WO2022144017A1 - 一种抗混叠旋转错位阵列天线 - Google Patents

一种抗混叠旋转错位阵列天线 Download PDF

Info

Publication number
WO2022144017A1
WO2022144017A1 PCT/CN2022/070029 CN2022070029W WO2022144017A1 WO 2022144017 A1 WO2022144017 A1 WO 2022144017A1 CN 2022070029 W CN2022070029 W CN 2022070029W WO 2022144017 A1 WO2022144017 A1 WO 2022144017A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
array antenna
antenna
array
aliasing
Prior art date
Application number
PCT/CN2022/070029
Other languages
English (en)
French (fr)
Inventor
栾英宏
吕利清
李秀伟
孙彦龙
刘瑞
冯剑锋
李宁杰
李丹
陈雄
Original Assignee
上海航天测控通信研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海航天测控通信研究所 filed Critical 上海航天测控通信研究所
Priority to EP22734742.4A priority Critical patent/EP4274026A1/en
Publication of WO2022144017A1 publication Critical patent/WO2022144017A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path

Definitions

  • the invention belongs to the field of microwave remote sensing of passive synthetic aperture system, and in particular relates to an anti-aliasing rotating dislocation array antenna.
  • Synthetic aperture microwave radiation detection is a passive microwave remote sensing technology that obtains target characteristics by receiving microwave energy radiated from the observed scene. It is a large-diameter antenna that uses multiple small-unit antennas to detect equivalent real apertures according to a certain array layout (T-type, Y-type, O-type, etc.) . Through the interferometric measurement between each two small unit antennas, the spatial frequency domain of the radiation brightness temperature distribution in the field of view is sampled to obtain the visibility function, and then the brightness temperature image is reconstructed by mathematical operations on the visibility function.
  • the array layout has an important impact on the performance of the comprehensive aperture radiation detection: the maximum length of the array determines the spatial resolution of the system imaging, the minimum element spacing of the array determines the alias-free field of view of the system imaging, and the system sensitivity is related to the number of array elements and the array. The arrangement of the meta-intervals is also closely related. The visibility function sampling performance of different array layouts is different, and the impact on the imaging performance of the system is also different. Therefore, the optimal design of the array layout must comprehensively consider various factors such as system performance indicators (resolution, sensitivity, field of view, etc.) and the achievability of hardware.
  • the technical purpose of the present invention is to provide an anti-aliasing rotating dislocation array antenna to solve the technical problems of serious aliasing and low sensitivity.
  • the technical scheme of the present invention is:
  • An anti-aliasing rotating dislocation array antenna based on a coordinate system for determining the spatial position of the anti-aliasing rotating dislocation array antenna, the anti-aliasing rotating dislocation array antenna is staggered and distributed, comprising: a first sub-array antenna, a second sub-array antenna, a third sub-array antenna and a fourth sub-array antenna;
  • the first sub-array antenna includes N+1 antenna elements arranged in a straight line at equal intervals ⁇ u;
  • the second sub-array antenna includes N antenna elements arranged in a straight line at equal intervals ⁇ u;
  • the third sub-array antenna includes N antenna elements arranged in a straight line at equal intervals ⁇ u;
  • the fourth sub-array antenna includes N antenna elements arranged in a straight line at equal intervals ⁇ u;
  • the first sub-array antenna, the second sub-array antenna and the third sub-array antenna are in a U-shaped layout, and the second sub-array antenna is parallel to the third sub-array antenna, and the first sub-array antenna is respectively perpendicular to the second sub-array
  • the antenna, the third sub-array antenna, and the first array antenna are respectively arranged at 45° to the positive direction of the x-axis of the coordinate system and 45° to the positive direction of the y-axis of the coordinate system;
  • the fourth sub-array antenna is parallel to the first sub-array antenna, the antenna elements at both ends of the fourth sub-array antenna are respectively away from the antenna elements at the end of the second sub-array antenna and away from the first sub-array antenna, and the third sub-array antenna is away from the first sub-array antenna.
  • the spacing of the antenna elements at one end of the array antenna is
  • the second sub-array antenna and the third sub-array antenna are close to the antenna units at both ends of the first sub-array, and are spaced apart from the antenna units at both ends of the first sub-array by ⁇ u.
  • sampling grid spacing of the visibility function of the anti-aliasing rotating dislocation array antenna is:
  • the minimum unit area is
  • the present invention has the following advantages and positive effects due to the adoption of the above technical solutions:
  • an array antenna is obtained by rationally arranging the antenna units to realize the sampling of the staggered visibility function, and the array antenna is rotated by 45° to obtain an anti-aliasing rotation and dislocation array antenna to realize the rotation of the staggered grid sampling, and the density is increased.
  • the number of sampling points of the diopter function can increase the detection area without aliasing and improve the sensitivity of the system detection, thereby broadening the inversion imaging area and improving the clarity of the inversion image.
  • FIG. 1 is a schematic diagram of an array layout of an anti-aliasing rotating dislocation array antenna according to the present invention
  • FIG. 2 is a schematic diagram of the visibility function sampling based on the array layout of FIG. 1;
  • FIG. 3 is a schematic diagram of a U-shaped array layout
  • FIG. 4 is a schematic diagram of sampling a standard rectangular grid visibility function based on the array layout of FIG. 3;
  • FIG. 5 is a schematic diagram of the layout of a U-shaped array with dislocation unit arms added
  • FIG. 6 is a schematic diagram of sampling of the visibility function corresponding to the array layout of FIG. 5;
  • FIG. 7 is a schematic diagram of an alias-free field of view of the novel array layout obtained based on FIG. 1;
  • FIG. 8 is a schematic diagram of an alias-free field of view of the standard rectangular array obtained based on FIG. 3;
  • Fig. 9 is the optical image of a certain scene
  • Fig. 10 is an inversion image obtained by the array layout of the present invention based on Fig. 9;
  • FIG. 11 is an inversion image obtained by the U-shaped array layout based on FIG. 9 .
  • the present embodiment provides an anti-aliasing rotating dislocation array antenna, and how to obtain it will now be described in detail.
  • the U-shaped layout array includes three sides composed of antenna elements, each side is a straight line, and the adjacent two sides are perpendicular to each other.
  • the U-shaped array is divided into a first sub-array antenna, a second sub-array antenna, and a third sub-array antenna, wherein the first sub-array antenna is the bottom side of the U-shaped array, which includes N+1 antenna elements, Both the second sub-array antenna and the third sub-array antenna include N antenna elements.
  • the x-coordinates of the antenna elements of the second sub-array antenna are the same and all are 0, and the x-coordinates of the antenna elements of the third sub-array antenna are the same and all are 8.
  • a fourth sub-array antenna is added to the opening in the above-mentioned U-shaped array layout.
  • the number of antenna elements of the fourth sub-array antenna is N, and the antenna elements are straight lines and the spacing is ⁇ u is set, and the fourth sub-array antenna and the first sub-array antenna are parallel to each other.
  • the coordinates of the antenna elements at both ends of the fourth sub-array antenna are (0.5, 8.5) and (7.5, 8.5) respectively, that is, the antenna elements at both ends of the fourth sub-array antenna are respectively the closest to the antenna elements of the second sub-array antenna.
  • the anti-aliasing capability is now compared between the U-shaped array layout and the array layout of this embodiment.
  • the synthetic aperture sampling interval ⁇ l and the alias-free field of view if the alias-free field of view range is
  • the spacing of the U-shaped layout array is ⁇ u, and the corresponding non-aliasing field of view is shown in FIG. 8 ; the spacing of the rotationally displaced layout array in this embodiment is The corresponding alias-free field of view is shown in Figure 7, and the comparison shows that the alias-free field of view has expanded times.
  • sensitivity is an important indicator to measure the effect of remote sensing. It reflects the minimum detectable degree of the temperature change of each pixel in the image, which is manifested as the clarity of the inversion image, which is used to extract the required information from the image later. Provide helpful assistance.
  • Sensitivity ⁇ T and the square root of the minimum unit area ⁇ s of the visibility sampling plane and the number of sample points of the visibility function The product is proportional.
  • Figure 9 is an optical image of the scene
  • Figure 11 is an inversion image using inverse Fourier transform after U-shaped array layout
  • Figure 10 is an inverse Fourier transform based on the array layout in this embodiment. It can be seen that the inversion image based on the new layout of this example reflects more detailed information, the outline is clearer, and the performance is better.
  • the dislocation layout corresponding to this embodiment the spacing of the antenna elements is a U-shaped layout times. Under the condition that the spatial resolution (that is, the maximum length of the sampling plane of the visibility function) remains unchanged, the new layout can greatly reduce the number of units and reduce the design and engineering requirements for unit antennas.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种抗混叠旋转错位阵列天线,第一子阵列天线、第二子阵列天线和第三子阵列天线呈U型布局,并且第二子阵列天线与第三子阵列天线平行,第一子阵列天线分别垂直于第二子阵列天线、第三子阵列天线,第一阵列天线分别与坐标系的x轴正方向呈45°、坐标系的y轴正方向呈45°设置;第四子阵列天线与第一子阵列天线平行,第四子阵列天线两端的天线单元分别距离第二子阵列天线远离第一子阵列天线的一端的天线单元、第三子阵列天线远离第一子阵列天线的一端的天线单元的间隔均为(I)本发明增密了可视度函数采样点数,实现增大探测无混叠区域,提高系统探测的灵敏度,从而拓宽反演成像区域、提高反演图像的清晰程度。

Description

一种抗混叠旋转错位阵列天线 技术领域
本发明属于被动综合孔径体制微波遥感领域,尤其涉及一种抗混叠旋转错位阵列天线。
背景技术
综合孔径微波辐射探测作为一种通过接收被观测场景辐射的微波能量来获取目标特性的被动式微波遥感技术,与传统实孔径辐射探测直接进行功率测量成像的原理不同。它是用多个小单元天线按照一定的阵列布局(T型、Y型、O型等)等效实孔径探测的大口径天线,以获得由于实孔径天线尺寸限制而无法达到的高空间分辨率。通过每两个小单元天线之间的干涉测量,对视场内辐射亮温分布的空间频率域进行采样,得到可见度函数,然后通过对可见度函数进行数学运算来重建亮温图像。
其中阵列布局对综合孔径辐射探测的性能有重要影响:阵列的最大长度决定系统成像的空间分辨率,阵列的最小单元间距决定系统成像的无混叠视场,而系统灵敏度与阵元数目、阵元间隔的排布方式等也密切相关。不同阵列布局的可见度函数采样性能不同,对系统成像性能影响也不同。因此,阵列布局的优化设计须综合考虑系统各项性能指标(分辨率、灵敏度、视场等)及硬件的可实现性等各种因素。
发明内容
本发明的技术目的是提供一种抗混叠旋转错位阵列天线,以解决混叠问题严重、灵敏度低的技术问题。
为解决上述问题,本发明的技术方案为:
一种抗混叠旋转错位阵列天线,基于确定抗混叠旋转错位阵列天线空间位置的坐标系,抗混叠旋转错位阵列天线交错分布,其包括:第一子阵列天线、第二子阵列天线、第三子阵列天线和第四子阵列天线;
第一子阵列天线包括等间隔Δu呈直线设置的N+1个天线单元;
第二子阵列天线包括等间隔Δu呈直线设置的N个天线单元;
第三子阵列天线包括等间隔Δu呈直线设置的N个天线单元;
第四子阵列天线包括等间隔Δu呈直线设置的N个天线单元;
其中,第一子阵列天线、第二子阵列天线和第三子阵列天线呈U型布局,并且第二子阵列天线与第三子阵列天线平行,第一子阵列天线分别垂直于第二子阵列天线、第三子阵列天线,第一阵列天线分别与坐标系的x轴正方向呈45°、坐标系的y轴正方向呈45°设置;
第四子阵列天线与第一子阵列天线平行,第四子阵列天线两端的天线单元分别距离第二子阵列天线远离第一子阵列天线的一端的天线单元、第三子阵列天线远离第一子阵列天线的一端的天线单元的间隔均为
Figure PCTCN2022070029-appb-000001
具体地,第二子阵列天线和第三子阵列天线靠近第一子阵列两端的天线单元,与第一子阵列两端的天线单元间隔为Δu。
具体地,抗混叠旋转错位阵列的可见度函数的总样本点数N V公式如下,N v=8N 2+8N+1。
具体地,抗混叠旋转错位阵列天线可见度函数的采样栅格间距为
Figure PCTCN2022070029-appb-000002
最小单元面积为
Figure PCTCN2022070029-appb-000003
本发明由于采用以上技术方案,使其与现有技术相比具有以下的优点和积极效果:
本发明设置通过对天线单元的合理布局从而得到一阵列天线以实现交错可见度函数采样,并对阵列天线旋转45°从而得到抗混叠旋转错位阵列天线以实现交错栅格采样旋转,增密了可视度函数采样点数,实现增大探测无混 叠区域,提高系统探测的灵敏度,从而拓宽反演成像区域、提高反演图像的清晰程度。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。
图1为本发明的一种抗混叠旋转错位阵列天线的阵列布局示意图;
图2为基于图1阵列布局所对应的可见度函数采样示意图;
图3为一种U型阵列布局示意图;
图4为基于图3阵列布局所对应的标准矩形栅格可见度函数采样示意图;
图5为一种U型阵列增加错位单元臂的布局示意图;
图6为基于图5阵列布局所对应的可见度函数采样示意图;
图7为基于图1获取的新型阵列布局的无混叠视场示意图;
图8为基于图3获取的标准矩形阵列的无混叠视场示意图;
图9为某一场景的光学图像;
图10为基于图9通过本发明阵列布局获取的反演图像;
图11为基于图9通过U型阵列布局获取的反演图像。
具体实施方式
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对照附图说明本发明的具体实施方式。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,并获得其他的实施方式。
为使图面简洁,各图中只示意性地表示出了与本发明相关的部分,它们并不代表其作为产品的实际结构。另外,以使图面简洁便于理解,在有些图中具有相同结构或功能的部件,仅示意性地绘示了其中的一个,或仅标出了 其中的一个。在本文中,“一个”不仅表示“仅此一个”,也可以表示“多于一个”的情形。
以下结合附图和具体实施例对本发明提出的一种抗混叠旋转错位阵列天线作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。
实施例1
参看图1,本实施例提供一种抗混叠旋转错位阵列天线,现对其如何得到进行详细说明。
参看图3,在本实施例中,首先需要将若干天线单元按照U型布局阵列放置在坐标系内,其中,该坐标系只为了直观看到天线单元的位置关系,与实际应用无关,坐标系内的间距1代表1*Δu。具体地,若干相邻的天线单元之间的间距为Δu,U型阵列包括由天线单元组成的三条边,每条边均为直线且相邻两边互相垂直。现将该U型阵列分为第一子阵列天线、第二子阵列天线、第三子阵列天线,其中,第一子阵列天线为U型阵列的底边,其包括N+1个天线单元,第二子阵列天线和第三子阵列天线均包括N个天线单元。参看图3,结合坐标系,第二子阵列天线的天线单元x坐标一致且均为0,第三子阵列天线的天线单元x坐标一致且均为8。基于上述U型阵列布局以形成标准矩形栅格采样,其标准矩形栅格的可见度函数采样示意图如图4所示,标准矩形栅格的采样间距为Δu,该可见度函数的采样平面最小单元面积为Δs=Δu 2,其总样本点数N v1=4N 2+4N+1。
接着,参看图5,在本实施例中,对上述U型阵列布局中开口处增加第四子阵列天线,第四子阵列天线的天线单元数量为N,其天线单元之间呈直线且间距为Δu设置,该第四子阵列天线与第一子阵列天线相互平行。结合坐标系,第四子阵列天线两端的天线单元的坐标分别(0.5,8.5)、(7.5,8.5),即第四子阵列天线两端的天线单元分别距离最近的第二子阵列天线的天线单元、第三子阵列天线的天线单元的距离均为
Figure PCTCN2022070029-appb-000004
如此设置以形成交错栅格 采样,其可见度函数的采样示意图参看图6,可见度函数总样本数为N v2=8N 2+8N+1。
参看图1,最后结合坐标系,以坐标点(0,0)为旋转原点,将上述第一子阵列天线、第二子阵列天线、第三子阵列天线和第四子阵列天线内的天线单元逆时针旋转45°,即可得到本实施例的一种抗混叠旋转错位阵列天线。如此设置以形成旋转交错栅格采样,其可见度函数的采样示意图具体参看图6,该可见度函数的采样间距为
Figure PCTCN2022070029-appb-000005
最小单元面积为
Figure PCTCN2022070029-appb-000006
其总样本点数N v3=N v2=8N 2+8N+1。
现对U型阵列布局和本实施例的阵列布局进行比较抗混叠能力。根据综合孔径采样间隔Δl与无混叠视场关系,若无混叠视场范围为|ξ minmax|,则视场内无混叠的条件为
Figure PCTCN2022070029-appb-000007
即采样的间距越小,无混叠的范围越大。该U型布局阵列的间距为Δu,其对应的无混叠视场如图8所示;本实施例的旋转错位布局阵列间距为
Figure PCTCN2022070029-appb-000008
其对应的无混叠视场如图7所示,对比得出无混叠视场范围扩大了
Figure PCTCN2022070029-appb-000009
倍。
参看图9至图11,为了进一步说明本实施例的性能,通过本实施与U型阵列布局对同一场景图像反演的清晰程度进行说明。在微波遥感领域,灵敏度是衡量遥感效果的一个重要指标,反映了图像中每一个像素点亮温变化的最小可检测程度,表现为反演图像的清晰程度,为后续从图像中提取所需信息提供有利帮助。根据综合孔径灵敏度与阵列布局的关系公式,
Figure PCTCN2022070029-appb-000010
灵敏度ΔT与可见度采样平面最小单元面积Δs和可见度函数样本点数的平方根
Figure PCTCN2022070029-appb-000011
乘积成正比。U型阵列布局下的最小单元面积为Δs=Δu 2,总样本点数N v1=4N 2+4N+1,本例下的最小单元面积为
Figure PCTCN2022070029-appb-000012
总样本点数N v3=8N 2+8N+1,对比计算得本实施例阵列布局的灵敏度比U型阵列布局的灵敏度提高了
Figure PCTCN2022070029-appb-000013
倍,灵敏度数值越小说明越灵敏。运用MATLAB软件进行反演仿真,图9是场景光学图像,图11是U型阵列布局后利用反傅里 叶变换的反演图像,图10是基于本实施例阵列布局后利用反傅里叶变换的反演图像,可以看出基于本例新型布局的反演图像体现了更多的细节信息,轮廓更为清晰,性能更加优秀。
补充说明,若系统探测要求的无混叠视场范围一定,则本实施例对应的错位布局,其天线单元间距是U型布局的
Figure PCTCN2022070029-appb-000014
倍。在空间分辨率(即可见度函数采样平面最大长度)要求不变的情况下,新型布局可以大大减少单元数目,并降低对单元天线的设计及工程实现要求。
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式。即使对本发明作出各种变化,倘若这些变化属于本发明权利要求及其等同技术的范围之内,则仍落入在本发明的保护范围之中。

Claims (4)

  1. 一种抗混叠旋转错位阵列天线,其特征在于,基于确定抗混叠旋转错位阵列天线空间位置的坐标系,所述抗混叠旋转错位阵列天线交错分布,其包括:第一子阵列天线、第二子阵列天线、第三子阵列天线和第四子阵列天线;
    所述第一子阵列天线包括等间隔Δu呈直线设置的N+1个天线单元;
    所述第二子阵列天线包括等间隔Δu呈直线设置的N个天线单元;
    所述第三子阵列天线包括等间隔Δu呈直线设置的N个天线单元;
    所述第四子阵列天线包括等间隔Δu呈直线设置的N个天线单元;
    其中,所述第一子阵列天线、所述第二子阵列天线和所述第三子阵列天线呈U型布局,并且所述第二子阵列天线与所述第三子阵列天线平行,所述第一子阵列天线分别垂直于所述第二子阵列天线、所述第三子阵列天线,所述第一阵列天线分别与所述坐标系的x轴正方向呈45°、所述坐标系的y轴正方向呈45°设置;
    所述第四子阵列天线与所述第一子阵列天线平行,所述第四子阵列天线两端的天线单元分别距离所述第二子阵列天线远离所述第一子阵列天线的一端的天线单元、所述第三子阵列天线远离所述第一子阵列天线的一端的天线单元的间隔均为
    Figure PCTCN2022070029-appb-100001
  2. 根据权利要求1所述的抗混叠旋转错位阵列天线,其特征在于,所述第二子阵列天线和所述第三子阵列天线靠近所述第一子阵列两端的天线单元,与所述第一子阵列两端的天线单元间隔为Δu。
  3. 根据权利要求1所述的抗混叠旋转错位阵列天线,其特征在于,所述阵列布局的可见度函数的总样本点数N V公式如下,N v=8N 2+8N+1。
  4. 根据权利要求1所述的抗混叠旋转错位阵列天线,其特征在于,所述抗混叠旋转错位阵列天线的可视度采样栅格间距为
    Figure PCTCN2022070029-appb-100002
    最小单元面积为
    Figure PCTCN2022070029-appb-100003
PCT/CN2022/070029 2021-01-04 2022-01-04 一种抗混叠旋转错位阵列天线 WO2022144017A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22734742.4A EP4274026A1 (en) 2021-01-04 2022-01-04 Anti-aliasing rotary dislocation array antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110003955.2 2021-01-04
CN202110003955.2A CN112768955B (zh) 2021-01-04 2021-01-04 一种抗混叠旋转错位阵列天线

Publications (1)

Publication Number Publication Date
WO2022144017A1 true WO2022144017A1 (zh) 2022-07-07

Family

ID=75699715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070029 WO2022144017A1 (zh) 2021-01-04 2022-01-04 一种抗混叠旋转错位阵列天线

Country Status (3)

Country Link
EP (1) EP4274026A1 (zh)
CN (1) CN112768955B (zh)
WO (1) WO2022144017A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768955B (zh) * 2021-01-04 2022-12-13 上海航天测控通信研究所 一种抗混叠旋转错位阵列天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975947A (zh) * 2010-10-22 2011-02-16 华中科技大学 二维镜像综合孔径辐射成像方法
US20140091965A1 (en) * 2012-09-28 2014-04-03 Battelle Memorial Institute Apparatus for synthetic imaging of an object
CN104808201A (zh) * 2015-04-23 2015-07-29 中国电子科技集团公司第四十一研究所 一种二维mimo阵列实现方法
CN209342935U (zh) * 2018-12-29 2019-09-03 清华大学 安检设备
CN110662982A (zh) * 2017-01-31 2020-01-07 阿尔贝机器人有限公司 具有方位和高度之高角分辨率的紧凑型雷达切换/mimo阵列天线
CN112768955A (zh) * 2021-01-04 2021-05-07 上海航天测控通信研究所 一种抗混叠旋转错位阵列天线

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3912777B2 (ja) * 2002-04-24 2007-05-09 三菱電機株式会社 アレーアンテナ装置
KR101633841B1 (ko) * 2009-11-25 2016-06-27 사브 에이비 어레이 안테나 시스템
CN101841084A (zh) * 2010-04-30 2010-09-22 北京航空航天大学 一种减缓混叠的8mm波段综合孔径辐射计天线阵列布局方法
CN103985970A (zh) * 2014-04-28 2014-08-13 零八一电子集团有限公司 抑制大间距相控阵天线栅瓣的布阵方法
CN104467947B (zh) * 2014-12-18 2018-07-10 中国电子科技集团公司第三十八研究所 直升机平台卫星通信终端
CN106093882B (zh) * 2016-06-02 2018-08-31 华中科技大学 环状基于正三角栅格的综合孔径辐射计阵列排布方法
CN106911010B (zh) * 2017-03-01 2020-04-07 中国电子科技集团公司第三十八研究所 一种基于子阵级的大单元间距相控阵天线
JP6756300B2 (ja) * 2017-04-24 2020-09-16 株式会社村田製作所 アレーアンテナ
CN109037885B (zh) * 2018-08-17 2020-10-20 中国电子科技集团公司第三十八研究所 一种基于子阵错位的星载sar相控阵天线
CN110492252B (zh) * 2019-08-23 2021-01-05 西北核技术研究院 一种大扫描角阵列天线及其设计方法
CN111538000B (zh) * 2020-03-30 2023-06-02 西南电子技术研究所(中国电子科技集团公司第十研究所) 均匀圆阵列综合孔径辐射计亮温反演成像方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975947A (zh) * 2010-10-22 2011-02-16 华中科技大学 二维镜像综合孔径辐射成像方法
US20140091965A1 (en) * 2012-09-28 2014-04-03 Battelle Memorial Institute Apparatus for synthetic imaging of an object
CN104808201A (zh) * 2015-04-23 2015-07-29 中国电子科技集团公司第四十一研究所 一种二维mimo阵列实现方法
CN110662982A (zh) * 2017-01-31 2020-01-07 阿尔贝机器人有限公司 具有方位和高度之高角分辨率的紧凑型雷达切换/mimo阵列天线
CN209342935U (zh) * 2018-12-29 2019-09-03 清华大学 安检设备
CN112768955A (zh) * 2021-01-04 2021-05-07 上海航天测控通信研究所 一种抗混叠旋转错位阵列天线

Also Published As

Publication number Publication date
CN112768955A (zh) 2021-05-07
CN112768955B (zh) 2022-12-13
EP4274026A1 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
CN112567262B (zh) 一种雷达系统及车辆
WO2022144017A1 (zh) 一种抗混叠旋转错位阵列天线
CN109116321B (zh) 一种星载干涉成像高度计的相位滤波方法及高度测量方法
CN106443611A (zh) 一种弱散射目标的rcs测量方法
CN108037374A (zh) 一种阵列天线近场标定方法
CN102590640A (zh) 一种毫米波\亚毫米波近场幅度相位测量方法
JP2007163321A (ja) 電波到来方向測定装置およびそのためのアレーアンテナ装置
CN105891795A (zh) 一种双站rcs测量定标方法
Lonsdale Configuration considerations for low frequency arrays
Chen et al. Direct wave removal in anechoic chamber range imaging from planar scanned data
CN107561534B (zh) 一种基于全极化高轨sar的电离层时变tec测量方法
Qi et al. Super-resolution Doppler beam sharpening imaging based on an iterative adaptive approach
Zhong et al. Residual motion estimation with point targets and its application to airborne repeat-pass SAR interferometry
KR100642064B1 (ko) 전파를 이용한 차량 위치 결정 장치
CN111007510B (zh) 合成孔径雷达成像算法的性能检测方法及装置
CN108375767A (zh) 基于反射板组合的镜像综合孔径辐射计成像方法
CN109902383B (zh) 一种任意阵型干涉仪测向精度仿真计算方法及系统
Dong et al. An external calibration method for compensating for the mutual coupling effect in large interferometric aperture synthesis radiometers
Ekers Error recognition
TWI834271B (zh) 高解析天線陣列系統
Zhang et al. A Novel Two-dimensional Low-redundancy Array Design for Solar Radio Imaging
Fan et al. Effect of Spherical Wavefronts on Very High Frequency (VHF) Lightning Interferometer Observations
CN117096624A (zh) 天线阵列布局方法
Zhao et al. Research on Reconstruction of Target Scattered Field Based on Scattering Center Model
Chen et al. Auto-regressive aperture extrapolation for multibaseline SAR tomography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22734742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022734742

Country of ref document: EP

Effective date: 20230804