・・式1
 Z元素の有効量は、例えば0.0005%以上又は0.0007%以上であってもよく、好ましくは0.0010%以上、より好ましくは0.0015%以上、さらにより好ましくは0.0030%以上、最も好ましくは0.0050%以上又は0.0100%以上である。また、上記式1からも明らかなように、当該有効量を安定的に確保するためには、鋼中のO、N及びSの含有量を極力低減することが好ましい。ここで、Z元素の有効量の上限は特に限定されないが、当該Z元素の有効量を過度に増加させても効果が飽和するとともに、製造コストの上昇(Z元素の含有量増加に伴う合金コストの上昇及び/又はO、N及びSに関する精錬コストの上昇)を招くことになり必ずしも好ましくない。したがって、Z元素の有効量は2.0000%以下であり、例えば1.8000%以下、1.5000%以下、1.2000%以下、1.0000%以下又は0.8000%以下であってもよい。
 本発明の実施形態に係る鋼材は、任意の鋼材であってよく、特に限定されない。本発明の実施形態に係る鋼材は、例えば、再結晶抑制効果を発揮する前の鋼材、例えば熱間圧延前の鋼材であるスラブ、ビレット、ブルームや、再結晶抑制効果を発揮した後の鋼材、例えば、熱間圧延後の鋼材を包含するものである。熱間圧延後の鋼材としては、特に限定されないが、例えば、厚鋼板、薄鋼板、さらには棒鋼、線材、形鋼、及び鋼管等をも包含するものである。
 本発明の実施形態に係る鋼材は、最終的な製品の形態等に応じて、当業者に公知の任意の適切な方法によって製造することが可能である。例えば、鋼材が厚鋼板の場合には、その製造方法は、一般に厚鋼板を製造する際に適用される工程を含み、例えば、上で説明した化学組成を有するスラブを鋳造する工程、鋳造されたスラブを熱間圧延する工程であって、再結晶開始温度よりも低い温度で終了する仕上げ圧延を含む工程、及び得られた圧延材を冷却する工程を含み、必要に応じて適切な熱処理工程及び焼戻し工程等をさらに含んでいてもよい。例えば、本発明の実施形態に係る鋼材は、制御圧延と加速冷却を組み合わせた熱加工制御プロセス(TMCP)を適用するのに特に適している。
 また、鋼材が薄鋼板の場合には、その製造方法は、一般に薄鋼板を製造する際に適用される工程を含み、例えば、上で説明した化学組成を有するスラブを鋳造する工程、鋳造されたスラブを熱間圧延する工程であって、再結晶開始温度よりも低い温度で終了する仕上げ圧延を含む工程、及び得られた圧延材を冷却して巻き取る工程、必要に応じて冷間圧延工程、焼鈍工程等をさらに含んでいてもよい。棒鋼や他の鋼材の製造方法においても同様に、一般に棒鋼や他の鋼材を製造する際に適用される工程を含み、例えば、上で説明した化学組成を有する溶鋼を形成する製鋼工程、形成された溶鋼からスラブ、ビレット、ブルーム等を鋳造する工程、鋳造されたスラブ、ビレット、ブルーム等を熱間圧延する工程であって、再結晶開始温度よりも低い温度で終了する仕上げ圧延を含む工程、及び得られた圧延材を冷却する工程を含み、他の工程は、それらの鋼材を製造するのに当業者に公知の適切な工程を適宜選択し、実施することができる。上記の各工程の具体的な条件については、特には限定されず、鋼種、鋼材の種類及び形状等に応じて適切な条件を適宜選択すればよい。本発明の実施形態に係る鋼材の製造では、Z元素の有効量を確保することが重要であり、そのためにはZ元素と鋼中で介在物を形成し得るO、N及びSの含有量を精錬工程において十分に低減しておくことが極めて重要である。
 以下、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 本実施例では、まず、種々の化学組成を有する溶鋼を真空溶解炉を用いて溶製し、造塊法により約50kgのインゴットを製造した。得られた各インゴットから採取した試料を分析した化学組成は、下表1に示すとおりであった。次いで、当該インゴットから得られた円柱形状の試験材(φ8mm×高さ12mm)を用いて圧縮加工試験を実施し、当該試験の結果から算出された軟化率に基づいて鋼材の再結晶抑制効果を評価した。
 具体的には、図1に示す圧縮加工試験の試験条件に従って、まず、円柱形状の試験材を950~1300℃まで加熱し、次いで加工温度950℃、真歪みε=0.4、歪み速度ε/t=5s-1、及びパス間時間10sの条件下で2回の圧縮加工試験を行い(図1中の加工1及び加工2)、加工1及び加工2によって測定される応力-歪み曲線から軟化率を測定した。より詳しく説明すると、図2(丸山直紀ら,「鋼の熱間加工オーステナイト組織の回復再結晶初期段階におけるNbの存在状態」,日本金属学会誌,第60巻第11号(1996),pp.1051-1057から抜粋)に示されるように、1回目と2回目の圧縮加工時の降伏応力をそれぞれσ1及びσ2とし、1回目圧縮加工時の最大応力をσmとした場合、軟化率Xsは下記式から算出することができる。
   Xs=(σm-σ2)/(σm-σ1
 1回目の圧縮加工と2回目の圧縮加工の間で十分に再結晶が進行していると、加工1及び加工2によって測定される応力-歪み曲線が同様の挙動を示すため、σ2はσ1に近い値となり、それゆえ軟化率Xsは1に近づいていくことになる。一方で、1回目の圧縮加工と2回目の圧縮加工の間で再結晶の進行が抑制されていると、2回目の圧縮加工時に転位密度が増加して加工硬化が生じるため、降伏応力σ2が高くなり、その結果として軟化率Xsは0に近づいていくことになる。したがって、鋼材の軟化率Xsを測定することにより、その鋼材が有する再結晶抑制効果を評価することが可能であり、本実施例では、軟化率Xsが0.20以下の場合に、鋼材が改善された再結晶抑制効果を有するものとして評価した。その結果を下表1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1を参照すると、比較例84~90では、Zr及びHfからなるZ元素の有効量が低かったために、十分な再結晶抑制効果を示すことができなかった。より具体的には、比較例84では、Z元素が含まれていないために、十分な再結晶抑制効果を示すことができなかった。また、比較例85~90では、上記Z元素は含まれていたものの、その含有量がO、N及び/又はSとの相対的な関係で少なく、言い換えればZ元素に対してO、N及び/又はSの含有量が過剰であったために、Z元素とこれらの元素との間で介在物が比較的多く生成してしまったものと考えられる。その結果として、Z元素の有効量が低くなり、十分な再結晶抑制効果を示すことができなかった。これとは対照的に、本発明に係る全ての実施例において、Z元素の有効量を0.0003%以上とすることで、高い再結晶抑制効果を示すことができた。
 本発明の実施形態に係る鋼材は、例えば、熱間圧延前の鋼材であるスラブ、ビレット、ブルームや熱間圧延後の鋼材である。熱間圧延後の鋼材としては、例えば、橋梁、建築、造船及び圧力容器等の用途に使用される厚鋼板、自動車及び家電等の用途に使用される薄鋼板、さらには棒鋼、線材、形鋼、及び鋼管等をも包含するものである。これらの材料において本発明の実施形態に係る鋼材を適用した場合には、再結晶抑制効果により生産性を損なうことなく鋼材を製造することができ、また、鋼材中の金属組織を微細化することができるため、このような金属組織の微細化に関連する特性、例えば靭性を顕著に向上させることが可能である。

Claims (5)

  1.  質量%で、
     C:0.001~1.000%、
     Si:0.01~3.00%、
     Mn:0.10~4.50%、
     P:0.300%以下、
     S:0.0300%以下、
     Al:0.001~5.000%、
     N:0.2000%以下、
     O:0.0100%以下、
     Zr:0~0.8000%、及びHf:0~0.8000%からなる群より選択される少なくとも1種のZ元素、
     Nb:0~3.000%、
     Ti:0~0.500%、
     Ta:0~0.500%、
     V:0~1.00%、
     Cu:0~3.00%、
     Ni:0~60.00%、
     Cr:0~30.00%、
     Mo:0~5.00%、
     W:0~2.00%、
     B:0~0.0200%、
     Co:0~3.00%、
     Be:0~0.050%、
     Ag:0~0.500%、
     Ca:0~0.0500%、
     Mg:0~0.0500%、
     La、Ce、Nd、Y、Pm、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScの少なくとも1種:合計で0~0.5000%、
     Sn:0~0.300%、
     Sb:0~0.300%、
     Te:0~0.100%、
     Se:0~0.100%、
     As:0~0.050%、
     Bi:0~0.500%、
     Pb:0~0.500%、並びに
     残部:Fe及び不純物からなり、
     下記式1を満たす化学組成を有する、鋼材。
     0.61[Zr]+0.31[Hf]-1.75[O]-3.99[N]-1.74[S] ≧ 0.0003   ・・・式1
     ここで、[Zr]、[Hf]、[O]、[N]、及び[S]は、各元素の含有量[質量%]であり、元素を含有しない場合は0である。
  2.  前記化学組成が、質量%で、
     Nb:0.003~3.000%、
     Ti:0.005~0.500%、
     Ta:0.001~0.500%、
     V:0.001~1.00%、
     Cu:0.001~3.00%、
     Ni:0.001~60.00%、
     Cr:0.001~30.00%、
     Mo:0.001~5.00%、
     W:0.001~2.00%、
     B:0.0001~0.0200%、
     Co:0.001~3.00%、
     Be:0.0003~0.050%、及び
     Ag:0.001~0.500%
    のうち1種又は2種以上を含む、請求項1に記載の鋼材。
  3.  前記化学組成が、質量%で、
     Ca:0.0001~0.0500%、
     Mg:0.0001~0.0500%、並びに
     La、Ce、Nd、Y、Pm、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、及びScの少なくとも1種:合計で0.0001~0.5000%
    のうち1種又は2種以上を含む、請求項1又は2に記載の鋼材。
  4.  前記化学組成が、質量%で、
     Sn:0.001~0.300%、及び
     Sb:0.001~0.300%
    のうち1種又は2種を含む、請求項1~3のいずれか1項に記載の鋼材。
  5.  前記化学組成が、質量%で、
     Te:0.001~0.100%、
     Se:0.001~0.100%、
     As:0.001~0.050%、
     Bi:0.001~0.500%、及び
     Pb:0.001~0.500%
    のうち1種又は2種以上を含む、請求項1~4のいずれか1項に記載の鋼材。
PCT/JP2021/014784 2020-12-28 2021-04-07 鋼材 WO2022145069A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020218668 2020-12-28
JP2020-218668 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022145069A1 true WO2022145069A1 (ja) 2022-07-07

Family

ID=82259189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014784 WO2022145069A1 (ja) 2020-12-28 2021-04-07 鋼材

Country Status (1)

Country Link
WO (1) WO2022145069A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355048A (ja) * 2000-04-13 2001-12-25 Nippon Steel Corp フェライト系快削ステンレス鋼
JP2004100027A (ja) * 2002-09-12 2004-04-02 Nippon Steel Corp 耐低温変態割れ性に優れた液相拡散接合用鋼材
JP2012087361A (ja) * 2010-10-20 2012-05-10 Sumitomo Metal Ind Ltd 冷鍛窒化用鋼、冷鍛窒化用鋼材および冷鍛窒化部品
WO2012133563A1 (ja) * 2011-03-28 2012-10-04 新日本製鐵株式会社 冷延鋼板及びその製造方法
JP2019173160A (ja) * 2018-03-29 2019-10-10 日本製鉄株式会社 耐水素脆化特性に優れた低合金鋼
JP2019173117A (ja) * 2018-03-29 2019-10-10 日鉄ステンレス株式会社 耐高温塩害特性に優れたフェライト系ステンレス鋼板及び自動車排気系部品
WO2020179295A1 (ja) * 2019-03-06 2020-09-10 日本製鉄株式会社 熱延鋼板
WO2020179292A1 (ja) * 2019-03-06 2020-09-10 日本製鉄株式会社 熱延鋼板
WO2020184683A1 (ja) * 2019-03-14 2020-09-17 日本製鉄株式会社 鋼板およびその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355048A (ja) * 2000-04-13 2001-12-25 Nippon Steel Corp フェライト系快削ステンレス鋼
JP2004100027A (ja) * 2002-09-12 2004-04-02 Nippon Steel Corp 耐低温変態割れ性に優れた液相拡散接合用鋼材
JP2012087361A (ja) * 2010-10-20 2012-05-10 Sumitomo Metal Ind Ltd 冷鍛窒化用鋼、冷鍛窒化用鋼材および冷鍛窒化部品
WO2012133563A1 (ja) * 2011-03-28 2012-10-04 新日本製鐵株式会社 冷延鋼板及びその製造方法
JP2019173160A (ja) * 2018-03-29 2019-10-10 日本製鉄株式会社 耐水素脆化特性に優れた低合金鋼
JP2019173117A (ja) * 2018-03-29 2019-10-10 日鉄ステンレス株式会社 耐高温塩害特性に優れたフェライト系ステンレス鋼板及び自動車排気系部品
WO2020179295A1 (ja) * 2019-03-06 2020-09-10 日本製鉄株式会社 熱延鋼板
WO2020179292A1 (ja) * 2019-03-06 2020-09-10 日本製鉄株式会社 熱延鋼板
WO2020184683A1 (ja) * 2019-03-14 2020-09-17 日本製鉄株式会社 鋼板およびその製造方法

Similar Documents

Publication Publication Date Title
JP6383368B2 (ja) 深絞りを適用するための冷間圧延された平鋼製品及びそれを製造するための方法
JP6842257B2 (ja) Fe−Ni−Cr−Mo合金とその製造方法
JP2008088547A (ja) 高温強度、靭性及び耐再熱脆化特性に優れた耐火鋼材並びにその製造方法
RU2650467C2 (ru) Ферритная нержавеющая сталь, обладающая превосходной стойкостью к окислению, хорошими жаропрочностью и формуемостью
JP4248430B2 (ja) 延性に優れた高強度低比重鋼板およびその製造方法
WO2022145061A1 (ja) 鋼材
WO2022145068A1 (ja) 鋼材
JP7324361B2 (ja) 強度が向上したオーステナイト系ステンレス鋼およびその製造方法
JPH09202919A (ja) 低温靱性に優れた高張力鋼材の製造方法
JP2008013812A (ja) 高靭性高張力厚鋼板およびその製造方法
JPH029647B2 (ja)
WO2022145069A1 (ja) 鋼材
JP2020164956A (ja) フェライト系ステンレス鋼板およびその製造方法
JP7223210B2 (ja) 耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼板
JP7469714B2 (ja) 鋼材
JP2021509434A (ja) 高強度高靭性熱延鋼板及びその製造方法
WO2022145065A1 (ja) 鋼材
WO2022145067A1 (ja) 鋼材
JP6776469B1 (ja) 二相ステンレス鋼とその製造方法
WO2022145066A1 (ja) 鋼材
WO2022145070A1 (ja) 鋼材
JPH0629480B2 (ja) 強度、延性、靱性及び疲労特性に優れた熱延高張力鋼板及びその製造方法
JPH07224351A (ja) 冷間加工後の一様伸びの優れた高強度熱延鋼板およびその製造方法
KR101316907B1 (ko) 페라이트계 스테인레스강 및 그 제조방법
JP3477098B2 (ja) 表面性状とリジング性に優れたフェライト系ステンレス鋼薄板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP