WO2022143871A1 - 定时确定方法、装置、通信节点及存储介质 - Google Patents

定时确定方法、装置、通信节点及存储介质 Download PDF

Info

Publication number
WO2022143871A1
WO2022143871A1 PCT/CN2021/142891 CN2021142891W WO2022143871A1 WO 2022143871 A1 WO2022143871 A1 WO 2022143871A1 CN 2021142891 W CN2021142891 W CN 2021142891W WO 2022143871 A1 WO2022143871 A1 WO 2022143871A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing
target node
dtt
node
delta
Prior art date
Application number
PCT/CN2021/142891
Other languages
English (en)
French (fr)
Inventor
毕峰
邢卫民
卢有雄
苗婷
刘文豪
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US18/260,280 priority Critical patent/US20240064675A1/en
Priority to KR1020237026607A priority patent/KR20230128367A/ko
Publication of WO2022143871A1 publication Critical patent/WO2022143871A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/0065Synchronisation arrangements determining timing error of reception due to propagation delay using measurement of signal travel time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present application relates to wireless communication networks, for example, to a timing determination method, apparatus, communication node and storage medium.
  • the Integrated Access and Backhaul (IAB) technology is an efficient means of network densification.
  • the link between the IAB node and the parent node is called the Backhaul link (BL), the link between the IAB node and the child node (ie the downstream node), or the link between the IAB node and the user equipment
  • the link is called an access link (AL), where the parent node may also be an IAB node, or a donor node (Donor Node, DN), such as a Donor base station (gNodeB, gNB).
  • Donor Node Donor Node
  • gNodeB Donor base station
  • the IAB node has two functions: Integrated Access and Backhaul Mobile Termination (IAB-MT) is used to communicate with the parent node, Integrated Access and Backhaul Distributed Unit (IAB-MT) DU) is used to communicate with downstream nodes.
  • IAB-MT Integrated Access and Backhaul Mobile Termination
  • IAB-MT Integrated Access and Backhaul Distributed Unit
  • the IAB node supports simultaneous transmission and reception.
  • the following multiplexing methods can be used between BL and AL: Time Division Multiplexing (TDM), Frequency Division Multiplexing (FDM) and Spatial Division Multiplexing (Spatial Division Multiplexing) , SDM).
  • the downlink receiving timing (DL Rx Timing, DRT) based on IAB-MT can be forwarded by half of the timing advance (Timing Advance, TA) (denoted as TA/2) to determine the downlink of IAB-DU Transmit Timing (DL Tx Timing, DTT) to maintain DTT alignment between the IAB node and the parent node.
  • Timing Advance, TA Timing Advance
  • UL Rx Timing, URT the alignment between different nodes in practical applications is more complicated, and the transmission timing cannot be simply determined according to TA/2. In the process of sending and receiving at the same time, if the transmission timing is not accurate, the transmission between nodes will interfere with each other, which will affect the transmission efficiency.
  • the present application provides a timing determination method, device, communication node and storage medium, so as to accurately determine the transmission timing of the IAB node and improve transmission efficiency.
  • the embodiment of the present application provides a timing determination method, including:
  • the transmission timing of the target node is determined according to the timing parameter, and the transmission timing includes at least one of the following: the time difference between the first timing and the second timing, DTT, and uplink transmission timing (UL Tx Timing, UTT).
  • the embodiment of the present application also provides a timing determination device, including:
  • the parameter determination module is set to determine the timing parameters
  • the timing determination module is configured to determine the transmission timing of the target node according to the timing parameter, where the transmission timing includes at least one of the following: a time difference between the first timing and the second timing, DTT and UTT.
  • Embodiments of the present application further provide a communication node, including: a memory, a processor, and a computer program stored in the memory and executable on the processor, where the processor implements the above timing determination method when executing the program.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the program is executed by a processor, the above-mentioned timing determination method is implemented.
  • FIG. 1 is a flowchart of a timing determination method provided by an embodiment
  • FIG. 2 is a schematic diagram of URT and DTT time slot-level alignment of a first parent node provided by an embodiment
  • FIG. 3 is a schematic diagram of a slot-level misalignment of the URT of the first parent node ahead of the DTT provided by an embodiment
  • FIG. 4 is a schematic diagram of time slot-level misalignment in which the URT of the first parent node lags behind the DTT according to an embodiment
  • FIG. 5 is a schematic diagram of time slot-level misalignment in which the URT of the first parent node lags behind the DTT provided by another embodiment
  • FIG. 6 is a schematic diagram of UTT and DTT time slot level alignment of a target node provided by an embodiment
  • FIG. 7 is a schematic diagram of UTT and DTT symbol-level alignment of a target node provided by an embodiment
  • FIG. 8 is a schematic diagram of URT and DRT time slot-level alignment of a target node provided by an embodiment
  • FIG. 9 is a schematic diagram of URT and DRT symbol-level alignment of a target node provided by an embodiment
  • FIG. 10 is a schematic diagram of the URT and DRT time slot level alignment of a target node provided by another embodiment
  • FIG. 11 is a schematic diagram of URT and UTT time slot level alignment of a target node provided by an embodiment
  • FIG. 12 is a schematic diagram of UTT and URT time slot-level alignment of a target node provided by an embodiment
  • FIG. 13 is a schematic diagram of time slot-level alignment of UTT and URT of a target node provided by another embodiment
  • FIG. 14 is a schematic diagram of the DTT and DRT time slot-level alignment of a target node provided by an embodiment
  • FIG. 15 is a schematic structural diagram of a timing determination apparatus provided by an embodiment
  • FIG. 16 is a schematic diagram of a hardware structure of a communication node according to an embodiment.
  • the target node generally refers to the IAB node, and may also be other types of nodes that support communication with the upstream node and the downstream node respectively.
  • the upper-level upstream node of the target node is called the first parent node, and the first parent node is, for example, the serving cell of the target node, and the first parent node can be an IAB node or a donor node; the next-level downstream node of the target node Called a child node, the target node can be the serving cell of the child node.
  • the first parent node has an upper-level upstream node
  • the upper-level upstream node of the first parent node is called the second parent node.
  • DTT alignment also known as IAB-DU transmission timing alignment
  • IAB-DU transmission timing alignment In order to maintain network synchronization and reduce mutual interference between nodes at all levels, DTT alignment, also known as IAB-DU transmission timing alignment, needs to be maintained between nodes at all levels.
  • the timing modes between nodes at all levels are mainly divided into the following types:
  • the first timing mode the DTT of the target node is aligned to the DTT of the first parent node;
  • Second timing mode the DTT of the target node is aligned to the DTT of the first parent node, and the UTT of the target node is aligned to the DTT of the target node;
  • the third timing mode the DTT of the target node is aligned with the DTT of the first parent node, and the uplink reception timing (UL Rx Timing, URT) of the target node is aligned with the DRT of the target node;
  • the DTT of the target node is aligned to the DTT of the first parent node, and the URT of the target node is aligned to the UTT of the target node;
  • the DTT of the target node is aligned to the DTT of the first parent node, and the DTT of the target node is aligned to the DRT of the target node.
  • a timing determination method in which the target node can determine at least one of the time difference, the DTT and the UTT of the target node according to the timing parameters, so as to flexibly and accurately determine the transmission timing and improve the efficiency and reliability of the transmission sex.
  • FIG. 1 is a flowchart of a timing determination method provided by an embodiment. As shown in FIG. 1 , the method provided by this embodiment includes step 110 and step 120 .
  • step 110 timing parameters are determined.
  • the transmission timing of the target node is determined according to the timing parameter, and the transmission timing includes at least one of the following: the time difference between the first timing and the second timing, the downlink transmission timing DTT and the uplink transmission timing UTT.
  • Timing parameters refer to parameters that affect the transmission timing of the target node. Due to the offset between the URT and DTT of the upstream node, the alignment between nodes at different levels in different timing modes is complicated. The downlink transmission is performed in advance by half of the timing advance, and the synchronization between the target node and the first parent node cannot be guaranteed.
  • the timing parameters in this embodiment can provide a basis for the target node to determine the transmission timing.
  • To determine the transmission timing of the target node it can be to determine the time difference (Time Difference, TD) between the DTT and DRT of the nodes at all levels, or to determine the DTT of the target node, or to determine the DRT of the target node.
  • TD Time Difference
  • DTT is also available on .
  • the target node is based on the timing advance adjustment number or timing lag adjustment number N TA , the timing parameter index T delta signaled by the Medium Access Control-Control Element (Medium Access Control-Control Element, MAC CE), and the timing corresponding to the frequency range FR1 or FR2
  • the DTT of the target node can be determined in advance of the TD. It should be noted that TD can be a positive value, indicating that the DTT of the target node is ahead of the DRT, or can be a negative value, indicating that the DTT of the target node is lagging behind the DRT.
  • the timing parameter includes at least one of the following: a timing advance, a timing parameter, and a time difference parameter.
  • the timing parameter is, for example, one or more of a timing advance, a timing parameter, and a time difference parameter.
  • the timing advance is recorded as TA, which indicates the time that the DTT of the target node is ahead of the DRT, and TA is a positive value or a negative value, indicating that the DTT is ahead of the DRT or behind the DTT, respectively.
  • the timing parameter is denoted as T_delta, indicating that there is an additional offset based on the timing advance.
  • the time difference parameter represents the time difference between different level nodes related to the target node, or the time difference between different transmission timings of the target node, such as the propagation time between the first parent node and the second parent node, or the target determined by the first parent node. The time difference between the node's DTT and the node's DRT, etc.
  • the transmission timing includes at least one of the following: the first timing is the DTT of the serving cell or the first parent node, and the second timing is the DRT of the target node.
  • DTT can also be obtained on the basis of DRT.
  • the timing parameter includes a timing advance; the method further includes:
  • Step 101 Determine the timing advance according to at least one of the following: a timing advance offset, a timing advance index, and a timing advance granularity.
  • the timing advance TA may be determined according to one or more of the following parameters:
  • Timing advance offset N TA,offset (if N TA,offset is negative, it means timing lag offset), including 0 ⁇ T c , 13792 ⁇ T c , 25600 ⁇ T c , and 39936 ⁇ T c .
  • Timing advance index related to timing advance adjustment number or timing lag adjustment number N TA ;
  • Timing advance is related to the number of timing advance adjustments or timing lag adjustments N TA .
  • N TA +N TA,offset represents the time advance or time lag of the uplink transmission of the target node relative to the downlink reception.
  • N TA,offset 0
  • N TA is the time advance or time lag of the uplink transmission of the target node relative to the downlink reception.
  • the timing parameters include timing parameters; the method further includes:
  • Step 102 Determine a timing parameter according to at least one of the following: timing parameter offset, timing parameter index, and timing parameter granularity.
  • timing parameter T_delta may be determined according to one or more of the following parameters:
  • the timing parameter includes a time difference parameter; the time difference parameter includes at least one of the following:
  • OFDM Orthogonal Frequency Division Multiplexing
  • the third timing of the target node is advanced or lagged by a subcarrier interval relative to the fourth timing of the target node.
  • the first timing is the DTT of the serving cell or the first parent node
  • the second timing is the DRT of the target node.
  • the third timing and the fourth timing are used to describe the time difference between different transmission timings of the target node, such as the time difference between the UTT of the target node and the timing advance, the time difference between the UTT of the target node and the DTT, the URT of the target node relative to the The time difference of the DRT, the time difference of the UTT of the target node relative to the URT, and/or the time difference of the DTT of the target node relative to the DRT.
  • the transmission timing includes a time difference between the first timing and the second timing; the time difference is determined according to at least one of the following methods:
  • TD -
  • /2+Tg/2; TD -
  • TD -
  • /2+Tg/2 ⁇ SN ⁇ ST; TD -
  • TD -
  • /2+TPup/2; TD -
  • TD represents the time difference between the first timing and the second timing
  • the first timing is the DTT of the serving cell or the first parent node
  • the second timing is the DRT of the target node
  • TA represents the timing advance
  • Tg represents The time difference between the URT of the first parent node and the DTT of the first parent node
  • SN represents the number of OFDM symbols that the third timing of the target node is advanced or delayed relative to the fourth timing of the target node
  • ST represents the third timing of the target node With respect to the OFDM symbol time advanced or delayed by the fourth timing of the target node
  • TPup represents the propagation time between the first parent node and the second parent node
  • TDup represents the time between the first timing determined by the first parent node and the second timing
  • T_delta represents the timing parameter.
  • the transmission timing includes a timing advance; the timing advance is determined according to at least one of the following methods:
  • TA represents timing advance
  • N TA represents timing advance adjustment number or timing lag adjustment number
  • N TA,offset represents timing advance offset or timing lag offset
  • T c represents time unit.
  • the transmission timing includes a timing parameter; the timing parameter is determined according to one of the following methods:
  • T_delta (N delta +T delta ⁇ G step ) ⁇ T c ;
  • T_delta ( - N TA,offset /2+N delta +T delta ⁇ G step ) ⁇ T c ;
  • T_delta (N TA,offset /2+N delta +T delta ⁇ G step ) ⁇ T c ;
  • T_delta represents a timing parameter
  • N TA represents a timing advance adjustment number or a timing lag adjustment number
  • N TA,offset represents a timing advance offset or a timing lag offset
  • T c represents a time unit
  • T delta represents a timing
  • the parameter index value, N delta represents the timing parameter offset
  • G step represents the timing parameter granularity.
  • IAB1, IAB2, and IAB3 are all IAB nodes
  • DgNB is the donor node
  • DgNB is the upper-level upstream node of IAB1
  • IAB1 is the upper-level upstream node of IAB2
  • IAB2 is the upper-level upstream node of IAB3.
  • FIG. 2 is a schematic diagram of time slot-level alignment of URT and DTT of a first parent node according to an embodiment.
  • the target node is IAB1
  • the first parent node is DgNB
  • the URT of DgNB is aligned with the DTT of DgNB
  • the timing advance TA ⁇ 0 in this case, IAB1 can determine the first timing in the following way The time difference TD between (DTT) and the second timing (DRT), and further determines the DTT:
  • IAB2 can use the same method as IAB1 in Example 1, Sub-Example 1 Determine TD and DTT.
  • FIG. 3 is a schematic diagram of a slot-level misalignment of the URT of the first parent node ahead of the DTT provided by an embodiment.
  • the first parent node is DgNB
  • the URT of the DgNB is DTT ahead of the DgNB
  • IAB2 can use the same method as IAB2 in Example 1, Sub-Example 1 Determine TD and DTT.
  • IAB2 can use the same method as IAB2 in Example 1, Sub-Example 1 Determine TD and DTT.
  • FIG. 5 is a schematic diagram of slot-level misalignment in which the URT of the first parent node lags behind the DTT provided by another embodiment.
  • the first parent node is DgNB
  • the The URT lags behind the DTT of the DgNB
  • IAB2 can use the same method as IAB2 in Example 1, Sub-Example 1 Determine TD and DTT.
  • FIG. 6 is a schematic diagram of time slot-level alignment of UTT and DTT of a target node according to an embodiment.
  • the first parent node is DgNB
  • the URT of the DgNB lags the DTT of the DgNB
  • the timing advance amount TA ⁇ 0 in this case, IAB1 can determine the time difference TD between the first timing (DTT) and the second timing (DRT) in the following way, and further determine the DTT:
  • IAB1 can also use the same method as IAB1 in Example 1 and Sub-Example 3 to determine TD and DTT.
  • IAB2 can be determined in the same way as IAB1 in Example 2, Sub-Example 1 TD and DTT.
  • IAB2 can also use the same method as IAB1 in Example 1 and Sub-Example 3 to determine TD and DTT.
  • FIG. 7 is a schematic diagram of symbol-level alignment of UTT and DTT of a target node according to an embodiment.
  • the target node is IAB1
  • the first parent node is DgNB
  • the URT of the DgNB is ahead of the DTT of the DgNB
  • the timing advance amount TA ⁇ 0.
  • the IAB1 can use the following method to determine the TD, and To further determine the DTT:
  • SN represents the number of OFDM symbols that the UTT of IAB1 is ahead of the DTT of IAB1
  • a negative value of SN means that the UTT of IAB1 is ahead of the DTT of IAB1
  • a positive value of SN means that the UTT of IAB1 lags behind the DTT of IAB1
  • T offset can be collectively recorded as "T offset ".
  • IAB1 can also use the following method to determine TD, and further determine DTT:
  • SN indicates the number of OFDM symbols by which the UTT of IAB1 is advanced relative to the DTT of IAB1.
  • a negative value of SN indicates an advance
  • a negative value of SN indicates that the UTT of IAB1 is advanced relative to the DTT of IAB1
  • a positive value of SN indicates that the UTT of IAB1 is advanced.
  • "SN ⁇ ST" can be collectively recorded as "T offset ".
  • IAB2 can be determined by the same method as IAB2 in Example 2, Sub-Example 1 TD and DTT.
  • IAB1 can use the same method as IAB1 in Example 1 and 2 to determine TD and DTT.
  • IAB2 can determine TD and DTT in the same way as IAB2 in Example 2 Sub-Example 1.
  • FIG. 8 is a schematic diagram of time slot-level alignment of URT and DRT of a target node provided by an embodiment.
  • the first parent node is DgNB
  • the URT of DgNB is aligned with the parent node DgNB DTT, TA ⁇ 0
  • IAB1 can use the same method as IAB1 in Example 1 to determine TD and DTT.
  • the target node is IAB2
  • the first parent node is IAB1
  • the URT of IAB1 lags behind the DTT of IAB1
  • TA ⁇ 0 in this case, IAB2 can use the following methods to determine the TD, and further determine the DTT:
  • IAB1 can use the same method as IAB1 in Example 1 to determine TD and DTT.
  • IAB2 can use the same method as IAB1 in Example 1 and Sub-Example 4 to determine TD and DTT.
  • FIG. 9 is a schematic diagram of symbol-level alignment of URT and DRT of a target node provided by an embodiment.
  • the first parent node is DgNB
  • the URT of the DgNB is aligned with the parent node DgNB.
  • DTT, TA ⁇ 0 in this case, IAB1 can use the same method as IAB1 in Example 1 to determine TD and DTT.
  • IAB2 can use the following methods to determine TD and DTT:
  • IAB2 can use the following method to determine TD and DTT:
  • SN represents the number of OFDM symbols that the URT of IAB1 is ahead of the DRT of IAB1
  • a negative value of SN means that the URT of IAB1 is ahead of the DRT of IAB1
  • a positive value of SN means that the URT of IAB1 lags behind the DRT of IAB1.
  • ST can be collectively recorded as "T offset ".
  • IAB1 can use the same method as IAB1 in Example 1 to determine TD and DTT.
  • IAB2 can use the same method as IAB1 in Example 1 and Sub-Example 2 to determine TD and DTT.
  • FIG. 10 is a schematic diagram of time slot-level alignment of URT and DRT of a target node provided by another embodiment.
  • the first parent node is DgNB
  • the URT of DgNB is aligned with that of DgNB.
  • DTT, TA ⁇ 0 in this case, IAB1 can determine TD and DTT in the same way as in Example 1, Sub-Example 1.
  • IAB2 can use the following methods to determine TD and DTT:
  • IAB1 can use the same method as IAB1 in Example 1 to determine TD and DTT.
  • IAB2 can use the same method as IAB1 in Example 1 and Sub-Example 3 to determine TD and DTT.
  • FIG. 11 is a schematic diagram of time slot-level alignment of URT and UTT of a target node according to an embodiment.
  • the first parent node is DgNB
  • the URT of the DgNB is aligned with the DTT of the DgNB , TA ⁇ 0, in this case, IAB1 can determine TD and DTT in the same way as IAB1 in Example 1 Sub-Example 1.
  • IAB2 can use the following methods to determine TD and DTT:
  • IAB2 can use the same method as IAB1 in Example 1 and Sub-Example 2 to determine TD and DTT.
  • FIG. 12 is a schematic diagram of time slot-level alignment of UTT and URT of a target node according to an embodiment.
  • the first parent node is DgNB
  • the URT of the DgNB lags the DTT of the DgNB
  • IAB1 can determine TD and DTT in the same way as IAB1 in Example 1, Sub-Example 3.
  • IAB2 If the target node is IAB2, the first parent node is IAB1, and the URT of IAB1 lags behind the DTT of IAB1, IAB2 can use the same method as IAB2 in Example 2 Sub-Example 1 to determine TD and DTT.
  • FIG. 13 is a schematic diagram of time slot-level alignment of UTT and URT of a target node provided by another embodiment.
  • the first parent node is DgNB, and the URT of DgNB lags behind that of DgNB.
  • DTT, IAB1 can use the same method as IAB1 in Example 1 Sub-Example 4 to determine TD and DTT.
  • IAB2 If the target node is IAB2, the first parent node is IAB1, and the URT of IAB1 lags behind the DTT of IAB1, IAB2 can use the same method as IAB2 in Example 2 Sub-Example 1 to determine TD and DTT.
  • FIG. 14 is a schematic diagram of the time slot-level alignment of DTT and DRT of a target node provided by an embodiment.
  • the first parent node is DgNB
  • the URT of the DgNB is aligned with the DTT of the DgNB
  • the IAB1 can use the same method as the IAB1 in Example 1 to determine the TD and DTT.
  • IAB2 can use the same method as IAB1 in example 1 and sub-example 2 to determine TD and DTT.
  • the timing pattern is associated with a first type of physical quantity; the first type of physical quantity includes at least one of the following: a timing parameter offset N delta , a timing parameter index T delta , and a timing parameter granularity G step .
  • the values of each first-type physical quantity in different timing modes may be the same or different.
  • step 120 includes:
  • Step 1201 Determine the DRT of the target node and the time difference between the first timing and the second timing according to timing parameters.
  • Step 1202 Determine the DTT of the target node according to the DRT of the target node and the time difference.
  • the DTT of the target node is associated with any one of the timing modes predefined or configured by the serving cell or the first parent node; or, the target node
  • the DTT of the node is the weighted value of the DTT corresponding to different timing modes.
  • step 120 includes:
  • Step 1203 Determine the DRT of the target node, the timing advance and the DTT of the target node according to the timing parameter.
  • Step 1204 Determine the UTT of the target node according to the DRT of the target node, the timing advance and the DTT of the target node.
  • the UTT of the target node is associated with any timing mode predefined or configured by the serving cell or the first parent node; or , the UTT of the target node is the weighted value of the UTT corresponding to different timing modes.
  • the timing pattern is associated with a second type of physical quantity, the second type of physical quantity including at least one of the following: timing advance, timing parameter, time difference, DRT and UTT.
  • the values of each of the second types of physical quantities in different timing modes may be the same or different.
  • the following describes the process of determining transmission timing in the case of coexistence of different timing modes by way of example.
  • Embodiment 6 Sub-example 1: Different timing modes coexist in the system in a time-division manner.
  • the timing mode corresponding to time t1 is the first timing mode
  • the timing mode corresponding to time t2 is the second timing mode.
  • the target node pre-determines the transmission timing of the target node in any timing mode, or the target node determines the transmission timing of the target node according to any timing mode configured by the serving cell or the first parent node. For the specific determination method, reference may be made to the above example for the corresponding timing mode.
  • Example 6 Example 2: Different timing modes coexist in the system in a frequency division manner.
  • the timing mode corresponding to the frequency f1 is the first timing mode
  • the timing mode corresponding to the frequency f2 is the third timing mode.
  • the target node pre-determines the transmission timing of the target node in any timing mode, or the target node determines the transmission timing of the target node according to any timing mode configured by the serving cell or the first parent node. For the specific determination method, reference may be made to the above example for the corresponding timing mode.
  • Example 6 Example 3: Different timing modes coexist in the system.
  • the timing modes include a first timing mode, a second timing mode, a third timing mode, a fourth timing mode, and a fifth timing mode.
  • the target node pre-determines the transmission timing of the target node in any timing mode, or the target node determines the transmission timing of the target node according to any timing mode configured by the serving cell or the first parent node. For the specific determination method, reference may be made to the above example for the corresponding timing mode.
  • Example 4 Determine the transmission timing of the target node in a timing mode.
  • the timing mode corresponds to at least one of the following second type of physical quantities: timing advance, timing parameter, time difference, downlink reception timing and uplink transmission timing.
  • the timing mode corresponding to time t1 is the first timing mode
  • the timing mode corresponding to time t2 is the second timing mode
  • TA1 represents the timing advance in the first timing mode
  • TA2 represents the timing advance in the second timing mode
  • T_delta1 represents the timing parameter in the first timing mode
  • T_delta2 represents the timing parameter in the second timing mode.
  • the values of TA1 and TA2 may be the same or different; the values of T_delta1 and T_delta2 may be the same or different.
  • the target node determines the DTT of the IAB-DU in the first timing mode, and determines the UTT of the IAB-MT in the first timing mode or the second timing mode.
  • the DTT of the IAB-DU is determined as follows:
  • DTT DRT1-TD1.
  • the UTT of the IAB-MT may be determined as follows:
  • the UTT of the IAB-MT may be determined in the second timing mode as follows:
  • Example 6 Weight the transmission timing of multiple timing modes to determine the transmission timing of the target node.
  • the timing mode corresponds to at least one of the following second type of physical quantities: timing advance, timing parameter, time difference, downlink reception timing and uplink transmission timing.
  • the timing mode corresponding to time t1 is the first timing mode
  • the timing mode corresponding to time t2 is the third timing mode
  • TA1 represents the timing advance in the first timing mode
  • TA2 represents the timing advance in the third timing mode
  • T_delta1 represents the timing parameter in the first timing mode
  • T_delta2 represents the timing parameter in the third timing mode.
  • the values of TA1 and TA2 may be the same or different; the values of T_delta1 and T_delta2 may be the same or different.
  • the target node determines the DTT1 of the IAB-DU in the first timing mode, and determines the DTT2 of the IAB-DU in the third timing mode, and the final DTT determined by the target node can be determined by DTT1, or by DTT2, or by DTT1 and DTT2 weighting decision.
  • the target node performs downlink reception of IAB-MT and uplink reception of IAB-DU simultaneously in the third timing mode.
  • the DTT1 of the IAB-DU may be determined as follows:
  • DTT1 DRT1-TD1.
  • the DTT2 of the IAB-DU may be determined as follows:
  • DTT2 DRT2-TD2.
  • UTT2 DRT2+TA2-SN ⁇ ST, where the minus sign indicates that the UTT is ahead of the DRT.
  • the number of OFDM symbols by which the third timing is advanced or delayed relative to the fourth timing includes at least one of the following:
  • the number of OFDM symbols by which the DTT of the target node is advanced or delayed relative to the DRT of the target node is advanced or delayed relative to the DRT of the target node.
  • the propagation time between the first parent node and the second parent node is configured by the serving cell or by the first parent node; the time difference between the first timing (DTT) and the second timing (DRT) is determined by the serving cell.
  • the cell is either configured by the first parent node.
  • the third timing of the target node is determined according to the cyclic prefix duration and the symbol net duration relative to the fourth timing of the target node, which is advanced or lagged by the symbol time; wherein the cyclic prefix duration includes at least one of the following: zero duration Cyclic prefix, normal cyclic prefix and extended cyclic prefix; the net symbol duration is equal to the inverse of the subcarrier spacing (1/ ⁇ f).
  • it also includes:
  • Step 130 Determine the number of OFDM symbols by which the third timing is advanced or delayed relative to the fourth timing according to a predefined manner.
  • step 130 specifically includes:
  • the default value of the number of OFDM symbols is determined according to the node physical distance between the first parent node and the target node.
  • it also includes:
  • Step 140 Determine, according to the configuration signaling, the number of OFDM symbols that the third timing advances or lags behind the fourth timing.
  • the configuration signaling includes physical layer signaling, medium access control (Medium Access Control, MAC) layer signaling, radio resource control (Radio Resource Control, RRC) signaling, operation and maintenance management (Operation Administration and Maintenance, OAM) signaling. make.
  • Medium Access Control Medium Access Control
  • RRC Radio Resource Control
  • OAM Opera and Maintenance management
  • the OFDM symbol can be advanced or delayed, for example:
  • the UTT advances or lags a number of OFDM symbols relative to the calculated timing advance
  • UTT is advanced or delayed by several OFDM symbols relative to DTT;
  • the URT leads or lags the DRT by several OFDM symbols
  • the UTT leads or lags the URT by several OFDM symbols
  • the DTT leads or lags the DRT by several OFDM symbols
  • the above-mentioned number of several OFDM symbols in advance or lag is determined by a predefined or configured manner, wherein the predefined manner includes determining a default value according to the distance between nodes; the configuration method includes physical layer (Physical Layer) signaling (such as downlink control information) (Downlink Control Information, DCI)), MAC layer signaling (such as Medium Access Control Control Element (MAC-CE)), RRC layer signaling (such as broadcast signaling or dedicated signaling), OAM signaling.
  • Physical Layer Physical Layer
  • DCI Downlink Control Information
  • MAC-CE Medium Access Control Element
  • RRC layer signaling such as broadcast signaling or dedicated signaling
  • OAM signaling OAM signaling.
  • FIG. 15 is a schematic structural diagram of a timing determination apparatus according to an embodiment. As shown in FIG. 15 , the timing determination apparatus includes: a parameter determination module 210 and a timing determination module 220 .
  • a parameter determination module 210 configured to determine timing parameters
  • the timing determination module 220 is configured to determine the transmission timing of the target node according to the timing parameter, where the transmission timing includes at least one of the following: a time difference between the first timing and the second timing, DTT and UTT.
  • the timing determination device of this embodiment realizes determining at least one of the time difference, the DTT and the UTT of the target node according to the timing parameters, thereby flexibly and accurately determining the transmission timing.
  • the timing parameter includes at least one of the following: a timing advance, a timing parameter, and a time difference parameter.
  • the first timing is the DTT of the serving cell or the first parent node
  • the second timing is the DRT of the target node
  • the timing parameter includes a timing advance; the apparatus further includes:
  • the timing advance determination module is configured to determine the timing advance according to at least one of the following: a timing advance offset, a timing advance index, and a timing advance granularity.
  • the timing parameter includes a timing parameter; the apparatus further includes:
  • the timing parameter determination module is configured to determine the timing parameter according to at least one of the following: timing parameter offset, timing parameter index, and timing parameter granularity.
  • the timing parameter includes a time difference parameter
  • the time difference parameter includes at least one of the following:
  • the third timing of the target node is advanced or lagged by a subcarrier interval relative to the fourth timing of the target node.
  • the propagation time and the time difference are configured by the serving cell or by the first parent node.
  • the symbol time is determined according to the cyclic prefix duration and the symbol net duration
  • the cyclic prefix duration includes at least one of the following: a zero-duration cyclic prefix, a normal cyclic prefix, and an extended cyclic prefix;
  • the symbol net duration is equal to the inverse of the subcarrier spacing.
  • the transmission timing includes a time difference between the first timing and the second timing
  • the time difference is determined according to at least one of the following methods:
  • TD -
  • /2+Tg/2; TD -
  • TD -
  • /2+Tg/2 ⁇ SN ⁇ ST; TD -
  • TD -
  • /2+TPup/2; TD -
  • TD represents the time difference between the first timing and the second timing
  • the first timing is the DTT of the serving cell or the first parent node
  • the second timing is the DRT of the target node
  • TA is the timing advance
  • Tg represents the time difference between the URT of the first parent node and the DTT of the first parent node
  • SN represents the number of OFDM symbols that the third timing of the target node is advanced or delayed relative to the fourth timing of the target node
  • ST represents the OFDM symbol time at which the third timing of the target node is advanced or delayed relative to the fourth timing of the target node
  • TPup represents the propagation time between the first parent node and the second parent node
  • TDup represents the first parent node
  • T_delta represents a timing parameter.
  • the transmission timing includes a timing advance
  • the timing advance is determined according to at least one of the following methods:
  • TA N TA ⁇ T c ;
  • TA (N TA +N TA,offset ) ⁇ T c ;
  • TA -N TA ⁇ T c ;
  • TA -(N TA +N TA,offset ) ⁇ T c ;
  • TA represents the timing advance
  • N TA represents the timing advance adjustment number or timing lag adjustment number
  • N TA,offset represents the timing advance offset or timing lag offset
  • T c represents the time unit.
  • the transmission timing includes a timing parameter
  • the timing parameters are determined in one of the following ways:
  • T_delta (N delta +T delta ⁇ G step ) ⁇ T c ;
  • T_delta (-N TA,offset /2+N delta +T delta ⁇ G step ) ⁇ T c ;
  • T_delta (N TA,offset /2+N delta +T delta ⁇ G step ) ⁇ T c ;
  • T_delta represents the timing parameter
  • N TA represents the timing advance adjustment number or timing lag adjustment number
  • N TA,offset represents the timing advance offset or timing lag offset
  • T c represents the time unit
  • T delta represents the timing parameter Index value
  • N delta represents the timing parameter offset
  • G step represents the timing parameter granularity.
  • the timing pattern is associated with a first type of physical quantity
  • the first type of physical quantity includes at least one of the following: timing parameter offset, timing parameter index, and timing parameter granularity.
  • the timing determination module 220 includes:
  • a first determining unit configured to determine the DRT of the target node and the time difference between the first timing and the second timing according to the timing parameter
  • the second determining unit is configured to determine the DTT of the target node according to the DRT of the target node and the time difference.
  • the DTT of the target node is associated with any one of the timing modes predefined or configured by the serving cell or the first parent node; or , the DTT of the target node is the weighted value of the DTT corresponding to different timing modes.
  • the timing determination module 220 includes:
  • a third determining unit configured to determine the DRT of the target node, the timing advance and the DTT of the target node according to the timing parameter
  • the fourth determining unit is configured to determine the UTT of the target node according to the DRT of the target node, the timing advance and the DTT of the target node.
  • the UTT of the target node is associated with any timing mode predefined or configured by the serving cell or the first parent node; or , the UTT of the target node is the weighted value of the UTT corresponding to different timing modes.
  • the timing pattern is associated with a second type of physical quantity, the second type of physical quantity including at least one of the following: timing advance, timing parameter, time difference, DRT, and UTT.
  • the number of OFDM symbols by which the third timing is advanced or delayed relative to the fourth timing includes at least one of the following:
  • the number of OFDM symbols by which the DTT of the target node is advanced or delayed relative to the DRT of the target node is advanced or delayed relative to the DRT of the target node.
  • the apparatus further includes:
  • a first symbol number determining module configured to determine the number of OFDM symbols that the third timing advances or lags behind the fourth timing according to a predefined manner
  • the number of symbols determining module is specifically set to determine the default value of the number of OFDM symbols according to the node physical distance between the first parent node and the target node.
  • it also includes:
  • the second symbol number determining module is configured to determine the number of OFDM symbols that the third timing is advanced or delayed relative to the fourth timing according to the configuration signaling;
  • the configuration signaling includes physical layer signaling, MAC layer signaling, RRC signaling, and OAM signaling.
  • the timing determination device proposed in this embodiment belongs to the same concept as the timing determination method proposed in the above-mentioned embodiment.
  • FIG. 16 is a schematic diagram of a hardware structure of a communication node provided by an embodiment.
  • the communication node provided by the present application includes a memory 52 , a processor 51 and A computer program stored on the memory 52 and executable on the processor 51, the processor 51 implementing the above-described timing determination method when the program is executed.
  • the communication node may also include a memory 52; the number of processors 51 in the communication node may be one or more, and one processor 51 is taken as an example in FIG. 16; the memory 52 is used to store one or more programs; the one or more Each program is executed by the one or more processors 51, so that the one or more processors 51 implement the timing determination method as described in the embodiments of the present application.
  • the communication node further includes: a communication device 53 , an input device 54 and an output device 55 .
  • the processor 51 , the memory 52 , the communication device 53 , the input device 54 and the output device 55 in the communication node may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 16 .
  • the input device 54 may be used to receive input numerical or character information, and to generate key signal input related to user settings and function control of the communication node.
  • the output device 55 may include a display device such as a display screen.
  • the communication device 53 may include a receiver and a transmitter.
  • the communication device 53 is configured to transmit and receive information according to the control of the processor 51 .
  • the memory 52 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the timing determination method described in the embodiments of the present application (for example, parameters in the timing determination device). determination module 210 and timing determination module 220).
  • the memory 52 may include a stored program area and a stored data area, wherein the stored program area may store an operating system, an application program required for at least one function; the stored data area may store data created according to use of the communication node, and the like. Additionally, memory 52 may include high speed random access memory, and may also include nonvolatile memory, such as at least one magnetic disk storage device, flash memory device, or other nonvolatile solid state storage device.
  • memory 52 may further include memory located remotely from processor 51, which may be connected to the communication node through a network.
  • networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • An embodiment of the present application further provides a storage medium, where a computer program is stored in the storage medium, and when the computer program is executed by a processor, the timing determination method described in any one of the embodiments of the present application is implemented.
  • the method includes: determining a timing parameter; and determining a transmission timing of a target node according to the timing parameter, where the transmission timing includes at least one of the following: a time difference between the first timing and the second timing, DTT and UTT.
  • the computer storage medium of the embodiments of the present application may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or any combination of the above.
  • Computer readable storage media include: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (Read Only Memory, ROM), Erasable Programmable Read Only Memory (EPROM), Flash Memory, Optical Fiber, Portable Compact Disc Read Only Memory (CD-ROM), Optical Memory devices, magnetic memory devices, or any suitable combination of the foregoing.
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms including, but not limited to, electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including but not limited to: wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • suitable medium including but not limited to: wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • Computer program code for carrying out the operations of the present application may be written in one or more programming languages, including object-oriented programming languages, such as Java, Smalltalk, C++, and conventional A procedural programming language, such as the "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or Wide Area Network (WAN), or it may be connected to an external computer (eg, use an internet service provider to connect via the internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • user terminal encompasses any suitable type of wireless user equipment, such as a mobile telephone, portable data processing device, portable web browser or vehicle mounted mobile station.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuits, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Embodiments of the present application may be implemented by the execution of computer program instructions by a data processor of a mobile device, eg in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source or object code.
  • ISA Instruction Set Architecture
  • the block diagrams of any logic flow in the figures of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as, but not limited to, Read-Only Memory (ROM), Random Access Memory (RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD), etc.
  • Computer readable media may include non-transitory storage media.
  • Data processors may be any suitable for the local technical environment Type, such as but not limited to general-purpose computer, special-purpose computer, microprocessor, digital signal processor (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC), programmable logic device (Field-Programmable Gate Array , FPGA) and processors based on multi-core processor architectures.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • processors based on multi-core processor architectures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种定时确定方法、装置、通信节点及存储介质。该定时确定方法包括:确定定时参数;根据所述定时参数确定目标节点的传输定时,所述传输定时包括以下至少之一:第一定时与第二定时之间的时间差、下行发射定时DTT和上行发射定时UTT。

Description

定时确定方法、装置、通信节点及存储介质
本申请要求在2021年01月04日提交中国专利局、申请号为202110003207.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信网络,例如涉及一种定时确定方法、装置、通信节点及存储介质。
背景技术
在新空口(New Radio,NR)系统中,集成接入回程(Integrated Access and Backhaul,IAB)技术是一种高效的网络密集化手段。IAB节点和父节点(即上游节点)之间的链路称为回程链路(Backhaul link,BL),IAB节点和子节点(即下游节点)之间的链路,或者IAB节点和用户设备之间的链路称为接入链路(Access link,AL),其中,父节点可以也为一个IAB节点,或者为施主节点(Donor Node,DN),例如Donor基站(gNodeB,gNB)。IAB节点具有两种功能:集成接入回程移动终端(Integrated Access and Backhaul Mobile Termination,IAB-MT)用于与父节点互相通信,集成接入回程分布式单元(Integrated Access and Backhaul Distributed Unit,IAB-DU)用于与下游节点互相通信。IAB节点支持同时收发,BL和AL之间可采用如下的复用方式:时分复用(Time Division Multiplexing,TDM)、频分复用(Frequency Division Multiplexing,FDM)以及空分复用(Spatial Division Multiplexing,SDM)。
理论上,基于IAB-MT的下行接收定时(DL Rx Timing,DRT)向前提前定时提前量(Timing Advance,TA)的二分之一(记为TA/2)即可确定IAB-DU的下行发射定时(DL Tx Timing,DTT),从而保持IAB节点与父节点间的DTT对齐。但由于父节点的上行接收定时(UL Rx Timing,URT)和父节点的DTT之间存在偏移,实际应用中不同节点之间的对齐情况更加复杂,传输定时无法根据TA/2简单确定。在同时收发的过程中,如果传输定时不准确,造成节点间的传输相互干扰,影响传输效率。
发明内容
本申请提供一种定时确定方法、装置、通信节点及存储介质,以准确确定所述IAB节点的传输定时,提高传输效率。
本申请实施例提供一种定时确定方法,包括:
确定定时参数;
根据所述定时参数确定目标节点的传输定时,所述传输定时包括以下至少之一:第一定时与第二定时之间的时间差、DTT和上行发射定时(UL Tx Timing,UTT)。
本申请实施例还提供了一种定时确定装置,包括:
参数确定模块,设置为确定定时参数;
定时确定模块,设置为根据所述定时参数确定目标节点的传输定时,所述传输定时包括以下至少之一:第一定时与第二定时之间的时间差、DTT和UTT。
本申请实施例还提供了一种通信节点,包括:存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述的定时确定方法。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现上述的定时确定方法。
附图说明
图1为一实施例提供的一种定时确定方法的流程图;
图2为一实施例提供的一种第一父节点的URT和DTT时隙级对齐的示意图;
图3为一实施例提供的一种第一父节点的URT提前于DTT的时隙级不对齐的示意图;
图4为一实施例提供的一种第一父节点的URT滞后于DTT的时隙级不对齐的示意图;
图5为另一实施例提供的一种第一父节点的URT滞后于DTT的时隙级不对齐的示意图;
图6为一实施例提供的一种目标节点的UTT和DTT时隙级对齐的示意图;
图7为一实施例提供的一种目标节点的UTT和DTT符号级对齐的示意图;
图8为一实施例提供的一种目标节点的URT和DRT时隙级对齐的示意图;
图9为一实施例提供的一种目标节点的URT和DRT符号级对齐的示意图;
图10为另一实施例提供的一种目标节点的URT和DRT时隙级对齐的示意图;
图11为一实施例提供的一种目标节点的URT和UTT时隙级对齐的示意图;
图12为一实施例提供的一种目标节点的UTT和URT时隙级对齐的示意图;
图13为另一实施例提供的一种目标节点的UTT和URT时隙级对齐的示意图;
图14为一实施例提供的一种目标节点的DTT和DRT时隙级对齐的示意图;
图15为一实施例提供的一种定时确定装置的结构示意图;
图16为一实施例提供的一种通信节点的硬件结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
本申请中,目标节点泛指IAB节点,也可以是其他类型的支持与上游节点和下游节点分别通信的节点。目标节点的上一级上游节点称为第一父节点,第一父节点例如是目标节点的服务小区,第一父节点可以是一个IAB节点,或者为施主节点;目标节点的下一级下游节点称为子节点,目标节点可以是子节点的服务小区。如果第一父节点还有上一级上游节点,则将第一父节点的上一级上游节点称为第二父节点。
为了保持网络同步、减少各级节点间的相互干扰,各级节点间需要保持DTT对齐,也称为IAB-DU发射定时对齐。各级节点间的定时模式主要分为以下几种:
第一定时模式:目标节点的DTT对齐到第一父节点的DTT;
第二定时模式:目标节点的DTT对齐到第一父节点的DTT,且目标节点的UTT对齐到目标节点的DTT;
第三定时模式:目标节点的DTT对齐到第一父节点的DTT,且目标节点的上行接收定时(UL Rx Timing,URT)对齐到目标节点的DRT;
第四定时模式:目标节点的DTT对齐到第一父节点的DTT,且目标节点的URT对齐到目标节点的UTT;
第五定时模式:目标节点的DTT对齐到第一父节点的DTT,且目标节点的DTT对齐到目标节点的DRT。
在本申请实施例中,提供一种定时确定方法,目标节点可以根据定时参数确定时间差、目标节点的DTT和UTT中的至少一种,从而灵活、准确地确定传输定时,提高传输的效率和可靠性。
图1为一实施例提供的一种定时确定方法的流程图,如图1所示,本实施例提供的方法包括步骤110和步骤120。
在步骤110中,确定定时参数。
在步骤120中,根据所述定时参数确定目标节点的传输定时,所述传输定时包括以下至少之一:第一定时与第二定时之间的时间差、下行发射定时DTT和上行发射定时UTT。
对于一个目标节点,若要和其上一级的第一父节点保持同步,即保持下行定时对齐,需要提前目标节点自身的DTT,根据定时参数确定目标节点的传输定时的主要目的即为确定DTT。定时参数是指对目标节点的传输定时有影响的参数,由于上游节点的URT和DTT之间存在偏移,不同定时模式下各级节点间的对齐情况复杂,如果仅根据第一父节点指示的定时提前量的二分之一提前进行下行发射,无法保证目标节点与第一父节点的同步性。本实施例中的定时参数可为目标节点确定传输定时提供依据。
确定目标节点的传输定时,可以是确定各级节点的DTT与DRT之间的时间差(Time Difference,TD),也可以是确定目标节点的DTT,还可以是确定目标节点的DRT,在DRT的基础上也可以得到DTT。例如,目标节点基于定时提前调整数或定时滞后调整数N TA、介质访问控制单元(Medium Access Control-Control Element,MAC CE)信令通知的定时参量索引T delta、频率范围FR1或FR2对应的定时参量偏移N delta、和/或设定频率范围对应的定时参量颗粒度G step计算目标节点的DTT与DRT之间的时间差(记为TD),公式如下:TD=(N TA/2+N delta+T delta·G step)·T c;其中,T c表示时间单元,T c=1/(Δf max·N f),Δf max=480·10 3Hz,N f=4096,(N TA/2+N delta+T delta·G step)表示定时提前调整数或定时 滞后调整数。在DRT的基础上提前TD就可以确定目标节点的DTT。需要说明的是,TD可以为正值,表示目标节点的DTT提前于DRT,也可以为负值,表示目标节点的DTT滞后于DRT。
在一实施例中,定时参数包括以下至少之一:定时提前量、定时参量以及时差参数。
定时参数例如是定时提前量、定时参量以及时差参数中的一种或多种。定时提前量记为TA,表示目标节点的DTT相比于DRT提前的时间,TA为正值或负值,分别表示DTT提前于DRT或滞后于DTT。定时参量记为T_delta,表示在定时提前量的基础上还存在额外的偏移。时差参数表示与目标节点相关的不同级节点间的时差,或者目标节点不同传输定时的时差,例如为第一父节点与第二父节点之间的传播时间,或者由第一父节点确定的目标节点的DTT与节点的DRT之间的时间差等。
在一实施例中,传输定时包括以下至少之一:第一定时为服务小区或第一父节点的DTT,第二定时为目标节点的DRT。
本实施例中,确定目标节点的传输定时,可以是确定服务小区或第一父节点的DTT与目标节点的DRT之间的时间差TD,该时间差可以用如下简化的公式表示:TD=TA/2+T_delta,即根据定时提前量TA和定时参量T_delta确定时间差。确定目标节点的传输定时,也可以是确定目标节点的DTT:DTT=DRT-TD,即在下行接收定时DRT的基础上向前提前TD;确定目标节点的传输定时,还可以是确定目标节点的DRT,在DRT的基础上也可以得到DTT。
在一实施例中,定时参数包括定时提前量;所述方法还包括:
步骤101:根据以下至少之一确定定时提前量:定时提前量偏移、定时提前量索引、定时提前量颗粒度。
本实施例中,定时提前量TA可根据以下参数中的一种或多种确定:
1)定时提前量偏移N TA,offset(N TA,offset如果为负值则表示定时滞后量偏移),包括0·T c、13792·T c、25600·T c、39936·T c
2)定时提前量索引,与定时提前调整数或定时滞后调整数N TA有关;
3)定时提前量颗粒度,与定时提前调整数或定时滞后调整数N TA有关。
此外,定时参量还可与以下参数有关:子载波间隔Δf,μ表示子载波间隔索引,Δf=2 μ·15kHz;FR1表示第一频率范围(Frequency Range),具体为410MHz–7125MHz;FR2表示第二频率范围,具体为24250MHz–52600MHz。
N TA+N TA,offset表示目标节点的上行发射相对于下行接收的时间提前量或时间滞后量。在N TA,offset=0的情况下,N TA即为目标节点的上行发射相对于下行接收的时间提前量或时间滞后量。
在一实施例中,定时参数包括定时参量;所述方法还包括:
步骤102:根据以下至少之一确定定时参量:定时参量偏移、定时参量索引、定时参量颗粒度。
本实施例中,定时参量T_delta可根据以下参数的一种或多种确定:
1)定时参量偏移N delta
2)定时参量索引T delta
3)定时参量颗粒度G step
在一实施例中,定时参数包括时差参数;时差参数包括以下至少之一:
第一父节点与第二父节点之间的传播时间;
第一父节点确定的第一定时与第二定时之间的时间差;
目标节点的第三定时相对于目标节点的第四定时提前或滞后的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号数;
目标节点的第三定时相对于目标节点的第四定时提前或滞后的OFDM符号时间;
目标节点的第三定时相对于目标节点的第四定时提前或滞后的子载波间隔。
本实施例中,第一定时为服务小区或第一父节点的DTT,第二定时为目标节点的DRT。第三定时与第四定时用于描述目标节点的不同传输定时之间的时差,例如目标节点的UTT相对于定时提前量的时差、目标节点的UTT相对于DTT的时差、目标节点的URT相对于DRT的时差、目标节点的UTT相对于 URT的时差和/或目标节点的DTT相对于DRT的时差。
在一实施例中,传输定时包括第一定时与第二定时之间的时间差;时间差根据如下方式至少之一确定:
TD=TA/2;TD=TA;
TD=TA/2-Tg/2;TD=TA/2+T_delta;
TD=-|TA|/2+Tg/2;TD=-|TA|/2+T_delta;
TD=-TA/2+Tg/2;TD=-TA/2+T_delta;
TD=TA/2±SN·ST;TD=TA±SN·ST;
TD=TA/2-Tg/2±SN·ST;TD=TA/2+T_delta±SN·ST;
TD=-|TA|/2+Tg/2±SN·ST;TD=-|TA|/2+T_delta±SN·ST;
TD=-TA/2-Tg/2±SN·ST;TD=-TA/2+T_delta±SN·ST;
TD=TA/2+TPup/2;TD=TA/2+TDup/2;
TD=-|TA|/2+TPup/2;TD=-|TA|/2+TDup/2;
TD=-TA/2+TPup/2;TD=-TA/2+TDup/2;
TD=TA/2-(SN·ST-TPup)/2;TD=TA/2-(SN·ST-TDup)/2;
TD=TA/2-TPup/2;TD=TA/2-TDup/2;
本实施例中,TD表示第一定时与第二定时之间的时间差,第一定时为服务小区或第一父节点的DTT,第二定时为目标节点的DRT;TA表示定时提前量,Tg表示第一父节点的URT与第一父节点的DTT之间的时间差,SN表示目标节点的第三定时相对于目标节点的第四定时提前或滞后的OFDM符号数,ST表示 目标节点的第三定时相对于目标节点的第四定时提前或滞后的OFDM符号时间,TPup表示第一父节点与第二父节点之间的传播时间,TDup表示第一父节点确定的第一定时与第二定时之间的时间差,T_delta表示定时参量。
在一实施例中,传输定时包括定时提前量;定时提前量根据如下方式至少之一确定:
TA=N TA·T c;TA=(N TA+N TA,offset)·T c;TA=-N TA·T c;TA=-(N TA+N TA,offset)·T c
本实施例中,TA表示定时提前量,N TA表示定时提前调整数或定时滞后调整数,N TA,offset表示定时提前量偏移或定时滞后量偏移,T c表示时间单元。
在一实施例中,传输定时包括定时参量;定时参量根据如下方式之一确定:
T_delta=(N delta+T delta·G step)·T c
T_delta=( -N TA,offset/2+N delta+T delta·G step)·T c
T_delta=(N TA,offset/2+N delta+T delta·G step)·T c
本实施例中,T_delta表示定时参量,N TA表示定时提前调整数或定时滞后调整数,N TA,offset表示定时提前量偏移或定时滞后量偏移,T c表示时间单元,T delta表示定时参量索引值,N delta表示定时参量偏移,G step表示定时参量颗粒度。
以下通过示例对根据定时参数确定传输定时的情况进行说明。在以下示例中,IAB1、IAB2、IAB3均为IAB节点,DgNB为施主节点,DgNB为IAB1的上一级上游节点,IAB1为IAB2的上一级上游节点,IAB2为IAB3的上一级上游节点。
示例一(针对第一定时模式)
示例一子例1
图2为一实施例提供的一种第一父节点的URT和DTT时隙级对齐的示意图。如图2所示,对于目标节点为IAB1,第一父节点为DgNB,DgNB的URT对齐于DgNB的DTT,且定时提前量TA≥0,这种情况下,IAB1可采用如下方式确定第一定时(DTT)和第二定时(DRT)之间的时间差TD,并进一步确定 DTT:
TD=TA/2,其中,
TA=N TA·T c或TA=(N TA+N TA,offset)·T c
DTT=DRT-TD。
此外,对于目标节点为IAB2,第一父节点为IAB1,IAB1的URT对齐于IAB1的DTT,定时提前量TA≥0,这种情况下,IAB2可采用与示例一子例1中IAB1相同的方式确定TD和DTT。
示例一子例2
图3为一实施例提供的一种第一父节点的URT提前于DTT的时隙级不对齐的示意图,如图3所示,对于目标节点为IAB1,第一父节点为DgNB,DgNB的URT提前于DgNB的DTT,且定时提前量TA≥0,且-Tg/2=T_delta≤0,这种情况下,IAB1可采用如下方式确定第一定时(DTT)和第二定时(DRT)之间的时间差TD,并进一步确定DTT:
TD=TA/2-Tg/2或TD=TA/2+T_delta,其中,
TA=N TA·T c或TA=(N TA+N TA,offset)·T c
T_delta=(N delta+T delta·G step)·T c或T_delta=(-N TA,offset/2+N delta+T delta·G step)·T c
DTT=DRT-TD。
此外,对于目标节点为IAB2,第一父节点为IAB1,IAB1的URT对齐于IAB1的DTT,定时提前量TA≥0,这种情况下,IAB2可采用与示例一子例1中IAB2相同的方式确定TD和DTT。
示例一子例3
图4为一实施例提供的一种第一父节点的URT滞后于DTT的时隙级不对齐的示意图,如图4所示:对于目标节点为IAB1,第一父节点为DgNB,DgNB的URT滞后于DgNB的DTT,且定时提前量TA≥0,且Tg/2=T_delta≥0,这种情况下,IAB1可采用如下方式确定第一定时(DTT)和第二定时(DRT)之间 的时间差TD,并进一步确定DTT:
TD=TA/2+Tg/2或TD=TA/2+T_delta,其中,
TA=N TA·T c或TA=(N TA+N TA,offset)·T c
T_delta=(N delta+T delta·G step)·T c或T_delta=(-N TA,offset/2+N delta+T delta·G step)·T c
DTT=DRT-TD。
此外,对于目标节点为IAB2,第一父节点为IAB1,IAB1的URT对齐于IAB1的DTT,定时提前量TA≥0,这种情况下,IAB2可采用与示例一子例1中IAB2相同的方式确定TD和DTT。
示例一子例4
图5为另一实施例提供的一种第一父节点的URT滞后于DTT的时隙级不对齐的示意图,如图5所示,对于目标节点为IAB1,第一父节点为DgNB,DgNB的URT滞后于DgNB的DTT,且定时提前量TA≤0,Tg/2=T_delta≥0,这种情况下,IAB1可采用如下方式确定第一定时(DTT)和第二定时(DRT)之间的时间差TD,并进一步确定DTT:
TD=TA/2+Tg/2或TD=TA/2+T_delta 或TD=-TA/2+Tg/2
或TD==-|TA|/2+T_delta或TD=-TA/2+Tg/2或者 TD==-TA/2+T_delta,其中,
TA=-N TA·T c或TA=-(N TA+N TA,offset)·T c
T_delta=(N delta+T delta·G step)·T c或T_delta=(N TA,offset/2+N delta+T delta·G step)·T c
DTT=DRT-TD。
此外,对于目标节点为IAB2,第一父节点为IAB1,IAB1的URT对齐于IAB1的DTT,定时提前量TA≥0,这种情况下,IAB2可采用与示例一子例1中IAB2相同的方式确定TD和DTT。
示例二(针对第二定时模式)
示例二子例1
图6为一实施例提供的一种目标节点的UTT和DTT时隙级对齐的示意图,如图6所示,对于目标节点为IAB1,第一父节点为DgNB,DgNB的URT滞后于DgNB的DTT,且定时提前量TA≥0,这种情况下,IAB1可采用如下方式确定第一定时(DTT)和第二定时(DRT)之间的时间差TD,并进一步确定DTT:
TD=TA,其中,
TA=N TA·T c或TA=(N TA+N TA,offset)·T c
DTT=DRT-TD。
或者,IAB1也可采用与示例一子例3中IAB1相同的方法确定TD和DTT。
此外,对于目标节点为IAB2,第一父节点为IAB1,IAB1的URT滞后于IAB1的DTT,定时提前量TA≥0,这种情况下,IAB2可采用与示例二子例1中IAB1相同的方式确定TD和DTT。
或者,IAB2也可采用与示例一子例3中IAB1相同的方法确定TD和DTT。
示例二子例2
图7为一实施例提供的一种目标节点的UTT和DTT符号级对齐的示意图。如图7所示,对于目标节点为IAB1,第一父节点为DgNB,DgNB的URT提前于DgNB的DTT,且定时提前量TA≥0,这种情况下,IAB1可采用如下方法确定TD,并进一步确定DTT:
TD=TA-SN·ST,其中,
TA=N TA·T c或TA=(N TA+N TA,offset)·T c
DTT=DRT-TD。
本子例中,SN表示IAB1的UTT相对于IAB1的DTT提前的OFDM符号 数,SN为负值表示IAB1的UTT相对于IAB1的DTT提前,SN为正值表示IAB1的UTT相对于IAB1的DTT滞后,“SN·ST”可统一记为“T offset”。
此外,对于第一父节点DgNB的URT提前于DgNB的DTT,且定时提前量TA≥0,-Tg/2=T_delta≤0,这种情况下,IAB1还可采用如下方法确定TD,并进一步确定DTT:
TD=TA/2-Tg/2-SN·ST或者TD==TA/2+T_delta-SN·ST,其中,
TA=N TA·T c或TA=(N TA+N TA,offset)·T c
T_delta=(N delta+T delta·G step)·T c或T_delta=(-N TA,offset/2+N delta+T delta·G step)·T c
DTT=DRT-TD。
本子例中,SN表示IAB1的UTT相对于IAB1的DTT提前的OFDM符号数,SN为负值表示提前,SN为负值表示IAB1的UTT相对于IAB1的DTT提前,SN为正值表示IAB1的UTT相对于IAB1的DTT滞后,“SN·ST”可统一记为“T offset”。
此外,对于目标节点为IAB2,第一父节点为IAB1,IAB1的URT滞后于IAB1的DTT,定时提前量TA≥0,这种情况下,IAB2可采用与示例二子例1中IAB2相同的方法确定TD和DTT。
此外,对于目标节点为IAB1,第一父节点为DgNB,DgNB的URT提前于IAB1的DTT,IAB1可采用与示例一子例2中IAB1相同的方法确定TD和DTT。
此外,对于目标节点为IAB2,第一父节点为IAB1,IAB1的URT滞后于IAB1的DTT,IAB2可采用与示例二子例1中IAB2相同的方法确定TD和DTT。
示例三(针对第三定时模式)
示例三子例1
图8为一实施例提供的一种目标节点的URT和DRT时隙级对齐的示意图,如图8所示,对于目标节点为IAB1,第一父节点为DgNB,DgNB的URT对齐于父节点DgNB的DTT,TA≥0,这种情况下,IAB1可采用与示例一子例1中IAB1相同的方法确定TD和DTT。
此外,对于目标节点为IAB2,第一父节点为IAB1,IAB1的URT滞后于IAB1的DTT,TA≤0,这种情况下,IAB2可采用如下方式确定TD,并进一步确定DTT:
TD=TA/2+TPup/2或TD==TA/2+TDup/2或TD=-TA/2+TPup/2
或TD==-|TA|/2+TDup/2或TD=-TA/2+TPup/2或TD==-TA/2+TDup/2,其中,
TPup=TDup=TP1=TD1,
TA=-N TA·T c或TA=-(N TA+N TA,offset)·T c
DTT=DRT-TD。
此外,对于目标节点为IAB1,第一父节点为DgNB,DgNB的URT对齐于DgNB的DTT,IAB1可采用与示例一子例1中IAB1相同的方法确定TD和DTT。
此外,对于目标节点为IAB2,第一父节点为IAB1,IAB1的URT滞后于IAB1的DTT,IAB2可采用与示例一子例4中IAB1相同的方法确定TD和DTT。
示例三子例2
图9为一实施例提供的一种目标节点的URT和DRT符号级对齐的示意图,如图9所示,对于目标节点为IAB1,第一父节点为DgNB,DgNB的URT对齐于父节点DgNB的DTT,TA≥0,这种情况下,IAB1可采用与示例一子例1中IAB1相同的方法确定TD和DTT。
此外,对于目标节点为IAB2,第一父节点为IAB1,IAB1的URT提前于IAB1的DTT,TA≥0,这种情况下,IAB2可采用如下方法确定TD和DTT:
TD=TA/2-(SN·ST-TPup)/2或TD=TA/2-(SN·ST-TDup)/2,其中,
TPup=TDup=TP1=TD1,
TA=N TA·T c或TA=(N TA+N TA,offset)·T c
DTT=DRT-TD。
此外,对于目标节点为IAB2,第一父节点为IAB1,IAB1的URT提前于IAB1的DTT,TA≥0,且-Tg/2=T_delta≤0,这种情况下,IAB2可采用如下方法确定TD和DTT:
TD=TA/2-Tg/2-SN·ST或TD=TA/2+T_delta-SN·ST,其中,
TA=N TA·T c或TA=(N TA+N TA,offset)·T c
T_delta=(N delta+T delta·G step)·T c或T_delta=(-N TA,offset/2+N delta+T delta·G step)·T c
DTT=DRT-TD
其中,SN表示IAB1的URT相对IAB1的DRT提前的OFDM符号数,SN为负值表示IAB1的URT相对于IAB1的DRT提前,SN为正值表示IAB1的URT相对于IAB1的DRT滞后,“SN·ST”可统一记为“T offset”。
此外,对于目标节点为IAB1,第一父节点为DgNB,DgNB的URT对齐于DgNB的DTT,IAB1可采用与示例一子例1中IAB1相同的方法确定TD和DTT。
此外,对于目标节点为IAB2,第一父节点为IAB1,IAB1的URT提前于IAB1的DTT,IAB2可采用与示例一子例2中IAB1相同的方法确定TD和DTT。
示例三子例3
图10为另一实施例提供的一种目标节点的URT和DRT时隙级对齐的示意图,如图10所示,对于目标节点为IAB1,第一父节点为DgNB,DgNB的URT对齐于DgNB的DTT,TA≥0,这种情况下,IAB1可采用与示例一子例1相同的方法确定TD和DTT。
此外,对于目标节点为IAB2,第一父节点为IAB1,IAB1的URT滞后于 IAB1的DTT,TA≥0,这种情况下,IAB2可采用如下方法确定TD和DTT:
TD=TA/2+TPup/2或TD=TA/2+TDup/2,其中,
TPup=TDup=TP1=TD1;
TA=N TA·T c或TA=(N TA+N TA,offset)·T c
DTT=DRT-TD。
此外,对于目标节点为IAB1,第一父节点为DgNB,DgNB的URT对齐于DgNB的DTT,IAB1可采用与示例一子例1中IAB1相同的方法确定TD、DTT。
此外,对于目标节点为IAB2,第一父节点为IAB1,IAB1的URT滞后于IAB1的DTT,IAB2可采用与示例一子例3中IAB1相同的方法确定TD、DTT。
示例四(针对第四定时模式)
示例四子例一
图11为一实施例提供的一种目标节点的URT和UTT时隙级对齐的示意图,如图11所示,对于目标节点为IAB1,第一父节点为DgNB,DgNB的URT对齐于DgNB的DTT,TA≥0,这种情况下,IAB1可采用与示例一子例1中IAB1相同的方法确定TD和DTT。
此外,对于目标节点为IAB2,第一父节点为IAB1,IAB1的URT提前于IAB1的DTT,TA≥0,这种情况下,IAB2可采用如下方法确定TD和DTT:
TD=TA/2-TPup/2或TD=TA/2-TDup/2,其中,
TPup=TDup=TP1=TD1,
TA=N TA·T c或TA=(N TA+N TA,offset)·T c
DTT=DRT-TD。
此外,对于目标节点为IAB2,第一父节点为IAB1,IAB1的URT提前于IAB1的DTT,IAB2可采用与示例一子例2中IAB1相同的方法确定TD和DTT。
示例四子例二
图12为一实施例提供的一种目标节点的UTT和URT时隙级对齐的示意图,如图12所示,对于目标节点为IAB1,第一父节点为DgNB,DgNB的URT滞后于DgNB的DTT,IAB1可采用与示例一子例3中IAB1相同的方法确定TD和DTT。
对于目标节点为IAB2,第一父节点为IAB1,IAB1的URT滞后于IAB1的DTT,IAB2可采用与示例二子例1中IAB2相同的方法确定TD和DTT。
示例四子例三
图13为另一实施例提供的一种目标节点的UTT和URT时隙级对齐的示意图,如图13所示,对于目标节点为IAB1,第一父节点为DgNB,DgNB的URT滞后于DgNB的DTT,IAB1可采用与示例一子例4中IAB1相同的方法确定TD和DTT。
对于目标节点为IAB2,第一父节点为IAB1,IAB1的URT滞后于IAB1的DTT,IAB2可采用与示例二子例1中IAB2相同的方法确定TD和DTT。
示例五(针对第五定时模式)
图14为一实施例提供的一种目标节点的DTT和DRT时隙级对齐的示意图,如图14所示,对于目标节点为IAB1,第一父节点为DgNB,DgNB的URT对齐于DgNB的DTT,IAB1可采用与示例一子例1中IAB1相同的方法确定TD、DTT。
此外,对于目标节点为IAB2,第一父节点为IAB1,IAB1的URT提前于IAB1的DTT,IAB2可采用与示例一子例二中IAB1相同的方法确定TD、DTT。
在一实施例中,定时模式关联于第一类物理量;第一类物理量包括如下至少之一:定时参量偏移N delta、定时参量索引T delta、定时参量颗粒度G step
本实施例中,每种第一类物理量在不同的定时模式中的取值可以相同,也可以不同。
在一实施例中,步骤120,包括:
步骤1201:根据定时参数确定所述目标节点的DRT,以及第一定时与第二定时之间的时间差。
步骤1202:根据目标节点的DRT和时间差确定目标节点的DTT。
在一实施例中,在不同定时模式以时分或频分方式共存的情况下,目标节点的DTT关联于预定义的或者由服务小区或第一父节点配置的任一种定时模式;或者,目标节点的DTT为不同定时模式对应的DTT的加权值。
在一实施例中,步骤120,包括:
步骤1203:根据所述定时参数确定所述目标节点的DRT、定时提前量以及所述目标节点的DTT。
步骤1204:根据所述目标节点的DRT、所述定时提前量和所述目标节点的DTT确定所述目标节点的UTT。
在一实施例中,在不同定时模式以时分或频分方式共存的情况下,所述目标节点的UTT关联于预定义的或者由服务小区或第一父节点配置的任一定时模式确定;或者,所述目标节点的UTT为不同定时模式对应的UTT的加权值。
在一实施例中,所述定时模式关联于第二类物理量,所述第二类物理量包括如下至少之一:定时提前量、定时参量、时间差、DRT和UTT。
本实施例中,每种第二类物理量在不同的定时模式中的取值可以相同,也可以不同。
以下通过示例对不同定时模式共存的情况下确定传输定时的过程进行描述。
示例六:(针对不同定时模式共存的情况)
实施例六子例1:不同定时模式以时分方式在系统中共存。
例如,t1时间对应的定时模式为第一定时模式,t2时间对应的定时模式为第二定时模式。目标节点预定义以任意一种定时模式确定目标节点的传输定时,或者目标节点按照服务小区或第一父节点配置的任意一种定时模式确定目标节点的传输定时。具体确定方式可参见上述针对相应的定时模式的示例。
示例六子例2:不同定时模式以频分方式在系统中共存。
例如,f1频率对应的定时模式为第一定时模式,f2频率对应的定时模式为第三定时模式。目标节点预定义以任意一种定时模式确定目标节点的传输定时,或者目标节点按照服务小区或第一父节点配置的任意一种定时模式确定目标节点的传输定时。具体确定方式可参见上述针对相应的定时模式的示例。
示例六子例3:不同定时模式在系统中共存。
例如,定时模式包括了第一定时模式、第二定时模式、第三定时模式、第四定时模式和第五定时模式。目标节点预定义以任意定时模式确定目标节点的传输定时,或者目标节点按照服务小区或第一父节点配置的任意一种定时模式确定目标节点的传输定时。具体确定方式可参见上述针对相应的定时模式的示例。
示例六子例4:以一种定时模式确定目标节点的传输定时。
定时模式对应于以下至少一种第二类物理量:定时提前量、定时参量、时间差、下行接收定时以及上行发射定时,不同定时模式对应的第二类物理量类型相同的物理量的值可以不同。
例如,t1时间对应的定时模式为第一定时模式,t2时间对应的定时模式为第二定时模式。TA1表示第一定时模式时的定时提前量,TA2表示第二定时模式时的定时提前量,T_delta1表示第一定时模式时的定时参量,T_delta2表示第二定时模式时的定时参量。TA1和TA2的值可以相同也可以不同;T_delta1与T_delta2的值可以相同也可以不同。
假设目标节点为IAB节点,目标节点以第一定时模式确定IAB-DU的DTT,以第一定时模式或第二定时模式确定IAB-MT的UTT。
IAB-DU的DTT按照如下方式确定:
TD1=TA1/2-Tg1/2或TD1=TA1/2+T_delta1,其中,TA1≥0,-Tg1/2=T_delta1≤0,
TA1=N TA1·T c或TA1=(N TA1+N TA,offset1)·T c
DTT=DRT1-TD1。
在第一定时模式下可按照如下方式确定IAB-MT的UTT:
UTT1=DRT1-TA1或UTT1=DRT1+TA1;
在第二定时模式下可按照如下方式确定IAB-MT的UTT:
UTT2=DRT2-TA2或UTT2=DRT2-TA2-SN·ST或UTT2=DRT2+TA2
或UTT2=DRT2+TA2-SN·ST或UTT2=DTT2或UTT2=DTT2-SN·ST,此处减号表示UTT提前于DRT或提前于DTT。
示例六子例5:对多种定时模式的传输定时加权,确定目标节点的传输定时。
定时模式对应于以下至少一种第二类物理量:定时提前量、定时参量、时间差、下行接收定时以及上行发射定时,不同定时模式对应的第二类物理量类型相同的物理量的值可以不同。
例如,t1时间对应的定时模式为第一定时模式,t2时间对应的定时模式为第三定时模式。TA1表示第一定时模式时的定时提前量,TA2表示第三定时模式时的定时提前量,T_delta1表示第一定时模式时的定时参量,T_delta2表示第三定时模式时的定时参量。这里,TA1和TA2的值可以相同也可以不同;T_delta1与T_delta2的值可以相同也可以不同。
假设目标节点为IAB节点,目标节点以第一定时模式确定IAB-DU的DTT1、以第三定时模式确定IAB-DU的DTT2,目标节点最终确定的DTT可由DTT1决定,或由DTT2决定,或由DTT1和DTT2加权决定。目标节点以第三定时模式同时进行IAB-MT的下行接收和IAB-DU的上行接收。
在第一定时模式下可按照如下方式确定IAB-DU的DTT1:
TD1=TA1/2-Tg1/2或者TD1=TA1/2+T_delta1,其中,TA1≥0,-Tg1/2=T_delta1≤0,
TA1=N TA1·T c或TA1=(N TA1+N TA,offset1)·T c
DTT1=DRT1-TD1。
在第三定时模式下可按照如下方式确定IAB-DU的DTT2:
TD2=TA2/2-Tg2/2或者TD2=TA2/2+T_delta2,其中,TA2≥0,
-Tg2/2=T_delta2≤0 TA2=N TA2·T c或TA2=(N TA2+N TA,offset2)·T c
DTT2=DRT2-TD2。
最终确定的DTT可由DTT1和DTT2加权决定:DTT=α·DTT1+β·DTT2。
IAB-MT在第一定时模式下的UTT:
UTT1=DRT1-TA1或UTT1=DRT1+TA1
IAB-MT在第三定时模式下的UTT:
UTT2=DRT2-TA2或UTT2=DRT2-TA2-SN·ST或UTT2=DRT2+TA2
或UTT2=DRT2+TA2-SN·ST,这里减号表示UTT相对DRT提前。
在一实施例中,第三定时相对第四定时提前或滞后的OFDM符号数,包括以下至少之一:
目标节点的UTT相对于目标节点的定时提前量提前或滞后的OFDM符号数;
目标节点的UTT相对于目标节点的DTT提前或滞后的OFDM符号数;
目标节点的URT相对于目标节点的DRT提前或滞后的OFDM符号数;
目标节点的UTT相对于目标节点的URT提前或滞后的OFDM符号数;
目标节点的DTT相对于目标节点的DRT提前或滞后的OFDM符号数。
在一实施例中,第一父节点与第二父节点之间的传播时间由服务小区或者由第一父节点配置;第一定时(DTT)与第二定时(DRT)之间的时间差由服务小区或者由第一父节点配置。
在一实施例中,目标节点的第三定时相对于目标节点的第四定时提前或滞后的符号时间,根据循环前缀时长和符号净时长确定;其中,循环前缀时长包括以下至少之一:零时长循环前缀、正常循环前缀以及扩展循环前缀;符号净时长等于子载波间隔的倒数(1/Δf)。
在一实施例中,还包括:
步骤130:根据预定义方式确定所述第三定时相对第四定时提前或滞后的OFDM符号数。
在一实施例中,步骤130,具体包括:
根据第一父节点与所述目标节点之间的节点物理距离确定所述OFDM符号数的默认值。
在一实施例中,还包括:
步骤140:根据配置信令确定所述第三定时相对第四定时提前或滞后的OFDM符号数。
所述配置信令包括物理层信令、介质访问控制(Medium Access Control,MAC)层信令、无线资源控制(Radio Resource Control,RRC)信令、操作维护管理(Operation Administration and Maintenance,OAM)信令。
以下通过示例对确定第三定时相对第四定时提前或滞后的OFDM符号数(SN)的过程进行说明。
示例七
为了避免负值TA的产生,可提前或滞后OFDM符号,例如:
对于第一定时模式,UTT相对计算的定时提前量提前或滞后若干个OFDM符号;
对于第二定时模式,UTT相对DTT提前或滞后若干个OFDM符号;
对于第三定时模式,URT相对DRT提前或滞后若干个OFDM符号;
对于第四定时模式,UTT相对URT提前或滞后若干个OFDM符号;
对于第五定时模式,DTT相对DRT提前或滞后若干个OFDM符号;
上述提前或滞后的若干个OFDM符号数,由预定义或配置的方式确定,其中预定义的方式包括根据节点间距确定默认值;配置的方式包括物理层(Physical Layer)信令(例如下行控制信息(Downlink Control Information,DCI))、MAC层信令(如介质访问控制控制元素(Medium Access Control Control Element,MAC-CE))、RRC layer信令(如广播信令或是专用信令)、OAM信令。
本申请实施例还提供一种定时确定装置。图15为一实施例提供的一种定时确定装置的结构示意图。如图15所示,所述定时确定装置包括:参数确定模块210和定时确定模块220。
参数确定模块210,设置为确定定时参数;
定时确定模块220,设置为根据所述定时参数确定目标节点的传输定时,所述传输定时包括以下至少之一:第一定时与第二定时之间的时间差、DTT和UTT。
本实施例的定时确定装置,实现了根据定时参数确定时间差、目标节点的DTT和UTT中的至少一种,从而灵活、准确地确定传输定时。
在一实施例中,所述定时参数包括以下至少之一:定时提前量、定时参量以及时差参数。
在一实施例中,所述第一定时为服务小区或第一父节点的DTT,所述第二定时为所述目标节点的DRT。
在一实施例中,所述定时参数包括定时提前量;所述装置还包括:
定时提前量确定模块,设置为根据以下至少之一确定所述定时提前量:定时提前量偏移、定时提前量索引、定时提前量颗粒度。
在一实施例中,所述定时参数包括定时参量;所述装置还包括:
定时参量确定模块,设置为根据以下至少之一确定所述定时参量:定时参量偏移、定时参量索引、定时参量颗粒度。
在一实施例中,所述定时参数包括时差参数;
所述时差参数包括以下至少之一:
第一父节点与第二父节点之间的传播时间;
第一父节点确定的第一定时与第二定时之间的时间差;
所述目标节点的第三定时相对于所述目标节点的第四定时提前或滞后的OFDM符号数;
所述目标节点的第三定时相对于所述目标节点的第四定时提前或滞后的OFDM符号时间;
所述目标节点的第三定时相对于所述目标节点的第四定时提前或滞后的子载波间隔。
在一实施例中,所述传播时间和所述时间差由服务小区配置,或者由第一父节点配置。
在一实施例中,所述符号时间根据循环前缀时长和符号净时长确定;
其中,所述循环前缀时长包括以下至少之一:零时长循环前缀、正常循环前缀、扩展循环前缀;
所述符号净时长等于子载波间隔的倒数。
在一实施例中,所述传输定时包括第一定时与第二定时之间的时间差;
所述时间差根据如下方式至少之一确定:
TD=TA/2;TD=TA;
TD=TA/2-Tg/2;TD=TA/2+T_delta;
TD=-|TA|/2+Tg/2;TD=-|TA|/2+T_delta;
TD=-TA/2+Tg/2;TD=-TA/2+T_delta;
TD=TA/2±SN·ST;TD=TA±SN·ST;
TD=TA/2-Tg/2±SN·ST;TD=TA/2+T_delta±SN·ST;
TD=-|TA|/2+Tg/2±SN·ST;TD=-|TA|/2+T_delta±SN·ST;
TD=-TA/2-Tg/2±SN·ST;TD=-TA/2+T_delta±SN·ST;
TD=TA/2+TPup/2;TD=TA/2+TDup/2;
TD=-|TA|/2+TPup/2;TD=-|TA|/2+TDup/2;
TD=-TA/2+TPup/2;TD=-TA/2+TDup/2;
TD=TA/2-(SN·ST-TPup)/2;TD=TA/2-(SN·ST-TDup)/2;
TD=TA/2-TPup/2;TD=TA/2-TDup/2;
其中,TD表示第一定时与第二定时之间的时间差,所述第一定时为服务小区或第一父节点的DTT,所述第二定时为所述目标节点的DRT;TA表示定时提前量,Tg表示第一父节点的URT与第一父节点的DTT之间的时间差,SN表示所述目标节点的第三定时相对于所述目标节点的第四定时提前或滞后的OFDM符号数,ST表示所述目标节点的第三定时相对于所述目标节点的第四定时提前或滞后的OFDM符号时间,TPup表示第一父节点与第二父节点之间的传播时间,TDup表示第一父节点确定的第一定时与第二定时之间的时间差,T_delta表示定时参量。
在一实施例中,所述传输定时包括定时提前量;
所述定时提前量根据如下方式至少之一确定:
TA=N TA·T c
TA=(N TA+N TA,offset)·T c
TA=-N TA·T c
TA=-(N TA+N TA,offset)·T c
其中,TA表示所述定时提前量,N TA表示定时提前调整数或定时滞后调整数,N TA,offset表示定时提前量偏移或定时滞后量偏移,T c表示时间单元。
在一实施例中,所述传输定时包括定时参量;
所述定时参量根据如下方式之一确定:
T_delta=(N delta+T delta·G step)·T c
T_delta=(-N TA,offset/2+N delta+T delta·G step)·T c
T_delta=(N TA,offset/2+N delta+T delta·G step)·T c
其中,T_delta表示所述定时参量,N TA表示定时提前调整数或定时滞后调整数,N TA,offset表示定时提前量偏移或定时滞后量偏移,T c表示时间单元,T delta表示定时参量索引值,N delta表示定时参量偏移,G step表示定时参量颗粒度。
在一实施例中,所述定时模式关联于第一类物理量;
所述第一类物理量包括如下至少之一:定时参量偏移、定时参量索引、定时参量颗粒度。
在一实施例中,定时确定模块220,包括:
第一确定单元,设置为根据所述定时参数确定所述目标节点的DRT,以及第一定时与第二定时之间的时间差;
第二确定单元,设置为根据所述目标节点的DRT和所述时间差确定所述目标节点的DTT。
在一实施例中,在不同定时模式以时分或频分方式共存的情况下,所述目 标节点的DTT关联于预定义的或者由服务小区或第一父节点配置的任一种定时模式;或者,所述目标节点的DTT为不同定时模式对应的DTT的加权值。
在一实施例中,定时确定模块220,包括:
第三确定单元,设置为根据所述定时参数确定所述目标节点的DRT、定时提前量以及所述目标节点的DTT;
第四确定单元,设置为根据所述目标节点的DRT、所述定时提前量和所述目标节点的DTT确定所述目标节点的UTT。
在一实施例中,在不同定时模式以时分或频分方式共存的情况下,所述目标节点的UTT关联于预定义的或者由服务小区或第一父节点配置的任一定时模式确定;或者,所述目标节点的UTT为不同定时模式对应的UTT的加权值。
在一实施例中,所述定时模式关联于第二类物理量,所述第二类物理量包括如下至少之一:定时提前量、定时参量、时间差、DRT和UTT。
在一实施例中,第三定时相对第四定时提前或滞后的OFDM符号数,包括以下至少之一:
所述目标节点的UTT相对于所述目标节点的定时提前量提前或滞后的OFDM符号数;
所述目标节点的UTT相对于所述目标节点的DTT提前或滞后的OFDM符号数;
所述目标节点的URT相对于所述目标节点的DRT提前或滞后的OFDM符号数;
所述目标节点的UTT相对于所述目标节点的URT提前或滞后的OFDM符号数;
所述目标节点的DTT相对于所述目标节点的DRT提前或滞后的OFDM符号数。
在一实施例中,所述装置还包括:
第一符号数确定模块,设置为根据预定义方式确定所述第三定时相对第四定时提前或滞后的OFDM符号数;
符号数确定模块,具体设置为根据第一父节点与所述目标节点之间的节点物理距离确定所述OFDM符号数的默认值。
在一实施例中,还包括:
第二符号数确定模块,设置为根据配置信令确定所述第三定时相对第四定 时提前或滞后的OFDM符号数;
所述配置信令包括物理层信令、MAC层信令、RRC信令、OAM信令。
本实施例提出的定时确定装置与上述实施例提出的定时确定方法属于同一构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行定时确定方法相同的有益效果。
本申请实施例还提供了一种通信节点,图16为一实施例提供的一种通信节点的硬件结构示意图,如图16所示,本申请提供的通信节点,包括存储器52、处理器51以及存储在存储器52上并可在处理器51上运行的计算机程序,处理器51执行所述程序时实现上述的定时确定方法。
通信节点还可以包括存储器52;该通信节点中的处理器51可以是一个或多个,图16中以一个处理器51为例;存储器52用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器51执行,使得所述一个或多个处理器51实现如本申请实施例中所述的定时确定方法。
通信节点还包括:通信装置53、输入装置54和输出装置55。
通信节点中的处理器51、存储器52、通信装置53、输入装置54和输出装置55可以通过总线或其他方式连接,图16中以通过总线连接为例。
输入装置54可用于接收输入的数字或字符信息,以及产生与通信节点的用户设置以及功能控制有关的按键信号输入。输出装置55可包括显示屏等显示设备。
通信装置53可以包括接收器和发送器。通信装置53设置为根据处理器51的控制进行信息收发通信。
存储器52作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例所述定时确定方法对应的程序指令/模块(例如,定时确定装置中的参数确定模块210和定时确定模块220)。存储器52可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据通信节点的使用所创建的数据等。此外,存储器52可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器52可进一步包括相对于处理器51远程设置的存储器,这些远程存储器可以通过网络连接至通信节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中任一所述的定时确定方法。该方法,包括:确定定时参数;根据所述定时参数确定目标节点的传输定时,所述传输定时包括以下至少之一:第一定时与第二定时之间的时间差、DTT和UTT。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是,但不限于:电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于:电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、无线电频率(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括局域网(Local Area Network,LAN) 或广域网(Wide Area Network,WAN),连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (23)

  1. 一种定时确定方法,包括:
    确定定时参数;
    根据所述定时参数确定目标节点的传输定时,其中,所述传输定时包括以下至少之一:第一定时与第二定时之间的时间差、下行发射定时DTT和上行发射定时UTT。
  2. 根据权利要求1所述的方法,其中,所述定时参数包括以下至少之一:
    定时提前量、定时参量以及时差参数。
  3. 根据权利要求1所述的方法,其中,所述第一定时为服务小区或第一父节点的DTT,所述第二定时为所述目标节点的下行接收定时DRT。
  4. 根据权利要求1所述的方法,其中,所述定时参数包括定时提前量;
    所述方法还包括:
    根据以下至少之一确定所述定时提前量:定时提前量偏移、定时提前量索引、定时提前量颗粒度。
  5. 根据权利要求1所述的方法,其中,所述定时参数包括定时参量;
    所述方法还包括:
    根据以下至少之一确定所述定时参量:定时参量偏移、定时参量索引、定时参量颗粒度。
  6. 根据权利要求1所述的方法,其中,所述定时参数包括时差参数;
    所述时差参数包括以下至少之一:
    第一父节点与第二父节点之间的传播时间;
    第一父节点确定的第一定时与第二定时之间的时间差;
    所述目标节点的第三定时相对于所述目标节点的第四定时提前或滞后的正交频分复用OFDM符号数;
    所述目标节点的第三定时相对于所述目标节点的第四定时提前或滞后的OFDM符号时间;
    所述目标节点的第三定时相对于所述目标节点的第四定时提前或滞后的子载波间隔。
  7. 根据权利要求6所述的方法,其中,所述传播时间和所述第一父节点确定的第一定时与第二定时之间的时间差由服务小区配置,或者由所述第一父节点配置。
  8. 根据权利要求6所述的方法,其中,所述OFDM符号时间根据循环前缀时长和符号净时长确定;
    其中,所述循环前缀时长包括以下至少之一:零时长循环前缀、正常循环前缀、扩展循环前缀;
    所述符号净时长等于子载波间隔的倒数。
  9. 根据权利要求1所述的方法,其中,所述传输定时包括所述第一定时与第二定时之间的时间差;
    所述时间差根据如下方式至少之一确定:
    TD=TA/2;TD=TA;
    TD=TA/2-Tg/2;TD=TA/2+T_delta;
    TD=-|TA|/2+Tg/2;TD=-|TA|/2+T_delta;
    TD=-TA/2+Tg/2;TD=-TA/2+T_delta;
    TD=TA/2±SN·ST;TD=TA±SN·ST;
    TD=TA/2-Tg/2±SN·ST;TD=TA/2+T_delta±SN·ST;
    TD=-|TA|/2+Tg/2±SN·ST;TD=-|TA|/2+T_delta±SN·ST;
    TD=-TA/2-Tg/2±SN·ST;TD=-TA/2+T_delta±SN·ST;
    TD=TA/2+TPup/2;TD=TA/2+TDup/2;
    TD=-|TA|/2+TPup/2;TD=-|TA|/2+TDup/2;
    TD=-TA/2+TPup/2;TD=-TA/2+TDup/2;
    TD=TA/2-(SN·ST-TPup)/2;TD=TA/2-(SN·ST-TDup)/2;
    TD=TA/2-TPup/2;TD=TA/2-TDup/2;
    其中,TD表示所述第一定时与第二定时之间的时间差,所述第一定时为服 务小区或第一父节点的DTT,所述第二定时为所述目标节点的DRT;TA表示定时提前量,Tg表示第一父节点的上行接收定时URT与第一父节点的DTT之间的时间差,SN表示所述目标节点的第三定时相对于所述目标节点的第四定时提前或滞后的OFDM符号数,ST表示所述目标节点的第三定时相对于所述目标节点的第四定时提前或滞后的OFDM符号时间,TPup表示第一父节点与第二父节点之间的传播时间,TDup表示第一父节点确定的第一定时与第二定时之间的时间差,T_delta表示定时参量。
  10. 根据权利要求1所述的方法,其中,所述传输定时包括定时提前量;
    所述定时提前量根据如下方式至少之一确定:
    TA=N TA·T c
    TA=(N TA+N TA,offset)·T c
    TA=-N TA·T c
    TA=-(N TA+N TA,offset)·T c
    其中,TA表示所述定时提前量,N TA表示定时提前调整数或定时滞后调整数,N TA,offset表示定时提前量偏移或定时滞后量偏移,T c表示时间单元。
  11. 根据权利要求1所述的方法,其中,所述传输定时包括定时参量;
    所述定时参量根据如下方式之一确定:
    T_delta=(N delta+T delta·G step)·T c
    T_delta=(-N TA,offset/2+N delta+T delta·G step)·T c
    T_delta=(N TA,offset/2+N delta+T delta·G step)·T c
    其中,T_delta表示所述定时参量,N TA表示定时提前调整数或定时滞后调整数,N TA,offset表示定时提前量偏移或定时滞后量偏移,T c表示时间单元,T delta表示 定时参量索引值,N delta表示定时参量偏移,G step表示定时参量颗粒度。
  12. 根据权利要求1所述的方法,其中,定时模式关联于第一类物理量;
    所述第一类物理量包括如下至少之一:定时参量偏移、定时参量索引、定时参量颗粒度。
  13. 根据权利要求1所述的方法,其中,所述根据所述定时参数确定目标节点的传输定时,包括:
    根据所述定时参数确定所述目标节点的DRT,以及所述第一定时与第二定时之间的时间差;
    根据所述目标节点的DRT和所述时间差确定所述目标节点的DTT。
  14. 根据权利要求13所述的方法,其中,在不同定时模式以时分或频分方式共存的情况下,所述目标节点的DTT关联于预定义的或者由服务小区或第一父节点配置的任一种定时模式;或者,
    所述目标节点的DTT为不同定时模式对应的DTT的加权值。
  15. 根据权利要求1所述的方法,其中,所述根据所述定时参数确定目标节点的传输定时,包括:
    根据所述定时参数确定所述目标节点的DRT、定时提前量以及所述目标节点的DTT;
    根据所述目标节点的DRT、所述定时提前量和所述目标节点的DTT确定所述目标节点的UTT。
  16. 根据权利要求15所述的方法,其中,在不同定时模式以时分或频分方式共存的情况下,所述目标节点的UTT关联于预定义的或者由服务小区或第一父节点配置的任一定时模式确定;或者,
    所述目标节点的UTT为不同定时模式对应的UTT的加权值。
  17. 根据权利要求1所述的方法,其中,定时模式关联于第二类物理量,所述第二类物理量包括如下至少之一:定时提前量、定时参量、时间差、DRT和UTT。
  18. 根据权利要求6所述的方法,其中,所述目标节点的第三定时相对于所述目标节点的第四定时提前或滞后的OFDM符号数,包括以下至少之一:
    所述目标节点的UTT相对于所述目标节点的定时提前量提前或滞后的OFDM符号数;
    所述目标节点的UTT相对于所述目标节点的DTT提前或滞后的OFDM符号数;
    所述目标节点的URT相对于所述目标节点的DRT提前或滞后的OFDM符号数;
    所述目标节点的UTT相对于所述目标节点的URT提前或滞后的OFDM符号数;
    所述目标节点的DTT相对于所述目标节点的DRT提前或滞后的OFDM符号数。
  19. 根据权利要求6所述的方法,还包括:根据预定义方式确定所述目标节点的第三定时相对于所述目标节点的第四定时提前或滞后的OFDM符号数;
    所述根据预定义方式所述目标节点的第三定时相对于所述目标节点的第四定时提前或滞后的OFDM符号数,包括:
    根据所述第一父节点与所述目标节点之间的节点物理距离确定所述OFDM符号数的默认值。
  20. 根据权利要求6所述的方法,还包括:
    根据配置信令确定所述目标节点的第三定时相对于所述目标节点的第四定时提前或滞后的OFDM符号数;
    所述配置信令包括物理层信令、介质访问控制MAC层信令、无线资源控制RRC信令、操作维护管理OAM信令。
  21. 一种定时确定装置,包括:
    参数确定模块,设置为确定定时参数;
    定时确定模块,设置为根据所述定时参数确定目标节点的传输定时,其中,所述传输定时包括以下至少之一:第一定时与第二定时之间的时间差、下行发射定时DTT和上行发射定时UTT。
  22. 一种通信节点,包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1-20中任一项所述的定时确定方法。
  23. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1-20中任一项所述的定时确定方法。
PCT/CN2021/142891 2021-01-04 2021-12-30 定时确定方法、装置、通信节点及存储介质 WO2022143871A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/260,280 US20240064675A1 (en) 2021-01-04 2021-12-30 Timing determination method and device, communication node and storage medium
KR1020237026607A KR20230128367A (ko) 2021-01-04 2021-12-30 타이밍 결정 방법, 장치, 통신 노드 및 저장매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110003207.4 2021-01-04
CN202110003207.4A CN112839376A (zh) 2021-01-04 2021-01-04 定时确定方法、装置、通信节点及存储介质

Publications (1)

Publication Number Publication Date
WO2022143871A1 true WO2022143871A1 (zh) 2022-07-07

Family

ID=75927399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142891 WO2022143871A1 (zh) 2021-01-04 2021-12-30 定时确定方法、装置、通信节点及存储介质

Country Status (4)

Country Link
US (1) US20240064675A1 (zh)
KR (1) KR20230128367A (zh)
CN (1) CN112839376A (zh)
WO (1) WO2022143871A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112839376A (zh) * 2021-01-04 2021-05-25 中兴通讯股份有限公司 定时确定方法、装置、通信节点及存储介质
WO2023015447A1 (en) * 2021-08-10 2023-02-16 Lenovo (Beijing) Limited Method and apparatus for timing determination
CN115942466A (zh) * 2021-09-30 2023-04-07 维沃移动通信有限公司 保护符号的确定方法、装置及网络设备
CN115843095A (zh) * 2022-01-07 2023-03-24 中兴通讯股份有限公司 一种时间差确定方法、电子设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536407A (zh) * 2018-09-28 2019-12-03 中兴通讯股份有限公司 发送定时的确定方法及设备、计算机可读存储介质
US20200053682A1 (en) * 2018-08-09 2020-02-13 Qualcomm Incorporated Timing offset techniques in wireless communications
US20200145952A1 (en) * 2018-11-02 2020-05-07 Nokia Technologies Oy Timing advance control for iab
CN111757455A (zh) * 2019-03-28 2020-10-09 华为技术有限公司 调整下行发送定时的方法和通信装置
CN111901863A (zh) * 2020-04-02 2020-11-06 中兴通讯股份有限公司 一种定时参量确定方法、装置、设备和存储介质
CN112839376A (zh) * 2021-01-04 2021-05-25 中兴通讯股份有限公司 定时确定方法、装置、通信节点及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200053682A1 (en) * 2018-08-09 2020-02-13 Qualcomm Incorporated Timing offset techniques in wireless communications
CN110536407A (zh) * 2018-09-28 2019-12-03 中兴通讯股份有限公司 发送定时的确定方法及设备、计算机可读存储介质
US20200145952A1 (en) * 2018-11-02 2020-05-07 Nokia Technologies Oy Timing advance control for iab
CN111757455A (zh) * 2019-03-28 2020-10-09 华为技术有限公司 调整下行发送定时的方法和通信装置
CN111901863A (zh) * 2020-04-02 2020-11-06 中兴通讯股份有限公司 一种定时参量确定方法、装置、设备和存储介质
CN112839376A (zh) * 2021-01-04 2021-05-25 中兴通讯股份有限公司 定时确定方法、装置、通信节点及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (ZTE): "FL summary #1 on IAB case-1 timing", 3GPP DRAFT; R1-2004666, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200525 - 20200605, 25 May 2020 (2020-05-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051890558 *

Also Published As

Publication number Publication date
US20240064675A1 (en) 2024-02-22
KR20230128367A (ko) 2023-09-04
CN112839376A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
WO2022143871A1 (zh) 定时确定方法、装置、通信节点及存储介质
TWI805941B (zh) 通訊方法、通訊節點和非暫時性儲存介質
TWI781249B (zh) 特定於波束的定時提前組
JP2021522753A (ja) チャネル構成方法および装置、電力制御方法および装置、ユーザ機器、基地局、および記憶媒体
WO2018127157A1 (zh) 一种上行信号发送方法、接收方法、终端及基站
KR20200109354A (ko) Msg3 송신을 위한 시간 자원 할당 시그널링 메커니즘
US9094905B2 (en) Method, apparatus and computer program product for triggering the determination of a timing advance for one component carrier based upon another component carrier
WO2022152190A1 (zh) 资源可用性确定方法、资源配置方法、通信节点及存储介质
JP2023537747A (ja) エクステンデッドリアリティサービスのためのバッファステータス報告フォーマット、テーブル、およびプロシージャ
WO2021196702A1 (zh) 定时参量确定方法、装置、设备和存储介质
WO2021063372A1 (zh) 一种资源确定方法及装置
WO2020199765A1 (zh) 一种配置信息的方法与装置
WO2019192410A1 (zh) 一种信号传输方法及通信设备
CN115668851A (zh) 用于tci状态激活和码点到tci状态映射的系统和方法
JP2024054127A (ja) 低遅延通信のためのharqコードブック決定方法
US11877284B2 (en) Integrated access and backhaul with reversed scheduling
WO2018171783A1 (zh) 信号传输方法、装置及系统
WO2021088917A1 (zh) 参考信号的位置确定方法、装置、通信节点和存储介质
CN111698769B (zh) 数据发送方法、装置及系统
US20210297973A1 (en) Over the air synchronization of network nodes
KR20240005935A (ko) 사용자 장비, 스케줄링 노드, 사용자 장비를 위한 방법 및 스케줄링 노드를 위한 방법
US10588080B2 (en) Digital signal processing device of base station and method for processing data thereof
WO2023041064A1 (zh) 时间参数确定方法、设备和存储介质
WO2022206277A1 (zh) 资源属性配置方法、资源属性确定方法、通信节点及存储介质
US11510074B2 (en) Method of transmitting and receiving data in wireless communication system supporting full-duplex radio and apparatus therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914602

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18260280

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237026607

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237026607

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/11/2023)