WO2022143672A1 - 顶发射量子点发光二极管及其制备方法 - Google Patents
顶发射量子点发光二极管及其制备方法 Download PDFInfo
- Publication number
- WO2022143672A1 WO2022143672A1 PCT/CN2021/142112 CN2021142112W WO2022143672A1 WO 2022143672 A1 WO2022143672 A1 WO 2022143672A1 CN 2021142112 W CN2021142112 W CN 2021142112W WO 2022143672 A1 WO2022143672 A1 WO 2022143672A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- quantum dot
- dot light
- electrode
- emitting diode
- polymer film
- Prior art date
Links
- 239000002096 quantum dot Substances 0.000 title claims abstract description 119
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 229920006254 polymer film Polymers 0.000 claims abstract description 63
- -1 poly(pentabromophenyl methacrylate) Polymers 0.000 claims description 90
- 239000010410 layer Substances 0.000 claims description 79
- 239000000758 substrate Substances 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 16
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 15
- 230000005525 hole transport Effects 0.000 claims description 14
- 239000002346 layers by function Substances 0.000 claims description 13
- 229920000642 polymer Polymers 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 239000011258 core-shell material Substances 0.000 claims description 7
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 6
- 239000007983 Tris buffer Substances 0.000 claims description 5
- KWXIRYKCFANFRC-UHFFFAOYSA-N [O--].[O--].[O--].[Al+3].[In+3] Chemical compound [O--].[O--].[O--].[Al+3].[In+3] KWXIRYKCFANFRC-UHFFFAOYSA-N 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 5
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 claims description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 claims description 4
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 claims description 4
- DHDHJYNTEFLIHY-UHFFFAOYSA-N 4,7-diphenyl-1,10-phenanthroline Chemical compound C1=CC=CC=C1C1=CC=NC2=C1C=CC1=C(C=3C=CC=CC=3)C=CN=C21 DHDHJYNTEFLIHY-UHFFFAOYSA-N 0.000 claims description 3
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 claims description 3
- 229910001195 gallium oxide Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 3
- 229920001599 poly(2-chlorostyrene) Polymers 0.000 claims description 3
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 claims description 2
- 229910004613 CdTe Inorganic materials 0.000 claims description 2
- 229910000673 Indium arsenide Inorganic materials 0.000 claims description 2
- 239000004642 Polyimide Substances 0.000 claims description 2
- 229910007709 ZnTe Inorganic materials 0.000 claims description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N butadiene group Chemical group C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 2
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical group [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 claims description 2
- 150000001716 carbazoles Chemical class 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- LCUOIYYHNRBAFS-UHFFFAOYSA-N copper;sulfanylideneindium Chemical class [Cu].[In]=S LCUOIYYHNRBAFS-UHFFFAOYSA-N 0.000 claims description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 2
- 150000007857 hydrazones Chemical class 0.000 claims description 2
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 claims description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 2
- 229920000548 poly(silane) polymer Polymers 0.000 claims description 2
- 229920001721 polyimide Polymers 0.000 claims description 2
- 229920001195 polyisoprene Polymers 0.000 claims description 2
- 229920000123 polythiophene Polymers 0.000 claims description 2
- 150000003219 pyrazolines Chemical class 0.000 claims description 2
- 229920002050 silicone resin Polymers 0.000 claims description 2
- 229910052950 sphalerite Inorganic materials 0.000 claims description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims description 2
- 125000005259 triarylamine group Chemical group 0.000 claims description 2
- 150000004961 triphenylmethanes Chemical class 0.000 claims description 2
- 239000011787 zinc oxide Substances 0.000 claims description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 4
- SEPPVOUBHWNCAW-FNORWQNLSA-N (E)-4-oxonon-2-enal Chemical compound CCCCCC(=O)\C=C\C=O SEPPVOUBHWNCAW-FNORWQNLSA-N 0.000 claims 1
- DEQJNIVTRAWAMD-UHFFFAOYSA-N 1,1,2,4,4,4-hexafluorobutyl prop-2-enoate Chemical compound FC(F)(F)CC(F)C(F)(F)OC(=O)C=C DEQJNIVTRAWAMD-UHFFFAOYSA-N 0.000 claims 1
- LLBZPESJRQGYMB-UHFFFAOYSA-N 4-one Natural products O1C(C(=O)CC)CC(C)C11C2(C)CCC(C3(C)C(C(C)(CO)C(OC4C(C(O)C(O)C(COC5C(C(O)C(O)CO5)OC5C(C(OC6C(C(O)C(O)C(CO)O6)O)C(O)C(CO)O5)OC5C(C(O)C(O)C(C)O5)O)O4)O)CC3)CC3)=C3C2(C)CC1 LLBZPESJRQGYMB-UHFFFAOYSA-N 0.000 claims 1
- FXFPHNDKVMTINC-UHFFFAOYSA-N [bromo(phenyl)methyl] prop-2-enoate Chemical compound C=CC(=O)OC(Br)C1=CC=CC=C1 FXFPHNDKVMTINC-UHFFFAOYSA-N 0.000 claims 1
- WPQPMUCUCNOIKJ-UHFFFAOYSA-N cyclohexa-2,4-dien-1-ylbenzene Chemical compound C1C=CC=CC1C1=CC=CC=C1 WPQPMUCUCNOIKJ-UHFFFAOYSA-N 0.000 claims 1
- 125000003037 imidazol-2-yl group Chemical group [H]N1C([*])=NC([H])=C1[H] 0.000 claims 1
- 239000010408 film Substances 0.000 description 26
- 238000000034 method Methods 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 20
- 238000000605 extraction Methods 0.000 description 18
- 238000004528 spin coating Methods 0.000 description 16
- 239000002861 polymer material Substances 0.000 description 8
- 238000002834 transmittance Methods 0.000 description 8
- 238000000576 coating method Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- DFVPUWGVOPDJTC-UHFFFAOYSA-N 2,2,3,4,4,4-hexafluorobutyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(F)(F)C(F)C(F)(F)F DFVPUWGVOPDJTC-UHFFFAOYSA-N 0.000 description 1
- LEXCBRKPOZULQO-UHFFFAOYSA-N 2-n,2-n,6-n,6-n-tetraphenylnaphthalene-2,6-diamine Chemical compound C1=CC=CC=C1N(C=1C=C2C=CC(=CC2=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 LEXCBRKPOZULQO-UHFFFAOYSA-N 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- XTKDAFGWCDAMPY-UHFFFAOYSA-N azaperone Chemical compound C1=CC(F)=CC=C1C(=O)CCCN1CCN(C=2N=CC=CC=2)CC1 XTKDAFGWCDAMPY-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- ZTLUNQYQSIQSFK-UHFFFAOYSA-N n-[4-(4-aminophenyl)phenyl]naphthalen-1-amine Chemical compound C1=CC(N)=CC=C1C(C=C1)=CC=C1NC1=CC=CC2=CC=CC=C12 ZTLUNQYQSIQSFK-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- KYKLWYKWCAYAJY-UHFFFAOYSA-N oxotin;zinc Chemical compound [Zn].[Sn]=O KYKLWYKWCAYAJY-UHFFFAOYSA-N 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000004549 pulsed laser deposition Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/115—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/302—Details of OLEDs of OLED structures
- H10K2102/3023—Direction of light emission
- H10K2102/3026—Top emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/875—Arrangements for extracting light from the devices
- H10K59/876—Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
Definitions
- the present disclosure relates to the field of quantum dot light emitting diodes, and in particular, to a top emission quantum dot light emitting diode and a preparation method thereof.
- Organic/inorganic light-emitting diodes have become a hot area of research due to their advantages of fast response time, low operating voltage, high contrast ratio, and the ability to be fabricated into large-sized and flexible panels. Especially in recent years, organic/inorganic light emitting diodes have been widely used in the display panels of mobile phones (small screens) and TVs (large screens), indicating that the display era of organic/inorganic light emitting diodes is truly coming. The original organic/inorganic light-emitting diodes are all bottom-emitting devices.
- the basic structure of the device is from top to bottom: opaque metal cathode/light-emitting functional layer/transparent anode, and light is emitted from the bottom transparent anode.
- This device structure In active display light-emitting devices, the organic/inorganic light-emitting diode devices are controlled by thin film transistors (TFTs). Therefore, if the device emits light in the form of bottom emission, when the light passes through the substrate, it will be blocked by the TFT on the substrate. and metal lines to block, thereby affecting the actual light-emitting area.
- TFTs thin film transistors
- top-emitting devices are the first choice for active display on small screens such as mobile phones today.
- the structure of the top emission device is from top to bottom: transparent or semi-transparent cathode/light-emitting layer/reflective anode.
- the light extraction efficiency of organic/inorganic light emitting diodes is not only affected by the internal materials of the device and the energy level structure of the material itself, but also related to the output coupling efficiency of the device.
- the commonly used transparent electrodes for top emission are indium tin oxide or zinc tin oxide. Due to the large difference in the refractive index (1.90-2.00) and the refractive index of air (about 1.00), when light propagates from high refractive index materials to low refractive index materials At this time, part of the light emitted from the inside of the device cannot be emitted into the air due to total reflection, resulting in low output coupling efficiency and low light extraction rate. Therefore, at present, the out-coupling efficiency of the device can be improved by increasing the inorganic optical microcavity structure, but due to the poor transmittance of the inorganic metal oxide film itself, the contribution to improving the luminescence performance of the device is limited.
- the purpose of the present disclosure is to provide a top emission quantum dot light emitting diode and a preparation method thereof, aiming at solving the problem of low light extraction rate of the top emission quantum dot light emitting diode.
- a first aspect of the present disclosure provides a top emission quantum dot light-emitting diode, which includes a first electrode, a quantum dot light-emitting layer, a second electrode, a first polymer film, and a second polymer film that are stacked in sequence; wherein , the refractive index of the second electrode>the refractive index of the first polymer film>the refractive index of the second polymer film>the refractive index of the air, the first electrode is a reflective electrode, and the second electrode is a transparent or semi-transparent electrode.
- the refractive index of the second electrode is 1.90-2.00
- the refractive index of the first polymer film is 1.60-1.80
- the refractive index of the second polymer film is 1.30-1.50.
- the thickness of the first polymer film is 10-20 nm.
- the first polymer is selected from poly(pentabromophenyl methacrylate), poly(pentabromobenzyl methacrylate), poly(pentabromobenzyl acrylate), poly(2,4,6 -Tribromophenyl methacrylate), poly(vinylphenyl sulfate), poly(2,6-dichlorostyrene), poly(N-vinylphthalimide), poly(2-vinylthiophene) ) and one or more of poly(2-chlorostyrene).
- the thickness of the second polymer film is 10-20 nm.
- the second polymer is selected from poly(1,1,1,3,3,3-hexafluoroisopropylacrylate), poly(2,2,3,3,3-pentafluoropropylacrylate) ), poly(2,2,3,3,3-pentafluoropropyl methacrylate), poly(2,2,3,4,4,4-hexafluorobutylacrylate) and poly(2,2 , 3,4,4,4-hexafluorobutyl methacrylate) one or more.
- the thickness of the second electrode is 10-20 nm.
- the material of the second electrode is selected from one or more of indium tin oxide, indium zinc oxide, indium aluminum oxide and indium gallium oxide.
- the top emission quantum dot light emitting diode specifically includes a cathode, an electron transport layer, a quantum dot light emitting layer, a hole transport layer, an anode, a first polymer film and a second polymer film which are stacked in sequence.
- a second aspect of the present disclosure provides a method for preparing a top-emission quantum dot light-emitting diode according to the present disclosure, comprising the steps of:
- a second polymer film is formed on the first polymer film.
- the refractive index of each layer is from large to With a small change, the refractive index is gradually reduced to be close to the refractive index of air.
- the multiple layers of the gradient refractive index form a micro-cavity structure, which can effectively transmit the light emitted by the top-emitting quantum dot light-emitting diode (referred to as the device). increase, improve the light extraction rate of the device.
- FIG. 1 is a schematic structural diagram of a top emission quantum dot light emitting diode according to an embodiment of the present disclosure.
- FIG. 2 is a schematic flowchart of a method for fabricating a top emission quantum dot light emitting diode according to an embodiment of the present disclosure.
- the present disclosure provides a top emission quantum dot light-emitting diode and a preparation method thereof.
- a top emission quantum dot light-emitting diode and a preparation method thereof.
- the outer side of the second electrode is in direct contact with the air, because the refractive index difference between the second electrode and the air is too large, for example, the refractive index of the second electrode is 1.90-2.00, and the refractive index of the air is 1.0 , the difference between the two is large.
- the refractive index difference between the second electrode and the air is too large, for example, the refractive index of the second electrode is 1.90-2.00, and the refractive index of the air is 1.0 , the difference between the two is large.
- an embodiment of the present disclosure provides a top emission quantum dot light-emitting diode, which includes a first electrode, a quantum dot light-emitting layer, a second electrode, a first polymer film, and a second polymer film that are stacked in sequence; wherein , the refractive index of the second electrode>the refractive index of the first polymer film>the refractive index of the second polymer film>the refractive index of the air, the first electrode is a reflective electrode, and the second electrode is a transparent or semi-transparent electrode.
- the first electrode (formed on the substrate) is a reflective electrode
- the second electrode is a transparent or semi-transparent electrode, so that the light inside the quantum dot light-emitting diode is emitted from the transparent or semi-transparent second electrode, that is, light It is emitted from the top of the quantum dot light-emitting diode, so it is called a top-emitting quantum dot light-emitting diode.
- a transparent electrode refers to an electrode with a light transmittance of more than 85%, such as an electrode with a light transmittance of 85%, a light transmittance of 90%, and a light transmittance of 95%; translucent electrodes refer to the light transmittance Reach 50-80% electrodes.
- the refractive indices of the three layers are increased from The refractive index gradually changes to a small value, and the refractive index is gradually reduced to be close to the refractive index of air.
- the film layer with graded refractive index forms a microcavity structure, which can effectively transmit the light emitted by the top emission quantum dot light-emitting diode (referred to as the device). increase, improve the light extraction rate of the device.
- two polymers with different properties are introduced to form a microcavity structure, and the refractive index of the microcavity structure can be flexibly controlled by combining two polymer materials with different refractive indices with the second electrode material. , so as to achieve the effect of improving the light extraction rate of the device.
- inorganic metal oxide materials are usually used to construct the microcavity structure. Due to the poor transmittance of the inorganic metal oxide film, the microcavity structure is still limited in improving the light extraction rate of the device.
- a polymer material is used to construct the microcavity structure. Since the polymer material has good optical transparency, the improvement of the light extraction rate of the device by the microcavity structure is effectively ensured.
- the polymer material of this embodiment is easy to process, so that the microcavity structure can be prepared by a solution method, so as to achieve the effect of effectively protecting the second electrode, and effectively avoid the damage to the second electrode caused by traditional sputtering and other processes.
- the refractive index of the second electrode is 1.90-2.00
- the refractive index of the first polymer film is 1.60-1.80
- the refractive index of the second polymer film is 1.30-1.50.
- the first polymer is a polymer of aromatic or brominated aromatic monomers, which can be specifically selected from poly(pentabromophenyl methacrylate), poly(pentabromobenzyl methacrylate) ), poly(pentabromobenzyl acrylate), poly(2,4,6-tribromophenyl methacrylate), poly(vinylphenyl sulfate), poly(2,6-dichlorostyrene) ), poly(N-ethylenephthalimide), poly(2-vinylthiophene), poly(2-chlorostyrene), etc., but not limited thereto.
- the thickness of the first polymer film may be 10-20 nm.
- the thickness of the first polymer film is less than 10 nm, since the cavity length of the layer is too short, the outgoing light is easily reflected in the microcavity, resulting in a decrease in the light extraction rate of the device.
- the thickness of the first polymer film is greater than 20 nm, since the cavity length of the layer is too long, a large number of diffuse reflections easily occur in the microcavity, which also reduces the light extraction rate of the device.
- the second polymer may be selected from poly(1,1,1,3,3,3-hexafluoroisopropyl acrylate), poly(2,2,3,3,3-pentafluoro propyl acrylate), poly(2,2,3,3,3-pentafluoropropyl methacrylate), poly(2,2,3,4,4,4-hexafluorobutylacrylate) and poly(2,2,3,4,4,4-hexafluorobutylacrylate) One or more of (2,2,3,4,4,4-hexafluorobutyl methacrylate), etc., but not limited thereto.
- the thickness of the second polymer film may be 10-20 nm.
- the thickness of the first polymer film may be 10-20 nm
- the thickness of the second polymer film may be 10-20 nm.
- the length of the entire microcavity can reach ⁇ /16 in the wavelength range of red, green and blue light (320-640nm), and the outgoing light can be enhanced.
- the light output rate, and the effect of narrowing the spectrum and increasing the intensity of the emitted light may be 10-20 nm
- the material of the second electrode may be selected from one or more of indium tin oxide, indium zinc oxide, indium aluminum oxide, indium gallium oxide, etc., but is not limited thereto.
- the thickness of the second electrode may be 10-20 nm.
- the first electrode is located on the substrate.
- the substrate may be selected from one of glass substrates, polyimide substrates, polyisoprene substrates, polydimethylsiloxane substrates, silicone resin substrates, tetrafluoroethylene substrates, and the like, But not limited to this.
- a top-emitting quantum dot light-emitting diode may also include, but is not limited to, a hole functional layer (hole injection layer and/or hole transport layer) and an electron functional layer (electron injection layer and/or electron transport layer), and may further It includes an interface functional layer or an interface modification layer, including but not limited to one or more of an electron blocking layer, a hole blocking layer, an electrode modification layer, and an isolation protection layer.
- the top emission quantum dot light-emitting diode has a positive structure
- the hole functional layer is located between the anode and the quantum dot light-emitting layer
- the electron functional layer is located between the cathode and the quantum dot light-emitting layer.
- the top-emitting quantum dot light-emitting diode has an inversion structure
- the hole functional layer is located between the anode and the quantum dot light-emitting layer
- the electron functional layer is located between the cathode and the quantum dot light-emitting layer. between layers.
- the top-emitting quantum dot light-emitting diode is composed of a substrate, a cathode, an electron transport layer, a quantum dot light-emitting layer, a hole transport layer, an anode, a first polymer film and a second polymer film that are stacked in sequence. , as shown in Figure 1.
- the material of the hole transport layer can be selected from polythiophenes, polysilanes, triphenylmethanes, triarylamines, hydrazones, pyrazolines, carbazoles, butadienes, etc. One or more of, but not limited to.
- the material of the hole transport layer is specifically selected from poly[bis(4-phenyl)(4-butylphenyl)amine], N,N'-diphenyl-N,N'- (1-Naphthyl)-1,1'-biphenyl-4,4'-diamine, N,N,N',N'-tetraphenyl-2,6-naphthalenediamine, 4-[1- One of [4-[bis(4-methylphenyl)amino]phenyl]cyclohexyl]-N-(3-methylphenyl)-N-(4-methylphenyl)aniline, etc., But not limited to this.
- the quantum dots in the quantum dot light-emitting layer may be selected from group II-VI quantum dots, group III-V quantum dots, group IV-VI quantum dots, all-inorganic perovskite quantum dots, organic-inorganic quantum dots One or more of perovskite quantum dots, copper-sulfur indium quantum dots, silicon quantum dots, etc., but not limited thereto.
- the quantum dot structure can be selected from the group consisting of a single-core structure with a uniform binary component of quantum dots, a single-core structure with a homogeneous multiple-component alloy of quantum dots, a single-core structure with a gradient of multiple-component alloys of quantum dots, and a single-core structure with multiple components of quantum dots.
- the core and shell compounds of the core-shell structure quantum dot are independently selected from one or more of the following: CdSe, CdS, ZnSe, ZnS, CdTe, ZnTe, CdZnS, ZnSeS, CdSeS, CdSeSTe, CdZnSeSTe, InP, InAs, InAsP of group III-V, PbS, PbSe, PbSeS, PbSeTe, PbSTe of group IV-VI, but not limited thereto.
- the material of the electron transport layer may be selected from the group consisting of tris(8-hydroxyquinoline)aluminum, 3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene, 4,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene, One or more of 7-diphenyl-1,10-phenanthroline, bromocresol purple sodium salt, zinc oxide, etc., but not limited thereto.
- An embodiment of the present disclosure also provides a method for preparing a top emission quantum dot light-emitting diode, as shown in FIG. 2 , including the steps:
- the refractive indices of the three layers are increased from The refractive index gradually changes to a small value, and the refractive index is gradually reduced to be close to the refractive index of air.
- the film layer with graded refractive index forms a microcavity structure, which can effectively transmit the light emitted by the top emission quantum dot light-emitting diode (referred to as the device). increase, improve the light extraction rate of the device.
- two polymers with different properties are introduced to form a microcavity structure, and the refractive index of the microcavity structure can be flexibly controlled by combining two polymer materials with different refractive indices with the second electrode material. , so as to achieve the effect of improving the light extraction rate of the device.
- inorganic metal oxide materials are usually used to construct the microcavity structure. Due to the poor transmittance of the inorganic metal oxide film, the microcavity structure is still limited in improving the light extraction rate of the device.
- a polymer material is used to construct the microcavity structure. Since the polymer material has good optical transparency, the improvement of the light extraction rate of the device by the microcavity structure is effectively ensured.
- the polymer material of this embodiment is easy to process, so that the microcavity structure can be prepared by the solution method, so as to achieve the effect of effectively protecting the second electrode, and effectively avoid the damage to the second electrode caused by traditional sputtering and other processes.
- the preparation methods of the above-mentioned layers in this embodiment can be chemical methods or physical methods, wherein chemical methods include but are not limited to chemical vapor deposition methods, continuous ion layer adsorption and reaction methods, anodic oxidation methods, electrolytic deposition methods, One or more of co-precipitation methods; physical methods include but are not limited to spin coating, printing, blade coating, dip-pulling, immersion, spraying, roll coating, casting, slot coating One of cloth method, strip coating method, thermal evaporation coating method, electron beam evaporation coating method, magnetron sputtering method, multi-arc ion coating method, physical vapor deposition method, atomic layer deposition method, pulsed laser deposition method or more.
- top-emitting quantum dot light-emitting diode The specific details of the top-emitting quantum dot light-emitting diode can be found above, and will not be repeated here.
- the preparation process of the top emission quantum dot light-emitting diode of Embodiment 1 is as follows:
- comparative example 1 has only steps (1)-(5) in example 1.
- Comparative Example 2 is basically the same as Example 1, except that the order of step (6) and step (7) are reversed.
- the preparation process of the top emission quantum dot light-emitting diode of Embodiment 2 is as follows:
- comparative example 3 only has steps (1)-(5) in example 2.
- Comparative Example 4 is basically the same as Example 2, except that the order of step (6) and step (7) are reversed.
- the preparation process of the top emission quantum dot light-emitting diode of Embodiment 3 is as follows:
- Comparative Example 5 only has steps (1)-(5) in Example 3.
- Comparative Example 6 is basically the same as Example 3, except that the order of step (6) and step (7) are reversed.
- the light extraction rate of the top emission quantum dot light-emitting diodes (with a microcavity structure) provided in Examples 1-3 of the present disclosure is significantly higher than that of the top emission quantum dot light-emitting diodes in Comparative Examples 1-6. , indicating that the microcavity structure can improve the light extraction rate of top-emission quantum dot light-emitting diodes.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
本公开涉及一种顶发射量子点发光二极管及其制备方法。顶发射量子点发光二极管包括依次层叠设置的第一电极、量子点发光层、第二电极、第一聚合物薄膜、第二聚合物薄膜;其中,第二电极的折射率>第一聚合物薄膜的折射率>第二聚合物薄膜的折射率>空气的折射率,第一电极为反射电极,第二电极为透明或半透明电极。本公开通过在第二电极与空气接触的外侧引入第一聚合物薄膜和第二聚合物薄膜,且沿着第二电极往第二聚合物薄膜的方向,各层的折射率由大到小变化,将折射率逐渐降低至与空气折射率接近,该折射率渐变的多个膜层形成微腔结构。
Description
优先权
本公开要求于申请日为2020年12月30日提交中国专利局、申请号为“202011630855.4”、申请名称为“顶发射量子点发光二极管及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
本公开涉及量子点发光二极管领域,尤其涉及顶发射量子点发光二极管及其制备方法。
有机/无机发光二极管(OLED/QLED)因其具有反应时间快、工作电压低、对比度高、可制成大尺寸和挠性面板等优点而成为研究的热门领域。特别是近些年,有机/无机发光二极管已广泛应用于手机(小屏)及电视(大屏)的显示面板上,表明有机/无机发光二极管显示时代的真正来临。最初的有机/无机发光二极管都是底发射型器件,器件的基础结构从上至下依次是:不透明的金属阴极/发光功能层/透明阳极,光线从底部透明阳极出射。这种器件结构在主动显示发光器件中,有机/无机发光二极管器件是由薄膜晶体管(TFT)来控制的,因此如果器件是以底发射形式出光,光经过基板的时候就会被基板上的TFT和金属线路阻挡,从而影响实际的发光面积。
目前主流的技术路线是光线从器件上方出射,那么基板的线路设计就不会影响器件的出光面积,相同亮度下有机/无机发光二极的工作电压更低,从而获得更长的使用寿命。因此,顶发射器件是当今小屏如手机等主动显示的首选。顶发射型器件的结构从上至下是:透明或者半透明的阴极/发光层/反射阳极。有机/无机发光二极管出光效率除了受器件内部材料和材料自身能级结构影响外,还与器件的输出耦合效率有关。顶发射常用的透明电极是氧化铟锡或氧化锌锡等,由于其折射率 (1.90-2.00)与空气折射率(约1.00)差异很大,当光从高折射率材料向低折射率材料传播时,从器件内部发出的部分光因经全反射,而不能发射到空气中,从而导致输出耦合效率偏低、出光率偏低。因此目前有通过增加无机光学微腔结构来提高器件输出耦合效率,但由于无机金属氧化物薄膜自身透过率较差,对提高器件的发光性能贡献有限。
发明内容
鉴于上述现有技术的不足,本公开的目的在于提供一种顶发射量子点发光二极管及其制备方法,旨在解决顶发射量子点发光二极管出光率低的问题。
本公开的技术方案如下:
本公开的第一方面,提供一种顶发射量子点发光二极管,其中,包括依次层叠设置的第一电极、量子点发光层、第二电极、第一聚合物薄膜、第二聚合物薄膜;其中,第二电极的折射率>第一聚合物薄膜的折射率>第二聚合物薄膜的折射率>空气的折射率,第一电极为反射电极,第二电极为透明或半透明电极。
可选地,第二电极的折射率为1.90-2.00,第一聚合物薄膜的折射率为1.60-1.80,第二聚合物薄膜的折射率为1.30-1.50。
可选地,第一聚合物薄膜的厚度为10-20nm。
可选地,第一聚合物选自聚(甲基丙烯酸五溴苯酯)、聚(五溴苄基甲基丙烯酸酯)、聚(五溴苄基丙烯酸酯)、聚(2,4,6-三溴苯基甲基丙烯酸酯)、聚(乙烯基苯基硫酸酯)、聚(2,6-二氯苯乙烯)、聚(N-乙烯酞亚胺)、聚(2-乙烯基噻吩)和聚(2-氯苯乙烯)中的一种或多种。
可选地,第二聚合物薄膜的厚度为10-20nm。
可选地,第二聚合物选自聚(丙烯酸1,1,1,3,3,3-六氟异丙酯)、聚(2,2,3,3,3-五氟丙基丙烯酸酯)、聚(甲基丙烯酸2,2,3,3,3-五氟丙酯)、聚(2,2,3,4,4,4-六氟丁基丙烯酸酯)和聚(2,2,3,4,4,4-六氟丁基甲基丙烯酸酯)中的一种或多种。
可选地,第二电极的厚度为10-20nm。
可选地,第二电极的材料选自氧化铟锡、氧化铟锌、氧化铟铝和氧化铟镓中的一种或多种。
可选地,顶发射量子点发光二极管具体包括依次层叠设置的阴极、电子传输层、量子点发光层、空穴传输层、阳极、第一聚合物薄膜和第二聚合物薄膜。
本公开的第二方面,提供一种本公开所述的顶发射量子点发光二极管的制备方法,其中,包括步骤:
在第一电极上形成量子点发光层;
在量子点发光层上形成第二电极;
在第二电极上形成第一聚合物薄膜;
在第一聚合物薄膜上形成第二聚合物薄膜。
本公开中,通过在第二电极与空气接触的外侧引入第一聚合物薄膜和第二聚合物薄膜,且沿着第二电极往第二聚合物薄膜的方向,各层的折射率由大到小变化,将折射率逐渐降低至与空气折射率接近,该折射率渐变的多个膜层形成微腔结构,该微腔结构可以将顶发射量子点发光二极管(简称器件)发射出的光有效的增大,提高器件的出光率。
图1为本公开实施例提供的一种顶发射量子点发光二极管的结构示意图。
图2为本公开实施例提供的一种顶发射量子点发光二极管的制备方法的流程示意图。
本公开提供一种顶发射量子点发光二极管及其制备方法,为使本公开的目的、技术方案及效果更加清楚、明确,以下对本公开进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
传统的顶发射量子点发光二极管中,第二电极外侧直接与空气接触,由于第二 电极与空气之间的折射率差距过大,如第二电极折射率为1.90-2.00,空气折射率为1.0,二者差距较大,当光从高折射率材料向低折射率材料传播时,从器件内部发出的部分光因经全反射,而不能发射到空气中,从而导致出光率偏低。
基于此,本公开实施例提供一种顶发射量子点发光二极管,其中,包括依次层叠设置的第一电极、量子点发光层、第二电极、第一聚合物薄膜、第二聚合物薄膜;其中,第二电极的折射率>第一聚合物薄膜的折射率>第二聚合物薄膜的折射率>空气的折射率,第一电极为反射电极,第二电极为透明或半透明电极。
本实施例中,第一电极(形成于基底上)为反射电极,第二电极为透明或半透明电极,这样量子点发光二极管内部的光线由该透明或半透明的第二电极射出,即光从量子点发光二极管的顶部射出,因此称为顶发射量子点发光二极管。需说明的是,透明电极指的是透光率达到85%以上的电极,如透光率85%、透光率90%、透光率95%的电极;半透明电极指的是透光率达到50-80%的电极。
本实施例中,通过在第二电极与空气接触的外侧引入第一聚合物薄膜和第二聚合物薄膜,且沿着第二电极往第二聚合物薄膜的方向,三层的折射率由大到小逐渐变化,将折射率逐渐降低至与空气折射率接近,该折射率渐变的膜层形成微腔结构,该微腔结构可以将顶发射量子点发光二极管(简称器件)发射出的光有效的增大,提高器件的出光率。也就是说,本实施例引入了两种不同性质的聚合物组成微腔结构,通过将两种不同折射率的聚合物材料与第二电极材料相结合,来达到灵活控制微腔结构的折射率,从而达到提高器件的出光率的效果。
另外,现有通常采用无机金属氧化物材料来构建微腔结构,由于无机金属氧化物薄膜透过率较差,使得微腔结构对提高器件的出光率仍比较有限。与现有相比,本实施例采用聚合物材料来构建微腔结构,由于聚合物材料具有良好的光学透明度,从而有效确保了微腔结构对器件出光率的提高。此外,本实施例聚合物材料易加工,这样可以通过溶液法来制备微腔结构,从而达到有效保护第二电极的效果,有效避免使用传统溅射等工艺导致对第二电极的破坏。
本实施例中,第二电极的折射率>第一聚合物薄膜的折射率>第二聚合物薄膜 的折射率>空气的折射率。也就是说,沿着第二电极往第二聚合物薄膜的方向,各层的折射率由大到小变化,形成折射率渐变至与空气折射率接近的微腔结构。
在一种实施方式中,第二电极的折射率为1.90-2.00,第一聚合物薄膜的折射率为1.60-1.80,第二聚合物薄膜的折射率为1.30-1.50。
在一种实施方式中,第一聚合物为芳香族或溴化芳香族单体的聚合物,具体可以选自聚(甲基丙烯酸五溴苯酯)、聚(五溴苄基甲基丙烯酸酯)、聚(五溴苄基丙烯酸酯)、聚(2,4,6-三溴苯基甲基丙烯酸酯)、聚(乙烯基苯基硫酸酯)、聚(2,6-二氯苯乙烯)、聚(N-乙烯酞亚胺)、聚(2-乙烯基噻吩)和聚(2-氯苯乙烯)等中的一种或多种,但不限于此。
在一种实施方式中,第一聚合物薄膜的厚度可以为10-20nm。当第一聚合物薄膜厚度小于10nm时,由于该层腔长过短,导致出射光容易在微腔内发生反射现象,致使器件出光率降低。当第一聚合物薄膜厚度大于20nm时,由于该层腔长过长,导致出射光容易在微腔内发生大量漫反射现象,同样致使器件出光率降低。
在一种实施方式中,第二聚合物可以选自聚(丙烯酸1,1,1,3,3,3-六氟异丙酯)、聚(2,2,3,3,3-五氟丙基丙烯酸酯)、聚(甲基丙烯酸2,2,3,3,3-五氟丙酯)、聚(2,2,3,4,4,4-六氟丁基丙烯酸酯)和聚(2,2,3,4,4,4-六氟丁基甲基丙烯酸酯)等中的一种或多种,但不限于此。
在一种实施方式中,第二聚合物薄膜的厚度可以为10-20nm。
在一种实施方式中,第一聚合物薄膜的厚度可以为10-20nm,第二聚合物薄膜的厚度可以为10-20nm。当第一聚合物薄膜和第二聚合物薄膜厚度均在10-20nm之间时,可以使整个微腔腔长达到红、绿、蓝光波长范围(320-640nm)的λ/16,增强出射光的出光率,以及达到出射光光谱窄化和强度增加的效果。
在一种实施方式中,第二电极的材料可以选自氧化铟锡、氧化铟锌、氧化铟铝、氧化铟镓等中的一种或多种,但不限于此。
在一种实施方式中,第二电极的厚度可以为10-20nm。
本实施例中,第一电极位于基底上。在一种实施方式中,基底可以选自玻璃基 底、聚酰亚胺基底、聚异戊二烯基底、聚二甲基硅氧烷基底、硅树脂基底和四氟乙烯基底等中的一种,但不限于此。
需说明的是,本实施例不限制顶发射量子点发光二极管的类型,且顶发射量子点发光二极管可以为正型结构,也可以为反型结构。例如,顶发射量子点发光二极管还可以包括但不限于空穴功能层(空穴注入层和/或空穴传输层)以及电子功能层(电子注入层和/或电子传输层),还可进一步包括界面功能层或界面修饰层,包括但不限于电子阻挡层、空穴阻挡层、电极修饰层、隔离保护层中的一种或多种。
当第一电极为阳极,第二电极为阴极时,顶发射量子点发光二极管为正型结构,空穴功能层位于阳极与量子点发光层之间,电子功能层位于阴极与量子点发光层之间;当第一电极为阴极,第二电极为阳极时,顶发射量子点发光二极管为反型结构,空穴功能层位于阳极与量子点发光层之间,电子功能层位于阴极与量子点发光层之间。
在一种实施方式中,顶发射量子点发光二极管由依次层叠设置的基底、阴极、电子传输层、量子点发光层、空穴传输层、阳极、第一聚合物薄膜和第二聚合物薄膜组成,见图1所示。
在一种实施方式中,空穴传输层的材料可以选自聚噻吩类、聚硅烷类、三苯甲烷类、三芳胺类、腙类、吡唑啉类、咔唑类和丁二烯类等中的一种或多种,但不限于此。在一种实施方式中,空穴传输层的材料具体选自聚[双(4-苯基)(4-丁基苯基)胺]、N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺、N,N,N',N'-四苯基-2,6-萘二胺、4-[1-[4-[二(4-甲基苯基)氨基]苯基]环己基]-N-(3-甲基苯基)-N-(4-甲基苯基)苯胺等中的一种,但不限于此。
在一种实施方式中,量子点发光层中的量子点可以选自Ⅱ-Ⅵ族量子点、Ⅲ-Ⅴ族量子点、Ⅳ-Ⅵ族量子点、全无机钙钛矿量子点、有机-无机钙钛矿量子点、铜硫铟量子点和硅量子点等中的一种或多种,但不限于此。在一种实施方式中,量子点结构可以选自量子点均一二元组分单核结构、量子点均一多元合金组分单核结构、量子点多元合金组分渐变单核结构、量子点二元组分分立核壳结构、量子点多元合金组 分分立核壳结构和量子点多元合金组分渐变核壳结构等中的一种或多种,但不限于此。在一种实施方式中,核壳结构量子点的核和壳的化合物独立地选自以下中的一种或多种:Ⅱ-Ⅵ族的CdSe、CdS、ZnSe、ZnS、CdTe、ZnTe、CdZnS、ZnSeS、CdSeS、CdSeSTe、CdZnSeSTe,Ⅲ-Ⅴ族的InP、InAs、InAsP,Ⅳ-Ⅵ族的PbS、PbSe、PbSeS、PbSeTe、PbSTe,但不限于此。
在一种实施方式中,电子传输层的材料可以选自三(8-羟基喹啉)铝、3,5-三(1-苯基-1H-苯并咪唑-2-基)苯、4,7-二苯基-1,10-菲罗啉、溴甲酚紫钠盐和氧化锌等中的一种或多种,但不限于此。
本公开实施例还提供了一种顶发射量子点发光二极管的制备方法,如图2所示,包括步骤:
S1、在第一电极上形成量子点发光层;
S2、在量子点发光层上形成第二电极;
S3、在第二电极上形成第一聚合物薄膜;
S4、在第一聚合物薄膜上形成第二聚合物薄膜。
本实施例中,通过在第二电极与空气接触的外侧引入第一聚合物薄膜和第二聚合物薄膜,且沿着第二电极往第二聚合物薄膜的方向,三层的折射率由大到小逐渐变化,将折射率逐渐降低至与空气折射率接近,该折射率渐变的膜层形成微腔结构,该微腔结构可以将顶发射量子点发光二极管(简称器件)发射出的光有效的增大,提高器件的出光率。也就是说,本实施例引入了两种不同性质的聚合物组成微腔结构,通过将两种不同折射率的聚合物材料与第二电极材料相结合,来达到灵活控制微腔结构的折射率,从而达到提高器件的出光率的效果。
另外,现有通常采用无机金属氧化物材料来构建微腔结构,由于无机金属氧化物薄膜透过率较差,使得微腔结构对提高器件的出光率仍比较有限。与现有相比,本实施例采用聚合物材料来构建微腔结构,由于聚合物材料具有良好的光学透明度,从而有效确保了微腔结构对器件出光率的提高。此外,本实施例聚合物材料易加工,这样可以通过溶液法来制备微腔结构,从而达到有效保护第二电极的效果,有效避 免使用传统溅射等工艺导致对第二电极的破坏。
需说明的是,本实施例上述各层的制备方法可以是化学法或物理法,其中化学法包括但不限于化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法、共沉淀法中的一种或多种;物理法包括但不限于旋涂法、印刷法、刮涂法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法、条状涂布法、热蒸发镀膜法、电子束蒸发镀膜法、磁控溅射法、多弧离子镀膜法、物理气相沉积法、原子层沉积法、脉冲激光沉积法中的一种或多种。
关于顶发射量子点发光二极管的具体细节见上文,在此不再赘述。
下面通过具体的实施例对本公开作进一步地说明。
在本公开的一实施例中,实施例1的顶发射量子点发光二极管的制备过程如下:
(1)在清洗干净的玻璃基底上蒸镀金属铝阴极;
(2)在金属铝阴极上旋涂三(8-羟基喹啉)铝电子传输层;
(3)在三(8-羟基喹啉)铝电子传输层上旋涂波长为450纳米蓝色ZnSe量子点发光层;
(4)在波长为450纳米蓝色ZnSe量子点发光层上旋涂聚[双(4-苯基)(4-丁基苯基)胺]空穴传输层;
(5)在空穴传输层上溅射薄膜厚度为10纳米的氧化铟锡薄膜;
(6)在氧化铟锡薄膜上旋涂折射率为1.8、薄膜厚度为10纳米的聚(甲基丙烯酸五溴苯酯)薄膜;
(7)在聚(甲基丙烯酸五溴苯酯)薄膜上旋涂折射率为1.5、薄膜厚度为10纳米的聚(丙烯酸1,1,1,3,3,3-六氟异丙酯)薄膜。
在本公开的一对比例中,对比例1只有实施例1中的步骤(1)-(5)。
在本公开的又一对比例中,对比例2与实施例1基本相同,不同的是,步骤(6)与步骤(7)的顺序相反。
在本公开的又一实施例中,实施例2的顶发射量子点发光二极管的制备过程如下:
(1)在清洗干净的玻璃基底上蒸镀金属银阴极;
(2)在金属银阴极上旋涂3,5-三(1-苯基-1H-苯并咪唑-2-基)苯电子传输层;
(3)在3,5-三(1-苯基-1H-苯并咪唑-2-基)苯电子传输层上旋涂波长为530纳米绿色InAsP量子点发光层;
(4)在波长为530纳米绿色InAsP量子点发光层上旋涂N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺空穴传输层;
(5)在空穴传输层上溅射薄膜厚度为20纳米的氧化铟锌薄膜;
(6)在氧化铟锌薄膜上旋涂折射率为1.6、薄膜厚度为15纳米的聚(五溴苄基丙烯酸酯)薄膜;
(7)在聚(五溴苄基丙烯酸酯)薄膜上旋涂折射率为1.3、薄膜厚度为15纳米的聚(2,2,3,3,3-五氟丙基丙烯酸酯)薄膜。
在本公开的再一对比例中,对比例3只有实施例2中的步骤(1)-(5)。
在本公开的另一对比例中,对比例4与实施例2基本相同,不同的是,步骤(6)与步骤(7)的顺序相反。
在本公开的又一实施例中,实施例3的顶发射量子点发光二极管的制备过程如下:
(1)在清洗干净的玻璃基底上蒸镀金属金阴极;
(2)在金属银阴极上旋涂4,7-二苯基-1,10-菲罗啉电子传输层;
(3)在4,7-二苯基-1,10-菲罗啉电子传输层上旋涂波长为620纳米红色PbS量子点发光层;
(4)在波长为620纳米红色PbS量子点发光层上旋涂4-[1-[4-[二(4-甲基苯基)氨基]苯基]环己基]-N-(3-甲基苯基)-N-(4-甲基苯基)苯胺空穴传输层;
(5)在空穴传输层上溅射薄膜厚度为15纳米的氧化铟铝薄膜;
(6)在氧化铟铝薄膜上旋涂折射率为1.7、薄膜厚度为20纳米的聚(N-乙烯酞亚胺)薄膜;
(7)在聚(N-乙烯酞亚胺)薄膜上旋涂折射率为1.4、薄膜厚度为20纳米的聚 (2,2,3,4,4,4-六氟丁基丙烯酸酯)薄膜。
在本公开又一对比例中,对比例5只有实施例3中的步骤(1)-(5)。
在本公开的再一对比例中,对比例6与实施例3基本相同,不同的是,步骤(6)与步骤(7)的顺序相反。
对实施例1-3以及对比例1-6制备得到的顶发射量子点发光二极管的出光率进行测试,测试仪器为EDINBURGH牌FS-5型荧光光谱仪,测试结果如下表1:
表1、器件的出光率
出光率(%) | |
实施例1 | 37 |
对比例1 | 19 |
对比例2 | 22 |
实施例2 | 39 |
对比例3 | 23 |
对比例4 | 20 |
实施例3 | 42 |
对比例5 | 20 |
对比例6 | 19 |
从上表1可见,本公开实施例1-3提供的顶发射量子点发光二极管(具有微腔结构)的出光率,明显高于对比例1-6中的顶发射量子点发光二极管的出光率,说明该微腔结构可以提高顶发射量子点发光二极管的出光率。
应当理解的是,本公开的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本公开所附权利要求的保护范围。
Claims (20)
- 一种顶发射量子点发光二极管,其中,包括依次层叠设置的第一电极、量子点发光层、第二电极、第一聚合物薄膜、第二聚合物薄膜;其中,第二电极的折射率>第一聚合物薄膜的折射率>第二聚合物薄膜的折射率>空气的折射率,第一电极为反射电极,第二电极为透明或半透明电极。
- 根据权利要求1所述的顶发射量子点发光二极管,其中,第二电极的折射率为1.90-2.00,第一聚合物薄膜的折射率为1.60-1.80,第二聚合物薄膜的折射率为1.30-1.50。
- 根据权利要求1或2所述的顶发射量子点发光二极管,其中,第一聚合物薄膜的厚度为10-20nm。
- 根据权利要求1或2所述的顶发射量子点发光二极管,其中,第一聚合物选自聚(甲基丙烯酸五溴苯酯)、聚(五溴苄基甲基丙烯酸酯)、聚(五溴苄基丙烯酸酯)、聚(2,4,6-三溴苯基甲基丙烯酸酯)、聚(乙烯基苯基硫酸酯)、聚(2,6-二氯苯乙烯)、聚(N-乙烯酞亚胺)、聚(2-乙烯基噻吩)和聚(2-氯苯乙烯)中的一种或多种。
- 根据权利要求1或2所述的顶发射量子点发光二极管,其中,第二聚合物薄膜的厚度为10-20nm。
- 根据权利要求1或2所述的顶发射量子点发光二极管,其中,第二聚合物选自聚(丙烯酸1,1,1,3,3,3-六氟异丙酯)、聚(2,2,3,3,3-五氟丙基丙烯酸酯)、聚(甲基丙烯酸2,2,3,3,3-五氟丙酯)、聚(2,2,3,4,4,4-六氟丁基丙烯酸酯)和聚(2,2,3,4,4,4-六氟丁基甲基丙烯酸酯)中的一种或多种。
- 根据权利要求1或2所述的顶发射量子点发光二极管,其中,第二电极的厚度为10-20nm。
- 根据权利要求1或2所述的顶发射量子点发光二极管,其中,第二电极的材料选自氧化铟锡、氧化铟锌、氧化铟铝和氧化铟镓中的一种或多种。
- 根据权利要求1或2所述的顶发射量子点发光二极管,其中,所述第一电极为阴极,所述第二电极为阳极,所述阴极和所述量子点发光层之间设置有电子功能 层,所述量子点发光层和所述阴极之间设置有空穴功能层。
- 根据权利要求1或2所述的顶发射量子点发光二极管,其中,所述第一电极为阳极,所述第二电极为阴极,所述阳极和所述量子点发光层之间设置有空穴功能层,所述量子点发光层和所述阴极之间设置有电子功能层。
- 根据权利要求9或10所述的顶发射量子点发光二极管,其中,所述电子功能层为电子注入层和/或电子传输层,所述空穴功能层为空穴注入层和/或空穴传输层。
- 根据权利要求11所述的顶发射量子点发光二极管,其中,顶发射量子点发光二极管具体包括依次层叠设置的阴极、电子传输层、量子点发光层、空穴传输层、阳极、第一聚合物薄膜和第二聚合物薄膜。
- 根据权利要求11所述的顶发射量子点发光二极管,其中,所述空穴传输层的材料选自聚噻吩类、聚硅烷类、三苯甲烷类、三芳胺类、腙类、吡唑啉类、咔唑类和丁二烯类中的一种或多种。
- 根据权利要求11所述的顶发射量子点发光二极管,其中,所述量子点发光层中的量子点选自Ⅱ-Ⅵ族量子点、Ⅲ-Ⅴ族量子点、Ⅳ-Ⅵ族量子点、全无机钙钛矿量子点、有机-无机钙钛矿量子点、铜硫铟量子点和硅量子点中的一种或多种。
- 根据权利要求14所述的顶发射量子点发光二极管,其中,所述量子点发光层中,量子点的结构选自量子点均一二元组分单核结构、量子点均一多元合金组分单核结构、量子点多元合金组分渐变单核结构、量子点二元组分分立核壳结构、量子点多元合金组分分立核壳结构和量子点多元合金组分渐变核壳结构中的一种或多种。
- 根据权利要求14所述的顶发射量子点发光二极管,其中,所述量子点发光层中,量子点的核和壳的化合物独立地选自CdSe、CdS、ZnSe、ZnS、CdTe、ZnTe、CdZnS、ZnSeS、CdSeS、CdSeSTe、CdZnSeSTe、InP、InAs、InAsP、PbS、PbSe、PbSeS、PbSeTe、PbSTe中的一种或多种。
- 根据权利要求11所述的顶发射量子点发光二极管,其中,所述电子传输层 的材料可以选自三(8-羟基喹啉)铝、3,5-三(1-苯基-1H-苯并咪唑-2-基)苯、4,7-二苯基-1,10-菲罗啉、溴甲酚紫钠盐和氧化锌中的一种或多种。
- 根据权利要求1或2所述的顶发射量子点发光二极管,其中,所述顶发射量子点发光二极管还包括一基底,其中,所述第一电极位于所述基底上。
- 根据权利要求18所述的顶发射量子点发光二极管,其中,所述基底选自玻璃基底、聚酰亚胺基底、聚异戊二烯基底、聚二甲基硅氧烷基底、硅树脂基底和四氟乙烯基底中的一种。
- 一种如权利要求1-19任一项所述的顶发射量子点发光二极管的制备方法,其中,包括步骤:在第一电极上形成量子点发光层;在量子点发光层上形成第二电极;在第二电极上形成第一聚合物薄膜;在第一聚合物薄膜上形成第二聚合物薄膜。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011630855.4A CN114695780A (zh) | 2020-12-30 | 2020-12-30 | 顶发射量子点发光二极管及其制备方法 |
CN202011630855.4 | 2020-12-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022143672A1 true WO2022143672A1 (zh) | 2022-07-07 |
Family
ID=82134182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/142112 WO2022143672A1 (zh) | 2020-12-30 | 2021-12-28 | 顶发射量子点发光二极管及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114695780A (zh) |
WO (1) | WO2022143672A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040160171A1 (en) * | 2003-02-12 | 2004-08-19 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and manufacturing method thereof |
US20110147773A1 (en) * | 2009-12-21 | 2011-06-23 | General Electric Company | Utilizing gradient refractive index films for light extraction and distribution control in oled |
CN107046047A (zh) * | 2016-08-19 | 2017-08-15 | 广东聚华印刷显示技术有限公司 | 印刷型电致发光器件的像素单元及其制备方法和应用 |
CN108321312A (zh) * | 2018-03-19 | 2018-07-24 | 京东方科技集团股份有限公司 | 显示基板及其制造方法、显示装置 |
CN108878674A (zh) * | 2017-05-11 | 2018-11-23 | 京东方科技集团股份有限公司 | 显示基板及其制作方法、显示装置 |
CN111952480A (zh) * | 2020-08-21 | 2020-11-17 | 长春海谱润斯科技有限公司 | 一种光色转换膜及其发光器件 |
-
2020
- 2020-12-30 CN CN202011630855.4A patent/CN114695780A/zh active Pending
-
2021
- 2021-12-28 WO PCT/CN2021/142112 patent/WO2022143672A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040160171A1 (en) * | 2003-02-12 | 2004-08-19 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and manufacturing method thereof |
US20110147773A1 (en) * | 2009-12-21 | 2011-06-23 | General Electric Company | Utilizing gradient refractive index films for light extraction and distribution control in oled |
CN107046047A (zh) * | 2016-08-19 | 2017-08-15 | 广东聚华印刷显示技术有限公司 | 印刷型电致发光器件的像素单元及其制备方法和应用 |
CN108878674A (zh) * | 2017-05-11 | 2018-11-23 | 京东方科技集团股份有限公司 | 显示基板及其制作方法、显示装置 |
CN108321312A (zh) * | 2018-03-19 | 2018-07-24 | 京东方科技集团股份有限公司 | 显示基板及其制造方法、显示装置 |
CN111952480A (zh) * | 2020-08-21 | 2020-11-17 | 长春海谱润斯科技有限公司 | 一种光色转换膜及其发光器件 |
Also Published As
Publication number | Publication date |
---|---|
CN114695780A (zh) | 2022-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9825258B2 (en) | Layered structure for OLED device, method for manufacturing the same, and OLED device having the same | |
CN103733243B (zh) | 荧光体基板、显示装置和电子设备 | |
US9064822B2 (en) | Organic electroluminescent device and method of manufacturing the same | |
CN100466872C (zh) | 配线基底和显示装置 | |
Ding et al. | Plasmonic nanocavity organic light‐emitting diode with significantly enhanced light extraction, contrast, viewing angle, brightness, and low‐glare | |
JP2005197009A (ja) | 表示装置及びその製造方法及び製造装置 | |
US20150349040A1 (en) | Organic Electroluminescence Device and Fabrication Method Thereof | |
WO2017043242A1 (ja) | 有機エレクトロルミネッセンス装置、照明装置および表示装置 | |
WO2016123916A1 (zh) | 一种显示基板及其制备方法和一种显示设备 | |
US20190006627A1 (en) | Top-emitting woled display device | |
US9461276B2 (en) | Organic electroluminescence device and method of fabricating the same | |
WO2017043243A1 (ja) | 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、照明装置および表示装置 | |
JP2014225329A (ja) | 発光デバイス、表示装置、及び照明装置 | |
US9773996B2 (en) | Transparent conductive film, and organic light-emitting device comprising same | |
JP2013157278A (ja) | 発光装置、画像形成装置及び撮像装置 | |
US9203056B1 (en) | OLED structure | |
KR20140046728A (ko) | 금속산화물 박막 기판, 그 제조방법 및 이를 포함하는 유기발광소자 | |
WO2022143672A1 (zh) | 顶发射量子点发光二极管及其制备方法 | |
US20160197314A1 (en) | Substrate for organic light-emitting diode, method for manufacturing same, and organic light-emitting diode comprising same | |
US8785954B2 (en) | Organic light-emitting device | |
US12048174B2 (en) | Combined charge transporting and emitting layer with improved morphology and balanced charge transporting properties | |
US20230105196A1 (en) | Display device | |
US11430969B2 (en) | Electroluminescent component having metal layer disposed between two of optical coupling layers and display device having the same | |
KR101974089B1 (ko) | 유기발광소자 | |
KR20170050229A (ko) | 플렉서블 유기발광 표시장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21914406 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21914406 Country of ref document: EP Kind code of ref document: A1 |