WO2022143964A1 - 控制履带车辆转向的变速传动箱 - Google Patents

控制履带车辆转向的变速传动箱 Download PDF

Info

Publication number
WO2022143964A1
WO2022143964A1 PCT/CN2021/143437 CN2021143437W WO2022143964A1 WO 2022143964 A1 WO2022143964 A1 WO 2022143964A1 CN 2021143437 W CN2021143437 W CN 2021143437W WO 2022143964 A1 WO2022143964 A1 WO 2022143964A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
tracked vehicle
gear
shaft
output gear
Prior art date
Application number
PCT/CN2021/143437
Other languages
English (en)
French (fr)
Inventor
崔华
崔子元
崔业民
周宏平
许林云
缪桂荣
周颢
缪陈
Original Assignee
南通市广益机电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202023339432.5U external-priority patent/CN214274372U/zh
Priority claimed from CN202011632122.4A external-priority patent/CN112833147B/zh
Application filed by 南通市广益机电有限责任公司 filed Critical 南通市广益机电有限责任公司
Publication of WO2022143964A1 publication Critical patent/WO2022143964A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly

Definitions

  • This patent relates to a walking device used for crawler-type loading or traction plant protection machinery and other agricultural equipment in the fields of agriculture, forestry, health, etc., in particular to a variable speed transmission box for in-situ steering of electronically controlled crawler vehicles.
  • the two tracks of the tracked vehicle are grounded, the grounding area is large when driving, and the grounding specific pressure is small.
  • the tracked vehicle has the advantages of crossing obstacles, trenches, walking in soft soil, paddy fields and walking on various complex working surfaces, so it is widely used.
  • the steering mechanism of the tracked vehicle adopts one-sided crawler power cut-off or braking to realize steering; when the tracked vehicle goes straight, the clutches on both sides are engaged and the steering brake is disengaged; when turning, the power of the steering side clutch is cut off, and the steering brake on the side is engaged.
  • the crawler on the side is braked and stopped, and the crawler on both sides runs and stops to realize forward, backward or steering.
  • the steering mechanism has a simple structure and is easy to operate.
  • a walking steering device (authorized announcement number CN 2630079Y)
  • the steering device adopts a set of planetary gears connected in parallel between the left clutch gear and the right clutch gear of the clutch shaft. Cooperate, change the rotation direction and speed of the left and right power output shafts to realize the forward and reverse rotation of the left and right crawler tracks, control the forward, reverse, and steering of the tracked vehicle, and can realize in-situ steering.
  • the steering device described in this patent adopts a planetary gear device, which not only has a relatively complex structure, high manufacturing cost, but also is difficult to realize automatic control.
  • the gearbox adopts differential steering mechanism, two differential planetary transmission mechanism , hydraulic brakes and other components, not only can complete the forward, reverse, and steering of the tracked vehicle, but also can achieve in-situ steering.
  • the gearbox adopts two differential planetary transmission mechanisms on the left and right.
  • the planetary transmission mechanism has a complex power transmission structure, many components, large volume, heavy weight and high manufacturing cost.
  • the steering system adopts hydraulic power transmission, and its hydrostatic steering mechanism is separately adjusted to the displacement.
  • the control mechanism is connected with the steering power rear transmission system, and the displacement adjustment and control mechanism controls the movement of the steering power rear transmission system by sending signals to the hydrostatic steering mechanism. It can realize the forward, reverse, steering, and in-situ steering of the tracked vehicle.
  • the steering system adopts hydraulic power transmission, and then completes forward, reverse, and steering after transmission through the planetary gear mechanism.
  • the hydraulic power transmission route is long, the structure is relatively complex, and the manufacturing cost is high.
  • the steering device includes: two drive motors, two planetary coupling devices and a The steering motor is connected to the driving wheels on both sides of the tracked vehicle through two planetary coupling devices; the dual-motor drive is adopted, and the dual motors are independently driven to realize the forward, reverse, steering, and in-situ steering of the tracked vehicle.
  • the steering device is independently driven by dual motors on both sides, and then completes forward, reverse, and steering after being transmitted by the planetary gear mechanism. Due to the heavy weight and large volume of the dual motors on both sides, and the power transmission structure of the planetary gear mechanism is relatively complex. , There are many parts and the manufacturing cost is high.
  • the power coupling device and gearbox use an engine and a speed-regulating motor.
  • the unit controls the rotational speed of the planet carrier and the sun gear in the planetary gear mechanism in the rotational speed coupling device respectively, and the power of the two is coupled at the rotational speed coupling device, and then transmitted through the planetary gear mechanism to realize the unilateral braking of the tracked vehicle, complete Forward, reverse, turn, free radius turn and turn in place.
  • the power coupling device and the gearbox use a speed-regulating motor unit to control the planet carrier and the sun gear in the planetary gear mechanism in the rotational speed coupling device respectively.
  • the power transmission structure is relatively complex, with many parts and components, and the manufacturing cost is high.
  • variable speed transmission equipment uses the output end of the hydraulic continuously variable transmission to directly control the worm, and then change the worm gear
  • the speed of the left and right side of the tracked vehicle changes, completes forward, reverse, and steering, and drives the hydraulic continuously variable transmission through the planetary gear transmission mechanism.
  • the input speed of the continuously variable transmission is independent of the speed of the transmission. When the transmission is in neutral, the tracked vehicle can Turn in place.
  • the transmission equipment adopts a hydraulic continuously variable transmission and a planetary gear transmission mechanism, and the power transmission structure thereof is relatively complex, with many parts and components, and the manufacturing cost is high.
  • the differential steering drive axle includes a housing, a steering input shaft and a driving input shaft, a double Tooth, bevel gear, drive wheel and planetary gear mechanism can achieve a small turning radius, and can also turn 360° in place, which can be used for tracked vehicles such as mechanical multi-speed and hydraulic transmission.
  • the steering device described in this patent adopts a planetary gear mechanism, which not only has a relatively complex power transmission structure, high manufacturing cost, but also is difficult to realize automatic control.
  • the gearbox body is provided with a speed change mechanism, a steering mechanism, a deceleration mechanism and Proportional reversing
  • the speed change mechanism drives the steering mechanism
  • the proportional reversing valve controls the steering mechanism
  • the steering mechanism realizes the combine harvester walking through the output of the deceleration mechanism to realize straight forward, backward, slow steering and in-situ steering;
  • the driving force of the driving wheels on both sides of the differential steering mechanism of the crawler harvester is controlled by a proportional reversing valve.
  • the hydraulic power transmission route of the proportional reversing valve is long, the structure is relatively complex, there are many parts and components, and the manufacturing cost is high.
  • the steering mechanism of the tracked vehicle described above in the prior art adopts a differential steering mechanism, a planetary gear transmission mechanism, a hydraulic steering mechanism, and a dual-motor-driven steering mechanism. Relatively complex and expensive to manufacture.
  • variable speed steering mechanism that can eliminate the above drawbacks, its structure is relatively simple, the power transmission route is short, and the transmission power loss is small, and the operation is convenient, flexible, reliable, and convenient for automatic control when turning on the spot.
  • the purpose of this patent is to provide a speed change gearbox for controlling the steering of a tracked vehicle.
  • Turn left or right, turn on the spot, easy to operate, flexible, reliable, and compact structure also has a speed regulating mechanism, can adjust the speed and steering of the two output shafts of the transmission box according to the needs, and realize the fast or slow speed of the tracked vehicle. , back or turn, turn in situ, improve the working efficiency of tracked vehicles.
  • a transmission case for controlling steering of a tracked vehicle includes a fifth output gear shaft S5, a sixth output gear shaft S6, a seventh transition gear shaft S7, a fifth clutch C5, a sixth clutch C6, a fifth output gear Z5, The sixth output gear Z6 and the seventh synchronizing gear Z7; the fifth output gear Z5 and the sixth output gear Z6 are respectively connected with the fifth output gear shaft S5 and the sixth output gear shaft S6 in the circumferential direction; the seventh transition gear shaft S7 is in the circumferential direction.
  • a seventh synchronizing gear Z7 is connected in the circumferential direction, and the seventh synchronizing gear Z7 is in meshing state with the fifth output gear Z5 and the sixth output gear Z6 respectively.
  • the other end of the fifth output gear shaft S5 and the sixth output gear shaft S6 The other end is respectively connected with the fifth clutch C5 driving member and the sixth clutch C6 driving member in the circumferential direction, and the fifth output gear shaft S5 or the sixth output gear shaft S6 is used to connect with the power output shaft of the power unit, and the above-mentioned transmission case Also includes
  • the eighth output gear shaft S8, the ninth output gear shaft S9, the seventh clutch C7, the eighth clutch C8, the eighth output gear Z8, the ninth output gear Z9, the follower of the fifth clutch C5, the sixth clutch C6 from The moving parts are respectively connected with the driving parts of the seventh clutch C7 and the driving parts of the eighth clutch C8 in the circumferential direction, and the driving parts of the seventh clutch C7 and the driving parts of the eighth clutches C8 are respectively connected with the eighth output gear shaft S8 and the ninth output gear shaft S9
  • One end is connected with force in the circumferential direction
  • the eighth output gear Z8 and the ninth output gear Z9 are respectively connected with the follower of the seventh clutch C7 and the follower of the eighth clutch C8 in the circumferential direction
  • the eighth output gear Z8 is connected with the ninth output gear.
  • Z9 is in meshing state, and the other ends of the eighth output gear shaft S8 and the ninth output gear shaft S9 are respectively connected with the left and right driving wheels of the tracked vehicle;
  • the transmission case for controlling steering of a tracked vehicle also includes a third gear shaft S3, a fourth gear shaft S4, a third clutch C3, a fourth clutch C4, a third gear Z3, and a fourth gear Z4
  • the third gear Z3 and the fourth gear Z4 are in meshing state, the third gear Z3 and the fourth gear Z4 are respectively connected with the third gear shaft S3 and the fourth gear shaft S4 in the circumferential direction, and the other end of the third gear shaft S3 is connected with the third gear shaft S3 and the fourth gear shaft S4.
  • the driving element of the third clutch C3 is connected in the circumferential direction with force transmission
  • the driven element of the third clutch C3 is connected with the fifth output gear shaft S5 in the circumferential direction with force transmission
  • the driven element of the fourth clutch C4 is connected with the sixth output gear shaft S6 in the circumferential direction with force transmission
  • the first The third gear shaft S3 or the fourth gear shaft S4 is used to connect with the power output shaft of the power plant
  • the tracked vehicle is forwarded. turn right when the third clutch C3, the sixth clutch C6, the seventh clutch C7, and the eighth clutch C8 are all in the engaged state, and the fourth clutch C4 and the fifth clutch C5 are in the disconnected state, the tracked vehicle is forwarded. turn right when the third clutch C3, the sixth clutch C6, the seventh clutch C7, and the eighth clutch C8 are all in the engaged state, and the fourth clutch C4 and the fifth clutch C5 are in the disconnected state, the tracked vehicle is forwarded. turn right when the third clutch C3, the sixth clutch C6, the seventh clutch C7, and the eighth clutch C8 are all in the engaged state, and the fourth clutch C4 and the fifth clutch C5 are in the disconnected state, the tracked vehicle is forwarded. turn right when the third clutch C3, the sixth clutch C6, the seventh clutch C7, and the eighth clutch C8 are all in the engaged state, and the fourth clutch C4 and the fifth clutch C5 are in the disconnected state, the tracked vehicle is forwarded. turn right when the third clutch C3, the sixth clutch C6, the seventh clutch C7,
  • first rotational speed shaft S1 a second rotational speed shaft S2, a first rotational speed clutch C1, a second rotational speed clutch C2, a first rotational speed gear Z1, a Two rotational speed gears Z2;
  • first rotational speed gear Z1 and the second rotational speed gear Z2 are respectively connected with the first rotational speed shaft S1 and the second rotational speed shaft S2 in the circumferential direction, and one end of the first rotational speed shaft S1 is connected with the first rotational speed clutch C1 driving element in the circumferential direction.
  • the follower of the first rotational speed clutch C1 is connected with one end of the third gear shaft S3 in the circumferential direction; the first rotational speed gear Z1 and the second rotational speed gear Z2 are in meshing state, and one end of the second rotational speed shaft S2 is active with the second rotational speed clutch C2
  • the second rotational speed clutch C2 driven element and the fourth clutch C4 driving element are connected with the fourth gear shaft S4 in the circumferential direction force transmission; the first rotational speed shaft S1 or the second rotational speed shaft S2 is used for the power transmission of the PTO shaft connection.
  • the first speed gear Z1 is meshed with the second speed gear Z2 through a gear transmission mechanism, and after passing through the gear transmission mechanism, the first speed gear Z1 and the second The rotation direction of the rotational speed gear Z2 is opposite, and the rotational speed ratio of the first rotational speed gear Z1 and the second rotational speed gear Z2 is greater than 1;
  • the crawler vehicle can turn right when the tracked vehicle moves forward rapidly;
  • the tracked vehicle can turn left when the tracked vehicle moves backward quickly;
  • the crawler vehicle can turn right when it moves backward quickly;
  • the tracked vehicle can turn left at a slow speed;
  • the crawler vehicle can turn right when the tracked vehicle moves forward slowly;
  • the tracked vehicle can turn left at a slow speed;
  • the crawler vehicle can turn right when the tracked vehicle moves backward at a slow speed.
  • variable-speed transmission controls the speed of the tracked vehicle to move forward rapidly.
  • the first rotational speed clutch C1, the third clutch C3, the fifth clutch C5, and the sixth clutch C6 are all in the engaged state, and the second rotational speed clutch C2, the fourth clutch C4, the seventh clutch C7, and the eighth clutch C8 are all in the disconnected state ;
  • the first rotational speed shaft S1 of the transmission case rotates forwardly and transmits power to the third gear shaft S3 through the first rotational speed clutch C1.
  • the third gear shaft S3 rotates forwardly and drives the fifth output gear shaft S5 through the third clutch C3.
  • the gear shaft S5 drives the fifth output gear Z5 to rotate forward
  • the fifth output gear Z5 rotates forward through the seventh synchronizing gear Z7 to drive the sixth output gear Z6 to rotate forward
  • the sixth output gear Z6 drives the sixth output gear shaft S6 to rotate forward
  • the sixth output gear Z6 drives the sixth output gear shaft S6 to rotate forward.
  • the fifth output gear shaft S5 and the sixth output gear shaft S6 rotate forward respectively through the fifth clutch C5 in the engaged state and the sixth clutch C6 in the engaged state to drive the driving element of the seventh clutch C7, the driving element of the eighth clutch C8, and the seventh clutch C7.
  • the driving member of the clutch C7 and the driving member of the eighth clutch C8 respectively drive the eighth output gear shaft S8 and the ninth output gear shaft S9 to rotate forward, and the eighth output gear shaft S8 and the ninth output gear shaft S9 respectively drive the left and right sides of the tracked vehicle. Drive the wheels to drive the tracked vehicle to move forward quickly.
  • the transmission case controls the first rotational speed clutch C1 , the third clutch C3 , the fifth clutch C5 , the first rotational speed clutch C1 , the third clutch C3 , the fifth clutch C5 , the first rotational speed clutch C1 , the third clutch C3
  • the seventh clutch C7 and the eighth clutch C8 are all in the engaged state, and the second speed clutch C2, the fourth clutch C4 and the sixth clutch C6 are all in the disconnected state;
  • the first speed shaft S1 of the transmission box rotates forwardly and transmits power to the third gear shaft S3 through the first speed clutch C1.
  • the third gear shaft S3 drives the fifth output gear shaft S5 through the third clutch C3, and the fifth output gear shaft S5.
  • S5 rotates forwardly through the fifth clutch C5 in the engaged state to drive the driving member of the seventh clutch C7
  • the driving member of the seventh clutch C7 drives the eighth output gear shaft S8 to rotate forward.
  • the driving member drives the follower of the seventh clutch C7 to rotate forward together, and the eighth output gear Z8 that forms a circumferential force transmission connection with the follower of the seventh clutch C7 rotates forward, and the eighth output gear Z8 meshes with the ninth output gear Z9.
  • the ninth output gear Z9 is connected to the follower of the eighth clutch C8 in the circumferential direction for force transmission, and the eighth clutch C8 is in the engaged state, so the ninth output gear Z9 is reversed through the eighth clutch C8 follower and the eighth clutch in the engaged state.
  • the C8 driving element drives the ninth output gear shaft S9 to rotate in reverse.
  • the above-mentioned eighth output gear shaft S8 rotates forward and the ninth output gear shaft S9 rotates reversely to drive the left and right drive wheels of the tracked vehicle respectively, and the right drive wheel rotates forward.
  • the left drive wheel is reversed, enabling the tracked vehicle to quickly turn left in place.
  • each clutch is an electromagnetic clutch.
  • the electromagnetic clutch is convenient for automatic control, and the controller controls the action (engagement or disconnection) of each electromagnetic clutch in a wired or wireless manner, which belongs to the prior art and will not be described again.
  • the transmission box of the patent Compared with the existing steering mechanism of the tracked vehicle, the transmission box of the patent has the advantages of short power transmission route, small power transmission loss, few parts, relatively simple structure and low manufacturing cost.
  • the eighth output gear shaft S8 and the ninth output gear shaft S9 are respectively connected with the input shafts of the left and right drive wheels of the crawler vehicle, so that the crawler vehicle can be speed-regulated forward, backward, left or right, and in situ, and is easy to operate. , flexible and reliable; the transmission box can be automatically controlled by long-distance wireless remote control or satellite positioning.
  • the initial state of the tracked vehicle When the initial state of the tracked vehicle is stationary, it can realize in-situ steering during the steering operation; when the tracked vehicle advances in the initial state, it can realize the steering while forwarding when the steering operation is performed;
  • This patent realizes that when the tracked vehicle turns forward or backward, or turns in situ, it does not rotate with the center point of the driving wheel on one of the two tracks as the rotation center, but with the center of the two driving wheels of the two parallel tracks of the tracked vehicle. Therefore, the grounding points of the two parallel crawler belts are not easy to block the soil when turning, and the shear force on the soil is reduced, and the power loss is greatly reduced.
  • FIG. 1 is a schematic structural diagram of a transmission case for controlling steering of a tracked vehicle according to Embodiment 1.
  • FIG. 1 is a schematic structural diagram of a transmission case for controlling steering of a tracked vehicle according to Embodiment 1.
  • FIG. 2 is a schematic structural diagram of a transmission case for controlling steering of a tracked vehicle according to Embodiment 2.
  • FIG. 2 is a schematic structural diagram of a transmission case for controlling steering of a tracked vehicle according to Embodiment 2.
  • FIG. 3 is a schematic structural diagram of Embodiment 3 (at the time of fast forwarding).
  • FIG. 4 is a schematic diagram of the structure of Embodiment 3 (at the time of fast backward movement).
  • FIG. 5 is a schematic structural diagram of Embodiment 3 (turn left when moving fast or turn left in place).
  • FIG. 6 is a schematic structural diagram of Embodiment 3 (turn right when moving fast or turn right in place).
  • FIG. 7 is a schematic diagram of the structure of Embodiment 3 (turn left or turn left in place when moving backward quickly).
  • FIG. 8 is a schematic structural diagram of Embodiment 3 (turning right or turning right in place when moving backward quickly).
  • FIG. 9 is a schematic diagram of the structure of Example 3 (during slow forward movement).
  • FIG. 10 is a schematic diagram of the structure of Example 3 (during slow backward movement).
  • FIG. 11 is a schematic diagram of the structure of Embodiment 3 (turn left when moving slowly or turn left in place).
  • FIG. 12 is a schematic diagram of the structure of Embodiment 3 (turn right when moving slowly or turn right in place).
  • FIG. 13 is a schematic structural diagram of Embodiment 3 (turn left or turn left in place when moving backward at a slow speed).
  • FIG. 14 is a schematic diagram of the structure of Embodiment 3 (turn right when moving backward slowly or turn right in place).
  • the fifth output gear Z5 and the sixth output gear Z6 are respectively connected with the fifth output gear shaft S5 and the sixth output gear shaft S6 in the circumferential direction (for example, spline connection); the seventh transition gear shaft S7 is connected with the circumferential force in the circumferential direction.
  • the seventh synchronizing gear Z7 is in meshing state with the fifth output gear Z5 and the sixth output gear Z6, and the other end of the fifth output gear shaft S5 and the other end of the sixth output gear shaft S6 are respectively
  • the driving element of the fifth electromagnetic clutch C5 and the driving element of the sixth electromagnetic clutch C6 are force-transmittingly connected in the circumferential direction.
  • the fifth electromagnetic clutch C5 driven member and the sixth electromagnetic clutch C6 driven member are respectively connected with the seventh electromagnetic clutch C7 driving member and the eighth electromagnetic clutch C8 driving member in the circumferential direction.
  • the clutch C8 driving member is respectively connected with one end of the eighth output gear shaft S8 and the ninth output gear shaft S9 in the circumferential direction
  • the eighth output gear Z8 and the ninth output gear Z9 are respectively connected with the seventh electromagnetic clutch C7 driven member, the eighth output gear Z8 and the ninth output gear Z9.
  • the follower of the electromagnetic clutch C8 is connected with force in the circumferential direction, the eighth output gear Z8 and the ninth output gear Z9 are in a meshing state, and the other ends of the eighth output gear shaft S8 and the ninth output gear shaft S9 are respectively driven left and right with the tracked vehicle. wheel connection.
  • Either the fifth output gear shaft S5 or the sixth output gear shaft S6 can be used as the power input shaft.
  • the fifth output gear shaft S5 is used as the power input shaft to be connected to the power output shaft of the power plant as an example for description.
  • the crawler vehicle can travel straight; at this time, the power transmission of the right driving wheel
  • the route is: power output shaft (forward rotation), fifth output gear shaft S5 (forward rotation), fifth electromagnetic clutch C5, seventh electromagnetic clutch C7 driving element, eighth output gear shaft S8, right drive wheel (forward rotation) ;
  • the power transmission route of the left drive wheel is: power output shaft (forward rotation), fifth output gear shaft S5 (forward rotation), seventh synchronizing gear Z7 (reverse rotation), sixth output gear Z6 (forward rotation), Six electromagnetic clutches C6, eighth electromagnetic clutch C8 driving element, ninth output gear shaft S9, left driving wheel (forward rotation). Because the left and right drive wheels rotate forward at the same time, the electronically controlled tracked vehicle runs straight.
  • the left turn is realized when the crawler vehicle goes straight; of course, The tracked vehicle is initially stationary.
  • the power transmission route of the right driving wheel is: power output shaft (forward rotation), fifth output gear shaft S5 (forward rotation), fifth electromagnetic clutch C5, seventh electromagnetic clutch C7 driving element, eighth output gear Shaft S8, right driving wheel (forward rotation);
  • the power transmission route of the left driving wheel is: power output shaft (forward rotation), fifth output gear shaft S5 (forward rotation), fifth electromagnetic clutch C5, seventh electromagnetic clutch C7 (forward rotation), eighth output gear Z8 (forward rotation), ninth output gear Z9 (reverse rotation), eighth electromagnetic clutch C8 (reverse rotation), ninth output gear shaft S9, left drive wheel (reverse rotation).
  • the electronically controlled crawler vehicle can turn left or turn left on the spot when going straight. Whether it is to turn left or turn left in place when going straight is related to the state of the tracked vehicle before turning. It is stationary before turning. When turning, it is turning in place, and it is going straight before turning. When turning, it is turning during straight driving.
  • the crawler vehicle When the crawler vehicle travels straight, when the sixth electromagnetic clutch C6, the seventh electromagnetic clutch C7, and the eighth electromagnetic clutch C8 are in the engaged state and the fifth electromagnetic clutch C5 is in the disengaged state, the crawler vehicle can turn right when the tracked vehicle travels straight.
  • the initial state of the tracked vehicle is stationary, the sixth electromagnetic clutch C6, the seventh electromagnetic clutch C7, and the eighth electromagnetic clutch C8 are all engaged, and the fifth electromagnetic clutch C5 is disconnected, the tracked vehicle can turn right in place.
  • the power transmission route of the left driving wheel is: power output shaft (forward rotation), fifth output gear shaft S5 (forward rotation), seventh synchronizing gear Z7 (reverse rotation), sixth output gear Z6 (forward rotation) ), the sixth electromagnetic clutch C6, the eighth electromagnetic clutch C8, the ninth output gear shaft S9 (forward rotation), the left driving wheel;
  • the power transmission route of the right driving wheel is: the power output shaft (forward rotation), the fifth output gear Shaft S5 (forward rotation), seventh synchronizing gear Z7 (reverse rotation), sixth output gear Z6 (forward rotation), sixth electromagnetic clutch C6, eighth electromagnetic clutch C8 (forward rotation), ninth output gear Z9 (forward rotation) rotation), the eighth output gear Z8 (reverse rotation), the seventh electromagnetic clutch C7 (reverse rotation), the eighth output gear shaft S8, and the right drive wheel (reverse rotation).
  • the electronically controlled crawler vehicle can turn right or turn right in place when going straight. Whether to turn right when going straight or turn right on the spot is related to the state of the tracked vehicle before turning. It is stationary before turning. When turning, it is turning in place, and it is going straight before turning. When turning, it is turning during straight driving.
  • the transmission box adopts the engagement or disengagement of four electromagnetic clutches, and converts a power output shaft with a fixed rotation direction through the electromagnetic clutch into two left and right eighth output gear shafts S8 and ninth output gear shafts with the same steering or opposite steering.
  • the S9 drives the left and right drive wheels of the tracked vehicle, and realizes the speed-adjusted straight, steering when straight, and in situ steering.
  • the operation is convenient, flexible and reliable; the transmission box can be controlled by long-distance wireless remote control or satellite positioning to realize automatic control.
  • the speed change transmission case has the advantages of short power transmission route, small power transmission loss, few parts and components, relatively simple structure and low manufacturing cost.
  • This patent realizes that when the crawler vehicle turns straight or turns in situ, it does not rotate with the center point of the driving wheel on one of the two crawler tracks as the rotation center, but instead rotates with the center point between the two driving wheels of the two parallel tracks of the crawler vehicle.
  • the center point is the center of rotation for rotation. Therefore, when turning, the grounding points of the two parallel tracks are not easy to block the soil, the shear force on the soil is reduced, and the power loss is greatly reduced.
  • the second embodiment adds a third gear shaft S3 , a fourth gear shaft S4 , and a third electromagnetic shaft on the basis of the first embodiment.
  • Embodiment 1 The same content as in Embodiment 1 will not be described again, and the content different from Embodiment 1 will be mainly described below.
  • the third gear Z3 and the fourth gear Z4 are in meshing state, and the third gear Z3 and the fourth gear Z4 are respectively connected with the third gear shaft S3 and the fourth gear shaft S4 in the circumferential direction for force transmission (for example, using splines). connection), the other end of the third gear shaft S3 is connected with the driving member of the third electromagnetic clutch C3 in the circumferential direction, the driven member of the third electromagnetic clutch C3 is connected with the fifth output gear shaft S5 in the circumferential direction, and the fourth electromagnetic clutch C4 is connected from The moving element is connected with the sixth output gear shaft S6 in the circumferential direction for force transmission.
  • the third gear shaft S3 or the fourth gear shaft S4 is used as the power input shaft (in the first embodiment, the fifth output gear shaft S5 or the sixth output gear shaft S6 is used as the power input shaft).
  • the third gear shaft S3 is used as the power input shaft to be connected with the power output shaft of the power plant as an example for description.
  • the tracked vehicle is realized.
  • the power transmission route of the right driving wheel is: power output shaft (forward rotation), third gear shaft S3, third electromagnetic clutch C3 (forward rotation), fifth output gear shaft S5 (forward rotation), Fifth electromagnetic clutch C5, seventh electromagnetic clutch C7 driving element, eighth output gear shaft S8, right drive wheel (forward rotation);
  • the power transmission route of the left drive wheel is: power output shaft (forward rotation), third gear shaft S3, the third electromagnetic clutch C3 (forward rotation), the fifth output gear shaft S5 (forward rotation), the seventh synchronizing gear Z7 (reverse rotation), the sixth output gear Z6 (forward rotation), the sixth electromagnetic clutch C6, the sixth Eight electromagnetic clutch C8 driving element, ninth output gear shaft S9, left driving wheel (forward rotation). Because the left and right drive wheels rotate forward at the same time, the electronically controlled tracked vehicle moves forward.
  • the fourth electromagnetic clutch C4 and the sixth electromagnetic clutch C6 are in the disconnected state.
  • the tracked vehicle moves forward, the tracked vehicle will turn left; of course, the tracked vehicle is stationary in the initial state, when the third electromagnetic clutch C3, the fifth electromagnetic clutch C5, the seventh electromagnetic clutch C7, and the eighth electromagnetic clutch C8 are all in the engaged state, the fourth electromagnetic clutch When the clutch C4 and the sixth electromagnetic clutch C6 are in the disconnected state, the tracked vehicle can turn left on the spot.
  • the power transmission route of the right driving wheel is: power output shaft (forward rotation), third gear shaft S3, third electromagnetic clutch C3 (forward rotation), fifth output gear shaft S5 (forward rotation), fifth Electromagnetic clutch C5, seventh electromagnetic clutch C7 driving element, eighth output gear shaft S8, right drive wheel (forward rotation);
  • the power transmission route of the left drive wheel is: power output shaft (forward rotation), third gear shaft S3, Third electromagnetic clutch C3 (forward rotation), fifth output gear shaft S5 (forward rotation), fifth electromagnetic clutch C5, seventh electromagnetic clutch C7 (forward rotation), eighth output gear Z8 (forward rotation), ninth output Gear Z9 (reverse rotation), eighth electromagnetic clutch C8 (reverse rotation), ninth output gear shaft S9, left drive wheel (reverse rotation).
  • the electronically controlled crawler vehicle can turn left or turn left in place when moving forward. Whether to turn left when moving forward or turn left on the spot is related to the state of the tracked vehicle before turning. It is stationary before turning left. When turning left, it is turning left on the spot, turning left before moving forward, and turning left when turning left is turning left during the forwarding process.
  • the fourth electromagnetic clutch C4 and the fifth electromagnetic clutch C5 are in the disconnected state.
  • the initial state of the tracked vehicle is stationary.
  • the third electromagnetic clutch C3, the sixth electromagnetic clutch C6, the seventh electromagnetic clutch C7, and the eighth electromagnetic clutch C8 are all engaged, the fourth electromagnetic clutch C4 and the fifth electromagnetic clutch C5 are disconnected. In the open state, the tracked vehicle can turn right on the spot.
  • the power transmission route of the left driving wheel is: the power output shaft (forward rotation), the third gear shaft S3, the third electromagnetic clutch C3 (forward rotation), the fifth output gear shaft S5 (forward rotation), the seventh Synchronous gear Z7 (reverse rotation), sixth output gear Z6 (forward rotation), sixth electromagnetic clutch C6, eighth electromagnetic clutch C8, ninth output gear shaft S9 (forward rotation), left driving wheel; power of the right driving wheel
  • the transmission route is: power output shaft (forward rotation), third gear shaft S3, third electromagnetic clutch C3 (forward rotation), fifth output gear shaft S5 (forward rotation), seventh synchronization gear Z7 (reverse rotation), Six output gears Z6 (forward rotation), sixth electromagnetic clutch C6, eighth electromagnetic clutch C8 (forward rotation), ninth output gear Z9 (forward rotation), eighth output gear Z8 (reverse rotation), seventh electromagnetic clutch C7 (reverse rotation), eighth output gear shaft S8, right drive wheel (reverse rotation).
  • the electronically controlled crawler vehicle can turn right or turn right in place when moving forward. Whether to turn right when moving forward or turn right on the spot is related to the state of the tracked vehicle before turning. It is stationary before turning right. When turning right, it turns right on the spot, and when turning right, it turns right.
  • the tracked vehicle is realized.
  • the power transmission route of the right driving wheel is: power output shaft (forward rotation), third gear shaft S3, third gear Z3, fourth gear Z4 (reverse rotation), fourth gear shaft S4, Four electromagnetic clutches C4 (reverse rotation), sixth output gear shaft S6 (reverse rotation), sixth output gear Z6, seventh synchronizing gear Z7 (forward rotation), fifth output gear Z5 (reverse rotation), fifth output gear Shaft S5 (reverse rotation), fifth electromagnetic clutch C5, seventh electromagnetic clutch C7 driving element, eighth output gear shaft S8, right driving wheel (reverse rotation);
  • the power transmission route of the left driving wheel is: power output shaft (positive rotation), the third gear shaft S3, the third gear Z3, the fourth gear Z4 (reverse rotation), the fourth gear shaft S4, the fourth electromagnetic clutch C4 (reverse rotation), the sixth
  • the third electromagnetic clutch C3 and the sixth electromagnetic clutch C6 are in the disconnected state
  • the tracked vehicle can turn left; of course, the tracked vehicle is stationary in the initial state, and the tracked vehicle can be turned left on the spot.
  • the power transmission route of the right driving wheel is: the third gear shaft S3, the third gear Z3, the fourth gear Z4 (reverse rotation), the fourth gear shaft S4, the fourth electromagnetic clutch C4 (reverse rotation), the sixth gear Output gear shaft S6 (reverse rotation), sixth output gear Z6, seventh synchronization gear Z7 (forward rotation), fifth output gear Z5 (reverse rotation), fifth output gear shaft S5 (reverse rotation), fifth electromagnetic clutch C5, the seventh electromagnetic clutch C7 driving element, the eighth output gear shaft S8, the right driving wheel (reverse rotation);
  • the power transmission route of the left driving wheel is: power output shaft (forward rotation), the third gear shaft S3, the third Gear Z3, fourth gear Z4 (reverse rotation), fourth gear shaft S4, fourth electromagnetic clutch C4 (reverse rotation), sixth output gear shaft S6 (reverse rotation), sixth output gear Z6, seventh synchronization gear Z7 (forward rotation), fifth output gear Z5 (reverse rotation), fifth output gear shaft S5 (reverse rotation), fifth electromagnetic clutch C5, seventh electromagnetic clutch C7, eighth output gear Z8 (reverse rotation),
  • the electronically controlled crawler vehicle can turn left or turn left in place when it reverses. Whether it is to turn left or turn left in place when backing up is related to the state of the tracked vehicle before turning. It is stationary before turning left. When turning left, it is turning left on the spot.
  • the third electromagnetic clutch C3 and the fifth electromagnetic clutch C5 are in the disconnected state
  • the tracked vehicle moves backwards, it can turn right.
  • the initial state of the tracked vehicle is still, so that the tracked vehicle can turn right on the spot.
  • the power transmission route of the left driving wheel is: the power output shaft (forward rotation), the third gear shaft S3, the third gear Z3, the fourth gear Z4 (reverse rotation), the fourth gear shaft S4, the fourth electromagnetic Clutch C4 (reverse), sixth output gear shaft S6 (reverse), sixth electromagnetic clutch C6, eighth electromagnetic clutch C8, ninth output gear shaft S9 (reverse), left drive wheel (reverse); right
  • the power transmission route of the driving wheel is: power output shaft (forward rotation), third gear shaft S3, third gear Z3, fourth gear Z4 (reverse rotation), fourth gear shaft S4, fourth electromagnetic clutch C4 (reverse rotation) ), sixth output gear shaft S6 (reverse rotation), sixth electromagnetic clutch C6, eighth electromagnetic clutch C8, ninth output gear Z9 (reverse rotation), eighth output gear Z8 (forward rotation), seventh electromagnetic clutch C7 (forward rotation), eighth output gear shaft S8, right drive wheel (forward rotation).
  • the electronically controlled crawler vehicle can turn right or turn right in place when it reverses. It is related to the state of the tracked vehicle before turning, whether it is to turn right when moving backward or turn right on the spot. When turning right, it is stationary before turning right. When turning right, it is turning right on the spot.
  • the main difference from when the third gear shaft S3 is used as the power input shaft is that the tracked vehicle travels in the opposite direction. That is to say, if the third gear shaft S3 is used as the power input shaft, the tracked vehicle is forward, then when the fourth gear shaft S4 is used as the power input shaft, the tracked vehicle is backward; if the third gear shaft S3 is used as the power input shaft, the tracked vehicle is Backward, when the fourth gear shaft S4 is used as the power input shaft, the tracked vehicle is forward.
  • the other processes are similar and will not be described one by one.
  • the present embodiment 2 realizes the forward and backward movement of the electronically controlled crawler vehicle, and can turn when moving forward, turn when moving backward, and turn in situ, and the control is more convenient and flexible.
  • Controlling the action (engagement or disconnection) of each electromagnetic clutch by a controller in a wired or wireless manner belongs to the prior art and will not be described again, so that the electronic control of the tracked vehicle can be realized.
  • the third embodiment is based on the second embodiment by adding the first speed shaft S1, the second speed shaft S2, the A gear transmission mechanism composed of a first-speed electromagnetic clutch C1, a second-speed electromagnetic clutch C2, a first-speed gear Z1, a second-speed gear Z2, and two external gears Z10 and Z11.
  • Embodiment 2 Contents that are the same as those in Embodiment 2 will not be described again, and the content different from Embodiment 2 will be mainly described below.
  • first rotational speed gear Z1 and the second rotational speed gear Z2 are respectively connected with the first rotational speed shaft S1 and the second rotational speed shaft S2 in the circumferential direction (such as spline connection), and one end of the first rotational speed shaft S1 is electromagnetically connected to the first rotational speed shaft S1.
  • the driving part of the clutch C1 is connected with force in the circumferential direction; the driven part of the first speed clutch C1 is connected with one end of the third gear shaft S3 in the circumferential direction; the first speed gear Z1 and the second speed gear Z2 are meshed through the gear transmission mechanism (the first speed The gear Z1, the external gear Z10, the external gear Z11, and the second rotational speed gear Z2 are meshed in sequence), and the rotational speed ratio of the first rotational speed gear Z1 and the second rotational speed gear Z2 is 2.
  • One end of the second rotational speed shaft S2 is connected with the driving element of the second rotational speed electromagnetic clutch C2 in the circumferential direction, and the second rotational speed electromagnetic clutch C2 driven element and the fourth electromagnetic clutch C4 driving element are both connected with the fourth gear shaft S4 in the circumferential direction with force transmission;
  • a rotational speed shaft S1 or a second rotational speed shaft S2 is used for connection with the power take-off shaft of the power plant.
  • the speed change gearbox for controlling the steering of the tracked vehicle of the third embodiment is mounted on the tracked vehicle, the output shaft of the power device of the tracked vehicle is connected to the first rotational speed shaft S1 of the gearbox 1, the power device is an internal combustion engine, and when the tracked vehicle starts, The forward rotation of the first rotation shaft S1 of the transmission box drives the first rotation gear Z1 to rotate forward, and the first rotation gear Z1 drives the second rotation gear Z2 to reverse rotation.
  • the three electromagnetic clutches C3, the fourth electromagnetic clutch C4, the fifth electromagnetic clutch C5, the sixth electromagnetic clutch C6, the seventh electromagnetic clutch C7, and the eighth electromagnetic clutch C8 are in the disengaged or engaged state, so as to realize the slow or fast forward speed of the tracked vehicle, Slow or fast forward turn, slow or fast reverse, slow or fast reverse turn, slow or fast turn left in place, slow or fast turn right in place, as follows:
  • the tracked vehicle can be controlled to move forward, backward, turn left on the spot, and turn right on the spot , the specific process is as follows:
  • first-speed electromagnetic clutch C1, the third electromagnetic clutch C3, the fifth electromagnetic clutch C5, and the sixth electromagnetic clutch C6 are all in the engaged state
  • the second-speed electromagnetic clutch C2, the fourth electromagnetic clutch C4, the seventh electromagnetic clutch C7, the sixth electromagnetic clutch Eight electromagnetic clutches C8 are all disconnected
  • the first rotational speed shaft S1 of the transmission case rotates forwardly and transmits power to the third gear shaft S3 through the first rotational speed electromagnetic clutch C1.
  • the third gear shaft S3 rotates forwardly and drives the fifth output gear shaft S5 through the third electromagnetic clutch C3.
  • the fifth output gear shaft S5 drives the fifth output gear Z5 to rotate forward.
  • the fifth output gear Z5 rotates forward through the seventh synchronizing gear Z7 with the sixth output gear Z6 to rotate forward, and the sixth output gear Z6 drives the sixth output gear.
  • the shaft S6 rotates forwardly, the fifth output gear shaft S5 and the sixth output gear shaft S6 rotate forwardly through the fifth electromagnetic clutch C5 in the engaged state and the sixth electromagnetic clutch C6 in the engaged state to drive the seventh electromagnetic clutch C7
  • the ninth output gear shaft S9 rotates forward, the eighth output gear shaft S8 and the ninth output gear shaft S9 drive the left drive wheel L and the right drive wheel R of the tracked vehicle respectively, and the left and right drive wheels drive the tracked vehicle to move forward rapidly (forward. );
  • the first rotational speed shaft S1 of the transmission case rotates forwardly and transmits power to the third gear shaft S3 through the first rotational speed electromagnetic clutch C1, the third gear shaft S3 rotates forwardly, the third gear Z3 meshes with the fourth gear Z4, and drives the third gear shaft S3.
  • the fourth gear Z4, the reverse rotation of the fourth gear Z4 drives the reverse rotation of the fourth gear shaft S4, the reverse rotation of the fourth gear shaft S4 drives the sixth output gear shaft S6 through the fourth electromagnetic clutch C4, and the sixth output gear shaft S6 drives the sixth output gear
  • the gear Z6 is reversed, the sixth output gear Z6 is reversed and transmitted to the fifth output gear Z5 through the seventh synchronizing gear Z7, and the fifth output gear Z5 drives the fifth output gear shaft S5 to reverse.
  • the fifth output The gear shaft S5 and the sixth output gear shaft S6 are reversed to drive the seventh electromagnetic clutch C7 driving element and the eighth electromagnetic clutch C8 driving element respectively through the fifth electromagnetic clutch C5 in the engaged state and the sixth electromagnetic clutch C6 in the engaged state. Since the seventh electromagnetic clutch C7 and the eighth electromagnetic clutch C8 are in the disconnected state, the driving element of the seventh electromagnetic clutch C7 and the driving element of the eighth electromagnetic clutch C8 drive the eighth output gear shaft S8 and the ninth output gear shaft S9 to reverse, respectively, The eighth output gear shaft S8 and the ninth output gear shaft S9 drive the left driving wheel L and the right driving wheel R respectively, and drive the tracked vehicle to move backward (backward) rapidly;
  • variable transmission box for controlling the steering of the tracked vehicle of the present patent is used to control the tracked vehicle to rapidly turn to the left during forward walking or to control the tracked vehicle to rapidly turn to the left when stationary, see Figure 5 .
  • the first-speed electromagnetic clutch C1, the third electromagnetic clutch C3, the fifth electromagnetic clutch C5, the seventh electromagnetic clutch C7, and the eighth electromagnetic clutch C8 are all in the engaged state
  • the second-speed electromagnetic clutch C2, the fourth electromagnetic clutch C4 The sixth electromagnetic clutches C6 are all in the disconnected state.
  • the first rotational speed shaft S1 of the transmission case rotates forwardly and transmits power to the third gear shaft S3 via the first rotational speed electromagnetic clutch C1, and the third gear shaft S3 drives the fifth output gear shaft S5 via the third electromagnetic clutch C3.
  • the electromagnetic clutch C6 is in the disconnected state, and the fifth output gear shaft S5 rotates forwardly through the driving member of the fifth electromagnetic clutch C5 and the driven member of the fifth electromagnetic clutch C5 in the engaged state to drive the driving member of the seventh electromagnetic clutch C7, and the seventh electromagnetic clutch
  • the driving member C7 drives the eighth output gear shaft S8 to rotate forward.
  • the driving member of the seventh electromagnetic clutch C7 drives the driven member of the seventh electromagnetic clutch C7 to rotate together, and is fixed on the seventh electromagnetic clutch C7 from The eighth output gear Z8 on the moving part rotates forward, the eighth output gear Z8 meshes with the ninth output gear Z9, and drives the ninth output gear Z9 to reverse, because the ninth output gear Z9 is fixed on the eighth electromagnetic clutch C8 and is driven and the eighth electromagnetic clutch C8 is in the engaged state, so the ninth output gear Z9 is reversed through the eighth electromagnetic clutch C8 driven member and the eighth electromagnetic clutch C8 driving member to drive the ninth output gear shaft S9 to reverse rotation.
  • the forward rotation of the eighth output gear shaft S8 and the reverse rotation of the ninth output gear shaft S9 synchronously drive the right driving wheel and the left driving wheel of the tracked vehicle respectively. As shown in Figure 5. It is related to the state of the tracked vehicle before turning, whether it is a left turn when fast forward or a fast left turn in place Turn left on the way.
  • the speed change gearbox for controlling the steering of the tracked vehicle of the present patent is used to control the tracked vehicle to rapidly turn to the right during forward walking, or to control the tracked vehicle to rapidly turn to the right when stationary, see Figure 6 .
  • the first-speed electromagnetic clutch C1, the third electromagnetic clutch C3, the sixth electromagnetic clutch C6, the seventh electromagnetic clutch C7, and the eighth electromagnetic clutch C8 are all in the engaged state
  • the second-speed electromagnetic clutch C2, the fourth electromagnetic clutch C4 The fifth electromagnetic clutches C5 are all in the disconnected state.
  • the first rotational speed shaft S1 of the transmission case rotates forwardly, and the first rotational speed shaft S1 of the transmission case rotates forwardly to transmit the power to the third gear shaft S3 through the first rotational speed electromagnetic clutch C1, and the power passes through the third gear shaft S3 (forward rotation) , the third electromagnetic clutch C3 (forward rotation), the fifth output gear shaft S5 (forward rotation), the seventh synchronizing gear Z7 (reverse rotation), the sixth output gear Z6 (forward rotation), the sixth electromagnetic clutch C6, the eighth The electromagnetic clutch C8 and the ninth output gear shaft S9 (forward rotation) are transmitted to the left drive wheel, and the left drive wheel rotates forward; at the same time, the eighth electromagnetic clutch C8 is in the engaged state, and the driving element of the eighth electromagnetic clutch C8 drives the eighth electromagnetic clutch.
  • the follower of the clutch C8 rotates together, the ninth output gear Z9 fixed on the follower of the eighth electromagnetic clutch C8 rotates forward, the ninth output gear Z9 meshes with the eighth output gear Z8, and drives the eighth output gear Z8 to reverse , the eighth output gear Z8 drives the eighth output gear shaft S8 to reverse through the seventh electromagnetic clutch C7 driven member and the seventh electromagnetic clutch C7 driving member in the engaged state, and the above-mentioned eighth output gear shaft S8 reverses and the ninth output
  • the forward rotation of the gear shaft S9 is synchronously transmitted to the crawler, the left driving wheel and the right driving wheel of the crawler vehicle, the left driving wheel rotates forward, and the right driving wheel reverses, so that the crawler vehicle turns to the right, as shown in Figure 6. It is related to the state of the tracked vehicle before turning. It is stationary before turning right. When turning right, it is turning right in place quickly. When turning right, it is moving forward quickly. When turning right, it is moving forward quickly. Turn right on the way.
  • the speed change gearbox for controlling the steering of the tracked vehicle of the present patent is used to control the tracked vehicle to turn to the left rapidly during backward walking or to control the tracked vehicle to rapidly turn to the left when stationary, see Figure 7 , the first-speed electromagnetic clutch C1, the fourth electromagnetic clutch C4, the fifth electromagnetic clutch C5, the seventh electromagnetic clutch C7, and the eighth electromagnetic clutch C8 are all in the engaged state, the second-speed electromagnetic clutch C2, the third electromagnetic clutch C3, the The sixth electromagnetic clutches C6 are all in the disconnected state.
  • the power transmission route of the right driving wheel is: power output shaft (forward rotation), first rotation speed shaft S1, first rotation speed electromagnetic clutch C1, third gear shaft S3, third gear Z3, fourth gear Z4 (reverse rotation), Fourth gear shaft S4, fourth electromagnetic clutch C4 (reverse rotation), sixth output gear shaft S6 (reverse rotation), sixth output gear Z6, seventh synchronization gear Z7 (forward rotation), fifth output gear Z5 (reverse rotation) rotation), the fifth output gear shaft S5 (reverse rotation), the fifth electromagnetic clutch C5, the seventh electromagnetic clutch C7 driving element, the eighth output gear shaft S8, the right drive wheel (reverse rotation);
  • the power transmission route of the left drive wheel are: power output shaft (forward rotation), first rotational speed shaft S1, first rotational speed electromagnetic clutch C1, third gear shaft S3, third gear Z3, fourth gear Z4 (reverse rotation), fourth gear shaft S4, Four electromagnetic clutches C4 (reverse rotation), sixth output gear shaft S6 (reverse rotation), sixth output gear Z6, seventh synchronizing gear Z7 (forward rotation), fifth output gear Z5 (reverse rotation), fifth
  • the electronically controlled crawler vehicle turns left on the spot when it moves backward, as shown in Figure 7. It is related to the state of the tracked vehicle before turning, whether it is to turn left or turn left quickly in place when moving backward quickly. Turn left on the way.
  • variable transmission box for controlling the steering of the tracked vehicle of the present patent is used to control the tracked vehicle to rapidly turn to the right during backward walking or to control the tracked vehicle to rapidly turn to the right when stationary, see Figure 8 , the first-speed electromagnetic clutch C1, the fourth electromagnetic clutch C4, the sixth electromagnetic clutch C6, the seventh electromagnetic clutch C7, and the eighth electromagnetic clutch C8 are all in the engaged state, the second-speed electromagnetic clutch C2, the third electromagnetic clutch C3, The fifth electromagnetic clutches C5 are all in the disconnected state.
  • the power transmission route of the left driving wheel is: power output shaft (forward rotation), first rotation speed shaft S1, first rotation speed electromagnetic clutch C1, third gear shaft S3, third gear Z3, fourth gear Z4 (reverse rotation) , fourth gear shaft S4, fourth electromagnetic clutch C4 (reverse), sixth output gear shaft S6 (reverse), sixth electromagnetic clutch C6, eighth electromagnetic clutch C8, ninth output gear shaft S9 (reverse) , left driving wheel (reverse rotation);
  • the power transmission route of the right driving wheel is: power output shaft (forward rotation), third gear shaft S3, third gear Z3, fourth gear Z4 (reverse rotation), fourth gear shaft S4, fourth electromagnetic clutch C4 (reverse rotation), sixth output gear shaft S6 (reverse rotation), sixth electromagnetic clutch C6, eighth electromagnetic clutch C8, ninth output gear Z9 (reverse rotation), eighth output gear Z8 (forward rotation), seventh electromagnetic clutch C7 (forward rotation), eighth output gear shaft S8, right drive wheel (forward rotation).
  • the forward rotation of the eighth output gear shaft S8 and the reverse rotation of the ninth output gear shaft S9 are respectively synchronously transmitted to the right driving wheel of the tracked vehicle for forward rotation and the left driving wheel for reverse rotation, so that the tracked vehicle turns to the right when it retreats, as shown in FIG. 8 . It is related to the state of the tracked vehicle before turning, whether it is to turn right when backing quickly or turn right on the spot quickly. Turn right on the way.
  • the tracked vehicle can be controlled to move forward slowly (see Figure 9 ) and move backward at a slow speed (see Figure 9 ).
  • Figure 10 turn left at slow speed or turn left at the place (see Figure 11), turn right or turn right at the place at slow speed (see Figure 12), turn left at slow speed or turn left at the place (see Figure 12) Refer to Figure 13), turn right when backing slowly or turn right in place (refer to Figure 14).
  • the main difference between this situation and the content of part (1) in the third embodiment is that the paths of power transmission to the third gear shaft S3 or the fourth gear shaft S4 are different.
  • the power is passed through the power take-off shaft (forward rotation).
  • the The two-speed electromagnetic clutch C2, the fourth gear shaft S4, the fourth gear Z4, and the third gear Z3 drive the third gear shaft S3 to rotate (forward rotation).
  • the power is the power take-off shaft.
  • the first rotational speed shaft S1 and the first rotational speed electromagnetic clutch C1 drive the third gear shaft S3 to rotate (forward rotation).

Abstract

一种控制履带车辆转向的变速传动箱,包括第五、六、八、九输出齿轮轴(S5、S6、S8、S9)、第五、六、八、九输出齿轮(Z5、Z6、Z8、Z9)、第七过渡齿轮轴(S7)、第七同步齿轮(Z7)、第五、六、七、八离合器(C5、C6、C7、C8);第五或第六输出齿轮轴(S5、S6)与动力装置的动力输出轴连接,第七同步齿轮(Z7)分别与第五、六输出齿轮(Z5、Z6)啮合,第五、六输出齿轮轴(S5、S6)分别与第五、六离合器(C5、C6)主动件连接,第五、六离合器(C5、C6)从动件分别与第七、八离合器(C7、C8)主动件连接,第七、八离合器(C7、C8)主动件分别与第八、九输出齿轮轴(S8、S9)连接,第八、九输出齿轮(Z8、Z9)分别与第七、八离合器(C7、C8)从动件连接,第八、九输出齿轮(Z8、Z9)之间啮合,第八、九输出齿轮轴(S8、S9)分别与履带车辆左右驱动轮连接。

Description

控制履带车辆转向的变速传动箱 技术领域
本专利涉及的是一种用于农业、林业、卫生等领域中履带式装载或牵引植保机械及其它农用设备的行走装置,特别是涉及一种电控履带车辆原地转向的变速传动箱。
背景技术
履带车辆两条履带接地,行驶时接地面积大,接地比压小,履带车辆具有跨越障碍、壕沟,在软土、水田行走及在各种复杂工作面上行走等优点,因此被广泛应用。目前,履带车辆的转向机构是采用单侧履带动力切断或制动实现转向;履带车辆直行时,两侧离合器接合,转向制动器分离;转向时,转向一侧离合器切断动力,该侧转向制动器接合,使该侧履带制动停转,两侧履带一走一停,实现前进、后退或转向,其转向机构具有结构简单,操作方便。然而,履带车辆转向过程中只能通过一侧离合器接合制动该侧履带,而另一侧继续驱动履带实现转向。因其转向时为单边制动转向,造成转弯半径大、两条履带整体以一条履带的一端为旋转中心进行旋转,需要巨大的扭力,旋转时极容易壅土且对土壤剪切破坏严重,功率损耗大,且不能实现原地转向。为此,对上文所述现有履带车辆的转向机构作了改进,已由下述专利文献予以披露。
中国专利“一种行走转向装置”(授权公告号为CN 2630079Y),该转向装置采用离合器轴左离合器齿轮和右离合器齿轮之间并联一套行星齿轮装置,通过左右离合器、行星齿轮装置和制动器的配合,改变左右二个动力输出轴的旋转方向和速度实现左、右履带正反转,控制履带车辆的前进、倒退、转向,且能实现原地转向。
但是,该专利所述转向装置采用行星齿轮装置,不仅其结构相对复杂,制造成本高,而且难以实现自动化控制。
除此之外,如中国专利“双差速器履带式联合收割机变速箱”(授权公告号为CN 103988639 B),该变速箱采用差速器式转向机构、两个差速器行星变速机构、液压制动器等部件,不仅能完成履带车辆的前进、倒退、转向,且能实现原地转向。
但是,该变速箱采用左右两个差速器行星变速机构,该行星变速机构功率传送结构复杂,零部件多,体积大,重量重,制造成本高。[参阅-专利权人--江苏大学—申请号CN201410187318.5]
除此之外,如中国专利“一种双流传动履带车辆电控静液转向系统”(授权公告号为CN 108100034 B),该转向系统采用液压功率传递,其静液转向机构分别与排量调节及控制机构和转向功率后传动系统相连,排量调节及控制机构通过向静液转向机构发送信号控制转向功率后传动系统运动。能实现履带车辆的前进、倒退、转向、以及原地转向。
但是,该转向系统采用液压功率传递,再经行星齿轮机构传递后完成前进、倒退、转向,其液压功率传递路线长,结构相对复杂,制造成本高。
除此之外,如中国专利“一种用于驱动履带车辆转向的装置及方法”(授权公告号为CN 108100034 B),该转向的装置包括:两个驱动电机、两个行星耦合装置和一个转向电机,通过两个行星耦合装置分别与履带车辆两侧的主动轮连接;采用双电机驱动形式,双电机独立驱动,实现了履带车辆的前进、倒退、转向、以及原地转向。
但是,该转向的装置采用两侧双电机独立驱动,再经行星齿轮机构传递后完成前进、倒退、转向,由于双电机分设两侧重量重,体积大,且行星齿轮机构的功率传送结构相对复杂,零部件多,制造成本高。
除此之外,如中国专利申请“一种履带式差速正反转的动力耦合装置及变速箱”(申请公布号为CN 110370925 A),该动力耦合装置及变速箱采用发动机和调速电机组分别控制转速耦合装置中的行星齿轮机构中的行星架和太阳轮的转速,二者动力在转速耦合装置处进行转速耦合,再经行星齿轮机构传递后实现履带车辆的单边制动,完成前进、倒退、转向、自由半径转向以及原地转向。
但是,该动力耦合装置及变速箱采用调速电机组分别控制转速耦合装置中的行星齿轮机构中的行星架和太阳轮,其功率传送的结构相对复杂,零部件多,制造成本高。
除此之外,如中国专利:其名称为“一种履带拖拉机变速传动装备”,授权公告号为:CN 110159722 B,该变速传动装备采用液压无级变速器的输出端直接控制蜗杆,进而改变蜗轮的速度,使履带车辆左右侧转速发生变化,完成前进、倒退、转向,通过行星齿轮传动机构驱动液压无级变速器,无级变速器的输入转速独立于变速器的转速,在变速器处于空挡时履带车辆可以原地转向。
但是,该传动装备采用液压无级变速器、行星齿轮传动机构,其功率传送的结构相对复杂,零部件多,制造成本高。
除此之外,如中国专利申请“一种履带车辆行星差速转向驱动桥”(申请公布号为:CN111022606A),该差速转向驱动桥包括壳体、转向输入轴和驱动输入轴、双联齿、锥齿轮、驱动轮和行星轮机构,能实现较小的转向半径,亦可360°原地转弯,可用于机械式多挡和液压式变速等履带车辆。
但是,该专利所述转向装置采用行星齿轮机构,不仅其功率传送的结构相对复杂,制造成本高,而且难以实现自动化控制。
除此之外,如中国专利申请:其名称为“一种具有差速转向的履带收割机”,申请公布号为:CN 111328488,该变速箱体内设有变速机构、转向机构、减速机构和比例换向,变速机构驱动转向机构,比例换向阀控制转向机构,转向机构通过减速机构输出实现联合收割机行走实现直行前进、后退、缓慢转向和原地转向;
但是,该履带收割机的差速转向机构的两侧的驱动轮驱动力由比例换向阀控制,其比例换向阀的液压功率传递路线长,结构相对复杂,零部件多,制造成本高。
上述现有技术所述的履带车辆的转向机构采用差速器转向机构、行星齿轮传动机构、液压转向机构、双电机驱动转向机构,其功率传递路线长,传递功率损耗大,零部件多,结构相对复杂,制造成本高。
因此,有必要开发能消除以上弊端,其结构相对简单,功率传递路线短,传递功率损耗小的变速转向机构,实现原地转向时操作方便、灵活、可靠,便于自动化控制。
专利内容
针对以上现有技术存在的问题和不足,本专利的目的在于提供一种控制履带车辆转向的变速传动箱,该传动箱采用多个离合器,能够瞬时控制履带车辆直行(前进或者后退)、直行时左转或右转、原地转向,操作方便、灵活、可靠,而且结构紧凑,还具有调速机构,能根据需要调节传动箱两根输出轴的转速和转向,实现履带车辆快速或慢速前进、后退或转向、原地转向,提高履带车辆工作效率。
为达到上述目的,本专利采用下述技术方案:
控制履带车辆转向的变速传动箱,该传动箱包括第五输出齿轮轴S5、第六输出齿轮轴S6、第七过渡齿轮轴S7、第五离合器C5、第六离合器C6、第五输出齿轮Z5、第六输出齿轮Z6、第七同步齿轮Z7;第五输出齿轮Z5、第六输出齿轮Z6分别与第五输出齿轮轴S5、第六输出齿轮轴S6在周向传力连接;第七过渡齿轮轴S7在周向上传力连接有第七同步齿轮Z7,第七同步齿轮Z7分别与第五输出齿轮Z5、第六输出齿轮Z6处于啮合状态,第五输出齿轮轴S5的另一端、第六输出齿轮轴S6的另一端分别与第五离合器C5主动件、第六离合器C6主动件在周向传力连接,第五输出齿轮轴S5或第六输出齿轮轴S6用于与动力装置的动力输出轴连接,上述传动箱还包括
第八输出齿轮轴S8、第九输出齿轮轴S9、第七离合器C7、第八离合器C8、第八输出齿轮Z8、第九输出齿轮Z9,上述第五离合器C5从动件、第六离合器C6从动件分别与第七离合器C7主动件、第八离合器C8主动件在周向传力连接,第七离合器C7主动件、第八离合器C8主动件分别与第八输出齿轮轴S8、第九输出齿轮轴S9的一端在周向传力连接,第八输出齿轮Z8、第九输出齿轮Z9分别与第七离合器C7从动件、第八离合器C8从动件在周向传力连接,第八输出齿轮Z8与第九输出齿轮Z9之间处于啮合状态,第八输出齿轮轴S8、第九输出齿轮轴S9的另一端分别与履带车辆左右驱动轮连接;
当第五离合器C5、第六离合器C6均处于接合状态,第七离合器C7、第八离合器C8均处于断开状态时,实现履带车辆直行;
当第五离合器C5、第七离合器C7、第八离合器C8均处于接合状态,第六离合器C6处于断开状态时,实现履带车辆左转;
当第六离合器C6、第七离合器C7、第八离合器C8均处于接合状态,第五离合器C5处于断开状态时,实现履带车辆右转。
作为对上述的控制履带车辆转向的变速传动箱的进一步改进,它还包括第三齿轮轴S3、第四齿轮轴S4、第三离合器C3、第四离合器C4、第三齿轮Z3、第四齿轮Z4;第三齿轮Z3与第四齿轮Z4处于啮合状态,第三齿轮Z3、第四齿轮Z4分别与第三齿轮轴S3、第四齿轮轴S4在周向传力连接,第三齿轮轴S3的另一端与第三离合器C3主动件在周向传力连接,第三离合器C3从动件与第五输出齿轮轴S5在周向传力连接,第四离合器C4从动件与第六输出齿轮轴S6在周向传力连接,第三齿轮轴S3或者第四齿轮轴S4用于与动力装置的动力输出轴连接;
当第三离合器C3、第五离合器C5、第六离合器C6均处于接合状态,第四离合器C4、第七离合器C7、第八离合器C8均处于断开状态时,实现履带车辆前进;
履带车辆前进过程中,当第三离合器C3、第五离合器C5、第七离合器C7、第八离合器C8均处于接合状态,第四离合器C4、第六离合器C6处于断开状态时,实现履带车辆前进时左转;
履带车辆前进过程中,当第三离合器C3、第六离合器C6、第七离合器C7、第八离合器C8均处于接合状态,第四离合器C4、第五离合器C5处于断开状态时,实现履带车辆前进时右转;
当第四离合器C4、第五离合器C5、第六离合器C6均处于接合状态,第三离合器C3、第七离合器C7、第八离合器C8均处于断开状态时,实现履带车辆后退;
履带车辆后退过程中,当第四离合器C4、第五离合器C5、第七离合器C7、第八离合器C8均处于接合状态,第三离合器C3、第六离合器C6处于断开状态时,实现履带车辆后退时左转;
履带车辆后退过程中,当第四离合器C4、第六离合器C6、第七离合器C7、第八离合器C8均处于接合状态,第三离合器C3、第五离合器C5处于断开状态时,实现履带车辆后退时右转。
作为对上述的控制履带车辆转向的变速传动箱的进一步改进,它还包括第一转速轴S1、第二转速轴S2、第一转速离合器C1、第二转速离合器C2、第一转速齿轮Z1、第二转速齿轮Z2;第一转速齿轮Z1、第二转速齿轮Z2分别与第一转速轴S1第二转速轴S2在周向传力连接,第一转速轴S1一端与第一转速离合器C1主动件在周向传力连接;第一转速离合器C1从动件与第三齿轮轴S3一端在周向传力连接;第一转速齿轮Z1与第二转速齿轮Z2处于啮合状态,第二转速轴S2一端与第二转速离合器C2主动件在周向传力连接,第二转速离合器C2从动件和第四离合器C4主动件均与第四齿轮轴S4在周向传力连接;第一转速轴S1或第二转速轴S2用于与动力装置的动力输出轴连接。
作为对上述的控制履带车辆转向的变速传动箱的进一步改进,第一转速齿轮Z1通过一齿轮传动机构与第二转速齿轮Z2相啮合,经过该齿轮传动机构后,第一转速齿轮Z1与第二转速齿轮Z2的转动方向相反,第一转速齿轮Z1与第二转速齿轮Z2的转速比大于1;
当第一转速离合器C1、第三离合器C3、第五离合器C5、第六离合器C6均处于接合状态,第二转速离合器C2、第四离合器C4、第七离合器C7、第八离合器C8均处于断开状态时,实现履带车辆快速前进;
履带车辆快速前进过程中,当第一转速离合器C1、第三离合器C3、第五离合器C5、第七离合器C7、第八离合器C8均处于接合状态,第二转速离合器C2、第四离合器C4、第六离合器C6处于断开状态时,实现履带车辆快速前进时左转;
履带车辆快速前进过程中,当第一转速离合器C1、第三离合器C3、第六离合器C6、第七离合器C7、第八离合器C8均处于接合状态,第二转速离合器C2、第四离合器C4、第五离合器C5处于断开状态时,实现履带车辆快速前进时右转;
当第一转速离合器C1、第四离合器C4、第五离合器C5、第六离合器C6均处于接合状态,第二转速离合器C2、第三离合器C3、第七离合器C7、第八离合器C8均处于断开状态时,实现履带车辆快速后退;
履带车辆快速后退过程中,当第一转速离合器C1、第四离合器C4、第五离合器C5、第七离合器C7、第八离合器C8均处于接合状态,第二转速离合器C2、第三离合器C3、第六离合器C6处于断开状态时,实现履带车辆快速后退时左转;
履带车辆快速后退过程中,当第一转速离合器C1、第四离合器C4、第六离合器C6、第七离合器C7、第八离合器C8均处于接合状态,第二转速离合器C2、第三离合器C3、第五离合器C5处于断开状态时,实现履带车辆快速后退时右转;
当第二转速离合器C2、第三离合器C3、第五离合器C5、第六离合器C6均处于接合状态,第一转速离合器C1、第四离合器C4、第七离合器C7、第八离合器C8均处于断开状态时,实现履带车辆慢速前进;
履带车辆慢速前进过程中,当第二转速离合器C2、第三离合器C3、第五离合器C5、第七离合器C7、第八离合器C8均处于接合状态,第一转速离合器C1、第四离合器C4、第六离合器C6处于断开状态时,实现履带车辆慢速前进时左转;
履带车辆慢速前进过程中,当第二转速离合器C2、第三离合器C3、第六离合器C6、第七离合器C7、第八离合器C8均处于接合状态,第一转速离合器C1、第四离合器C4、第五离合器C5处于断开状态时,实现履带车辆慢速前进时右转;
当第二转速离合器C2、第四离合器C4、第五离合器C5、第六离合器C6均处于接合状态,第一转速离合器C1、第三离合器C3、第七离合器C7、第八离合器C8均处于断开状态时,实现履带车辆慢速后退;
履带车辆慢速后退过程中,当第二转速离合器C2、第四离合器C4、第五离合器C5、第七离合器C7、第八离合器C8均处于接合状态,第一转速离合器C1、第三离合器C3、第六离合器C6处于断开状态时,实现履带车辆慢速后退时左转;
履带车辆慢速后退过程中,当第二转速离合器C2、第四离合器C4、第六离合器C6、第七离合器C7、第八离合器C8均处于接合状态,第一转速离合器C1、第三离合器C3、第五离合器C5处于断开状态时,实现履带车辆慢速后退时右转。
作为对上述的控制履带车辆转向的变速传动箱的进一步改进,所述的变速传动箱控制履带车辆快速向前行走时,
第一转速离合器C1、第三离合器C3、第五离合器C5、第六离合器C6均处于接合状态,第二转速离合器C2、第四离合器C4、第七离合器C7、第八离合器C8均处于断开状态;
该传动箱的第一转速轴S1正转经第一转速离合器C1将动力传送给第三齿轮轴S3,第三齿轮轴S3正转经第三离合器C3带动第五输出齿轮轴S5,第五输出齿轮轴S5带动第五输出齿轮Z5正转,第五输出齿轮Z5正转经第七同步齿轮Z7带动第六输出齿轮Z6正转,第六输出齿轮Z6带动第六输出齿轮轴S6正转,第五输出齿轮轴S5、第六输出齿轮轴S6正转分别经处于接合状态的第五离合器C5、处于接合状态的第六离合器C6带动第七离合器C7主动件、第八离合器C8主动件,第七离合器C7主动件、第八离合器C8主动件分别带动第八输出齿轮轴S8、第九输出齿轮轴S9正转,第八输出齿轮轴S8、第九输出齿轮轴S9分别带动履带车辆的左、右驱动轮,驱动履带车辆快速向前行走。
作为对上述的控制履带车辆转向的变速传动箱的进一步改进,所述的变速传动箱控制履带车辆快速向左原地转向时,第一转速离合器C1、第三离合器C3、第五离合器C5、第七离合器C7、第八离合器C8均处于接合状态,第二转速离合器C2、第四离合器C4、第六离合器C6均处于断开状态;
该传动箱的第一转速轴S1正转经第一转速离合器C1将动力传送给第三齿轮轴S3,第三齿轮轴S3经第三离合器C3带动第五输出齿轮轴S5,第五输出齿轮轴S5正转经处于接合状态的第五离合器C5带动第七离合器C7主动件,第七离合器C7主动件带动第八输出齿轮轴S8正转,同时因第七离合器C7处于接合状态,第七离合器C7主动件带动第七离合器C7从动件一起正转,与第七离合器C7从动件形成周向传力连接的第八输出齿轮Z8正转 ,第八输出齿轮Z8与第九输出齿轮Z9啮合,由于第九输出齿轮Z9与第八离合器C8从动件在周向传力连接,而且第八离合器C8处于接合状态,所以第九输出齿轮Z9反转经处于接合状态的第八离合器C8从动件、第八离合器C8主动件带动第九输出齿轮轴S9反转,上述第八输出齿轮轴S8正转和第九输出齿轮轴S9反转分别同步带动履带车辆左、右两个驱动轮,右驱动轮正转,左驱动轮反转,实现履带车辆快速向左原地转向。
作为对上述的控制履带车辆转向的变速传动箱的进一步改进,各离合器均为电磁离合器。电磁离合器方便自动化控制,以控制器通过有线或无线方式控制各电磁离合器的动作(接合或断开)属于现有技术,不再说明。
本专利传动箱相较于现有的履带车辆转向机构具有功率传递路线短,功率传递损耗小,零部件少,结构相对简单,制造成本低优点。
第八输出齿轮轴S8、第九输出齿轮轴S9的分别与履带车辆的左、右驱动轮的输入轴连接,实现履带车辆调速前进、后退、左转向或右转向、原地转向,操作方便、灵活、可靠;该传动箱可采用远距离无线遥控或卫星定位,实现自动控制。
当履带车辆初始状态静止,转向操作时能够实现原地转向;当履带车辆初始状态前进,转向操作时能够实现前进时转向;当履带车辆初始状态后退,转向操作时能够实现后退时转向。
本专利实现履带车辆前进或后退时转向或者原地转向时不是以二条履带中的一条上的驱动轮中心点为旋转中心进行旋转,而是以履带车辆的两条平行履带的两个驱动轮中心点为旋转中心进行旋转,因此,转向时两条平行履带接地点不易壅土、对土壤剪切力减少,功率损耗大幅下降。
附图说明
图1是实施例1的控制履带车辆转向的变速传动箱的结构示意图。
图2是实施例2的控制履带车辆转向的变速传动箱的结构示意图。
图3是实施例3的结构示意图(快速前进时)。
图4是实施例3的结构示意图(快速后退时)。
图5是实施例3的结构示意图(快速前进时左转或者原地左转)。
图6是实施例3的结构示意图(快速前进时右转或者原地右转)。
图7是实施例3的结构示意图(快速后退时左转或者原地左转)。
图8是实施例3的结构示意图(快速后退时右转或者原地右转)。
图9是实施例3的结构示意图(慢速前进时)。
图10是实施例3的结构示意图(慢速后退时)。
图11是实施例3的结构示意图(慢速前进时左转或者原地左转)。
图12是实施例3的结构示意图(慢速前进时右转或者原地右转)。
图13是实施例3的结构示意图(慢速后退时左转或者原地左转)。
图14是实施例3的结构示意图(慢速后退时右转或者原地右转)。
具体实施方式
以下结合说明书附图和具体实施例对本专利作进一步详细说明。
实施例1:
参见图1所示的控制履带车辆转向的变速传动箱,包括第五输出齿轮轴S5、第六输出齿轮轴S6、第七过渡齿轮轴S7、第五电磁离合器C5、第六电磁离合器C6、第五输出齿轮Z5、第六输出齿轮Z6、第七同步齿轮Z7、第八输出齿轮轴S8、第九输出齿轮轴S9、第七电磁离合器C7、第八电磁离合器C8、第八输出齿轮Z8、第九输出齿轮Z9。
第五输出齿轮Z5、第六输出齿轮Z6分别与第五输出齿轮轴S5、第六输出齿轮轴S6在周向传力连接(如采用花键连接);第七过渡齿轮轴S7在周向上传力连接有第七同步齿轮Z7,第七同步齿轮Z7分别与第五 输出齿轮Z5、第六输出齿轮Z6处于啮合状态,第五输出齿轮轴S5的另一端、第六输出齿轮轴S6的另一端分别与第五电磁离合器C5主动件、第六电磁离合器C6主动件在周向传力连接。
第五电磁离合器C5从动件、第六电磁离合器C6从动件分别与第七电磁离合器C7主动件、第八电磁离合器C8主动件在周向传力连接,第七电磁离合器C7主动件、第八电磁离合器C8主动件分别与第八输出齿轮轴S8、第九输出齿轮轴S9的一端在周向传力连接,第八输出齿轮Z8、第九输出齿轮Z9分别与第七电磁离合器C7从动件、第八电磁离合器C8从动件在周向传力连接,第八输出齿轮Z8与第九输出齿轮Z9之间处于啮合状态,第八输出齿轮轴S8、第九输出齿轮轴S9的另一端分别与履带车辆左右驱动轮连接。
第五输出齿轮轴S5或者第六输出齿轮轴S6作为动力输入轴均可以,现以第五输出齿轮轴S5作为动力输入轴与动力装置的动力输出轴相连为例进行说明。
当第五电磁离合器C5、第六电磁离合器C6均处于接合状态,第七电磁离合器C7、第八电磁离合器C8均处于断开状态时,实现履带车辆直行;此时,其右驱动轮的动力传递路线为:动力输出轴(正转)、第五输出齿轮轴S5(正转)、第五电磁离合器C5、第七电磁离合器C7主动件、第八输出齿轮轴S8、右驱动轮(正转);左驱动轮的动力传递路线为:动力输出轴(正转)、第五输出齿轮轴S5(正转)、第七同步齿轮Z7(反转)、第六输出齿轮Z6(正转)、第六电磁离合器C6、第八电磁离合器C8主动件、第九输出齿轮轴S9、左驱动轮(正转)。因左右驱动轮同时正转,电控履带车辆直行。
履带车辆直行过程中,当第五电磁离合器C5、第七电磁离合器C7、第八电磁离合器C8均处于接合状态,第六电磁离合器C6处于断开状态时,实现履带车辆直行时左转;当然,履带车辆初始状态静止,当第五电磁离合器C5、第七电磁离合器C7、第八电磁离合器C8均处于接合状态,第六电磁离合器C6处于断开状态时,实现履带车辆原地左转。此时,其右驱动轮的动力传递路线为:动力输出轴(正转)、第五输出齿轮轴S5(正转)、第五电磁离合器C5、第七电磁离合器C7主动件、第八输出齿轮轴S8、右驱动轮(正转);左驱动轮的动力传递路线为:动力输出轴(正转)、第五输出齿轮轴S5(正转)、第五电磁离合器C5、第七电磁离合器C7(正转)、第八输出齿轮Z8(正转)、第九输出齿轮Z9(反转)、第八电磁离合器C8(反转)、第九输出齿轮轴S9、左驱动轮(反转)。因右驱动轮正转、左驱动轮反转,电控履带车辆实现直行时左转或者原地左转。是直行时左转还是原地左转,与履带车辆在转向前的状态有关,转向前静止,转向时就是原地转向,转向前直行,转向时就是直行过程中转向。
履带车辆直行过程中,当第六电磁离合器C6、第七电磁离合器C7、第八电磁离合器C8均处于接合状态,第五电磁离合器C5处于断开状态时,实现履带车辆直行时右转。当然,履带车辆初始状态静止,第六电磁离合器C6、第七电磁离合器C7、第八电磁离合器C8均处于接合状态,第五电磁离合器C5处于断开状态时,实现履带车辆原地右转。此时,其左驱动轮的动力传递路线为:动力输出轴(正转)、第五输出齿轮轴S5(正转)、第七同步齿轮Z7(反转)、第六输出齿轮Z6(正转)、第六电磁离合器C6、第八电磁离合器C8、第九输出齿轮轴S9(正转)、左驱动轮;右驱动轮的动力传递路线为:动力输出轴(正转)、第五输出齿轮轴S5(正转)、第七同步齿轮Z7(反转)、第六输出齿轮Z6(正转)、第六电磁离合器C6、第八电磁离合器C8(正转)、第九输出齿轮Z9(正转)、第八输出齿轮Z8(反转)、第七电磁离合器C7(反转)、第八输出齿轮轴S8、右驱动轮(反转)。因右驱动轮反转、左驱动轮正转,电控履带车辆实现直行时右转或者原地右转。是直行时右转还是原地右转,与履带车辆在转向前的状态有关,转向前静止,转向时就是原地转向,转向前直行,转向时就是直行过程中转向。
本传动箱采用四个电磁离合器的接合或分离,将由一个固定不变旋转方向的动力输出轴经电磁离合器转换成左右两个相同转向或相反转向的第八输出齿轮轴S8和第九输出齿轮轴S9驱动履带车辆的左、右驱动轮,实现履带车辆调速直行、直行时转向、原地转向,操作方便、灵活、可靠;该传动箱可采用远距离无线遥控或卫星定位,实现自动控制。该变速传动箱具有功率传递路线短,功率传递损耗小,零部件少,结构相对简单,制造成本低优点。
本专利实现履带车辆直行时转向或原地转向时不是以二条履带中的一条上的驱动轮中心点为旋转中心进行旋转,而是以履带车辆的两条平行履带的两个驱动轮之间的中心点为旋转中心进行旋转,因此,转向时两条平行履带接地点不易壅土、对土壤剪切力减少,功率损耗大幅下降。
实施例2:
参见图2所示的控制履带车辆转向的变速传动箱,相对于实施例1,本实施例2是在实施例1的基础上增加了第三齿轮轴S3、第四齿轮轴S4、第三电磁离合器C3、第四电磁离合器C4、第三齿轮Z3、第四齿轮Z4。
与实施例1相同的内容不再说明,下面重点说明与实施例1不同的内容。
本实施例2中,第三齿轮Z3与第四齿轮Z4处于啮合状态,第三齿轮Z3、第四齿轮Z4分别与第三齿轮轴S3、第四齿轮轴S4在周向传力连接(如采用花键连接),第三齿轮轴S3的另一端与第三电磁离合器C3主动件在周向传力连接,第三电磁离合器C3从动件与第五输出齿轮轴S5在周向传力连接,第四电磁离合器C4从动件与第六输出齿轮轴S6在周向传力连接。
本实施例2中,第三齿轮轴S3或者第四齿轮轴S4作为动力输入轴(实施例1中,第五输出齿轮轴S5或者第六输出齿轮轴S6作为动力输入轴)。现以第三齿轮轴S3作为动力输入轴与动力装置的动力输出轴相连为例进行说明。
当第三电磁离合器C3、第五电磁离合器C5、第六电磁离合器C6均处于接合状态,第四电磁离合器C4、第七电磁离合器C7、第八电磁离合器C8均处于断开状态时,实现履带车辆前进;此时,其右驱动轮的动力传递路线为:动力输出轴(正转)、第三齿轮轴S3、第三电磁离合器C3(正转)、第五输出齿轮轴S5(正转)、第五电磁离合器C5、第七电磁离合器C7主动件、第八输出齿轮轴S8、右驱动轮(正转);左驱动轮的动力传递路线为:动力输出轴(正转)、第三齿轮轴S3、第三电磁离合器C3(正转)、第五输出齿轮轴S5(正转)、第七同步齿轮Z7(反转)、第六输出齿轮Z6(正转)、第六电磁离合器C6、第八电磁离合器C8主动件、第九输出齿轮轴S9、左驱动轮(正转)。因左右驱动轮同时正转,电控履带车辆前进。
履带车辆前进过程中,当第三电磁离合器C3、第五电磁离合器C5、第七电磁离合器C7、第八电磁离合器C8均处于接合状态,第四电磁离合器C4、第六电磁离合器C6处于断开状态时,实现履带车辆前进时左转;当然,履带车辆初始状态静止,当第三电磁离合器C3、第五电磁离合器C5、第七电磁离合器C7、第八电磁离合器C8均处于接合状态,第四电磁离合器C4、第六电磁离合器C6处于断开状态时,实现履带车辆原地左转。此时,其右驱动轮的动力传递路线为:动力输出轴(正转)、第三齿轮轴S3、第三电磁离合器C3(正转)、第五输出齿轮轴S5(正转)、第五电磁离合器C5、第七电磁离合器C7主动件、第八输出齿轮轴S8、右驱动轮(正转);左驱动轮的动力传递路线为:动力输出轴(正转)、第三齿轮轴S3、第三电磁离合器C3(正转)、第五输出齿轮轴S5(正转)、第五电磁离合器C5、第七电磁离合器C7(正转)、第八输出齿轮Z8(正转)、第九输出齿轮Z9(反转)、第八电磁离合器C8(反转)、第九输出齿轮轴S9、左驱动轮(反转)。因右驱动轮正转、左驱动轮反转,电控履带车辆实现前进时左转或者原地左转。是前进时左转还是原地左转,与履带车辆在转向前的状态有关,左转向前静止,左转向时就是原地左转,左转向前前进,左转向时就是前进过程中左转。
履带车辆前进过程中,当第三电磁离合器C3、第六电磁离合器C6、第七电磁离合器C7、第八电磁离合器C8均处于接合状态,第四电磁离合器C4、第五电磁离合器C5处于断开状态时,实现履带车辆前进时右转。当然,履带车辆初始状态静止,当第三电磁离合器C3、第六电磁离合器C6、第七电磁离合器C7、第八电磁离合器C8均处于接合状态,第四电磁离合器C4、第五电磁离合器C5处于断开状态时,实现履带车辆原地右转。此时,其左驱动轮的动力传递路线为:动力输出轴(正转)、第三齿轮轴S3、第三电磁离合器C3(正转)、第五输出齿轮轴S5(正转)、第七同步齿轮Z7(反转)、第六输出齿轮Z6(正转)、第六电磁离合器C6、第八电磁离合器C8、第九输出齿轮轴S9(正转)、左驱动轮;右驱动轮的动力传递路线为:动力输出轴(正转)、第三齿轮轴S3、第三电磁离合器C3(正转)、第五输出齿轮轴S5(正转)、第七同步齿轮Z7(反转)、第六输出齿轮Z6(正转)、第六电磁离合器C6、第八电磁离合器C8(正转)、第 九输出齿轮Z9(正转)、第八输出齿轮Z8(反转)、第七电磁离合器C7(反转)、第八输出齿轮轴S8、右驱动轮(反转)。因右驱动轮反转、左驱动轮正转,电控履带车辆实现前进时右转或者原地右转。是前进时右转还是原地右转,与履带车辆在转向前的状态有关,右转向前静止,右转向时就是原地右转,右转向前前进,右转向时就是前进过程中右转。
当第四电磁离合器C4、第五电磁离合器C5、第六电磁离合器C6均处于接合状态,第三电磁离合器C3、第七电磁离合器C7、第八电磁离合器C8均处于断开状态时,实现履带车辆后退;此时,其右驱动轮的动力传递路线为:动力输出轴(正转)、第三齿轮轴S3、第三齿轮Z3、第四齿轮Z4(反转)、第四齿轮轴S4、第四电磁离合器C4(反转)、第六输出齿轮轴S6(反转)、第六输出齿轮Z6、第七同步齿轮Z7(正转)、第五输出齿轮Z5(反转)、第五输出齿轮轴S5(反转)、第五电磁离合器C5、第七电磁离合器C7主动件、第八输出齿轮轴S8、右驱动轮(反转);左驱动轮的动力传递路线为:动力输出轴(正转)、第三齿轮轴S3、第三齿轮Z3、第四齿轮Z4(反转)、第四齿轮轴S4、第四电磁离合器C4(反转)、第六输出齿轮轴S6(反转)、第六电磁离合器C6、第八电磁离合器C8主动件、第九输出齿轮轴S9、左驱动轮(反转)。因左右驱动轮同时反转,电控履带车辆后退。
履带车辆后退过程中,当第四电磁离合器C4、第五电磁离合器C5、第七电磁离合器C7、第八电磁离合器C8均处于接合状态,第三电磁离合器C3、第六电磁离合器C6处于断开状态时,实现履带车辆后退时左转;当然,履带车辆初始状态静止,实现履带车辆原地左转。此时,右驱动轮的动力传递路线为:第三齿轮轴S3、第三齿轮Z3、第四齿轮Z4(反转)、第四齿轮轴S4、第四电磁离合器C4(反转)、第六输出齿轮轴S6(反转)、第六输出齿轮Z6、第七同步齿轮Z7(正转)、第五输出齿轮Z5(反转)、第五输出齿轮轴S5(反转)、第五电磁离合器C5、第七电磁离合器C7主动件、第八输出齿轮轴S8、右驱动轮(反转);左驱动轮的动力传递路线为:动力输出轴(正转)、第三齿轮轴S3、第三齿轮Z3、第四齿轮Z4(反转)、第四齿轮轴S4、第四电磁离合器C4(反转)、第六输出齿轮轴S6(反转)、第六输出齿轮Z6、第七同步齿轮Z7(正转)、第五输出齿轮Z5(反转)、第五输出齿轮轴S5(反转)、第五电磁离合器C5、第七电磁离合器C7、第八输出齿轮Z8(反转)、第九输出齿轮Z9(正转)、第八电磁离合器C8(正转)、第九输出齿轮轴S9、左驱动轮(正转)。因右驱动轮反转、左驱动轮正转,电控履带车辆实现后退时左转或者原地左转。是后退时左转还是原地左转,与履带车辆在转向前的状态有关,左转向前静止,左转向时就是原地左转,左转向前后退,左转向时就是后退过程中左转。
履带车辆后退过程中,当第四电磁离合器C4、第六电磁离合器C6、第七电磁离合器C7、第八电磁离合器C8均处于接合状态,第三电磁离合器C3、第五电磁离合器C5处于断开状态时,实现履带车辆后退时右转。当然,履带车辆初始状态静止,实现履带车辆原地右转。此时,其左驱动轮的动力传递路线为:动力输出轴(正转)、第三齿轮轴S3、第三齿轮Z3、第四齿轮Z4(反转)、第四齿轮轴S4、第四电磁离合器C4(反转)、第六输出齿轮轴S6(反转)、第六电磁离合器C6、第八电磁离合器C8、第九输出齿轮轴S9(反转)、左驱动轮(反转);右驱动轮的动力传递路线为:动力输出轴(正转)、第三齿轮轴S3、第三齿轮Z3、第四齿轮Z4(反转)、第四齿轮轴S4、第四电磁离合器C4(反转)、第六输出齿轮轴S6(反转)、第六电磁离合器C6、第八电磁离合器C8、第九输出齿轮Z9(反转)、第八输出齿轮Z8(正转)、第七电磁离合器C7(正转)、第八输出齿轮轴S8、右驱动轮(正转)。因右驱动轮正转、左驱动轮反转,电控履带车辆实现后退时右转或者原地右转。是后退时右转还是原地右转,与履带车辆在转向前的状态有关,右转向前静止,右转向时就是原地右转,右转向前后退,右转向时就是后退过程中右转。
如果第四齿轮轴S4作为动力输入轴与动力装置的动力输出轴相连,其与以第三齿轮轴S3作为动力输入轴时的主要的不同在于:履带车辆直行的方向相反。也就是说,如果第三齿轮轴S3作为动力输入轴时履带车辆是前进,则第四齿轮轴S4作为动力输入轴时履带车辆是后退;如果第三齿轮轴S3作为动力输入轴时履带车辆是后退,则第四齿轮轴S4作为动力输入轴时履带车辆是前进。其它过程类似,不再一一说明。
本实施例2在实施例1的基础上实现了电控履带车辆的前进和后退,可以在前进时转向、后退时转向、原地转向,控制更加方便灵活。
以控制器通过有线或无线方式控制各电磁离合器的动作(接合或断开)属于现有技术,不再说明,这样即可实现履带车辆的电控。
实施例3:
参见图3-14所示的控制履带车辆转向的变速传动箱,相对于实施例2,本实施例3是在实施例2的基础上增加了第一转速轴S1、第二转速轴S2、第一转速电磁离合器C1、第二转速电磁离合器C2、第一转速齿轮Z1、第二转速齿轮Z2、两个外齿轮Z10、Z11构成的齿轮传动机构。
与实施例2相同的内容不再说明,下面重点说明与实施例2不同的内容。
本实施例3中,第一转速齿轮Z1、第二转速齿轮Z2分别与第一转速轴S1第二转速轴S2在周向传力连接(如花键连接),第一转速轴S1一端与第一转速电磁离合器C1主动件在周向传力连接;第一转速离合器C1从动件与第三齿轮轴S3一端在周向传力连接;第一转速齿轮Z1与第二转速齿轮Z2通过齿轮传动机构相啮合(第一转速齿轮Z1、外齿轮Z10、外齿轮Z11、第二转速齿轮Z2依次啮合),第一转速齿轮Z1与第二转速齿轮Z2的转速比为2。第二转速轴S2一端与第二转速电磁离合器C2主动件在周向传力连接,第二转速电磁离合器C2从动件和第四电磁离合器C4主动件均与第四齿轮轴S4在周向传力连接;第一转速轴S1或者第二转速轴S2用于与动力装置的动力输出轴连接。
将本实施例3的控制履带车辆转向的变速传动箱装在履带车辆上,履带车辆的动力装置的输出轴与传动箱1的第一转速轴S1连接,动力装置为内燃机,履带车辆起动时,该传动箱的第一转速轴S1正转带动第一转速齿轮Z1正转,第一转速齿轮Z1带动第二转速齿轮Z2反转,根据第一转速电磁离合器C1、第二转速电磁离合器C2、第三电磁离合器C3、第四电磁离合器C4、第五电磁离合器C5、第六电磁离合器C6、第七电磁离合器C7、第八电磁离合器C8处于分离或接合状态,实现对履带车辆慢速或快速前进、慢速或快速前进中转向、慢速或快速后退、慢速或快速后退中转向、慢速或快速原地左转、慢速或快速原地右转,其具体如下:
(1).当该传动箱中的第一转速电磁离合器C1处于断开状态,第二转速电磁离合器C2处于接合状态,则能够控制履带车辆快速前进、后退、原地左转向、原地右转向,其具体过程如下:
(1-1).如果采用本实施例3的一种电控履带车辆原地转向的变速传动箱控制履带车辆快速向前行走时,参见图3,
则第一转速电磁离合器C1、第三电磁离合器C3、第五电磁离合器C5、第六电磁离合器C6均处于接合状态,第二转速电磁离合器C2、第四电磁离合器C4、第七电磁离合器C7、第八电磁离合器C8均处于断开状态;
该传动箱的第一转速轴S1正转经第一转速电磁离合器C1将动力传送给第三齿轮轴S3,第三齿轮轴S3正转经第三电磁离合器C3带动第五输出齿轮轴S5,第五输出齿轮轴S5带动第五输出齿轮Z5正转,与此同时,第五输出齿轮Z5正转经第七同步齿轮Z7带第六输出齿轮Z6正转,第六输出齿轮Z6带动第六输出齿轮轴S6正转,第五输出齿轮轴S5、第六输出齿轮轴S6正转分别经处于接合状态的第五电磁离合器C5、处于接合状态的第六电磁离合器C6带动第七电磁离合器C7主动件、第八电磁离合器C8主动件,由于第七电磁离合器C7、第八电磁离合器C8处于断开状态,第七电磁离合器C7主动件、第八电磁离合器C8主动件分别带动第八输出齿轮轴S8、第九输出齿轮轴S9正转,第八输出齿轮轴S8、第九输出齿轮轴S9分别带动履带车辆的左驱动轮L、右驱动轮R,左、右驱动轮驱动履带车辆快速向前行走(前进);
(1-2).如果采用本实施例3的控制履带车辆转向的变速传动箱控制履带车辆快速向后行走时,参见图4,则第一转速电磁离合器C1、第四电磁离合器C4、第五电磁离合器C5、第六电磁离合器C6均处于接合状态,第二转速电磁离合器C2、第三电磁离合器C3、第七电磁离合器C7、第八电磁离合器C8均处于断开状态,
该传动箱的第一转速轴S1正转经第一转速电磁离合器C1将动力传送给第三齿轮轴S3,第三齿轮轴S3正转,第三齿轮Z3与第四齿轮Z4啮合,并带动第四齿轮Z4,第四齿轮Z4反转带动第四齿轮轴S4反转,第四齿轮轴S4反转经第四电磁离合器C4带动第六输出齿轮轴S6,第六输出齿轮轴S6带动第六输出齿轮Z6反转,第六输出齿轮Z6反转经第七同步齿轮Z7传送给第五输出齿轮Z5反转,第五输出齿轮Z5带动第五输出齿轮轴S5反转,与此同时,第五输出齿轮轴S5、第六输出齿轮轴S6反转分别经处于接合状态的第五电磁离合器C5、处于接合状态的第六电磁离合器C6带动第七电磁离合器C7主动件、第八电磁离合器C8主动件,由于第七电磁离合器C7、第八电磁离合器C8处于断开状态,第七电磁离合器C7主动件、第八电磁离合器C8主动件分别带动第八输出齿轮轴S8、第九输出齿轮轴S9反转,第八输出齿轮轴S8、第九输出齿轮轴S9分别带动左驱动轮L、右驱动轮R,驱动履带车辆快速向后行走(后退);
(1-3).如果采用本专利的控制履带车辆转向的变速传动箱控制履带车辆在向前行走中快速向左转向时或者控制履带车辆在静止时快速向左原地转向时,参见图5,则第一转速电磁离合器C1、第三电磁离合器C3、第五电磁离合器C5、第七电磁离合器C7、第八电磁离合器C8均处于接合状态,第二转速电磁离合器C2、第四电磁离合器C4、第六电磁离合器C6均处于断开状态。
该传动箱的第一转速轴S1正转经第一转速电磁离合器C1将动力传送给第三齿轮轴S3,第三齿轮轴S3经第三电磁离合器C3带动第五输出齿轮轴S5,由于第六电磁离合器C6处于断开状态,第五输出齿轮轴S5正转经处于接合状态的第五电磁离合器C5主动件、第五电磁离合器C5从动件带动第七电磁离合器C7主动件,第七电磁离合器C7主动件带动第八输出齿轮轴S8正转,因第七电磁离合器C7处于接合状态,第七电磁离合器C7主动件带动第七电磁离合器C7从动件一起转动,固定在第七电磁离合器C7从动件上的第八输出齿轮Z8正转,第八输出齿轮Z8与第九输出齿轮Z9啮合,并带动第九输出齿轮Z9反转,由于第九输出齿轮Z9固定在第八电磁离合器C8从动件上,而且第八电磁离合器C8处于接合状态,所以第九输出齿轮Z9反转经第八电磁离合器C8从动件、第八电磁离合器C8主动件带动第九输出齿轮轴S9反转,上述第八输出齿轮轴S8正转和第九输出齿轮轴S9反转分别同步带动履带车辆右驱动轮、左驱动轮,右驱动轮正转,左驱动轮反转,则实现履带车辆快速向左转向,如图5所示。是快速前进时左转还是快速原地左转,与履带车辆在转向前的状态有关,左转向前静止,左转向时就是快速原地左转,左转向前快速前进,左转向时就是快速前进过程中左转。
(1-4).如果采用本专利的控制履带车辆转向的变速传动箱控制履带车辆在向前行走中快速向右转向时或者控制履带车辆在静止时快速向右原地转向时,参见图6,则第一转速电磁离合器C1、第三电磁离合器C3、第六电磁离合器C6、第七电磁离合器C7、第八电磁离合器C8均处于接合状态,第二转速电磁离合器C2、第四电磁离合器C4、第五电磁离合器C5均处于断开状态。
该传动箱的第一转速轴S1正转,传动箱的第一转速轴S1正转经第一转速电磁离合器C1将动力传送给第三齿轮轴S3,动力经第三齿轮轴S3(正转)、第三电磁离合器C3(正转)、第五输出齿轮轴S5(正转)、第七同步齿轮Z7(反转)、第六输出齿轮Z6(正转)、第六电磁离合器C6、第八电磁离合器C8、第九输出齿轮轴S9(正转)传递给左驱动轮,左驱动轮正转;与此同时,第八电磁离合器C8处于接合状态,第八电磁离合器C8主动件带动第八电磁离合器C8从动件一起转动,固定在第八电磁离合器C8从动件上的第九输出齿轮Z9正转,第九输出齿轮Z9与第八输出齿轮Z8啮合,并带动第八输出齿轮Z8反转,第八输出齿轮Z8经处于接合状态的第七电磁离合器C7从动件、第七电磁离合器C7主动件带动第八输出齿轮轴S8反转,上述第八输出齿轮轴S8反转和第九输出齿轮轴S9正转分别同步传送给履带,履带车辆左驱动轮、右驱动轮,左驱动轮正转,右驱动轮反转,实现履带车辆向右转转向,如图6所示。是快速前进时右转还是快速原地右转,与履带车辆在转向前的状态有关,右转向前静止,右转向时就是快速原地右转,右转向前快速前进,右转向时就是快速前进过程中右转。
(1-5).如果采用本专利的控制履带车辆转向的变速传动箱控制履带车辆在向后行走中快速向左转向时或者控制履带车辆在静止时快速向左原地转向时,参见图7,则第一转速电磁离合器C1、第四电磁离合器C4、 第五电磁离合器C5、第七电磁离合器C7、第八电磁离合器C8均处于接合状态,第二转速电磁离合器C2、第三电磁离合器C3、第六电磁离合器C6均处于断开状态。
右驱动轮的动力传递路线为:动力输出轴(正转)、第一转速轴S1、第一转速电磁离合器C1、第三齿轮轴S3、第三齿轮Z3、第四齿轮Z4(反转)、第四齿轮轴S4、第四电磁离合器C4(反转)、第六输出齿轮轴S6(反转)、第六输出齿轮Z6、第七同步齿轮Z7(正转)、第五输出齿轮Z5(反转)、第五输出齿轮轴S5(反转)、第五电磁离合器C5、第七电磁离合器C7主动件、第八输出齿轮轴S8、右驱动轮(反转);左驱动轮的动力传递路线为:动力输出轴(正转)、第一转速轴S1、第一转速电磁离合器C1、第三齿轮轴S3、第三齿轮Z3、第四齿轮Z4(反转)、第四齿轮轴S4、第四电磁离合器C4(反转)、第六输出齿轮轴S6(反转)、第六输出齿轮Z6、第七同步齿轮Z7(正转)、第五输出齿轮Z5(反转)、第五输出齿轮轴S5(反转)、第五电磁离合器C5、第七电磁离合器C7、第八输出齿轮Z8(反转)、第九输出齿轮Z9(正转)、第八电磁离合器C8(正转)、第九输出齿轮轴S9、左驱动轮(正转)。因右驱动轮反转、左驱动轮正转,电控履带车辆实现后退时原地左转,如图7所示。是快速后退时左转还是快速原地左转,与履带车辆在转向前的状态有关,左转向前静止,左转向时就是快速原地左转,左转向前快速后退,左转向时就是快速后退过程中左转。
(1-6).如果采用本专利的控制履带车辆转向的变速传动箱控制履带车辆在向后行走中快速向右转向时或者控制履带车辆在静止时快速向右原地转向时,参见图8,则第一转速电磁离合器C1、第四电磁离合器C4、第六电磁离合器C6、第七电磁离合器C7、第八电磁离合器C8均处于接合状态,第二转速电磁离合器C2、第三电磁离合器C3、第五电磁离合器C5均处于断开状态。
其左驱动轮的动力传递路线为:动力输出轴(正转)、第一转速轴S1、第一转速电磁离合器C1、第三齿轮轴S3、第三齿轮Z3、第四齿轮Z4(反转)、第四齿轮轴S4、第四电磁离合器C4(反转)、第六输出齿轮轴S6(反转)、第六电磁离合器C6、第八电磁离合器C8、第九输出齿轮轴S9(反转)、左驱动轮(反转);右驱动轮的动力传递路线为:动力输出轴(正转)、第三齿轮轴S3、第三齿轮Z3、第四齿轮Z4(反转)、第四齿轮轴S4、第四电磁离合器C4(反转)、第六输出齿轮轴S6(反转)、第六电磁离合器C6、第八电磁离合器C8、第九输出齿轮Z9(反转)、第八输出齿轮Z8(正转)、第七电磁离合器C7(正转)、第八输出齿轮轴S8、右驱动轮(正转)。第八输出齿轮轴S8正转和第九输出齿轮轴S9反转分别同步传送给履带车辆右驱动轮正转,左驱动轮反转,实现履带车辆后退时向右转向,如图8所示。是快速后退时右转还是快速原地右转,与履带车辆在转向前的状态有关,右转向前静止,右转向时就是快速原地右转,右转向前快速后退,右转向时就是快速后退过程中右转。
(2).当该传动箱中的第一转速电磁离合器C1处于断开状态,第二转速电磁离合器C2处于接合状态,则能够控制履带车辆慢速前进(参见图9)、慢速后退(参见图10)、慢速前进时左转向或者原地左转向(参见图11)、慢速前进时右转向或者原地右转向(参见图12)、慢速后退时左转向或者原地左转向(参见图13)、慢速后退时右转向或者原地右转向(参见图14)。
该种情形与本实施例3中第(1)部分的内容主要区别在于:动力传递给第三齿轮轴S3或第四齿轮轴S4的路径不同。
具体地说,履带车辆在慢速前进、慢速前进时左转向、慢速原地左转向、慢速前进时右转向、慢速原地右转向时,动力是经动力输出轴(正转)、第一转速轴S1、第一转速齿轮Z1、外齿轮10(反转)、外齿轮11(正转)、第二转速齿轮Z2(反转)、第二转速轴S2(反转)、第二转速电磁离合器C2、第四齿轮轴S4、第四齿轮Z4、第三齿轮Z3(正转)带动第三齿轮轴S3转动(正转)。而在本实施例3中第(1)部分中,履带车辆在快速前进、快速前进时左转向、快速原地左转向、快速前进时右转向、快速原地右转向时,动力是动力输出轴(正转)、第一转速轴S1、第一转速电磁离合器C1带动第三齿轮轴S3转动(正转)。
履带车辆在慢速后退、慢速后退时左转向、慢速原地左转向、慢速后退时右转向、慢速原地右转向时,动力是经动力输出轴(正转)、第一转速轴S1、第一转速齿轮Z1、外齿轮10(反转)、外齿轮11(正转)、 第二转速齿轮Z2(反转)、第二转速轴S2(反转)、第二转速电磁离合器C2带动第四齿轮轴S4转动(反转)。而在本实施例3中第(1)部分中,履带车辆在快速后退、快速后退时左转向、快速原地左转向、快速后退时右转向、快速原地右转向时,动力是动力输出轴(正转)、第一转速轴S1、第一转速电磁离合器C1、第三齿轮轴S3、第三齿轮Z3、第四齿轮Z4(反转)带动第四齿轮轴S4转动(反转)。
其它内容与本实施例3中第(1)部分的内容基本相同,不再赘述。

Claims (5)

  1. 控制履带车辆转向的变速传动箱,该传动箱包括第五输出齿轮轴(S5)、第六输出齿轮轴(S6)、第七过渡齿轮轴(S7)、第五离合器(C5)、第六离合器(C6)、第五输出齿轮(Z5)、第六输出齿轮(Z6)、第七同步齿轮(Z7);第五输出齿轮(Z5)、第六输出齿轮(Z6)分别与第五输出齿轮轴(S5)、第六输出齿轮轴(S6)在周向传力连接;第七过渡齿轮轴(S7)在周向上传力连接有第七同步齿轮(Z7),第七同步齿轮(Z7)分别与第五输出齿轮(Z5)、第六输出齿轮(Z6)处于啮合状态,第五输出齿轮轴(S5)的另一端、第六输出齿轮轴(S6)的另一端分别与第五离合器(C5)主动件、第六离合器(C6)主动件在周向传力连接,第五输出齿轮轴(S5)或第六输出齿轮轴(S6)用于与动力装置的动力输出轴连接,其特征在于,上述传动箱还包括
    第八输出齿轮轴(S8)、第九输出齿轮轴(S9)、第七离合器(C7)、第八离合器(C8)、第八输出齿轮(Z8)、第九输出齿轮(Z9),上述第五离合器(C5)从动件、第六离合器(C6)从动件分别与第七离合器(C7)主动件、第八离合器(C8)主动件在周向传力连接,第七离合器(C7)主动件、第八离合器(C8)主动件分别与第八输出齿轮轴(S8)、第九输出齿轮轴(S9)的一端在周向传力连接,第八输出齿轮(Z8)、第九输出齿轮(Z9)分别与第七离合器(C7)从动件、第八离合器(C8)从动件在周向传力连接,第八输出齿轮(Z8)与第九输出齿轮(Z9)之间处于啮合状态,第八输出齿轮轴(S8)、第九输出齿轮轴(S9)的另一端分别与履带车辆左右驱动轮连接;
    当第五离合器(C5)、第六离合器(C6)均处于接合状态,第七离合器(C7)、第八离合器(C8)均处于断开状态时,实现履带车辆直行;当第五离合器(C5)、第七离合器(C7)、第八离合器(C8)均处于接合状态,第六离合器(C6)处于断开状态时,实现履带车辆左转;当第六离合器(C6)、第七离合器(C7)、第八离合器(C8)均处于接合状态,第五离合器(C5)处于断开状态时,实现履带车辆右转。
  2. 根据权利要求1所述的控制履带车辆转向的变速传动箱,其特征在于:它还包括第三齿轮轴(S3)、第四齿轮轴(S4)、第三离合器(C3)、第四离合器(C4)、第三齿轮(Z3)、第四齿轮(Z4);第三齿轮(Z3)与第四齿轮(Z4)处于啮合状态,第三齿轮(Z3)、第四齿轮(Z4)分别与第三齿轮轴(S3)、第四齿轮轴(S4)在周向传力连接,第三齿轮轴(S3)的另一端与第三离合器(C3)主动件在周向传力连接,第三离合器(C3)从动件与第五输出齿轮轴(S5)在周向传力连接,第四离合器(C4)从动件与第六输出齿轮轴(S6)在周向传力连接,第三齿轮轴(S3)或者第四齿轮轴(S4)用于与动力装置的动力输出轴连接;
    当第三离合器(C3)、第五离合器(C5)、第六离合器(C6)均处于接合状态,第四离合器(C4)、第七离合器(C7)、第八离合器(C8)均处于断开状态时,实现履带车辆前进;
    履带车辆前进过程中,当第三离合器(C3)、第五离合器(C5)、第七离合器(C7)、第八离合器(C8)均处于接合状态,第四离合器(C4)、第六离合器(C6)处于断开状态时,实现履带车辆前进时左转;
    履带车辆前进过程中,当第三离合器(C3)、第六离合器(C6)、第七离合器(C7)、第八离合器(C8)均处于接合状态,第四离合器(C4)、第五离合器(C5)处于断开状态时,实现履带车辆前进时右转;
    当第四离合器(C4)、第五离合器(C5)、第六离合器(C6)均处于接合状态,第三离合器(C3)、第七离合器(C7)、第八离合器(C8)均处于断开状态时,实现履带车辆后退;
    履带车辆后退过程中,当第四离合器(C4)、第五离合器(C5)、第七离合器(C7)、第八离合器(C8)均处于接合状态,第三离合器(C3)、第六离合器(C6)处于断开状态时,实现履带车辆后退时左转;
    履带车辆后退过程中,当第四离合器(C4)、第六离合器(C6)、第七离合器(C7)、第八离合器(C8)均处于接合状态,第三离合器(C3)、第五离合器(C5)处于断开状态时,实现履带车辆后退时右转。
  3. 根据权利要求2所述的控制履带车辆转向的变速传动箱,其特征在于:它还包括第一转速轴(S1)、第二转速轴(S2)、第一转速离合器(C1)、第二转速离合器(C2)、第一转速齿轮(Z1)、第二转速齿轮(Z2);第一转速齿轮(Z1)、第二转速齿轮(Z2)分别与第一转速轴(S1)第二转速轴(S2)在周向传力连接,第一转速轴(S1)一端与第一转速离合器(C1)主动件在周向传力连接;第一转速离合器(C1)从动件与第三齿轮轴(S3)一端在周向传力连接;第一转速齿轮(Z1)与第二转速齿轮(Z2)处于啮合状态,第二转速轴(S2)一端与第二转速离合器 (C2)主动件在周向传力连接,第二转速离合器(C2)从动件和第四离合器(C4)主动件均与第四齿轮轴(S4)在周向传力连接;第一转速轴(S1)或第二转速轴(S2)用于与动力装置的动力输出轴连接。
  4. 根据权利要求3所述的控制履带车辆转向的变速传动箱,其特征在于:第一转速齿轮(Z1)通过一齿轮传动机构与第二转速齿轮(Z2)相啮合,经过该齿轮传动机构后,第一转速齿轮(Z1)与第二转速齿轮(Z2)的转动方向相反,第一转速齿轮(Z1)与第二转速齿轮(Z2)的转速比大于1;
    当第一转速离合器(C1)、第三离合器(C3)、第五离合器(C5)、第六离合器(C6)均处于接合状态,第二转速离合器(C2)、第四离合器(C4)、第七离合器(C7)、第八离合器(C8)均处于断开状态时,实现履带车辆快速前进;
    履带车辆快速前进过程中,当第一转速离合器(C1)、第三离合器(C3)、第五离合器(C5)、第七离合器(C7)、第八离合器(C8)均处于接合状态,第二转速离合器(C2)、第四离合器(C4)、第六离合器(C6)处于断开状态时,实现履带车辆快速前进时左转;
    履带车辆快速前进过程中,当第一转速离合器(C1)、第三离合器(C3)、第六离合器(C6)、第七离合器(C7)、第八离合器(C8)均处于接合状态,第二转速离合器(C2)、第四离合器(C4)、第五离合器(C5)处于断开状态时,实现履带车辆快速前进时右转;
    当第一转速离合器(C1)、第四离合器(C4)、第五离合器(C5)、第六离合器(C6)均处于接合状态,第二转速离合器(C2)、第三离合器(C3)、第七离合器(C7)、第八离合器(C8)均处于断开状态时,实现履带车辆快速后退;
    履带车辆快速后退过程中,当第一转速离合器(C1)、第四离合器(C4)、第五离合器(C5)、第七离合器(C7)、第八离合器(C8)均处于接合状态,第二转速离合器(C2)、第三离合器(C3)、第六离合器(C6)处于断开状态时,实现履带车辆快速后退时左转;
    履带车辆快速后退过程中,当第一转速离合器(C1)、第四离合器(C4)、第六离合器(C6)、第七离合器(C7)、第八离合器(C8)均处于接合状态,第二转速离合器(C2)、第三离合器(C3)、第五离合器(C5)处于断开状态时,实现履带车辆快速后退时右转;
    当第二转速离合器(C2)、第三离合器(C3)、第五离合器(C5)、第六离合器(C6)均处于接合状态,第一转速离合器(C1)、第四离合器(C4)、第七离合器(C7)、第八离合器(C8)均处于断开状态时,实现履带车辆慢速前进;
    履带车辆慢速前进过程中,当第二转速离合器(C2)、第三离合器(C3)、第五离合器(C5)、第七离合器(C7)、第八离合器(C8)均处于接合状态,第一转速离合器(C1)、第四离合器(C4)、第六离合器(C6)处于断开状态时,实现履带车辆慢速前进时左转;
    履带车辆慢速前进过程中,当第二转速离合器(C2)、第三离合器(C3)、第六离合器(C6)、第七离合器(C7)、第八离合器(C8)均处于接合状态,第一转速离合器(C1)、第四离合器(C4)、第五离合器(C5)处于断开状态时,实现履带车辆慢速前进时右转;
    当第二转速离合器(C2)、第四离合器(C4)、第五离合器(C5)、第六离合器(C6)均处于接合状态,第一转速离合器(C1)、第三离合器(C3)、第七离合器(C7)、第八离合器(C8)均处于断开状态时,实现履带车辆慢速后退;
    履带车辆慢速后退过程中,当第二转速离合器(C2)、第四离合器(C4)、第五离合器(C5)、第七离合器(C7)、第八离合器(C8)均处于接合状态,第一转速离合器(C1)、第三离合器(C3)、第六离合器(C6)处于断开状态时,实现履带车辆慢速后退时左转;
    履带车辆慢速后退过程中,当第二转速离合器(C2)、第四离合器(C4)、第六离合器(C6)、第七离合器(C7)、第八离合器(C8)均处于接合状态,第一转速离合器(C1)、第三离合器(C3)、第五离合器(C5)处于断开状态时,实现履带车辆慢速后退时右转。
  5. 根据权利要求1所述的控制履带车辆转向的变速传动箱,其特征在于:各离合器为电磁离合器。
PCT/CN2021/143437 2020-12-31 2021-12-30 控制履带车辆转向的变速传动箱 WO2022143964A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202023339432.5U CN214274372U (zh) 2020-12-31 2020-12-31 控制履带车辆转向的变速传动箱
CN202023339432.5 2020-12-31
CN202011632122.4A CN112833147B (zh) 2020-12-31 2020-12-31 一种电控履带车辆转向的变速传动箱
CN202011632122.4 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022143964A1 true WO2022143964A1 (zh) 2022-07-07

Family

ID=82259104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143437 WO2022143964A1 (zh) 2020-12-31 2021-12-30 控制履带车辆转向的变速传动箱

Country Status (1)

Country Link
WO (1) WO2022143964A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108757851A (zh) * 2018-07-27 2018-11-06 重庆西玛福科技有限公司 变速器及移动平台
CN108757853A (zh) * 2018-07-27 2018-11-06 重庆西玛福科技有限公司 换向器及移动平台

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004332840A (ja) * 2003-05-08 2004-11-25 Aisin Ai Co Ltd 車両用動力伝達装置
CN105782357A (zh) * 2016-04-15 2016-07-20 南通市广益机电有限责任公司 一种电控车辆行走的变速传动箱
CN205715475U (zh) * 2016-04-15 2016-11-23 南通市广益机电有限责任公司 一种电控车辆行走的变速传动箱
CN209414528U (zh) * 2018-11-12 2019-09-20 宝鸡博通智能装备有限公司 一种履带车用电磁离合器变速箱
CN112833147A (zh) * 2020-12-31 2021-05-25 南通市广益机电有限责任公司 一种电控履带车辆转向的变速传动箱

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004332840A (ja) * 2003-05-08 2004-11-25 Aisin Ai Co Ltd 車両用動力伝達装置
CN105782357A (zh) * 2016-04-15 2016-07-20 南通市广益机电有限责任公司 一种电控车辆行走的变速传动箱
CN205715475U (zh) * 2016-04-15 2016-11-23 南通市广益机电有限责任公司 一种电控车辆行走的变速传动箱
CN209414528U (zh) * 2018-11-12 2019-09-20 宝鸡博通智能装备有限公司 一种履带车用电磁离合器变速箱
CN112833147A (zh) * 2020-12-31 2021-05-25 南通市广益机电有限责任公司 一种电控履带车辆转向的变速传动箱

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108757851A (zh) * 2018-07-27 2018-11-06 重庆西玛福科技有限公司 变速器及移动平台
CN108757853A (zh) * 2018-07-27 2018-11-06 重庆西玛福科技有限公司 换向器及移动平台
CN108757851B (zh) * 2018-07-27 2023-09-22 重庆西玛福科技有限公司 变速器及移动平台
CN108757853B (zh) * 2018-07-27 2023-09-22 重庆西玛福科技有限公司 换向器及移动平台

Similar Documents

Publication Publication Date Title
US9664269B2 (en) Input clutch assembly for infinitely variable transmission
US4471669A (en) Track drive system with dual mode steering
US6761658B1 (en) Four mode hydro-mechanical transmission
US5139465A (en) 2-path hydromechanical transmission system and method of producing the same
WO2022143964A1 (zh) 控制履带车辆转向的变速传动箱
JP2012527584A (ja) 無段変速機
US6478706B1 (en) Planetary steering differential
CA2075724C (en) Vehicle transmission with central differential
US20040220009A1 (en) Transfer case with overdrive/underdrive shifting
CN105782357B (zh) 一种电控车辆行走的变速传动箱
CN105042049A (zh) 一种双动力输入式内置制动装置的履带车辆变速器
CN105247985A (zh) 一种机液混合驱动式原位转向变速箱
CN112833147B (zh) 一种电控履带车辆转向的变速传动箱
CN113915309B (zh) 一种可以实现左右正反转的机械自动无级变速箱
JPS629455B2 (zh)
US4215755A (en) Power transmission mechanisms
CN205179643U (zh) 一种机液混合驱动式原位转向变速箱
CN107264657B (zh) 具有高效动力变速系统的两履带拖拉机及其传动方法
JPH10316057A (ja) クローラ式作業車の走行駆動装置
US7993230B2 (en) Dual path hydromechanical powertrain
CN214274372U (zh) 控制履带车辆转向的变速传动箱
CN211901516U (zh) 一种无级变速器的控制系统
JPH10316008A (ja) クローラ式作業車の走行駆動装置
CN215521844U (zh) 一种可以实现左右正反转的机械变速箱
CN117553108B (zh) 农用机械变速箱及农用机械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914693

Country of ref document: EP

Kind code of ref document: A1