WO2022143509A1 - 摄像模组、其光学调整方法及其线路板单元、驱动装置和感光组件 - Google Patents
摄像模组、其光学调整方法及其线路板单元、驱动装置和感光组件 Download PDFInfo
- Publication number
- WO2022143509A1 WO2022143509A1 PCT/CN2021/141575 CN2021141575W WO2022143509A1 WO 2022143509 A1 WO2022143509 A1 WO 2022143509A1 CN 2021141575 W CN2021141575 W CN 2021141575W WO 2022143509 A1 WO2022143509 A1 WO 2022143509A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- camera module
- circuit board
- sma wire
- driving device
- plane
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 194
- 238000000034 method Methods 0.000 title claims abstract description 64
- 238000003384 imaging method Methods 0.000 claims abstract description 11
- 230000007246 mechanism Effects 0.000 claims description 73
- 230000017525 heat dissipation Effects 0.000 claims description 42
- 238000006073 displacement reaction Methods 0.000 claims description 30
- 238000012546 transfer Methods 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 20
- 230000003014 reinforcing effect Effects 0.000 claims description 19
- 230000002093 peripheral effect Effects 0.000 claims description 18
- 239000000725 suspension Substances 0.000 claims description 9
- 230000008719 thickening Effects 0.000 claims description 7
- 238000003856 thermoforming Methods 0.000 claims description 6
- 238000004804 winding Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 176
- 230000000875 corresponding effect Effects 0.000 description 61
- 230000006870 function Effects 0.000 description 48
- 238000013461 design Methods 0.000 description 47
- 230000008569 process Effects 0.000 description 28
- 230000009286 beneficial effect Effects 0.000 description 26
- 238000010586 diagram Methods 0.000 description 26
- 230000000694 effects Effects 0.000 description 20
- 230000009471 action Effects 0.000 description 12
- 238000013519 translation Methods 0.000 description 12
- 230000004044 response Effects 0.000 description 10
- 230000009977 dual effect Effects 0.000 description 8
- 101000617738 Homo sapiens Survival motor neuron protein Proteins 0.000 description 6
- 102100021947 Survival motor neuron protein Human genes 0.000 description 6
- 238000009434 installation Methods 0.000 description 6
- 238000003466 welding Methods 0.000 description 6
- 238000011217 control strategy Methods 0.000 description 5
- 238000012937 correction Methods 0.000 description 5
- 239000003292 glue Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 101100288434 Arabidopsis thaliana LACS2 gene Proteins 0.000 description 2
- 208000032225 Proximal spinal muscular atrophy type 1 Diseases 0.000 description 2
- 208000033522 Proximal spinal muscular atrophy type 2 Diseases 0.000 description 2
- 208000033550 Proximal spinal muscular atrophy type 4 Diseases 0.000 description 2
- 101100294206 Schizosaccharomyces pombe (strain 972 / ATCC 24843) fta4 gene Proteins 0.000 description 2
- 208000026481 Werdnig-Hoffmann disease Diseases 0.000 description 2
- 201000006960 adult spinal muscular atrophy Diseases 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 201000006913 intermediate spinal muscular atrophy Diseases 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000011265 semifinished product Substances 0.000 description 2
- 208000032471 type 1 spinal muscular atrophy Diseases 0.000 description 2
- 208000032521 type II spinal muscular atrophy Diseases 0.000 description 2
- 208000005606 type IV spinal muscular atrophy Diseases 0.000 description 2
- 208000033526 Proximal spinal muscular atrophy type 3 Diseases 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000002079 cooperative effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 201000004815 juvenile spinal muscular atrophy Diseases 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 208000032527 type III spinal muscular atrophy Diseases 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B13/00—Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
- G03B13/32—Means for focusing
- G03B13/34—Power focusing
- G03B13/36—Autofocus systems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B17/00—Details of cameras or camera bodies; Accessories therefor
- G03B17/55—Details of cameras or camera bodies; Accessories therefor with provision for heating or cooling, e.g. in aircraft
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B5/00—Adjustment of optical system relative to image or object surface other than for focusing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/14—Structural association of two or more printed circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/36—Assembling printed circuits with other printed circuits
Definitions
- the present invention relates to the technical field of optical imaging, in particular, the present invention relates to a camera module and a method for optical adjustment of the camera module, as well as a circuit board unit, a driving device and a photosensitive assembly for the camera module.
- the present invention also relates to an electronic device including the camera module.
- the lens of the camera module is generally equipped with a corresponding drive device to realize the camera module during the shooting process. Focus and anti-shake functions.
- the miniaturization and thinning of the camera module are also the main trends of its technological development.
- the requirements for its anti-shake capability have also increased accordingly.
- the basic principles of the existing anti-shake mechanisms of the camera module are similar. It is formed with the fixed part, and the component that needs to be adjusted in position is fixed with the movable part. When the movable part moves relative to the fixed part, it can drive the component fixed with it to realize the position adjustment.
- the ways of providing driving force are also different. Some rely on the magnetic force between the magnet and the coil to achieve position adjustment, such as the common OIS driving motor and the common PTZ driving structure, and some rely on the electric charge. The interaction between them realizes the drive, such as a MEMS drive device.
- the volume and weight of the components of the camera module also increase accordingly, so higher requirements are placed on the driving device, and the driving device needs to provide With a larger driving force, its volume will also increase accordingly, which is obviously not in line with the current trend of miniaturization of the module structure.
- the components of the drive structure are more complex. During the assembly process, after the drive device and other components of the module are assembled, their reliability is poor. If a collision or blow occurs, the drive structure may be damaged.
- the movable part will also move relative to the fixed part under the action of external force, which may cause damage to the internal components; and the components inside the camera module are all precision components, any of which Damage to the components may lead to the decline of the overall function of the module, which will impair the shooting quality.
- the former configures a corresponding driving structure for the lens, and with the increase of the weight of the lens, a larger driving force needs to be provided, which complicates the structural design of the driving device, and at the same time, the designed structure volume
- the increase is not conducive to realizing the miniaturization of the camera module; the latter is equipped with a driving device for the camera module as a whole, and the weight of the overall module is relatively large, and a corresponding volume of driving device needs to be configured, which increases the overall volume of the module, which is also inconsistent with the The development trend of camera modules.
- a camera module aiming at optimizing the driving adjustment mechanism of the camera module, a camera module, a method for optical adjustment of the camera module, and an electronic device including the camera module are provided .
- the basic idea of the present invention includes: in view of the fact that the camera module needs to perform optical adjustment for the relative position between the lens assembly and the photosensitive assembly during imaging and shooting, especially to realize the functions of focusing (AF) and/or anti-shake (OIS), Then, if the previous adjustment strategy of individually driving the lens structure or the overall driving module structure is abandoned, and at the structural/hardware level, both the lens assembly (specifically, the optical lens) and the photosensitive component (specifically, the photosensitive chip) can be driven by the driving device.
- AF focusing
- OFIS anti-shake
- Controlled movement, joint manipulation of it at the control/software level, and reasonable distribution of the movement form and movement range of the two it is possible to achieve the goal of relative position adjustment or correction more efficiently and quickly; at the same time, through this dual It also reduces the workload of the driver in the single-drive mode, and can appropriately optimize, match and distribute the structure and performance of the two drive devices, and also incorporate the miniaturized design of the module structure into the consider.
- a camera module comprising:
- a lens assembly including an optical lens having at least one lens
- the photosensitive assembly includes a circuit board unit and a photosensitive chip attached to a corresponding bearing portion of the circuit board unit;
- the camera module has a first driving device disposed on the lens assembly and a second driving device disposed in the photosensitive assembly, the first driving device can drive the optical lens to move, and the second driving device
- the photosensitive chip can be driven to move, wherein the first driving device and the second driving device are jointly controlled: a control device assigns and determines the motion form and motion range of the optical lens and the photosensitive chip, so that the first driving device and the second driving device can be controlled.
- the driving devices cooperate with each other to drive the optical lens and the photosensitive chip to move, so as to jointly adjust the relative position between the optical lens and the photosensitive chip.
- the “movement form” includes translation and rotation in different directions, which may specifically involve (but not limited to): the movable parts of the camera module, that is, the optical lens and/or the photosensitive chip, along the optical axis of the optical lens movement, movement in a plane perpendicular to the optical axis, rotation in a plane perpendicular to the optical axis, and tilting with a line perpendicular to the optical axis as the rotation axis.
- the “movement amplitude” refers to the magnitude of the translation distance and the rotation angle, such as the displacement of the optical lens or the photosensitive chip along the optical axis.
- the “assignment” and “determination” of the motion form (including the motion direction) and the motion range of the optical lens and the photosensitive chip correspond to the position parameters of the lens assembly and the photosensitive assembly by the control device (the position parameters can be passed through Known sensing elements, such as gyroscopes, etc., obtain the results obtained through operations. Therefore, the phrase “make the first driving device and the second driving device cooperate with each other to drive the optical lens and the photosensitive chip to move" can be specifically It refers to driving the optical lens and the photosensitive chip to move at the same time (or synchronously), successively, alternately, etc., and may also include driving only one of the optical lens and the photosensitive chip to move under certain conditions.
- the first driving device can drive the optical lens to translate in a plane perpendicular to the optical axis; and/or the second driving device can drive the photosensitive chip in a plane perpendicular to the optical axis In-plane translation. In this way, the first driving device and the second driving device can cooperate to drive the optical lens and the photosensitive chip to move accordingly, so as to perform the anti-shake function operation of the camera module.
- the first driving device can drive the optical lens to move along the direction of the optical axis; and/or the second driving device can drive the photosensitive chip to move along the direction of the optical axis. In this way, the first driving device and the second driving device can cooperate to drive the optical lens and the photosensitive chip to move accordingly, so as to perform the focusing function operation of the camera module.
- the optical lens and the photosensitive chip can be driven synchronously and moved in opposite directions. In this way, the effect of improving the adjustment response speed of the camera module can be achieved, and the focus and/or anti-shake function operations can be completed quickly.
- the displacement of the optical lens and the displacement of the photosensitive chip may be the same or different. According to a preferred embodiment, the displacement of the optical lens is greater than the displacement of the photosensitive chip.
- an appropriate control strategy can be selected for the first driving device and the second driving device.
- the optical lens and the photosensitive chip can start to move at the same time until the photosensitive chip moves by a predetermined displacement, after which the first driving device can drive the optical lens in the same direction or in the other direction Continue to move up.
- the first driving device can drive the optical lens to rotate in a plane perpendicular to the optical axis; and/or the second driving device can drive the photosensitive chip in a plane perpendicular to the optical axis In-plane rotation.
- the first driving device can drive the optical lens to tilt with a line perpendicular to the optical axis as the rotation axis; and/or the second driving device can drive the photosensitive chip to rotate
- the straight line perpendicular to the optical axis is the rotation axis for tilting.
- the corresponding optical adjustment action especially the anti-shake function operation, can be realized.
- the photosensitive chip the movable or floating support is used, and for some special lenses with directionality (such as lenses containing free-form lenses, their optical The characteristics are directional) and are of great significance.
- the first drive device is configured as a voice coil motor, a ball motor, or a MEMS driver; in some embodiments, the second drive device is configured as an SMA driver.
- the first driving device and the second driving device are used to respectively drive the optical lens and the photosensitive chip to cooperate with each other.
- Perform focusing and anti-shake function operations (dual AF driving and dual OIS driving configurations); only the first driving device is used to drive the optical lens to perform the focusing function operation, while the first driving device and the second driving device are used to drive the optical lens and the light sensor respectively.
- the chip performs the anti-shake function operation in cooperation (single AF driving and dual OIS driving configuration); only the first driving device is used to drive the optical lens to perform the focusing function operation, and only the second driving device is used to drive the photosensitive chip to perform the anti-shake function. Operation (single AF drive and single OIS drive configuration).
- the circuit board unit comprises:
- circuit board body on which electronic components and circuit wiring are arranged
- a connector through which the electronic components on the main body of the circuit board are electrically connected with external devices (such as power supply, control elements, etc.);
- the circuit board main body includes a hard board part and a soft board part
- the hard board part comprises the bearing part for arranging the photosensitive chip
- at least one first section of the soft board part is connected to the connection
- At least one second section of the soft board part is connected to the frame of the camera module or to a housing member fixed relative to the frame, wherein the second section is at least one with the frame or all
- the joints where the shell members are connected have an assembly structure for forming an articulating connection pair.
- This provides a particularly suitable circuit board design that gives the photosensitive chip a corresponding degree of freedom of movement and minimizes its movement resistance, especially in view of the fact that the photosensitive chip is used when the camera module performs focusing and/or anti-shake functions.
- its corresponding motion form (including motion direction) and motion range can be considered.
- the second section of the flexible board part prefferably has a reinforcement structure at least at its joint with the frame or the housing component.
- the reinforcing structure can be a local thickening part of the soft board part or a reinforcing member that is additionally fixed to the soft board part. This ensures that the circuit board itself is stably installed in the camera module.
- the assembling structure for forming the movable connection pair includes: the support seat of the flexible suspension mechanism; or the hinge hole of the hinge mechanism; or the T-shaped or L-shaped hanging hole of the guide groove slider-type hanging buckle mechanism.
- the electronic components are arranged on the hard board portion and arranged around the photosensitive chip.
- the main part of the circuit board is in the shape of an open box body, the hard board part of the circuit board forms the bottom wall of the box body, and the first section of the soft board part protrudes from one side of the box body Out of and extending to the connector, the second section of the flexible board portion forms at least two side walls of the box body.
- the lens assembly or its driving device
- the lens assembly can be directly accommodated and supported at least partially in the box structure formed by the main body of the circuit board, so that the overall It is beneficial to realize a small and compact camera module structure.
- the circuit board main body is made of a flat rigid-flex slab, and the rigid-flex slab is formed into a box-shaped circuit board main body by thermoforming.
- the circuit board is connected to the frame of the camera module or a housing member fixed relative to the frame.
- the fixing portion of the first driving device includes a motor housing that is at least partially accommodated in the box-shaped circuit board main body, and is formed as the housing member with the circuit board unit soft board portion The at least two side walls are connected.
- the motor casing and the flexible board portion form an articulating connection pair at at least one joint portion.
- the movable connecting pair can be configured as a guide groove slider type hooking mechanism, including a hook provided on one side of the motor housing and a T-shaped or L-shaped hook provided on one side of the soft board part of the circuit board unit. shaped hanging hole. In this way, at least the movement of the hard board part of the circuit board unit (or the photosensitive chip) in two directions can be realized.
- the frame of the camera module has a hollow structure suitable for at least partially accommodating the box-shaped circuit board main body, and the inner sidewall of the frame and the at least two sides formed by the flexible board part of the circuit board unit walls are adjacent.
- the inner side wall of the frame and the flexible board portion form an active connection pair at at least one joint portion.
- the movable connection pair is configured as a guide groove slider type hooking mechanism, including a hook arranged on one side of the inner side wall of the frame and a T-shaped or L-shaped hook arranged on one side of the soft board part of the circuit board unit. shaped hanging hole. In this way, at least the movement of the hard board part of the circuit board unit (or the photosensitive chip) in two directions can be realized.
- a base is provided at the bottom of the frame, which base is designed as a base plate that matches the bottom of the frame.
- the invention can realize high integration of the structure and assembly of the camera module. In the case where the various module components are closely connected, more heat tends to be generated during their use.
- the upper and/or lower side surfaces of the bottom plate have heat dissipation structures at least on partial surfaces
- the inner and/or outer side walls of the frame have heat dissipation structures at least on partial surfaces.
- the heat dissipation structure may be a concave-convex structure formed on the surface of the corresponding component, thereby increasing the effective heat dissipation area.
- a heat-transfer material is provided in the heat-generating part inside the camera module, and the heat-transfer material is in contact with the bottom plate and/or with the frame.
- a method for optical adjustment of a camera module comprising:
- the motion form and motion range of the optical lens and the photosensitive chip are assigned and determined, and accordingly the first driving device and the second driving device are cooperatively controlled to drive the motion of the optical lens and the photosensitive chip to adjust together.
- the relative position between the lens assembly and the photosensitive assembly is assigned and determined, and accordingly the first driving device and the second driving device are cooperatively controlled to drive the motion of the optical lens and the photosensitive chip to adjust together.
- the method can be used to perform optical anti-shake adjustment of the camera module, wherein the parameters of the relative offset between the lens assembly and the photosensitive assembly of the camera module are obtained by using the gyroscope assembly; the optical lens and the photosensitive chip can at least be able to Move in a plane perpendicular to the optical axis to jointly compensate for the relative offset between the optical lens and the photosensitive chip.
- the method can also be used to perform focus adjustment on the camera module, wherein the parameters of the relative distance between the lens assembly and the photosensitive assembly of the camera module are obtained, and the parameters are calculated according to the needs of shooting and imaging; At least it can move along the direction of the optical axis to jointly adjust the relative distance between the optical lens and the photosensitive chip.
- the optical lens and the photosensitive chip start to move at the same time until the photosensitive chip moves by a predetermined displacement, and thereafter, the first driving device still drives the optical lens to move at the same time according to the corresponding control signal. Continue moving in the same direction or the other.
- an electronic device which includes the above-mentioned camera module.
- the electronic device may be a portable device such as a smart phone, a tablet computer, or the like.
- the features and advantages of the camera module provided according to the first aspect of the present invention are also applicable to the method for optical adjustment of the camera module provided by the second aspect of the present invention. and the electronic device provided by the third aspect of the present invention.
- a circuit board unit for the camera module aims to optimize the circuit board structure design of the camera module, a circuit board unit for the camera module, a photosensitive assembly including the circuit board unit, and a circuit board unit including the camera module are proposed.
- the camera module of the photosensitive component aims to optimize the circuit board structure design of the camera module.
- the basic idea of the present invention is: adopting a rationally structured soft-hard circuit board design, in view of the motion required to be realized by the photosensitive chip on the circuit board when the camera module performs the focus (AF) and/or anti-shake (OIS) function operation, Taking into account its movement form (including movement direction) and movement range, the photosensitive chip is given the corresponding freedom of movement, and its movement resistance is minimized, and the miniaturization design of the module structure is also fully considered.
- AF focus
- OIS anti-shake
- a circuit board unit for a camera module comprising:
- circuit board body on which electronic components and circuit wiring are arranged
- a connector through which the electronic components on the main body of the circuit board are electrically connected with external devices (such as power supply, control elements, etc.);
- the circuit board main body includes a hard board part and a soft board part
- the hard board part is suitable for arranging at least one photosensitive chip
- at least one first section of the soft board part is connected to the connector
- the At least one second section of the soft board part is suitable for connecting to the frame of the camera module or to a housing member fixed relative to the frame, wherein the second section is at least one setting in contact with the frame or all
- the joints where the shell members are connected have an assembly structure for forming an articulating connection pair.
- the two sections of the flexible board portion have reinforcement structures at least at the junctions where they are connected to the frame or the housing member.
- the reinforcing structure can be a local thickening part of the soft board part or a reinforcing member that is additionally fixed to the soft board part. This ensures that the circuit board itself is securely mounted in the camera module.
- the assembling structure for forming the movable connection pair includes: the support seat of the flexible suspension mechanism; or the hinge hole of the hinge mechanism; or the T-shaped or L-shaped hanging hole of the guide groove slider-type hanging buckle mechanism.
- the electronic components are arranged on the hard board portion, preferably around the photosensitive chip.
- the main body of the circuit board is in the shape of an open box body, the hard board part forms the bottom wall of the box body, and the first section of the soft board part protrudes and extends from one side of the box body To the connector, the second section of the flexible board portion forms at least two side walls of the box.
- the circuit board body forms a kind of box-like member, the lens assembly (or its driving device) can be directly accommodated and supported on the circuit board body at least in part, thereby facilitating the realization of a small and compact as a whole. Camera module structure.
- the circuit board main body is made of a flat rigid-flex slab.
- the rigid-flex slab is formed into a box-shaped circuit board main body, in particular, by thermoforming.
- the rigid-flex slab includes:
- the first side edge and the second side edge are arranged on opposite sides of the rectangular hard slab.
- the first strip-shaped flexible slab comprises a first strip spaced from a first side edge of the rectangular rigid slab and extending parallel to the first side edge, the first strip It is connected with the first side edge by a first connecting rib; in the extending direction of the first slat, one end of the first slat is substantially flush with the fourth side edge of the rectangular rigid slab, and the other One end extends beyond the third side edge of the rectangular hard slab, and the excess length is less than the side length of the third side edge and greater than half of the side length of the third side edge and forms a first overlapping piece; the said The first overlapping piece is formed with an external piece protruding parallel to the third side edge.
- the second strip-shaped flexible slab comprises a second strip spaced from and extending parallel to the second side edge of the rectangular rigid slab, the second strip It is connected with the second side edge through a second connecting rib; in the extending direction of the second slat, one end of the second slat is substantially flush with the fourth side edge of the rectangular rigid slab, and the other One end is extended beyond the third side of the rectangular rigid slab, and the length of the beyond is less than the length of the third side and greater than half of the length of the third side and forms a second overlapping piece.
- the rectangular rigid slab forms the bottom wall of the box
- the first strip of the first strip-shaped flexible slab and the The second strip of the second strip-shaped soft slab forms the first side wall and the second side wall opposite to each other of the box body, and the first overlapping piece and the second overlapping piece overlap each other
- the outer piece on the first overlapping piece protrudes outward from the third side wall and extends to the connector after being folded; wherein, the flexible board part
- the first section of the panel is composed of the external sheet
- the second section of the soft board portion includes the first side wall, the second side wall and the third side wall.
- the joint parts of the first side wall and the second side wall set to be connected with the frame or the housing member have the assembly structure for forming an articulating connection pair .
- the joint part of the third side wall which is set to be connected with the frame or the housing member has an additionally arranged fixing plate.
- a photosensitive assembly comprising:
- At least one drive means capable of driving at least the rigid plate portion to move relative to the frame or the housing member.
- the drive means is an SMA drive.
- a camera module comprising:
- a lens assembly including an optical lens having at least one lens
- the lens assembly further includes at least one drive motor capable of driving movement of the optical lens.
- the circuit board is connected to the frame of the camera module or a housing member fixed relative to the frame.
- the fixed portion of the drive motor comprises a motor housing suitable for use as the housing member and at least a second section (especially the circuit board) of the flexible board portion of the circuit board unit.
- the at least two side walls formed by the soft board part of the board unit) are connected.
- the motor casing and the flexible board portion form an articulating connection pair at at least one joint portion.
- the movable connecting pair can be configured as a guide groove slider type hooking mechanism, including a hook provided on one side of the motor housing and a T-shaped or L-shaped hook provided on one side of the soft board part of the circuit board unit. shaped hanging hole. In this way, at least the movement of the hard board part of the circuit board unit (or the photosensitive chip) in two directions can be realized.
- the frame of the camera module has a hollow structure suitable for accommodating at least part of the circuit board unit, the inner side wall of the frame and at least one second section of the flexible board part of the circuit board unit (especially the at least two side walls formed by the flexible board part of the circuit board unit) are connected.
- the inner side wall of the frame and the flexible board portion form an active connection pair at at least one joint portion.
- the movable connection pair is configured as a guide groove slider type hooking mechanism, including a hook arranged on one side of the inner side wall of the frame and a T-shaped or L-shaped hook arranged on one side of the soft board part of the circuit board unit. shaped hanging hole. In this way, at least the movement of the hard board part of the circuit board unit (or the photosensitive chip) in two directions can be realized.
- a base is provided at the bottom of the frame, which base is designed as a base plate that matches the bottom of the frame.
- the upper and/or lower side surfaces of the bottom plate have heat dissipation structures at least on partial surfaces
- the inner and/or outer side walls of the frame have heat dissipation structures at least on partial surfaces.
- the heat dissipation structure may be a concave-convex structure formed on the surface of the corresponding component, thereby increasing the effective heat dissipation area.
- a heat-transfer material is provided in the heat-generating part inside the camera module, and the heat-transfer material is in contact with the bottom plate and/or with the frame.
- the frame, the base and the photosensitive assembly are adapted to form a pre-assembled unit of the camera module.
- the design of the circuit board unit is suitable for implementing the driving operation of the photosensitive chip on it, especially for realizing the movement of the photosensitive chip when the camera module performs the focus (AF) and/or anti-shake (OIS) function operation;
- the main body of the module is accommodated in the box-shaped structure to ensure the stability of the overall structure.
- a driving device for the camera module aims at optimizing the design of the driving device of the camera module, a driving device for the camera module, a photosensitive component including the driving device, and a photosensitive component including the photosensitive component are proposed. camera module.
- the basic idea of the present invention includes: based on the SMA (shape memory alloy) driving principle, by increasing the action length of the SMA wire to increase the movement range of the movable parts (such as the lens or the photosensitive chip) in the driving camera module, so as to achieve adjustment
- AF focus
- OIS anti-shake
- a driving device for a camera module comprising:
- the fixing part is suitable for being fixedly connected with the frame of the camera module or the casing member fixed relative to the frame;
- a movable part adapted to be fixedly connected with at least one movable component of the camera module (for example, the component may be a lens of the camera module, or a photosensitive component or a photosensitive chip); and
- a driving member capable of driving the movable portion to move relative to the fixed portion
- the drive member includes at least two sets of pull wires connected between the fixed portion and the movable portion, wherein
- the first group of pulling wires includes at least one first SMA wire and at least one second SMA wire, the first SMA wire and the second SMA wire respectively extend continuously in an L-shape in the first plane and the extending directions of the two jointly define a first quadrilateral; the first SMA wire and the second SMA wire cooperate to at least make the movable part move in a first direction relative to the fixed part;
- the second group of pull wires includes at least one third SMA wire and at least one fourth SMA wire, the third SMA wire and the fourth SMA wire respectively extend continuously in an L shape in the second plane and the extending directions of the two jointly define a second quadrilateral; the third SMA wire and the fourth SMA wire cooperate to at least make the movable part move in the second direction relative to the fixed part;
- the driving device is suitable for providing at least two-dimensional motion driving for the movable parts of the camera module.
- the "at least one plane" is the plane where the photosensitive chip is located.
- the first plane and the second plane coincide with each other, and the projections of the first direction and the second direction in the first plane or the second plane intersect with each other.
- the first quadrilateral may be arranged within the second quadrilateral.
- the cooperation of the first SMA wire and the second SMA wire can make the movable part perform translational movement relative to the fixed part in the first direction; the cooperation of the third SMA wire and the fourth SMA wire can make The movable part performs translational movement in the second direction relative to the fixed part.
- the first plane and the second plane are parallel to each other.
- first SMA wire and/or the second SMA wire cooperate with the third SMA wire and/or the fourth SMA wire, so that the movable part can be relative to the fixed part in a first or second plane.
- the straight line is the tilting motion of the axis of rotation.
- the first plane and the second plane intersect each other.
- first SMA wire and/or the second SMA wire cooperates with the third SMA wire and/or the fourth SMA wire, so that the movable part can be relative to the fixed part in a first or second plane.
- the straight line is used as the rotation axis to perform tilting motion, and/or, the movable portion can also perform translational motion relative to the fixed portion in the third direction.
- the first quadrilateral and the second quadrilateral may be trapezoids.
- the cooperation of the first SMA wire and the second SMA wire can make the movable part rotate relative to the fixed part in the first plane; the cooperation of the third SMA wire and the fourth SMA wire can make The movable part performs rotational movement relative to the fixed part in the second plane.
- the first SMA wire has a first force-applying area located at a first corner of the first quadrilateral
- the second SMA wire has a second SMA wire located at the first corner of the first quadrilateral.
- the second force application area of the corner portion, the first corner portion and the second corner portion of the first quadrilateral are arranged diagonally; the first SMA wire is directed from the first force application area to the first corner
- the two sides of the first quadrilateral extend along the adjacent sides of the first quadrilateral and are fixed at both ends, and the second SMA wire runs from the second force application area to the second corner on both sides of the first quadrilateral.
- the adjacent sides extend and are fixed at both ends;
- the third SMA wire has a third force application area located at the third corner of the second quadrilateral, and the fourth SMA wire has a third force application area located at the second quadrilateral the fourth force application area of the fourth corner, the third corner and the fourth corner of the second quadrilateral are arranged diagonally;
- the third SMA wire is from the third force application area to the third corner
- the two sides of the second quadrilateral extend along the adjacent sides of the second quadrilateral and are fixed at both ends, and the fourth SMA wire runs from the fourth force application area to the fourth corner along the two sides of the second quadrilateral. Adjacent sides extend and are secured at both ends.
- the projections of the first force application area, the second force application area, the third force application area and the fourth force application area on the first plane or the second plane form an imaginary third and fourth the four corners of the polygon.
- the projections of the first quadrilateral, the second quadrilateral and the third quadrilateral in the first plane or the second plane coincide with each other.
- Both ends of the first SMA wire are fixed on the fixed portion, and a first SMA wire guiding mechanism corresponding to the first force application area is fixed on the movable portion; or, both ends of the first SMA wire be fixed on the movable part, and a first SMA wire guiding mechanism corresponding to the first force application area is fixed on the fixed part; and/or
- Both ends of the second SMA wire are fixed on the fixed portion, and a second SMA wire guiding mechanism corresponding to the second force application area is fixed on the movable portion; or, both ends of the second SMA wire be fixed on the movable part, and a second SMA wire guiding mechanism corresponding to the second force application area is fixed on the fixed part; and/or
- Both ends of the third SMA wire are fixed on the fixing part, and a third SMA wire guiding mechanism corresponding to the third force applying area is fixed on the movable part; or, both ends of the third SMA wire be fixed on the movable part, and a third SMA wire guiding mechanism corresponding to the third force application area is fixed on the fixed part; and/or
- Both ends of the fourth SMA wire are fixed on the fixing part, and a fourth SMA wire guiding mechanism corresponding to the fourth force applying area is fixed on the movable part; or, both ends of the fourth SMA wire It is fixed on the movable part, and a fourth SMA wire guiding mechanism corresponding to the fourth force application area is fixed on the fixed part.
- the guide mechanism may include a winding post or a guide hole.
- a photosensitive assembly comprising:
- the driving device can at least drive the bearing portion to move.
- the carrying part together with the photosensitive chip is provided as the movable part to be connected to the movable part of the driving device.
- the plane where the photosensitive chip is located is coplanar or parallel with the first plane and the second plane, and the at least two sets of pull wires Arranged on the peripheral side, the upper side or the lower side of the bearing portion of the circuit board unit.
- the plane where the photosensitive chip is located is parallel to the first plane or the second plane, and the at least two sets of pull wires are arranged on the plane.
- the plane where the photosensitive chip is located intersects both the first plane and the second plane, and the at least two sets of pull wires are arranged on the The peripheral side or the lower side of the bearing portion of the circuit board unit.
- the circuit board unit includes:
- circuit board body on which electronic components and circuit wiring are arranged
- a connector through which the electronic components on the main body of the circuit board are electrically connected with external devices
- the circuit board main body includes a hard board part and a soft board part
- the hard board part comprises the bearing part for arranging the photosensitive chip
- at least one first section of the soft board part is connected to the connection at least one second section of the flexible board portion is connected to the frame or the shell member, wherein the second section is connected to the frame or the shell member in at least one joint
- the site has an assembly structure for forming an articulating pair. In this way, the photosensitive component or the photosensitive chip can be given a corresponding degree of freedom of movement, and its movement resistance can be minimized.
- the second section of the flex panel portion it is beneficial for the second section of the flex panel portion to have a reinforcement structure at least at the junction where it is connected to the frame or the housing member.
- the reinforcing structure can be a local thickening part of the soft board part or a reinforcing member that is additionally fixed to the soft board part. This ensures that the circuit board itself is stably installed in the camera module.
- the assembling structure for forming the movable connection pair includes: the support seat of the flexible suspension mechanism; or the hinge hole of the hinge mechanism; or the T-shaped or L-shaped hanging hole of the guide groove slider-type hanging buckle mechanism.
- the electronic components are arranged on the hard board portion, preferably around the photosensitive chip.
- the main body of the circuit board is in the shape of an open box body, the hard board part forms the bottom wall of the box body, and the first section of the soft board part protrudes and extends from one side of the box body To the connector, the second section of the flexible board portion forms at least two side walls of the box.
- the circuit board body forms a kind of box-like member, the lens assembly (or its driving device) can be directly accommodated and supported on the circuit board body at least in part, thereby facilitating the realization of a small and compact as a whole. Camera module structure.
- the circuit board main body is made of a flat rigid-flex slab.
- the rigid-flex slab is formed into a box-shaped circuit board main body, in particular, by thermoforming.
- a camera module comprising:
- a lens assembly including an optical lens having at least one lens
- the lens assembly further includes at least one drive motor capable of driving movement of the optical lens.
- the circuit board is connected to the frame of the camera module or a housing member fixed relative to the frame.
- the fixing part of the driving motor includes a motor casing, and in the case where the circuit board unit includes a flexible-rigid board, the motor casing serves as the casing member and the circuit board unit flexible board. At least one section of the part (especially the at least two side walls formed by the flexible board part of the circuit board unit) is connected.
- the motor casing and the flexible board portion form an articulating connection pair at at least one joint portion.
- the movable connecting pair can be configured as a guide groove slider type hooking mechanism, including a hook provided on one side of the motor housing and a T-shaped or L-shaped hook provided on one side of the soft board part of the circuit board unit. shaped hanging hole. In this way, at least the movement of the hard board part of the circuit board unit (or the photosensitive chip) in two directions can be realized.
- the frame of the camera module has a hollow structure suitable for accommodating at least part of the circuit board unit. At least one second section of the flexible board part of the circuit board unit (especially the at least two side walls formed by the flexible board part of the circuit board unit) is connected.
- the inner side wall of the frame and the flexible board portion form an active connection pair at at least one joint portion.
- the movable connection pair is configured as a guide groove slider type hooking mechanism, including a hook arranged on one side of the inner side wall of the frame and a T-shaped or L-shaped hook arranged on one side of the soft board part of the circuit board unit. shaped hanging hole. In this way, at least the movement of the hard board part of the circuit board unit (or the photosensitive chip) in two directions can be realized.
- a base is provided at the bottom of the frame, which base is designed as a base plate that matches the bottom of the frame.
- the upper and/or lower side surfaces of the bottom plate have heat dissipation structures at least on partial surfaces
- the inner and/or outer side walls of the frame have heat dissipation structures at least on partial surfaces.
- the heat dissipation structure may be a concave-convex structure formed on the surface of the corresponding component, thereby increasing the effective heat dissipation area.
- a heat-transfer material is provided in the heat-generating part inside the camera module, and the heat-transfer material is in contact with the bottom plate and/or with the frame.
- the frame, the base and the photosensitive assembly are adapted to form a pre-assembled unit of the camera module.
- the features and advantages of the driving device provided according to the first aspect of the present invention and the photosensitive assembly provided according to the second aspect of the present invention are also applicable to the features and advantages provided by the third aspect of the present invention. camera module.
- the flexible arrangement of the SMA drive structure allows optimal adaptation to the movement of the lens and/or the photosensitive chip when the camera module performs the focus (AF) and/or anti-shake (OIS) functions, and is easy to control ;
- the SMA drive structure can adopt a design with a smaller height, which is conducive to realizing the miniaturization of the overall structure of the camera module.
- the design of the driving device proposed here can also cooperate with the movement of the lens to achieve rapid shake correction and improve the imaging quality of the module.
- the first design scheme of the present invention is about the optimization of the drive adjustment mechanism of the camera module
- the second design scheme is about the optimization of the circuit board structure of the camera module
- the third design scheme is about the camera module drive device.
- the optimizations can be arbitrarily combined or combined with each other, and achieve corresponding beneficial technical effects.
- the camera module of the present application may suitably include the circuit board unit and/or the driving device proposed by the present invention.
- FIG. 1 is a schematic cross-sectional view of the internal composition of a camera module, with a first driving device disposed in the lens assembly and a second driving device disposed in the photosensitive assembly;
- FIG. 2 is a schematic cross-sectional view of a photosensitive assembly configured with a second driving device
- FIG. 3 is a schematic diagram of an SMA driver as an implementation form of the second driving device
- Fig. 4 is the three-dimensional structure schematic diagram of camera module
- Fig. 5 is the exploded schematic diagram of each component of the camera module shown in Fig. 4;
- FIG. 6 is a cutaway schematic view of the camera module shown in FIG. 4 , showing the components assembled together;
- FIG. 7 is a schematic cross-sectional view showing the details of each component of the camera module shown in FIG. 4;
- Fig. 8 is the three-dimensional structure schematic diagram of the lens assembly
- FIG. 9 is a schematic three-dimensional structure diagram of the photosensitive assembly, wherein the outline structure of the circuit board unit is shown;
- FIG. 10 is a schematic three-dimensional structure diagram of the photosensitive assembly shown in FIG. 9 together with the base that has not yet been installed and connected;
- FIG. 11 is a schematic three-dimensional structure diagram of a pre-assembled unit of the camera module, which is formed by installing the photosensitive assembly and the base shown in FIG. 10 together with the camera module frame; The formation process of the pre-assembled unit;
- Fig. 12 is the three-dimensional structure schematic diagram of the base
- FIG. 13 is a schematic view of the three-dimensional structure of the camera module viewed from another perspective, particularly showing its bottom surface;
- FIG. 14 is a schematic block diagram of a method for optical adjustment of a camera module
- 15 is a schematic view of a planar slab used to form a circuit board unit according to one embodiment
- 16 is a schematic cross-sectional view of a photosensitive assembly configured with a driving device of an embodiment
- FIG. 17 shows the connection process of the circuit board unit of the photosensitive assembly and the fixing part with a schematic three-dimensional structure
- FIG. 18 is a schematic three-dimensional structure diagram of a photosensitive assembly, wherein a driving device of the photosensitive assembly is shown;
- 19 is a schematic diagram of the arrangement of SMA wires of a drive device configured as an SMA driver according to one embodiment
- 20 is a schematic diagram of the arrangement of SMA wires of a drive device configured as an SMA driver according to one embodiment, wherein two sets of pull wires are arranged in the same plane;
- 21A is a schematic diagram of the arrangement of SMA wires of a drive device configured as an SMA driver according to an embodiment, wherein two sets of pull wires are disposed in planes parallel to each other, wherein two groups of pull wires are disposed in planes parallel to each other;
- 21B is a schematic diagram of an SMA wire arrangement of a drive device configured as an SMA driver according to one embodiment, wherein two sets of pull wires are arranged in planes that intersect each other;
- 22A is a schematic diagram of the arrangement of SMA wires of a drive device configured as an SMA driver according to an embodiment, wherein two sets of pull wires respectively form a scalene parallelogram and can be arranged in the same plane;
- 22B is a schematic diagram of the arrangement of SMA wires of a drive device configured as an SMA driver according to an embodiment, wherein two sets of pull wires respectively form an isometric parallelogram and can be arranged in different planes.
- the term “a” should be understood as “at least one” or “one or more”, that is, in a certain embodiment, the number of a certain element may be one, and in another embodiment, the number of the element may be one There may be a plurality, that is, the term “one” should not be understood as a limitation on quantity.
- the camera module 100 includes a lens assembly 10 and a photosensitive assembly 20 (for example, see FIG. 1 and FIGS. 4-7 ), and the lens assembly 10 further includes an optical lens 11 and a driving device (for example, see FIG. 8 and FIGS. 4-7 ).
- the driving device is a motor, which is mainly used to achieve focusing and anti-shake effects during the shooting process.
- the motor includes a movable part and a fixed part, and the movable part of the motor is fixed to the lens structure, and the movable part of the motor is outside. When a force is applied, it will move relative to the fixed part of the motor, thereby driving the lens structure to move to adjust the position of the lens, so as to achieve focusing and anti-shake effects during the shooting process.
- the photosensitive assembly 20 generally includes a circuit board unit 22, a photosensitive chip 21, a support, a color filter 30, etc. (for example, see FIG. 2, FIG. 4-7, FIG. 9 and FIG. 16), and the chip is arranged on the upper surface of the circuit board structure, It is electrically connected to the circuit board through a wire bonding process, the support is also arranged on the upper surface of the circuit board and the chip structure is accommodated inside the support structure, the color filter is arranged on the upper surface of the support, the support , the circuit board and the color filter are combined to form a closed space, and the chip structure is arranged inside the closed space, which can protect the chip structure on the one hand, and prevent external dust from falling on the chip on the other hand, so as not to cause a decrease in image quality.
- the lens assembly is arranged above the photosensitive assembly.
- the light is first processed by the color filter for stray light, and then it reaches the position of the chip for signal conversion, that is, the light is converted.
- the signal is converted into an electrical signal, and finally the imaged image is output.
- the sensor device detects the shaking and transmits the information to the control center.
- the control center transmits the information that needs to be compensated to the motor, and the motor will drive the lens structure to move accordingly to Compensate the shake of the camera module, thereby effectively improving the imaging quality of the camera module.
- the present invention proposes a solution for this purpose: the lens and the chip are respectively equipped with corresponding driving structures, so that the two can cooperate with each other to realize the functions of focusing and/or anti-shake during the shooting process.
- the present invention provides a camera module, as shown in FIG. 1, which includes: a lens assembly 10, the lens assembly includes an optical lens 11 having at least one lens; and a photosensitive assembly 20, the photosensitive assembly includes a circuit board unit 22 and the photosensitive chip 21 attached to the corresponding bearing portion of the circuit board unit; here, the camera module has a first driving device D10 disposed in the lens assembly 10 and a photosensitive chip 20 disposed in the photosensitive assembly 20.
- the second driving device D20, the first driving device can drive the optical lens to move, and the second driving device can drive the photosensitive chip to move, wherein the first driving device D10 and the second driving device D20 are jointly controlled: by A control device assigns and determines the motion form and motion range of the optical lens and the photosensitive chip, so that the first driving device and the second driving device cooperate with each other to drive the optical lens and the photosensitive chip to move, so as to jointly adjust the relationship between the optical lens and the photosensitive chip. relative position between.
- the “movement form” includes translation and rotation in different directions, which may specifically involve (but not limited to): the movable parts of the camera module, that is, the optical lens and/or the photosensitive chip, along the optical axis of the optical lens movement, movement in a plane perpendicular to the optical axis, rotation in a plane perpendicular to the optical axis, and tilting with a line perpendicular to the optical axis as the rotation axis.
- the optical axis is defined as extending in the Z direction.
- the above motion form can define six degrees of freedom: x (translation shift along the ⁇ X direction in the xoy plane), y (translation shift along the ⁇ Y direction in the xoy plane), z (translation shift along the ⁇ Z direction), r (rotation in the xoy plane), v (tilt with the x axis as the rotation axis), w (tilt with the y-axis as the rotation axis).
- the "movement amplitude” refers to the magnitude of the translation distance and the rotation angle, such as the displacement of the optical lens or the photosensitive chip along the optical axis.
- the “assignment” and “determination” of the motion form (including the motion direction) and the motion range of the optical lens and the photosensitive chip correspond to the position parameters of the lens assembly and the photosensitive assembly by the control device (the position parameters can be passed through Known sensing elements, such as gyroscopes, etc., obtain the results obtained through operations. Therefore, the phrase “make the first driving device and the second driving device cooperate with each other to drive the optical lens and the photosensitive chip to move” can be specifically It refers to driving the optical lens and the photosensitive chip to move at the same time (or synchronously), successively, alternately, etc. It can also include the situation where only one of the optical lens and the photosensitive chip is driven to move under certain conditions.
- the first driving device D10 can drive the optical lens 11 to translate in a plane (xoy plane) perpendicular to the optical axis (ie, the movement with respect to the above-mentioned x, y degrees of freedom); and/or , the second driving device D20 can drive the photosensitive chip 21 to translate in a plane (xoy plane) perpendicular to the optical axis (that is, the movement with respect to the above-mentioned x and y degrees of freedom).
- the first driving device and the second driving device can cooperate to drive the optical lens and the photosensitive chip to move accordingly, so as to perform the anti-shake function operation of the camera module.
- the first driving device D10 can drive the optical lens 11 to move along the direction of the optical axis (Z direction) (that is, the movement with respect to the above-mentioned z degree of freedom); and/or, the first The second driving device D20 can drive the photosensitive chip 21 to move along the direction of the optical axis (Z direction) (that is, the movement with respect to the above-mentioned z degree of freedom).
- the first driving device and the second driving device can cooperate to drive the optical lens and the photosensitive chip to move accordingly, so as to perform the focusing function operation of the camera module.
- the optical lens and the photosensitive chip can be driven synchronously and moved in opposite directions. In this way, the effect of improving the adjustment response speed of the camera module can be achieved, and the focus and/or anti-shake function operations can be completed quickly.
- the displacement of the optical lens and the displacement of the photosensitive chip may be the same or different.
- the displacement of the optical lens is greater than the displacement of the photosensitive chip, and accordingly, the second driving device may use a relatively small driving structure.
- an appropriate control strategy can be selected for the first driving device and the second driving device.
- the optical lens and the photosensitive chip can start to move at the same time until the photosensitive chip moves by a predetermined displacement, after which the first driving device can drive the optical lens in the same direction or in the other direction Continue to move up.
- the first driving device D10 can drive the optical lens 11 to rotate in a plane (xoy plane) perpendicular to the optical axis (that is, the movement with respect to the above-mentioned r degree of freedom); and/or, the The second driving device D20 can drive the photosensitive chip 21 to rotate in a plane (xoy plane) perpendicular to the optical axis (that is, the movement with respect to the above-mentioned r degree of freedom).
- the first driving device D10 can drive the optical lens 11 to tilt with a straight line perpendicular to the optical axis as the rotation axis (that is, the movement with respect to the above v and w degrees of freedom); and/ Or, the second driving device D20 can drive the photosensitive chip 21 to tilt with a straight line perpendicular to the optical axis as the rotation axis (that is, the movement with respect to the above-mentioned v and w degrees of freedom).
- the corresponding optical adjustment action especially the anti-shake function operation, can be realized.
- the movable or floating support is used, and for some special lenses with directionality (such as lenses containing free-form lenses, their optical The characteristics are directional) and are of great significance.
- the first driving device D10 is configured as a voice coil motor, a ball motor or a MEMS driver; in some embodiments, the second driving device D20 is configured as an SMA driver.
- the first driving device may adopt a conventional voice coil motor, a ball motor or a MEMS driver, and the basic principle and structure thereof will not be repeated here.
- FIG. 2 shows a photosensitive assembly equipped with a second driving device.
- FIG. 3 is a schematic diagram of an SMA driver as an implementation form of the second driving device D20, and its driving member D20-3 may include at least one SMA (shape memory alloy) wire D20-31 and a corresponding elastic restoring element D20-32,
- SMA shape memory alloy
- the present invention accordingly provides a particularly suitable circuit board design.
- the circuit board unit 22 includes:
- circuit board body 220 on which electronic components 222 and circuit wiring are disposed;
- a connector 221 through which the electronic components on the main body of the circuit board are electrically connected with external devices (such as a power supply, a control element, etc.);
- the circuit board body 220 includes a hard board part 2201 and a soft board part 2202
- the hard board part 2201 includes the bearing part for placing the photosensitive chip 21, and at least one first area of the soft board part 2202
- the segment 2202-1 is connected to the connector 221, and the at least one second segment 2202-2 of the flexible board portion 2202 is connected to the frame of the camera module or to a housing member fixed relative to the frame, wherein all the The second section has at least one joint O1 , O2 , O3 connected to the frame or the housing component with an assembly structure J1 - 1 for forming an articulating connection pair.
- the electronic components 222 are arranged on the hard board portion 2201 and arranged around the photosensitive chip.
- connection wires are provided at least partially on or in the hard board part and the soft board part (including the first section and the second section thereof) of the circuit board main body.
- the second driving device D20 can be arranged on the lower side of the circuit board structure, especially around the bottom surface of the hard board portion of the circuit board, so that it drives the overall structure of the photosensitive assembly including the photosensitive chip 21 to move, to adjust its position.
- the circuit board structure includes a hard circuit board (composed of the above-mentioned hard board part 2201 ) and a soft circuit board (composed of the above-mentioned soft board part 2202 ).
- One end of the soft circuit board is connected to the hard circuit board, The other end is connected to an external power supply device through the intermediary function of the connector 221, so as to realize the supply of current during the operation of the camera module.
- the end of the hard circuit board will drive the chip to move under the action of the driving force.
- the end of the flexible circuit board connected to the external power supply device is fixed, and during this process, the flexible circuit board will have a greater resistance to the movement of the rigid circuit board, which affects the precision of chip adjustment.
- the present invention proposes a unique combination of soft and hard boards, that is, a "circumferential" structure is adopted between the hard circuit board and the soft circuit board Therefore, it can not only solve the resistance problem of the soft circuit board to the hard circuit board, but also effectively ensure the stability of the overall structure of the camera module.
- the circuit board main body 220 is in an open box shape
- the hard board part 2201 forms the bottom wall of the box body
- the first section 2202-1 of the soft board part extends from the box
- One side of the body protrudes and extends to the connector 221
- the second section 2202-2 of the soft board portion forms at least two side walls of the box body (see the orientations indicated by a, b, and c in the figures) .
- the main body of the circuit board is made of a flat rigid-flex slab, and the rigid-flex slab is formed into a box-shaped circuit board main body by hot pressing.
- the second section 2202-2 of the flexible board part 2202 has a reinforcing structure at least at the joints O1, O2, O3 where it is connected to the frame or the housing member.
- the reinforcing structure can be a local thickening part of the soft board part or a reinforcing member that is additionally fixed to the soft board part. Therefore, it can be ensured that the circuit board itself is stably installed in the camera module, and the box-shaped structure formed by the circuit board is not easily deformed.
- the lens assembly 10 (or the driving device thereof) can be directly accommodated and supported on the circuit board main body at least partially, thereby facilitating the realization of the overall Small and compact camera module structure.
- the flexible circuit board is arranged around the rigid circuit board, so that it is arranged around the rigid circuit board, and structures such as chips and color filters are accommodated therein.
- a connection buckle can also be arranged on the soft circuit board, which is used to connect with the fixed part, so as to ensure the stability of the overall structure of the module.
- the flexible circuit boards on the two sides are fixed together by the fixed plate structure, and the shape of the flexible circuit boards is kept fixed, and the flexible circuit boards on the two sides are fixed between
- Different methods can be used: such as directly bonding them with glue, or in order to further improve their fixing strength, the two can be fixed by welding, for example, there are solder joints on one side, and the other side corresponds to The position is provided with a welding hole, and the position between the two is fixed and then welded, so that the two can be fixed.
- the assembling structure for forming the movable connection pair includes: the support seat of the flexible suspension mechanism; or the hinge hole of the hinge mechanism; or the T-shaped or L-shaped hanging hole of the guide groove slider-type hanging buckle mechanism.
- the fixing part of the first driving device D10 includes a motor casing, which is at least partially accommodated in the box-shaped circuit board main body 220 and serves as the casing member and circuit
- the at least two side walls (refer to the orientations indicated by a and b in the figure) formed by the soft board part of the board unit are connected.
- the motor casing and the soft board part form an articulating pair at at least one joint position O1, O2.
- the movable connection pair can be configured as a guide groove slider type hook mechanism, including a hook (indicated by J1-2 in FIG. 8 ) arranged on one side of the motor housing and a hook arranged on the circuit board.
- the hook may be configured to include a guide post protruding from the surface of the motor housing and a positioning post angled (preferably perpendicular) to the guide post. In this way, at least the movement of the hard board part of the circuit board unit (or the photosensitive chip) in two directions can be realized.
- connecting the side wall formed by the soft board part to the motor casing can also play a role in maintaining the shape of the box body.
- the shape and size of the box-shaped circuit board body are preferably adapted to the outer contour of the motor housing, so that the motor housing can be accommodated therein, and at the same time, it is also beneficial to keep the shape of the box-shaped circuit board body itself stable.
- FIG. 4 shows a schematic three-dimensional structure of the camera module 100
- FIG. 5 is an exploded schematic view of each component of the camera module shown in FIG. 4
- FIG. 6 is a cutaway schematic diagram of the camera module shown in FIG. The components assembled together are shown: the lens assembly 10 , the photosensitive assembly 20 , the color filter 30 (the color filter can be fixedly arranged on the photosensitive assembly, and the two together form a whole), the frame 40 and the base 50 .
- FIG. 7 is a schematic cross-sectional view showing the details of each component of the camera module shown in FIG. 4 .
- the second driving device D20 in the camera module 100 or the photosensitive assembly 20 in addition to being arranged on the lower side of the circuit board structure as shown in FIG. 2, it can also be considered to be arranged on the peripheral side or the upper side of the circuit board structure , as long as the corresponding light-passing holes are left and the structural design is matched with its associated components.
- the second driving device D20 shown in FIG. 7 (including its fixed part D20-1, movable part D20-2, and driving member D20-3) is arranged on the peripheral side of the circuit board structure.
- the frame 40 of the camera module has a hollow structure suitable for at least partially accommodating the box-shaped circuit board main body 220 (for example, see FIG. 5 ).
- the at least two side walls formed are connected.
- the inner side wall of the frame and the flexible board portion form an active connection pair at at least one joint portion.
- the movable connection pair is configured as a guide groove slider type hook mechanism, including a hook arranged on one side of the inner side wall of the frame and a T hook arranged on one side of the soft board part of the circuit board unit. or L-shaped hanging holes. In this way, at least the movement of the hard board part of the circuit board unit (or the photosensitive chip) in two directions can be realized.
- the shape and size of the box-shaped circuit board body are preferably adapted to the inner contour of the module frame, so that it can be accommodated in the frame, and at the same time, it is also beneficial to maintain the shape of the box-shaped circuit board body itself. Stablize.
- FIG. 12 shows the snap-on hole J2-2 provided on the base 50, while FIG. the snap-on head J2-1.
- FIG. 11 is a schematic three-dimensional structure diagram of a pre-assembly unit U of the camera module.
- the pre-assembly unit is formed by installing the photosensitive assembly 20 and the base 50 shown in FIG. 10 together with the camera module frame 40 .
- the upper and/or lower side surfaces of the bottom plate have heat dissipation structures at least on partial surfaces
- the inner and/or outer side walls of the frame have heat dissipation structures at least on partial surfaces.
- the heat dissipation structure may be a concave-convex structure formed on the surface of the corresponding component (as shown in FIGS. 12 and 13 , the upper side surface 501 and the lower side surface 502 of the base plate have concave-convex structures), in this way, the effective heat dissipation area is increased.
- a heat-transfer material may also be provided at the heat-generating part inside the camera module, and the heat-transfer material is in contact with the bottom plate and/or with the frame.
- the present invention provides a method for optical adjustment of a camera module, comprising:
- the motion form and motion range of the optical lens and the photosensitive chip are assigned and determined, and accordingly the first driving device and the second driving device are cooperatively controlled to drive the motion of the optical lens and the photosensitive chip to adjust together.
- the relative position between the lens assembly and the photosensitive assembly achieves the best imaging position.
- Figure 14 shows a schematic block diagram of the method.
- the position parameter a 0 of the lens assembly and the photosensitive assembly can be obtained through the sensing element S, such as a gyroscope, and the control device C can calculate accordingly, and assign and determine the motion form of the optical lens and the photosensitive chip, using the first drive
- the device D10 and the second driving device D20 cooperate with each other to drive the optical lens of the lens assembly 10 and the photosensitive chip of the photosensitive assembly 20 to move.
- the (changed) relative position parameters a c of the lens assembly and the photosensitive assembly can also be fed back to the control device via the sensing element, or directly fed back to the control device.
- the method can be used to perform optical anti-shake adjustment of the camera module, wherein the parameters of the relative offset between the lens assembly and the photosensitive assembly of the camera module are obtained by using the gyroscope assembly; the optical lens and the photosensitive chip can at least be able to Move in a plane perpendicular to the optical axis to jointly compensate for the relative offset between the optical lens and the photosensitive chip.
- the optical lens and the photosensitive chip can be simultaneously moved (translated and/or rotated) in a plane perpendicular to the optical axis, and the moving directions of the two are opposite, so that fast optical anti-shake adjustment can be realized.
- the method can also be used to perform focus adjustment on the camera module, wherein the parameters of the relative distance between the lens assembly and the photosensitive assembly of the camera module are obtained, and the parameters are calculated according to the needs of shooting and imaging; At least it can move along the direction of the optical axis to jointly adjust the relative distance between the optical lens and the photosensitive chip.
- the optical lens and the photosensitive chip can be moved simultaneously along the direction of the optical axis, and the moving directions of the two are opposite, so that rapid focus adjustment can be achieved.
- the optical lens and the photosensitive chip start to move at the same time until the photosensitive chip moves by a predetermined displacement, and thereafter, the first driving device still drives the optical lens to move at the same time according to the corresponding control signal. Continue moving in the same direction or the other.
- the present invention also provides an electronic device, which includes the camera module 100 as described above.
- the electronic device may be a portable device such as a smart phone, a tablet computer, or the like.
- the present invention proposes such a solution: providing a driving device to the photosensitive assembly structure to drive the photosensitive chip to move, especially for at least part of the anti-shake function operation.
- the driving device drives the photosensitive chip to move, and is also used for at least part of the focusing function operation. It is important to provide a suitable circuit board design that gives the photosensitive chip the corresponding freedom of movement and minimizes its movement resistance.
- the present invention provides a circuit board unit for the camera module 100 .
- the circuit board unit 22 includes:
- circuit board body 220 on which electronic components 222 and circuit wiring are disposed;
- a connector 221 through which the electronic components on the main body of the circuit board are electrically connected with external devices (such as a power supply, a control element, etc.);
- the circuit board main body 220 includes a hard board part 2201 and a soft board part 2202
- the hard board part 2201 includes the bearing part for arranging the photosensitive chip 21, and at least one first area of the soft board part 2202
- the segment 2202-1 is connected to the connector 221, and at least one second segment 2202-2 of the flexible board portion 2202 is connected to the frame of the camera module or to a housing member fixed relative to the frame, wherein all
- the second section has at least one joint O1 , O2 , O3 connected to the frame or the housing component with an assembly structure J1 - 1 for forming an articulating connection pair.
- the electronic components 222 are arranged on the hard board portion 2201 and arranged around the photosensitive chip.
- connection wires are provided at least partially on or in the hard board part and the soft board part (including the first section and the second section thereof) of the circuit board main body.
- the driving device D20 can be arranged on the peripheral side (as shown in FIG. 16 ) or the lower side (as shown in FIG. 2 ) of the circuit board structure, so that it drives the overall structure of the photosensitive assembly including the photosensitive chip 21 to move, so as to realize its position Adjustment.
- the circuit board structure includes a hard circuit board (composed of the above-mentioned hard board part 2201 ) and a soft circuit board (composed of the above-mentioned soft board part 2202 ), and one end of the soft circuit board is connected to the hard circuit board, The other end is connected to an external power supply device through the intermediary function of the connector 221, so as to realize the supply of current during the working process of the camera module.
- the end of the hard circuit board will drive the chip to move under the action of the driving force.
- the end of the flexible circuit board connected to the external power supply device is fixed, and during this process, the flexible circuit board will have a greater resistance to the movement of the rigid circuit board, which affects the precision of chip adjustment.
- the present invention proposes a unique combination of soft and hard boards, that is, a "circumferential" structure is adopted between the hard circuit board and the soft circuit board, which can not only solve the problem
- the resistance of the soft circuit board to the hard circuit board can also effectively ensure the stability of the overall structure of the camera module, and at the same time realize the miniaturization of the structure of the camera module.
- the circuit board main body 220 is in an open box shape
- the hard board part 2201 forms the bottom wall of the box body
- the first section 2202-1 of the soft board part extends from the box
- One side of the body protrudes and extends to the connector 221
- the second section 2202-2 of the soft board portion forms at least two side walls of the box body (see the orientations indicated by a, b, and c in the figures) .
- the second section 2202-2 of the flexible board part 2202 has a reinforcing structure at least at the joints O1, O2, O3 where it is connected to the frame or the housing member.
- the reinforcing structure can be a local thickening part of the soft board part or a reinforcing member that is additionally fixed to the soft board part. This ensures that the circuit board itself is stably installed in the camera module.
- the lens assembly 10 (or the driving device thereof) can be directly accommodated and supported on the circuit board main body at least partially, thereby facilitating the realization of the overall Small and compact camera module structure.
- the flexible circuit board is arranged around the rigid circuit board, so that it is arranged around the rigid circuit board, and structures such as chips and color filters are accommodated in the formed Inside the space, the flexible circuit board can also be provided with connection buckles for connecting with the fixed parts to ensure the stability of the overall structure of the module.
- the flexible circuit boards on the two sides are fixed together by the fixed plate structure, and the shape of the flexible circuit boards is kept fixed, and the flexible circuit boards on the two sides are fixed between
- Different methods can be used: such as directly bonding them with glue, or in order to further improve their fixing strength, the two can be fixed by welding, for example, there are solder joints on one side, and the other side corresponds to The position is provided with a welding hole, and the position between the two is fixed and then welded, so that the two can be fixed.
- the assembling structure for forming the movable connection pair includes: the support seat of the flexible suspension mechanism; or the hinge hole of the hinge mechanism; or the T-shaped or L-shaped hanging hole of the guide groove slider-type hanging buckle mechanism.
- the circuit board main body is made of a flat rigid-flex slab.
- the rigid-flex slab is formed into a box-shaped circuit board main body, in particular, by thermoforming.
- FIG. 15 shows a schematic representation of a planar slab for forming circuit board units according to an embodiment.
- the rigid-flex slab includes:
- the second strip-shaped flexible slab in the indicated orientation) is used to form the flexible board part of the main body of the circuit board, and the first side and the second side are arranged on the opposite sides of the rectangular hard slab 2201A .
- the first strip-shaped flexible slab comprises a first strip 2202-2A1 spaced from and extending parallel to the first side of the rectangular rigid slab 2201A, the The first slat is connected to the first side through the first connecting rib 2202-2A12; in the extending direction of the first slat 2202-2A1, one end of the first slat is connected to the rectangular hard slab
- the fourth side of 2201A is roughly flush, and the other end extends beyond the third side of the rectangular hard slab (see the orientation indicated by c in the figure), and the excess length is less than the length of the third side and is larger than half of the length of the third side edge and forms a first overlapping piece 2202-2A11; an outer piece 2202-1A protruding parallel to the third side edge is formed on the first overlapping piece.
- the second strip-shaped flexible slab comprises a second strip 2202-2A2 spaced from the second side of the rectangular rigid slab 2201A and extending parallel to the second side, the The second slat is connected to the second side by the second connecting rib 2202-2A22; in the extending direction of the second slat 2202-2A2, one end of the second slat is connected to the rectangular hard slab
- the fourth side of 2201A is roughly flush, and the other end extends beyond the third side of the rectangular hard slab (see the orientation indicated by c in the figure), and the excess length is less than the length of the third side and is greater than half of the length of the third side and forms a second overlapping piece 2202-2A21.
- the rectangular rigid slab 2201A forms the bottom wall of the box
- the first strip of the first strip-shaped flexible slab forms the bottom wall of the box.
- 2202-2A1 and the second strip 2202-2A2 of the second strip-shaped flexible slab form the first and second side walls of the box body that are opposite to each other (see the orientations indicated by a and b in FIG. 9 ).
- the first lap 2202-2A11 and the second lap 2202-2A21 overlap each other to form the third side wall of the box (see the orientation indicated by c in FIG.
- the first lap The external tab 2202-1A on the tab protrudes outward from the third side wall and extends to the connector 221 after being folded; wherein, the first section 2202- 1 is composed of the external sheet, and the second section 2202-2 of the flexible board portion includes the first side wall, the second side wall and the third side wall.
- the joint parts O1 and O2 of the first side wall and the second side wall which are set to be connected with the frame or the shell member have the joint pair for forming an articulation connection
- the assembly structure J1-1 it is preferable that the joint parts O1 and O2 of the first side wall and the second side wall which are set to be connected with the frame or the shell member have the joint pair for forming an articulation connection
- the assembly structure J1-1 it is preferable that the joint parts O1 and O2 of the first side wall and the second side wall which are set to be connected with the frame or the shell member have the joint pair for forming an articulation connection
- the assembly structure J1-1 it is preferable that the joint parts O1 and O2 of the first side wall and the second side wall which are set to be connected with the frame or the shell member have the joint pair for forming an articulation connection
- the assembly structure J1-1 it is preferable that the joint parts O1 and O2 of the first side wall and the second side wall which are set to be connected with the frame or the shell
- the joint portion O3 of the third side wall which is set to be connected with the frame or the housing member, has an additionally arranged fixing plate.
- a photosensitive assembly 20 comprising:
- circuit board unit 22 as described above;
- At least one driving device D20 capable of driving at least the rigid plate portion 2201 to move relative to the frame or the housing member.
- 16 is a schematic cross-sectional view of a photosensitive assembly equipped with a driving device of an embodiment, wherein the driving device D20 is at least partially disposed on the peripheral side of the circuit board structure, and the figure shows the fixed part D20-1 and the movable part of the driving device D20-2 and the elastic connection mechanism OO between the two, there is a certain gap between the movable part and the fixed part, and a certain space is reserved for the relative movement of the two.
- 2 is a schematic cross-sectional view of a photosensitive assembly configured with a driving device of another embodiment, wherein the driving device D20 is arranged on the lower side of the circuit board structure. It is also conceivable that the driving device is arranged on the upper side of the circuit board structure, as long as the corresponding light-passing holes are left and the structural design is matched with its associated components.
- FIG. 18 is a schematic three-dimensional structure diagram of the photosensitive assembly, which shows the driving device D20 of the photosensitive assembly.
- the photosensitive chip is fixed to the movable part of the driving device. After assembly, there is a certain amount between the movable part and the fixed part of the driving device. The gap between the two sets aside a certain activity space for the relative movement of the two.
- the movable part of the driving device has a hollow shape, and the hard circuit board part of the photosensitive assembly is accommodated in the hollow structure, which can effectively reduce the overall volume and realize the miniaturization of the camera module.
- the drive means is an SMA drive.
- 20 is a schematic illustration of a drive device constructed as an SMA driver according to one embodiment, wherein four SMA (shape memory alloy) wires SMA1, SMA2, SMA3, SMA4 are used to form two sets of pull wires, the first set of pull wires comprising a first SMA wire and The second SMA wire, the first SMA wire and the second SMA wire respectively extend continuously in an L shape in the first plane P, and the extending directions of the two jointly define a first quadrilateral T; the first SMA wire and the The second SMA wire cooperates to at least make the movable part move in the first direction F relative to the fixed part; the second group of pull wires includes a third SMA wire and a fourth SMA wire, and the third SMA wire and the fourth SMA wire The second plane P' extends continuously in an L shape, and the extending directions of the two together define a second quadrilateral T'; the third SMA wire and the fourth SMA wire cooperate to at least make the movable part Movement in a second direction F
- the first SMA wire has a first force application area K1 located at the first corner of the first quadrilateral
- the second SMA wire has a second force application area K2 located at the second corner of the first quadrilateral
- the first corner portion and the second corner portion of the first quadrilateral are arranged diagonally; the first SMA wire extends from the first force application area K1 to both sides of the first corner portion along the first SMA wire.
- the adjacent sides of the quadrilateral extend and are fixed at both ends, and the second SMA wire extends from the second force-applying area K2 to both sides of the second corner along the adjacent sides of the first quadrilateral and is fixed at the two sides.
- the ends are fixed;
- the third SMA wire has a third force application area K3 located at the third corner of the second quadrilateral, and the fourth SMA wire has a fourth force application area located at the fourth corner of the second quadrilateral K4, the third corner portion and the fourth corner portion of the second quadrilateral are arranged diagonally;
- the third SMA wire extends from the third force application area K3 to both sides of the third corner portion along the second
- the adjacent sides of the quadrilateral extend and are fixed at both ends, and the fourth SMA wire extends from the fourth force application area K4 to the fourth corner along the adjacent sides of the second quadrilateral and is fixed at the two sides end fixed.
- one SMA wire shrinks and the other SMA wire stretches after the corresponding current is applied to the inner set of pull wires (ie, the first SMA wire and the second SMA wire).
- the inner set of pull wires ie, the first SMA wire and the second SMA wire.
- the present invention also provides a camera module 100, comprising:
- a lens assembly 10 comprising an optical lens having at least one lens
- the photosensitive assembly 20 as described above.
- the present invention proposes such a solution: providing a driving device to the photosensitive assembly structure to drive the photosensitive chip to move, especially for at least part of the anti-shake function operation.
- the driving device drives the photosensitive chip to move, and is also used to undertake at least part of the focusing function operation. Therefore, the present invention provides a suitable driving device design.
- the starting point of the present invention is to configure a driving mechanism for the photosensitive element/photosensitive chip, in fact, the driving device provided by the present invention can also be applied to drive the lens assembly. It is allowed to optimally adapt to the movement required by the lens and/or the photosensitive chip when the camera module performs the focus (AF) and/or anti-shake (OIS) function operation, and is easy to control.
- AF focus
- OIS anti-shake
- FIG. 16 shows a schematic cross-sectional view of a photosensitive assembly configured with a driving device of an embodiment, wherein the driving device D20 is at least partially disposed on the peripheral side of the circuit board structure, and the figure shows the fixing part D20- 1 and the movable part D20-2 and the elastic connection mechanism OO between the two, there is a certain gap between the movable part and the fixed part, and a certain space is reserved for the relative movement of the two.
- the present invention provides a driving device D20 for the camera module 100, as shown in FIG. 16, FIG. 19 and FIG. 20, which includes:
- the fixing part D20-1 the fixing part is suitable for being fixedly connected with the frame of the camera module or the casing member fixed relative to the frame;
- a movable part D20-2 the movable part is adapted to be fixedly connected with at least one movable component of the camera module (for example, the component may be a lens of the camera module, or a photosensitive component or a photosensitive chip); and
- the driving member can drive the movable part to move relative to the fixed part;
- the drive member D20-3 includes at least two sets of pull wires connected between the fixed part and the movable part, wherein
- the first group of pull wires includes at least one first SMA wire (indicated by "SMA1” in the figure) and at least one second SMA wire (indicated by "SMA2” in the figure), the first SMA wire and the second SMA wire In the first plane P, they extend continuously in an L-shape, and the extending directions of the two together define a first quadrilateral T; the fixed part moves in the first direction F;
- the second group of pull wires includes at least one third SMA wire (indicated by "SMA3” in the figure) and at least one fourth SMA wire (indicated by "SMA4" in the figure), the third SMA wire and the fourth SMA wire In the second plane P', they extend continuously in an L shape, and the extending directions of the two together define a second quadrilateral T'; the third SMA wire and the fourth SMA wire cooperate to at least make the movable The part moves in the second direction F' relative to the fixed part;
- the driving device is suitable for providing at least two-dimensional motion driving for the movable parts of the camera module.
- the "at least one plane” is the plane where the photosensitive chip is located (in an ideal state, that is, the plane perpendicular to the optical axis).
- each SMA wire extends continuously in an L shape, it can be Increase the action length of each SMA wire, so that the SMA wire can drive the movable part to move a larger stroke under the same deformation rate, so as to achieve the effect of faster response and wider range of adjustment action;
- the proper arrangement relationship of each SMA wire can flexibly realize the required movement of the lens and/or the photosensitive chip when the camera module performs the focus (AF) and/or anti-shake (OIS) function operation, and is easy to control.
- the “movement” may include translation and rotation in different directions, which may specifically involve (but not limited to): the movable parts of the camera module, that is, the optical lens and/or the photosensitive chip, move along the optical axis of the optical lens movement, movement in a plane perpendicular to the optical axis, rotation in a plane perpendicular to the optical axis, and tilting with a line perpendicular to the optical axis as the rotation axis.
- the optical axis is defined as extending in the Z direction.
- the above motion form can define six degrees of freedom: x (translation shift along the ⁇ X direction in the xoy plane), y (translation shift along the ⁇ Y direction in the xoy plane), z (translation shift along the ⁇ Z direction), r (rotation in the xoy plane), v (tilt with the x axis as the rotation axis), w (tilt with the y-axis as the rotation axis).
- the first plane P and the second plane P' coincide with each other, and the first direction F and the second direction F' are on the first plane T or the second plane
- the projections in the two planes T' intersect each other, preferably orthogonal to each other.
- the first quadrilateral T may be arranged within the second quadrilateral T' (see FIG. 20 ).
- an SMA driving structure with a compact layout and a small height can be formed, and the SMA wires do not interfere with each other.
- the cooperation of the first SMA wire and the second SMA wire can make the movable part perform translational movement relative to the fixed part in the first direction; the cooperation of the third SMA wire and the fourth SMA wire can make The movable part performs translational movement in the second direction relative to the fixed part (ie, the movement components at least have the above-mentioned x and y degrees of freedom).
- the driving device D20 is disposed in the photosensitive assembly to drive the photosensitive chip to move, so that the plane where the photosensitive chip is located is coplanar or parallel to the first plane T/second plane T', then the photosensitive chip can be controlled and driven to move in the same direction.
- the motion in the xoy plane is along two intersecting (preferably orthogonal) directions, and the combined motion of the two is suitable for realizing the anti-shake function operation.
- the first plane P and the second plane P' are parallel to each other.
- the first SMA wire and/or the second SMA wire cooperates with the third SMA wire and/or the fourth SMA wire, so that the movable part can be relative to the fixed part in a first or second plane.
- the straight line is the tilting motion of the axis of rotation.
- the driving device can not only drive the movable part to perform translational movement relative to the fixed part in the first direction and the second direction as described above, but also can form a tilting motion due to the driving forces in the two parallel planes respectively. Therefore, the movable part can also be tilted relative to the fixed part using a straight line in the first or second plane as the rotation axis (that is, at least the motion components with the above v and w degrees of freedom).
- the first plane P and the second plane P' intersect each other.
- the first SMA wire and/or the second SMA wire cooperates with the third SMA wire and/or the fourth SMA wire, so that the movable part can be relative to the fixed part in a first or second plane.
- the straight line is used as the rotation axis for tilting motion, and the movable part can also perform translational motion in the third direction relative to the fixed part.
- the driving device can also realize that the movable part can move in the first direction relative to the fixed part in the first direction and the second direction.
- a straight line in one or the second plane is the rotation axis for tilting motion (that is, the motion components with at least the above-mentioned v and w degrees of freedom), and the movable part can also perform translational motion in the third direction relative to the fixed part ( That is, a motion component with at least the aforementioned z degrees of freedom).
- the first quadrilateral and the second quadrilateral may be scalene parallelograms (eg, rectangles).
- the cooperation of the first SMA wire and the second SMA wire can make the movable part rotate relative to the fixed part in the first plane; the cooperation of the third SMA wire and the fourth SMA wire can make The movable part performs rotational movement relative to the fixed part in the second plane.
- the driving device can not only drive the movable part to perform translational movement relative to the fixed part in the first direction and the second direction as described above, but also because the driving force in one plane can form a force couple, so it can also Rotational movement of the movable part relative to the fixed part in the first and/or second plane (that is, the movement component with at least the above-mentioned r degrees of freedom) can be achieved
- the first SMA wire has a first force application area K1 located at the first corner of the first quadrilateral T
- the second SMA wire has a second force application area K2 located at the second corner of the first quadrilateral T
- the first and second corners of the first quadrilateral are formed Diagonally arranged
- the first SMA wire extends from the first force application area K1 to both sides of the first corner along the adjacent sides of the first quadrilateral and is fixed at both ends
- the second SMA wire extends from the
- the second force application area K2 extends along the adjacent sides of the first quadrilateral to both sides of the second corner and is fixed at both ends
- the fourth SMA wire has a fourth force application area K4 located at the fourth corner of the second quadrilateral T', the third corner of the second quadrilateral
- the third SMA wire extends from the third force application
- the projections of the first force application area K1 , the second force application area K2 , the third force application area K3 and the fourth force application area K4 on the first plane P or the second plane P′ Form the four corners of an imaginary third quadrilateral.
- the projections of the first quadrilateral, the second quadrilateral and the third quadrilateral on the first plane P or the second plane P' coincide with each other (for example, as shown in FIG. 21A ) 20 and 22A also roughly belong to this case).
- This form of design may be preferred for simplicity of layout configuration and control logic.
- the shapes and sizes of the above-mentioned quadrilaterals can be determined according to actual needs and design conditions, which are not limited in the present invention in principle.
- Both ends of the first SMA wire are fixed on the fixed part, and a first SMA wire guiding mechanism corresponding to the first force application area K1 is fixed on the movable part;
- the end is fixed on the movable part, and a first SMA wire guiding mechanism corresponding to the first force application area K1 is fixed on the fixed part;
- Both ends of the second SMA wire are fixed on the fixed portion, and a second SMA wire guiding mechanism corresponding to the second force application area K2 is fixed on the movable portion; The end is fixed on the movable part, and a second SMA wire guiding mechanism corresponding to the second force application area K2 is fixed on the fixed part; and/or
- Both ends of the third SMA wire are fixed on the fixing part, and a third SMA wire guiding mechanism corresponding to the third force applying area K3 is fixed on the movable part; or, two ends of the third SMA wire The end is fixed on the movable part, and a third SMA wire guiding mechanism corresponding to the third force application area K3 is fixed on the fixed part; and/or
- Both ends of the fourth SMA wire are fixed on the fixed portion, and a fourth SMA wire guiding mechanism corresponding to the fourth force application area K4 is fixed on the movable portion; The end is fixed on the movable part, and a fourth SMA wire guiding mechanism corresponding to the fourth force application area K4 is fixed on the fixed part.
- the guiding mechanism may include a winding column or a guiding hole, which plays the role of guiding and supporting the SMA wire and transmitting the driving force.
- the present invention also provides a photosensitive assembly 20, comprising:
- circuit board unit 22
- the driving device can at least drive the bearing portion to move.
- Fig. 16 shows a schematic cross-sectional view of a photosensitive assembly equipped with a driving device of an embodiment, wherein the driving device D20 is at least partially disposed on the peripheral side of the circuit board structure, and the figure shows the fixing part D20-1 and the possible parts of the driving device D20-1.
- 2 is a schematic cross-sectional view of a photosensitive assembly configured with a driving device of another embodiment, wherein the driving device D20 is arranged on the lower side of the circuit board structure.
- the driving device is arranged on the upper side of the circuit board structure, as long as the corresponding light-passing holes are left and the structural design is matched with its associated components.
- the carrying part together with the photosensitive chip 21 is provided as the movable part and is connected to the movable part D20 - 2 of the driving device D20 .
- the plane where the photosensitive chip 21 is located is coplanar or parallel with the first plane and the second plane, and the at least The two groups of pulling wires are arranged on the peripheral side, the upper side or the lower side of the bearing portion of the circuit board unit 22 .
- the plane where the photosensitive chip 21 is located is parallel to the first plane or the second plane, and the at least two sets of pull wires Arranged on the peripheral side or the lower side of the bearing portion of the circuit board unit 22 .
- the plane where the photosensitive chip 21 is located intersects both the first plane and the second plane, and the at least two groups of The pull wires are arranged on the peripheral side or the lower side of the bearing portion of the circuit board unit 22 .
- FIG. 9 is a schematic three-dimensional structure diagram of the photosensitive assembly, wherein the external structure of the circuit board unit 22 is shown.
- the circuit board unit 22 includes:
- circuit board body 220 on which electronic components 222 and circuit wiring are disposed;
- a connector 221 through which the electronic components on the main body of the circuit board are electrically connected with external devices (such as a power supply, a control element, etc.);
- the circuit board main body 220 includes a hard board part 2201 and a soft board part 2202
- the hard board part 2201 includes the bearing part for arranging the photosensitive chip 21, and at least one first area of the soft board part 2202
- the segment 2202-1 is connected to the connector 221, and at least one second segment 2202-2 of the flexible board portion 2202 is connected to the frame of the camera module or to a housing member fixed relative to the frame, wherein all
- the second section has at least one joint O1 , O2 , O3 connected to the frame or the housing component with an assembly structure J1 - 1 for forming an articulating connection pair.
- the electronic components 222 are arranged on the hard board portion 2201 and arranged around the photosensitive chip.
- connection wires are at least partially provided on or in the hard board part and the soft board part (including the first section and the second section thereof) of the circuit board main body.
- the driving device D20 can be arranged on the peripheral side (as shown in FIG. 16 ) or the lower side (as shown in FIG. 2 ) of the circuit board structure, so that it drives the overall structure of the photosensitive assembly including the photosensitive chip 21 to move, so as to realize its position Adjustment.
- the circuit board structure includes a hard circuit board (composed of the above-mentioned hard board part 2201 ) and a soft circuit board (composed of the above-mentioned soft board part 2202 ), and one end of the soft circuit board is connected to the hard circuit board, The other end is connected to an external power supply device through the intermediary function of the connector 221, so as to realize the supply of current during the working process of the camera module.
- the end of the hard circuit board will drive the chip to move under the action of the driving force.
- the end of the flexible circuit board connected to the external power supply device is fixed, and during this process, the flexible circuit board will have a greater resistance to the movement of the rigid circuit board, which affects the precision of chip adjustment.
- the present invention proposes a unique combination of soft and hard boards, that is, a "circumferential" structure is adopted between the hard circuit board and the soft circuit board, which can not only solve the problem
- the resistance of the soft circuit board to the hard circuit board can also effectively ensure the stability of the overall structure of the camera module.
- the circuit board main body 220 is in an open box shape
- the hard board part 2201 forms the bottom wall of the box body
- the first section 2202-1 of the soft board part extends from the box
- One side of the body protrudes and extends to the connector 221
- the second section 2202-2 of the soft board portion forms at least two side walls of the box body (see the orientations indicated by a, b, and c in the figures) .
- the second section 2202-2 of the flexible board part 2202 has a reinforcing structure at least at the joints O1, O2, O3 where it is connected to the frame or the housing member.
- the reinforcing structure can be a local thickening part of the soft board part or a reinforcing member that is additionally fixed to the soft board part. This ensures that the circuit board itself is stably installed in the camera module.
- the lens assembly 10 (or the driving device thereof) can be directly accommodated and supported at least partially inside the circuit board main body, which is beneficial to the general Realize a small and compact camera module structure.
- the flexible circuit board is arranged around the rigid circuit board, so that it is arranged around the rigid circuit board, and structures such as chips and color filters are accommodated in the formed Inside the space, the flexible circuit board can also be provided with connection buckles for connecting with the fixed parts to ensure the stability of the overall structure of the module.
- the flexible circuit boards on the two sides are fixed together by the fixed plate structure, and the shape of the flexible circuit boards is kept fixed, and the flexible circuit boards on the two sides are fixed between
- Different methods can be used: such as directly bonding them with glue, or in order to further improve their fixing strength, the two can be fixed by welding, for example, there are solder joints on one side, and the other side corresponds to The position is provided with a welding hole, and the position between the two is fixed and then welded, so that the two can be fixed.
- the assembling structure for forming the movable connection pair includes: the support seat of the flexible suspension mechanism; or the hinge hole of the hinge mechanism; or the T-shaped or L-shaped hanging hole of the guide groove slider-type hanging buckle mechanism.
- the circuit board main body is made of a flat rigid-flex slab.
- the rigid-flex slab is formed into a box-shaped circuit board main body, in particular, by thermoforming.
- FIG. 15 shows a schematic representation of a planar slab for forming circuit board units according to an embodiment.
- the rigid-flex slab includes:
- the second strip-shaped flexible slab in the indicated orientation) is used to form the flexible board part of the main body of the circuit board, and the first side and the second side are arranged on the opposite sides of the rectangular hard slab 2201A .
- the first strip-shaped flexible slab comprises a first strip 2202-2A1 spaced from and extending parallel to the first side of the rectangular rigid slab 2201A, the The first slat is connected to the first side through the first connecting rib 2202-2A12; in the extending direction of the first slat 2202-2A1, one end of the first slat is connected to the rectangular hard slab
- the fourth side of 2201A is roughly flush, and the other end extends beyond the third side of the rectangular hard slab (see the orientation indicated by c in the figure), and the excess length is less than the length of the third side and is larger than half of the length of the third side edge and forms a first overlapping piece 2202-2A11; an outer piece 2202-1A protruding parallel to the third side edge is formed on the first overlapping piece.
- the second strip-shaped flexible slab comprises a second strip 2202-2A2 spaced from the second side of the rectangular rigid slab 2201A and extending parallel to the second side, the The second slat is connected to the second side by the second connecting rib 2202-2A22; in the extending direction of the second slat 2202-2A2, one end of the second slat is connected to the rectangular hard slab
- the fourth side of 2201A is roughly flush, and the other end extends beyond the third side of the rectangular hard slab (see the orientation indicated by c in the figure), and the excess length is less than the length of the third side and is greater than half of the length of the third side and forms a second overlapping piece 2202-2A21.
- the rectangular rigid slab 2201A forms the bottom wall of the box
- the first strip of the first strip-shaped flexible slab forms the bottom wall of the box.
- 2202-2A1 and the second strip 2202-2A2 of the second strip-shaped flexible slab form the first and second side walls of the box body that are opposite to each other (see the orientations indicated by a and b in FIG. 9 ).
- the first lap 2202-2A11 and the second lap 2202-2A21 overlap each other to form the third side wall of the box (see the orientation indicated by c in FIG.
- the first lap The external tab 2202-1A on the tab protrudes outward from the third side wall and extends to the connector 221 after being folded; wherein, the first section 2202- 1 is composed of the external sheet, and the second section 2202-2 of the flexible board portion includes the first side wall, the second side wall and the third side wall.
- the joint parts O1 and O2 of the first side wall and the second side wall which are set to be connected with the frame or the shell member have the joint pair for forming an articulation connection
- the assembly structure J1-1 it is preferable that the joint parts O1 and O2 of the first side wall and the second side wall which are set to be connected with the frame or the shell member have the joint pair for forming an articulation connection
- the assembly structure J1-1 it is preferable that the joint parts O1 and O2 of the first side wall and the second side wall which are set to be connected with the frame or the shell member have the joint pair for forming an articulation connection
- the assembly structure J1-1 it is preferable that the joint parts O1 and O2 of the first side wall and the second side wall which are set to be connected with the frame or the shell member have the joint pair for forming an articulation connection
- the assembly structure J1-1 it is preferable that the joint parts O1 and O2 of the first side wall and the second side wall which are set to be connected with the frame or the shell
- the joint portion O3 of the third side wall which is set to be connected with the frame or the housing member, has an additionally arranged fixing plate.
- the 18 is a schematic three-dimensional structure diagram of the photosensitive assembly 20, which shows the driving device D20 of the photosensitive assembly.
- the photosensitive chip 21 is fixed to the movable part of the driving device. After assembly, the movable part of the driving device and the fixed part are between There is a certain gap, which reserves a certain space for the relative movement of the two.
- the movable part of the driving device has a hollow shape, and the hard circuit board part of the photosensitive assembly is accommodated in the hollow structure, thereby effectively reducing the overall volume and realizing the miniaturization of the camera module.
- the present invention also provides a camera module 100, comprising:
- a lens assembly 10 comprising an optical lens 11 having at least one lens
- the photosensitive assembly 20 as described above.
- FIG. 6 is a cutaway schematic diagram of the camera module, which shows the components assembled together: the lens assembly 10, the photosensitive assembly 20, and the color filter 30 (the color filter can be fixedly arranged on the photosensitive assembly, and the two form a whole), the frame 40 and the base 50.
- FIG. 7 is a schematic cross-sectional view showing details of each component of the camera module shown in FIG. 6 .
- the driving device D20 in the camera module 100 or the photosensitive assembly 20 in addition to being arranged on the lower side of the circuit board structure as shown in FIG. 2, it can also be considered to be arranged on the peripheral side of the circuit board structure Or on the upper side, as long as the corresponding light-passing holes are left and the structural design is matched with its associated components.
- the driving device D20 shown in FIG. 7 (including its fixed part D20-1, movable part D20-2, and driving member D20-3) is arranged on the peripheral side of the circuit board structure.
- FIG. 5 is an exploded schematic view of each component of the camera module.
- the lens assembly 20 further includes at least one drive motor capable of driving movement of the optical lens.
- the circuit board is connected to the frame of the camera module or a housing member fixed relative to the frame.
- the fixing portion D10-1 of the driving motor includes a motor housing, which is suitable as at least one second section (In particular, the at least two side walls formed by the flexible board part of the circuit board unit) are connected.
- FIG. 17 shows the connection process of the circuit board unit of the photosensitive assembly and the fixing part in a schematic three-dimensional structure.
- the motor housing is accommodated at least partially in the box-shaped wiring board main body 220 .
- the motor casing and the flexible board portion form an articulating pair at at least one joint position O1, O2.
- the movable connecting pair can be configured as a guide groove slider type hooking mechanism, including a hook provided on one side of the motor housing and a T-shaped or L-shaped hook provided on one side of the soft board part of the circuit board unit.
- shaped hanging hole (indicated by J1-1 in Figure 9).
- the hook may be configured to include a guide post protruding from the surface of the motor housing and a positioning post angled (preferably perpendicular) to the guide post. In this way, at least the movement of the hard board part of the circuit board unit (or the photosensitive chip) in two directions can be realized.
- the shape and size of the box-shaped circuit board body are preferably adapted to the outer contour of the motor housing, so that the motor housing can be accommodated therein, and at the same time, it is also beneficial to keep the shape of the box-shaped circuit board body itself stable.
- the frame 40 of the camera module has a hollow structure suitable for accommodating at least part of the circuit board unit 20 (specifically, the box-shaped circuit board main body 220 ), and the inner side wall of the frame is connected to all the circuit board units 20 . At least one second section of the flexible board part of the circuit board unit (especially the at least two side walls formed by the flexible board part of the circuit board unit) is connected. Similar to the connection method of the circuit board unit and the motor housing described above, the inner side wall of the frame and the flexible board portion form an active connection pair at at least one joint portion.
- the movable connection pair is configured as a guide groove slider type hook mechanism, including a hook arranged on one side of the inner side wall of the frame and a T hook arranged on one side of the soft board part of the circuit board unit. or L-shaped hanging holes.
- a guide groove slider type hook mechanism including a hook arranged on one side of the inner side wall of the frame and a T hook arranged on one side of the soft board part of the circuit board unit. or L-shaped hanging holes.
- the shape and size of the box-shaped circuit board body are preferably adapted to the inner contour of the module frame, so that it can be accommodated in the frame, and at the same time, it is also beneficial to maintain the shape of the box-shaped circuit board body itself. Stablize.
- a base 50 is provided at the bottom of the frame 40, the base being configured as a bottom plate matching the bottom of the frame (as shown in Figs. 4, 9-11, 12 and 13).
- the frame 40 and the base 50 can be fixedly connected together by a snap mechanism.
- FIG. 12 shows the snap-on hole J2-2 provided on the base 50, while FIG. the snap-on head J2-1.
- the frame, the base and the photosensitive assembly are adapted to form a pre-assembled unit U of the camera module.
- FIGS. 9-11 illustrate the formation process of the pre-assembled unit U with a three-dimensional schematic diagram.
- the pre-assembled unit is formed by installing the photosensitive assembly 20 and the base 50 and the camera module frame 40 shown in FIG. 9 .
- FIG. 4 is a schematic three-dimensional structure diagram of the camera module 100 .
- the upper and/or lower side surfaces of the bottom plate have heat dissipation structures at least on partial surfaces
- the inner and/or outer side walls of the frame have heat dissipation structures at least on partial surfaces.
- the heat dissipation structure may be a concave-convex structure formed on the surface of the relevant component (as shown in FIGS. 12 and 13 , the upper side surface 501 and the lower side surface 502 of the base plate have concave-convex structures), thereby increasing the effective heat dissipation area.
- a heat-transfer material may also be provided at the heat-generating part inside the camera module, and the heat-transfer material is in contact with the bottom plate and/or with the frame. In view of the miniaturized structural design of the camera module and the structural configuration of the driving device of the present invention, the above heat dissipation measures are of great significance.
- the main driving principle of the SMA structure is: the gyroscope senses the offset, the SMA wire D20-31 is energized and corrected (the current size affects the shrinkage of the memory alloy), and after the correction, the built-in spring (ie the elastic reset element D20-32 in Figure 3 ) to return the base to the origin.
- This structure includes a fixed part and a movable part, and an SMA wire is connected between the movable part and the fixed part.
- the SMA wire When the SMA wire is energized, based on a preset program, the SMA wire will shrink or expand accordingly, so as to The movable part is driven to move relative to the fixed part. As shown in Fig.
- the adjustment in 4 directions (+X,-X,+Y,-Y) is controlled by the contraction of four SMA wires, each SMA wire is contracted between the movable point and the static point, and finally the horizontal Orientation adjustment.
- the movable part of the driving device is connected with the rigid circuit board of the photosensitive assembly, and when the movable part of the driving device drives the rigid circuit board to move, the position of the chip can be adjusted.
- a reinforcing plate such as a steel plate structure, can be installed at the bottom of the rigid circuit board, which can also ensure the flatness between the circuit board and the driving device. Reduce cumulative tolerances between assemblies.
- the fixed part of the driving device is connected to the base structure.
- the base structure can be a certain type of circuit board, that is, a circuit for supplying power to the driving device is arranged inside the base structure, so as to realize the operation of the driving device. current supply.
- the circuit for the chip operation and the circuit for the drive structure are designed separately to ensure the current supply during the shooting process, and the cooperation of the two can also achieve a fast working response.
- the movable point is fixed with the hard circuit board of the photosensitive component. When the corresponding current is passed through the SMA wire, the SMA wire will deform, thereby driving the movable point connected to it to move, so that the position of the chip Movement occurs, thereby realizing the correction of module image stabilization during the shooting process.
- the structure surface of the movable part of the driving device can be fixedly connected with the back surface of the circuit board of the driving assembly.
- part of the structure of the driving device can be bonded to the back surface of the hard circuit board.
- the first driving device and the second driving device are used to respectively drive the optical lens and the photosensitive chip to jointly
- the focus and anti-shake function operations are performed together (dual AF driving and dual OIS driving configuration); only the first driving device is used to drive the optical lens to perform the focusing function operation, while the first driving device and the second driving device are used to drive the optical lens and the
- the photosensitive chip works together to perform the anti-shake function operation (single AF driving and dual OIS driving configuration); only the first driving device is used to drive the optical lens to perform the focusing function operation, and only the second driving device is used to drive the photosensitive chip to perform the anti-shake function Functional operation (single AF drive and single OIS drive configuration).
- the camera module includes a lens assembly, a photosensitive assembly, a first driving device, and a second driving device. Still referring to the space coordinate system shown in FIG. 5 , the first driving device is configured to drive the lens to move in the x and y directions, and the second driving device is configured to drive the photosensitive chip in the x and y directions. Moving, further, the photosensitive chip can also be driven by the second driving device to rotate in the xoy plane. By driving the movement of the lens and the photosensitive chip, the optical image stabilization of the camera module is realized. The lens and the photosensitive chip are configured to be driven at the same time and move in opposite directions.
- the lens is driven to move in the positive direction of the x-axis, while the photosensitive chip is driven to move in the negative direction of the x-axis; the lens is driven to move in the positive direction of the y-axis.
- the photosensitive chip is driven to move in the negative direction of the y-axis; or the lens is driven to move on the x-axis and the y-axis, and the photosensitive chip is driven to move in the opposite direction to the lens on the x-axis and the y-axis.
- the camera module usually includes a position sensor.
- the sensor detects that the camera module or the terminal shakes, it sends a signal to the control device to drive the lens and the photosensitive chip to move to compensate for the shake, so as to achieve the purpose of optical anti-shake.
- the control device sends a signal to the control device to drive the lens and the photosensitive chip to move to compensate for the shake, so as to achieve the purpose of optical anti-shake.
- the anti-shake adjustment angle of the camera module (this angle is generally reflected in the relative displacement between the lens and the photosensitive chip) is limited by the suspension system and the drive system, and a relatively large compensation angle range cannot be achieved.
- the lens and the photosensitive chip can be driven to move the same angular distance in opposite directions.
- the moving distance between the lens and the photosensitive chip can also be set to be unequal.
- the distance that the lens moves is greater than the distance that the photosensitive chip moves.
- the second driving device can select a driver with a smaller size (such as MEMS, etc., usually the compensation angle range is also small), which is beneficial to the miniaturization of the overall camera module.
- the ratio between the moving distance of the lens and the moving distance of the photosensitive chip is set to maintain a fixed ratio, such as 6:4, or 7:3, or 5:5. In this way, it is beneficial to be within the range of compensable values.
- the uniformity of the compensation effect is achieved, and at the same time, the design difficulty of the driving logic of the anti-shake system of the camera module is reduced.
- the first driving device drives the lens to continue to move, and the photosensitive chip remains stationary, because the photosensitive chip may have reached its maximum moving distance.
- both the lens and the sensor are set to move in a plane perpendicular to the optical axis, i.e. translate along the x and y axes.
- the camera module translates or rotates within the exposure time, causing the image surface to shift within the plane of the photosensitive chip, resulting in blurred images.
- the anti-shake system detects jitter, it drives the lens and/or the photosensitive chip to translate to compensate for the movement of the image plane on the photosensitive chip.
- the maximum angle (displacement) at which the lens is driven may be smaller than the maximum angle (displacement) at which the photosensitive chip is driven.
- the anti-shake system of the camera module has a faster response speed.
- the lens usually has a large number of lenses.
- the rear main camera can reach 8 lenses.
- some lenses even use glass lenses to improve image quality. , these will cause the lens to be heavier. Therefore, the driving device requires a larger force when driving the lens to move, and it takes longer to drive the lens to reach the preset anti-shake position. Components are relatively lighter, easier to drive, and faster to reach preset positions.
- the response speed of the anti-shake system of the camera module can be improved.
- the lens is relatively heavy, the distance the lens moves is smaller than the distance the chip moves, so the lens and the chip can start to move at the same time and reach the designated position at the same time during anti-shake, so as to have a better anti-shake effect.
- the conventional OIS module requires the lens to move at a relatively large angle to achieve anti-shake. Accordingly, it is necessary to adopt a driving component that can provide a large driving force and a suspension system with a large stroke.
- the selectable range of the first driving device is increased, for example, a pair of coil magnets can be selected for driving; in addition, by reducing the moving angle of the lens, the first driving device can be designed to It is more compact, which is conducive to the miniaturization of the camera module.
- the (second) driving device D20 is arranged between the circuit board of the photosensitive assembly 20 and the base 50 , the circuit board of the photosensitive assembly is provided with various electronic components, and the side of the base 50 has extension parts , which can be used to accommodate the soft circuit board of the photosensitive component in its interior, and the connector will be connected with an external power supply device to realize the current supply during the working process of the chip.
- the photosensitive component part includes a hard circuit board, a chip, etc.
- the color filter 30 can be fixedly arranged on the photosensitive component, and the two form a whole together. board is turned on.
- a molding process can be used to mold the wires connecting the chip and the circuit board inside, and the shape of the molding seat is set to a structure suitable for installing color filters, so as to reduce the height of the module and reduce the size of the mold.
- the weight of the group can not only realize the shooting function of the camera module, but also effectively realize the miniaturization of the module structure.
- the structure of the hot-pressed soft connecting tape needs to be fixed so that it will not be deformed in the subsequent work process.
- the application correspondingly proposes a fixed Frame structure, the soft circuit board arranged on the side of the hard circuit board is limited by the frame structure, so that it forms a semi-finished camera module structure with the photosensitive component and the driving device (this structure is composed of the pre-assembled unit U described above. forming), and then the lens assembly 10 is installed above the semi-finished structure of the camera module, thereby forming a complete dual-drive mode camera module structure.
- FIG. 11 shows the semi-finished structure of the camera module (pre-assembled unit U), where a frame 40 is added and assembled, which frame can confine the flexible circuit board inside it, which has a flexible circuit board Keeping the shape after hot pressing, the inside of the frame is a hollow structure, the bottom of the frame is matched with the bottom of the reserved base, and the pre-set buckle structures on the three elements of the frame, the base and the soft circuit board are matched with each other, The flexible circuit board is fixed on the inner side of the frame through the buckle on the base, so as to ensure the stability of the overall structure.
- each component is assembled in the above-mentioned manner, and after the second driving device is assembled to the photosensitive assembly, it is then fixed inside the frame, thus forming the semi-finished structure of the camera module.
- the lens assembly is at least partially accommodated in the semi-finished product of the camera module in the assembled state, and the glue can be arranged in the gap between the lens assembly and the side of the frame by using a glue dispensing process, and then the lens assembly and the semi-finished product structure of the camera module are fixed to each other. , and finally a compact camera module structure is obtained.
- the soft and hard circuit board setting method, the color filter installation method and the fixed frame setting method used in this example are all beneficial to reduce the height and size of the module, make each component highly integrated, and realize the miniaturization of the overall structure of the camera module.
- the shell structure is used to accommodate the main structure of the camera module inside.
- the camera module itself is a precision assembled electronic device.
- the requirements for heat dissipation are relatively high, especially for the miniaturized camera module structure, the internal heat will have a greater impact on the performance of the module itself.
- the present invention proposes a corresponding structure for the camera module. improvement measures.
- the base fixed with the frame is set as a plate with a concave-convex structure surface (as shown in Figure 12), in this way, the heat dissipation area of the base is increased, and the internal heat can be conducted more quickly to the outside of the module structure to ensure the stability of the camera module shooting environment.
- the base can also be configured as a member with other concave-convex surfaces, such as a circular protruding structure. Make other improvements on the surface to increase its heat dissipation area.
- FIG. 13 shows an embodiment of the above-mentioned assembly of the base and the module structure, wherein two opposite sides of the base are provided with sockets, which can cooperate with the corresponding structures on the module frame to use In order to fix the base and the frame together, and at the same time, it can also protect the internal structure and components of the module; the base has extensions on the above-mentioned two opposite sides that are adapted to the frame structure of the module, It is used to encapsulate the structure of the module in its interior to ensure that the overall structure of the module is stable after assembly.
- concave-convex surface heat dissipation structure In addition to setting the concave-convex surface heat dissipation structure on the base, other structures inside the module, such as the inner side of the frame, especially in the position adjacent to the soft board, can also be provided with similar heat dissipation measures, such as concave-convex surface structure to increase the heat dissipation area of the module and speed up the heat dissipation inside.
- heat transfer materials can be used to transfer the heat generated by the camera module to the frame, and a concave and convex surface can be provided on the inside of the frame to increase the heat dissipation area inside the frame, so as to facilitate the conduction of the heat generated inside the module to the outside of the module, further accelerating The heat dissipation speed ensures the working environment inside the module.
- the heat transfer material is to be used to conduct the heat on the circuit board to the external frame, the heat transfer material can be placed at the joint of the hard and soft board, one end of which is in contact with the circuit board, and the other end is in contact with the external frame.
- the specific heat transfer material is not limited in this application.
- adding a thermally conductive gel to the heat-generating part or attaching a heat sink to the heat-generating part are also possible heat dissipation measures that can be conceived and implemented.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Computer Hardware Design (AREA)
- Aviation & Aerospace Engineering (AREA)
- Studio Devices (AREA)
Abstract
本申请涉及摄像模组、其光学调整方法及其驱动装置和感光组件。摄像模组具有配置于镜头组件的第一驱动装置和配置于感光组件的第二驱动装置,第一驱动装置能够驱动光学镜头运动,第二驱动装置能够驱动感光芯片运动,其中,所述第一驱动装置和第二驱动装置被联合操控:通过一控制装置分配并确定光学镜头和感光芯片的运动形式及运动幅度,使第一驱动装置和第二驱动装置相互协作而驱动所述光学镜头和感光芯片运动,以共同调整光学镜头与感光芯片之间的相对位置。本发明提出的解决方案可以在有效提升摄像模组成像质量的同时实现模组结构的小型化。
Description
本发明涉及光学成像技术领域,具体而言,本发明涉及一种摄像模组和一种用于摄像模组光学调整的方法,以及用于摄像模组的线路板单元、驱动装置和感光组件。本发明还涉及一种包括所述摄像模组的电子设备。
针对智能手机等移动电子设备中所使用的摄像模组,为了有效提升摄像模组的成像质量,一般都会给摄像模组的镜头配置相应的驱动装置,用于在拍摄过程中实现摄像模组的对焦和防抖功能。同时,为适应当前电子设备的设计潮流和用户需求,摄像模组的小型化和轻薄化也是其技术发展的主要趋势。
随着摄像模组变焦能力的增强,对其防抖能力的要求也相应地提高,目前存在的摄像模组防抖机构,其基本原理都是类似的,一般情况下,驱动装置由可动部和固定部构成,将需要进行位置调整的元件与可动部固定在一起,当可动部相对于固定部发生相对运动时,就可带动与其固定在一起的元件实现位置调整。在各种不同驱动结构中,提供驱动力的方式也不尽相同,有的是依靠磁铁和线圈之间的磁力作用实现位置调整,如常见的OIS驱动马达和常见的云台驱动结构,有的是通过电荷之间的作用实现驱动,如MEMS驱动装置。
此外,为了实现更好的拍摄质量,摄像模组构成元件的体积和重量(例如鉴于镜片的数目及尺寸)也相应地增大,因而对于驱动装置提出了更高的要求,需要使驱动装置提供更大的驱动力,故其体积也会相应地增加,这一点显然不符合目前模组结构小型化的趋势。另一方面,驱动结构的构成元件较复杂,在组装过程中,将驱动装置和模组的其他元件组装后,其可靠性较差,如果发生碰撞或者击打,都可能使得驱动结构遭到破坏,即在不工作的情况下,可动部相对于固定部在外力作用下也会发生相对移动,可能造成内部元器件的损伤;而摄像模组内部的构成元件均属精密部件,其中任何一个元件的损坏,都可能导致模组整体功能下降,有损于拍摄质量。
对于目前主流摄像模块所配置的防抖装置,大多采用下述两种方案:一是通过给镜头结构配置相应的驱动装置,如滚珠马达或者SMA马达,以实现拍摄过程中的图像稳定;二是通过给整个摄像模组配置驱动装置,使其驱动模组整体结构移动,以实现拍摄过程中的抖动矫正。但这两种方案都存在相应的缺陷,前者给镜头配置相应的驱动结构,而随着镜头重量的增加,需要提供较大的驱动力,使得驱动装置的结构设计复杂化,同时设计的结构体积增加,不利于实现摄像模组小型化;后者给摄像模组整体配置驱动装置, 而整体模组的重量较大,需要配置相应体积的驱动装置,使得模组整体的体积增加,同样不符合摄像模组的发展趋势。
针对上述问题,需要提供一种新式的摄像模组设计,以有效地解决上述部分或者大部分问题,从而在有效提升摄像模组成像质量的同时可以实现模组结构的小型化。
发明内容
按照本发明的第一种设计方案,旨在优化摄像模组的驱动调节机制,提出一种摄像模组、一种用于摄像模组光学调整的方法以及一种包括该摄像模组的电子设备。
本发明的基本思想包括:鉴于摄像模组在成像拍摄时需要针对镜头组件与感光组件之间的相对位置进行光学调整,特别是需实现例如对焦(AF)和/或防抖(OIS)功能,那么,若摒弃以往单独驱动镜头结构或者整体驱动模组结构的调整策略,而在结构/硬件层面使镜头组件(具体为光学镜头)和感光组件(具体为感光芯片)均能够在驱动装置作用下受控地运动,在控制/软件层面对其执行联合操控,合理分配二者的运动形式和运动幅度,则有可能更加高效、迅捷地达到相对位置的调节或矫正目标;同时,通过这种双驱模式,也减小了单驱模式中驱动器的工作负荷,并且可以相应地对两个驱动装置的结构和性能做出适当优化、匹配及分配,同时还可将模组结构的小型化设计纳入考虑。
按照本发明的第一方面,提供一种摄像模组,包括:
镜头组件,该镜头组件包括具有至少一个镜片的光学镜头;和
感光组件,该感光组件包括线路板单元和贴附在所述线路板单元的相应承载部上的感光芯片;
在此,该摄像模组具有配置于所述镜头组件的第一驱动装置和配置于所述感光组件的第二驱动装置,所述第一驱动装置能够驱动光学镜头运动,所述第二驱动装置能够驱动感光芯片运动,其中,所述第一驱动装置和第二驱动装置被联合操控:通过一控制装置分配并确定光学镜头和感光芯片的运动形式及运动幅度,使第一驱动装置和第二驱动装置相互协作而驱动所述光学镜头和感光芯片运动,以共同调整光学镜头与感光芯片之间的相对位置。在此,所说“运动形式”包括不同方向的平移和转动,具体可以涉及(但不限于):摄像模组可动部件,即光学镜头和/或感光芯片,沿着光学镜头的光轴方向的移动、在垂直于光轴的平面内的移动、在垂直于光轴的平面内的旋转、以及以垂直于光轴的直线为转轴的倾转。相应地,所说“运动幅度”是指平移距离和转动角度的大小,例如光学镜头或感光芯片沿着光轴方向的位移量。
所说“分配”并“确定”光学镜头和感光芯片的运动形式(如上所述,包含运动方向)及运动幅度,是对应于由控制装置依据镜头组件与感光组件位置参数(该位置参数可以通过已知的感测元件例如陀螺仪等获取)经过运算得出的结果,于是,所说“使第一驱动装置和第二驱动装置相互协作而驱动所述光学镜头和感光芯片运动”,可以具体指驱动光学镜头和感光芯片同时(或者说同步)运动、先后运动、交替运动等等, 也可包含在特定条件下仅仅驱使光学镜头和感光芯片之一运动的情形。
在一些实施例中,所述第一驱动装置能够驱动所述光学镜头在垂直于光轴的平面内平移;和/或,所述第二驱动装置能够驱动所述感光芯片在垂直于光轴的平面内平移。按此方式,能够使第一驱动装置和第二驱动装置配合作用,相应地驱动光学镜头和感光芯片运动,以执行摄像模组的防抖功能操作。
在一些实施例中,所述第一驱动装置能够驱动所述光学镜头沿着光轴的方向移动;和/或,所述第二驱动装置能够驱动所述感光芯片沿着光轴的方向移动。按此方式,能够使第一驱动装置和第二驱动装置配合作用,相应地驱动光学镜头和感光芯片运动,以执行摄像模组的对焦功能操作。
对此,按照适宜的实施方式,所述光学镜头和所述感光芯片可以被同步驱动并以相反的方向移动。这样可以达到提升摄像模组调整响应速度的效果,迅速完成对焦和/或防抖功能操作。
按照摄像模组的实际设计情况和构造需要,光学镜头的位移和感光芯片的位移可以相同,也可以不同。依据一种优选实施方式,所述光学镜头的位移大于所述感光芯片的位移。
通常适宜的是,所述光学镜头的位移和所述感光芯片的位移保持固定比例。由此可实现一种较为简单的控制逻辑。
按照摄像模组的实际设计情况和构造需要,对于第一驱动装置和第二驱动装置,可以选择适当的控制策略。例如,在一些实施例中,所述光学镜头和所述感光芯片能够同时开始运动,直至感光芯片移动了预定的位移,此后,所述第一驱动装置能够驱动光学镜头在同一方向上或另一方向上继续移动。
在一些实施例中,所述第一驱动装置能够驱动所述光学镜头在垂直于光轴的平面内旋转;和/或,所述第二驱动装置能够驱动所述感光芯片在垂直于光轴的平面内旋转。以及,在一些实施例中,所述第一驱动装置能够驱动所述光学镜头以垂直于光轴的直线为转轴进行倾转;和/或,所述第二驱动装置能够驱动所述感光芯片以垂直于光轴的直线为转轴进行倾转。由此可实现相应的光学调整动作,尤其是防抖功能操作,这一点对于感光芯片采用活动式或悬浮式支承以及对于某些存在方向性的特殊镜头(例如包含自由曲面镜片的镜头,其光学特性具有方向性),具备重要意义。
至于第一驱动装置和第二驱动装置的具体形式和结构,可以按照实际设计情况和构造需要进行确定。例如,在一些实施例中,所述第一驱动装置构造为音圈马达、滚珠马达或MEMS驱动器;在一些实施例中,所述第二驱动装置构造为SMA驱动器。
在本发明的摄像模组中,针对其对焦和防抖功能,依据相应的驱动结构和控制策略,可以设定:利用第一驱动装置和第二驱动装置分别驱动光学镜头与感光芯片以共同配合执行对焦和防抖功能操作(双AF驱动和双OIS驱动配置);仅利用第一驱动装置驱动光学镜头以执行对焦功能操作,而利用第一驱动装置和第二驱动装置分别驱动光学镜头与感光芯片以共同配合执行防抖功能操作(单AF驱动和双OIS驱动配置); 仅利用第一驱动装置驱动光学镜头以执行对焦功能操作,且仅利用第二驱动装置驱动感光芯片以执行防抖功能操作(单AF驱动和单OIS驱动配置)。
在一些实施例中,适宜的是,所述线路板单元包括:
线路板主体,该线路板主体上设置有电子元器件和电路布线;以及
连接器,通过该连接器使所述线路板主体上的电子元器件与外部装置(例如供电电源、控制元件等)电连接;
其中,所述线路板主体包括硬板部分和软板部分,所述硬板部分包括用于安置感光芯片的所述承载部,所述软板部分的至少一个第一区段连接于所述连接器,所述软板部分的至少一个第二区段连接于摄像模组的框架或者连接于相对该框架固定的壳体构件,其中,所述第二区段在至少一个与所述框架或者所述壳体构件相连的接合部位具有用于形成活动连接副的装配结构。
由此提供了一种特别适用的线路板设计,赋予感光芯片相应的运动自由度,并使其运动阻力最小化,尤其是鉴于感光芯片在摄像模组进行对焦和/或防抖功能操作时所需实现的运动,可考虑其相应的运动形式(包含运动方向)和运动幅度。
在此,有益的是,所述软板部分的第二区段至少在其与所述框架或者所述壳体构件相连的接合部位具有补强结构。所述补强结构可以为软板部分板体的局部加厚部或者为附加固定于软板部分板体的加固件。由此可以确保将线路板本身稳固地安装于摄像模组中。
可以设定,所述用于形成活动连接副的装配结构包括:柔性悬挂机构的支承座;或铰链机构的铰接孔;或导槽滑块式挂扣机构的T形或L形挂孔。
通常适宜的是,所述电子元器件设置在所述硬板部分上,布置于感光芯片周围。
在此,有益的是,所述线路板主体部分呈开放的盒体状,所述线路板硬板部分形成盒体的底壁,所述软板部分的第一区段从盒体一侧凸出并延伸至所述连接器,所述软板部分的第二区段形成盒体的至少两个侧壁。这样,由于线路板主体形成了一种盒体状构件,镜头组件(或者说其驱动装置)便可至少部分地直接容纳并支承于该线路板主体所形成的盒体结构内,从而在总体上有利于实现小型、紧凑的摄像模组结构。
在此,适宜的是,所述线路板主体由一平面状的软硬结合板坯制成,该软硬结合板坯通过热压成型而形成盒体状线路板主体。
关于线路板本身在摄像模组中的安装和固定,可以考虑将线路板连接于摄像模组的框架或者相对该框架固定的壳体构件。
对此,在一些实施例中,第一驱动装置的固定部包括马达外壳,该马达外壳至少部分被容纳于盒体状线路板主体,并作为所述壳体构件与线路板单元软板部分形成的所述至少两个侧壁相连接。所述马达外壳与所述软板部分在至少一个接合部位形成活动连接副。依据一种实施方式,所述活动连接副可以构造为导槽滑块式挂扣机构,包括设置于所述马达外壳一方的挂钩和设置于所述线路板单元软板部分一方的T形或L形挂孔。以此方式,至少可以实现线路板单元硬板部分(或者说感光芯片)在两个方 向上的运动。
在另一些实施例中,所述摄像模组的框架具有适于至少部分容纳盒体状线路板主体的中空结构,该框架的内侧壁与线路板单元软板部分形成的所述至少两个侧壁相邻。所述框架的内侧壁与所述软板部分在至少一个接合部位形成活动连接副。依据一种实施方式,所述活动连接副构造为导槽滑块式挂扣机构,包括设置于所述框架内侧壁一方的挂钩和设置于所述线路板单元软板部分一方的T形或L形挂孔。以此方式,至少可以实现线路板单元硬板部分(或者说感光芯片)在两个方向上的运动。
在此,适宜的是,在所述框架的底部设有基座,该基座构造为与框架底部匹配的底板。
本发明可实现摄像模组结构与组装的高度集成化。在各个模组部件紧密相连的情况下,其使用过程中趋向于产生较多的热量。
在此,有益的是,所述底板的上侧面和/或下侧面至少在局部表面具有散热结构,和/或所述框架的内侧壁和/或外侧壁至少在局部表面具有散热结构。例如,该散热结构可以是形成于相应构件表面的凹凸结构,以此方式增大了有效散热面积。
此外,有益的是,在摄像模组内部的发热部位设有传热材料,该传热材料与所述底板和/或与所述框架相接触。
鉴于本发明摄像模组的小型化结构设计及其驱动装置的结构配置,上述散热措施具备重要意义。
按照本发明的第二方面,提供一种用于摄像模组光学调整的方法,包括:
获取摄像模组的镜头组件与感光组件之间的相对位置参数;
生成控制信号并将其发送至镜头组件和感光组件的操控系统;
利用第一驱动装置,根据相应的控制信号至少驱动镜头组件的光学镜头运动;
利用第二驱动装置,根据相应的控制信号至少驱动感光组件的感光芯片运动;
其中,在生成控制信号时,分配并确定光学镜头和感光芯片的运动形式及运动幅度,据此协作操控第一驱动装置和第二驱动装置而驱动所述光学镜头和感光芯片运动,以共同调整镜头组件与感光组件之间的相对位置。
特别地,该方法可用以执行对摄像模组的光学防抖调整,其中,利用陀螺仪组件获取摄像模组的镜头组件与感光组件之间相对偏移的参数;使光学镜头和感光芯片至少能够在垂直于光轴的平面内移动,以共同补偿光学镜头和感光芯片之间的相对偏移。
特别地,该方法也可用以执行对摄像模组的对焦调整,其中,获取摄像模组的镜头组件与感光组件之间相对距离的参数并依据拍摄成像需要进行参数测算;使光学镜头和感光芯片至少能够沿着光轴的方向移动,以共同调节光学镜头和感光芯片之间的相对距离。
在本发明的方法中,适宜的是,驱动所述光学镜头和感光芯片,并使二者的位移保持固定比例。
在本发明的方法中,可以设定,使所述光学镜头和感光芯片同时开始运动,直至 感光芯片移动了预定的位移,此后,所述第一驱动装置依据相应的控制信号仍驱动光学镜头在同一方向上或另一方向上继续移动。
按照本发明的第三方面,提供一种电子设备,其包括如上所述的摄像模组。该电子设备可以是智能手机、平板电脑等便携式设备。
不言而喻,在本发明的第一种设计方案中,根据本发明第一方面提供的摄像模组的特征和优点同样适用于本发明第二方面提供的用于摄像模组光学调整的方法和本发明第三方面提供的电子设备。
与现有技术相比,本申请所提出的技术方案可以实现至少一个如下所述的有益技术效果:
(1)针对摄像模组的对焦和防抖功能,可实现灵活、高效的驱动配置,在摄像模组的结构和控制方面均提供了更高的设计自由度;
(2)关于摄像模组的对焦和防抖功能,可以依据实际需要和/或工作状态,选择多种不同的操控策略和驱动组合,例如,单AF驱动+双OIS驱动、单AF驱动+单OIS驱动等等,以实现迅速、优化的动作响应,从而有效地提升摄像模组的拍摄质量;
(3)可以采用适当的驱动装置及线路板等相关部件设计,实现摄像模组整体结构的小型化。
按照本发明的第二种设计方案,旨在优化摄像模组的线路板结构设计,提出一种用于摄像模组的线路板单元、一种包括该线路板单元的感光组件和一种包括该感光组件的摄像模组。
本发明的基本思想在于:采用合理构造的软硬结合线路板设计,鉴于线路板上感光芯片在摄像模组进行对焦(AF)和/或防抖(OIS)功能操作时所需实现的运动,兼顾其运动形式(包含运动方向)和运动幅度,赋予感光芯片相应的运动自由度,并使其运动阻力最小化,同时还充分考虑模组结构的小型化设计。
按照本发明的第一方面,提供一种用于摄像模组的线路板单元,包括:
线路板主体,该线路板主体上设置有电子元器件和电路布线;以及
连接器,通过该连接器使所述线路板主体上的电子元器件与外部装置(例如供电电源、控制元件等)电连接;
其中,所述线路板主体包括硬板部分和软板部分,所述硬板部分适于安置至少一个感光芯片,所述软板部分的至少一个第一区段连接于所述连接器,所述软板部分的至少一个第二区段适合连接于摄像模组的框架或者适合连接于相对该框架固定的壳体构件,其中,所述第二区段在至少一个设定与所述框架或者所述壳体构件相连的接合部位具有用于形成活动连接副的装配结构。
在一些实施例中,有益的是,所述软板部分的二区段至少在其与所述框架或者所述壳体构件相连的接合部位具有补强结构。所述补强结构可以为软板部分板体的局部加厚部或者为附加固定于软板部分板体的加固件。由此可以确保将线路板本身稳固地 安装于摄像模组中。
可以设定,所述用于形成活动连接副的装配结构包括:柔性悬挂机构的支承座;或铰链机构的铰接孔;或导槽滑块式挂扣机构的T形或L形挂孔。
通常适宜的是,所述电子元器件设置在所述硬板部分上,优选布置于感光芯片周围。
在此,有益的是,所述线路板主体呈开放的盒体状,所述硬板部分形成盒体的底壁,所述软板部分的第一区段从盒体一侧凸出并延伸至所述连接器,所述软板部分的第二区段形成盒体的至少两个侧壁。这样,由于线路板主体形成了一种盒体状构件,镜头组件(或者说其驱动装置)便可至少部分地直接容纳并支承于该线路板主体,从而在总体上有利于实现小型、紧凑的摄像模组结构。
在此,适宜的是,所述线路板主体由一平面状的软硬结合板坯制成。所述软硬结合板坯尤其是通过热压成型而形成盒体状线路板主体。
具体而言,在一些实施例中,所述软硬结合板坯包括:
一个矩形硬板坯,用于构成线路板主体的所述硬板部分;
一个布置于矩形硬板坯的第一侧边的第一条形软板坯和一个布置于矩形硬板坯的第二侧边的第二条形软板坯,用于构成线路板主体的所述软板部分,所述第一侧边和第二侧边设置在所述矩形硬板坯的对边。
在此适宜的是,所述第一条形软板坯包括与所述矩形硬板坯的第一侧边间隔开且平行于该第一侧边延伸的第一板条,该第一板条通过第一连接筋与所述第一侧边相连;在所述第一板条的延伸方向上,该第一板条的一端与所述矩形硬板坯的第四侧边大致齐平,另一端延长而超出于所述矩形硬板坯的第三侧边,超出的长度小于该第三侧边的边长且大于该第三侧边边长的一半并形成第一搭接片;所述第一搭接片上形成有平行于第三侧边突伸的外接片。
在此适宜的是,所述第二条形软板坯包括与所述矩形硬板坯的第二侧边间隔开且平行于该第二侧边延伸的第二板条,该第二板条通过第二连接筋与所述第二侧边相连;在所述第二板条的延伸方向上,该第二板条的一端与所述矩形硬板坯的第四侧边大致齐平,另一端延长而超出于所述矩形硬板坯的第三侧边,超出的长度小于该第三侧边的边长且大于该第三侧边边长的一半并形成第二搭接片。
于是,在所述软硬结合板坯成型为盒体状线路板主体的状态下,所述矩形硬板坯形成盒体的底壁,所述第一条形软板坯的第一板条和所述第二条形软板坯的第二板条形成盒体的彼此对置的第一侧壁和第二侧壁,所述第一搭接片与所述第二搭接片相互搭接而形成盒体的第三侧壁,第一搭接片上的所述外接片在翻折后从所述第三侧壁向外凸出并延伸至所述连接器;其中,所述软板部分的所述第一区段由所述外接片构成,所述软板部分的所述第二区段包括所述第一侧壁、第二侧壁和第三侧壁。
在一些实施例中,优选的是,所述第一侧壁和第二侧壁的设定与所述框架或者所述壳体构件相连的接合部位具有所述用于形成活动连接副的装配结构。
在一些实施例中,优选的是,所述第三侧壁的设定与所述框架或者所述壳体构件相连的接合部位具有附加设置的固定板。
按照本发明的第二方面,提供一种感光组件,包括:
如上所述的线路板单元;
至少一个感光芯片,所述感光芯片贴装在所述线路板单元的硬板部分上;和
至少一个驱动装置,所述驱动装置至少能够驱动所述硬板部分相对于所述框架或者所述壳体构件运动。
在一些实施例中,适宜的是,所述驱动装置为SMA驱动器。
按照本发明的第二方面,提供一种摄像模组,包括:
镜头组件,所述镜头组件包括具有至少一个镜片的光学镜头;和
如上所述的感光组件。
在一些实施例中,所述镜头组件还包括至少一个驱动马达,所述驱动马达能够驱动光学镜头运动。
关于线路板单元在摄像模组中的安装和固定,可以考虑将线路板连接于摄像模组的框架或者相对该框架固定的壳体构件。
对此,在一些实施例中,所述驱动马达的固定部包括马达外壳,该马达外壳适宜作为所述壳体构件与所述线路板单元软板部分的至少一个第二区段(特别是线路板单元软板部分形成的所述至少两个侧壁)相连接。所述马达外壳与所述软板部分在至少一个接合部位形成活动连接副。依据一种实施方式,所述活动连接副可以构造为导槽滑块式挂扣机构,包括设置于所述马达外壳一方的挂钩和设置于所述线路板单元软板部分一方的T形或L形挂孔。以此方式,至少可以实现线路板单元硬板部分(或者说感光芯片)在两个方向上的运动。
在另一些实施例中,所述摄像模组的框架具有适于容纳至少部分所述线路板单元的中空结构,该框架的内侧壁与所述线路板单元软板部分的至少一个第二区段(特别是线路板单元软板部分形成的所述至少两个侧壁)相连接。所述框架的内侧壁与所述软板部分在至少一个接合部位形成活动连接副。依据一种实施方式,所述活动连接副构造为导槽滑块式挂扣机构,包括设置于所述框架内侧壁一方的挂钩和设置于所述线路板单元软板部分一方的T形或L形挂孔。以此方式,至少可以实现线路板单元硬板部分(或者说感光芯片)在两个方向上的运动。
在此,适宜的是,在所述框架的底部设有基座,该基座构造为与框架底部匹配的底板。
在此,有益的是,所述底板的上侧面和/或下侧面至少在局部表面具有散热结构,和/或所述框架的内侧壁和/或外侧壁至少在局部表面具有散热结构。例如,该散热结构可以是形成于相应构件表面的凹凸结构,以此方式增大了有效散热面积。
此外,有益的是,在摄像模组内部的发热部位设有传热材料,该传热材料与所述底板和/或与所述框架相接触。
鉴于本发明摄像模组的小型化结构设计及其驱动装置的结构配置,上述散热措施具备重要意义。
在一些实施例中,适宜的是,所述框架、所述基座和所述感光组件适于形成摄像模组的一个预组装单元。
不言而喻,在本发明的第二种设计方案中,根据本发明第一方面提供的线路板单元和根据本发明第二方面提供的感光组件的特征和优点同样适用于本发明第三方面提供的摄像模组。
与现有技术相比,本申请所提出的技术方案可以实现至少一个如下所述的有益技术效果:
(1)线路板单元的设计适合于实施对其上感光芯片的驱动操作,尤其有利于实现感光芯片在摄像模组进行对焦(AF)和/或防抖(OIS)功能操作时的运动;
(2)采用合理构造的软硬结合线路板设计,使得感光芯片进行光学调整运动时的阻力最小化;
(3)采用合理构造的软硬结合线路板设计,便于摄像模组各个部件的组装和连接,并可实现模组整体结构的小型化;
(4)将模组主体部分容纳在盒体状的结构中,保证了整体结构的稳定性。
按照本发明的第三种设计方案,旨在优化摄像模组的驱动装置设计,提出一种用于摄像模组的驱动装置、一种包括该驱动装置的感光组件和一种包括该感光组件的摄像模组。
本发明的基本思想包括:基于SMA(形状记忆合金)驱动原理,通过增加SMA线作用长度的方式而增大其驱动摄像模组中可动部件(例如镜头或者感光芯片)运动的幅度,达到调整动作响应更快、范围更大的效果,同时,通过SMA线的适当布置,能够灵活地实现镜头和/或感光芯片在摄像模组进行对焦(AF)和/或防抖(OIS)功能操作时所需的运动(包括运动形式和运动方向及幅度),另外还充分考虑模组结构的小型化设计。
按照本发明的第一方面,提供一种用于摄像模组的驱动装置,包括:
固定部,所述固定部适于与摄像模组的框架或者相对该框架固定的壳体构件固定连接;
可动部,所述可动部适于与摄像模组的至少一个可动部件(例如,该部件可以是摄像模组的镜头,也可以是感光组件或者感光芯片)固定连接;和
驱动构件,所述驱动构件能够驱动所述可动部相对于所述固定部移动;
所述驱动构件包括连接在固定部和可动部之间的至少两组牵线,其中
第一组牵线包括至少一根第一SMA线和至少一根第二SMA线,第一SMA线和第二SMA线在第一平面内分别连续地呈L形延伸并且两者的延伸走向共同限定一个第一四边形;所述第一SMA线和第二SMA线配合作用,至少能够使可动部相对于固定部在第一方向上运动;
第二组牵线包括至少一根第三SMA线和至少一根第四SMA线,第三SMA线和第四SMA线在第二平面内分别连续地呈L形延伸并且两者的延伸走向共同限定一个第二四边形;所述第三SMA线和第四SMA线配合作用,至少能够使可动部相对于固定部在第二方向上运动;
所述第一方向和所述第二方向在至少一个平面内的投影彼此相交。
也就是说,第一方向和第二方向所在直线的位置关系可以是相交、也可以是异面,而非平行,因此,该驱动装置适宜为摄像模组可动部件提供至少二维的运动驱动。例如,对于摄像模组的防抖功能,可能有意义的是,所述“至少一个平面”为感光芯片所在平面。
在一些实施例中,所述第一平面和所述第二平面彼此重合,所述第一方向和所述第二方向在第一平面或者第二平面内的投影彼此相交。
在此情况下,所述第一四边形可以布置在所述第二四边形之内。
其中,所述第一SMA线和第二SMA线配合作用,能够使可动部相对于固定部在第一方向上进行平移运动;所述第三SMA线和第四SMA线配合作用,能够使可动部相对于固定部在第二方向上进行平移运动。
在一些实施例中,所述第一平面和所述第二平面彼此平行。
其中,所述第一SMA线和/或第二SMA线与所述第三SMA线和/或第四SMA线配合作用,能够使可动部相对于固定部以第一或者第二平面内的直线为转轴进行倾转运动。
在一些实施例中,所述第一平面和所述第二平面彼此相交。
其中,所述第一SMA线和/或第二SMA线与所述第三SMA线和/或第四SMA线配合作用,能够使可动部相对于固定部以第一或者第二平面内的直线为转轴进行倾转运动,和/或,还能够使可动部相对于固定部在第三方向上进行平移运动。
在一些实施例中,所述第一四边形和所述第二四边形可以为不等边四边形。
其中,所述第一SMA线和第二SMA线配合作用,能够使可动部相对于固定部在第一平面内进行旋转运动;所述第三SMA线和第四SMA线配合作用,能够使可动部相对于固定部在第二平面内进行旋转运动。
根据一些具体的实施形式,所述第一SMA线具有位于所述第一四边形第一角部的第一施力区,所述第二SMA线具有位于所述第一四边形第二角部的第二施力区,该第一四边形的所述第一角部和所述第二角部成对角布置;第一SMA线自所述第一施力区向第一角部两边沿着所述第一四边形的相邻侧延伸并在两端固定,第二SMA线自所述第二施力区向第二角部两边沿着所述第一四边形的相邻侧延伸并在两端固定;所述第三SMA线具有位于所述第二四边形第三角部的第三施力区,所述第四SMA线具有位于所述第二四边形第四角部的第四施力区,该第二四边形的所述第三角部和所述第四角部成对角布置;第三SMA线自所述第三施力区向第三角部两边沿着所述第二四边形的相邻侧延伸并在两端固定,第四SMA线自所述第四施力区向第四角部两 边沿着所述第二四边形的相邻侧延伸并在两端固定。
在此,适宜的是,所述第一施力区、第二施力区、第三施力区和第四施力区在第一平面或者第二平面内的投影形成一个假想的第三四边形的四个角部。
对此,在一些实施例中,所述第一四边形、第二四边形和第三四边形在第一平面或者第二平面内的投影相互重合。
在此,可行的是:
第一SMA线的两端固定于所述固定部,而所述可动部上固设有对应于所述第一施力区的第一SMA线引导机构;或者,第一SMA线的两端固定于所述可动部,而所述固定部上固设有对应于所述第一施力区的第一SMA线引导机构;和/或
第二SMA线的两端固定于所述固定部,而所述可动部上固设有对应于所述第二施力区的第二SMA线引导机构;或者,第二SMA线的两端固定于所述可动部,而所述固定部上固设有对应于所述第二施力区的第二SMA线引导机构;和/或
第三SMA线的两端固定于所述固定部,而所述可动部上固设有对应于所述第三施力区的第三SMA线引导机构;或者,第三SMA线的两端固定于所述可动部,而所述固定部上固设有对应于所述第三施力区的第三SMA线引导机构;和/或
第四SMA线的两端固定于所述固定部,而所述可动部上固设有对应于所述第四施力区的第四SMA线引导机构;或者,第四SMA线的两端固定于所述可动部,而所述固定部上固设有对应于所述第四施力区的第四SMA线引导机构。
所述引导机构可以包括绕线柱或者导向孔。
按照本发明的第二方面,提供一种感光组件,包括:
线路板单元;
至少一个感光芯片,所述感光芯片贴装在所述线路板单元的相应承载部上;和
如上所述的驱动装置,所述驱动装置至少能够驱动所述承载部运动。
在此,所述承载部连同感光芯片作为所述可动部件而设置连接于驱动装置的可动部。
依据一些实施形式,在所述第一平面和所述第二平面彼此重合的情况中,感光芯片所在平面与所述第一平面和所述第二平面共面或者平行,所述至少两组牵线布置在所述线路板单元的承载部的周侧、上侧或下侧。
依据一些实施形式,在所述第一平面和所述第二平面彼此平行的情况中,感光芯片所在平面与所述第一平面或所述第二平面平行,所述至少两组牵线布置在所述线路板单元的承载部的周侧或下侧。
依据一些实施形式,在所述第一平面和所述第二平面彼此相交的情况中,感光芯片所在平面与所述第一平面和所述第二平面均相交,所述至少两组牵线布置在所述线路板单元的承载部的周侧或下侧。
在一些实施例中,所述线路板单元包括:
线路板主体,该线路板主体上设置有电子元器件和电路布线;以及
连接器,通过该连接器使所述线路板主体上的电子元器件与外部装置电连接;
其中,所述线路板主体包括硬板部分和软板部分,所述硬板部分包括用于安置感光芯片的所述承载部,所述软板部分的至少一个第一区段连接于所述连接器,所述软板部分的至少一个第二区段连接于所述框架或者所述壳体构件,其中,所述第二区段在至少一个与所述框架或者所述壳体构件相连的接合部位具有用于形成活动连接副的装配结构。由此可以赋予感光组件或者说感光芯片相应的运动自由度,并使其运动阻力最小化。
在一些实施例中,有益的是,所述软板部分的第二区段至少在其与所述框架或者所述壳体构件相连的接合部位具有补强结构。所述补强结构可以为软板部分板体的局部加厚部或者为附加固定于软板部分板体的加固件。由此可以确保将线路板本身稳固地安装于摄像模组中。
可以设定,所述用于形成活动连接副的装配结构包括:柔性悬挂机构的支承座;或铰链机构的铰接孔;或导槽滑块式挂扣机构的T形或L形挂孔。
通常适宜的是,所述电子元器件设置在所述硬板部分上,优选布置于感光芯片周围。
在此,有益的是,所述线路板主体呈开放的盒体状,所述硬板部分形成盒体的底壁,所述软板部分的第一区段从盒体一侧凸出并延伸至所述连接器,所述软板部分的第二区段形成盒体的至少两个侧壁。这样,由于线路板主体形成了一种盒体状构件,镜头组件(或者说其驱动装置)便可至少部分地直接容纳并支承于该线路板主体,从而在总体上有利于实现小型、紧凑的摄像模组结构。
在此,适宜的是,所述线路板主体由一平面状的软硬结合板坯制成。所述软硬结合板坯尤其是通过热压成型而形成盒体状线路板主体。
按照本发明的第三方面,提供一种摄像模组,包括:
镜头组件,所述镜头组件包括具有至少一个镜片的光学镜头;和
如上所述的感光组件。
在一些实施例中,所述镜头组件还包括至少一个驱动马达,所述驱动马达能够驱动光学镜头运动。
关于感光组件/线路板单元在摄像模组中的安装和固定,可以考虑将线路板连接于摄像模组的框架或者相对该框架固定的壳体构件。
对此,在一些实施例中,所述驱动马达的固定部包括马达外壳,在线路板单元包括软硬结合板的情况下,该马达外壳作为所述壳体构件与所述线路板单元软板部分的至少一个区段(特别是线路板单元软板部分形成的所述至少两个侧壁)相连接。所述马达外壳与所述软板部分在至少一个接合部位形成活动连接副。依据一种实施方式,所述活动连接副可以构造为导槽滑块式挂扣机构,包括设置于所述马达外壳一方的挂钩和设置于所述线路板单元软板部分一方的T形或L形挂孔。以此方式,至少可以实现线路板单元硬板部分(或者说感光芯片)在两个方向上的运动。
在另一些实施例中,所述摄像模组的框架具有适于容纳至少部分所述线路板单元的中空结构,在线路板单元包括软硬结合板的情况下,该框架的内侧壁与所述线路板单元软板部分的至少一个第二区段(特别是线路板单元软板部分形成的所述至少两个侧壁)相连接。所述框架的内侧壁与所述软板部分在至少一个接合部位形成活动连接副。依据一种实施方式,所述活动连接副构造为导槽滑块式挂扣机构,包括设置于所述框架内侧壁一方的挂钩和设置于所述线路板单元软板部分一方的T形或L形挂孔。以此方式,至少可以实现线路板单元硬板部分(或者说感光芯片)在两个方向上的运动。
在此,适宜的是,在所述框架的底部设有基座,该基座构造为与框架底部匹配的底板。
在此,有益的是,所述底板的上侧面和/或下侧面至少在局部表面具有散热结构,和/或所述框架的内侧壁和/或外侧壁至少在局部表面具有散热结构。例如,该散热结构可以是形成于相应构件表面的凹凸结构,以此方式增大了有效散热面积。
此外,有益的是,在摄像模组内部的发热部位设有传热材料,该传热材料与所述底板和/或与所述框架相接触。
鉴于本发明摄像模组的小型化结构设计及其驱动装置的结构配置,上述散热措施具备重要意义。
在一些实施例中,适宜的是,所述框架、所述基座和所述感光组件适于形成摄像模组的一个预组装单元。
不言而喻,在本发明的第三种设计方案中,根据本发明第一方面提供的驱动装置和根据本发明第二方面提供的感光组件的特征和优点同样适用于本发明第三方面提供的摄像模组。
与现有技术相比,本申请所提出的技术方案可以实现至少一个如下所述的有益技术效果:
(1)SMA驱动结构布置灵活,允许最佳地适配于镜头和/或感光芯片在摄像模组进行对焦(AF)和/或防抖(OIS)功能操作时所需的运动,且易于控制;
(2)可以增大驱动摄像模组中可动部件(例如镜头或者感光芯片)运动的幅度,达到调整动作(例如摄像模组的对焦和防抖功能操作)响应更快、范围更大的效果;
(3)SMA驱动结构可以采取高度较小的设计形式,有利于实现摄像模组整体结构的小型化。
(4)在此提出的驱动装置的设计,还可以配合镜头的移动,实现快速的抖动矫正,提升模组的成像质量。
值得一提的是,本发明第一种设计方案关于摄像模组驱动调节机制的优化、第二种设计方案关于摄像模组线路板结构的优化、以及第三种设计方案关于摄像模组驱动装置的优化可以任意组合或者彼此结合,并实现相应的有益技术效果。特别是,本申请的摄 像模组可适宜地包括本发明所提出的线路板单元和/或驱动装置。
在附图中示出了本发明的一些示例性实施例。本文所公开的实施例和附图应被视作说明性的,而非限制性的。另外值得注意的是,为了图示清楚起见,在附图中对于部分结构细节并不是按照实际比例绘制的。
图1是摄像模组的内部组成剖面示意图,具有配置于镜头组件的第一驱动装置和配置于感光组件的第二驱动装置;
图2是配置有第二驱动装置的感光组件剖面示意图;
图3是作为第二驱动装置的一种实施形式的SMA驱动器示意图;
图4是摄像模组的立体结构示意图;
图5是图4所示摄像模组的各组成部分的分解示意图;
图6是图4所示摄像模组的剖开的示意图,其中示出了装配到一起的各组成部分;
图7是展现图4所示摄像模组的各组成部分细节的剖视示意图;
图8是镜头组件的立体结构示意图;
图9是感光组件的立体结构示意图,其中示出了线路板单元的外形结构;
图10是图9所示感光组件连同尚未安装连接的基座的立体结构示意图;
图11是摄像模组的一个预组装单元的立体结构示意图,由图10所示感光组件和基座与摄像模组框架安装在一起而形成;图9-11共同示出了一个包含感光组件的预组装单元的形成过程;
图12是基座的立体结构示意图;
图13是摄像模组的以另一视角观察的立体结构示意图,特别示出了其底面;
图14是用于摄像模组光学调整的方法的示意性框图;
图15是按照一种实施形式用于形成线路板单元的平面状板坯的示意图;
图16是配置有一种实施形式的驱动装置的感光组件剖面示意图;
图17以立体结构示意图示出了感光组件的线路板单元与固定部的连接过程;
图18是感光组件的立体结构示意图,其中示出了该感光组件的驱动装置;
图19是按照一种实施形式构造为SMA驱动器的驱动装置的SMA线布置示意图;
图20是按照一种实施形式构造为SMA驱动器的驱动装置的SMA线布置示意图,其中两组牵线设置在同一平面内;
图21A是按照一种实施形式构造为SMA驱动器的驱动装置的SMA线布置示意图,其中两组牵线设置在彼此平行的平面内,其中两组牵线设置在彼此平行的平面内;
图21B是按照一种实施形式构造为SMA驱动器的驱动装置的SMA线布置示意图,其中两组牵线设置在彼此相交的平面内;
图22A是按照一种实施形式构造为SMA驱动器的驱动装置的SMA线布置示意图,其中两组牵线分别形成不等边平行四边形,且可以设置在同一平面内;
图22B是按照一种实施形式构造为SMA驱动器的驱动装置的SMA线布置示意图,其中两组牵线分别形成不等边平行四边形,且可以设置在不同平面内。
下文的描述用于阐释本发明的技术方案,以便本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明精神和范围的其他技术方案。同时,值得注意的是,文中结合某一实施例描述的特征、结构或特性并不一定限于该特定的实施方式,也不表示与其他实施方式互斥,在本领域技术人员的能力范围内,可以考虑实现不同实施例中各个特征的不同组合方式。
在说明书和权利要求书中的措辞“第一”、“第二”等等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”/“包含”和“具有”以及它们的任何变换措辞,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、产品或设备并不局限于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。在本申请的描述中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系而言的,其仅是为了便于描述本发明和简化描述,而不意味着相应的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。另外,术语“一”应理解为“至少一个”或者“一个或多个”,即在某一实施例中,某一元件的数量可以为一个,而在另一实施例中,该元件的数量可以为多个,也就是说,术语“一”不能理解为对数量的限制。
除非另有限定,否则本文中使用的所有用语(包括技术用语和科学用语),均具有与本领域普通技术人员通常理解相同的含义,并可依据它们在相关技术描述上下文中的语境作具体解释。
通常,摄像模组100包括镜头组件10和感光组件20(例如参见图1和图4-7),镜头组件10又包括光学镜头11和驱动装置(例如参见图8和图4-7),一般情况下,驱动装置为马达,主要用于实现拍摄过程中的对焦和防抖作用,该马达包括可动部和固定部,将马达的可动部与镜头结构固定,马达的可动部在外部施加作用力情况下,会相对于马达的固定部发生移动,从而带动镜头结构移动以实现镜头位置的调整,达到拍摄过程中的对焦和防抖作用。
感光组件20通常包括线路板单元22、感光芯片21、支座和滤色片30等(例如参见图2、图4-7、图9和图16),芯片设置在线路板结构的上表面,通过打线工艺将其与线路板之间电连接,支座也设置在线路板的上表面并将芯片结构容纳在其支座结构的内部,滤色片设置在支座的上表面,支座、线路板和滤色片三者组合后形成一个封闭的空间,而芯片结构则被设置在该封闭的空间内部,一方面可以保护芯片结构,另一方面可以避 免外部灰尘落在芯片上,以免引起成像质量的下降。
镜头组件设置在感光组件的上方,当外部光线通过镜头结构进入到模组内部时,先通过滤色片对光线进行杂光处理,然后达到芯片的位置对其进行信号转换,也就是,将光信号转变成电信号,最后输出成像的图片。在拍摄过程中,如果模组发生抖动情况,传感器装置检测到此抖动情况,将信息传递给控制中心,控制中心将需要补偿的信息传递给马达,马达便会驱动镜头结构作相应的移动,以补偿摄像模组的抖动,从而有效地提升摄像模组的成像质量。
此外,为了有效提升摄像模组的成像质量,业内对于镜头结构的研究也从未停止,目前许多厂商采取了将原来镜头的塑料镜片替换为玻璃镜片的改进方案。然而与此同时,镜头的重量会大幅增加。马达驱动装置需要驱动镜头移动以实现防抖和对焦功能,而随着镜头重量的增加,必须相应地增大马达的驱动力,因此需要对原有的驱动结构进行改进,而驱动装置本身结构比较复杂,对其进行改进的成本比较高,同时也会使马达结构体积增大,这又不符合摄像模组的轻薄化趋势。
针对上述问题,本发明为此提出一种解决方案:给镜头和芯片各自配置相应的驱动结构,使得两者在拍摄过程中能够相互配合实现对焦和/或防抖的功能。
基于此,本发明提供一种摄像模组,如图1所示,其包括:镜头组件10,该镜头组件包括具有至少一个镜片的光学镜头11;和感光组件20,该感光组件包括线路板单元22和贴附在所述线路板单元的相应承载部上的感光芯片21;在此,该摄像模组具有配置于所述镜头组件10的第一驱动装置D10和配置于所述感光组件20的第二驱动装置D20,所述第一驱动装置能够驱动光学镜头运动,所述第二驱动装置能够驱动感光芯片运动,其中,所述第一驱动装置D10和第二驱动装置D20被联合操控:通过一控制装置分配并确定光学镜头和感光芯片的运动形式及运动幅度,使第一驱动装置和第二驱动装置相互协作而驱动所述光学镜头和感光芯片运动,以共同调整光学镜头与感光芯片之间的相对位置。
在此,所说“运动形式”包括不同方向的平移和转动,具体可以涉及(但不限于):摄像模组可动部件,即光学镜头和/或感光芯片,沿着光学镜头的光轴方向的移动、在垂直于光轴的平面内的移动、在垂直于光轴的平面内的旋转、以及以垂直于光轴的直线为转轴的倾转。例如,依据图5所示的空间坐标系,光轴定义为在Z向上延伸,依此,上述运动形式可以定义六个自由度:x(在xoy平面内沿±X向的平移shift)、y(在xoy平面内沿±Y向的平移shift)、z(沿±Z向的平移shift)、r(在xoy平面内的旋转rotation)、v(以x轴为转轴的倾转tilt)、w(以y轴为转轴的倾转tilt)。相应地,所说“运动幅度”是指平移距离和转动角度的大小,例如光学镜头或感光芯片沿着光轴方向的位移量。
所说“分配”并“确定”光学镜头和感光芯片的运动形式(如上所述,包含运动方向)及运动幅度,是对应于由控制装置依据镜头组件与感光组件位置参数(该位置参数可 以通过已知的感测元件例如陀螺仪等获取)经过运算得出的结果,于是,所说“使第一驱动装置和第二驱动装置相互协作而驱动所述光学镜头和感光芯片运动”,可以具体指驱动光学镜头和感光芯片同时(或者说同步)运动、先后运动、交替运动等等,也可包含在特定条件下仅仅驱使光学镜头和感光芯片之一运动的情形。
在一些实施例中,所述第一驱动装置D10能够驱动所述光学镜头11在垂直于光轴的平面(xoy平面)内平移(亦即关于上述x、y自由度的运动);和/或,所述第二驱动装置D20能够驱动所述感光芯片21在垂直于光轴的平面(xoy平面)内平移(亦即关于上述x、y自由度的运动)。按此方式,能够使第一驱动装置和第二驱动装置配合作用,相应地驱动光学镜头和感光芯片运动,以执行摄像模组的防抖功能操作。
在一些实施例中,所述第一驱动装置D10能够驱动所述光学镜头11沿着光轴的方向(Z向)移动(亦即关于上述z自由度的运动);和/或,所述第二驱动装置D20能够驱动所述感光芯片21沿着光轴的方向(Z向)移动(亦即关于上述z自由度的运动)。按此方式,能够使第一驱动装置和第二驱动装置配合作用,相应地驱动光学镜头和感光芯片运动,以执行摄像模组的对焦功能操作。
对此,按照适宜的实施方式,所述光学镜头和所述感光芯片可以被同步驱动并以相反的方向移动。这样可以达到提升摄像模组调整响应速度的效果,迅速完成对焦和/或防抖功能操作。
按照摄像模组的实际设计情况和构造需要,光学镜头的位移和感光芯片的位移可以相同,也可以不同。依据一种优选实施方式,所述光学镜头的位移大于所述感光芯片的位移,相应地,第二驱动装置可以选用较为小型的驱动结构。
通常适宜的是,所述光学镜头的位移和所述感光芯片的位移保持固定比例。由此可实现一种较为简单的控制逻辑。
按照摄像模组的实际设计情况和构造需要,对于第一驱动装置和第二驱动装置,可以选择适当的控制策略。例如,在一些实施例中,所述光学镜头和所述感光芯片能够同时开始运动,直至感光芯片移动了预定的位移,此后,所述第一驱动装置能够驱动光学镜头在同一方向上或另一方向上继续移动。
在一些实施例中,所述第一驱动装置D10能够驱动所述光学镜头11在垂直于光轴的平面(xoy平面)内旋转(亦即关于上述r自由度的运动);和/或,所述第二驱动装置D20能够驱动所述感光芯片21在垂直于光轴的平面(xoy平面)内旋转(亦即关于上述r自由度的运动)。以及,在一些实施例中,所述第一驱动装置D10能够驱动所述光学镜头11以垂直于光轴的直线为转轴进行倾转(亦即关于上述v、w自由度的运动);和/或,所述第二驱动装置D20能够驱动所述感光芯片21以垂直于光轴的直线为转轴进行倾转(亦即关于上述v、w自由度的运动)。由此可实现相应的光学调整动作,尤其是防抖功能操作,这一点对于感光芯片采用活动式或悬浮式支承以及对于某些存在方向性的特殊镜头(例如包含自由曲面镜片的镜头,其光学特性具有方向性),具备重要意义。
至于第一驱动装置和第二驱动装置的具体形式和结构,可以按照实际设计情况和构造需要进行确定。例如,在一些实施例中,所述第一驱动装置D10构造为音圈马达、滚珠马达或MEMS驱动器;在一些实施例中,所述第二驱动装置D20构造为SMA驱动器。
第一驱动装置可以采用常规的音圈马达、滚珠马达或MEMS驱动器,其基本原理和结构在此不作赘述。
图2示出了配置有第二驱动装置的感光组件。
图3是作为第二驱动装置D20的一种实施形式的SMA驱动器示意图,其驱动构件D20-3可以包括至少一根SMA(形状记忆合金)线D20-31和相应的弹性复位元件D20-32,对于其具体结构和工作方式,还将在下文借助实例作进一步阐释。
为了赋予感光芯片相应的运动自由度,并使其运动阻力最小化,尤其是鉴于感光芯片在摄像模组进行对焦和/或防抖功能操作时所需实现的运动,应考虑其相应的运动形式(包含运动方向)和运动幅度,本发明相应地提供了一种特别适用的线路板设计。
具体而言,在一些实施例中,如图2和图9所示,所述线路板单元22包括:
线路板主体220,该线路板主体上设置有电子元器件222和电路布线;以及
连接器221,通过该连接器使所述线路板主体上的电子元器件与外部装置(例如供电电源、控制元件等)电连接;
其中,所述线路板主体220包括硬板部分2201和软板部分2202,所述硬板部分2201包括用于安置感光芯片21的所述承载部,所述软板部分2202的至少一个第一区段2202-1连接于所述连接器221,所述软板部分2202的至少一个第二区段2202-2连接于摄像模组的框架或者连接于相对该框架固定的壳体构件,其中,所述第二区段在至少一个与所述框架或者所述壳体构件相连的接合部位O1、O2、O3具有用于形成活动连接副的装配结构J1-1。
通常适宜的是,所述电子元器件222设置在所述硬板部分2201上,布置于感光芯片周围。
应当理解,所述电路布线(图中未示出)用于实现感光芯片与电子元器件之间、不同电子元器件之间、感光芯片和/或电子元器件与外部装置之间的供电连接以及信号连接等,因此,在线路板主体的硬板部分和软板部分(包括其第一区段和第二区段)上或内至少局部设置有相应的连接导线。
如图2所示,第二驱动装置D20可以设置在线路板结构的下侧,特别是位于线路板硬板部分的的底面周边,使其驱动感光组件的包含感光芯片21的整体结构进行移动,从而实现其位置调整。实际上,该线路板结构包括硬质线路板(由上述硬板部分2201构成)和软质线路板(由上述软板部分2202构成),软质线路板的一端连接在硬质线路板上,另一端连接通过连接器221的中介作用和外部的供电装置连接,以实现摄像模组工作过程中电流的供给。倘若在硬质线路板与软质线路板之间仍采取传统的“直连”结构形式,那么, 在芯片结构移动的过程中,硬质线路板端在驱动力的作用下会带动芯片移动,而软质线路板与外部供电装置连接的一端固定不动,在此过程中,软质线路板会对硬质线路板的移动产生较大的阻力作用,影响芯片调整的精度。为了使得防抖精度提高,针对此问题并实现本方案的驱动作用,本发明提出了一种独特的软硬板结合方式,即在硬质线路板与软质线路板之间采取“迂回”结构形式,由此不仅可以解决软质线路板对硬质线路板的阻力问题,还可以有效地保证摄像模组整体结构的稳定性。
对此,如图9所示,所述线路板主体220呈开放的盒体状,所述硬板部分2201形成盒体的底壁,所述软板部分的第一区段2202-1从盒体一侧凸出并延伸至所述连接器221,所述软板部分的第二区段2202-2形成盒体的至少两个侧壁(参见图中a、b、c所指示的方位)。适宜的是,所述线路板主体由一平面状的软硬结合板坯制成,该软硬结合板坯通过热压成型而形成盒体状线路板主体。
在此,有益的是,所述软板部分2202的第二区段2202-2至少在其与所述框架或者所述壳体构件相连的接合部位O1、O2、O3具有补强结构。所述补强结构可以为软板部分板体的局部加厚部或者为附加固定于软板部分板体的加固件。由此可以确保将线路板本身稳固地安装于摄像模组中,其所形成的盒体状结构不会轻易发生变形。
另一方面,由于线路板主体220形成了一种盒体状构件,镜头组件10(或者说其驱动装置)便可至少部分地直接容纳并支承于该线路板主体,从而在总体上有利于实现小型、紧凑的摄像模组结构。
于是,按照图9所示感光组件的优选实施例,其中,将软质线路板设置在硬质线路板的周围,使其环绕硬质线板设置,将芯片和滤色片等结构容纳在其形成的空间内部,软质线路板上面还可设置有连接扣,用于和固定部件连接,以保证模组整体结构的稳定性。其中,在以c指示的盒体侧壁处,利用固定板结构将两个侧边的软质线路板固定在一起,并保持其形状的固定,两个侧边的软质线路板之间固定时,可以采用不同的方式:如直接通过胶水将其粘接,或者为了进一步提升其固定强度,可以通过焊接方式将两者进行固定,例如,在一侧设置有焊点,另一侧对应的位置设置有焊接孔,将两者之间的位置固定好后进行焊接,使得两者之间能够固定。
可以设定,所述用于形成活动连接副的装配结构包括:柔性悬挂机构的支承座;或铰链机构的铰接孔;或导槽滑块式挂扣机构的T形或L形挂孔。
参见图8和图9,在一些实施例中,第一驱动装置D10的固定部包括马达外壳,该马达外壳至少部分被容纳于盒体状线路板主体220,并作为所述壳体构件与线路板单元软板部分形成的所述至少两个侧壁(参见图中a、b所指示的方位)相连接。所述马达外壳与所述软板部分在至少一个接合部位O1、O2形成活动连接副。依据一种实施方式,所述活动连接副可以构造为导槽滑块式挂扣机构,包括设置于所述马达外壳一方的挂钩(图8中以J1-2指示)和设置于所述线路板单元软板部分一方的T形或L形挂孔(图8中以J1-1指示)。所述挂钩可以构造为:包括一个从马达外壳表面凸起的导向柱和一个与该导向柱成角度(优选垂直)的定位柱。以此方式,至少可以实 现线路板单元硬板部分(或者说感光芯片)在两个方向上的运动。另一方面,将软板部分形成的侧壁连接在马达外壳上,也可以起到保持盒体形状的作用。值得一提的是,盒体状线路板主体的外形和尺寸优选适配于马达外壳的外廓,以便能够将马达外壳容纳于其内,同时也有利于保持盒体状线路板主体自身形状稳定。
图4示出了摄像模组100的立体结构示意图;图5是图4所示摄像模组的各组成部分的分解示意图;图6是图4所示摄像模组的剖开的示意图,其中示出了装配到一起的各组成部分:镜头组件10、感光组件20、滤色片30(该滤色片可以固定设置于感光组件,二者共同形成一个整体)、框架40和基座50。图7是展现图4所示摄像模组的各组成部分细节的剖视示意图。
关于第二驱动装置D20在摄像模组100或者说感光组件20中的布置方式,除了如图2设置在线路板结构的下侧之外,也可考虑设置在线路板结构的周侧或者上侧,只要留出相应的通光孔且在结构设计上匹配于其关联部件即可。例如,图7中示出的第二驱动装置D20(包括其固定部D20-1、可动部D20-2、驱动构件D20-3)便是布置在线路板结构的周侧。
关于线路板本身在摄像模组中的安装和固定,也可以考虑将线路板连接于摄像模组的框架40。在另一些实施例中,所述摄像模组的框架40具有适于至少部分容纳盒体状线路板主体220的中空结构(例如参见图5),该框架的内侧壁与线路板单元软板部分形成的所述至少两个侧壁(参见图9中a、b、c所指示的方位)相连接。
类似于上文所描述的线路板单元与第一驱动装置马达壳体的连接方式,所述框架的内侧壁与所述软板部分在至少一个接合部位形成活动连接副。同理,依据一种实施方式,所述活动连接副构造为导槽滑块式挂扣机构,包括设置于所述框架内侧壁一方的挂钩和设置于所述线路板单元软板部分一方的T形或L形挂孔。以此方式,至少可以实现线路板单元硬板部分(或者说感光芯片)在两个方向上的运动。值得一提的是,盒体状线路板主体的外形和尺寸优选适配于模组框架的内廓,以便能够被容纳在该框架之中,同时也有利于保持盒体状线路板主体自身形状稳定。
在此,适宜的是,在所述框架40的底部设有基座50,该基座构造为与框架底部匹配的底板(如图10、图11、图12和图13所示)。框架40与基座50可通过卡扣机构固定连接到一起,作为示例,图12示出了设于基座50一方的卡接孔口J2-2,而图13示出了设于框架40一方的卡接凸头J2-1。
图11示出了摄像模组的一个预组装单元U的立体结构示意图,该预组装单元由图10所示感光组件20和基座50与摄像模组框架40安装在一起而形成。
在此,有益的是,所述底板的上侧面和/或下侧面至少在局部表面具有散热结构,和/或所述框架的内侧壁和/或外侧壁至少在局部表面具有散热结构。例如,该散热结构可以是形成于相应构件表面的凹凸结构(如图12和13所示,在底板的上侧面501和下侧面502具有凹凸结构),以此方式增大了有效散热面积。此外,还可以在摄像模组内部的发热部位设有传热材料,该传热材料与所述底板和/或与所述框架相接触。 鉴于本发明摄像模组的小型化结构设计及其驱动装置的结构配置,上述散热措施具备重要意义。
相应地,本发明提供一种用于摄像模组光学调整的方法,包括:
获取摄像模组的镜头组件与感光组件之间的相对位置参数;
生成控制信号并将其发送至镜头组件和感光组件的操控系统;
利用第一驱动装置,根据相应的控制信号至少驱动镜头组件的光学镜头运动;
利用第二驱动装置,根据相应的控制信号至少驱动感光组件的感光芯片运动;
其中,在生成控制信号时,分配并确定光学镜头和感光芯片的运动形式及运动幅度,据此协作操控第一驱动装置和第二驱动装置而驱动所述光学镜头和感光芯片运动,以共同调整镜头组件与感光组件之间的相对位置,达到最佳的成像位置。
图14示出了所述方法的示意性框图。其中,可以通过感测元件S例如陀螺仪等获取镜头组件与感光组件的位置参数a
0,由控制装置C依此进行运算,并分配和确定光学镜头和感光芯片的运动形式,利用第一驱动装置D10和第二驱动装置D20相互协作而驱动镜头组件10的光学镜头和感光组件20的感光芯片进行运动。在此过程中,为了实现更为精准的调整,也可以将镜头组件与感光组件的(变化的)相对位置参数a
c经由感测元件反馈至控制装置,或者直接反馈至控制装置。
特别地,该方法可用以执行对摄像模组的光学防抖调整,其中,利用陀螺仪组件获取摄像模组的镜头组件与感光组件之间相对偏移的参数;使光学镜头和感光芯片至少能够在垂直于光轴的平面内移动,以共同补偿光学镜头和感光芯片之间的相对偏移。在此优选地,例如可以使光学镜头和感光芯片在垂直于光轴的平面内同时移动(平移和/或旋转),且二者移动方向相反,从而能够实现快速的光学防抖调整。
特别地,该方法也可用以执行对摄像模组的对焦调整,其中,获取摄像模组的镜头组件与感光组件之间相对距离的参数并依据拍摄成像需要进行参数测算;使光学镜头和感光芯片至少能够沿着光轴的方向移动,以共同调节光学镜头和感光芯片之间的相对距离。在此优选地,例如可以使光学镜头和感光芯片沿着光轴的方向同时移动,且二者移动方向相反,从而能够实现快速的对焦调整。
在本发明的方法中,适宜的是,驱动所述光学镜头和感光芯片,并使二者的位移保持固定比例。
在本发明的方法中,可以设定,使所述光学镜头和感光芯片同时开始运动,直至感光芯片移动了预定的位移,此后,所述第一驱动装置依据相应的控制信号仍驱动光学镜头在同一方向上或另一方向上继续移动。
此外,本发明还提供一种电子设备,其包括如上所述的摄像模组100。该电子设备可以是智能手机、平板电脑等便携式设备。
针对上述问题,本发明提出这样一种解决方案:给感光组件结构设置驱动装置,以驱动感光芯片运动,尤其是用于至少承担部分的防抖功能操作。当然也可设定,该驱动 装置驱动感光芯片运动,也用来至少承担部分的对焦功能操作。对此重要的是,需提供一种适用的线路板设计,赋予感光芯片相应的运动自由度,并使其运动阻力最小化。
为此,本发明提供一种用于摄像模组100的线路板单元。如图9所示,该线路板单元22包括:
线路板主体220,该线路板主体上设置有电子元器件222和电路布线;以及
连接器221,通过该连接器使所述线路板主体上的电子元器件与外部装置(例如供电电源、控制元件等)电连接;
其中,所述线路板主体220包括硬板部分2201和软板部分2202,所述硬板部分2201包括用于安置感光芯片21的所述承载部,所述软板部分2202的至少一个第一区段2202-1连接于所述连接器221,所述软板部分2202的至少一个第二区段2202-2连接于摄像模组的框架或者连接于相对该框架固定的壳体构件,其中,所述第二区段在至少一个与所述框架或者所述壳体构件相连的接合部位O1、O2、O3具有用于形成活动连接副的装配结构J1-1。
通常适宜的是,所述电子元器件222设置在所述硬板部分2201上,布置于感光芯片周围。
应当理解,所述电路布线(图中未示出)用于实现感光芯片与电子元器件之间、不同电子元器件之间、感光芯片和/或电子元器件与外部装置之间的供电连接以及信号连接等,因此,在线路板主体的硬板部分和软板部分(包括其第一区段和第二区段)上或内至少局部设置有相应的连接导线。
驱动装置D20可以设置在线路板结构的周侧(如图16所示)或者下侧(如图2所示),使其驱动感光组件的包含感光芯片21的整体结构进行移动,从而实现其位置调整。实际上,该线路板结构包括硬质线路板(由上述硬板部分2201构成)和软质线路板(由上述软板部分2202构成),软质线路板的一端连接在硬质线路板上,另一端连接通过连接器221的中介作用和外部的供电装置连接,以实现摄像模组工作过程中电流的供给。倘若在硬质线路板与软质线路板之间仍采取传统的“直连”结构形式,那么,在芯片结构移动的过程中,硬质线路板端在驱动力的作用下会带动芯片移动,而软质线路板与外部供电装置连接的一端固定不动,在此过程中,软质线路板会对硬质线路板的移动产生较大的阻力作用,影响芯片调整的精度。为了使得防抖精度提高,针对此问题,本发明提出了一种独特的软硬板结合方式,即在硬质线路板与软质线路板之间采取“迂回”结构形式,由此不仅可以解决软质线路板对硬质线路板的阻力问题,还可以有效地保证摄像模组整体结构的稳定性,同时实现摄像模组结构的小型化。
对此,如图9所示,所述线路板主体220呈开放的盒体状,所述硬板部分2201形成盒体的底壁,所述软板部分的第一区段2202-1从盒体一侧凸出并延伸至所述连接器221,所述软板部分的第二区段2202-2形成盒体的至少两个侧壁(参见图中a、b、c所指示的方位)。
在此,有益的是,所述软板部分2202的第二区段2202-2至少在其与所述框架或 者所述壳体构件相连的接合部位O1、O2、O3具有补强结构。所述补强结构可以为软板部分板体的局部加厚部或者为附加固定于软板部分板体的加固件。由此可以确保将线路板本身稳固地安装于摄像模组中。
另一方面,由于线路板主体220形成了一种盒体状构件,镜头组件10(或者说其驱动装置)便可至少部分地直接容纳并支承于该线路板主体,从而在总体上有利于实现小型、紧凑的摄像模组结构。
于是,按照图9所示感光组件的实施例,其中,将软质线路板设置在硬质线路板的周围,使其环绕硬质线板设置,将芯片和滤色片等结构容纳在其形成的空间内部,软质线路板上面还可设置有连接扣,用于和固定部件连接,以保证模组整体结构的稳定性。其中,在以c指示的盒体侧壁处,利用固定板结构将两个侧边的软质线路板固定在一起,并保持其形状的固定,两个侧边的软质线路板之间固定时,可以采用不同的方式:如直接通过胶水将其粘接,或者为了进一步提升其固定强度,可以通过焊接方式将两者进行固定,例如,在一侧设置有焊点,另一侧对应的位置设置有焊接孔,将两者之间的位置固定好后进行焊接,使得两者之间能够固定。
可以设定,所述用于形成活动连接副的装配结构包括:柔性悬挂机构的支承座;或铰链机构的铰接孔;或导槽滑块式挂扣机构的T形或L形挂孔。
在此,适宜的是,所述线路板主体由一平面状的软硬结合板坯制成。所述软硬结合板坯尤其是通过热压成型而形成盒体状线路板主体。
图15示出了按照一种实施形式用于形成线路板单元的平面状板坯的示意图。如图所示,所述软硬结合板坯包括:
一个矩形(优选符合于感光芯片的形状,例如呈正方形)硬板坯2201A,用于构成线路板主体的所述硬板部分;
一个布置于矩形硬板坯2201A的第一侧边(参见图中a所指示的方位)的第一条形软板坯和一个布置于矩形硬板坯2201A的第二侧边(参见图中b所指示的方位)的第二条形软板坯,用于构成线路板主体的所述软板部分,所述第一侧边和第二侧边设置在所述矩形硬板坯2201A的对边。
在此适宜的是,所述第一条形软板坯包括与所述矩形硬板坯2201A的第一侧边间隔开且平行于该第一侧边延伸的第一板条2202-2A1,该第一板条通过第一连接筋2202-2A12与所述第一侧边相连;在所述第一板条2202-2A1的延伸方向上,该第一板条的一端与所述矩形硬板坯2201A的第四侧边大致齐平,另一端延长而超出于所述矩形硬板坯的第三侧边(参见图中c所指示的方位),超出的长度小于该第三侧边的边长且大于该第三侧边边长的一半并形成第一搭接片2202-2A11;所述第一搭接片上形成有平行于第三侧边突伸的外接片2202-1A。
在此适宜的是,所述第二条形软板坯包括与所述矩形硬板坯2201A的第二侧边间隔开且平行于该第二侧边延伸的第二板条2202-2A2,该第二板条通过第二连接筋2202-2A22与所述第二侧边相连;在所述第二板条2202-2A2的延伸方向上,该第二板 条的一端与所述矩形硬板坯2201A的第四侧边大致齐平,另一端延长而超出于所述矩形硬板坯的第三侧边(参见图中c所指示的方位),超出的长度小于该第三侧边的边长且大于该第三侧边边长的一半并形成第二搭接片2202-2A21。
于是,在所述软硬结合板坯成型为盒体状线路板主体的状态下,所述矩形硬板坯2201A形成盒体的底壁,所述第一条形软板坯的第一板条2202-2A1和所述第二条形软板坯的第二板条2202-2A2形成盒体的彼此对置的第一侧壁和第二侧壁(参见图9中a、b所指示的方位),所述第一搭接片2202-2A11与所述第二搭接片2202-2A21相互搭接而形成盒体的第三侧壁(参见图9中c所指示的方位),第一搭接片上的所述外接片2202-1A在翻折后从所述第三侧壁向外凸出并延伸至所述连接器221;其中,所述软板部分的所述第一区段2202-1由所述外接片构成,所述软板部分的所述第二区段2202-2包括所述第一侧壁、第二侧壁和第三侧壁。
在一些实施例中,优选的是,所述第一侧壁和第二侧壁的设定与所述框架或者所述壳体构件相连的接合部位O1、O2具有所述用于形成活动连接副的装配结构J1-1。
在一些实施例中,优选的是,所述第三侧壁的设定与所述框架或者所述壳体构件相连的接合部位O3具有附加设置的固定板。
相应地,本发明提供一种感光组件20,包括:
如上所述的线路板单元22;
至少一个感光芯片21,所述感光芯片贴装在所述线路板单元22的硬板部分2201上;和
至少一个驱动装置D20,所述驱动装置至少能够驱动所述硬板部分2201相对于所述框架或者所述壳体构件运动。
图16是配置有一种实施形式的驱动装置的感光组件剖面示意图,其中驱动装置D20至少部分置在线路板结构的周侧,图中示出了该驱动装置的固定部D20-1和可动部D20-2以及两者之间的弹性连接机构OO,可动部和固定部之间存在一定的间隙,为两者的相对移动预留出一定的活动空间。图2是配置有另一实施形式的驱动装置的感光组件剖面示意图,其中驱动装置D20设置在线路板结构的下侧。也可设想,将驱动装置布置在线路板结构的上侧,只要留出相应的通光孔且在结构设计上匹配于其关联部件即可。
图18是感光组件的立体结构示意图,其中示出了该感光组件的驱动装置D20,感光芯片固定于驱动装置的可动部,在组装后,驱动装置的可动部和固定部之间存在一定的间隙,为两者的相对移动预留出一定的活动空间。其中,驱动装置的可动部具有中空形状,将感光组件的硬质线路板部分容纳在该中空的结构中,由此可以有效地减小整装体积,实现摄像模组小型化。
在一些实施例中,适宜的是,所述驱动装置为SMA驱动器。
图20是按照一种实施形式构造为SMA驱动器的驱动装置的示意图,其中利用四条SMA(形状记忆合金)线SMA1、SMA2、SMA3、SMA4形成两组牵线,第一组牵线包括第一SMA线和第二SMA线,第一SMA线和第二SMA线在第一平面P内分别连 续地呈L形延伸并且两者的延伸走向共同限定一个第一四边形T;所述第一SMA线和第二SMA线配合作用,至少能够使可动部相对于固定部在第一方向F上运动;第二组牵线包括第三SMA线和第四SMA线,第三SMA线和第四SMA线在第二平面P’内分别连续地呈L形延伸并且两者的延伸走向共同限定一个第二四边形T’;所述第三SMA线和第四SMA线配合作用,至少能够使可动部相对于固定部在第二方向F’上运动;第一方向F和第二方向F’彼此相交。在此,所述第一平面P和所述第二平面P’彼此重合,且所述第一四边形T布置在所述第二四边形T’之内。第一SMA线具有位于所述第一四边形第一角部的第一施力区K1,第二SMA线具有位于所述第一四边形第二角部的第二施力区K2,该第一四边形的所述第一角部和所述第二角部成对角布置;第一SMA线自所述第一施力区K1向第一角部两边沿着所述第一四边形的相邻侧延伸并在两端固定,第二SMA线自所述第二施力区K2向第二角部两边沿着所述第一四边形的相邻侧延伸并在两端固定;第三SMA线具有位于所述第二四边形第三角部的第三施力区K3,第四SMA线具有位于所述第二四边形第四角部的第四施力区K4,该第二四边形的所述第三角部和所述第四角部成对角布置;第三SMA线自所述第三施力区K3向第三角部两边沿着所述第二四边形的相邻侧延伸并在两端固定,第四SMA线自所述第四施力区K4向第四角部两边沿着所述第二四边形的相邻侧延伸并在两端固定。于是,例如内侧的一组牵线(即第一SMA线和第二SMA线)在预先设定的程序下,在通入相应的电流后,一个SMA线发生收缩作用,另一SMA线发生舒展作用,从而可以实现可动部相对于固定部沿第一方向F的移动;类似地,外侧的一组牵线,可以实现可动部相对于固定部沿第二方向F’的移动。在两组牵线的配合作用下,能够实现可动部相对于固定部在不同方向上位置的调整。
本发明还提供一种摄像模组100,包括:
镜头组件10,所述镜头组件包括具有至少一个镜片的光学镜头;和
如上所述的感光组件20。
针对上述问题,本发明提出这样一种解决方案:给感光组件结构设置驱动装置,以驱动感光芯片运动,尤其是用于至少承担部分的防抖功能操作。当然也可设定,该驱动装置驱动感光芯片运动,也用来至少承担部分的对焦功能操作。于是,本发明提供一种适用的驱动装置设计,尽管本发明的出发点是为感光组件/感光芯片配置驱动机构,而实际上,本发明在此所提供的驱动装置也可应用于驱动镜头组件,允许最佳地适配于镜头和/或感光芯片在摄像模组进行对焦(AF)和/或防抖(OIS)功能操作时所需的运动,且易于控制。
作为示例,图16示出了配置有一种实施形式的驱动装置的感光组件剖面示意图,其中驱动装置D20至少部分置在线路板结构的周侧,图中示出了该驱动装置的固定部D20-1和可动部D20-2以及两者之间的弹性连接机构OO,可动部和固定部之间存在一定的间隙,为两者的相对移动预留出一定的活动空间。
在此,本发明提供一种用于摄像模组100的驱动装置D20,如图16、图19和图20所示,其包括:
固定部D20-1,所述固定部适于与摄像模组的框架或者相对该框架固定的壳体构件固定连接;
可动部D20-2,所述可动部适于与摄像模组的至少一个可动部件(例如,该部件可以是摄像模组的镜头,也可以是感光组件或者感光芯片)固定连接;和
驱动构件D20-3,所述驱动构件能够驱动所述可动部相对于所述固定部移动;
所述驱动构件D20-3包括连接在固定部和可动部之间的至少两组牵线,其中
第一组牵线包括至少一根第一SMA线(图中直接以“SMA1”标示)和至少一根第二SMA线(图中直接以“SMA2”标示),第一SMA线和第二SMA线在第一平面P内分别连续地呈L形延伸并且两者的延伸走向共同限定一个第一四边形T;所述第一SMA线和第二SMA线配合作用,至少能够使可动部相对于固定部在第一方向F上运动;
第二组牵线包括至少一根第三SMA线(图中直接以“SMA3”标示)和至少一根第四SMA线(图中直接以“SMA4”标示),第三SMA线和第四SMA线在第二平面P’内分别连续地呈L形延伸并且两者的延伸走向共同限定一个第二四边形T’;所述第三SMA线和第四SMA线配合作用,至少能够使可动部相对于固定部在第二方向F’上运动;
所述第一方向F和所述第二方向F’在至少一个平面内的投影彼此相交。
也就是说,第一方向和第二方向所在直线的位置关系可以是相交、也可以是异面,而非平行,因此,该驱动装置适宜为摄像模组可动部件提供至少二维的运动驱动。例如对于摄像模组的防抖功能操作,有意义的是,所述“至少一个平面”为感光芯片所在平面(理想状态下,亦即垂直于光轴的平面)。
与传统SMA驱动器在可动部件四个侧边布置四根SMA线(每个侧边有一根)的结构形式相比,按照本发明,由于每根SMA线分别连续地呈L形延伸,故而可以增加每根SMA线的作用长度,使得SMA线在变形率相同的情况下能够带动可动部件移动更大的行程,达到调整动作响应更快、范围更大的效果;使SMA线分组作用,配合各SMA线的适当布置关系,能够灵活地实现镜头和/或感光芯片在摄像模组进行对焦(AF)和/或防抖(OIS)功能操作时所需的运动,且易于控制。
在此,所说“运动”可以包括不同方向的平移和转动,具体可以涉及(但不限于):摄像模组可动部件,即光学镜头和/或感光芯片,沿着光学镜头的光轴方向的移动、在垂直于光轴的平面内的移动、在垂直于光轴的平面内的旋转、以及以垂直于光轴的直线为转轴的倾转。例如,依据图5所示的空间坐标系,光轴定义为在Z向上延伸,依此,上述运动形式可以定义六个自由度:x(在xoy平面内沿±X向的平移shift)、y(在xoy平面内沿±Y向的平移shift)、z(沿±Z向的平移shift)、r(在xoy平面内的旋转rotation)、v(以x轴为转轴的倾转tilt)、w(以y轴为转轴的倾转tilt)。
如图20所示,在一些实施例中,所述第一平面P和所述第二平面P’彼此重合,所述第一方向F和所述第二方向F’在第一平面T或者第二平面T’内的投影彼此相交,优选彼此正交。
在此情况下,所述第一四边形T可以布置在所述第二四边形T’之内(参见图20)。由此可以形成一种布局紧凑、高度较小的SMA驱动结构,且各SMA线之间互不干涉。
其中,所述第一SMA线和第二SMA线配合作用,能够使可动部相对于固定部在第一方向上进行平移运动;所述第三SMA线和第四SMA线配合作用,能够使可动部相对于固定部在第二方向上进行平移运动(亦即至少具有上述x、y自由度的运动分量)。那么,如若该驱动装置D20配置于感光组件,用以驱动感光芯片运动,使感光芯片所在平面与所述第一平面T/第二平面T’共面或平行,则能够控制和驱动感光芯片在xoy平面内沿着两个相交(优选正交)的方向运动,二者合成的运动适于实现防抖功能操作。
如图21A所示,在一些实施例中,所述第一平面P和所述第二平面P’彼此平行。
其中,所述第一SMA线和/或第二SMA线与所述第三SMA线和/或第四SMA线配合作用,能够使可动部相对于固定部以第一或者第二平面内的直线为转轴进行倾转运动。在此情况下,该驱动装置除了能够如上所述驱动可动部相对于固定部在第一方向及第二方向上进行平移运动之外,由于分别处于两个平行平面中的驱动力可以形成倾转力矩,故而还可实现可动部相对于固定部以第一或者第二平面内的直线为转轴进行倾转运动(亦即至少具有上述v、w自由度的运动分量)。
如图21B所示,在一些实施例中,所述第一平面P和所述第二平面P’彼此相交。
其中,所述第一SMA线和/或第二SMA线与所述第三SMA线和/或第四SMA线配合作用,能够使可动部相对于固定部以第一或者第二平面内的直线为转轴进行倾转运动,还能够使可动部相对于固定部在第三方向上进行平移运动。类似地,应能理解,该驱动装置除了能够如上所述驱动可动部相对于固定部在第一方向及第二方向上进行平移运动之外,还可实现可动部相对于固定部以第一或者第二平面内的直线为转轴进行倾转运动(亦即至少具有上述v、w自由度的运动分量),以及,还能够使可动部相对于固定部在第三方向上进行平移运动(亦即至少具有上述z自由度的运动分量)。
如图22A和图22B,在一些实施例中,所述第一四边形和所述第二四边形可以为不等边平行四边形(例如矩形)。
其中,所述第一SMA线和第二SMA线配合作用,能够使可动部相对于固定部在第一平面内进行旋转运动;所述第三SMA线和第四SMA线配合作用,能够使可动部相对于固定部在第二平面内进行旋转运动。在此情况下,该驱动装置除了能够如上所述驱动可动部相对于固定部在第一方向及第二方向上进行平移运动之外,由于处于一个平面中的驱动力可以形成力偶,故而还可实现可动部相对于固定部在第一和/或第二平面内进行旋转运动(亦即至少具有上述r自由度的运动分量)
如图20、图21A和21B以及图22A和22B所示,根据一些具体的实施形式,所述第一SMA线具有位于所述第一四边形T第一角部的第一施力区K1,所述第二SMA线具有位于所述第一四边形T第二角部的第二施力区K2,该第一四边形的所述第一角部和所述第二角部成对角布置;第一SMA线自所述第一施力区K1向第一角部两边沿着所述第一四边形的相邻侧延伸并在两端固定,第二SMA线自所述第二施力区K2向第二角部两边沿着所述第一四边形的相邻侧延伸并在两端固定;所述第三SMA线具有位于所述第二四边形T’第三角部的第三施力区K3,所述第四SMA线具有位于所述第二四边形T’第四角部的第四施力区K4,该第二四边形的所述第三角部和所述第四角部成对角布置;第三SMA线自所述第三施力区K3向第三角部两边沿着所述第二四边形的相邻侧延伸并在两端固定,第四SMA线自所述第四施力区K4向第四角部两边沿着所述第二四边形的相邻侧延伸并在两端固定。
在此,适宜的是,所述第一施力区K1、第二施力区K2、第三施力区K3和第四施力区K4在第一平面P或者第二平面P’内的投影形成一个假想的第三四边形的四个角部。
对此,在一些实施例中,所述第一四边形、第二四边形和第三四边形在第一平面P或者第二平面P’内的投影相互重合(例如图21A所示情形,图20和图22A亦大致属于这种情形)。出于布局配置及控制逻辑的简化考虑,这种设计形式可能是优选的。
在本发明的范围内,上述各四边形的形状和大小可以依据实际需要和设计条件进行确定,从原理上来说,本发明对此并无限制。
在此,可行的是:
第一SMA线的两端固定于所述固定部,而所述可动部上固设有对应于所述第一施力区K1的第一SMA线引导机构;或者,第一SMA线的两端固定于所述可动部,而所述固定部上固设有对应于所述第一施力区K1的第一SMA线引导机构;和/或
第二SMA线的两端固定于所述固定部,而所述可动部上固设有对应于所述第二施力区K2的第二SMA线引导机构;或者,第二SMA线的两端固定于所述可动部,而所述固定部上固设有对应于所述第二施力区K2的第二SMA线引导机构;和/或
第三SMA线的两端固定于所述固定部,而所述可动部上固设有对应于所述第三施力区K3的第三SMA线引导机构;或者,第三SMA线的两端固定于所述可动部,而所述固定部上固设有对应于所述第三施力区K3的第三SMA线引导机构;和/或
第四SMA线的两端固定于所述固定部,而所述可动部上固设有对应于所述第四施力区K4的第四SMA线引导机构;或者,第四SMA线的两端固定于所述可动部,而所述固定部上固设有对应于所述第四施力区K4的第四SMA线引导机构。
所述引导机构可以包括绕线柱或者导向孔,起到导向和支承SMA线并传递驱动力的作用。
本发明还提供一种感光组件20,包括:
线路板单元22;
至少一个感光芯片21,所述感光芯片贴装在所述线路板单元22的相应承载部上;和
如上所述的驱动装置D20,所述驱动装置至少能够驱动所述承载部运动。
图16示出了配置有一种实施形式的驱动装置的感光组件剖面示意图,其中驱动装置D20至少部分置在线路板结构的周侧,图中示出了该驱动装置的固定部D20-1和可动部D20-2以及两者之间的弹性连接机构OO,可动部和固定部之间存在一定的间隙,为两者的相对移动预留出一定的活动空间。图2是配置有另一实施形式的驱动装置的感光组件剖面示意图,其中驱动装置D20设置在线路板结构的下侧。当然,也可设想,将驱动装置布置在线路板结构的上侧,只要留出相应的通光孔且在结构设计上匹配于其关联部件即可。
在此,所述承载部连同感光芯片21作为所述可动部件而设置连接于驱动装置D20的可动部D20-2。
于是,依据一些实施形式,在所述第一平面和所述第二平面彼此重合的情况中,感光芯片21所在平面与所述第一平面和所述第二平面共面或者平行,所述至少两组牵线布置在所述线路板单元22的承载部的周侧、上侧或下侧。
于是,依据一些实施形式,在所述第一平面和所述第二平面彼此平行的情况中,感光芯片21所在平面与所述第一平面或所述第二平面平行,所述至少两组牵线布置在所述线路板单元22的承载部的周侧或下侧。
于是,依据一些实施形式,在所述第一平面和所述第二平面彼此相交的情况中,感光芯片21所在平面与所述第一平面和所述第二平面均相交,所述至少两组牵线布置在所述线路板单元22的承载部的周侧或下侧。
图9是感光组件的立体结构示意图,其中示出了线路板单元22的外形结构。在一些实施例中,如图9所示,该线路板单元22包括:
线路板主体220,该线路板主体上设置有电子元器件222和电路布线;以及
连接器221,通过该连接器使所述线路板主体上的电子元器件与外部装置(例如供电电源、控制元件等)电连接;
其中,所述线路板主体220包括硬板部分2201和软板部分2202,所述硬板部分2201包括用于安置感光芯片21的所述承载部,所述软板部分2202的至少一个第一区段2202-1连接于所述连接器221,所述软板部分2202的至少一个第二区段2202-2连接于摄像模组的框架或者连接于相对该框架固定的壳体构件,其中,所述第二区段在至少一个与所述框架或者所述壳体构件相连的接合部位O1、O2、O3具有用于形成活动连接副的装配结构J1-1。
通常适宜的是,所述电子元器件222设置在所述硬板部分2201上,布置于感光芯片周围。
应当理解,所述电路布线(图中未示出)用于实现感光芯片与电子元器件之间、不同电子元器件之间、感光芯片和/或电子元器件与外部装置之间的供电连接以及信号连接等,因此,在线路板主体的硬板部分和软板部分(包括其第一区段和第二区段) 上或内至少局部设置有相应的连接导线。
驱动装置D20可以设置在线路板结构的周侧(如图16所示)或者下侧(如图2所示),使其驱动感光组件的包含感光芯片21的整体结构进行移动,从而实现其位置调整。实际上,该线路板结构包括硬质线路板(由上述硬板部分2201构成)和软质线路板(由上述软板部分2202构成),软质线路板的一端连接在硬质线路板上,另一端连接通过连接器221的中介作用和外部的供电装置连接,以实现摄像模组工作过程中电流的供给。倘若在硬质线路板与软质线路板之间仍采取传统的“直连”结构形式,那么,在芯片结构移动的过程中,硬质线路板端在驱动力的作用下会带动芯片移动,而软质线路板与外部供电装置连接的一端固定不动,在此过程中,软质线路板会对硬质线路板的移动产生较大的阻力作用,影响芯片调整的精度。为了使得防抖精度提高,针对此问题,本发明提出了一种独特的软硬板结合方式,即在硬质线路板与软质线路板之间采取“迂回”结构形式,由此不仅可以解决软质线路板对硬质线路板的阻力问题,还可以有效地保证摄像模组整体结构的稳定性。
对此,如图9所示,所述线路板主体220呈开放的盒体状,所述硬板部分2201形成盒体的底壁,所述软板部分的第一区段2202-1从盒体一侧凸出并延伸至所述连接器221,所述软板部分的第二区段2202-2形成盒体的至少两个侧壁(参见图中a、b、c所指示的方位)。
在此,有益的是,所述软板部分2202的第二区段2202-2至少在其与所述框架或者所述壳体构件相连的接合部位O1、O2、O3具有补强结构。所述补强结构可以为软板部分板体的局部加厚部或者为附加固定于软板部分板体的加固件。由此可以确保将线路板本身稳固地安装于摄像模组中。
另一方面,由于线路板主体220形成了一种盒体状构件,镜头组件10(或者说其驱动装置)便可至少部分地直接容纳并支承于该线路板主体内部,从而在总体上有利于实现小型、紧凑的摄像模组结构。
于是,按照图9所示感光组件的实施例,其中,将软质线路板设置在硬质线路板的周围,使其环绕硬质线板设置,将芯片和滤色片等结构容纳在其形成的空间内部,软质线路板上面还可设置有连接扣,用于和固定部件连接,以保证模组整体结构的稳定性。其中,在以c指示的盒体侧壁处,利用固定板结构将两个侧边的软质线路板固定在一起,并保持其形状的固定,两个侧边的软质线路板之间固定时,可以采用不同的方式:如直接通过胶水将其粘接,或者为了进一步提升其固定强度,可以通过焊接方式将两者进行固定,例如,在一侧设置有焊点,另一侧对应的位置设置有焊接孔,将两者之间的位置固定好后进行焊接,使得两者之间能够固定。
可以设定,所述用于形成活动连接副的装配结构包括:柔性悬挂机构的支承座;或铰链机构的铰接孔;或导槽滑块式挂扣机构的T形或L形挂孔。
在此,适宜的是,所述线路板主体由一平面状的软硬结合板坯制成。所述软硬结合板坯尤其是通过热压成型而形成盒体状线路板主体。
图15示出了按照一种实施形式用于形成线路板单元的平面状板坯的示意图。如图所示,所述软硬结合板坯包括:
一个矩形(优选符合于感光芯片的形状,例如呈正方形)硬板坯2201A,用于构成线路板主体的所述硬板部分;
一个布置于矩形硬板坯2201A的第一侧边(参见图中a所指示的方位)的第一条形软板坯和一个布置于矩形硬板坯2201A的第二侧边(参见图中b所指示的方位)的第二条形软板坯,用于构成线路板主体的所述软板部分,所述第一侧边和第二侧边设置在所述矩形硬板坯2201A的对边。
在此适宜的是,所述第一条形软板坯包括与所述矩形硬板坯2201A的第一侧边间隔开且平行于该第一侧边延伸的第一板条2202-2A1,该第一板条通过第一连接筋2202-2A12与所述第一侧边相连;在所述第一板条2202-2A1的延伸方向上,该第一板条的一端与所述矩形硬板坯2201A的第四侧边大致齐平,另一端延长而超出于所述矩形硬板坯的第三侧边(参见图中c所指示的方位),超出的长度小于该第三侧边的边长且大于该第三侧边边长的一半并形成第一搭接片2202-2A11;所述第一搭接片上形成有平行于第三侧边突伸的外接片2202-1A。
在此适宜的是,所述第二条形软板坯包括与所述矩形硬板坯2201A的第二侧边间隔开且平行于该第二侧边延伸的第二板条2202-2A2,该第二板条通过第二连接筋2202-2A22与所述第二侧边相连;在所述第二板条2202-2A2的延伸方向上,该第二板条的一端与所述矩形硬板坯2201A的第四侧边大致齐平,另一端延长而超出于所述矩形硬板坯的第三侧边(参见图中c所指示的方位),超出的长度小于该第三侧边的边长且大于该第三侧边边长的一半并形成第二搭接片2202-2A21。
于是,在所述软硬结合板坯成型为盒体状线路板主体的状态下,所述矩形硬板坯2201A形成盒体的底壁,所述第一条形软板坯的第一板条2202-2A1和所述第二条形软板坯的第二板条2202-2A2形成盒体的彼此对置的第一侧壁和第二侧壁(参见图9中a、b所指示的方位),所述第一搭接片2202-2A11与所述第二搭接片2202-2A21相互搭接而形成盒体的第三侧壁(参见图9中c所指示的方位),第一搭接片上的所述外接片2202-1A在翻折后从所述第三侧壁向外凸出并延伸至所述连接器221;其中,所述软板部分的所述第一区段2202-1由所述外接片构成,所述软板部分的所述第二区段2202-2包括所述第一侧壁、第二侧壁和第三侧壁。
在一些实施例中,优选的是,所述第一侧壁和第二侧壁的设定与所述框架或者所述壳体构件相连的接合部位O1、O2具有所述用于形成活动连接副的装配结构J1-1。
在一些实施例中,优选的是,所述第三侧壁的设定与所述框架或者所述壳体构件相连的接合部位O3具有附加设置的固定板。
图18是感光组件20的立体结构示意图,其中示出了该感光组件的驱动装置D20,感光芯片21固定于驱动装置的可动部,在组装后,驱动装置的可动部和固定部之间存在一定的间隙,为两者的相对移动预留出一定的活动空间。其中,驱动装置的可动部具有中 空形状,将感光组件的硬质线路板部分容纳在该中空的结构中,由此可以有效地减小整装体积,实现摄像模组小型化。
相应地,本发明还提供一种摄像模组100,包括:
镜头组件10,所述镜头组件包括具有至少一个镜片的光学镜头11;和
如上所述的感光组件20。
图6是摄像模组的剖开的示意图,其中示出了装配到一起的各组成部分:镜头组件10、感光组件20、滤色片30(该滤色片可以固定设置于感光组件,二者共同形成一个整体)、框架40和基座50。图7是展现图6所示摄像模组的各组成部分细节的剖视示意图。如上文所述,关于驱动装置D20在摄像模组100或者说感光组件20中的布置方式,除了如图2设置在线路板结构的下侧之外,也可考虑设置在线路板结构的周侧或者上侧,只要留出相应的通光孔且在结构设计上匹配于其关联部件即可。例如,图7中示出的驱动装置D20(包括其固定部D20-1、可动部D20-2、驱动构件D20-3)便是布置在线路板结构的周侧。
图5是摄像模组的各组成部分的分解示意图。
在一些实施例中,所述镜头组件20还包括至少一个驱动马达,所述驱动马达能够驱动光学镜头运动。
关于感光组件/线路板单元在摄像模组中的安装和固定,可以考虑将线路板连接于摄像模组的框架或者相对该框架固定的壳体构件。
对此,在一些实施例中,所述驱动马达的固定部D10-1包括马达外壳,该马达外壳适宜作为所述壳体构件与所述线路板单元软板部分的至少一个第二区段(特别是线路板单元软板部分形成的所述至少两个侧壁)相连接。图17以立体结构示意图示出了感光组件的线路板单元与固定部的连接过程。马达外壳至少部分被容纳于盒体状线路板主体220。优选地,所述马达外壳与所述软板部分在至少一个接合部位O1、O2形成活动连接副。依据一种实施方式,所述活动连接副可以构造为导槽滑块式挂扣机构,包括设置于所述马达外壳一方的挂钩和设置于所述线路板单元软板部分一方的T形或L形挂孔(图9中以J1-1指示)。所述挂钩可以构造为:包括一个从马达外壳表面凸起的导向柱和一个与该导向柱成角度(优选垂直)的定位柱。以此方式,至少可以实现线路板单元硬板部分(或者说感光芯片)在两个方向上的运动。值得一提的是,盒体状线路板主体的外形和尺寸优选适配于马达外壳的外廓,以便能够将马达外壳容纳于其内,同时也有利于保持盒体状线路板主体自身形状稳定。
在另一些实施例中,所述摄像模组的框架40具有适于容纳至少部分所述线路板单元20(具体为其盒体状线路板主体220)的中空结构,该框架的内侧壁与所述线路板单元软板部分的至少一个第二区段(特别是线路板单元软板部分形成的所述至少两个侧壁)相连接。类似于上文所描述的线路板单元与马达壳体的连接方式,所述框架的内侧壁与所述软板部分在至少一个接合部位形成活动连接副。同理,依据一种实施 方式,所述活动连接副构造为导槽滑块式挂扣机构,包括设置于所述框架内侧壁一方的挂钩和设置于所述线路板单元软板部分一方的T形或L形挂孔。以此方式,至少可以实现线路板单元硬板部分(或者说感光芯片)在两个方向上的运动。值得一提的是,盒体状线路板主体的外形和尺寸优选适配于模组框架的内廓,以便能够被容纳在该框架之中,同时也有利于保持盒体状线路板主体自身形状稳定。
在此,适宜的是,在所述框架40的底部设有基座50,该基座构造为与框架底部匹配的底板(如图4、图9-11、图12和图13所示)。框架40与基座50可通过卡扣机构固定连接到一起,作为示例,图12示出了设于基座50一方的卡接孔口J2-2,而图13示出了设于框架40一方的卡接凸头J2-1。
适宜的是,所述框架、所述基座和所述感光组件适于形成摄像模组的一个预组装单元U。图9-11以立体结构示意图示出了预组装单元U的形成过程,该预组装单元由图9所示感光组件20和基座50与摄像模组框架40安装在一起而形成。
图4示出了摄像模组100的立体结构示意图。
在此,有益的是,所述底板的上侧面和/或下侧面至少在局部表面具有散热结构,和/或所述框架的内侧壁和/或外侧壁至少在局部表面具有散热结构。例如,该散热结构可以是形成于有关构件表面的凹凸结构(如图12和13所示,在底板的上侧面501和下侧面502具有凹凸结构),以此方式增大了有效散热面积。此外,还可以在摄像模组内部的发热部位设有传热材料,该传热材料与所述底板和/或与所述框架相接触。鉴于本发明摄像模组的小型化结构设计及其驱动装置的结构配置,上述散热措施具备重要意义。
针对SMA驱动器,现参阅图3进一步说明一种非限制性实例:
SMA结构的主要驱动原理是:陀螺仪感知偏量,SMA线D20-31通电矫正(电流大小影响记忆合金的收缩量),矫正结束后,内置弹簧(即图3中的弹性复位元件D20-32)使底座复位至原点。此结构包括固定部和可动部,在可动部和固定部之间连接有SMA线,当给SMA线通电的时候,基于预先设定的程序,SMA线会发生相应的收缩或者伸展,以带动可动部相对于固定部进行移动。如图3所示,四条SMA线D20-31设置在此驱动装置的四周以提供可动部移动的驱动力,静止点F设置在底座(其形成固定部)上,可动点M和线路板的一部分(其形成可动部)固定。其中,四条SMA线相互配合,实现可动部在水平方向上位置的调整。
本例中,通过四条SMA线的收缩来控制4个方向的调节(+X,-X,+Y,-Y),每根SMA线都在可动点和静止点之间收缩,最终实现水平方向的调整。其中,驱动装置的可动部与感光组件的硬质线路板相连接,当驱动装置可动部带动硬质线路板移动的时候,便可实现芯片位置的调整。为了增强感光组件和驱动装置可动部之间连接的平整度,可以在硬质线路板的底部位置设置加强板,如钢板结构等,这样也可保证线路板与驱动装置之间的平整度,降低组装之间的累积公差。
本例中,驱动装置的固定部与底座结构相连接,优选地,该底座结构可以为某种类型的线路板,即其内部布设有用于给驱动装置供电的线路,以实现驱动装置工作过程中的电流供给。在电路设计的时候,将芯片工作的电路和驱动结构工作的电路分开设计,可以保证拍摄过程中的电流供给,两者配合作用也可以实现快速的工作响应。此驱动装置中,可动点与感光组件的硬质线路板固定,当SMA线中通入相应的电流时,该SMA线会发生变形,从而带动与其连接的可动点移动,使得芯片的位置发生移动,进而实现拍摄过程中模组防抖的矫正。
本例中,驱动装置的可动部结构表面可以与驱动组件的线路板背面固定连接,为了保证两者之间固定的可靠性,可以将驱动装置的部分结构与硬质线路板的背面粘接,可动部的粘接面积越大,其与感光组件(或者说感光芯片承载部)的粘接越牢固,这样,在工作过程中,也可以保证摄像模组工作的可靠性。
在本申请提出的摄像模组中,针对其对焦和防抖功能,依据相应的驱动结构和控制策略,可以设定:利用第一驱动装置和第二驱动装置分别驱动光学镜头与感光芯片以共同配合执行对焦和防抖功能操作(双AF驱动和双OIS驱动配置);仅利用第一驱动装置驱动光学镜头以执行对焦功能操作,而利用第一驱动装置和第二驱动装置分别驱动光学镜头与感光芯片以共同配合执行防抖功能操作(单AF驱动和双OIS驱动配置);仅利用第一驱动装置驱动光学镜头以执行对焦功能操作,且仅利用第二驱动装置驱动感光芯片以执行防抖功能操作(单AF驱动和单OIS驱动配置)。
针对摄像模组,在本申请所提设计原理的基础上,现描述一种非限制性实例:
摄像模组包括镜头组件、感光组件、第一驱动装置、第二驱动装置。仍参照图5所示的空间坐标系,第一驱动装置被配置为可驱动镜头在x、y两个方向上移动,第二驱动装置被配置为可驱动感光芯片在x、y两个方向上移动,进一步地,感光芯片也可被第二驱动装置驱动在xoy平面内旋转。通过驱动镜头与感光芯片的移动,实现摄像模组的光学防抖。镜头与感光芯片被配置为同时驱动,且朝向相反的方向移动,例如镜头被驱动朝x轴正方向移动,同时感光芯片被驱动朝x轴负方向移动;镜头被驱动朝向y轴正方向移动,同时感光芯片被驱动朝y轴负方向移动;或者镜头被驱动在x轴及y轴移动,同时感光芯片被驱动在x轴及y轴朝向与镜头相反的方向移动。
摄像模组通常包括一位置传感器,在传感器检测到摄像模组或者终端产生抖动时,发出信号至控制装置,驱动镜头和感光芯片移动以补偿该抖动,以达到光学防抖的目的。本例中,通过驱动镜头和感光芯片同时移动,且镜头和感光芯片同时移动,能够实现更快的响应,防抖效果更好。另外,通常摄像模组的防抖调整角度(该角度一般体现为镜头和感光芯片之间的相对位移)范围要受到悬挂系统和驱动系统的限制,无法做到比较大的补偿角度范围,本例在此通过同时驱动镜头和感光芯片在相反的方向上移动,实现了大角度的抖动补偿。再者,以往防抖系统仅在x、y方向上平移镜头或者感光芯片,而对于摄像模组或者电子设备终端在倾斜抖动(绕x轴旋转、绕y轴倾转)发生时补偿效果较差,若想在倾斜抖动方面具有较好的补偿效果,就必须使镜头或者感光芯片移动较大 距离,本例在此通过同时驱动镜头或及感光芯片朝相反的方向移动,对于倾斜抖动也具有较好的补偿效果。
按一种实施方式,镜头和感光芯片可以被驱动在相反的方向移动相同的角距离。当然,镜头与感光芯片移动的距离也可以被设置为不相等,例如,使镜头移动的距离大于感光芯片移动的距离,那么,在此情况下,第二驱动装置可选择尺寸较小的驱动器(如MEMS等,通常其补偿角度范围也较小),这样有利于摄像模组整体的小型化。进一步可以设定,将镜头移动距离和感光芯片移动距离之比设置为保持固定比例,例如6:4,或者7:3,或者5:5,以此方式,有利于在可补偿的值范围内实现补偿效果的均匀性,同时也有利于减小摄像模组防抖系统驱动逻辑的设计难度。作为一种可选方案,当摄像模组需要补偿的抖动角度在某一预定值以下时,使镜头与感光芯片移动的距离保持固定比例;而倘若摄像模组需要补偿的抖动角度在该预定值以上,则在执行共同移动调整之后,使第一驱动装置驱动镜头继续移动,感光芯片保持不动,因为感光芯片可能已经达到了其最大移动距离。
本例中,镜头和感光芯片都被设置为在垂直于光轴的平面内移动,即沿x轴和y轴平移。抖动发生时,摄像模组在曝光的时间内平移或者旋转,造成像面在感光芯片平面内偏移,从而像糊。防抖系统检测到抖动时,驱动镜头和/或感光芯片平移,补偿像面在感光芯片上的移动。
按另一种实施方式,也可以使镜头被驱动的最大角度(位移)小于感光芯片被驱动的最大角度(位移)。若驱动镜头便可达到防抖目的,则摄像模组的防抖系统具有较快的响应速度。然而,在高端镜头中,镜头通常具有较多的镜片数,例如在目前某些移动终端中,后置主摄便可达到8片镜片,再者,某些镜头为了提高成像质量甚至使用玻璃镜片,这些都会导致镜头重量较大,因此,驱动装置驱动镜头移动时需要较大的力,驱动镜头达到预设防抖位置也需要更长的时间,而感光芯片或者包含线路板及感光芯片的感光组件则重量相对较轻,比较容易驱动其移动,达到预设位置也更快。在此情况下,使镜头移动的角度小于感光芯片移动的角度,则可提高摄像模组防抖系统的响应速度。再者,由于镜头比较重,镜头移动的距离小于芯片移动的距离,可以在防抖时使镜头和芯片同时开始移动并同时到达指定位置,从而具有较好的防抖效果。此外,值得一提的是,常规OIS模组需要镜头进行较大角度移动来实现防抖,相应地,需要采用可提供较大驱动力的驱动部件以及较大行程的悬挂系统,而在本申请中,通过减小驱动镜头移动的角度,增加了第一驱动装置器件的可选范围,例如,可以选择线圈磁石对进行驱动;另外,通过减小镜头移动的角度,第一驱动装置可以设计得更紧凑,有利于摄像模组的小型化。
针对驱动装置(特别是所述第二驱动装置)在感光组件中的组装结构,以及整个摄像模组的组装方式,下文将描述一种非限制性实例:
本例中,将(第二)驱动装置D20设置在感光组件20的线路板和基座50之间,感光组件的线路板上设置有各种电子元器件,基座50的侧边具有延伸部,可以用于将感光组件的软质线路板容纳在其内部,连接器将与外部的供电装置连接,以实现芯片工作过程 中的电流供给。感光组件部分包括硬质线路板、芯片等,滤色片30可以固定设置于感光组件,二者共同形成一个整体,芯片可以粘接在硬质线路板的上表面,利用电导线将其与线路板导通。这里可以使用模塑的工艺,将连通芯片和线路板的导线模塑在内部,将模塑座的形状设置成适于安装滤色片的结构,以此方式降低模组的高度、减小模组的重量,不仅可以实现摄像模组的拍摄功能,还可以有效的实现模组结构的小型化。
为了保证组装后摄像模组的稳定性,热压成型后的软质连接带需要将其结构进行固定,使其在后续的工作过程中不会发生变形,本申请相应地提出了一种固定的框架结构,将硬质线路板侧边设置的软质线路板利用框架结构进行限制,使其和感光组件、驱动装置形成一个摄像模组半成品结构(该结构由上文所述的预组装单元U形成),然后再将镜头组件10安装在该摄像模组半成品结构的上方,从而形成一个完整的双驱模式摄像模组结构。
作为示例,图11示出了所述的摄像模组半成品结构(预组装单元U),在此添加组合了框架40,该框架可以将软质线路板限制在其内部,其具有软质线路板保持热压成型后的形状,该框架的内部为中空结构,底部和预留的基座底部相适配,框架、基座和软质线路板三个元件上面预设的卡扣结构相互匹配,通过基座上面的卡扣,将软质线路板固定在框架内部的侧边,从而保证整体结构的稳定性。其中,各个元件按照上述方式进行组装,在第二驱动装置组装于感光组件之后,再将其固定在框架的内部,于是形成所述的摄像模组半成品结构。
镜头组件在装配状态下至少部分容纳于该摄像模组半成品之内,可以利用点胶工艺,将胶水布设在镜头组件和框架侧边的缝隙中,进而将镜头组件和摄像模组半成品结构彼此固定,最终便得到一种紧凑的摄像模组结构。
本例中所采用的软硬线路板设置方式、滤色片安装方式以及固定框架设置方式,都有利于降低模组高度尺寸,使各部件高度集成,实现摄像模组整体结构的小型化。
针对摄像模组散热的解决方案,在此进一步说明如下:
按照本发明的一些实施例,在摄像模组组装完成后,为了保证摄像模组整体结构的稳定性,使用外壳结构将其主体结构容纳在内部,摄像模组本身属于精密组装的电子器件,对散热的要求比较高,尤其是小型化的摄像模组结构,其内部的热量会对模组本身性能产生较大的影响,为了有效地解决此问题,本发明对摄像模组的结构提出了相应的改进措施。
具体而言,将与框架固定的基座设置为具有凹凸结构表面的板件(如图12所示),通过这种方式增大了基座的散热面积,能够将内部的热量更快地传导到模组结构的外部,以保证摄像模组拍摄环境的稳定。除了图中所示的构造形式之外,基座还可以设置为具有其他凹凸状表面的构件,例如设置圆形的突起结构,同时在保证不影响感光组件运动的情况下,还可以对基座表面做其他改进,以增大其散热面积。
作为示例,图13示出了上述基座与模组结构组装的一种实施例,其中,该基座的两个相对侧边设有卡座,能够与模组框架上的相应结构配合,用以将基座和框架固定到一 起,同时还可对模组内部结构和元件起到保护作用;该基座在其上述的两个相对侧边具有与模组框架结构相适配的延伸部,用以将模组结构封装在其内部,保证在组装之后模组整体结构稳定。
除了在基座上设置凹凸状的表面散热结构之外,在模组内部其他结构上,如框架的内侧,特别是在与软板相邻的位置,也可以设置类似的散热措施,如凹凸面结构,以增大模组散热面积,加快其内部的散热。例如,可以利用传热材料将摄像模组产生的热量传递到框架,给框架内侧设置凹凸面,增大框架内侧的散热面积,以利于将模组内部产生的热量传导到模组外部,进一步加快散热速度,保证模组内部的工作环境。若要利用传热材料将线路板上的热量传导到外部框架,传热材料的设置位置可以是软硬板的结合部,其一端与线路板相接触,另一端与外部的框架相接触,至于具体的传热材料,本申请对此并无限制。此外,在发热部位添加导热凝胶、或者在产生热量的部位贴附散热片,也都是可以设想并实施的散热措施。
虽然在上面已经描述了本发明的示例性的实施例,但是本领域技术人员应当理解的是,在不脱离本发明的精神和范围的情况下可以对本发明的示例性实施例进行多种变化和改变,所有变化和改变均包含在本发明的保护范围内。
以上描述仅为本申请的较佳实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
Claims (91)
- 一种用于摄像模组的线路板单元,包括:线路板主体,该线路板主体上设置有电子元器件和电路布线;以及连接器,通过该连接器使所述线路板主体上的电子元器件与外部装置电连接;其特征在于,所述线路板主体包括硬板部分和软板部分,所述硬板部分适于安置至少一个感光芯片,所述软板部分的至少一个第一区段连接于所述连接器,所述软板部分的至少一个第二区段适合连接于摄像模组的框架或者适合连接于相对该框架固定的壳体构件,其中,所述第二区段在至少一个设定与所述框架或者所述壳体构件相连的接合部位具有用于形成活动连接副的装配结构。
- 根据权利要求1所述的线路板单元,其特征在于,所述软板部分的第二区段至少在其设定与所述框架或者所述壳体构件相连的接合部位具有补强结构。
- 根据权利要求2所述的线路板单元,其特征在于,所述补强结构为软板部分板体的局部加厚部或者为附加固定于软板部分板体的加固件。
- 根据权利要求1所述的线路板单元,其特征在于,所述用于形成活动连接副的装配结构包括:柔性悬挂机构的支承座;或铰链机构的铰接孔;或导槽滑块式挂扣机构的T形或L形挂孔。
- 根据权利要求1所述的线路板单元,其特征在于,所述电子元器件设置在所述硬板部分上。
- 根据权利要求1至5之任一项所述的线路板单元,其特征在于,所述线路板主体呈开放的盒体状,所述硬板部分形成盒体的底壁,所述软板部分的第一区段从盒体一侧凸出并延伸至所述连接器,所述软板部分的第二区段形成盒体的至少两个侧壁。
- 根据权利要求6所述的线路板单元,其特征在于,所述线路板主体由一平面状的软硬结合板坯制成。
- 根据权利要求7所述的线路板单元,其特征在于,所述软硬结合板坯通过热压成型而形成盒体状线路板主体。
- 根据权利要求7所述的线路板单元,其特征在于,所述软硬结合板坯包括:一个矩形硬板坯,用于构成线路板主体的所述硬板部分;一个布置于矩形硬板坯的第一侧边的第一条形软板坯和一个布置于矩形硬板坯的第二侧边的第二条形软板坯,用于构成线路板主体的所述软板部分,所述第一侧边和第二侧边设置在所述矩形硬板坯的对边。
- 根据权利要求9所述的线路板单元,其特征在于,所述第一条形软板坯包括与所述矩形硬板坯的第一侧边间隔开且平行于该第一侧边延伸的第一板条,该第一板条通过第一连接筋与所述第一侧边相连;在所述第一板条的延伸方向上,该第一板条的一端与所述矩形硬板坯的第四侧边大致齐平,另一端延长而超出于所述矩形硬板坯的第三侧边,超出的长度小于该第三侧边的边长且大于该第三侧边边长的一半并形成第一搭接片;所述第一搭接片上形成有平行于第三侧边突伸的外接片。
- 根据权利要求10所述的线路板单元,其特征在于,所述第二条形软板坯包括与所述矩形硬板坯的第二侧边间隔开且平行于该第二侧边延伸的第二板条,该第二板条通过第二连接筋与所述第二侧边相连;在所述第二板条的延伸方向上,该第二板条的一端与所述矩形硬板坯的第四侧边大致齐平,另一端延长而超出于所述矩形硬板坯的第三侧边,超出的长度小于该第三侧边的边长且大于该第三侧边边长的一半并形成第二搭接片。
- 根据权利要求11所述的线路板单元,其特征在于,在所述软硬结合板坯成型为盒体状线路板主体的状态下,所述矩形硬板坯形成盒体的底壁,所述第一条形软板坯的第一板条和所述第二条形软板坯的第二板条形成盒体的彼此对置的第一侧壁和第二侧壁,所述第一搭接片与所述第二搭接片相互搭接而形成盒体的第三侧壁,第一搭接片上的所述外接片在翻折后从所述第三侧壁向外凸出并延伸至所述连接器;其中,所述软板部分的所述第一区段由所述外接片构成,所述软板部分的所述第二区段包括所述第一侧壁、第二侧壁和第三侧壁。
- 根据权利要求12所述的线路板单元,其特征在于,所述第一侧壁和第二侧壁的设定与所述框架或者所述壳体构件相连的接合部位具有所述用于形成活动连接副的装配结构。
- 根据权利要求12所述的线路板单元,其特征在于,所述第三侧壁的设定与所述框架或者所述壳体构件相连的接合部位具有附加设置的固定板。
- 一种感光组件,包括:根据权利要求1至14之任一项所述的线路板单元;至少一个感光芯片,所述感光芯片贴装在所述线路板单元的硬板部分上;和至少一个驱动装置,所述驱动装置至少能够驱动所述硬板部分相对于所述框架或者所述壳体构件运动。
- 根据权利要求15所述的感光组件,其特征在于,所述驱动装置为SMA驱动器。
- 一种摄像模组,包括:镜头组件,所述镜头组件包括具有至少一个镜片的光学镜头;根据权利要求15或16所述的感光组件。
- 根据权利要求17所述的摄像模组,其特征在于,所述镜头组件还包括至少一个驱动马达,所述驱动马达能够驱动光学镜头运动。
- 根据权利要求18所述的摄像模组,其特征在于,所述驱动马达的固定部包括马达外壳,该马达外壳作为所述壳体构件与所述线路板单元软板部分的至少一个第二区段相连接。
- 根据权利要求19所述的摄像模组,其特征在于,所述马达外壳与所述软板部分在至少一个接合部位形成活动连接副。
- 根据权利要求20所述的摄像模组,其特征在于,所述活动连接副构造为导槽滑块式挂扣机构,包括设置于所述马达外壳一方的挂钩和设置于所述线路板单元软板部分一方的T形或L形挂孔。
- 根据权利要求17所述的摄像模组,其特征在于,所述摄像模组的框架具有适于容纳至少部分所述线路板单元的中空结构,该框架的内侧壁与所述线路板单元软板部分的至少一个第二区段相连接。
- 根据权利要求22所述的摄像模组,其特征在于,所述框架的内侧壁与所述软板部分在至少一个接合部位形成活动连接副。
- 根据权利要求23所述的摄像模组,其特征在于,所述活动连接副构造为导槽滑块式挂扣机构,包括设置于所述框架内侧壁一方的挂钩和设置于所述线路板单元软板部分一方的T形或L形挂孔。
- 根据权利要求22所述的摄像模组,其特征在于,在所述框架的底部设有基座,该基座构造为与框架底部匹配的底板。
- 根据权利要求25所述的摄像模组,其特征在于,所述底板的上侧面和/或下侧面至少在局部表面具有散热结构,和/或所述框架的内侧壁和/或外侧壁至少在局部表面具有散热结构。
- 根据权利要求25或26所述的摄像模组,其特征在于,在摄像模组内部的发热部位设有传热材料,该传热材料与所述底板和/或与所述框架相接触。
- 根据权利要求25所述的摄像模组,其特征在于,所述框架、所述基座和所述感光组件适于形成摄像模组的一个预组装单元。
- 一种用于摄像模组的驱动装置,包括:固定部,所述固定部适于与摄像模组的框架或者相对该框架固定的壳体构件固定连接;可动部,所述可动部适于与摄像模组的至少一个可动部件固定连接;和驱动构件,所述驱动构件能够驱动所述可动部相对于所述固定部移动;其特征在于,所述驱动构件包括连接在固定部和可动部之间的至少两组牵线,其中第一组牵线包括至少一根第一SMA线和至少一根第二SMA线,第一SMA线和第二SMA线在第一平面内分别连续地呈L形延伸并且两者的延伸走向共同限定一个第一四边形;所述第一SMA线和第二SMA线配合作用,至少能够使可动部相对于固定部在第一方向上运动;第二组牵线包括至少一根第三SMA线和至少一根第四SMA线,第三SMA线和第四SMA线在第二平面内分别连续地呈L形延伸并且两者的延伸走向共同限定一个第二四边形;所述第三SMA线和第四SMA线配合作用,至少能够使可动部相对于固定部在第二方向上运动;所述第一方向和所述第二方向在至少一个平面内的投影彼此相交。
- 根据权利要求29所述的驱动装置,其特征在于,所述第一平面和所述第二平面彼此重合,所述第一方向和所述第二方向在第一平面或者第二平面内的投影彼此相交。
- 根据权利要求30所述的驱动装置,其特征在于,所述第一四边形布置在所述第二四边形之内。
- 根据权利要求30所述的驱动装置,其特征在于,所述第一SMA线和第二SMA线配合作用,能够使可动部相对于固定部在第一方向上进行平移运动;所述第三SMA线和第四SMA线配合作用,能够使可动部相对于固定部在第二方向上进行平移运动。
- 根据权利要求29所述的驱动装置,其特征在于,所述第一平面和所述第二平面彼此平行。
- 根据权利要求33所述的驱动装置,其特征在于,所述第一SMA线和/或第二SMA线与所述第三SMA线和/或第四SMA线配合作用,能够使可动部相对于固定部以第一或者第二平面内的直线为转轴进行倾转运动。
- 根据权利要求29所述的驱动装置,其特征在于,所述第一平面和所述第二平面彼此相交。
- 根据权利要求35所述的驱动装置,其特征在于,所述第一SMA线和/或第二SMA线与所述第三SMA线和/或第四SMA线配合作用,能够使可动部相对于固定部以第一或者第二平面内的直线为转轴进行倾转运动,和/或,还能够使可动部相对于固定部在第三方向上进行平移运动。
- 根据权利要求29所述的驱动装置,其特征在于,所述第一四边形和所述第二四边形为不等边平行四边形。
- 根据权利要求37所述的驱动装置,其特征在于,所述第一SMA线和第二SMA线配合作用,能够使可动部相对于固定部在第一平面内进行旋转运动;所述第三SMA线和第四SMA线配合作用,能够使可动部相对于固定部在第二平面内进行旋转运动。
- 根据权利要求29至38之任一项所述的驱动装置,其特征在于,所述第一SMA线具有位于所述第一四边形第一角部的第一施力区,所述第二SMA线具有位于所述第一四边形第二角部的第二施力区,该第一四边形的所述第一角部和所述第二角部成对角布置;第一SMA线自所述第一施力区向第一角部两边沿着所述第一四边形的相邻侧延伸并在两端固定,第二SMA线自所述第二施力区向第二角部两边沿着所述第一四边形的相邻侧延伸并在两端固定;所述第三SMA线具有位于所述第二四边形第三角部的第三施力区,所述第四SMA线具有位于所述第二四边形第四角部的第四施力区,该第二四边形的所述第三 角部和所述第四角部成对角布置;第三SMA线自所述第三施力区向第三角部两边沿着所述第二四边形的相邻侧延伸并在两端固定,第四SMA线自所述第四施力区向第四角部两边沿着所述第二四边形的相邻侧延伸并在两端固定。
- 根据权利要求39所述的驱动装置,其特征在于,所述第一施力区、第二施力区、第三施力区和第四施力区在第一平面或者第二平面内的投影形成一个假想的第三四边形的四个角部。
- 根据权利要求40所述的驱动装置,其特征在于,所述第一四边形、第二四边形和第三四边形在第一平面或者第二平面内的投影相互重合。
- 根据权利要求39所述的驱动装置,其特征在于,第一SMA线的两端固定于所述固定部,而所述可动部上固设有对应于所述第一施力区的第一SMA线引导机构;或者,第一SMA线的两端固定于所述可动部,而所述固定部上固设有对应于所述第一施力区的第一SMA线引导机构;和/或第二SMA线的两端固定于所述固定部,而所述可动部上固设有对应于所述第二施力区的第二SMA线引导机构;或者,第二SMA线的两端固定于所述可动部,而所述固定部上固设有对应于所述第二施力区的第二SMA线引导机构;和/或第三SMA线的两端固定于所述固定部,而所述可动部上固设有对应于所述第三施力区的第三SMA线引导机构;或者,第三SMA线的两端固定于所述可动部,而所述固定部上固设有对应于所述第三施力区的第三SMA线引导机构;和/或第四SMA线的两端固定于所述固定部,而所述可动部上固设有对应于所述第四施力区的第四SMA线引导机构;或者,第四SMA线的两端固定于所述可动部,而所述固定部上固设有对应于所述第四施力区的第四SMA线引导机构。
- 根据权利要求42所述的驱动装置,其特征在于,所述引导机构包括绕线柱或者导向孔。
- 一种感光组件,包括:线路板单元;至少一个感光芯片,所述感光芯片贴装在所述线路板单元的相应承载部上;和根据权利要求29至43之任一项所述的驱动装置,所述驱动装置至少能够驱动所述承载部运动。
- 根据权利要求44所述的感光组件,其特征在于,所述承载部连同感光芯片作为所述可动部件而设置连接于驱动装置的可动部。
- 根据权利要求45所述的感光组件,其特征在于,在所述第一平面和所述第二平面彼此重合的情况中,感光芯片所在平面与所述第一平面和所述第二平面共面或者平行,所述至少两组牵线布置在所述线路板单元的承载部的周侧、上侧或下侧。
- 根据权利要求45所述的感光组件,其特征在于,在所述第一平面和所述第二平面彼此平行的情况中,感光芯片所在平面与所述第一平面或所述第二平面平行,所述至少两组牵线布置在所述线路板单元的承载部的周侧或下侧。
- 根据权利要求45所述的感光组件,其特征在于,在所述第一平面和所述第二平面彼此相交的情况中,感光芯片所在平面与所述第一平面和所述第二平面均相交,所述至少两组牵线布置在所述线路板单元的承载部的周侧或下侧。
- 根据权利要求44所述的感光组件,其特征在于,所述线路板单元为根据权利要求1至14之任一项所述的线路板单元;其中,所述硬板部分包括用于安置感光芯片的所述承载部,所述软板部分的至少一个第二区段连接于所述框架或者所述壳体构件。
- 根据权利要求49所述的感光组件,其特征在于,所述电子元器件在所述硬板部分上布置于感光芯片周围。
- 一种摄像模组,包括:镜头组件,所述镜头组件包括具有至少一个镜片的光学镜头;根据权利要求44至50之任一项所述的感光组件。
- 根据权利要求51所述的摄像模组,其特征在于,所述镜头组件还包括至少一个驱动马达,所述驱动马达能够驱动光学镜头移动。
- 根据权利要求52所述的摄像模组,其特征在于,所述驱动马达的固定部包括马达外壳,在线路板单元包括软硬结合板的情况下,该马达外壳作为所述壳体构件与所述线路板单元软板部分的至少一个区段相连接。
- 根据权利要求53所述的摄像模组,其特征在于,所述马达外壳与所述软板部分在至少一个接合部位形成活动连接副。
- 根据权利要求54所述的摄像模组,其特征在于,所述活动连接副构造为导槽滑块式挂扣机构,包括设置于所述马达外壳一方的挂钩和设置于所述线路板单元软板 部分一方的T形或L形挂孔。
- 根据权利要求51所述的摄像模组,其特征在于,所述摄像模组的框架具有适于容纳至少部分所述线路板单元的中空结构,在线路板单元包括软硬结合板的情况下,该框架的内侧壁与所述线路板单元软板部分的至少一个区段相连接。
- 根据权利要求56所述的摄像模组,其特征在于,所述框架的内侧壁与所述软板部分在至少一个接合部位形成活动连接副。
- 根据权利要求57所述的摄像模组,其特征在于,所述活动连接副构造为导槽滑块式挂扣机构,包括设置于所述框架内侧壁一方的挂钩和设置于所述线路板单元软板部分一方的T形或L形挂孔。
- 根据权利要求56所述的摄像模组,其特征在于,在所述框架的底部设有基座,该基座构造为与框架底部匹配的底板。
- 根据权利要求59所述的摄像模组,其特征在于,所述底板的上侧面和/或下侧面至少在局部表面具有散热结构,和/或所述框架的内侧壁和/或外侧壁至少在局部表面具有散热结构。
- 根据权利要求59或60所述的摄像模组,其特征在于,在摄像模组内部的发热部位设有传热材料,该传热材料与所述底板和/或与所述框架相接触。
- 根据权利要求59所述的摄像模组,其特征在于,所述框架、所述基座和所述感光组件适于形成摄像模组的一个预组装单元。
- 一种摄像模组,包括:镜头组件,该镜头组件包括具有至少一个镜片的光学镜头;和感光组件,该感光组件包括线路板单元和贴附在所述线路板单元的相应承载部上的感光芯片;其特征在于,该摄像模组具有配置于所述镜头组件的第一驱动装置和配置于所述感光组件的第二驱动装置,所述第一驱动装置能够驱动光学镜头运动,所述第二驱动装置能够驱动感光芯片运动,其中,所述第一驱动装置和第二驱动装置被联合操控:通过一控制装置分配并确定光学镜头和感光芯片的运动形式及运动幅度,使第一驱动装置和第二驱动装置相互协作而驱动所述光学镜头和感光芯片运动,以共同调整光学镜头与感光芯片之间的相对位置。
- 根据权利要求63所述的摄像模组,其特征在于,所述第一驱动装置能够驱动所述光学镜头在垂直于光轴的平面内平移;和/或,所述第二驱动装置能够驱动所述感光芯片在垂直于光轴的平面内平移。
- 根据权利要求63所述的摄像模组,其特征在于,所述第一驱动装置能够驱动所述光学镜头沿着光轴的方向移动;和/或,所述第二驱动装置能够驱动所述感光芯片沿着光轴的方向移动。
- 根据权利要求64或65所述的摄像模组,其特征在于,所述光学镜头和所述感光芯片被同步驱动并以相反的方向移动。
- 根据权利要求66所述的摄像模组,其特征在于,所述光学镜头的位移大于所述感光芯片的位移。
- 根据权利要求66所述的摄像模组,其特征在于,所述光学镜头的位移和所述感光芯片的位移保持固定比例。
- 根据权利要求63至65之任一项所述的摄像模组,其特征在于,所述光学镜头和所述感光芯片能够同时开始运动,直至感光芯片移动了预定的位移,此后,所述第一驱动装置能够驱动光学镜头在同一方向上或另一方向上继续移动。
- 根据权利要求63至65之任一项所述的摄像模组,其特征在于,所述第一驱动装置能够驱动所述光学镜头在垂直于光轴的平面内旋转;和/或,所述第二驱动装置能够驱动所述感光芯片在垂直于光轴的平面内旋转。
- 根据权利要求63至65之任一项所述的摄像模组,其特征在于,所述第一驱动装置能够驱动所述光学镜头以垂直于光轴的直线为转轴进行倾转;和/或,所述第二驱动装置能够驱动所述感光芯片以垂直于光轴的直线为转轴进行倾转。
- 根据权利要求63至65之任一项所述的摄像模组,其特征在于,所述第一驱动装置构造为音圈马达、滚珠马达或MEMS驱动器。
- 根据权利要求63至65之任一项所述的摄像模组,其特征在于,所述第二驱动装置构造为SMA驱动器。
- 根据权利要求63至65之任一项所述的摄像模组,其特征在于,所述第二驱动装置构造为如权利要求29至43之任一项所述的驱动装置。
- 根据权利要求63至65之任一项所述的摄像模组,其特征在于,所述线路板单元为根据权利要求1至14之任一项所述的线路板单元;其中,所述硬板部分包括用于安置感光芯片的所述承载部,所述软板部分的至少一个第二区段连接于摄像模组的框架或者连接于相对该框架固定的壳体构件。
- 根据权利要求75所述的摄像模组,其特征在于,所述电子元器件在所述硬板部分上布置于感光芯片周围。
- 根据权利要求75所述的摄像模组,其特征在于,第一驱动装置的固定部包括马达外壳,该马达外壳至少部分被容纳于盒体状线路板主体,并作为所述壳体构件与线路板单元软板部分形成的至少两个侧壁相连接。
- 根据权利要求77所述的摄像模组,其特征在于,所述马达外壳与所述软板部分在至少一个接合部位形成活动连接副。
- 根据权利要求78所述的摄像模组,其特征在于,所述活动连接副构造为导槽滑块式挂扣机构,包括设置于所述马达外壳一方的挂钩和设置于所述线路板单元软板部分一方的T形或L形挂孔。
- 根据权利要求75所述的摄像模组,其特征在于,所述摄像模组的框架具有适于至少部分容纳盒体状线路板主体的中空结构,该框架的内侧壁与线路板单元软板部分形成的至少两个侧壁相连接。
- 根据权利要求80所述的摄像模组,其特征在于,所述框架的内侧壁与所述软板部分在至少一个接合部位形成活动连接副。
- 根据权利要求81所述的摄像模组,其特征在于,所述活动连接副构造为导槽滑块式挂扣机构,包括设置于所述框架内侧壁一方的挂钩和设置于所述线路板单元软板部分一方的T形或L形挂孔。
- 根据权利要求81所述的摄像模组,其特征在于,在所述框架的底部设有基座,该基座构造为与框架底部匹配的底板。
- 根据权利要求83所述的摄像模组,其特征在于,所述底板的上侧面和/或下侧面至少在局部表面具有散热结构,和/或所述框架的内侧壁和/或外侧壁至少在局部表面具有散热结构。
- 根据权利要求83或84所述的摄像模组,其特征在于,在摄像模组内部的发热部位设有传热材料,该传热材料与所述底板和/或与所述框架相接触。
- 一种用于摄像模组光学调整的方法,包括:获取摄像模组的镜头组件与感光组件之间的相对位置参数;生成控制信号并将其发送至镜头组件和感光组件的操控系统;利用第一驱动装置,根据相应的控制信号至少驱动镜头组件的光学镜头运动;利用第二驱动装置,根据相应的控制信号至少驱动感光组件的感光芯片运动;其中,在生成控制信号时,分配并确定光学镜头和感光芯片的运动形式及运动幅度,据此协作操控第一驱动装置和第二驱动装置而驱动所述光学镜头和感光芯片运动,以共同调整镜头组件与感光组件之间的相对位置。
- 根据权利要求86所述的方法,其特征在于,该方法用以执行对摄像模组的光学防抖调整,其中,利用陀螺仪组件获取摄像模组的镜头组件与感光组件之间相对偏移的参数;使光学镜头和感光芯片至少能够在垂直于光轴的平面内移动,以共同补偿光学镜头和感光芯片之间的相对偏移。
- 根据权利要求86所述的方法,其特征在于,该方法用以执行对摄像模组的对焦调整,其中,获取摄像模组的镜头组件与感光组件之间相对距离的参数并依据拍摄成像需要进行参数测算;使光学镜头和感光芯片至少能够沿着光轴的方向移动,以共同调节光学镜头和感光芯片之间的相对距离。
- 根据权利要求87或88所述的方法,其特征在于,驱动所述光学镜头和感光芯片,并使二者的位移保持固定比例。
- 根据权利要求87或88所述的方法,其特征在于,使所述光学镜头和感光芯片同时开始运动,直至感光芯片移动了预定的位移,此后,所述第一驱动装置依据相应的控制信号仍驱动光学镜头在同一方向上或另一方向上继续移动。
- 一种电子设备,其包括根据权利要求63至85之任一项所述的摄像模组。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011582687.6 | 2020-12-28 | ||
CN202011582764.8A CN114755873B (zh) | 2020-12-28 | 2020-12-28 | 摄像模组、其光学调整方法和电子设备 |
CN202011582730.9A CN114697477B (zh) | 2020-12-28 | 2020-12-28 | 线路板单元、感光组件和摄像模组 |
CN202011582730.9 | 2020-12-28 | ||
CN202011582687.6A CN114697476B (zh) | 2020-12-28 | 2020-12-28 | 驱动装置、感光组件和摄像模组 |
CN202011582764.8 | 2020-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022143509A1 true WO2022143509A1 (zh) | 2022-07-07 |
Family
ID=82260217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/141575 WO2022143509A1 (zh) | 2020-12-28 | 2021-12-27 | 摄像模组、其光学调整方法及其线路板单元、驱动装置和感光组件 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022143509A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115278077A (zh) * | 2022-07-27 | 2022-11-01 | 维沃移动通信有限公司 | 光学防抖方法、装置、电子设备和可读存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5920465A (en) * | 1997-01-17 | 1999-07-06 | Fuji Photo Optical Co. Ltd. | Connecting structure between flexible printed circuit board and hard printed circuit board |
US20140063302A1 (en) * | 2012-09-06 | 2014-03-06 | Ashutosh Y. Shukla | Electronic Device with Compact Camera Module |
CN104204935A (zh) * | 2012-02-16 | 2014-12-10 | 剑桥机电有限公司 | 形状记忆合金致动装置 |
CN105704364A (zh) * | 2014-12-15 | 2016-06-22 | 奥林巴斯株式会社 | 照相机系统及其抖动校正方法 |
CN111565278A (zh) * | 2020-06-22 | 2020-08-21 | 湖南金康光电有限公司 | 摄像头模组及电子设备 |
-
2021
- 2021-12-27 WO PCT/CN2021/141575 patent/WO2022143509A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5920465A (en) * | 1997-01-17 | 1999-07-06 | Fuji Photo Optical Co. Ltd. | Connecting structure between flexible printed circuit board and hard printed circuit board |
CN104204935A (zh) * | 2012-02-16 | 2014-12-10 | 剑桥机电有限公司 | 形状记忆合金致动装置 |
US20140063302A1 (en) * | 2012-09-06 | 2014-03-06 | Ashutosh Y. Shukla | Electronic Device with Compact Camera Module |
CN105704364A (zh) * | 2014-12-15 | 2016-06-22 | 奥林巴斯株式会社 | 照相机系统及其抖动校正方法 |
CN111565278A (zh) * | 2020-06-22 | 2020-08-21 | 湖南金康光电有限公司 | 摄像头模组及电子设备 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115278077A (zh) * | 2022-07-27 | 2022-11-01 | 维沃移动通信有限公司 | 光学防抖方法、装置、电子设备和可读存储介质 |
CN115278077B (zh) * | 2022-07-27 | 2024-05-10 | 维沃移动通信有限公司 | 光学防抖方法、装置、电子设备和可读存储介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN210670256U (zh) | 摄像头模组及电子设备 | |
WO2021238776A1 (zh) | 拍摄装置、电子设备及控制方法 | |
JP7526092B2 (ja) | レンズ駆動装置、カメラモジュール及び光学機器 | |
CN108474923A (zh) | 透镜驱动装置、相机模块以及包括该相机模块的光学装置 | |
CN106170912A (zh) | 镜头驱动马达 | |
CN105204176A (zh) | 便携终端的摄像头模块 | |
CN108769493A (zh) | 摄像头组件和电子装置 | |
CN109348102A (zh) | 单轴防抖的移轴防抖模块及潜望式防抖模组 | |
WO2022143509A1 (zh) | 摄像模组、其光学调整方法及其线路板单元、驱动装置和感光组件 | |
CN108303778A (zh) | 镜头驱动装置 | |
CN112965318A (zh) | 基于图像传感器的防抖模组、镜头模组和电子设备 | |
CN208922030U (zh) | 潜望式防抖模组及潜望式摄像模组 | |
CN114755873B (zh) | 摄像模组、其光学调整方法和电子设备 | |
WO2021232948A1 (zh) | 具有防抖功能的感光组件、摄像模组及其组装方法 | |
WO2022111263A1 (zh) | 用于光学致动器的驱动结构及相应的摄像模组 | |
WO2022012246A1 (zh) | 具有云台的摄像模组 | |
US12010429B2 (en) | Camera module and mobile terminal | |
JP2024512007A (ja) | アクチュエータ装置 | |
JP2023531050A (ja) | カメラモジュール及び電子装置 | |
CN114520858A (zh) | 光学防抖摄像模组 | |
CN108769492A (zh) | 摄像头组件和电子装置 | |
CN208987036U (zh) | 单轴防抖的移轴防抖模块及潜望式防抖模组 | |
TW201329611A (zh) | 攝像模組 | |
WO2024082846A1 (zh) | 防抖组件、摄像模组及电子设备 | |
CN208581283U (zh) | 潜望式摄像模组及其阵列摄像模组和电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21914245 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21914245 Country of ref document: EP Kind code of ref document: A1 |