WO2022143777A1 - 贴片天线及电子设备 - Google Patents

贴片天线及电子设备 Download PDF

Info

Publication number
WO2022143777A1
WO2022143777A1 PCT/CN2021/142515 CN2021142515W WO2022143777A1 WO 2022143777 A1 WO2022143777 A1 WO 2022143777A1 CN 2021142515 W CN2021142515 W CN 2021142515W WO 2022143777 A1 WO2022143777 A1 WO 2022143777A1
Authority
WO
WIPO (PCT)
Prior art keywords
patch
antenna
units
feeding
patch antenna
Prior art date
Application number
PCT/CN2021/142515
Other languages
English (en)
French (fr)
Inventor
彭伟博
徐鑫
李林盛
卡米雪夫提莫菲
单威
王咏超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21914509.1A priority Critical patent/EP4262017A4/en
Priority to US18/259,966 priority patent/US20240072415A1/en
Publication of WO2022143777A1 publication Critical patent/WO2022143777A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/005Patch antenna using one or more coplanar parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means

Definitions

  • the present application relates to the technical field of wireless communication, and in particular, to a patch antenna and an electronic device.
  • a mobile phone in order to realize the 5G (5th-Generation, fifth generation) mobile communication function, a mobile phone generally integrates a corresponding 5G antenna. Due to the limited space inside the mobile phone, setting up an antenna (AOD, Antenna on Display) in the screen of the mobile phone has also become one of the development directions of 5G technology.
  • AOD Antenna on Display
  • the thickness of the display module of the mobile phone is very small, generally only a few hundred microns. There are also some difficulties in constructing the antenna in the display module with this small thickness range.
  • the purpose of this application is to provide a patch antenna and an electronic device to solve the problem that the existing antenna cannot be installed in the display module.
  • the patch antenna includes: a plurality of patch units, a first feeding branch and a second feeding branch; the plurality of patch units are symmetrical with respect to a virtual symmetry axis.
  • the plurality of patch units are arranged at intervals; gaps are formed between adjacent patch units and are coupled through the gaps.
  • the first feeding branch and the second feeding branch are symmetrical with respect to the symmetry axis, and are respectively electrically connected to at least one of the plurality of patch units; the first feeding branch is used to realize all the the first polarization of the patch antenna, and the second feed branch is used to realize the second polarization of the patch antenna.
  • the patch antenna can have a lower profile, for example, the profile of the patch antenna is 0.2 ⁇ or 0.3 ⁇ , etc., so as to be a part of the display module.
  • the patch antenna can also support millimeter wave frequency bands such as n257 and n258, or can support other communication or data transmission needs to meet wireless communication needs.
  • the slit includes a first slit and a second slit; wherein the first slit and the second slit are perpendicular to each other, and the plurality of patch units pass through the first slit and the second slit.
  • Two slot couplings Two slot couplings.
  • the first feed branch is located on one side of the axis of symmetry.
  • the first feeding branch includes a first feeding part for directly feeding at least one of the plurality of patch units.
  • the second feed branch is located on the other side of the symmetry axis, and the second feed branch includes a second feed portion for feeding at least one of the plurality of patch units. Direct feed.
  • the first power feeder and the second power feeder are symmetrical with respect to the virtual symmetry axis.
  • the first power feeder is used to directly feed two of the plurality of patch units
  • the second power feeder is used to feed two of the plurality of patch units. a direct feed.
  • the angle between the first power feeding part and the symmetry axis is +45°; the angle between the second power feeding part and the symmetry axis is -45°, so as to realize the Dual polarization of chip antennas.
  • the width of the first slit includes 0.05 mm to 0.15 mm
  • the width of the second slit includes 0.05 mm to 0.15 mm
  • each of the plurality of patch units is the same size.
  • each of the plurality of patch units is square in shape, and the overall shape of the plurality of patch units is square.
  • the side length of the square formed by the plurality of patch units is in the range of 2 mm ⁇ 4 mm.
  • the patch antenna works at least in the millimeter wave frequency band of n257 and n258; or, the patch antenna works in the non-millimeter wave frequency band.
  • the number of the plurality of patch units is four, and the four patch units are arranged at intervals in the form of 2 ⁇ 2. In some other embodiments, the number of the plurality of patch units is nine, and the nine patch units are arranged at intervals in the form of 3 ⁇ 3. Based on this, the patch antenna may have a larger radiator or It has a large radiation area to enhance the overall directivity of the array antenna and improve the gain of the array antenna.
  • the plurality of patch units include transparent conductive patches; or, the plurality of patch units include metal meshes. It should be understood that when the patch unit is a metal grid, the light transmittance of the display module in the area corresponding to the patch antenna can be improved, and the possibility of the patch antenna being observed by the user can be reduced.
  • the material of the plurality of patch units includes indium tin oxide, silver oxide, copper, aluminum or silver paste.
  • the number of the first power feeders is two, and the two first power feeders are arranged in parallel and are electrically connected to two of the plurality of patch units.
  • the first feed branch further includes a first transmission part and a first connection part; the first connection part has a first input end, a first output end and a second output end, the first The input terminal is electrically connected to the first transmission part, the first output terminal is electrically connected to one of the first power feeding parts, and the second output terminal is electrically connected to the other first power feeding part.
  • the width of the first transmission part includes 0.2mm ⁇ 0.8mm; the width of the first input end includes 0.2mm ⁇ 0.8m; the width of the first output end and the second output end includes 0.1 mm ⁇ 0.5 mm; the width of the first power feeder includes 0.5 mm ⁇ 0.8 mm.
  • the patch unit includes a first patch unit and a plurality of second patch units arranged at intervals; the plurality of second patch units are arranged around the first patch unit and are all connected with the first patch unit.
  • the first patch units are arranged at intervals; wherein, the gaps are formed between the adjacent second patch units and between the second patch units and the first patch units , the first patch unit and the plurality of second patch units are coupled through the gap.
  • the gaps formed between the adjacent second patch units include a first gap and a second gap; wherein, the first gap and the second gap are perpendicular; or, The included angle between the first slit and the second slit is 60° ⁇ 120°.
  • the shape of the first patch unit is a circle
  • the shape of the plurality of second patch units is a fan ring; the center of the first patch unit and the plurality of second patch units The centers of the patch units coincide.
  • the present application also provides an antenna diaphragm.
  • the antenna film includes: a dielectric layer and the patch antennas described in the above embodiments; along a preset direction, a plurality of the patch antennas are arranged on the dielectric layer at intervals. It should be understood that when a related antenna structure needs to be arranged in the display module, the antenna film can be used as a part of the display module in the process of assembling the display module.
  • the patch antenna further includes a feed line; the feed line includes a first feed line and a second feed line; the first feed line is electrically connected to the first feed branch , the second feed line is electrically connected to the second feed branch to transmit signals to the first feed branch and the second feed branch, respectively.
  • the feeder wiring further includes a plurality of ground wires, and the first feeder wire and the second feeder wire are spaced between the plurality of ground wires. Based on the ground wire, the possibility of generating parasitic capacitance or parasitic inductance due to the mutual inductance of the first feeding wire and the second feeding wire can be reduced, and the isolation degree between the first polarization and the second polarization of the array antenna can be improved.
  • the dielectric layer includes a main body part and an extension part; the extension part is located on one side of the main body part; the patch unit and the feeding unit are both located on the main body part; the A feeder trace is located on the extension portion and is used for electrical connection with the circuit board assembly. It should be understood that the extension portion can be bent relative to the main body portion to facilitate binding/combination with the flexible circuit board.
  • the distance between the symmetry axes of the adjacent patch antennas includes 5 mm ⁇ 10 mm.
  • the dielectric layer includes a PET film, a COP film, a COC film, or a CPI film.
  • the present application also provides a display module.
  • the display module includes: a display layer and the antenna film described in the above embodiments, the antenna film is arranged on the display layer; wherein, the display layer has a display function and serves as the sticker ground reference for the chip antenna.
  • the display module further includes a polarizing layer; the antenna film is located between the display layer and the polarizing layer; or the polarizing layer is located between the display layer and the antenna film between.
  • the distance between the antenna film and the display layer ranges from 100 ⁇ m to 500 ⁇ m. It should be understood that the array antenna provided by the embodiments of the present application has the characteristics of ultra-low profile (100 ⁇ m ⁇ 500 ⁇ m), so as to be compatible with display modules of different types and specifications.
  • the present application also provides an electronic device.
  • the electronic device includes: a circuit board assembly, and the display module described in the above embodiments; the circuit board assembly is electrically connected to the display module.
  • the electronic device may be a mobile phone, a tablet computer, or other electronic device having a screen and enabling wireless communication.
  • the circuit board assembly includes a flexible circuit board and a radio frequency chip; the radio frequency chip is disposed on the flexible circuit board, and the flexible circuit board is electrically connected to the radio frequency chip and the patch antenna.
  • the flexible circuit board when the antenna diaphragm does not include a feeder trace or includes a part of the feeder trace, the flexible circuit board further includes a feeder trace, and the feeder trace is electrically connected to the radio frequency chip and the the antenna.
  • the feeder wiring includes a first feeder and a second feeder; the first feeder is electrically connected to the first feeder branch, and the second feeder is electrically connected to the second feeder branch .
  • the feeder wiring further includes a plurality of ground wires, and the first feeder wire and the second feeder wire are spaced between the plurality of ground wires. Based on the plurality of grounding lines, the possibility of generating parasitic capacitance or parasitic inductance due to mutual inductance of the first feeding line and the second feeding line can be reduced, and the isolation degree between the first polarization and the second polarization of the array antenna can be improved.
  • the circuit board assembly further includes a heat sink, and the heat sink is located on the side of the flexible circuit board facing away from the radio frequency chip, so as to improve the heat dissipation performance of the flexible circuit board during operation and improve the flexibility of the flexible circuit board.
  • the overall strength of the circuit board 181 is located on the side of the flexible circuit board facing away from the radio frequency chip, so as to improve the heat dissipation performance of the flexible circuit board during operation and improve the flexibility of the flexible circuit board.
  • the circuit board assembly further has a connector and a printed circuit board; the connector is arranged on the flexible circuit board and electrically connects the flexible circuit board and the printed circuit board.
  • multiple patch units are arranged at intervals, and the multiple patch units are coupled through gaps, so that the formed patch antenna has a low profile, and can support millimeter wave frequency bands such as n257 and n258, or can support Other communication or data transfer requirements.
  • the patch antenna can be conveniently arranged in the display module, and the communication experience requirement of the user can be satisfied.
  • FIG. 1 is a perspective view of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a partial exploded view of an electronic device according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a cover plate, a display module and a circuit board assembly according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a cover plate, a display module and a circuit board assembly according to another embodiment of the present application.
  • FIG. 5 is a schematic diagram of a cover plate and a display module according to another embodiment of the present application.
  • FIG. 6 is a perspective view of an antenna film according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a patch antenna according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a patch antenna according to another embodiment of the present application.
  • FIG. 9 is a perspective view of an antenna film according to another embodiment of the present application.
  • FIG. 10 is a perspective view of a circuit board assembly according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a patch antenna according to still another embodiment of the present application.
  • FIG. 12 is a data diagram of S-parameters of a patch antenna according to an embodiment of the present application.
  • FIG. 13 is a gain diagram of the +45° polarization of the patch antenna according to an embodiment of the present application.
  • FIG. 14 is a gain diagram of the -45° polarization of the patch antenna according to an embodiment of the present application.
  • FIG. 15 is an electric field diagram of +45° polarization at 26 GHz of the patch antenna according to an embodiment of the present application.
  • FIG. 16 is an electric field diagram of the -45° polarization at 26 GHz of the patch antenna according to an embodiment of the present application.
  • connection can be understood as physical contact and electrical conduction between components; it can also be understood as printed circuit board (Printed Circuit Board, PCB) copper foil or wires between different components in the circuit structure It is a form of connection in the form of physical lines that can transmit electrical signals.
  • connection can refer to a mechanical connection relationship or physical connection relationship, for example, the connection between A and B or the connection between A and B can refer to the existence of a fastened component (such as screws, bolts, rivets, etc.) between A and B. etc.), or A and B are in contact with each other and A and B are difficult to be separated.
  • length may be understood as the physical length of the object, and may also be understood as the electrical length.
  • the electrical length can be defined as the physical length (ie mechanical length or geometric length) multiplied by the travel time of an electrical or electromagnetic signal in a medium and the time it takes for that signal to travel the same distance in free space as the physical length of the medium. In comparison, the electrical length can satisfy the following formula:
  • L is the physical length
  • a is the transmission time of an electrical or electromagnetic signal in the medium
  • b is the medium transmission time in free space.
  • the electrical length can also refer to the ratio of the physical length (ie mechanical length or geometric length) to the wavelength of the transmitted electromagnetic wave, and the electrical length can satisfy the following formula:
  • L is the physical length
  • is the wavelength of the electromagnetic wave.
  • Coupling refers to the phenomenon that there is close cooperation and mutual influence between the input and output of two or more circuit elements or electrical networks, and energy is transmitted from one side to the other through interaction.
  • Antenna Pattern also known as Radiation Pattern. It refers to the graph of the relative field strength (normalized modulus value) of the antenna radiation field changing with the direction at a certain distance from the antenna. It is usually represented by two mutually perpendicular plane patterns in the maximum radiation direction of the antenna.
  • Antenna patterns usually have multiple radiating beams.
  • the radiation beam with the highest radiation intensity is called the main lobe, and the remaining radiation beams are called side lobes or side lobes.
  • the side lobes In the side lobes, the side lobes in the opposite direction to the main lobe are also called back lobes.
  • Antenna gain used to characterize the degree to which the antenna radiates the input power in a concentrated manner. Generally, the narrower the main lobe of the antenna pattern and the smaller the side lobes, the higher the antenna gain.
  • Antenna radiation efficiency refers to the ratio of the power radiated by the antenna to the space (that is, the power that effectively converts the electromagnetic wave part) to the active power input to the antenna.
  • the active power input to the antenna the input power of the antenna-return loss;
  • the return loss mainly includes the ohmic loss and/or dielectric loss of the metal.
  • Antenna return loss It can be understood as the ratio of the signal power reflected back to the antenna port through the antenna circuit to the transmit power of the antenna port. The smaller the reflected signal, the greater the signal radiated to the space through the antenna, and the greater the radiation efficiency of the antenna. The larger the reflected signal, the smaller the signal radiated to the space through the antenna, and the smaller the radiation efficiency of the antenna.
  • the antenna return loss can be represented by the S11 parameter, which is usually a negative number.
  • S11 the smaller the return loss of the antenna and the greater the radiation efficiency of the antenna; the larger the parameter S11, the greater the return loss of the antenna and the smaller the radiation efficiency of the antenna.
  • Antenna isolation refers to the ratio of the signal power transmitted by one antenna to the signal power received by another antenna. It can be represented by S21 and S12 parameters.
  • Reference ground (also called floor): Can be formed by a circuit board.
  • the circuit board can be a printed circuit board, such as an 8, 10 or 12 to 14 layer board with 8, 10, 12, 13 or 14 layers of conductive material, or through dielectric layers such as fiberglass, polymers, etc. or insulating layers to separate and electrically isolate elements.
  • a circuit board usually includes a dielectric substrate, a floor, and a trace layer. The trace layer/conductive layer is electrically connected through vias, and the floor can be formed as a whole.
  • Components such as displays, touch screens, input buttons, transmitters, processors, memory, batteries, charging circuits, System on Chip (SoC) structures, etc. may be mounted on or connected to a circuit board; or electrically connected to a circuit Trace/conductive layers in the board.
  • SoC System on Chip
  • the RF source is arranged on the trace layer.
  • the floor is made of conductive material.
  • the conductive material can be any of the following materials: copper, aluminum, stainless steel, brass and their alloys, copper foil on an insulating substrate, aluminum foil on an insulating substrate, gold foil on an insulating substrate, silver-plated copper, Silver-coated copper foil on insulating substrates, silver foil and tin-coated copper on insulating substrates, cloth impregnated with graphite powder, graphite-coated substrates, copper-coated substrates, brass-coated substrates, and aluminum-coated substrates substrate.
  • the floor may also be made of other conductive materials.
  • the floor can also be a thin metal film under the screen of an electronic device (such as a cell phone).
  • the antenna cannot increase the thickness of the display module too much, otherwise it is easy to cause poor display of the display module, and it is also unfavorable for the assembly of the display module. Therefore, the antenna placed in the display module needs to have a relatively low profile to ensure the effect of wireless communication.
  • the cross-section of the existing antenna is still relatively high, which leads to a larger thickness of the display module using the existing antenna, which further affects the thickness of the electronic device.
  • the existing antenna is installed under the condition of controlling the thickness of the display module, it will cause certain adverse effects on the bandwidth and isolation of the existing antenna. For example, the isolation of the existing antenna can only reach -5dB to -6dB.
  • the antenna placed in the display module also needs to have a certain resonance frequency band to support the frequency range specified by 5G.
  • the bandwidth of the existing antenna is relatively narrow.
  • the existing antenna can only meet the frequency band of 26GHz to 28GHz, while the frequency band of n257 is 26.5GHz to 29.5GHz, and the frequency band of n258 is 24.25GHz to 27.5GHz.
  • the existing antenna cannot well meet the frequency band specified by 5G.
  • an electronic device 10 provided by an embodiment of the present application includes a display module 12 provided with an array antenna 220.
  • the array antenna 220 may be disposed on the dielectric layer (not shown) by printing, etching or electroless plating. It should be understood that the dielectric layer provided with the array antenna 220 may also serve as a separate antenna film 200 . If a related antenna structure needs to be arranged in the display module 12 of the electronic device 10 , the antenna film 200 can be used as a part of the display module 12 during the process of assembling the display module 12 .
  • the array antenna 220 can radiate electromagnetic waves toward the free space during operation, so as to realize the wireless communication function. Since the array antenna 220 is placed inside the electronic device 10, for ease of understanding, the array antenna 220 is shown as a dotted line in FIG. 1 .
  • the array antenna 220 of the antenna film 200 may exhibit characteristics such as low profile, low loss, and high bandwidth, and these characteristics may conform to the metasurface ( Metasurface), therefore, the array antenna 220 can be used as a metasurface array antenna.
  • Metasurfaces refer to artificial layered materials whose thickness is smaller than the wavelength.
  • a metasurface antenna can be roughly understood as an antenna formed by dividing a large patch to form multiple small patches, which are arranged according to a certain rule and coupled through slots.
  • the cross-sectional height of the array antenna 220 provided in each embodiment of the present application is about 150 ⁇ m ⁇ 300 ⁇ m, and this cross-section can be understood as an ultra-low cross-section.
  • the array antenna 220 can be relatively easily compatible with the display module 12 as a part of the display module 12 .
  • the array antenna 220 can basically meet the above-mentioned frequency band ranges of n257 and n258, so as to realize the 5G mobile communication function.
  • the electronic device 10 in each embodiment of the present application is mainly a mobile phone for illustration, but not limited thereto.
  • the electronic device 10 may also be a tablet computer; or, the electronic device 10 may also be other electronic devices having a screen and enabling wireless communication, such as a TV or a smart watch.
  • the array antenna 220 in addition to supporting the above-mentioned frequency bands of n257 and n258, can also support the frequency band of n260 (37GHz-40GHz) by adjusting its size, specifications, etc., or can support Other millimeter wave or non-millimeter wave communication frequency bands.
  • the array antenna 220 can also support non-millimeter wave frequency bands such as 1 GHz to 3 GHz, or the array antenna 220 can support frequency bands corresponding to WiFi, Bluetooth, and ZigBee. limit.
  • the array antenna 220 provided in the embodiment of the present invention can be applied to a wireless intercity network (Wireless Metropolitan Area Network, WMAN), a wireless wide area network (Wireless Wide Area Network, WWAN), a wireless local area network (Wireless Local Area Network, WLAN), wireless Personal Area Network (Wireless Personal Area Network, WPAN), Multiple Input Multiple Output (MIMO), Radio Frequency Identification (RFID), Near Field Communication (NFC), Wireless Power Consortium (WPC) , Frequency Modulation (FM) and other wireless communication scenarios to meet the communication needs of users in corresponding application scenarios.
  • WMAN wireless Metropolitan Area Network
  • WWAN wireless wide area network
  • WLAN wireless local area network
  • WLAN Wireless Local Area Network
  • WPAN Wireless Personal Area Network
  • MIMO Multiple Input Multiple Output
  • RFID Radio Frequency Identification
  • NFC Near Field Communication
  • WPC Wireless Power Consortium
  • FM Frequency Modulation
  • the display module 12 may have a touch function as a touch-enabled display module. In other embodiments, the display module 12 may also have no touch function, which is not limited.
  • the type of the display module 12 may include an active light-emitting display module or a passive light-emitting display module.
  • the active light-emitting display module can be, for example, an OLED display module.
  • the passive light-emitting display module can be, for example, a liquid crystal display module.
  • the electronic device 10 may further include a backlight source, and the backlight source can provide backlight to the liquid crystal display module.
  • the electronic device 10 may further include a frame body 14 and a cover plate 16 , and the cover plate 16 is disposed on one side of the frame body 14 .
  • the space surrounded by the cover plate 16 and the frame body 14 is the internal space of the electronic device 10 ; other spaces relative to the internal space can be called free spaces.
  • the display module 12 is located on one side of the cover plate 16 and is arranged in the inner space.
  • the cover plate 16 can protect the display module 12 .
  • the surface of the cover plate 16 facing the free space can be understood as the front side of the electronic device 10 , and the light-emitting side of the display module 12 is facing the cover plate 16 .
  • the light emitted by the display module 12 or the backlight can pass through the cover plate 16 and be emitted to the free space.
  • the light rays can be incident on the user's eyes, so that the user can obtain relevant information.
  • the array antenna 220 on the dielectric layer can radiate electromagnetic waves toward the free space during operation, and the electromagnetic waves can be received by other antennas for communication; or, the array antenna 220 It can be used as a receiving antenna to receive electromagnetic waves radiated by base stations or other devices for communication.
  • the wavelength of the electromagnetic wave may include, for example, 1 mm ⁇ 10 mm, and the electromagnetic wave of this wavelength may also be called a millimeter wave.
  • the array antenna 220 may include a transparent conductive material, and the transparent conductive material may include, for example, indium tin oxide (ITO), silver oxide, copper or its alloys, aluminum or its alloys, or silver paste or the like. Therefore, when the display module 12 including the array antenna 220 is assembled into the electronic device 10, the light can pass through the array antenna 220 well to be emitted to free space. In addition, it is not easy for the user to observe the array antenna 220 in the display module 12 .
  • ITO indium tin oxide
  • the frame body 14 may comprise metal material and/or plastic material.
  • the metal material may include stainless steel or aluminum alloy, for example.
  • the cover plate 16 may be made of glass material, sapphire material or ceramic material, etc., which is not limited. Based on this, when the array antenna 220 of the display module 12 radiates electromagnetic waves to the free space, interference such as metals is weak, so as to ensure stable transmission and reception of electromagnetic waves.
  • the electronic device 10 may further include a circuit board assembly 18 .
  • the circuit board assembly 18 can be electrically connected with the display module 12, so as to cooperate with the display module to realize functions such as displaying, sending and receiving electromagnetic waves, and the like.
  • the circuit board assembly 18 includes a flexible circuit board (FPC) 181 , and the flexible circuit board 181 may be located on one side of the display module 12 and away from the cover plate 16 .
  • the flexible circuit board 181 can integrate electronic components such as related chips, resistors, capacitors and connectors required for radio frequency transmission. As illustrated in FIGS. 2 and 3 , the flexible circuit board 181 integrates the radio frequency chip 183 .
  • the radio frequency chip 183 may be a millimeter wave chip or a non-millimeter wave chip.
  • a heat sink 182 may be further provided on the side of the flexible circuit board 181 facing away from the electronic components. It should be understood that the heat sink 182 may comprise a metal material. Based on this, the heat sink 182 can improve the heat dissipation performance of the flexible circuit board 181 during operation, and can also improve the overall strength of the flexible circuit board 181 .
  • the circuit board assembly 18 may also include a printed circuit board (PCB) 185 .
  • PCB printed circuit board
  • the flexible circuit board 181 may be bent. Based on this, the flexible circuit board 181 can be electrically connected to the printed circuit board 185 through the connector 184 .
  • a heat sink (not shown) may also be provided on the side of the flexible circuit board 181 facing away from the connector 184 to improve the heat dissipation performance and the overall strength of the flexible circuit board 181 during operation.
  • the array antenna 220 on the dielectric layer 210 needs to be electrically connected to the flexible circuit board 181 , and the dielectric layer 210 and the flexible circuit board 181 are spaced apart. Based on this, at least one of the flexible circuit board 181 and the dielectric layer 210 can be flexibly bent to a certain extent, so as to realize the bonding/bonding between the flexible circuit board 181 and the dielectric layer 210 , and thus achieve Electrical connection between the circuit board assembly 18 and the display module 12 .
  • FIG. 2 and FIG. 3 illustrate that the dielectric layer 210 is bent to bind/combine with the flexible circuit board 181 , but not limited thereto.
  • the example is that the flexible circuit board 181 is bent, and the bent flexible circuit board 181 may face the display module. 12 extends to bind/combine with the array antenna 220 on the dielectric layer 210.
  • the display module 12 includes a display layer 122 , a dielectric layer 210 and a polarizer (POL, Polarizer) 124 .
  • the display layer 122 can also serve as a reference ground for the array antenna 220.
  • the polarizing layer 124 can reduce the reflection degree of the display module 12 and improve the contrast ratio of the display module 12 .
  • the display module 12 may further include a first optical adhesive layer (OCA, Optically Clear Adhesive) 126 and a second optical adhesive layer 128, and the first optical adhesive layer 126 and the second optical adhesive layer 128 may realize a display layer. 122. Adhesion between the dielectric layer 210 and the polarizing layer 124.
  • OCA Optically Clear Adhesive
  • the display layer 122 , the first optical adhesive layer 126 , and the dielectric layer 210 are arranged in sequence.
  • the polarizing layer 124 may be disposed between the dielectric layer 210 and the second optical adhesive layer 128 .
  • the distance H between the dielectric layer 210 and the display layer 122 is about 100 ⁇ m ⁇ 200 ⁇ m; wherein, the distance H may refer to the distance between the surface of the dielectric layer 210 away from the display layer 122 and the surface of the display layer 122 .
  • the shortest distance (or straight-line distance).
  • the distance H between the dielectric layer 210 and the display layer 122 is 100 ⁇ m, 110 ⁇ m, 120 ⁇ m, 130 ⁇ m, 140 ⁇ m, 150 ⁇ m, 160 ⁇ m, 170 ⁇ m, 180 ⁇ m, 190 ⁇ m or 200 ⁇ m.
  • the dielectric layer 210 is located between the polarizing layer 124 and the first optical adhesive layer 126 for illustration, but it is not limited thereto.
  • the display layer 122 , the polarizing layer 124 and the first optical adhesive layer 126 are arranged in sequence.
  • the dielectric layer 210 may be correspondingly disposed between the first optical adhesive layer 126 and the second optical adhesive layer 128 .
  • the distance H between the dielectric layer 210 and the display layer 122 may be about 200 ⁇ m ⁇ 500 ⁇ m.
  • the distance H between the dielectric layer 210 and the display layer 122 is 250 ⁇ m, 300 ⁇ m, 350 ⁇ m, 350 ⁇ m, 400 ⁇ m, or 450 ⁇ m.
  • the distance H between the dielectric layer 210 and the display layer 122 can be adaptively adjusted, for example, within the range of 0.1 mm ⁇ 0.5 mm. That is, the array antenna 220 provided by the embodiments of the present application has the characteristics of ultra-low profile, so as to be compatible with display modules 12 of different types and different specifications.
  • the adaptive adjustment can be realized by adjusting the amount/thickness of the first optical adhesive layer 126 , the thickness of the dielectric layer 210 or the thickness of the polarizing layer 124 and the like.
  • the dielectric layer 210 may be a transparent film layer, and can withstand corresponding printing, etching and other processes.
  • the medium layer 210 can be a PET film (Polyester Film, polyester film), a COP film (Cyclo Olefin Polymer Film, a cyclic olefin polymer film), a COC film (Copolymers of Cycloolefin Film, a cyclic olefin copolymer film) or a CPI Film (Colorless and Transparent Polyimide Film, colorless transparent polyimide film), etc., which is not limited in this application.
  • the array antenna 220 of the antenna film 200 exemplarily includes four patch antennas 230 , and the four patch antennas 230 are arranged along the preset direction A, so as to enhance the array antenna 220 directivity and beam scanning.
  • the preset direction A may refer to the width direction of the electronic device 10 , the display module 12 or the antenna film 200 .
  • the preset direction A may refer to the length direction of the electronic device 10 , the display module 12 or the antenna film 200 or other directions.
  • the other direction may be the diagonal direction of the electronic device 10, the display module 12 or the antenna film 200; or, the other direction may be any direction with an acute angle to the width direction, or the like.
  • the arrangement along the preset direction A can also be understood as the four patch antennas 230 are arranged along the preset direction A at intervals as a whole, for example, the four patch antennas 230 can be in the shape of "field" as a whole Alternatively, it is arranged on the dielectric layer 210 in a diamond shape.
  • the area of the screen corresponding to the patch antennas 230 may also be an area less touched by the user's fingers, for example, the patch antennas 230 are close to The upper area of the mobile phone screen is set (generally close to the area where the front camera is set); alternatively, the patch antennas 230 are set close to the upper left corner of the mobile phone screen; or, the patch antennas 230 are set close to the upper right corner of the mobile phone screen; Alternatively, the patch antennas 230 are located on one side of the screen of the mobile phone and away from the volume key or the power button of the mobile phone, so as to improve the effect of wireless communication of the electronic device 10 .
  • the array antenna 220 on the dielectric layer 210 may also include two, six, eight, nine or other number of patch antennas 230 .
  • each patch antenna 230 is an axisymmetric figure as a whole; that is, the patch antenna 230 has a virtual symmetry axis S, and the patch antenna 230 is symmetrical relative to the virtual symmetry axis.
  • Axis S is symmetrical.
  • the patch antenna 230 includes a feeding unit 250 and a plurality of patch units 240 , and the feeding unit 250 can feed the plurality of patch units 240 .
  • a plurality of patch units 240 are arranged at intervals, a gap is formed between adjacent patch units 240, and each patch unit 240 can be coupled through the gap.
  • the plurality of patch antennas 230 may be generally arranged in a square, a diamond, a rectangle, a circle, a sector, or other shapes.
  • the slit includes at least a first slit 240a and a second slit 240b.
  • the first slit 240a and the second slit 240b are perpendicular to each other; that is, the included angle between the first slit 240a and the second slit 240b is 90°. It should be understood that, based on the influence of process errors and process yields that may exist in the manufacturing process, the mutual perpendicularity can also be understood as being substantially perpendicular between the first slit 240a and the second slit 240b; for example, the first slit 240a and the second slit 240b are The included angle between the two slits 240b is between 80°-100°, or between 85°-95°, or the like.
  • the included angle between the first slit 240a and the second slit 240b may be 60° ⁇ 120°.
  • the included angle between the first slit 240a and the second slit 240b may be 70°, 80°, 100° or 110°, etc.
  • the patch antenna 230 of each embodiment of the present application may exhibit different characteristics from ordinary antennas, so as to serve as a metasurface patch antenna.
  • the feeding unit 250 may be electrically connected to at least one patch unit 240 of the plurality of patch units 240 to directly feed the electrically connected patch unit 240 without The remaining patch units 240 electrically connected to the feeding unit 250 can be coupled and fed through the gaps (240a, 240b).
  • the multiple patch units 240 have the same size, which may include the same shape.
  • the shape of the patch unit 240 may be a square, and the overall shape of the patch antenna 230 is also a square. It should be understood that the shape of the patch unit 240 may also be a regular shape such as a rectangle, a diamond or a fan. Wherein, when the shape of the patch unit 240 is a sector, the sector may be a quarter of a circle, and the overall shape of the patch antenna 230 is a circle.
  • the corresponding first slit 240a and the second slit 240b are perpendicular to each other.
  • the virtual symmetry axis S and the corresponding first slit 240 of the patch unit 240 are perpendicular to each other.
  • the included angle ⁇ of the edges of a slit 240a is 45° or about 45°.
  • the included angle ⁇ between the virtual symmetry axis S and the edge of the patch unit 240 corresponding to the second slit 240b is 45° or about 45°.
  • the angle between the corresponding first slot 240a and the second slot 240b is 60° ⁇ 120°.
  • the virtual symmetry axis S corresponds to the patch unit 240
  • the included angle of the edge of the first slit 240a is 30° ⁇ 60°.
  • the included angle between the virtual symmetry axis S and the edge of the patch unit 240 corresponding to the second slit 240b is also 30° ⁇ 60°.
  • the width G of the gaps ( 240 a , 240 b ) between the patch units 240 may include 0.05 mm ⁇ 0.15 mm.
  • the width G of the slits (240a, 240b) is 0.05mm, 0.06mm, 0.07mm, 0.08mm, 0.09mm, 0.1mm, 0.11mm, 0.12mm, 0.13mm, 0.14mm or 0.15mm.
  • the width G of the gaps ( 240 a , 240 b ) can be understood as the shortest distance between adjacent patch units 240 .
  • the slits (240a, 240b) may refer to the first slit 240a or the second slit 240b, which is exemplified as the first slit 240a in FIG. 7 .
  • the side length L1 of the square patch antenna 230 may include 2 mm ⁇ 4 mm.
  • the side length L1 of the square patch antenna 230 is about 3.7mm; or, the side length L1 of the patch antenna 230 is 2mm, 2.2mm, 2.5mm, 2.8mm, 3.0mm, 3.3mm, 3.5mm, 3.9mm Or 4mm etc.
  • the side length L1 of the square patch antenna 230 may also be greater than 4 mm, for example, the side length L1 of the square patch antenna 230 is 4.1 mm, 4.2 mm, 4.3 mm, and the like.
  • the overall length L2 of each patch antenna 230 may include 0.5 ⁇ ⁇ 1 ⁇ , that is, 0.5 ⁇ 1 wavelength;
  • the distance L2 between the virtual symmetry axes S of adjacent patch antennas 230 includes 0.5 ⁇ ⁇ 1 ⁇ .
  • the overall length L2 of each patch antenna 230 may include 0.5 ⁇ ⁇ 0.8 ⁇ , 0.5 ⁇ ⁇ 0.7 ⁇ , 0.6 ⁇ , or 0.9 ⁇ , and the like.
  • the distance L2 between the symmetry axes S of adjacent patch antennas 230 may include 5 mm ⁇ 10 mm.
  • the distance L2 between the symmetry axes S of adjacent patch antennas 230 is 5 mm, 5.5 mm, 6 mm, 6.5 mm, 7 mm, 7.5 mm, 8 mm, 8.5 mm, 9 mm, 9.5 mm, or 10 mm.
  • the feeding unit 250 includes a first feeding branch 260 and a second feeding branch 270 .
  • Both the first feeding branch 260 and the second feeding branch 270 may be electrically connected to the patch unit 240 and used to realize dual polarization of the patch antenna 230 .
  • the first feed branch 260 is used to realize the first polarization (also referred to as polarization 1) of the patch antenna 230, for example, +45° polarization, it should be understood that this angle is relative to the preset direction A or
  • the virtual symmetry axis S may also be relative to the edge of the mobile phone screen close to the patch antenna 230 .
  • the second feed branch 270 is used to realize the second polarization (also referred to as polarization 2) of the patch antenna 230, for example, a -45° polarization. It should be understood that this angle is relative to the preset direction A or virtual In terms of the symmetry axis S, it can also be relative to the edge of the mobile phone screen close to the patch antenna 230 .
  • the first feeding branch 260 may be electrically connected to at least two patch units 240 in the patch antenna 230 , and the remaining patch units 240 may be coupled to the at least two patch units 240 through the gap between the at least two patch units 240 . feed.
  • the second feeding branch 270 can also be electrically connected to at least two patch units 240 in the patch antenna 230 , and the remaining patch units 240 can be fed through the gap coupling with the at least two patch units 240 . Electricity. It should be understood that, similar to the patch unit 240, the first feeding branch 260 and the second feeding branch 270 may be symmetrical with respect to the virtual symmetry axis S.
  • the first feeding branch 260 includes a first transmitting part 262 , a first connecting part 264 and a first feeding part 266 which are connected in sequence.
  • the first connection part 264 is generally in a "T" shape or a "Y" shape, and has a first input end 264a, a first output end 264b and a second output end 264c.
  • An example of the number of the first power feeders 266 is two, and the two first power feeders 266 are arranged in parallel, and both are used to achieve +45° polarization.
  • the first input end 264 a of the first connection part 264 may be electrically connected to the first transmission part 262 .
  • the first output end 264b of the first connection part 264 may be electrically connected to one of the two first power feeding parts 266
  • the second output end 264c of the first connection part 264 may be electrically connected to the other of the two first power feeding parts 266 . an electrical connection.
  • one of the two first power feeding parts 266 may also be electrically connected to a patch unit 240 , and the other one of the two first power feeding parts 266 may also be electrically connected to another patch unit 240 , for feeding.
  • the first connection part 264 and the first power feeding part 266 may act as a first power divider to distribute the signals transmitted through the first transmission part 262 .
  • the first power divider can be, for example, a T-type power divider.
  • the width D1 of the first transmission portion 262 includes 0.2mm ⁇ 0.8mm, for example, the width of D1 is 0.2mm, 0.3mm, 0.4mm, 0.5mm, 0.6mm, 0.7mm or 0.8mm mm.
  • the width D2 of the first input end 264a of the first connection portion 264 includes 0.2mm ⁇ 0.8m, for example, the width of D2 is 0.2mm, 0.3mm, 0.4mm, 0.5mm, 0.6mm, 0.7mm or 0.8mm.
  • the width D3 of the first output end 264b and the second output end 264c of the first connection portion 264 includes 0.1mm ⁇ 0.5mm, for example, the width of D3 is 0.1mm, 0.2mm, 0.3mm, 0.4mm or 0.5mm.
  • the width D4 of the first power feeding portion 266 includes 0.5 mm ⁇ 0.8 mm, for example, the width of D4 is 0.5 mm, 0.6 mm, 0.7 mm or 0.8 mm.
  • the second feeding branch 270 includes a second transmission part 272 , a second connection part 274 and a second transmission part 272 connected in sequence. Two feeders 276 .
  • the second transmission part 272 is parallel to the first transmission part 262 .
  • the second connection part 274 is substantially "T" shaped or "Y" shaped, and has a second input end 274a, a third output end 274b and a fourth output end 274c.
  • An example of the number of the second power feeders 276 is two, and the two second power feeders 276 are arranged in parallel, and both are used to achieve -45° polarization. It should be understood that the directions in which the second power feeder 276 and the first power feeder 266 are arranged are both directions of current flow. The second power feeder 276 and the first power feeder 266 are perpendicular to each other, thereby realizing dual polarization.
  • the second input end 274a of the second connection part 274 may be electrically connected to the second transmission part 272 .
  • the third output terminal 274b of the second connection part 274 may be electrically connected to one of the two second power feeding parts 276
  • the fourth output terminal 274c of the second connection part 274 may be electrically connected to the other of the two second power feeding parts 276 . an electrical connection.
  • one of the two second feeding parts 276 may also be electrically connected to a patch unit 240 .
  • the other one of the two second power feeding parts 276 may also be electrically connected to the other patch unit 240 to realize power feeding.
  • the second connection part 274 and the second power feeding part 276 can act as a second power divider to distribute the signal transmitted through the second transmission part 272 .
  • the second power divider may be, for example, a T-type power divider.
  • the second feeding part 276 of the first feeding branch 260 and the fourth feeding part of the second feeding branch 270 can be electrically connected to the same patch unit 240 . connect.
  • the width E1 of the second transmission portion 272 includes 0.2 mm ⁇ 0.8 mm, for example, the width E1 is 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm or 0.7 mm.
  • the width E2 of the second input end 274a of the second connection portion 274 includes 0.2mm ⁇ 0.8m, for example, the width of E2 is 0.3mm, 0.4mm, 0.5mm, 0.6mm or 0.7mm.
  • the width E3 of the third output end 274b and the fourth output end 274c of the second connection portion 274 includes 0.1mm ⁇ 0.5mm, for example, the width of E3 is 0.2mm, 0.3mm, 0.4mm or 0.5mm.
  • the width E4 of the second power feeding portion 276 includes 0.5mm ⁇ 0.8mm, for example, the width of E4 is 0.6mm or 0.7mm.
  • the patch antenna 230 may further include a feed line 300 .
  • the feeding wire 300 may be electrically connected to the first transmission part 262 and the second transmission part 272 of the feeding unit 250 respectively, so as to realize signal transmission. Based on this, the feeding wire 300 can be extended to be electrically connected to the radio frequency chip 183 .
  • the feed line 300 in each embodiment of the present application is mainly illustrated by a coplanar waveguide (CPW, Coplanar Waveguide), but is not limited thereto.
  • the feed line 300 may also include a microstrip line or a stripline or the like.
  • the feed line 300 may include a first feed line 310 , a second feed line 320 and a ground wire 330 .
  • the number of the ground lines 330 is multiple, the first feed line 310 and the second feed line 320 are located between the plurality of ground lines 330 at intervals, and the ground lines 330 can serve as the connection between the first feed line 310 and the second feed line 320 reference place.
  • the first feeder 310 is electrically connected to the first feeder branch 260 and the second feeder 320 is electrically connected to the second feeder branch 270 .
  • the possibility of parasitic capacitance or parasitic inductance caused by mutual inductance between the first feeder 310 and the second feeder 320 can be reduced, and the isolation between polarization 1 and polarization 2 of the array antenna 220 can be improved.
  • the grounding wires 330 may be located on the same layer as the first feeding wire 310 and the second feeding wire 320 .
  • the ground wire 330 , the first feeding wire 310 and the second feeding wire 320 are all located on the dielectric layer 210 .
  • the antenna film 200 is a single-layer structure, and its thickness can be well controlled.
  • the antenna film 200 can be bent and arranged in the display module 12 relatively easily. In terms of process, the antenna film 200 does not need to be perforated to provide lead wires, the manufacturing process of the antenna film 200 is relatively simple, and the assembly difficulty of the corresponding display module 12 is not increased.
  • the dielectric layer 210 may include a main body portion 212 , an extension portion 214 located on one side of the main body portion 212 , a patch unit 240 and a feeder.
  • the units 250 are all disposed on the main body portion 212 .
  • the main body 212 of the dielectric layer 210 may be located between the display layer 122 and the first optical adhesive layer 126 ; or, the main body 212 of the dielectric layer 210 may be located between the first optical adhesive layer 126 and the second optical adhesive layer 128 .
  • the extension portion 214 is located outside the display layer 122 correspondingly; that is, taking the surface of the display layer 122 as the reference surface, the projection of the main portion 212 on the reference surface is within the range of the display layer 122, and the projection of the extension portion 214 on the reference surface outside the range of the display layer 122 .
  • one end of the feeding wire 300 is electrically connected to the feeding unit 250 on the main body portion 212 , and the other end of the feeding wire 300 extends to the extension portion 214 .
  • the extension portion 214 can be bent relative to the main body portion 212 to facilitate binding/combination with the flexible circuit board 181 .
  • each patch antenna 230 includes four patch units 240 of 2 ⁇ 2, and the four patch units 240 are arranged in a square matrix, for example, in a “field” shape.
  • each patch antenna 230 may also include nine patch units 240 of 3 ⁇ 3.
  • the nine patch units 240 are arranged in a square matrix as a whole.
  • the patch units 240 are square, along the extension direction of the side length of a certain patch unit 240 (or along the center point of an adjacent patch unit 240 ).
  • the extension direction of the connection line) the nine patch units 240 have three rows as a whole, and each row has three patch units 240 .
  • the patch antenna 230 may have a larger radiator or a larger radiating area to enhance the overall directivity of the array antenna 220 and increase the gain of the array antenna 220 .
  • the patch unit 240 may include a solid conductive patch, but is not limited thereto.
  • the patch unit 240 may also include a metal mesh, and the mesh unit of the metal mesh may be a diamond, a circle, a square, etc., and a metal mesh is used as the patch unit 240
  • the light transmittance of the display module 12 in the area corresponding to the patch antenna 230 can be improved, and the possibility of the patch antenna 230 being observed by the user can be reduced.
  • the radio frequency chip may include eight output ports, and the eight output ports may be correspondingly electrically connected to the eight feed branches of the four patch antennas to This implements the wireless communication function.
  • the patch antenna 230 may not include the feed line 300 .
  • the feeding wire 300 may be provided on the flexible circuit board 181 . Based on this, both the first transmission part 262 and the second transmission part 272 of the power feeding unit 250 can be electrically connected to the feeding wire 300 on the flexible circuit board 181 , and the feeding wire 300 on the flexible circuit board 181 is further extended to It is electrically connected to the radio frequency chip 183 . It should be understood that, similar to the patch unit 240, the feeding unit 250 and the feeding wiring 300 may also be disposed on the corresponding structure by printing, etching or electroless plating.
  • the dielectric layer 210 may only include the main body portion 212 without including the extension portion 214 .
  • the feeding wire 300 is provided on the flexible circuit board 181 .
  • the flexible circuit board 181 can be bent and bound/combined with the dielectric layer 210 , thereby realizing the electrical connection between the feeding wire 300 and the feeding unit 250 .
  • the dielectric layer may include a body portion and an extension portion.
  • a part of the feeding wire can be set on the extension part, and the other part can be set on the flexible circuit board. After the flexible circuit board is bound/combined with the extension part of the dielectric layer, the electrical connection between the two parts of the feed lines is realized.
  • the embodiment of the present application further provides another patch antenna 230 , which is different from the aforementioned patch antenna 230 in that the patch antenna 230 includes a first patch unit 242 and a second patch unit 244 .
  • the number of the second patch units 244 is multiple, and they are all disposed around the first patch unit 242 .
  • the first patch unit 242 is exemplified as a circle, and the plurality of second patch units 244 are exemplified as fan rings.
  • the center of the second patch unit 244 may coincide with the center of the first patch unit 242.
  • the patch antenna 230 can also exhibit different characteristics from ordinary antennas, so as to serve as a metasurface patch antenna.
  • the plurality of second patch units 244 may be symmetrically arranged relative to the virtual symmetry axis S.
  • the number of the second patch units 244 is six; and there are three second patch units 244 on both sides of the virtual symmetry axis S.
  • the number of the second patch units 244 is exemplified as four; two second patch units 244 are provided on both sides of the virtual symmetry axis S.
  • the first patch unit 242 is spaced apart from the plurality of second patch units 244 , and the plurality of second patch units 244 are also spaced apart, so that the first patch unit 242 and the second patch unit 244 are spaced apart.
  • a gap is formed between the cells 244 .
  • the first patch unit 242 and the plurality of second patch units 244 may be coupled through slits. Wherein, at least perpendicular first slits 240 a and second slits 240 b are formed between the plurality of second patch units 244 , and the plurality of second patch units 244 may serve as parasitic units of the patch antenna 230 .
  • the overall shape of the plurality of second patch units 244 is, for example, larger than half a circle, but not limited thereto. In some other embodiments, the shape formed by the plurality of second patch units 244 can be adjusted according to the required resonant frequency. For example, the shape formed by the plurality of second patch units 244 may be equal to or less than half a circle.
  • the first feeding branch 260 and the second feeding branch 270 of the feeding unit 250 are both symmetrical with respect to the virtual symmetry axis S, so that This enables dual polarization of the patch antenna 230 .
  • the first feeding branch 260 and the second feeding branch 270 are both electrically connected to the first patch unit 242, so as to directly feed the first patch unit 242;
  • the plurality of second patch units 244 disposed around the first patch unit 242 are fed through slot coupling.
  • the first feed branch 260 includes a first transmission portion 262 and a first feed portion 266 ; the second feed branch 270 includes a second transmission portion 272 and a second feed portion 276 .
  • the first transmission part 262 and the second transmission part 272 are parallel, and both can be electrically connected to the feeding wire 300 .
  • the number of the first power feeder 266 and the second power feeder 276 is exemplified as one, and the first power feeder 266 and the second power feeder 276 are perpendicular to each other, so as to realize dual polarization.
  • the first slit 240a may be opened in the extending direction of the second feeding portion 276, and the second slit 240b may be opened in the extending direction of the first slit 240a.
  • FIG. 12 is a data graph of the S-parameters of the patch antenna. It can be seen from FIG. 12 that, in the patch antenna provided by each embodiment of the present application, in the high-bandwidth frequency range of 25 GHz to 35 GHz, the antenna return loss S11 is better than -10 dB. In the high-bandwidth frequency range of 25GHz to 29.5GHz, the antenna isolation S12 is better than -15dB.
  • FIG. 13 is a gain diagram of the +45° polarization of the patch antenna
  • FIG. 14 is a gain diagram of the -45° polarization of the patch antenna. It can be seen from FIG. 13 and FIG. 14 that in the patch antenna provided by the embodiments of the present application, the gain of +45° polarization can reach 4.5dBi to 5.9dBi, and the gain of -45° polarization can reach 4.4dBi ⁇ 5.9dBi to meet the wireless communication needs of users.
  • Fig. 15 is the electric field diagram of the patch antenna with +45° polarization at 26 GHz
  • Fig. 16 is the electric field diagram of the -45° polarization of the patch antenna at 26 GHz. It can be seen from FIG. 15 and FIG. 16 that in the patch antenna provided by the embodiments of the present application, each patch unit has a strong electric field at the adjacent edges, that is, the patch unit has a strong electric field in the area close to the slit. The electric field in order to radiate or receive electromagnetic waves into free space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请公开了一种贴片天线及电子设备。贴片天线包括多个贴片单元、第一馈电分支和第二馈电分支;多个贴片单元相对于虚拟的对称轴对称。多个贴片单元间隔排列设置;相邻的贴片单元之间形成缝隙,并且通过缝隙耦合。第一馈电分支和第二馈电分支相对对称轴对称,并且分别与多个贴片单元中的至少一个电连接;第一馈电分支用于实现贴片天线的第一极化,第二馈电分支用于实现贴片天线的第二极化。通过耦合多个贴片单元,贴片天线可以具有较低的剖面,以便于设置在显示模组中。此外,贴片天线还可以支持n257、n258等毫米波频段,或者可以支持其他的通信或者数据传输需求。

Description

贴片天线及电子设备
本申请要求2020年12月31日在中国提交的申请号为202011644200.2、名称为“贴片天线及电子设备”的专利申请的优先权,本申请要求于2021年3月16日提交中国国家知识产权局、申请号为202110283703.X、申请名称为“贴片天线及电子设备”的中国专利申请的优先权,其全部内容通过引用并入本文。
技术领域
本申请涉及无线通信的技术领域,特别涉及一种贴片天线及电子设备。
背景技术
随着通信技术的发展,为了实现5G(5th-Generation,第五代)移动通信功能,手机一般会集成有对应的5G天线。而受限于手机内部有限的空间,在手机的屏幕中设置天线(AOD,Antenna on Display)也成为5G技术的发展方向之一。但是手机的显示模组的厚度很小,一般只有几百微米,在此小厚度范围的显示模组中构建天线也存在一些难点。
发明内容
本申请的目的在于提供一种贴片天线及电子设备,以解决现有天线不能设置在显示模组中的问题。
为了解决上述技术问题,本申请提供了一种贴片天线。所述贴片天线包括:多个贴片单元、第一馈电分支和第二馈电分支;所述多个贴片单元相对虚拟的对称轴对称。所述多个述贴片单元间隔排列设置;相邻的贴片单元之间形成缝隙,并且通过缝隙耦合。所述第一馈电分支和所述第二馈电分支相对所述对称轴对称,并且分别与所述多个贴片单元中的至少一个电连接;所述第一馈电分支用于实现所述贴片天线的第一极化,所述第二馈电分支用于实现所述贴片天线的第二极化。基于此,该贴片天线可以具有较低的剖面,例如贴片天线的剖面为0.2λ或者0.3λ等,以便于作为显示模组的一部分。此外,该贴片天线还可以支持n257和n258等毫米波频段,或者可以支持其他的通信或者数据传输需求,以满足无线通信需求。
一些实施例中,所述缝隙包括第一缝隙和第二缝隙;其中,所述第一缝隙和所述第二缝隙相垂直,所述多个贴片单元通过所述第一缝隙和所述第二缝隙耦合。
一些实施例中,所述第一馈电分支位于所述对称轴的一侧。所述第一馈电分支包括第一馈电部,用于向所述多个贴片单元中的至少一个直接馈电。
一些实施例中,所述第二馈电分支位于所述对称轴的另一侧,所述第二馈电分支包括第二馈电部,用于向所述多个贴片单元中的至少一个直接馈电。其中,第一馈电部和第二馈电部相对虚拟的对称轴对称。
一些实施例中,所述第一馈电部用于向所述多个贴片单元中的两个直接馈电,所述第二馈电部用于向所述多个贴片单元中的两个直接馈电。
一些实施例中,所述第一馈电部与所述对称轴之间的角度为+45°;所述第二馈电部与所述对称轴之间的角度为-45°,以实现贴片天线的双极化。
一些实施例中,所述第一缝隙的宽度包括0.05mm~0.15mm,所述第二缝隙的宽度包括0.05mm~0.15mm。
一些实施例中,所述多个贴片单元中的每一个的尺寸相同。
一些实施例中,所述多个贴片单元中的每一个的形状均为正方形,并且所述多个贴片单元在整体上的形状为正方形。
一些实施例中,由所述多个贴片单元组成的正方形的边长在2mm~4mm的范围内。
一些实施例中,所述贴片天线至少工作于n257、n258的毫米波频段;或者,所述贴片天线工作于非毫米波频段。
一些实施例中,所述多个贴片单元的数量为四个,四个贴片单元以2x2的形式间隔排列设置。在其他的一些实施例中,所述多个贴片单元的数量为九个,九个所述贴片单元以3x3的形式间隔排列设置,基于此,贴片天线可以具有较大的辐射体或者具有较大的辐射面积,以增强阵列天线在整体上的方向性以及提高阵列天线的增益。
一些实施例中,所述多个贴片单元包括透明的导电贴片;或者,所述多个贴片单元包括金属网格。应当理解,当贴片单元为金属网格时,可以提高显示模组在对应贴片天线的区域的透光率、以及降低贴片天线被用户观察到的可能。
一些实施例中,所述多个贴片单元的材料包括氧化铟锡、氧化银、铜、铝或者银浆。
一些实施例中,所述第一馈电部的数量为两个,两个所述第一馈电部平行设置,并且与所述多个贴片单元中的两个贴片单元电连接。
一些实施例中,所述第一馈电分支还包括第一传输部和第一连接部;所述第一连接部具有第一输入端、第一输出端和第二输出端,所述第一输入端与所述第一传输部电连接,所述第一输出端与一个所述第一馈电部电连接,所述第二输出端与另一个所述第一馈电部电连接。
一些实施例中,所述第一传输部的宽度包括0.2mm~0.8mm;所述第一输入端的宽度包括0.2mm~0.8m;所述第一输出端和所述第二输出端的宽度包括0.1mm~0.5mm;第一馈电部的宽度包括0.5mm~0.8mm。
一些实施例中,所述贴片单元包括间隔设置的第一贴片单元和多个第二贴片单元;所述多个第二贴片单元绕所述第一贴片单元设置并均与所述第一贴片单元间隔设置;其中,相邻的所述多个第二贴片单元之间、以及所述多个第二贴片单元与所述第一贴片单元之间形成所述缝隙,所述第一贴片单元和所述多个第二贴片单元之间通过所述缝隙耦合。
一些实施例中,相邻的所述多个第二贴片单元之间所形成的缝隙包括第一缝隙和第二缝隙;其中,所述第一缝隙和所述第二缝隙相垂直;或者,所述第一缝隙和所述第二缝隙之间的夹角为60°~120°。
一些实施例中,所述第一贴片单元的形状为圆形,所述多个第二贴片单元的形状均为扇环形;所述第一贴片单元的圆心和所述多个第二贴片单元的圆心重合。
本申请还提供了一种天线膜片。所述天线膜片包括:介质层以及上述各实施例中所述的贴片天线;沿着预设方向,多个所述贴片天线间隔设于所述介质层上。应当理解,当需要在显示模组中设置相关的天线结构,则可以在组装显示模组的过程中,将天线膜片作为显示模组的一部分。
一些实施例中,所述贴片天线还包括馈电走线;所述馈电走线包括第一馈电线和第二馈电线;所述第一馈电线与所述第一馈电分支电连接,所述第二馈电线与所述第二馈电分支电连接,以分别向第一馈电分支和第二馈电分支传输信号。
一些实施例中,所述馈电走线还包括多条接地线,所述第一馈电线和第二馈电线间隔位于多条接地线之间。基于所述接地线,可以降低第一馈电线和第二馈电线互感而产生寄生电容或者寄生电感的可能,并提高阵列天线的第一极化和第二极化之间的隔离度。
一些实施例中,所述介质层包括主体部和延伸部;所述延伸部位于所述主体部的一侧;所述贴片单元和所述馈电单元均位于所述主体部上;所述馈电走线位于所述延伸部上,并用于与电路板组件电连接。应当理解,所述延伸部可以相对主体部弯折,以便于与柔性电路板绑定/结合。
一些实施例中,相邻所述贴片天线的对称轴之间的距离包括5mm~10mm。
一些实施例中,所述介质层包括PET膜、COP膜、COC膜或者CPI膜。
本申请还提供了一种显示模组。所述显示模组包括:显示层以及上述各实施例中所述的天线膜片,所述天线膜片设于所述显示层上;其中,所述显示层具有显示功能,并且作为所述贴片天线的参考地。
一些实施例中,所述显示模组还包括偏光层;所述天线膜片位于所述显示层和所述偏光层之间;或者,所述偏光层位于所述显示层和所述天线膜片之间。
一些实施例中,所述天线膜片与所述显示层之间的距离包括100μm~500μm。应当理解,本申请各实施例提供的阵列天线具有超低剖面(100μm~500μm)的特性,以便于兼容在不同类型、不同规格的显示模组中。
本申请还提供了一种电子设备。所述电子设备包括:电路板组件、以及上述各实施例中所述的显示模组;所述电路板组件与所述显示模组电连接。其中,所述电子设备可以为手机、平板电脑、或者其他具有屏幕且可以实现无线通信的电子设备。
一些实施例中,所述电路板组件包括柔性电路板和射频芯片;所述射频芯片设于所述柔性电路板上,所述柔性电路板电连接所述射频芯片和所述贴片天线。
一些实施例中,当天线膜片不包括馈电走线或者包括一部分馈电走线时,所述柔性电路板还包括馈电走线,所述馈电走线电连接所述射频芯片和所述天线。所述馈电走线包括第一馈电线和第二馈电线;所述第一馈电线与所述第一馈电分支电连接,所述第二馈电线与所述第二馈电分支电连接。
一些实施例中,所述馈电走线还包括多条接地线,所述第一馈电线和所述第二馈电线间隔位于所述多条接地线之间。基于所述多条接地线,可以降低第一馈电线和第二馈电线互感而产生寄生电容或者寄生电感的可能,并提高阵列天线的第一极化和第二极化之间的隔离度。
一些实施例中,所述电路板组件还包括散热片,所述散热片位于所述柔性电路板背对所述射频芯片的一侧,以提高柔性电路板在工作时的散热性能,以及提高柔性电路板181在整体上的强度。
一些实施例中,所述电路板组件还具有连接器和印制电路板;所述连接器设于所述柔性电路板上,并电连接所述柔性电路板与所述印制电路板。
本申请通过间隔排列设置的多个贴片单元,多个贴片单元之间通过缝隙耦合,以使得形成的贴片天线的剖面较低,并且可以支持n257和n258等毫米波频段,或者可以支持其他的通信或者数据传输需求。以此,可以便于将贴片天线设置在显示模组中,并且可以满足用户的通信体验需求。
附图说明
图1是本申请一实施例的电子设备的立体图。
图2是本申请一实施例的电子设备的局部爆炸图。
图3是本申请一实施例的盖板、显示模组和电路板组件的示意图。
图4是本申请另一实施例的盖板、显示模组和电路板组件的示意图。
图5是本申请另一实施例的盖板和显示模组的示意图。
图6是本申请一实施例的天线膜片的立体图。
图7是本申请一实施例的贴片天线的示意图。
图8是本申请另一实施例的贴片天线的示意图。
图9是本申请另一实施例的天线膜片的立体图。
图10是本申请一实施例的电路板组件的立体图。
图11是本申请再一实施例的贴片天线的示意图。
图12是本申请一实施例的贴片天线的S参数的数据图。
图13是本申请一实施例的贴片天线的+45°极化的增益图。
图14是本申请一实施例的贴片天线的-45°极化的增益图。
图15是本申请一实施例的贴片天线的+45°极化在26GHz的电场图。
图16是本申请一实施例的贴片天线的-45°极化在26GHz的电场图。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述。
应理解,在本申请中“电连接”可理解为元器件物理接触并电导通;也可理解为线路构造中不同元器件之间通过印制电路板(Printed Circuit Board,PCB)铜箔或导线等可传输电信号的实体线路进行连接的形式。“连接”、“相连”均可以指一种机械连接关系或物理连接关系,例如A与B连接或A与B相连可以指,A与B之间存在紧固的构件(如螺钉、螺栓、铆钉等),或者A与B相互接触且A与B难以被分离。
在本申请中“长度”可理解为物体的物理长度,也可理解为电长度。电长度可以是指,物理长度(即机械长度或几何长度)乘以电或电磁信号在媒介中的传输时间与这一信号在自由空间中通过跟媒介物理长度一样的距离时所需的时间的比来表示,电长度可以满足以下公式:
Figure PCTCN2021142515-appb-000001
其中,L为物理长度,a为电或电磁信号在媒介中的传输时间,b为在自由空间中的中传输时间。
或者,电长度也可以是指物理长度(即机械长度或几何长度)与所传输电磁波的波长之比,电长度可以满足以下公式:
Figure PCTCN2021142515-appb-000002
其中,L为物理长度,λ为电磁波的波长。
耦合:指两个或两个以上的电路元件或电网络的输入与输出之间存在紧密配合与相互影响,并通过相互作用从一侧向另一侧传输能量的现象。
天线方向图:也称辐射方向图。是指在离天线一定距离处,天线辐射场的相对场强(归一化模值)随方向变化的图形,通常采用通过天线最大辐射方向上的两个相互垂直的平面方向图来表示。
天线方向图通常都有多个辐射波束。其中辐射强度最大的辐射波束称为主瓣,其余的辐射波束称为副瓣或旁瓣。在副瓣中,与主瓣相反方向上的副瓣也叫后瓣。
天线增益:用于表征天线把输入功率集中辐射的程度。通常,天线方向图的主瓣越窄,副瓣越小,天线增益越高。
天线辐射效率:指天线向空间辐射出去的功率(即有效地转换电磁波部分的功率)和输入到天线的有功功率之比。其中,输入到天线的有功功率=天线的输入功率-回波损耗;回波损耗主要包括金属的欧姆损耗和/或介质损耗。
天线回波损耗:可以理解为经过天线电路反射回天线端口的信号功率与天线端口发射功率的比值。反射回来的信号越小,说明通过天线向空间辐射出去的信号越大,天线的辐射效率越大。反射回来的信号越大,说明通过天线向空间辐射出去的信号越小,天线的辐射效率越小。
天线回波损耗可以用S11参数来表示,S11参数通常为负数。S11参数越小,表示天线回波损耗越小,天线的辐射效率越大;S11参数越大,表示天线回波损耗越大,天线的辐射效率越小。
天线隔离度:是指一个天线发射的信号与另一个天线所接收的信号功率的比值。可以用S21、S12参数表示。
参考地(也可称作地板):可由电路板形成。电路板可以是印刷电路板,例如具有8、10、12、13或14层导电材料的8层、10层或12至14层板,或者通过诸如玻璃纤维、聚合物等之类的介电层或绝缘层隔开和电绝缘的元件。电路板通常包括介质基板、地板和走线层,走线层/导电层通过过孔进行电连接,并且可以整体构成地板。诸如显示器、触摸屏、输入按钮、发射器、处理器、存储器、电池、充电电路、片上系统(System on Chip,SoC)结构等部件可以安装在电路板上或连接到电路板;或者电连接到电路板中的走线层/导电层。例如,射频源设置于走线层。地板由导电材料制得。该导电材料可以采用以下材料中的任一者:铜、铝、不锈钢、黄铜和它们的合金、绝缘基片上的铜箔、绝缘基片上的铝箔、绝缘基片上的金箔、镀银的铜、绝缘基片上的镀银铜箔、绝缘基片上的银箔和镀锡的铜、浸渍石墨粉的布、涂覆石墨的基片、镀铜的基片、镀黄铜的基片和镀铝的基片。本领域技术人员可以理解,地板也可由其它导电材料制得。地板也可以是电子设备(比如手机)屏幕下方的金属薄膜。
随着通信技术的发展,在例如手机等类型的电子设备中,为了实现5G(5th-Generation,第五代)移动通信功能,一般会集成有对应的天线。而随着手机的屏占比的提高,在手机的屏幕中设置天线(AOD,Antenna on Display)也成为5G技术的一个发展方向。
但是由于手机的显示模组的厚度很小,一般只有几百微米,例如500μm或者550μm等。由此,在此小厚度范围的显示模组中构建天线也存在一些难点。
天线并不能使该显示模组的厚度增加太多,否则容易导致显示模组显示不良、并且也不利于显示模组的组装。由此使得置于显示模组的天线需要具有相对较低的剖面,以确保无线通信的效果。但是现有天线的剖面仍较高,此导致使用现有天线的显示模组的厚度较大,进而也会影响电子设备的厚度。而若是在控制显示模组的厚度的情况下设置现有天线,则会对现有天线的带宽、隔离度等造成一定的不良影响。例如现有天线的隔离度仅能达到-5dB~-6dB。
此外,置于显示模组内的天线还需要具有一定的谐振频段,以支持5G所规定的频段范围。但是现有天线由于剖面等因素影响,其带宽也相对较窄。例如现有天线仅能满足26GHz~28GHz的频段,而n257的频段为26.5GHz~29.5GHz,n258的频段为24.25GHz~27.5GHz,现有天线并不能很好地满足5G所规定频段。
基于以上的问题,请参考图1,本申请实施例提供的一种电子设备10,包括设有阵列天 线220的显示模组12。其中,该阵列天线220可以通过印刷、蚀刻或者化学镀等方式设置在介质层(图未示)上。应当理解,设有阵列天线220的介质层还可以作为单独的天线膜片200。若需要在电子设备10的显示模组12中设置相关的天线结构,则可以在组装显示模组12的过程中,将该天线膜片200作为显示模组12的一部分。
基于此,阵列天线220在工作时可以朝向自由空间辐射电磁波,以实现无线通信功能。由于阵列天线220是置于电子设备10的内部,便于理解,在图1中阵列天线220是以虚线呈现。
应当理解,在本申请各实施例提供的显示模组12中,天线膜片200的阵列天线220可以表现出低剖面、低损耗、高带宽等特性,该些特性在整体上可以符合超表面(Metasurface)的定义,因此,该阵列天线220可以作为超表面的阵列天线。其中,超表面是指厚度小于波长的人工层状材料。超表面天线可以大致理解为对大贴片进行分割形成多个小贴片,多个小贴片按照一定规律排列并通过缝隙耦合,以此在整体上所构成的天线。基于此,本申请各实施例提供的阵列天线220的剖面高度约为150μm~300μm,此剖面可以理解为超低剖面。基于此,该阵列天线220可以相对方便地兼容在显示模组12中,以作为显示模组12的一部分。此外,该阵列天线220基本可以满足上述的n257和n258的频段范围,以实现5G移动通信功能。
应当理解,本申请各实施例中的电子设备10主要是手机来举例说明,但不以此为限。在其他的一些实施例中,该电子设备10也可以是平板电脑;或者,该电子设备10也可以是其他具有屏幕且可以实现无线通信的电子设备,例如电视或者智能手表等。
一些实施例中,阵列天线220除了可以支持上述的n257和n258的频段外,通过对其尺寸、规格等方面的调整,该阵列天线220还可以支持n260(37GHz~40GHz)的频段,或者可以支持其他毫米波或非毫米波的通信频段。例如:阵列天线220还可以支持1GHz~3GHz等非毫米波频段,或者,该阵列天线220可以支持对应WiFi、蓝牙、ZigBee的频段,本申请并不对阵列天线220所适用的频段范围及应用场景进行限制。例如:本发明实施例提供的阵列天线220可以应用于无线城际网(Wireless Metropolitan Area Network,WMAN)、无线广域网(Wireless Wide Area Network,WWAN)、无线局域网(Wireless Local Area Network,WLAN)、无线个域网(Wireless Personal Area Network,WPAN)、多输入多输出(MIMO)、射频识别(Radio Frequency Identification,RFID)、近场通信(Near Field Communication,NFC)、无线充电(Wireless Power Consortium,WPC)、调频(Frequency Modulation,FM)等无线通信场景中,以满足用户在对应应用场景中的通信需求。
一些实施例中,该显示模组12可以具有触控的功能,以作为可触控的显示模组。在其他的一些实施例中,该显示模组12也可以没有触控的功能,对此不加限制。
一些实施例中,该显示模组12的类型可以包括主动发光显示模组或者被动发光显示模组。其中,主动发光显示模组可例如为OLED显示模组。被动发光显示模组可例如为液晶显示模组。当显示模组12为液晶显示模组时,该电子设备10还可以包括背光源,该背光源可以向液晶显示模组提供背光。
请同步参考图1和图2,一些实施例中,该电子设备10还可以包括框体14和盖板16,盖板16设于框体14的一侧。盖板16与框体14包围形成的空间为电子设备10的内部空间;相对该内部空间而言的其他空间则可以称为自由空间。显示模组12位于盖板16的一侧,并且设于内部空间内,该盖板16可以起到保护显示模组12的作用。
盖板16朝向自由空间的表面可以理解为电子设备10的正面,显示模组12出光的一侧正对着盖板16。当显示模组12工作时,由显示模组12或者背光源发出的光线可以透过盖板16,而出射到自由空间。当用户观看电子设备10的正面时,该些光线可以入射到用户的眼中,以供用户获取相关信息。应当理解,由于显示模组12中还设有介质层,介质层上的阵列天线220在工作时可以朝向自由空间辐射电磁波,该电磁波可以被其他天线接收,以进行通信;或者,该阵列天线220可以作为接收天线,以接收基站或其他设备辐射的电磁波,以进行通信。其中,该电磁波的波长例如可以包括1mm~10mm,该波长的电磁波又可称为毫米波。
一些实施例中,阵列天线220可以包括透明导电材料,该透明导电材料可例如包括氧化铟锡(ITO)、氧化银、铜或其合金、铝或其合金、或者银浆等。由此,当包括该阵列天线220的显示模组12组装到电子设备10中,光线可以良好地透过该阵列天线220,以出射至自由空间。此外,用户也不容易观察到显示模组12中的阵列天线220。
一些实施例中,该框体14可以包括金属材质和/或塑料材质。其中,该金属材质可例如包括不锈钢或者铝合金等。
一些实施例中,该盖板16可以包括玻璃材质、蓝宝石材质或者陶瓷材质等,对此不加限制。基于此,显示模组12的阵列天线220在向自由空间辐射电磁波时,受到如金属等的干扰较弱,以确保电磁波的稳定收发。
请同步参考图2和图3,一些实施例中,电子设备10还可以包括电路板组件18。该电路板组件18可以与显示模组12电连接,以配合显示模组实现显示和收发电磁波等功能。
一些实施例中,该电路板组件18包括柔性电路板(FPC)181,该柔性电路板181可以位于显示模组12的一侧,并且远离盖板16。该柔性电路板181可以集成射频传输所需要的相关芯片、电阻、电容和连接器等电子元件。如图2和图3所示例的,柔性电路板181集成了射频芯片183。其中,该射频芯片183可以为毫米波芯片或者非毫米波芯片。
一些实施例中,在柔性电路板181背对电子元件的一侧还可以设有散热片182。应当理解,该散热片182可以包括金属材质。基于此,该散热片182可以提高柔性电路板181在工作时的散热性能,还可以提高柔性电路板181在整体上的强度。
一些实施例中,该电路板组件18还可以包括印制电路板(PCB)185。为了实现阵列天线220与印制电路板185之间的连接,该柔性电路板181可以被弯折。基于此,柔性电路板181可以通过连接器184实现与印制电路板185之间的电连接。应当理解,在柔性电路板181背对连接器184的一侧也可以设有散热片(图未示),以提高柔性电路板181在工作时的散热性能以及其在整体上的强度。
请再同步参考图2和图3,一些实施例中,由于介质层210上的阵列天线220需要与柔性电路板181电连接,并且介质层210和柔性电路板181相间隔。基于此,柔性电路板181和介质层210中至少之一可以被一定程度地柔性弯折,以此实现柔性电路板181与介质层210之间的绑定/结合(bonding),并由此实现电路板组件18和显示模组12之间的电连接。图2和图3中则均示例为介质层210弯折,以与柔性电路板181绑定/结合,但不以此为限。
请对比参考图3和图4,在其他的一些实施例中,与上述弯折的介质层210不同,其示例为柔性电路板181被弯折,弯折的柔性电路板181可以朝向显示模组12延伸,以与介质层210上的阵列天线220绑定/结合。
请同步参考图3和图4,一些实施例中,显示模组12包括显示层122、介质层210和偏光层(POL,Polarizer)124。显示层122除了实现显示功能外,还可以作为阵列天线220的 参考地。偏光层124则可以降低显示模组12的反光程度,以及提高显示模组12的对比度。
一些实施例中,显示模组12还可以包括第一光学胶层(OCA,Optically Clear Adhesive)126和第二光学胶层128,第一光学胶层126和第二光学胶层128可以实现显示层122、介质层210和偏光层124之间的粘接。
如图3和图4所示例的,显示层122、第一光学胶层126、介质层210依次设置。偏光层124可以设于介质层210和第二光学胶层128之间。在此实施例中,介质层210和显示层122之间的距离H大约为100μm~200μm;其中,该距离H可以指介质层210之远离显示层122的表面与显示层122的表面之间的最短距离(或者直线距离)。例如:介质层210和显示层122之间的距离H为100μm、110μm、120μm、130μm、140μm、150μm、160μm、170μm、180μm、190μm或者200μm等。
应当理解,本申请各实施例主要是以介质层210位于偏光层124和第一光学胶层126之间来举例说明,但不以此为限。
请参考图5,在其他的一些实施例中,显示层122、偏光层124和第一光学胶层126依次设置。介质层210则可以对应设于第一光学胶层126和第二光学胶层128之间。在此实施例中,介质层210和显示层122之间的距离H可以约200μm~500μm。例如:介质层210和显示层122之间的距离H为250μm、300μm、350μm、350μm、400μm或者450μm等。
一些实施例中,根据实际需求,介质层210和显示层122之间的距离H例如可以在0.1mm~0.5mm的范围内适应性调整。即,本申请各实施例提供的阵列天线220具有超低剖面的特性,以便于兼容在不同类型、不同规格的显示模组12中。其中,该适应性调整可以通过调整第一光学胶层126的用量/厚度、介质层210的厚度或者偏光层124的厚度等方式实现。
一些实施例中,该介质层210可以是透明的膜层,并且能够承受对应的印刷、刻蚀等工艺。例如:该介质层210可以为PET膜(Polyester Film,聚脂薄膜)、COP膜(Cyclo Olefin Polymer Film,环烯烃聚合物薄膜)、COC膜(Copolymers of Cycloolefin Film,环烯烃共聚物薄膜)或者CPI膜(Colorless and Transparent Polyimide Film,无色透明聚酰亚胺薄膜)等,本申请对此不加限制。
请参考图6,一些实施例中,天线膜片200的阵列天线220示例性地包括了四个贴片天线230,该四个贴片天线230沿着预设方向A排列,以此增强阵列天线220的方向性以及实现波束扫描。
一些实施例中,该预设方向A可以是指电子设备10、显示模组12或者天线膜片200的宽度方向。此外,该预设方向A可以是指电子设备10、显示模组12或者天线膜片200的长度方向或者其他方向。其中,该其他方向可以为电子设备10、显示模组12或者天线膜片200的斜对角方向;或者,该其他方向可以为与宽度方向呈锐角的任意方向等。
应当理解,本申请各实施例并不对各个贴片天线230的排列方式进行限制。由此,该沿着预设方向A排列也可以理解为四个贴片天线230整体上沿着预设方向A间隔排列设置,例如:四个贴片天线230在整体上可以呈“田”字形或者菱形地设置在介质层210上。
一些实施例中,当该电子设备10为手机时,该些贴片天线230所对应的屏幕的区域,其还可以是用户手指较少触碰到的区域,例如:该些贴片天线230靠近手机屏幕的上方区域设置(一般是靠近设置前置摄像头的区域);或者,该些贴片天线230靠近手机屏幕的左上角设置;或者,该些贴片天线230靠近手机屏幕的右上角设置;又或者,该些贴片天线230位于手机屏幕的一侧,且远离手机的音量键或者电源键,以此来提高电子设备10的无线通信的 效果。
在其他的一些实施例中,介质层210上的阵列天线220也可以包括两个、六个、八个、九个或者其他数量的贴片天线230。
请同步参考图6和图7,一些实施例中,每个贴片天线230在整体上为轴对称图形;即,贴片天线230具有虚拟的对称轴S,贴片天线230相对该虚拟的对称轴S对称。
一些实施例中,贴片天线230包括馈电单元250和多个贴片单元240,该馈电单元250可以向多个贴片单元240馈电。多个贴片单元240间隔排列设置,相邻的贴片单元240之间形成有缝隙,各贴片单元240可以通过缝隙耦合。例如,多个贴片天线230可以整体排列为正方形、菱形、长方形、圆形、扇形、或其他形状。其中,该缝隙至少包括第一缝隙240a和第二缝隙240b。其中,第一缝隙240a和第二缝隙240b之间相互垂直;即,第一缝隙240a和第二缝隙240b之间的夹角为90°。应当理解,基于制程工艺所可能存在的制程误差、制程良率等方面的影响,该相互垂直还可以理解为第一缝隙240a和第二缝隙240b之间基本垂直;例如,第一缝隙240a和第二缝隙240b之间的夹角在80°-100°之间、或85°-95°之间等。
在其他的一些实施例中,第一缝隙240a和第二缝隙240b之间的夹角可以为60°~120°。例如:第一缝隙240a和第二缝隙240b之间的夹角可以为70°、80°、100°或者110°等。
应当理解,基于间隔排列设置且通过缝隙耦合的多个贴片单元240,本申请各实施例的贴片天线230可以表现出与普通天线所不同的特性,以作为超表面贴片天线。
请再参考图7,一些实施例中,该馈电单元250可以与多个贴片单元240中的至少一个贴片单元240电连接,以向电连接的贴片单元240直接馈电,而未与馈电单元250电连接的其余贴片单元240则可以通过缝隙(240a,240b)实现耦合馈电。
一些实施例中,多个贴片单元240的尺寸相同,该尺寸相同可以包括形状相同。如图7所示例的,贴片单元240的形状可以为正方形,并且贴片天线230在整体上的形状也为正方形。应当理解,该贴片单元240的形状还可以是矩形、菱形或者扇形等规则形状。其中,当贴片单元240的形状为扇形时,该扇形可以是四分之一的圆,贴片天线230在整体上的形状为圆形。
如图7所示例的,一些实施例中,对应第一缝隙240a和第二缝隙240b之间相互垂直,在另一方面还可以理解为,该虚拟的对称轴S与贴片单元240之对应第一缝隙240a的边缘的夹角α为45°或者约为45°。基于第一缝隙240a和第二缝隙240b的对称关系,该虚拟的对称轴S与贴片单元240之对应第二缝隙240b的边缘的夹角β为45°或者约为45°。
在其他的一些实施例中,对应第一缝隙240a和第二缝隙240b之间的夹角为60°~120°,在另一方面可以理解,该虚拟的对称轴S与贴片单元240之对应第一缝隙240a的边缘的夹角为30°~60°。基于第一缝隙240a和第二缝隙240b的对称关系,该虚拟的对称轴S与贴片单元240之对应第二缝隙240b的边缘的夹角也为30°~60°。
一些实施例中,贴片单元240之间的缝隙(240a,240b)的宽度G可以包括0.05mm~0.15mm。例如:该缝隙(240a,240b)的宽度G为0.05mm、0.06mm、0.07mm、0.08mm、0.09mm、0.1mm、0.11mm、0.12mm、0.13mm、0.14mm或者0.15mm等。其中,该缝隙(240a,240b)的宽度G可以理解为相邻的贴片单元240之间的最短距离。此外,该缝隙(240a,240b)可以指第一缝隙240a或者第二缝隙240b,图7中则示例为第一缝隙240a。
而根据缝隙的宽度、谐振频率等因素影响,该正方形贴片天线230的边长L1可以包括2mm~4mm。例如:正方形的贴片天线230的边长L1约为3.7mm;或者,贴片天线230的边 长L1为2mm、2.2mm、2.5mm、2.8mm、3.0mm、3.3mm、3.5mm、3.9mm或者4mm等。此外,该正方形贴片天线230的边长L1也可以大于4mm,例如:正方形的贴片天线230的边长L1为4.1mm、4.2mm、4.3mm等。
请参考图6,一些实施例中,沿着预设方向A,每个贴片天线230在整体上的长度L2可以包括0.5λ~1λ,即0.5~1个波长;或者,此可以理解为相邻的贴片天线230的虚拟的对称轴S之间的距离L2包括0.5λ~1λ。例如:每个贴片天线230在整体上的长度L2可以包括0.5λ~0.8λ、0.5λ~0.7λ、0.6λ或者0.9λ等。
对应到具体的数值,相邻的贴片天线230的对称轴S之间的距离L2可以包括5mm~10mm。例如:相邻的贴片天线230的对称轴S之间的距离L2为5mm、5.5mm、6mm、6.5mm、7mm、7.5mm、8mm、8.5mm、9mm、9.5mm或者10mm等。
请再参考图6和图7,一些实施例中,该馈电单元250包括第一馈电分支260和第二馈电分支270。第一馈电分支260和第二馈电分支270均可以与贴片单元240电连接,并且用于实现贴片天线230的双极化。其中,第一馈电分支260用于实现贴片天线230的第一极化(也可称为极化1),例如是+45°极化,应可理解该角度是相对预设方向A或者虚拟的对称轴S而言,还可以是相对手机屏幕之靠近贴片天线230的边缘而言。第二馈电分支270则用于实现贴片天线230的第二极化(也可称为极化2),例如是-45°极化,应可理解该角度是相对预设方向A或者虚拟的对称轴S而言,还可以是相对手机屏幕之靠近贴片天线230的边缘而言。
一些实施例中,第一馈电分支260可以与贴片天线230中至少两个贴片单元240电连接,其余贴片单元240则可以通过与该至少两个贴片单元240之间的缝隙耦合馈电。类似的,第二馈电分支270也可以与贴片天线230中至少两个贴片单元240电连接,其余贴片单元240则可以通过与该至少两个贴片单元240之间的缝隙耦合馈电。应当理解,与贴片单元240类似,第一馈电分支260和第二馈电分支270可以相对虚拟的对称轴S对称。
一些实施例中,为了实现对信号的传输和分配,第一馈电分支260包括依次相连的第一传输部262、第一连接部264和第一馈电部266。其中,第一连接部264大致上呈“T”型或者“Y”型,并且具有第一输入端264a、第一输出端264b和第二输出端264c。第一馈电部266的数量示例为两个,两个第一馈电部266平行设置,并且均用于实现+45°极化。
第一连接部264的第一输入端264a可以与第一传输部262电连接。第一连接部264的第一输出端264b可以与两个第一馈电部266中之一电连接,第一连接部264的第二输出端264c可以与两个第一馈电部266中另一电连接。
一些实施例中,两个第一馈电部266中之一还可以与一贴片单元240电连接,两个第一馈电部266中另一还可以与另一贴片单元240电连接,以实现馈电。应当理解,第一连接部264和第一馈电部266可以作为第一功分器,以对经第一传输部262传输的信号进行分配。该第一功分器可例如为T型功分器。
请参考图7,一些实施例中,第一传输部262的宽度D1包括0.2mm~0.8mm,例如:D1的宽度为0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mm或者0.8mm。第一连接部264的第一输入端264a的宽度D2包括0.2mm~0.8m,例如:D2的宽度为0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mm或者0.8mm。第一连接部264的第一输出端264b和第二输出端264c的宽度D3包括0.1mm~0.5mm,例如:D3的宽度为0.1mm、0.2mm、0.3mm、0.4mm或者0.5mm。第一馈电部266的宽度D4包括0.5mm~0.8mm,例如:D4的宽度为0.5mm、0.6mm、 0.7mm或者0.8mm。
请参考图7,一些实施例中,类似第一馈电分支260,为了实现对信号的传输和分配,第二馈电分支270包括依次相连的第二传输部272、第二连接部274和第二馈电部276。其中,第二传输部272与第一传输部262相平行。类似第一连接部264,该第二连接部274大致上呈“T”型或者“Y”型,并且具有第二输入端274a、第三输出端274b和第四输出端274c。第二馈电部276的数量示例为两个,两个第二馈电部276平行设置,并且均用于实现-45°极化。应当理解,第二馈电部276和第一馈电部266设置的方向均为电流流动的方向。第二馈电部276和第一馈电部266相垂直,以此实现双极化。
第二连接部274的第二输入端274a可以与第二传输部272电连接。第二连接部274的第三输出端274b可以与两个第二馈电部276中之一电连接,第二连接部274的第四输出端274c可以与两个第二馈电部276中另一电连接。
一些实施例中,两个第二馈电部276中之一还可以与一贴片单元240电连接。两个第二馈电部276中另一还可以与另一贴片单元240电连接,以实现馈电。应当理解,第二连接部274和第二馈电部276可以作为第二功分器,以对经第二传输部272传输的信号进行分配。类似第一功分器,该第二功分器可例如为T型功分器。
以贴片天线230包括四个贴片单元240为例,第一馈电分支260的第二馈电部276和第二馈电分支270的第四馈电部可以与相同的贴片单元240电连接。
请参考图7,一些实施例中,第二传输部272的宽度E1包括0.2mm~0.8mm,例如:E1的宽度为0.3mm、0.4mm、0.5mm、0.6mm或0.7mm。第二连接部274的第二输入端274a的宽度E2包括0.2mm~0.8m,例如:E2的宽度为0.3mm、0.4mm、0.5mm、0.6mm或0.7mm。第二连接部274的第三输出端274b和第四输出端274c的宽度E3包括0.1mm~0.5mm,例如:E3的宽度为0.2mm、0.3mm、0.4mm或0.5mm。第二馈电部276的宽度E4包括0.5mm~0.8mm,例如:E4的宽度为0.6mm或0.7mm。
请再同步参考图6和图7,一些实施例中,贴片天线230还可以包括馈电走线300。该馈电走线300可以分别与馈电单元250的第一传输部262、第二传输部272电连接,以便于实现信号传输。基于此,馈电走线300可以延伸至与射频芯片183电连接。
应当理解,本申请各实施例中的馈电走线300主要是以共面波导(CPW,Coplanar Waveguide)来举例说明,但不以此为限。在其他的一些实施例中,该馈电走线300还可以包括微带线或者带状线等。
一些实施例中,基于CPW,该馈电走线300可以包括第一馈电线310、第二馈电线320和接地线330。该接地线330的数量为多条,第一馈电线310和第二馈电线320间隔位于多条接地线330之间,该些接地线330可以作为第一馈电线310和第二馈电线320的参考地。应当理解,第一馈电线310与第一馈电分支260电连接,第二馈电线320与第二馈电分支270电连接。基于该些接地线330,可以降低第一馈电线310和第二馈电线320互感而产生寄生电容或者寄生电感的可能,并提高阵列天线220的极化1和极化2之间的隔离度。
一些实施例中,该些接地线330可以与第一馈电线310、第二馈电线320位于同一层。例如:接地线330、第一馈电线310和第二馈电线320都位于介质层210上。基于此,天线膜片200为单层结构,其厚度可以较好控制。该天线膜片200可以相对方便地被弯折以及设置在显示模组12中。而在工艺方面,对于该天线膜片200,并不需要进行穿孔以设置引线等处理,天线膜片200制造工艺相对简单,且也不会增大对应的显示模组12的组装难度。
请再同步参考图6和图7,一些实施例中,为了设置馈电走线300,介质层210可以包括主体部212以及位于主体部212一侧的延伸部214,贴片单元240和馈电单元250均设于主体部212上。其中,介质层210的主体部212可以位于显示层122和第一光学胶层126之间;或者,介质层210的主体部212可以位于第一光学胶层126和第二光学胶层128之间。延伸部214则对应位于显示层122外;即,以显示层122的表面作为参考面,该主体部212在参考面上的投影位于显示层122的范围内,延伸部214在参考面上的投影位于显示层122的范围外。
一些实施例中,馈电走线300的一端与主体部212上的馈电单元250电连接,馈电走线300的另一端则延伸至延伸部214。应当理解,该延伸部214可以相对主体部212弯折,以便于与柔性电路板181绑定/结合。
如图6和图7所示例的,每个贴片天线230包括2x2的四个贴片单元240,该四个贴片单元240呈方阵排列,例如呈“田”字型。然而,本申请并不以此为限。请参考图8,在其他的一些实施例中,每个贴片天线230也可以包括3x3的九个贴片单元240。该九个贴片单元240整体上呈方阵排列,例如:贴片单元240为正方形,沿着某一贴片单元240的边长的延伸方向(或者沿着相邻贴片单元240的中心点的连线的延伸方向),九个贴片单元240在整体上具有三排,每一排具有三个贴片单元240。基于此,贴片天线230可以具有较大的辐射体或者具有较大的辐射面积,以增强阵列天线220在整体上的方向性以及提高阵列天线220的增益。
如图6、图7和图8所示例的,一些实施例中,贴片单元240可以包括实体的导电贴片,但不以此为限。在其他的一些实施例中,贴片单元240也可以包括金属网格(Metal Mesh),金属网格的网状单元可以是菱形、圆形、方形等等,用金属网格作为贴片单元240可以提高显示模组12在对应贴片天线230的区域的透光率、以及降低贴片天线230被用户观察到的可能。
一些实施例中,以阵列天线包括四个贴片天线为例,射频芯片可以包括八个输出端口,该八个输出端口可以对应地与四个贴片天线的八个馈电分支电连接,以此实现无线通信功能。
请同步参考图9和图10,在其他的一些实施例中,贴片天线230可以不包括馈电走线300。相应的,该馈电走线300可以设置在柔性电路板181上。基于此,馈电单元250的第一传输部262、第二传输部272均可以与柔性电路板181上的馈电走线300电连接,柔性电路板181上的馈电走线300再延伸至与射频芯片183电连接。应当理解,类似贴片单元240,该馈电单元250和馈电走线300也可以通过印刷、刻蚀或者化学镀等方式设置在对应的结构上。
基于此,该介质层210可以仅包括主体部212,而不包括延伸部214。相应的,馈电走线300设于柔性电路板181上。柔性电路板181可以弯折并与介质层210绑定/结合,由此实现馈电走线300与馈电单元250之间的电连接。
在其他的一些实施例中,介质层可以包括主体部和延伸部。该馈电走线可以一部分设于延伸部上,另一部分则设于柔性电路板上。在柔性电路板与介质层的延伸部绑定/结合后,实现两部分馈电走线之间的电连接。
请参考图11,本申请实施例还提供了另一种贴片天线230,与上述的贴片天线230不同的是,该贴片天线230包括第一贴片单元242和第二贴片单元244。第二贴片单元244的数量为多个,并且均绕第一贴片单元242设置。如图11所示例的,第一贴片单元242示例为圆形,多个第二贴片单元244均示例为扇环形。其中,第二贴片单元244的圆心可以与第一贴 片单元242的圆心相重合。
应当理解,与上述的贴片天线230类似,基于第一贴片单元242和多个第二贴片单元244,该贴片天线230同样可以表现出与普通天线所不同的特性,以作为超表面贴片天线。
一些实施例中,多个第二贴片单元244可以相对虚拟的对称轴S对称设置。例如:第二贴片单元244的数量示例为六个;在虚拟的对称轴S的两侧均设有三个第二贴片单元244。或者,第二贴片单元244的数量示例为四个;在虚拟的对称轴S的两侧均设有两个第二贴片单元244。
一些实施例中,第一贴片单元242与多个第二贴片单元244相间隔,多个第二贴片单元244之间也相间隔,以在第一贴片单元242、第二贴片单元244之间形成缝隙。第一贴片单元242和多个第二贴片单元244可以通过缝隙耦合。其中,在多个第二贴片单元244之间至少形成相垂直的第一缝隙240a和第二缝隙240b,多个第二贴片单元244可以作为贴片天线230的寄生单元。
一些实施例中,多个第二贴片单元244在整体上组成的形状示例为大于半个圆环,但不以此为限。在其他的一些实施例中,根据所需的谐振频率,可以调整多个第二贴片单元244所组成的形状。例如:多个第二贴片单元244所组成的形状可以等于半个圆环或者小于半个圆环。
一些实施例中,与上述的贴片天线230类似,在该贴片天线230中,馈电单元250的第一馈电分支260和第二馈电分支270均相对虚拟的对称轴S对称,以此可以实现贴片天线230的双极化。但与上述的贴片天线230不同的是,该第一馈电分支260和第二馈电分支270均是与第一贴片单元242电连接,以对第一贴片单元242直接馈电;相应的,绕第一贴片单元242设置的多个第二贴片单元244则通过缝隙耦合馈电。
一些实施例中,第一馈电分支260包括第一传输部262和第一馈电部266;第二馈电分支270包括第二传输部272和第二馈电部276。第一传输部262和第二传输部272相平行,并且均可以与馈电走线300电连接。第一馈电部266和第二馈电部276的数量均示例为一个,第一馈电部266和第二馈电部276相垂直,以此实现双极化。
一些实施例中,第一缝隙240a可以开设在第二馈电部276的延长方向上,第二缝隙240b可以开设在第一缝隙240a的延长方向上。
图12为贴片天线的S参数的数据图。由图12可以得知,在本申请各实施例提供的贴片天线中,在25GHz~35GHz此高带宽的频段范围内,其天线回波损耗S11优于-10dB。在25GHz~29.5GHz此高带宽的频段范围内,其天线隔离度S12优于-15dB。
图13为贴片天线的+45°极化的增益图,图14为贴片天线的-45°极化的增益图。由图13和图14可以得知,在本申请各实施例提供的贴片天线中,+45°极化的增益可以达到4.5dBi~5.9dBi,由-45°极化的增益可以达到4.4dBi~5.9dBi,以满足用户的无线通信需求。
图15为贴片天线的+45°极化在26GHz的电场图,图16为贴片天线的-45°极化在26GHz的电场图。由图15和图16可以得知,在本申请各实施例提供的贴片天线中,各贴片单元在相邻的边缘具有较强的电场,即贴片单元在靠近缝隙的区域具有较强的电场,以便于向自由空间辐射或者接收电磁波。
以上所述是本申请具体的实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (23)

  1. 一种贴片天线(230),其特征在于,所述贴片天线(230)包括:多个贴片单元(240)、第一馈电分支(260)和第二馈电分支(270);所述多个贴片单元(240)相对于虚拟的对称轴(S)对称;
    所述多个贴片单元(240)间隔排列设置;相邻的贴片单元(240)之间形成缝隙,并且通过所述缝隙耦合;
    所述第一馈电分支(260)和所述第二馈电分支(270)相对所述对称轴(S)对称,并且分别与所述多个贴片单元(240)中的至少一个电连接;所述第一馈电分支(260)用于实现所述贴片天线(230)的第一极化,所述第二馈电分支(270)用于实现所述贴片天线(230)的第二极化。
  2. 如权利要求1所述的贴片天线(230),其特征在于,所述缝隙包括第一缝隙(240a)和第二缝隙(240b);其中,所述第一缝隙(240a)和所述第二缝隙(240b)相垂直,所述多个贴片单元(240)通过所述第一缝隙(240a)和所述第二缝隙(240b)耦合。
  3. 如权利要求2所述的贴片天线(230),其特征在于,所述第一馈电分支(260)位于所述对称轴(S)的一侧;所述第一馈电分支(260)包括第一馈电部(266),所述第一馈电部(266)用于向所述多个贴片单元(240)中的至少一个直接馈电。
  4. 如权利要求3所述的贴片天线(230),其特征在于,所述第二馈电分支(270)位于所述对称轴(S)的另一侧,所述第二馈电分支(270)包括第二馈电部(276),所述第二馈电部(276)用于向所述多个贴片单元(240)中的至少一个直接馈电。
  5. 如权利要求4所述的贴片天线(230),其特征在于,所述第一馈电部(266)与所述对称轴(S)之间的角度为+45°;所述第二馈电部(276)与所述对称轴(S)之间的角度为-45°。
  6. 如权利要求2至5任一项所述的贴片天线(230),其特征在于,所述第一缝隙(240a)的宽度包括0.05mm~0.15mm,所述第二缝隙(240b)的宽度包括0.05mm~0.15mm。
  7. 如权利要求1所述的贴片天线(230),其特征在于,所述多个贴片单元(240)中的每一个的尺寸相同。
  8. 如权利要求7所述的贴片天线(230),其特征在于,所述贴片天线(230)至少工作于n257、n258的毫米波频段;或者,所述贴片天线(230)工作于非毫米波频段。
  9. 如权利要求1所述的贴片天线(230),其特征在于,所述多个贴片单元(240)的数量为四个,四个贴片单元(240)以2x2的形式间隔排列设置;或者,所述多个贴片单元(240)的数量为九个,九个所述贴片单元(240)以3x3的形式间隔排列设置。
  10. 如权利要求1所述的贴片天线(230),其特征在于,所述多个贴片单元(240)包括透明的导电贴片;或者,所述多个贴片单元(240)包括金属网格。
  11. 如权利要求3至5任一项所述的贴片天线(230),其特征在于,所述第一馈电部(266)的数量为两个,两个所述第一馈电部(266)平行设置,并且与所述多个贴片单元(240)中的两个贴片单元(240)电连接。
  12. 如权利要求3至5任一项所述的贴片天线(230),其特征在于,所述多个贴片单元(240)包括间隔设置的第一贴片单元(242)和多个第二贴片单元(244);所述多个第二贴片单元(244)绕所述第一贴片单元(242)设置并均与所述第一贴片单元(242)间隔设置;其中,相邻的所述多个第二贴片单元(244)之间、以及所述多个第二贴片单元(244)与所 述第一贴片单元(242)之间形成所述缝隙,所述第一贴片单元(242)和所述多个第二贴片单元(244)之间通过所述缝隙耦合。
  13. 如权利要求12所述的贴片天线(230),其特征在于,相邻的所述多个第二贴片单元(244)之间所形成的缝隙包括第一缝隙(240a)和第二缝隙(240b);其中,所述第一缝隙(240a)和所述第二缝隙(240b)相垂直;或者,所述第一缝隙(240a)和所述第二缝隙(240b)之间的夹角为60°~120°。
  14. 如权利要求12或13所述的贴片天线(230),其特征在于,所述第一贴片单元(242)的形状为圆形,所述多个第二贴片单元(244)的形状均为扇环形;所述第一贴片单元(242)的圆心和所述多个第二贴片单元的圆心重合。
  15. 一种天线膜片(200),其特征在于,所述天线膜片(200)包括:介质层(210)以及多个如权利要求1至14任一项所述的贴片天线(230);沿着预设方向,多个所述贴片天线(230)间隔设于所述介质层(210)上。
  16. 如权利要求15所述的天线膜片(200),其特征在于,所述贴片天线(230)还包括馈电走线(300);所述馈电走线(300)包括第一馈电线(310)和第二馈电线(320);所述第一馈电线(310)与所述第一馈电分支(260)电连接,所述第二馈电线(320)与所述第二馈电分支(270)电连接。
  17. 如权利要求16所述的天线膜片(200),其特征在于,所述介质层(210)包括主体部(212)和延伸部(214);所述延伸部(214)位于所述主体部(212)的一侧;所述贴片单元(240)和所述馈电单元(250)均位于所述主体部(212)上;所述馈电走线(300)位于所述延伸部(214)上,并用于与电路板组件(18)电连接。
  18. 如权利要求15至17任一项所述的天线膜片(200),其特征在于,相邻所述贴片天线(230)的对称轴(S)之间的距离包括5mm~10mm。
  19. 一种显示模组(12),其特征在于,所述显示模组(12)包括:显示层(122)以及如权利要求15至18任一项所述的天线膜片(200),所述天线膜片(200)设于所述显示层(122)上;其中,所述显示层(122)具有显示功能,并且作为所述贴片天线(230)的参考地。
  20. 如权利要求19所述的显示模组(12),其特征在于,所述显示模组(12)还包括偏光层(124);所述天线膜片(200)位于所述显示层(122)和所述偏光层(124)之间;或者,所述偏光层(124)位于所述显示层(122)和所述天线膜片(200)之间。
  21. 如权利要求20所述的显示模组(12),其特征在于,所述天线膜片(200)与所述显示层(122)之间的距离包括100μm~500μm。
  22. 一种电子设备(10),其特征在于,所述电子设备(10)包括:电路板组件(18)、以及如权利要求19至21任一项所述的显示模组(12);所述电路板组件(18)与所述显示模组(12)电连接。
  23. 如权利要求22所述的电子设备(10),其特征在于,所述电路板组件(18)包括柔性电路板(181)和射频芯片(183);所述射频芯片(183)设于所述柔性电路板(181)上,所述柔性电路板(181)电连接所述射频芯片(183)和所述贴片天线(230)。
PCT/CN2021/142515 2020-12-31 2021-12-29 贴片天线及电子设备 WO2022143777A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21914509.1A EP4262017A4 (en) 2020-12-31 2021-12-29 PATCH ANTENNA AND ELECTRONIC DEVICE
US18/259,966 US20240072415A1 (en) 2020-12-31 2021-12-29 Patch Antenna and Electronic Device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011644200.2 2020-12-31
CN202011644200 2020-12-31
CN202110283703.X 2021-03-16
CN202110283703.XA CN114696079B (zh) 2020-12-31 2021-03-16 贴片天线及电子设备

Publications (1)

Publication Number Publication Date
WO2022143777A1 true WO2022143777A1 (zh) 2022-07-07

Family

ID=82136535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142515 WO2022143777A1 (zh) 2020-12-31 2021-12-29 贴片天线及电子设备

Country Status (4)

Country Link
US (1) US20240072415A1 (zh)
EP (1) EP4262017A4 (zh)
CN (2) CN114696079B (zh)
WO (1) WO2022143777A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102396443B1 (ko) * 2021-02-16 2022-05-09 동우 화인켐 주식회사 안테나 구조체 및 이를 포함하는 화상 표시 장치
CN113437495B (zh) * 2021-06-30 2022-11-29 上海天马微电子有限公司 一种天线
KR102390289B1 (ko) * 2021-07-05 2022-04-22 동우 화인켐 주식회사 안테나 구조체 및 이를 포함하는 화상 표시 장치
KR20230024449A (ko) * 2021-08-11 2023-02-21 삼성디스플레이 주식회사 전자 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534875A (zh) * 2011-05-11 2014-01-22 哈里公司 包括补片天线和可视显示器层的电子设备以及相关的方法
CN106384882A (zh) * 2016-11-01 2017-02-08 锐捷网络股份有限公司 贴片天线和贴片天线制造方法
US20180102594A1 (en) * 2016-10-10 2018-04-12 Phazr, Inc. Wideband dual-polarized patch antenna
CN110011049A (zh) * 2019-04-29 2019-07-12 成都天成电科科技有限公司 一种加载寄生贴片的微带天线
WO2020145419A1 (ko) * 2019-01-08 2020-07-16 엘지전자 주식회사 안테나를 구비하는 전자 기기

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381750B2 (en) * 2017-08-17 2019-08-13 Lg Electronics Inc. Electronic device
CN108461929B (zh) * 2018-03-28 2024-03-15 广东纳睿雷达科技股份有限公司 双极化天线阵列和双极化相控阵天线
CN208385625U (zh) * 2018-06-28 2019-01-15 华南理工大学 一种毫米波宽带滤波天线及其构成的mimo天线阵列
CN110048224B (zh) * 2019-03-28 2021-05-11 Oppo广东移动通信有限公司 天线模组和电子设备
CN110828973B (zh) * 2019-11-05 2021-03-26 清华大学 一种与边框分立且低剖面的宽带5g移动终端天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534875A (zh) * 2011-05-11 2014-01-22 哈里公司 包括补片天线和可视显示器层的电子设备以及相关的方法
US20180102594A1 (en) * 2016-10-10 2018-04-12 Phazr, Inc. Wideband dual-polarized patch antenna
CN106384882A (zh) * 2016-11-01 2017-02-08 锐捷网络股份有限公司 贴片天线和贴片天线制造方法
WO2020145419A1 (ko) * 2019-01-08 2020-07-16 엘지전자 주식회사 안테나를 구비하는 전자 기기
CN110011049A (zh) * 2019-04-29 2019-07-12 成都天成电科科技有限公司 一种加载寄生贴片的微带天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4262017A4

Also Published As

Publication number Publication date
EP4262017A1 (en) 2023-10-18
EP4262017A4 (en) 2024-06-12
US20240072415A1 (en) 2024-02-29
CN117096586A (zh) 2023-11-21
CN114696079B (zh) 2023-08-22
CN114696079A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2022143777A1 (zh) 贴片天线及电子设备
EP3726648B1 (en) Antenna module and electronic device
CN110416739B (zh) 壳体组件及移动终端
JP7395714B2 (ja) アンテナモジュール及び電子機器
US12015198B2 (en) Antenna unit and manufacturing method thereof, display device, and electronic apparatus
CN109066054A (zh) 一种毫米波天线系统以及通信装置
CN113725594B (zh) 天线结构
JP7130164B2 (ja) アンテナを集積したディスプレイ、表示装置及び電子機器
CN112397898B (zh) 天线阵列组件及电子设备
CN111864362A (zh) 天线模组及电子设备
CN110324055B (zh) 一种终端设备
JP7480341B2 (ja) アンテナモジュール及び電子機器
CN112540700A (zh) 显示屏模组及电子设备
WO2021251169A1 (ja) ディスプレイモジュール
KR20200008716A (ko) 칩 안테나 모듈
WO2021000733A1 (zh) 壳体组件、天线组件及电子设备
CN111162371B (zh) 电子设备
CN114002874A (zh) 显示面板及显示装置
TWI779577B (zh) 天線模組及電子設備
CN112701480A (zh) 天线装置及电子设备
CN109560387A (zh) 一种用于移动终端的毫米波双极化天线
CN112929475A (zh) 电子设备
US20230099689A1 (en) Display device and manufacturing method thereof
WO2022252899A1 (zh) 一种显示装置及电子设备
CN208507929U (zh) 一种毫米波天线系统以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914509

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18259966

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021914509

Country of ref document: EP

Effective date: 20230711

NENP Non-entry into the national phase

Ref country code: DE