WO2022012246A1 - 具有云台的摄像模组 - Google Patents

具有云台的摄像模组 Download PDF

Info

Publication number
WO2022012246A1
WO2022012246A1 PCT/CN2021/100072 CN2021100072W WO2022012246A1 WO 2022012246 A1 WO2022012246 A1 WO 2022012246A1 CN 2021100072 W CN2021100072 W CN 2021100072W WO 2022012246 A1 WO2022012246 A1 WO 2022012246A1
Authority
WO
WIPO (PCT)
Prior art keywords
sma wire
pan
module body
sma
camera module
Prior art date
Application number
PCT/CN2021/100072
Other languages
English (en)
French (fr)
Inventor
蒋泽娇
何艳宁
康连启
蒋伟杰
邓传奇
戚杨迪
李剑虹
李刚
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010678999.0A external-priority patent/CN113949788B/zh
Priority claimed from CN202010691362.5A external-priority patent/CN113949792B/zh
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to CN202180060863.6A priority Critical patent/CN116349236A/zh
Publication of WO2022012246A1 publication Critical patent/WO2022012246A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • the present invention relates to the technical field of camera modules, and in particular, the present invention relates to a camera module with a pan/tilt head.
  • the anti-shake technology was first applied to cameras.
  • standard focal length or wide-angle lenses have a short focal length and are not heavy, and can meet the shooting needs by hand.
  • the aperture remains unchanged, it needs to be sufficient. If the exposure time is too long, if you shoot by hand at this time, it is easy to cause shooting jitter.
  • the aperture of the mobile phone itself is limited, and the amount of light entering is worrying. In order to obtain a clear enough picture, a long enough exposure time is required, and the curse of anti-shake technology is required at this time.
  • the hand shake will cause a slight tilt of the camera (generally within +/- 0.5 degrees), which will cause a change in the viewing angle of the lens.
  • the lens is equivalent to The object being photographed moves, so the formed image will also shift relative to the original position on the image sensor, resulting in an unstable state of the image with the shaking of the hand all the time. Therefore, the support of anti-shake technology is required.
  • the anti-shake technology in mobile phones is mainly designed for anti-shake inside the mobile phone module.
  • Common anti-shake methods include optical image stabilization (OIS) and electronic image stabilization (EIS).
  • OIS optical image stabilization
  • EIS electronic image stabilization
  • Optical image stabilization requires a motor structure to drive the lens to move, and as the overall structure of the current lens becomes larger, the required driving force also increases accordingly, which makes the design of the drive structure (such as a motor) more complicated and increases the cost of image stabilization.
  • the motor drives the lens to move relative to the chip, the optical axis of the lens and the center of the chip deviate during the shooting process, resulting in a decrease in image quality.
  • the lens structure begins to change.
  • all or part of the lenses in the lens may be changed from the original plastic lens to a glass lens, which increases the weight of the lens, which will cause the required driving force to also increase. Changes occur, and the lack of driving force of the original motor will also affect the accuracy of the shake correction.
  • this image stabilization solution usually affects the image quality itself, so it is generally only used to work with optical image stabilization, or only in low-end products.
  • anti-shake can also be achieved by arranging a pan/tilt device outside a smart terminal (eg, a mobile phone).
  • the gimbal anti-shake moves as a whole through the drive module, which can effectively compensate for various problems caused by jitter in the process of taking pictures.
  • Using the gimbal-driven image stabilization method can overcome the loss of image quality caused by electronic image stabilization.
  • the gimbal anti-shake can drive the overall movement of the module, the positions of the lens and the photosensitive chip can be kept relatively consistent during the anti-shake process, the image quality does not change much, and the image quality at the edge of the picture will not be significantly reduced.
  • the gimbal anti-shake is also conducive to the realization of anti-shake in large strokes, and at the same time makes the photos in sports scenes and dark light scenes clearer.
  • the external gimbal device itself has a certain volume, which is extremely inconvenient to carry, and at the same time, the cost of equipping the gimbal is extremely high, so it is difficult to popularize.
  • FIG. 1 shows a schematic diagram of a pan-tilt anti-shake structure in the prior art.
  • a fixed frame 2 is fixed on the edge part of the bottom plate 3 of the camera module of the mobile phone, the fixed frame 2 is mounted with a magnet 6, the optical lens 1 and the corresponding position are mounted with a coil 7, and the entire module is passed through the shrapnel or The spring 8 is suspended in the fixed frame 2 .
  • the module in FIG. 1 includes an optical lens 1 and a photosensitive assembly.
  • the photosensitive components include: circuit boards 4 , photosensitive chips 5 , and the like.
  • the circuit board 4 may include a PCB board 12 , an FPC board 10 and a connector 11 , wherein two ends of the FPC board 10 are respectively connected to the PCB board and the connector 11 .
  • the PCB board 12 may also be electrically connected to the base plate 3 through the second FPC board 9 .
  • FIG. 1 also shows the optical axis ax of the module.
  • FIG. 2 is a schematic three-dimensional appearance diagram of the anti-shake structure of the gimbal shown in FIG. 1 . In this solution, when the camera module of the mobile phone shakes and tilts, current is passed to the coil 7 installed on the optical lens 1 through the information fed back by the detection system.
  • connection point (or connector) on the flexible board will be fixed with the main board of the terminal device (such as a mobile phone).
  • the connection position between the main body of the circuit board (ie, the hard board) and the soft board will be frequently stressed, resulting in poor contact between the soft board and the main body of the circuit board, and sometimes even The disconnection of the connection between the flexible board and the main body of the circuit board will seriously affect the normal operation of the module.
  • the purpose of the present invention is to overcome the deficiencies of the prior art, and to provide a camera module pan-tilt anti-shake solution that can realize miniaturization.
  • the present invention provides a camera module with a pan/tilt, which includes: a module body, which includes a lens assembly and a photosensitive component; and a pan/tilt structure, which includes a pan/tilt structure disposed outside the module body
  • the driving device includes a coil arranged inside the outer frame and a magnet or coil arranged outside the module body.
  • both ends of the SMA wire are respectively connected to the outer frame and the module body, and the end of the SMA wire connected to the outer frame is higher than the end of the SMA wire connected to the module body.
  • two ends of the SMA wire are respectively connected to the midpoint of the side of the outer frame and the midpoint of the side of the module body.
  • the outer frame and the module body are both rectangular in shape, and two ends of the SMA wire are respectively connected to the first vertex of the outer frame and the second vertex of the module body,
  • the second vertex is an adjacent vertex of the first vertex at the corresponding vertex of the module body.
  • the SMA wire is stretched or contracted by changing the current of the SMA wire, thereby driving the module body to rotate around the z-axis. Move in the direction of rotation to compensate for the shaking of the module body; wherein the z-axis is parallel to the optical axis direction of the camera module body.
  • the SMA wire is rigid at normal temperature; and when the current passing through the SMA wire exceeds a preset threshold, the SMA wire undergoes austenite transformation, and the SMA wire is in a relaxed state under the austenite phase .
  • the SMA wire has a rigid mode, a stretching mode and a softening mode; in the rigid mode, the SMA wire is rigid, and in the stretching mode, the SMA wire can realize controlled expansion and contraction based on the magnitude of the current , in the softening mode, the SMA wire softens.
  • the current supplied to the SMA wire is greater than the current supplied to the SMA wire in the telescopic mode; in the telescopic mode, the current supplied to the SMA wire is greater than the rigid mode current supplied to the SMA wire.
  • the outer frame includes a bottom plate and a fixed frame fixed to the edge region of the bottom plate, and the fixed frame surrounds the module body.
  • the bottom plate is a PCB board.
  • the photosensitive component includes a circuit board, a photosensitive chip mounted on the circuit board, a mirror mount mounted on the circuit board and arranged around the photosensitive chip, and a filter mounted on the mirror mount and located above the photosensitive chip.
  • the circuit board includes a circuit board main body and a flexible connecting strip connected to the circuit board main body, a side surface of the outer frame has a through hole, and the flexible connecting strip passes through the through hole.
  • the flexible connecting strip has a hollow structure; wherein the hollow structure is a strip-shaped slit, and the length direction of the strip-shaped slit is consistent with the length direction of the flexible connecting strip.
  • the flexible connecting strip is bent and folded.
  • the main body of the circuit board is a PCB board
  • the flexible connecting tape is an FPC board
  • the lens assembly includes an optical lens and a motor, the optical lens is installed in the motor, and the motor is adapted to move the optical lens in the z-axis direction to realize focusing.
  • the coil installed on the outer frame is energized to apply electromagnetic force to the corresponding magnet or coil installed on the module body, thereby driving the module body to rotate around the x-axis and / or move in the direction of rotation around the y-axis to correct the shaking of the module body, wherein the x-axis and the y-axis are two coordinate axes perpendicular to the optical axis of the camera module, and the The x-axis and the y-axis are perpendicular to each other.
  • the present application can realize anti-shake with a large stroke, so that the photos in sports scenes and dark light scenes are clearer.
  • the SMA wire is used to replace the suspension structure in the traditional anti-shake structure (for example, the suspension wire in the traditional OIS system), and the SMA wire can be shaped by passing a set current to the SMA wire. Memory effect and transition from the first state to the second state, thereby effectively reducing the resistance of the suspension structure to the anti-shake movement, which is helpful to realize the anti-shake effect of a large stroke with a small electromagnetic driving force, and then realize the gimbal Miniaturization of the anti-shake structure.
  • the overall movement of the module body can be realized quickly and accurately.
  • the SMA wire can provide a part of the auxiliary driving force (for example, provide a part of the auxiliary driving force for the electromagnetic drive device), so as to improve the total driving force in one or some moving directions and help to achieve a large stroke. Anti-shake effect.
  • the SMA wire can provide a driving force for one or some moving directions, thereby simplifying the structure of the gimbal and further realizing the miniaturization of the anti-shake structure of the gimbal.
  • the anti-shake structure of the gimbal is simple and less disturbed by the external magnetic field.
  • a structure that effectively overcomes the resistance between the hard board and the soft board of the circuit board is provided, which reduces the movement resistance of the overall structure of the module, thereby reducing the driving force requirement for driving the movement of the module body. Realize the miniaturization of the anti-shake structure of the gimbal.
  • a damping structure or damping material can be arranged between the bottom plate and the module body, and the damping structure or damping material can play an auxiliary supporting role for the module body, so that the It is suspended in the fixed frame, and a certain movable space can be left between the fixed frame and the module body, so that the module body can perform correction work inside the fixed frame.
  • FIG. 1 shows a schematic diagram of the principle of a pan-tilt anti-shake structure in the prior art
  • Fig. 2 shows the three-dimensional appearance schematic diagram of the anti-shake structure of the gimbal shown in Fig. 1;
  • FIG. 3 shows a schematic diagram of a camera module with a PTZ in an embodiment of the present application
  • Fig. 4a shows a schematic diagram of the positional relationship between the module body, the fixed frame and the SMA wire from a top view according to an embodiment of the present application
  • Figure 4b shows a schematic diagram of the positional relationship between the module body, the fixed frame and the SMA wire from a top view in another embodiment of the present application
  • FIG. 5 shows a schematic structural diagram of a module body in an embodiment of the present application
  • FIG. 6 shows a schematic diagram of the position and connection between the outer frame and the module body in an embodiment of the present application
  • FIG. 7 shows a schematic perspective view of a camera module with an improved soft board according to an embodiment of the present application
  • FIG. 8 shows a schematic diagram of using a pan-tilt structure to perform jitter correction on the left and right tilt of the module body according to an embodiment of the present application
  • Fig. 9a shows a schematic diagram of a pan/tilt structure using an SMA wire as a driving device according to another embodiment of the present application.
  • Fig. 9b shows the arrangement orientation of four SMA wires in a top view according to still another embodiment of the present application.
  • Figure 10a shows a schematic diagram of an SMA wire and a connector in an embodiment of the present application
  • Figure 10b shows a schematic diagram of a curved SMA wire in another embodiment of the present application.
  • FIG. 11 shows a three-dimensional schematic diagram of a camera module with a pan-tilt structure in an embodiment of the present application
  • FIG. 12 shows a schematic diagram of the bending of the flexible connecting tape in another embodiment of the present application.
  • Fig. 13a shows a comparative example of the flexible connecting tape scheme
  • Fig. 13b shows a modified solution of the flexible connecting tape in yet another preferred embodiment of the present application.
  • FIG. 3 shows a schematic diagram of a camera module with a pan/tilt head according to an embodiment of the present application.
  • the camera module with a pan/tilt head includes a pan/tilt head structure and a module body 18, and the module body 18 may be an existing common camera module.
  • the module body 18 may include an optical lens 1 and a photosensitive component.
  • the photosensitive assembly may include a circuit board 4 , a photosensitive chip 5 mounted on the circuit board 4 , a mirror base 19 mounted on the circuit board 4 and arranged around the photosensitive chip 5 , and mounted on the mirror base 19 and located above the photosensitive chip 5 .
  • filter 15 eg IR filter
  • the bottom surface of the optical lens 1 can be mounted on the top surface of the lens holder 19 , so that the optical lens 1 and the photosensitive component are assembled together to form the module body.
  • the lens mount 19 may include a color filter mount and a lens mount that are independent of each other, wherein the color filter mount is used for installing color filters, and the lens mount is used for installing color filters.
  • the bottom of the lens holder can surround the outer circumference of the color filter holder, and the bottom surface of the lens holder can be directly mounted with the surface of the circuit board 4 .
  • the pan/tilt structure includes an outer frame disposed outside the module body, an SMA wire 13 (SMA is a shape memory alloy made of a shape memory alloy) that suspends the module body inside the outer frame. Abbreviation), and coils 7 and magnets 6 respectively disposed on the inner side of the outer frame and the outer side of the module body, and the magnet 6 may be a permanent magnet.
  • the outer frame may include a bottom plate 3 and a fixed frame 2 mounted on the edge of the bottom plate 3 .
  • the fixed frame 2 surrounds the module body 18 and has a certain distance between the module body 18 and the module body 18 .
  • the two ends of the SMA wire 13 are respectively connected to the fixed frame 2 and the module body 18 .
  • the bottom plate 3 can be a PCB board, and the bottom surface of the bottom plate 3 can be provided with an array of metal contacts, and the bottom plate 3 can be in contact with the main board of a terminal device (such as a mobile phone) to achieve electrical connection.
  • the inside of the bottom plate 3 may have electronic circuits (the manufacturing method thereof is similar to the manufacturing method of the circuit board in the module body 18 , for example, it may be manufactured by using the manufacturing process of the PCB board).
  • the internal wiring of the base plate 3 can supply current to the coils to generate the required magnetic field.
  • the bottom plate 3 is connected to the circuit of the terminal device through the metal contact array at the bottom.
  • the present invention is not limited to the conduction mode of the contact array.
  • a flexible board or a metal wire can also be used to conduct the circuit between the bottom plate and the terminal device to realize the working current supply of the coil.
  • the fixing frame 2 is connected to the edge of the base plate 3 , and can be fixed by bonding, or the fixing frame 2 can be fixed at the edge of the base plate 3 by molding.
  • the main function of the fixing frame 2 is to fix the driving device, and at the same time accommodate the driving device and the module body 18 inside it, so as to play a protective role.
  • the fixed frame 2 is in the shape of a hollow frame as a whole, and the lower surface of the fixed frame 2 is directly fixed on the edge area of the bottom plate 3 .
  • the size of the opening at the bottom of the fixed frame 2 is adapted to the area of the bottom plate 3 .
  • the top of the fixed frame 2 has an opening adapted to the aperture size of the optical lens 1, and the opening can be in a square structure.
  • a cover plate 14 can be disposed at the opening at the top of the fixed frame 2, and the area of the cover plate 14 is adapted to the area of the square opening, so that the cover plate 14 can be accommodated in the square opening and completely cover the square opening .
  • the main function of the cover plate 14 is to protect the optical lens of the module body and also to transmit light. Therefore, when choosing a cover plate material, generally choose a transparent material with high hardness and good light transmittance.
  • the shape of the opening at the top of the fixing frame is not limited to a square shape, as long as the shape of the opening is adapted to the shape of the lens.
  • the inner side of the fixed frame 2 is fixed with a coil structure, and the structure is composed of a metal inner core and a metal wire wound around it.
  • Corresponding lines are arranged inside the fixed frame 2, and the coil 7 can be energized at the position connected with the coil structure, so as to ensure the normal operation of the coil 7.
  • the coil structure can be set at the center position of the inner side of the fixed frame 2, or can be set on the side of the fixed frame, which is determined according to the actual design structure.
  • the fixed frame 2 is also connected with an SMA wire 13 , and the SMA wire 13 is also energized through a circuit provided inside the fixed frame 2 .
  • the SMA wire 13 can suspend the module body 18 to overcome the gravity of the module body itself, and can also reduce the power of the driving device when the driving module moves as a whole.
  • a corresponding coil structure is arranged outside the module body 18.
  • the SMA wire 13 can be conducted with the coil structure to provide the current for the coil structure to work. When the power is turned on, the hardness of the material will decrease due to the change of its own temperature. Therefore, in the process of driving the module body 18 to move, the resistance of the SMA wire itself to the movement of the module body 18 can be significantly reduced.
  • a permanent magnet can be installed on the outer side of the module body 18, and the permanent magnet is matched with the coil installed on the inner side of the fixed frame.
  • the permanent magnet can be The permanent magnets exert electromagnetic forces of different magnitudes and directions, so that the module body can be driven to move a corresponding distance in the set direction, so as to achieve jitter correction and achieve the effect of anti-shake.
  • four permanent magnets can be fixed on the periphery of the module body 18, and they are respectively arranged in four directions of front, rear, left and right.
  • four coil structures can be fixed to the fixed frame 2, and the four coil structures are also arranged in four directions of front, rear, left and right, respectively, and correspond to the four permanent magnets.
  • electromagnetic forces of different magnitudes and directions can be applied to the four permanent magnets, thereby driving the module body to move a corresponding distance in the set direction.
  • the SMA wire can have a certain rigidity at normal temperature, so that the SMA wire can replace the elastic sheet or suspension wire in the traditional OIS device (such as a voice coil motor used to drive the movement of the lens), and the module body can be replaced by the SMA wire. play a supporting role.
  • the SMA wire can be energized so that its own temperature rises to induce a shape memory effect, so that the SMA wire undergoes a high-temperature phase austenite transformation, so that the SMA wire is stretched, and the SMA wire is in a relaxed state.
  • the SMA wire has a martensite phase and an austenite phase.
  • the SMA material When processing the SMA wire, the SMA material can be processed into a second state (or a second shape) under the high temperature austenite phase.
  • the relatively low temperature (for example, normal temperature) martensite phase is reduced, and the SMA material is processed into a first state (or called a first shape) to form an SMA wire with a certain rigidity.
  • the camera module in a normal temperature state, the camera module can be in a non-anti-shake mode, and at this time, the SMA wire is in the first state to support the module body.
  • the anti-shake mode the SMA wire is electrified and heated up to induce a shape memory effect, so that the SMA wire transitions from the first state to the second state.
  • the resistance to movement of the module body can be reduced.
  • the electromagnetic force generated by the interaction of the coil and the magnet can drive the module body to move, due to the softening of the SMA material, the resistance of the electromagnetic driving force from the SMA wire can be significantly weakened during the anti-shake movement process. Therefore, on the premise of the same electromagnetic driving force, the above embodiment can obtain a larger anti-shake stroke. Conversely, under the premise of the same anti-shake stroke, since the required electromagnetic driving force is small, the volume of the coil and the magnet can be reduced, thereby helping the camera module to achieve miniaturization.
  • shrapnel or springs are usually used to suspend the carrier or the lens in the outer frame (such as the motor housing).
  • the electromagnetic driving force needs to overcome the resistance caused by the deformation of the shrapnel or the spring, so the driving device needs to provide a larger driving force.
  • the SMA wire is transformed from the first state to the second state through austenite transformation, but this method is not unique.
  • the stretching effect of the SMA wire in the martensitic phase can be used to reduce the resistance to movement of the module body.
  • the SMA wire shrinks with increasing temperature and stretches with decreasing temperature. Therefore, when the camera module is in the anti-shake mode, the temperature can be raised by energizing the SMA wire, which induces a shape memory effect and shrinks the SMA wire, thereby controlling the movement of the module body to a certain extent.
  • the non-anti-shake mode is the normal temperature state.
  • the SMA wire with the first length can be understood as the first state of the SMA wire
  • the state after the SMA wire is shrunk after being powered on and heated up can be understood as the second state of the SMA wire. state.
  • the SMA wire is urged to change from the first state to the second state, which can reduce the resistance of the movement of the module body, thereby reducing the driving force required by the electromagnetic drive device.
  • FIG. 4 a shows a schematic diagram of the positional relationship between the module body 18 , the fixing frame 2 and the SMA 13 wire in a top view according to an embodiment of the present application.
  • the module body 18 is suspended inside the fixed frame 2 through the SMA wire 13 .
  • One end of the SMA wire 13 is connected to the middle position of the side of the fixed frame 2 (the side of the fixed frame can be the side of the top surface of the fixed frame), and the other end of the SMA wire is connected to the module body.
  • the SMA wire is connected to the midpoint of the side of the module body.
  • the end of the SMA wire 13 connected to the fixed frame 2 may be higher than the end of the SMA wire 13 connected to the module body 18 , so that the SMA wire 13 suspends the module body 18 inside the fixed frame 2 .
  • the connection end of the SMA wire 13 and the module body can be located on the top of the module body 18 (for example, refer to FIG. 3 ), or can be located on the shoulder of the module body 18 or on the side of the module body 18 For other positions, as long as the connection position of the SMA wire 13 and the module body 18 is lower than the connection position of the SMA wire 13 and the fixed frame 2 .
  • the coil installed on the same side of the SMA wire 13 and the coil cooperate with each other to drive the module body 18 to move in the opposite direction to correct the position of the module, thereby effectively improving the imaging quality of the module.
  • This connection method can realize the correction of the inclination angle of the module body 18 .
  • the correction of the inclination angle of the module body 18 includes the correction of the left and right inclination and the correction of the pitch inclination.
  • an xyz three-dimensional Cartesian coordinate system is established.
  • the z-axis is parallel to the optical axis direction of the camera module, that is, the z-axis direction is the vertical direction in FIG. 3 , that is, the direction of the axis ax.
  • the x-axis and the y-axis are two coordinate axes perpendicular to the z-axis, respectively, and the x-axis and the y-axis are perpendicular to each other.
  • the rotation direction around the x-axis is the pitch-tilt adjustment
  • the rotation direction around the y-axis is the left-right tilt adjustment.
  • FIG. 4b shows a schematic diagram of the positional relationship between the module body 18 , the fixing frame 2 and the SMA wire 13 from a top view according to another embodiment of the present application.
  • one end of the SMA wire 13 is fixed at the position of the first vertex A of the fixed frame 2 (ie, the joint of the two sides of the upper surface of the fixed frame), and the other end is fixed on the module body 18.
  • the position of the second vertex B (the junction of the two sides of the module body shell).
  • the second vertex B is the adjacent vertex of the first vertex A in the corresponding vertex A' of the module body.
  • any vertex in the rectangle has two adjacent vertexes and one diagonal vertex.
  • the second vertex is not the corresponding vertex of the first vertex in the module body, but the adjacent vertex of the corresponding vertex.
  • the end of the SMA wire connected to the fixed frame may be higher than the end of the SMA wire connected to the module body, so that the SMA wire can suspend the module body inside the fixed frame.
  • a space rectangular coordinate system is established with the axis ax direction in Figure 3 as the Z-axis direction.
  • This connection method can not only realize the adjustment of the left and right and pitch inclination of the module body, but also realize the correction of the rotation around the z-axis.
  • the z-axis is parallel to the optical axis direction of the camera module, and the optical axis direction is the axis ax in FIG. 3 .
  • the x-axis and the y-axis are two coordinate axes perpendicular to the z-axis, respectively, and the x-axis and the y-axis are perpendicular to each other.
  • the rotation direction around the x-axis is the pitch-tilt adjustment
  • the rotation direction around the y-axis is the left-right tilt adjustment.
  • the SMA wire when the SMA wire shrinks, the SMA wire can drive the module body to rotate around the z-axis, so as to realize the anti-shake correction in the rotation direction.
  • the angle of rotation correction it can be adjusted by controlling the current flowing into the SMA wire, which will not be described in detail here.
  • SMA material has good fatigue resistance and can be stretched for many times without changing its material properties, so it will not affect the accuracy of its correction due to the frequent shrinkage and expansion of this alloy material.
  • multiple working modes can be set for setting the SMA wire.
  • the rigid mode no current may be supplied to the SMA wire, or only a small current may be supplied, so that the SMA wire may have a certain rigidity to support the module body.
  • the telescopic mode a working current can be supplied to the SMA wire, and the SMA wire can realize controlled expansion and contraction based on the magnitude of the current, thereby driving the module body to rotate around the z-axis to compensate for jitter in this direction.
  • the operating current is usually larger than the current in rigid mode.
  • a large current can be supplied to the SMA wire, so that the SMA wire can undergo a high temperature phase austenite transformation, the SMA wire can be stretched and softened, so that the SMA wire is in a relaxed state, at this time, the resistance of the SMA wire is significant. Reduced, the coil and magnet can drive the module body to move with a large stroke.
  • the SMA wire of the present application is not limited to the two connection manners shown in FIG. 4a and FIG. 4b.
  • the SMA wire can also choose other different connection modes, and the functions that can be implemented by different connection modes are also different. Technicians can choose to use it according to the actual design.
  • FIG. 5 shows a schematic structural diagram of a module body in an embodiment of the present application.
  • the module body 18 includes a circuit board 4, a photosensitive chip 5, a filter 15, a bracket (ie, a lens holder 19) and an optical lens assembly 1a, wherein the optical lens assembly 1a may include a driving lens focusing
  • the bracket is preferably formed by a molding process.
  • the bracket may be a molded bracket directly formed on the surface of the circuit board 4 .
  • the gold wires 19a that conduct the photosensitive chip 5 and the circuit board 4 can be directly molded into the bracket (ie, the lens holder 19), so as to protect the gold wires 19a and other components.
  • the bracket for installing the filter 15 is directly molded on the surface of the circuit board, which can effectively reduce the height of the module; it can also solve various problems caused by the traditional pre-formed bracket during the installation process, such as Including bracket tilt, glue cracking, etc.
  • the lens mount 19 may include a color filter mount and a lens mount that are independent of each other, wherein the color filter mount is used for installing color filters, and the lens mount is used for installing color filters.
  • the bottom of the lens holder can surround the outer circumference of the color filter holder, and the bottom surface of the lens holder can be directly mounted with the surface of the circuit board 4 .
  • the module body 18 itself can implement the focusing function.
  • the optical lens can be fixed with the motor carrier, and the focusing function can be realized under the driving action of the motor.
  • the motor can drive the lens to move in the vertical direction (that is, in the same direction as the optical axis), so that the imaging of the module is clearer, thereby effectively improving the imaging quality of the module.
  • the pan-tilt anti-shake structure of this embodiment is to fix the electromagnetic drive device on the outside of the module body 18.
  • the coil inside the fixed frame is energized, the coil and the magnet 6 installed on the outer side of the module body 18 (or The interaction force is generated between the coils instead of the coils, and the direction and size of the current flowing into the coils can be changed according to the adjustment direction required.
  • the position correction of the module body in different directions can be realized.
  • FIG. 6 shows a schematic diagram of the position and connection between the outer frame and the module body in an embodiment of the present application.
  • a damping structure (mainly referring to the hard board 12 as the main part of the circuit board 4, which can be a PCB board) can be set between the bottom plate 3 and the circuit board 4 (the hard board 12 can be a PCB board).
  • the spring 16 in FIG. 6 its main function is to reduce the vibration of the module, and at the same time, it can also support the module body 18 and reduce the stretching of the SMA wire 13 (refer to FIG. 3 ).
  • an elastic element can be used as the damping structure.
  • the elastic element can be selected from the spring 16, and the spring 16 with a moderate elastic coefficient can be selected, which can play a certain auxiliary supporting role for the module body 18.
  • the bottom of the module body 18 and the top surface of the bottom plate 3 are separated by a certain space by the spring 16, so that the module will not be blocked by the bottom plate when moving.
  • the module body 18 can be suspended in the fixed frame 2 by using the pulling force of the SMA wire 13 and the auxiliary support function of the spring 16 , and a space can be left between the fixed frame 2 and the module body 18 . There is a certain space for movement, so that the module body 18 can perform correction work in the interior of its fixed frame 2 .
  • the rigidity of the SMA wire itself or the requirements for the supporting force or driving force provided by the SMA wire can be reduced, so that the SMA wire can easily enter the softening working state, thereby reducing the electromagnetic drive mode.
  • shrapnel or springs 8 are often used to suspend the module body (or the optical lens) in the outer frame.
  • a reverse force that prevents the deformation will be generated. Correction of the body (or optical lens) forms a hindrance.
  • the SMA wire 13 can be softened or in a relaxed state, the resistance formed by the electromagnetic drive is greatly reduced. Further, since the resistance to the electromagnetic drive can be greatly reduced, the module body 18 is equivalent to being suspended in the fixed frame 2, and the electromagnetic drive device applies less driving force to the module body 18, so that the module body can be realized. 18, so the structural design of the drive device can be simplified. And in this embodiment, the spring 16 as the damping structure only needs to separate the module body from the bottom plate, the spring 16 itself does not need more complicated materials, and some existing springs can meet the design requirements, so it can effectively reduce the The cost of the gimbal structure. It should be noted that in other embodiments, the damping structure may also be implemented in a manner other than a spring, or the damping structure may be replaced by a flexible material or other types of damping materials.
  • FIG. 7 shows a schematic perspective view of a camera module with an improved flexible board according to an embodiment of the present application.
  • the circuit board 4 of the module body 18 may include a hard board 12 , a soft board 10 and a connector 11 , and the hard board 12 may be a PCB (or referred to as a PCB board),
  • the flexible board 10 may be an FPC (or referred to as an FPC board).
  • the flexible board can be used as a flexible connecting belt to lead the circuit out of the external frame, and plug it into the main board of the terminal device (such as a mobile phone) through the connector 11, so that the photosensitive chip and the circuit board can realize circuit conduction with the main board of the terminal device, The current supplied to the module to work.
  • the terminal device such as a mobile phone
  • the side of the fixing frame corresponding to the flexible board of the circuit board is provided with a through hole 17 , and the flexible board 10 of the circuit board 4 can pass through the through hole 17 , and the width of the through hole 17 is larger than that of the circuit board 4
  • the width of the flexible board 10 is so high that when the rigid board 12 of the circuit board 4 moves, the flexible board 10 connected thereto will not hinder its movement or the resistance caused by the flexible board 10 can be significantly weakened. For example, when the rigid board 12 is pitched and tilted, the flexible board 10 will be twisted relative to the rigid board 12 to form a reverse torque.
  • the width of the through hole 17 is larger than the width of the flexible board 10 of the circuit board 4 , which can significantly weaken or eliminate the resistance of the flexible board 10 to the movement of the rigid board 12 .
  • the middle position of the flexible board 10 may have a slit 10a, that is, the center of the flexible board 10 may be hollowed out to form the slit 10a.
  • the longitudinal direction of the slit 10 a may be substantially parallel to the longitudinal direction of the flexible board 10 .
  • This design can reduce the resistance of the flexible board 10 to the movement of the module body 18 .
  • the rigid board 12 is pitched and tilted, the flexible board 10 will be twisted relative to the rigid board 12 to form a reverse torque.
  • Setting the gap 10a in the middle of the soft board 10 can reduce the torque formed by the soft board 10 when the hard board 12 is tilted and adjusted, thereby significantly weakening or eliminating the resistance of the soft board 10 to the movement of the hard board 12.
  • the slot 10a may also be replaced by hollow structures of other shapes.
  • the flexible boards of the circuit board can also be designed to be stacked, so as to reduce the resistance formed by the flexible boards to the movement of the module body.
  • the stacking design refers to bending and folding the soft board (refer to Figure 7) to avoid the tension between the two ends of the soft board being pulled by the hard board of the circuit board and the connection end of the main board, thus leaving more free movement for the module body space.
  • the folded part of the bending and folding of the soft board has a smooth natural transition section, so as to avoid poor contact at the folded part.
  • the provided pan-tilt anti-shake structure utilizes the stretching effect of the SMA metal wire and the effect of the damping structure between the circuit boards, and a common driving device can be used to drive a large-volume module to move. , and because the selected spring itself has an elastic effect, when the corrective action is completed, the module body can return to the original position.
  • this solution adds a fixed outer frame in the horizontal direction of the module, and uses the components arranged on the outer frame and the side of the module body to cooperate with each other to achieve the driving effect, which simplifies the design and does not affect the height of the entire camera module. Larger impact, so it has the advantage of miniaturization.
  • FIG. 8 shows a schematic diagram of using a pan/tilt structure to perform shake correction on the left and right tilt of the module body according to an embodiment of the present application.
  • the y-axis direction is a direction perpendicular to the paper surface.
  • the left and right tilt direction is the rotation around the y-axis, which can be recorded as the Ry direction.
  • Part (a) in FIG. 8 shows a schematic diagram of the shaking of the module body, and it can be seen that the module body shakes in a counterclockwise direction around the y-axis. In order to keep the imaging quality of the module not affected, the module body needs to be compensated in the opposite direction of the jitter.
  • part (b) of Figure 8 which is fixed on the left side of the module body.
  • the force direction F1 of the magnet is upward
  • the force direction F2 of the magnet fixed on the right side of the module body 18 is downward, so that the module body rotates in a clockwise direction around the y-axis.
  • part (b) of FIG. 8 is schematic, and is only used to illustrate the direction of the driving force that the driving device needs to provide and the direction of rotation of the module body.
  • part (c) of FIG. 8 shows the state after the correction is completed.
  • the above briefly introduces the correction of the shake in the Ry direction, and the principle of the position adjustment in the Rx direction and the adjustment in the Ry direction is the same.
  • Corresponding current is supplied to the coil, so that the magnets on the front and rear sides of the module body are subjected to a force opposite to the direction of Rx shaking, and the shaking can be corrected to improve the imaging quality of the module body.
  • the SMA wire can only be used to support the module body, instead of the shrapnel in the traditional gimbal structure (or motor), thereby helping to increase the anti-shake stroke and reduce the volume of the gimbal structure .
  • the SMA wire can not only play the role of suspending the module body, but also provide part of the driving force.
  • the SMA material itself can be used to generate corresponding contraction or expansion when it is energized, so as to play a role in the driving device.
  • a certain auxiliary function which makes the present application applicable to the module body with a large image surface or a glass lens with a relatively large quality, which is in line with the current development trend of the camera module.
  • Fig. 9a shows a schematic diagram of a pan/tilt structure using an SMA wire as a driving device according to another embodiment of the present application. Referring to FIG.
  • the pan/tilt structure includes a fixed frame, an annular upper connecting piece 20a and a lower connecting piece 20b, and a plurality of (for example, four) first pieces connecting the upper connecting piece 20a and the fixed frame 2
  • An SMA wire 13a (or referred to as an upper SMA wire) and a plurality of (eg, four) second SMA wires 13b (or referred to as a lower SMA wire) connecting the lower connector 20b with the fixed frame 2 .
  • the upper connector 20a is used to fix the lens assembly of the module body 18, and its shape can be adapted to the lens assembly.
  • the top of the lens barrel assembly may be circular, and the upper connecting member 20a may be circular.
  • the lower connector 20b is used for fixing the photosensitive component of the module body 18, and its shape can be adapted to the photosensitive component.
  • the bottom of the photosensitive assembly may be rectangular, and the lower connecting member 20b may be in the shape of a rectangular ring.
  • the upper connector 20a can be pasted on the top surface of the lens assembly, and the lower connector 20b can be pasted on the outer side of the photosensitive assembly (in other embodiments, the lower connector can be pasted on the bottom surface of the photosensitive assembly , or pasted on the outer side and bottom of the photosensitive component).
  • the superelasticity of the SMA material can be directly used to drive the module body.
  • the SMA wire is made to enter the martensite phase, and currents of different magnitudes are passed through the SMA wire to raise it to different temperatures. Based on the superelasticity of the SMA material, the SMA wire can shrink as the temperature increases. , so as to generate corresponding pulling force on the module body.
  • four SMA wires that is, upper SMA wires
  • the SMA wire suspends the overall structure of the module inside the fixed frame, and the module is in a balanced state.
  • a single or multiple SMA wires can be supplied with current to shrink the single or multiple SMA wires, so that the module body is inclined at a certain angle relative to the outer frame, so as to correct the camera module's jitter. Further, by setting an appropriate current size, the size of the tilt direction and the tilt angle can be adjusted, so that the module body can be accurately moved and the camera module shake can be corrected.
  • FIG. 9b shows the arrangement orientation of the four SMA wires in a top view according to another embodiment of the present application. Specifically, referring to FIG.
  • the four SMA wires 13e, 13f, 13g, and 13h can be located in the front, rear, left, and right directions of the upper connector 20a, respectively, so that the left or right
  • the SMA wires 13e and 13f are supplied with current, which can shrink the left or right SMA wires 13e and 13f, so that the module body rotates at a certain angle in the direction of left and right swing (the direction of left and right swing is the direction of rotation around the x-axis, which can be 3, where the x-axis is a coordinate axis that is perpendicular to both the y-axis and the z-axis);
  • the front or rear SMA wires 13g, 13h can be made to shrink by passing current to the front or rear SMA wires 13g, 13h , so that the module body is rotated by a certain angle in the direction of pitch and swing (the direction of pitch and swing is the direction of rotation around the y-axis, and the direction of the y-axis can
  • the appropriate current can be applied to multiple SMA wires in different directions, and the module body can be rotated to the required angle in the direction of left and right swing and pitch swing at the same time, so as to realize the shaking of the camera module. 's correction.
  • the module body can be driven to move to adjust its inclination by relying on the four upper SMA wires. But in order to increase the driving force, four lower SMA lines can also be set.
  • four SMA wires ie, lower SMA wires
  • the four lower SMA wires in different orientations can work together with the corresponding upper SMA wires to drive the module body to move more quickly.
  • the torque of the rotating module body in the left and right swing direction can be increased, thereby driving the module body to move more quickly .
  • the lower SMA wire on the right and the upper SMA wire on the left can work simultaneously (ie, both contract simultaneously) to increase the torque.
  • the torque in the pitching and rolling direction can be increased, thereby driving the module body to move more quickly.
  • the lower SMA wire on the rear side and the upper SMA wire on the front side can also work at the same time (ie, both shrink at the same time) to increase the torque.
  • the SMA wire can quickly drive the module body to move. The reason is that the deformation force of the SMA wire is 100 times or even 1,000 times that of the ordinary suspension wire.
  • the SMA material also has good fatigue resistance and can be stretched many times. without changing the properties of its material.
  • the four SMA wires are respectively arranged in the front, rear, left and right directions of the connector, but this arrangement is only illustrative. In other embodiments of the present application, the multiple SMA wires may also be arranged in multiple different orientations according to actual needs.
  • four upper SMA wires can be arranged in four directions of the left front, right rear, right front, and left rear of the upper connector, respectively. By controlling the current of the upper SMA wire in these four directions, the tilt direction and the tilt angle of the module body can also be adjusted, so as to accurately move the module body and realize the correction of the camera module shake.
  • the fixing frame may include a cylindrical sidewall fabricated by a semiconductor process.
  • the holder may have four sidewalls, which may be fabricated with a semiconductor process for arranging circuit structures within or on the sidewalls, which may be used to supply current to the coils and/or SMA wires .
  • the fixed seat can also be made by a lamination process (that is, a manufacturing process similar to that of a PCB board), and has a corresponding circuit structure inside, and the coil and/or SMA wire connected to it are powered by the internal circuit structure. , to ensure the normal working state of the drive structure.
  • the top surface 2a of the fixed seat can be covered with a transparent cover plate (eg glass cover plate), on the one hand to protect the module body inside the fixed seat 2, and on the other hand to reserve a light-transmitting imaging channel for the module body.
  • the bottom surface 2b of the fixing base 2 may be closed or open.
  • the bottom surface 2b of the fixing base 2 has a closed bottom plate, and the bottom plate can be made of semiconductor material.
  • An electronic circuit can be arranged inside the base plate, and the electronic circuit can provide driving current for the SMA wire, that is, as a driving circuit for driving the SMA wire to expand and contract.
  • the bottom plate of the fixing seat can be fixed on the surface of the main board of the electronic device and be electrically connected with the main board.
  • the electronic device here refers to the electronic device equipped with the camera module, such as a smart phone, a tablet computer, and the like.
  • the bottom plate of the fixing base and the main board can be bonded by adhesive, or the two can be fixed by welding.
  • the bottom surface 2b of the fixing base 2 may be open, that is, the fixing base 2 may be a cylindrical body without a bottom plate.
  • the driving circuit of the SMA wire (including the first SMA wire 13a and the second SMA wire 13b) can be arranged on the side wall of the fixed seat (the side wall of the fixed seat can be formed by the semiconductor process and PCB board process described above) structure).
  • the bottom of the side wall of the fixing seat 2 ie, the root of the cylindrical body
  • the electronic device here refers to the electronic device equipped with the camera module, such as a smart phone, a tablet computer, and the like.
  • the bottom plate of the fixing base and the main board can be bonded by adhesive, or the two can be fixed by welding.
  • the fixing base since the fixing base has no bottom plate, it is helpful to reduce the height occupied by the camera module and the pan/tilt structure, thereby helping to reduce the thickness of electronic devices (such as smart phones, tablet computers, etc.).
  • FIG. 10a shows a schematic diagram of an SMA wire and a connector in an embodiment of the present application.
  • the SMA wires can be divided into upper and lower groups, namely a first SMA wire 13a and a second SMA wire 13b, one end of the first SMA wire 13a is connected to the connecting piece 20a, and the other end passes through the connection point 13c Connected to the fixing base 2 (refer to FIG. 9 a in combination), one end of the second SMA wire 13b is connected to the lower connector 20b, and the other end is connected to the fixing base 2 through the connection point 13d.
  • the SMA wires may all be straight.
  • the wiring point can be connected to the fixing seat to power on the SMA wire and suspend the module body on the fixing seat.
  • FIG. 10b shows a schematic diagram of a curved SMA wire in another embodiment of the present application.
  • the SMA wire in the shape shown in Fig. 10b can be used to replace the SMA wire in Fig. 10a. That is, in this embodiment, at least a part of the SMA wire is in the shape of a curved fold. Since at least a part of the section is in the shape of a curved fold, in this embodiment, when the SMA wire is energized, the effect of shrinking the SMA wire will be more obvious, so it is more suitable for driving with a large stroke.
  • the curved folded shape may be a helical spring shape.
  • the photosensitive component of the module body 18 includes a circuit board 4, and the circuit board 4 includes a hard board 12 and a soft board 10, wherein the hard board 12 can be a PCB board, and the soft board
  • the board 10 may be FPC flexible.
  • One side wall of the fixing base 2 may have a through hole 17 , and the through hole 17 serves as an escape hole for the flexible board 10 , so that the flexible board 10 can pass through the fixing base 2 .
  • the module body can receive power supply and signals from the main board through the soft board, so that the photosensitive chip and related components in the module body can realize their corresponding functions.
  • the module body includes a photosensitive chip and a lens assembly, and the lens assembly includes an optical lens and a motor located on the periphery of the optical lens. The motor can drive the optical lens to realize the focusing function.
  • FIG. 11 shows a three-dimensional schematic diagram of a camera module having a pan-tilt structure in an embodiment of the present application.
  • the module body includes a photosensitive assembly 22 and a lens assembly 21
  • the photosensitive assembly 22 includes the circuit board 4
  • the circuit board 4 includes a hard board 12 , a soft board 10 and a connector 11 ( FIG. 11 schematically shows The three-dimensional shape of the flexible board 10 and the connector 11 is shown).
  • the flexible board 10 is strip-shaped and can be bent.
  • the first SMA wire 13 a is connected to the upper connecting member 20 a , and the upper connecting member 20 a is fixed on the top surface of the lens assembly 21 .
  • the second SMA wire 13b is connected to the lower connecting member 20b, and the lower connecting member 20b is fixed on the outer side of the photosensitive assembly 22 .
  • the working current of the internal circuit of the fixing seat can be provided by a contact array connected between the bottom of the fixing seat and the main board.
  • the driving device of the pan-tilt structure is an SMA driving device, which is realized by the two groups of SMA wires. The driving current is supplied to the corresponding first and second SMA wires.
  • the first SMA wire connected with the upper connecting piece and the second SMA wire connected with the lower connecting piece can work independently or work together.
  • the working current of the SMA wire can be provided by the fixing seat, and the working current of the module body is provided by its circuit board.
  • the driving circuit of the pan/tilt structure and the functional circuit of the photosensitive chip will not affect each other, so that the working efficiency of the entire module structure is significantly improved.
  • the driving circuit of the gimbal structure may need to provide a larger driving current to the coil or the SMA wire, so the driving circuit may have a larger line width.
  • the operating current of the photosensitive chip is relatively small, so the line width of its functional circuit can be smaller than the driving circuit of the pan-tilt structure.
  • the driving circuit of the pan-tilt structure and the functional circuit of the photosensitive chip are respectively arranged on the fixed seat and the circuit board, so that the mutual interference of the two circuits can be avoided.
  • the flexible board of the circuit board is used as a flexible connecting tape to conduct the circuit of the module body with the main board of the electronic device, and the flexible connecting tape passes through the avoidance hole located on the side wall of the fixing seat.
  • the flexible connecting strip can be bent in advance to reduce the resistance of the module body to move.
  • one end of the soft board is fixed to the hard board of the circuit board (for example, it can be fixed to the outer side of the hard board), and the other end of the soft board is fixed to the main board of an electronic device (such as a mobile phone) through a connector.
  • the hard board of the device moves, but the main board of the electronic device is fixed.
  • the soft board connecting the two may have a certain resistance to the movement of the hard board, reducing the driving accuracy of the module body. Bending the soft board in advance can leave a certain space for the movement of the hard board, thereby reducing the resistance of the soft board to the movement of the hard board, and avoiding the occurrence of connectors and electronic equipment motherboards caused by pulling the soft board when moving the hard board. Bad contact.
  • FIG. 12 shows a schematic diagram of the bending of the flexible connecting tape in another embodiment of the present application.
  • Part (a) is a three-dimensional schematic diagram of the camera module before the flexible connecting tape is bent.
  • Part (b) is a schematic side view of the bent flexible connecting tape and its adjacent structures.
  • the circuit board 4 may include a hard board 12 , a flexible board 10 and a connector 11 .
  • the flexible board 10 is a flexible connecting belt, which passes through the through hole 17 of the fixing base 2 .
  • the flexible connecting strip can be bent and the bent portion 10b can be fixed to the side wall 2c of the fixing base 2 .
  • the soft board With the design of bending the soft board, the soft board usually forms a bent part.
  • the bending part of the soft board may have a large displacement, causing the soft board to hit or scratch other parts of the electronic equipment. There is an increased risk of damage to the wiring inside the board.
  • fixing the bending portion on the side wall (usually the outer side wall) of the fixing seat can avoid damage to the internal circuit of the flexible board, and can also improve the overall reliability of the camera module in the reliability test.
  • the bending of the flexible connecting tape may be realized by a hot pressing process.
  • the connecting strip is first bent by a hot pressing process, and when the bending part is formed (meaning that the bending part is not easily deformed), the bending part of the connecting strip is fixed to the fixing seat.
  • the fixing point between the bent portion of the flexible connecting tape and the fixing seat may be replaced by a fixing surface.
  • the fixing surface can better ensure the reliability of bonding.
  • the hot pressing process is to first heat the flexible connecting tape (for example, heating it with a hot air gun) to soften it, and then press and bend it with a tool of an appropriate shape. After cooling, the desired bending portion can be formed.
  • Fig. 13a shows a solution of the flexible connecting tape of a comparative example.
  • the flexible connecting strip ie, the flexible board 10
  • the flexible connecting strip is in the shape of a flat strip, that is, the flexible connecting strip has a certain width.
  • Fig. 13b shows a modified solution of the flexible connecting tape in yet another preferred embodiment of the present application.
  • the flexible connecting strip is a flexible board 10 .
  • a gap 10 a may be provided in the middle of the flexible board 10 , and the gap 10 a runs through both surfaces (ie, the upper surface and the lower surface) of the strip-shaped flexible board 10 .
  • the slit 10 a can be formed by hollowing out the center of the flexible board 10 .
  • the longitudinal direction of the slit 10 a may be substantially parallel to the longitudinal direction of the flexible board 10 .
  • This design can reduce the resistance of the flexible board 10 to the movement of the module body 18 .
  • the rigid board 12 when the rigid board 12 is pitched and tilted, the flexible board 10 will be twisted relative to the rigid board 12 to form a reverse torque.
  • Setting the gap 10a in the middle position of the soft board 10 can reduce the torque formed by the soft board 10 when the hard board 12 is tilted and adjusted, thereby significantly weakening or eliminating the resistance of the soft board 10 to the movement of the hard board 12 .
  • the slot 10a may also be replaced by hollow structures of other shapes.
  • the connecting strip can be divided into two parts with the bend (ie, the bend) as the boundary, and the bend 10b is connected to the module body ( That is, the part of the hard board 12) is hollowed out (for example, a gap 10a is formed), and the part from the bending part 10b to the main board is not improved, that is, no hollowing is performed (as shown in FIG. 13b).
  • the bend ie, the bend
  • the resistance of this part can be ignored.
  • the bent portion 10b of the connecting belt forms a fixed point (refer to FIG. 12 and FIG. 13b in combination).
  • the fixed point can reserve a sufficient range of motion for the movement of the module body to avoid tearing or partial tearing of the connection between the flexible connecting belt and the module body due to frequent stress, and on the other hand, it can avoid The force at the connection between the flexible connection tape and the module body is transmitted to the connection between the flexible connection tape and the main board, resulting in tearing or partial tearing at the connection of the main board.
  • the flexible connecting tape has a hollow structure
  • the hollow structure is a slit parallel to the length of the connecting tape
  • the large movement of the module body may cause a tearing effect of the flexible connecting tape along the slit.
  • Force (referring to the force of tearing the part of the original seamless bending part to the main board).
  • the bending part is fixed to the outer frame, which can effectively block the force, thereby preventing the part from the bending part of the flexible connecting tape to the main board from being torn, thereby improving the reliability of the camera module. sex.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

本发明涉及一种具有云台的摄像模组,其包括:模组本体,其包括镜头组件和感光组件;以及云台结构,其包括设置在所述模组本体外部的外框架、将所述模组本体悬挂在所述外框架内部的SMA线,以及设置在所述外框架与所述模组本体上的驱动装置;其中,在非防抖模式下所述SMA线处于第一状态以支撑所述模组本体;并且在防抖模式下,所述SMA线通电升温诱发形状记忆效应,使得所述SMA线由第一状态转变至第二状态,并且,相比所述第一状态,所述SMA线在所述第二状态可减小所述驱动装置驱动所述模组本体移动的阻力。本申请能够实现大行程的防抖,使得在运动场景和暗光场景下的拍照更清楚;并且能够实现云台防抖结构的小型化。

Description

具有云台的摄像模组
相关申请
本申请要求名称为“具有云台的摄像模组”、于2020年7月15日提交的中国专利申请号为202010678999.0的优先权;以及本申请要求名称为“具有云台的摄像模组”、于2020年7月17日提交的中国专利申请号为202010691362.5的优先权,并在此通过引用包括上述申请的全部内容。
技术领域
本发明涉及摄像模组技术领域,具体地说,本发明涉及具有云台的摄像模组。
背景技术
随着移动电子设备的普及,被应用于移动电子设备的用于帮助用户获取影像(例如视频或者图像)的摄像模组的相关技术得到了迅猛的发展和进步,并且在近年来,摄像模组在诸如医疗、安防、工业生产等诸多的领域都得到了广泛的应用。当前,在消费电子领域(例如手机领域),防抖功能已成为摄像模组的常见功能之一。
防抖技术最早应用于相机,一般标准焦距或者广角镜头由于焦距较短,重量不大,手持就可以满足拍摄需求,但是在长焦、微距的拍摄过程中,光圈不变的情况下,需要足够的曝光时间,如果此时再手持拍摄,很容易造成拍摄抖动。尤其是目前手机本身光圈有限,进光量堪忧,要想获得足够清晰的图片,就需要足够长的曝光时间,此时就需要防抖技术的加持。具体来说,手持智能手机拍照时,手的抖动会造成相机的轻微倾斜(一般在+/-0.5度以内),该倾斜引起了镜头观察角度的变化,以镜头为参照物来说,相当于被拍摄的物体移动了,因此所成的像也会在图像传感器上相对于原位置发生偏移,结果造成图像始终随着手的抖动而处于不稳定状态。因此,需要防抖技术的加持。
目前,手机中的防抖技术主要为在手机模组内部进行防抖设计,常见的防抖方法包括光学防抖(OIS)和电子防抖(EIS)两大类。光学防抖需要马达结构驱动镜头进行运动,而随着当前镜头整体结构的变大,所需要的驱动力也相 应的增加,这使得驱动结构(例如马达)的设计比较复杂,增加了防抖的成本。同时,由于马达驱动镜头相对于芯片发生移动,使得拍摄过程中镜头光轴和芯片中心发生偏差,造成成像质量的下降。另一方面,在当前的发展趋势下,镜头结构开始发生变化,例如镜头中的全部或部分镜片可能由原来的塑料镜片变成玻璃镜片,使得镜头的重量增加,这将导致所需的驱动力也发生变化,而原有马达的驱动力不足也会影响抖动矫正的精度。而对于电子防抖,此防抖方案通常会对成像质量本身产生影响,所以一般仅用于配合光学防抖进行工作,或者仅在低端产品中使用。
另一方面,还可以通过在智能终端(例如手机)外部设置云台装置来实现防抖。云台防抖通过驱动模组整体进行运动,可以有效的补偿拍照过程中由于抖动出现的各种问题。使用云台驱动防抖的方式,可以克服电子防抖对成像质量的损失。并且,由于云台防抖可以驱动模组整体运动,在防抖过程中镜头和感光芯片的位置可以保持相对一致,画质没有太多变化,且图片边缘画质也不会明显降低。云台防抖还有利于实现大行程的防抖,同时使得在运动场景和暗光场景下的拍照更清楚。然而,外部云台装置本身具有一定的体积,携带极为不便,同时配备云台的成本极高,很难普及化。
基于上述的问题,当前急需要一种小型化的可以将云台防抖集成到手机或其他智能终端设备内部的解决方案。
图1示出了一种现有技术中的云台防抖结构的示意图。该现有方案中,手机摄像模组的底板3的边缘部分固定一个固定框架2,此固定框架2上安装有磁铁6,光学镜头1与其对应的位置则安装线圈7,整个模组通过弹片或者弹簧8悬挂于固定框架2中。图1中的模组包括光学镜头1和感光组件。其中,感光组件包括:线路板4、感光芯片5等。线路板4可以包括PCB板12、FPC板10和连接器11,其中FPC板10的两端分别连接PCB板和连接器11。PCB板12还可以通过第二FPC板9电连接至底板3。进一步地,图1中还示出了该模组的光轴ax。图2示出了图1所示的云台防抖结构的立体外观示意图。该方案中,当手机摄像模组发生抖动并出现倾斜时,通过检测系统反馈的信息,给安装于光学镜头1的线圈7通入电流。由于线圈7和磁铁6之间的磁力作用,可以驱动整个镜头向抖动相反的方向倾斜,从而补偿镜头原来的抖动,提升成像的质量。该现有方案虽然可以驱动模组整体移动进行防抖,但是存在几个问题: (1)磁铁和线圈之间的驱动力有限,随着手机镜头中镜片数量的增多,镜头的重量也逐渐在增加,磁铁和线圈之间提供的驱动力不足。(2)弹簧或者弹片需要将模组整体结构悬挂在固定框架上面,同时还需要通过弹簧给安装于镜头的线圈通电,这样对弹簧的要求较高,使得整体设计难度和成本上升。(3)线路板及线路板上粘接的感光芯片需要通过一软板实现通电,而软板上面的连接点(或称为连接器)会与终端设备(例如手机)的主板固定。而在驱动装置驱动整个模组运动的过程中,线路板主体(即硬板)和软板之间连接的位置会频繁受力,使得软板和线路板主体之间出现接触不良,有时甚至出现软板和线路板主体的连接处断开的情况,严重影响模组的正常工作。
发明内容
本发明的目的在于,克服现有技术的不足,提供一种可实现小型化的摄像模组云台防抖解决方案。
为解决上述技术问题,本发明提供了一种具有云台的摄像模组,其包括:模组本体,其包括镜头组件和感光组件;以及云台结构,其包括设置在所述模组本体外部的外框架、将所述模组本体悬挂在所述外框架内部的SMA线,以及设置在所述外框架与所述模组本体上的驱动装置;其中,在非防抖模式下所述SMA线处于第一状态以支撑所述模组本体;并且在防抖模式下,所述SMA线通电升温诱发形状记忆效应,使得所述SMA线由第一状态转变至第二状态,并且,相比所述第一状态,所述SMA线在所述第二状态可减小所述驱动装置驱动所述模组本体移动的阻力。
其中,所述驱动装置包括设置于所述外框架内侧的线圈和设置于所述模组本体外侧的磁体或线圈。
其中,所述SMA线的两端分别连接所述外框架和所述模组本体,且所述SMA线的与所述外框架连接的一端高于其与所述模组本体连接的一端。
其中,俯视角度下,所述SMA线的两端分别连接所述外框架的侧边的中点和所述模组本体的侧边的中点。
其中,俯视角度下,所述外框架和所述模组本体的外形均呈矩形,所述SMA线的两端分别连接所述外框架的第一顶点和所述模组本体的第二顶点,所述第二顶点是所述第一顶点在所述模组本体的对应顶点的相邻顶点。
其中,当所述模组本体在绕z轴旋转的方向上出现抖动时,通过改变所述SMA线的电流大小来使所述SMA线伸展或收缩,从而驱动所述模组本体在绕z轴旋转的方向上移动以对所述模组本体的抖动进行补偿;其中z轴与所述摄像模组主体的光轴方向平行。
其中,所述SMA线在常温下呈刚性;并且在所述SMA线通入电流超过预设阈值时所述SMA线发生奥氏体相变,所述SMA线在奥氏体相下呈松弛状态。
其中,所述SMA线具有刚性模式、伸缩模式和软化模式;在所述刚性模式下,所述SMA线呈刚性,在所述伸缩模式下,所述SMA线可实现基于电流大小的受控伸缩,在所述软化模式下,所述SMA线软化。
其中,所述软化模式下,向所述SMA线供给的电流大于所述伸缩模式下向所述SMA线供给的电流;所述伸缩模式下,向所述SMA线供给的电流大于所述刚性模式下向所述SMA线供给的电流。
其中,所述外框架包括底板和固定于所述底板边缘区域的固定框架,所述固定框架围绕在所述模组本体的周围。
其中,所述底板与所述模组本体的底面之间具有阻尼结构或阻尼材料。
其中,所述底板为PCB板。
其中,所述感光组件包括线路板、安装于线路板的感光芯片、安装于线路板且设置在所述感光芯片周围的镜座以及安装于镜座并位于感光芯片上方的滤光片。
其中,所述线路板包括线路板主体和与所述线路板主体连接的柔性连接带,所述外框架的侧面具有通孔,所述柔性连接带穿过所述通孔。
其中,所述柔性连接带具有镂空结构;其中所述镂空结构为条形缝隙,所述条形缝隙的长度方向与所述柔性连接带的长度方向一致。
其中,所述柔性连接带弯曲折叠。
其中,所述线路板主体为PCB板,所述柔性连接带为FPC板。
其中,所述镜头组件包括光学镜头和马达,所述光学镜头安装于所述马达内,所述马达适于在z轴方向移动所述光学镜头以实现对焦。
其中,在防抖过程中,安装于所述外框架的所述线圈通电,以对安装于所述模组本体的对应磁体或线圈施加电磁力,进而驱动所述模组本体在绕x轴和/或绕y轴旋转的方向上移动,以矫正所述模组本体的抖动,其中所述x轴和所 述y轴是垂直于所述摄像模组的光轴的两个坐标轴,并且所述x轴和所述y轴互相垂直。
与现有技术相比,本申请具有下列至少一个技术效果:
1.本申请能够实现大行程的防抖,使得在运动场景和暗光场景下的拍照更清楚。
2.本申请的一些实施例中,利用SMA线代替传统防抖结构中的悬挂结构(例如传统OIS系统中的悬丝),通过为SMA线通入设定的电流,可以使SMA线发生形状记忆效应并由第一状态转变为第二状态,从而有效地降低悬挂结构对防抖移动所构成的阻力,有助于以较小的电磁驱动力实现大行程的防抖效果,进而实现云台防抖结构的小型化。
3.本申请的一些实施例中,可以快速准确地实现模组本体的整体移动。
4.本申请的一些实施例中,SMA线可以提供一部分辅助驱动力(例如为电磁驱动装置提供一部分辅助驱动力),从而提升某个或某些移动方向的总驱动力,帮助实现大行程的防抖效果。
5.本申请的一些实施例中,SMA线可以为某个或某些移动方向提供驱动力,从而使云台结构更加简化,进而实现云台防抖结构的小型化。
6.本申请的一些实施例中,云台防抖结构简洁,受外界磁场的干扰较小。
7.本申请的一些实施例中,提供了有效克服线路板硬板和软板之间阻力的结构,减少模组整体结构的运动阻力,从而降低了驱动模组本体移动的驱动力要求,帮助实现云台防抖结构的小型化。
8.本申请的一些实施例中,可以通过在底板与模组本体之间设置阻尼结构或阻尼材料,该阻尼结构或阻尼材料可以对模组本体起到辅助支撑的作用,从而将模组本体悬持在固定框架中,且固定框架和模组本体之间可以留有一定的活动空间,使得模组本体能够在其固定框架的内部进行矫正工作。
附图说明
图1示出了一种现有技术中的云台防抖结构的原理示意图;
图2示出了图1所示的云台防抖结构的立体外观示意图;
图3示出了本申请一个实施例中的具有云台的摄像模组的示意图;
图4a示出了本申请一个实施例中俯视角度下的模组本体、固定框架和SMA线的位置关系示意图;
图4b示出了本申请另一个实施例中俯视角度下的模组本体、固定框架和SMA线的位置关系示意图;
图5示出了本申请一个实施例中的模组本体的结构示意图;
图6示出了本申请一个实施例中的外框架和模组本体之间的位置及连接方式的示意图;
图7示出了本申请一个实施例的改进了软板的摄像模组的立体示意图;
图8示出了本申请一个实施例中利用云台结构对模组本体左右倾斜进行抖动矫正的示意图;
图9a示出了本申请另一实施例的将SMA线作为驱动装置的云台结构的示意图;
图9b示出了本申请又一个实施例中四条SMA线在俯视视角下的布置方位;
图10a示出了本申请一个实施例中的SMA线及连接件的示意图;
图10b示出了本申请另一个实施例中的曲线型SMA线的示意图;
图11示出了本申请一个实施例中的具有云台结构的摄像模组的立体示意图;
图12示出了本申请的另一个实施例中的柔性连接带弯折的示意图;
图13a示出了一个比较例的柔性连接带方案;
图13b示出了本申请又一个优选实施例中的柔性连接带的改进方案。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一主体也可被称作第二主体。
在附图中,为了便于说明,已稍微夸大了物体的厚度、尺寸和形状。附图仅为示例而并非严格按比例绘制。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或附加有一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
如在本文中使用的,用语“基本上”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
下面结合附图和具体实施例对本发明做进一步地描述。
图3示出了本申请一个实施例中的具有云台的摄像模组的示意图。本实施例中,所述具有云台的摄像模组包括云台结构和模组本体18,所述模组本体18可以是现有的常见摄像模组。参考图3,模组本体18可以包括光学镜头1和感光组件。所述感光组件可以包括线路板4、安装于线路板4的感光芯片5、安装于线路板4且设置在所述感光芯片5周围的镜座19、安装于镜座19并位于感 光芯片5上方的滤光片15(例如IR片)。所述光学镜头1的底面可以安装于所述镜座19的顶面,从而将光学镜头1和感光组件组装在一起,构成所述的模组本体。需注意,在本申请的另一实施例中,所述镜座19可以包括彼此独立的滤色片镜座和镜头镜座,其中滤色片镜座用于安装滤色片,镜头镜座则用于安装光学镜头,镜头镜座的底部可以围绕在所述滤色片镜座的外周,并且镜头镜座的底面可以直接安装有线路板4的表面。进一步地,本实施例中,所述云台结构包括设置在所述模组本体外部的外框架、将所述模组本体悬挂在所述外框架内部的SMA线13(SMA是形状记忆合金的缩写),以及分别设置于所述外框架内侧和所述模组本体外侧的线圈7和磁体6,所述磁体6可以是永磁体。所述外框架可以包括底板3和安装于所述底板3边缘的固定框架2,所述固定框架2围绕在所述模组本体18的周围,并与所述模组本体18之间存在一定的间隙,所述SMA线13的两端分别连接所述固定框架2和所述模组本体18。所述底板3可以为PCB板,该底板3的底面可以设置金属触点阵列,并且底板3可以与终端设备(例如手机)的主板接触并实现电连接。底板3的内部可以具有电子线路(其制作方法和模组本体18中的线路板的制作方法类似,例如可以使用PCB板的制作工艺制作)。底板3的内部线路可以为线圈供给电流以生成所需的磁场。本实施例中,底板3通过底部的金属触点阵列和终端设备的线路导通。当然,本发明并不局限于触点阵列的导通方式,例如,在其他实施例中,也可以使用软板或者金属线等方式将底板与终端设备的线路导通以实现线圈的工作电流供给。本实施例中,固定框架2连接在底板3的边缘,可以通过粘接的方式进行固定,也可以通过模塑的方式将固定框架2固定在底板3的边缘。本实施例中,固定框架2的主要作用是固定驱动装置,同时将驱动装置和模组本体18容纳在其内部,从而起到保护的作用。固定框架2整体上呈中空的框型,其下表面直接固定在底板3的边缘区域。固定框架2底部的开口大小和底板3的面积相适应。固定框架2的顶部具有与光学镜头1孔径大小适应的开口,此开口可以呈方形结构。并且,固定框架2顶部的开口处可以配置有盖板14,此盖板14的面积与方形开口的面积适应,以便该盖板14可以容纳在方形开口中,并将所述方形开口完全覆盖住。盖板14的主要作用是保护模组本体的光学镜头,同时还用于透过光线。所以在选用制作盖板材料的时候,一般选择硬度较大且透光率良好的透明材料。需注意,固定框架的顶部的开口形状并不局限于方形,只要开口形状和镜头形状适配即可。
进一步地,在本申请的一个实施例中,固定框架2的内侧固定有线圈结构,此结构由金属内芯和缠绕在其周围的金属线构成。固定框架2的内部设置有相应的线路,可以在与线圈结构连接的位置给线圈7通电,确保线圈7的正常工作。此线圈结构可以设置在固定框架2内侧面的正中心位置,也可以设置在固定框架的侧边上,具体根据实际设计结构确定。固定框架2还连接有SMA线13,SMA线13也是通过固定框架2内部设置的线路给其通电。所述SMA线13一端连接在固定框架2内侧,另一端连接于模组本体的光学镜头。所述SMA线13可以将模组本体18悬空,克服模组本体本身的重力,同时还能使得驱动模组整体运动的时候,可以减少驱动装置的动力。此外,为了驱动模组本体18整体进行运动,在模组本体18的外部配置了相应的线圈结构,SMA线13可以与线圈结构导通,提供给线圈结构工作的电流,SMA材料由于其本身的特性,在通电的时候由于其本身温度的变化会使得其材料硬度下降,故在驱动模组本体18运动的过程中,SMA线本身对模组本体18移动的阻力可以显著减小。进一步地,本实施例中,模组本体18的外侧面可以安装永磁体,该永磁体与安装于固定框架内侧面的线圈相匹配,在不同大小和方向的电流通过线圈时,可以对所述永磁体施加不同大小和方向的电磁力,从而可以驱动模组本体向所设定的方向移动相应的距离,实现抖动矫正,从而达到防抖的效果。具体来说,在一个实施例中,可以将四个永磁体固定于所述模组本体18的四周,它们分别设置在前、后、左、右四个方位。对应地,可以将四个线圈结构固定于固定框架2,这四个线圈结构也分别设置在前、后、左、右四个方位,并分别与所述的四个永磁体对应。这样,调整四个线圈结构的电流大小和方向,就可以对所述四个永磁体施加不同大小和方向的电磁力,从而可以驱动模组本体向所设定的方向移动相应的距离。
进一步地,上述实施例中,SMA线在常温下可以具有一定刚性,从而使SMA线可以代替传统OIS装置(例如用于驱动镜头移动的音圈马达)中的弹片或者悬丝,对模组本体起到支撑作用。当开启云台防抖时,SMA线可以通电使得其自身温度升高诱发形状记忆效应,使得该SMA线发生高温相奥氏体相变,使SMA线伸展,使得SMA线处于松弛状态。具体来说,SMA线具有马氏体相和奥氏体相,在加工SMA线时,可以在高温的奥氏体相下将SMA材料加工成第二状态(或称为第二形状),在相对低温(例如常温)的马氏体相下降该SMA材料加工成第一状态(或称为第一形状),构成具有一定刚性的SMA 线。这样,在常温状态下,摄像模组可以处于非防抖模式,此时SMA线处于第一状态以支撑所述模组本体。而在防抖模式下,所述SMA线通电升温诱发形状记忆效应,使得所述SMA线由第一状态转变至第二状态。只要在加工SMA材料时,使所述第二状态的SMA线相对于第一状态更加柔软,即可减小所述模组本体移动的阻力。例如,线圈和磁体相互作用所产生电磁力可以驱动模组本体移动时,由于SMA材料软化,在防抖移动过程中,电磁驱动力受到的来自SMA线的阻力可以被显著削弱。因此,在同等电磁驱动力的前提下,上述实施例可以获得更大的防抖行程。反过来说,在同等防抖行程的前提下,由于所需的电磁驱动力较小,所以线圈和磁体的体积可以缩小,从而帮助摄像模组实现小型化。而作为对比,传统的马达(例如用于驱动镜头移动的音圈马达)中,通常用弹片或者弹簧将载体或者镜头悬挂在外框架(例如马达壳体)中,这种方案下,在防抖过程中,随着镜头的移动,电磁驱动力需要克服弹片或者弹簧形变而产生的阻力,因此需要驱动装置提供更大的驱动力。
需注意,上述实施例中通过奥氏体相变来使SMA线从第一状态转变为第二状态,但这种方式并不是唯一的。例如在本申请的另一实施例中,可以利用SMA线在马氏体相下的伸缩效应来减小模组本体移动的阻力。在马氏体相下,SMA线随着温度的升高而收缩,随着温度的下降而伸展。因此,当摄像模组处于防抖模式时,可以通过对SMA线通电使得温度升高,诱发形状记忆效应,使SMA线收缩,从而在一定程度上控制模组本体的移动。当SMA线收缩的方向与电磁驱动装置的驱动方向一致时,就可以减小模组本体移动的阻力。本实施例中,非防抖模式为常温状态,此时具有第一长度的SMA线可以理解为SMA线的第一状态,而通电升温使SMA线收缩后的状态可以理解为SMA线的第二状态。利用SMA线在马氏体相下的伸缩效应,促使SMA线由第一状态转变为第二状态,可以减小模组本体移动的阻力,从而减小电磁驱动装置所需提供的驱动力。
进一步地,图4a示出了本申请一个实施例中俯视角度下的模组本体18、固定框架2和SMA13线的位置关系示意图。参考图4a,本实施例中,通过SMA线13将模组本体18悬空在固定框架2内部。其中SMA线13的一端连接在固定框架2侧边的中间位置(这里的固定框架侧边可以是固定框架顶面的侧边),其另一端则连接在模组本体。在俯视角度下,所述SMA线连接与所述模组本 体的侧边的中点。进一步地,本实施例中,SMA线13的与固定框架2连接的一端可以高于其与模组本体18连接的一端,以便SMA线13将模组本体18悬挂在固定框架2内部。而在主视角度下,SMA线13与模组本体的连接端可以位于模组本体18的顶部(例如可参考图3),也可以位于模组本体18的肩部或处于模组本体18的其他位置,只要SMA线13与模组本体18的连接位置低于该SMA线13与固定框架2的连接位置即可。由于SMA线13将模组本体18悬挂在固定框架2的内部,当模组在拍摄过程中出现抖动倾斜的时候,可以通过安装在SMA线13同侧的线圈和安装于模组本体的线圈(或者磁体)相互配合的作用,驱动模组本体18进行相反方向的移动,对模组的位置进行矫正,从而有效地改善模组的成像质量。此种连接方式可以实现模组本体18的倾斜角度的矫正。模组本体18的倾斜角度的矫正包括左右倾斜的矫正和俯仰倾斜的矫正。为便于描述,建立xyz三维直角坐标系。其中,z轴和摄像模组的光轴方向平行,即z轴方向为图3中的竖直方向,也就是轴线ax的方向。x轴和y轴分别是垂直于z轴的两个坐标轴,且x轴和y轴互相垂直。本实施例中,绕x轴的旋转方向为俯仰倾斜调整,绕y轴的旋转方向为左右倾斜调整。下文中还会结合图8和相应实施例对模组本体的倾斜角度的矫正做进一步的描述。
图4b示出了本申请另一个实施例中俯视角度下的模组本体18、固定框架2和SMA线13的位置关系示意图。参考图4b,本实施例中,将SMA线13的一端固定在固定框架2的第一顶点A位置(即固定框架上表面两条侧边的结合处),另一端固定在模组本体18的第二顶点B位置处(模组本体壳体的两条侧边的结合处)。并且第二顶点B是第一顶点A在所述模组本体的对应顶点A’的相邻顶点。本申请中,对于俯视外形为矩形模组本体18和固定框架2来说,矩形中任一顶点都具有两个相邻顶点和一个对角顶点。本实施例中,第二顶点并非第一顶点在所述模组本体的对应顶点,而是该对应顶点的相邻顶点。进一步地,本实施例中,SMA线的与固定框架连接的一端可以高于其与模组本体连接的一端,以便SMA线将模组本体悬挂在固定框架内部。以图3中的轴线ax方向为Z轴方向建立空间直角坐标系,此种连接方式不仅可以实现模组本体的左右和俯仰倾斜的调整,还可以实现绕z轴的旋转的矫正。其中z轴和摄像模组的光轴方向平行,光轴方向即图3中的轴线ax。x轴和y轴分别是垂直于z轴的两个坐标轴,且x轴和y轴互相垂直。本实施例中,绕x轴的旋转方向为俯仰倾斜调整,绕y轴的旋转方向为左右倾斜调整。本实施例中,当SMA线 收缩时,SMA线即可带动模组本体绕z轴旋转,从而实现该旋转方向上的防抖矫正。至于旋转矫正的角度,可以通过控制通入SMA线的电流大小来调整,在这里不做详细的阐述。SMA材料具有良好的抗疲劳性,可以经过多次拉伸而不改变其材料的特性,故不会因为此合金材料频繁的收缩和扩张而对其矫正的精度产生影响。
进一步地,在本申请的一个实施例中,基于如图4b所示的结构和SMA线连接方式,可以针对设定SMA线设置多个工作模式。例如可以设置刚性模式、伸缩模式和软化模式。刚性模式下,可以不向所述SMA线供给电流,或者仅供给微小电流,使得所述SMA线可以具有一定刚性以支撑所述模组本体。在伸缩模式下,可以向所述SMA线供给工作电流,所述SMA线可以实现基于电流大小的受控的伸缩,从而带动模组本体绕z轴旋转以补偿该方向上的抖动。其中,工作电流通常大于刚性模式下的电流。在软化模式下,可以向SMA线供给大电流,使得SMA线可以发生高温相奥氏体相变,该SMA线可以伸展并软化,从而使SMA线处于松弛状态,此时由于SMA线的阻力显著减小,线圈和磁体可以驱动模组本体进行大行程的移动。
需注意,本申请SMA线不仅仅限于图4a和图4b示出的这两种连接方式。在本申请的其他实施例中,SMA线还可以选择其他不同的连接方式,且不同的连接方式可以实现的功能也不相同。技术人员可以根据实际的设计选择使用。
进一步地,图5示出了本申请一个实施例中的模组本体的结构示意图。参考图5,本实施例中,模组本体18包括线路板4、感光芯片5、滤光片15、支架(即镜座19)和光学镜头组件1a,其中光学镜头组件1a可以包括驱动镜头对焦的音圈马达和安装于所述马达内的光学镜头(图5中未示出光学镜头组件1a的具体结构)。为了进一步降低摄像模组的高度和重量,本实施例中,优选模塑工艺形成所述支架。具体来说,支架可以是直接成型于所述线路板4的表面的模塑支架。可以在安装滤光片15的时候,直接将导通感光芯片5和线路板4的金线19a模塑在其支架(即镜座19)中,从而保护金线19a等元件。同时将用于安装滤光片15的支架直接模塑在线路板表面,还可以有效的降低模组的高度;还可以解决传统的预先成型支架在安装过程中产生的各种问题,这些问题例如包括支架倾斜、胶水开裂等。需注意,在本申请的另一实施例中,所述镜座19可以包括彼此独立的滤色片镜座和镜头镜座,其中滤色片镜座用于安装 滤色片,镜头镜座则用于安装光学镜头,镜头镜座的底部可以围绕在所述滤色片镜座的外周,并且镜头镜座的底面可以直接安装有线路板4的表面。进一步地,本实施例中,本实施例中,模组本体18本身可以实现对焦功能。具体来说,光学镜头可以和马达载体固定在一起,在马达的驱动作用下可以实现对焦功能。当在拍摄的过程中,马达可以驱动镜头进行竖直方向(也就是和光轴相同的方向)的运动,使得模组的成像更清晰,从而有效的提升模组的成像质量。
本实施例的云台防抖结构是在模组本体18的外部固定电磁驱动装置,在给固定框架内侧的线圈通电的时候,该线圈和安装于模组本体18外侧面的磁体6(也可以用线圈代替)之间产生相互作用力,根据需要实现的调整方向,配合改变通入线圈中的电流方向和大小,在外部框架线圈的配合作用下,可以实现模组本体不同方向的位置矫正。
图6示出了本申请一个实施例中的外框架和模组本体之间的位置及连接方式的示意图。和现有云台结构不同,本实施例中,可以在底板3和线路板4(主要指作为线路板4的主体部分的硬板12,硬板12可以是PCB板)之间设置阻尼结构(例如图6中的弹簧16),其主要作用是减少模组的抖动,同时还可以起到支撑模组本体18、减少对SMA线13(可结合参考图3)的拉伸的作用。本实施例中,可以利用弹性元件作为阻尼结构,此弹性元件可以选用弹簧16,选择弹性系数适中的弹簧16,其可以对模组本体18起到一定的辅助支撑作用。另外,利用弹簧16将模组本体18的底部和底板3的顶面分开一定的空间,可以使得模组运动的时候不会受到底板的阻档。本实施例中,利用SMA线13的拉力作用,再结合弹簧16的辅助支撑作用,可以将模组本体18悬持在固定框架2中,且固定框架2和模组本体18之间可以留有一定的活动空间,使得模组本体18能够在其固定框架2的内部进行矫正工作。并且,由于弹簧16的辅助支撑作用,对SMA线本身的刚性或者对SMA线所提供的支撑力或驱动力的要求可以降低,使得SMA线可以更易于进入软化工作状态,从而降低电磁驱动模式下SMA线13对电磁驱动所形成的阻力。在传统的光学防抖设计中,往往使用弹片或弹簧8(参考图1)将模组本体(或光学镜头)悬持在外框架中。而由于弹片或弹簧本身在发生形变使会产生阻止该形变的反向作用力,该反向作用力有时与用于驱动模组本体(或光学镜头)移动的电磁力方向相反,从而对模组本体(或光学镜头)的矫正形成阻碍作用。而本实施例中,由于SMA线 13可以软化或处于松弛状态,所以大幅度降低电磁驱动所形成的阻力。进一步地,由于对电磁驱动所形成的阻力可以大幅降低,模组本体18相当于悬浮在固定框架2之中,电磁驱动装置给模组本体18施加较少的驱动力,就可以实现模组本体18的移动,因此可以简化驱动装置的结构设计。且本实施例中,作为阻尼结构的弹簧16只需要将模组本体与底板隔开,弹簧16本身不需要较复杂的材料,现有的一些弹簧就可以满足设计的要求,所以可以有效地降低云台结构的成本。需注意,在其他实施例中,所述阻尼结构也可以弹簧以外的方式实现,或者所述阻尼结构可以使用柔性材料或者其他类型的阻尼材料代替。
进一步地,在本申请的一个实施例中,图7示出了本申请一个实施例的改进了软板的摄像模组的立体示意图。参考图7,模组本体18的线路板4(可结合参考图5和图6)可以包括硬板12、软板10和连接器11,硬板12可以是PCB(或称为PCB板),软板10可以是FPC(或称为FPC板)。该软板可以作为柔性连接带将线路引出外部框架,并通过连接器11插接至终端设备(例如手机)的主板上,从而使得感光芯片和线路板可以与终端设备的主板实现电路导通,提供给模组工作的电流。本实施例中,固定框架与线路板的软板对应的一侧设有通孔17,线路板4的软板10可以从此通孔17中穿过,且此通孔17的宽度大于线路板4的软板10的宽度,使得线路板4的硬板12运动时,与其连接的软板10不会对其运动产生阻碍作用或者软板10所造成的阻力可以被显著削弱。例如,硬板12在进行俯仰倾斜调整时,软板10会相对于硬板12发生扭转,从而形成一反向的扭矩。尤其是,如果通孔17的宽度如果过小,软板10的扭转形变将集中在通孔17位置到硬板12之间的一小部分区段,从而形成更大的扭矩,对硬板12的俯仰倾斜调整形成更大的阻力。因此,通孔17的宽度大于线路板4的软板10的宽度,可以显著削弱或消除软板10对硬板12运动的阻力。
进一步地,本实施例中,软板10的中间位置可以具有缝隙10a,即可以在软板10中央挖空形成缝隙10a。该缝隙10a的长度方向可以与所述软板10的长边方向基本平行。这种设计可以减小软板10对模组本体18移动形成的阻力。例如,硬板12在进行俯仰倾斜调整时,软板10会相对于硬板12发生扭转,从而形成一反向的扭矩。在软板10的中间位置设置缝隙10a,可以减小硬板12进行俯仰倾斜调整时软板10所形成的扭矩,从而显著削弱或消除软板10对硬 板12运动的阻力。需注意,在本申请的其它实施例中,所述缝隙10a也可以被其它形状的镂空结构代替。
更进一步地,在一个实施例中,还可以将所述线路板的软板进行堆叠设计,以减少软板对模组本体移动形成的阻力。堆叠设计是指将软板弯曲折叠(可参考图7),避免出现软板两端被线路板硬板和主板连接端拉扯而出现紧绷状态,从而给模组本体留下更多的自由移动空间。其中,对软板的弯曲折叠的折叠处具有圆滑的自然过渡区段,以避免折叠处出现接触不良。
本申请的上述实施例中,所提供的云台防抖结构利用SMA金属线的拉伸作用以及线路板之间的阻尼结构的作用,使用常见的驱动装置就可以驱动较大体积的模组移动,且由于选用的弹簧本身具有弹性作用,当矫正动作完成之后,模组本体可以恢复到初始的位置。且本方案在模组的水平方向上添加了固定的外部框架,利用设置在外框架和模组本体侧面的元件相互配合实现了驱动作用,简化设计的同时也不会对整个摄像模组的高度造成较大的影响,因此具有小型化的优势。
进一步地,图8示出了本申请一个实施例中利用云台结构对模组本体左右倾斜进行抖动矫正的示意图。参考图8,本实施例中,y轴方向是垂直于纸面的方向。左右倾斜方向是绕y轴方向旋转,可以记为Ry方向。图8中的(a)部分示出了模组本体发生抖动的示意图,可以看出模组本体在绕y轴逆时针的方向上抖动。为了使得模组的成像质量不受影响,需要使得模组本体向着抖动相反的方向进行补偿,故驱动装置施加的力如图8中(b)部分所示,其中固定于模组本体左侧面的磁体受力方向F1为向上,固定于模组本体18右侧面的磁体受力方向F2为向下,使得模组本体在绕y轴顺时针的方向上旋转。需注意,图8的(b)部分是示意性的,仅用于示出驱动装置需要提供的驱动力方向和模组本体的旋转方向。当给线圈中通入相应的电流的时候,可以使得模组本体受到图8的(b)部分中方向所示的作用力,并发生如图8的(b)部分所示方向的调整,最后实现在拍摄时对左右倾斜的矫正。进一步地,图8的(c)部分则示出了矫正完成后的状态。上面简要介绍了对Ry方向抖动的矫正,而Rx方向的位置调整和Ry方向调整的原理是一致的,当模组本体受到抖动发生俯仰方向(即Rx方向)的倾斜时,给驱动Rx方向的线圈通入相应的电流,使得模组本体的 前侧面和后侧面的磁体受到与Rx抖动方向相反的作用力,对其抖动进行矫正,即可改善模组本体的成像质量。
需注意,本申请的一些实施例中,SMA线可以仅用于支撑模组本体,以代替传统云台结构(或马达)中的弹片,从而帮助增加防抖行程,减小云台结构的体积。在另一些实施例中,SMA线不仅可以起到悬挂模组本体的作用,还可以提供部分的驱动力,例如可以利用SMA材料本身在通电产生相应的收缩或者扩张作用,从而对驱动装置起到一定的辅助作用,这使得本申请对于采用大像面或者采用玻璃镜片等质量较大的模组本体都可适用,符合当前摄像模组发展的趋势。
进一步地,下面结合一系列实施例对本申请的具有云台的摄像模组的一系列具体结构做更进一步地描述。
根据本申请的另一实施例,所述的具有云台结构的摄像模组中,所述云台结构的电磁驱动装置可以取消,直接使用所述SMA线提供模组本体的驱动力。图9a示出了本申请另一实施例的将SMA线作为驱动装置的云台结构的示意图。参考图9a,本实施例中,云台结构包括固定框架、环形的上连接件20a和下连接件20b,以及将上连接件20a与所述固定框架2连接的多个(例如四个)第一SMA线13a(或称为上SMA线)和将下连接件20b与所述固定框架2连接的多个(例如四个)第二SMA线13b(或称为下SMA线)。上连接件20a用于固定模组本体18的镜头组件,其形状可以与镜头组件适配。例如镜筒组件的顶部可以是圆形的,则上连接件20a可以是圆环形的。下连接件20b用于固定模组本体18的感光组件,其形状可以与感光组件适配。例如感光组件的底部可以是矩形的,则下连接件20b可以呈矩形环状。进一步地,本实施例中,上连接件20a可以粘贴于镜头组件的顶面,下连接件20b可以粘贴于感光组件的外侧面(在其他实施例中,下连接件可以粘贴于感光组件的底面,或者粘贴于所述感光组件的外侧面和底面)。本实施例中,可以直接利用SMA材料的超弹性(superelasticity)实现对模组本体的驱动。具体来说,使SMA线进入马氏体相,SMA线中通入不同大小的电流,可以使其提升至不同的温度,基于SMA材料的超弹性,SMA线可以随着温度的升高而收缩,从而对模组本体产生相应的拉力。本实施例中,可以在四个不同方位设置四条连接在外框架和上连接件 之间的SMA线(即上SMA线)。在初始状态下,SMA线将模组整体结构悬挂在固定框架的内部,模组处于一种平衡的状态。在执行防抖功能时,可以对单个或多个SMA线通入电流,使得该单个或多个SMA线收缩,从而使模组本体相对于外框架倾斜一定角度,以便矫正摄像模组的抖动。进一步地,通过设定合适的电流大小,即可对倾斜方向和倾斜角度的大小进行调节,从而准确地移动所述模组本体,实现对摄像模组抖动的矫正。图9b示出了本申请又一个实施例中四条SMA线在俯视视角下的布置方位。具体来说,参考图9b,在一个例子中,四条SMA线13e、13f、13g、13h可以分别位于上连接件20a的前、后、左、右四个方位,这样,对左侧或右侧SMA线13e、13f通入电流,可以使左侧或右侧SMA线13e、13f收缩,使模组本体在左右摇摆的方向上旋转一定角度(左右摇摆的方向即绕x轴旋转的方向,可结合参考图3,其中x轴是与y轴和z轴均垂直的坐标轴);对前侧或后侧SMA线13g、13h通入电流,可以使前侧或后侧SMA线13g、13h收缩,使模组本体在俯仰摇摆的方向上旋转一定角度(俯仰摇摆的方向即绕y轴旋转的方向,y轴的方向可结合参考图3)。通过合理搭配,对多条不同方位的SMA线通入合适的电流,即可同时在左右摇摆的方向和俯仰摇摆的方向上将模组本体旋转至所需的角度,从而实现对摄像模组抖动的矫正。需注意,图9b中仅示出了连接至上连接件的四条上SMA线,依靠四条上SMA线即可驱动模组本体移动来调节其倾角。但为了提升驱动力,还可以设置四条下SMA线。进一步地,在一个实施例中,可以在四个不同方位(例如也可以是前、后、左、右四个方位)设置四条连接在外框架和下连接件之间的SMA线(即下SMA线)。在执行防抖功能时,四个不同方位的下SMA线可以与对应的上SMA线协同工作,以更快速地驱动模组本体移动。例如左侧的下SMA线和右侧的上SMA线同时工作(即二者同时收缩)时,可以加大在左右摇摆方向上的旋转模组本体的扭矩,从而更快速地驱动模组本体移动。类似地,右侧的下SMA线和左侧的上SMA线也可以同时工作(即二者同时收缩)以加大该扭矩。进一步地,前侧的下SMA线和后侧的上SMA线同时工作(即二者同时收缩)时,可以加大在俯仰摇摆方向上的扭矩,从而更快速地驱动模组本体移动。后侧的下SMA线和前侧的上SMA线,也可以同时工作(即二者同时收缩)以加大该扭矩。本实施例中,SMA线能够快速驱动模组本体移动,其原因还在于SMA线形变力量是超越普通悬丝百倍甚至千倍,同时SMA材料还具有良好的抗疲劳性,可以经过多次拉伸而不改变其材 料的特性。需注意,图9b中,四条SMA线分别设置在连接件的前、后、左、右四个方位,但这种设置方式仅仅是示意性的。本申请的其它实施例中,多条SMA线也可以根据实际需要设置在多个不同的方位。例如,在图9a中,四条上SMA线可以分别设置在上连接件的左前、右后、右前、左后这四个方位。通过控制这四个方位的上SMA线的电流大小,也可对模组本体的倾斜方向和倾斜角度的大小进行调节,从而准确地移动所述模组本体,实现对摄像模组抖动的矫正。
进一步地,参考图9a,本一个实施例中,所述固定框架可以包括筒状的半导体工艺制作的侧壁。具体来说,该固定座可以具有四个侧壁,这四个侧壁可以用半导体工艺制作以在侧壁内部或表面布置线路结构,此线路结构可以用于给线圈和/或SMA线提供电流。或者所述固定座也可以利用层压工艺制成(即与采用类似于PCB板的制作工艺),其内部具有相应的线路结构,通过内部的线路结构给与其连接的线圈和/或SMA线供电,以保证驱动结构的正常工作状态。所述固定座的顶面2a可以以透明盖板(例如玻璃盖板)覆盖,一方面保护固定座2内部的模组本体,另一方面也为模组本体保留了透光的成像通道。所述固定座2的底面2b可以是封闭的,也可以是开放的。在一个实施例中,所述固定座2的底面2b具有封闭的底板,该底板可以用半导体材料制作而成。底板内部可以布设电子线路,该电子线路可以为SMA线提供驱动电流,即作为驱动SMA线伸缩的驱动电路。本实施例中,固定座的底板可以固定于电子设备的主板表面,并与主板电连接。这里电子设备是指搭载所述摄像模组的电子设备,例如智能手机、平板电脑等。可以通过粘结剂将固定座的底板与所述主板粘结,也可以通过焊接将二者固定。
仍然参考图9a,在另一实施例中,所述固定座2的底面2b可以是开放的,即所述固定座2可以是无底板的筒状体。本实施例中,SMA线(包括第一SMA线13a和第二SMA线13b)的驱动电路可以布设于固定座的侧壁(可以用上述介绍的半导体工艺和PCB板工艺形成固定座的侧壁结构)。本实施例中,固定座2的侧壁的底部(即筒状体的根部)可以直接固定于电子设备的主板表面,并与主板电连接。这里电子设备是指搭载所述摄像模组的电子设备,例如智能手机、平板电脑等。可以通过粘结剂将固定座的底板与所述主板粘结,也可以通过焊接将二者固定。本实施例中,由于固定座无底板,因此有助于减小摄像 模组及云台结构需占用的高度,从而有助于减小电子设备(例如智能手机、平板电脑等)的厚度。
进一步地,图10a示出了本申请一个实施例中的SMA线及连接件的示意图。参考图10a,本实施例中,SMA线可以分为上下两组,分别是第一SMA线13a和第二SMA线13b,第一SMA线13a一端连接上连接件20a,另一端通过接线点13c连接至固定座2(可结合参考图9a),第二SMA线13b的一端连接下连接件20b,另一端通过接线点13d连接至固定座2。本实施例中,SMA线可以均为直线型。接线点可以连接在固定座上,以实现给SMA线通电且将模组本体悬挂于固定座。
进一步地,图10b示出了本申请另一个实施例中的曲线型SMA线的示意图。参考图10a和图10b,本实施例中,可以用图10b中所示形状的SMA线代替图10a中SMA线。即,本实施例中SMA线的至少一部分呈曲线折叠状。由于具有至少一部分呈曲线折叠状的区段,本实施例中,给SMA线通电的时候,SMA线收缩的效果会更加明显,因此更适于实现大行程的驱动。其中,所述曲线折叠状可以螺旋的弹簧状。
进一步地,仍然参考图9a,本实施例中,所述模组本体18的感光组件包括线路板4,该线路板4包括硬板12和软板10,其中硬板12可以是PCB板,软板10可以是FPC软性。所述固定座2的一个侧壁可以具有通孔17,该通孔17作为软板10的避让孔,以便所述软板10穿过所述固定座2。软板10的一端连接硬板12,另一端可以通过连接器11插接至电子设备(例如智能手机、平板电脑等)的主板,从而实现模组本体18与主板的电连接。模组本体可以通过所述软板接收来自主板的供电和信号,以便模组本体中的感光芯片和有关元件可以实现其相应的功能。此处模组本体包括感光芯片和镜头组件,且镜头组件包括光学镜头和位于所述光学镜头外周的马达。该马达可以驱动所述光学镜头实现对焦功能。本实施例中,模组本体内置的马达可以专用于实现自动对焦,不参与防抖功能的实现,从而更好地确保模组本体的成像质量。进一步地,图11示出了本申请一个实施例中的具有云台结构的摄像模组的立体示意图。结合参考图11,所述模组本体包括感光组件22和镜头组件21,感光组件22包括所述的线路板4,线路板4包括硬板12和软板10以及连接器11(图11示意性地示出了软板10以及连接器11立体形状)。其中软板10呈条带状且可以弯曲。 本实施例中,第一SMA线13a连接上连接件20a,上连接件20a固定于镜头组件21的顶面。第二SMA线13b连接下连接件20b,下连接件20b固定于感光组件22的外侧面。
进一步地,本申请的一个实施例中,所述固定座内部线路的工作电流可以通过固定座底部和主板连接的触点阵列提供。本实施例中,云台结构的驱动装置为SMA驱动装置,其由所述的两组SMA线实现。驱动电流提供给对应的第一SMA线和第二SMA线。与上连接件连接的第一SMA线和与下连接件连接的第二SMA线可以独立工作,也可以配合工作。结合参考图10a,当某个或多个方位的SMA线(例如可以是四条第一SMA线13a中的一条或多条SMA线,或四条第二SMA线13b中的一条或多条SMA线)通电时,该通电的SMA线会出现收缩,从而带动模组本体对应方位的移动,以实现对抖动的矫正(具体情况可参考前文描述,此处不再赘述)。本实施例中,SMA线的工作电流可以由固定座提供,模组本体的工作电流由其线路板提供。这样云台结构的驱动电路和感光芯片的功能电路不会相互影响,使得整个模组结构的工作效率显著提高。具体来说,云台结构的驱动电路可能需要提供较大的驱动电流给线圈或SMA线,因此驱动电路可以具有较大的线宽。而感光芯片的工作电流相对较小,因此其功能电路的线宽可以小于云台结构的驱动电路。将云台结构的驱动电路和感光芯片的功能电路分别设置在固定座和线路板,可以避免两种电路互相干扰。
进一步地,本申请的一个实施例中,线路板的软板作为柔性连接带将模组本体的线路与电子设备主板导通,该柔性连接带穿过位于固定座侧壁的避让孔。所述柔性连接带可以预先弯折,以减小模组本体移动的阻力。具体来说,软板一端固定于线路板的硬板(例如可以固定于硬板的外侧面),其另一端通过连接器固定在电子设备(例如手机)的主板,由于矫正的过程中线路板的硬板会发生移动,但电子设备的主板是固定的。因此,连接二者的软板可能会对硬板的移动产生一定的阻力,降低模组本体驱动的精确度。而将软板预先弯折,可以为硬板的移动留下一定预留空间,从而减小软板对硬板移动的阻力,也避免移动硬板时拉扯软板导致连接器与电子设备主板出现接触不良。
进一步地,图12示出了本申请的另一个实施例中的柔性连接带弯折的示意图。其中(a)部分为柔性连接带弯折前的摄像模组立体示意图。(b)部分为 弯折后的柔性连接带及其附近结构的侧视示意图。参考图12,所述线路板4可以包括硬板12、软板10和连接器11。软板10即柔性连接带,其穿过固定座2的通孔17。所述柔性连接带可以弯折并将弯折处10b固定于所述固定座2的侧壁2c。采用将软板弯折的设计,软板通常会形成一个弯折部。在电子设备的可靠性试验(例如抗摔试验)或者使用过程中遇到撞击时,软板的弯折部有可能出现较大的位移,导致软板撞击或刮擦电子设备的其它部件,软板内部线路损坏的风险上升。本实施例中,将弯折部固定于所述固定座的侧壁(通常是外侧壁),可以避免软板内部线路的损坏,还可以在可靠性试验中提升摄像模组整体的可靠性。
进一步地,本申请的一个实施例中,柔性连接带弯折可以采用热压工艺实现。在将模组本体和固定座组装时,可以先利用热压工艺将连接带弯折,通过在弯折处进行点胶或者焊接等操作,将柔性连接带弯折处固定于固定座(例如固定于固定座的侧壁),从而解决模组频繁移动对通电造成的影响。本实施例中,先利用热压工艺将连接带弯折,待弯折处成型(指弯折处不会轻易发生形变)时,将连接带弯折处与固定座固定。优选的,柔性连接带弯折处与固定座之间可以是面接触,即柔性连接带弯折处与固定座的固定点可以被一固定面代替。该固定面可以更好地保证粘接的可靠性。其中,热压工艺是先将柔性连接带加热(例如用热风枪加热)使其软化,然后通过适当形状的工具将其压弯,冷却后即可形成所需的弯折部。
进一步地,图13a示出了一个比较例的柔性连接带方案。一般情况下,柔性连接带(即软板10)呈扁平的条带状,也就是说,柔性连接带会具有一定的宽度。图13b示出了本申请又一个优选实施例中的柔性连接带的改进方案。本实施例中,柔性连接带为软板10,优选地,软板10的中间位置可以具有缝隙10a,该缝隙10a贯穿条带状的软板10的两个表面(即上表面和下表面)。在具体实现上,可以通过在软板10中央镂空来形成缝隙10a。该缝隙10a的长度方向可以与所述软板10的长边方向基本平行。这种设计可以减小软板10对模组本体18移动形成的阻力。例如,硬板12在进行俯仰倾斜调整时,软板10会相对于硬板12发生扭转,从而形成一反向的扭矩。在软板10的中间位置设置缝隙10a,可以减小硬板12进行俯仰倾斜调整时软板10所形成的扭矩,从 而显著削弱或消除软板10对硬板12运动的阻力。需注意,在本申请的其它实施例中,所述缝隙10a也可以被其它形状的镂空结构代替。
更进一步地,仍然参考图13b,在本申请的再一个实施例中,可以将连接带以弯折处(即弯折部)为界限分为两部分,弯折处10b连接至模组本体(即硬板12)的部分进行镂空(例如形成缝隙10a),而弯折处10b至主板的部分不做改进,即不进行镂空(如图13b所示)。模组移动的过程中,由于连接带弯折处到主板的部分不会发生移动,所以此部分的阻力可以不做考虑。此种设计方案不仅可以有效地降低设计的难度,还可以提升连接带的生产效率,同时也可以解决模组本体移动的阻力问题。并且,由于本实施例中,连接带的弯折处10b形成一个固定点(可结合参考图12和图13b)。该固定点一方面可以为模组本体的移动预留出足够的活动范围,避免柔性连接带和模组本体连接处由于频繁受力而发生撕裂或者部分撕裂等情况,另一方面可以避免柔性连接带和模组本体连接处的受力被传导至柔性连接带与主板的连接处而导致主板连接处出现撕裂或部分撕裂。例如,在柔性连接带具有镂空结构,且该镂空结构为平行于所述连接带长度方向的缝隙时,模组本体的大幅移动可能会形成一沿着该缝隙撕裂所述柔性连接带的作用力(指将原文无缝隙的弯折部到主板的部分撕裂的作用力)。而本实施例中,所述弯折部固定于外框架,可以有效地阻断该作用力,从而防止柔性连接带的弯折部到主板的部分被撕裂,进而提升了摄像模组的可靠性。
以上描述仅为本申请的较佳实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (35)

  1. 一种具有云台的摄像模组,其特征在于,包括:
    模组本体,其包括镜头组件和感光组件;以及
    云台结构,其包括设置在所述模组本体外部的外框架、将所述模组本体悬挂在所述外框架内部的SMA线,以及设置在所述外框架与所述模组本体上的驱动装置;
    其中,在非防抖模式下所述SMA线处于第一状态以支撑所述模组本体;并且在防抖模式下,所述SMA线通电升温诱发形状记忆效应,使得所述SMA线由第一状态转变至第二状态,并且,相比所述第一状态,所述SMA线在所述第二状态可减小所述驱动装置驱动所述模组本体移动的阻力。
  2. 根据权利要求1所述的具有云台的摄像模组,其特征在于,所述驱动装置包括设置于所述外框架内侧的线圈和设置于所述模组本体外侧的磁体或线圈。
  3. 根据权利要求1所述的具有云台的摄像模组,其特征在于,所述SMA线的两端分别连接所述外框架和所述模组本体,且所述SMA线的与所述外框架连接的一端高于其与所述模组本体连接的一端。
  4. 根据权利要求2所述的具有云台的摄像模组,其特征在于,俯视角度下,所述SMA线的两端分别连接所述外框架的侧边的中点和所述模组本体的侧边的中点。
  5. 根据权利要求2所述的具有云台的摄像模组,其特征在于,俯视角度下,所述外框架和所述模组本体的外形均呈矩形,所述SMA线的两端分别连接所述外框架的第一顶点和所述模组本体的第二顶点,所述第二顶点是所述第一顶点在所述模组本体的对应顶点的相邻顶点。
  6. 根据权利要求5所述的具有云台的摄像模组,其特征在于,当所述模组本体在绕z轴旋转的方向上出现抖动时,通过改变所述SMA线的电流大小来 使所述SMA线伸展或收缩,从而驱动所述模组本体在绕z轴旋转的方向上移动以对所述模组本体的抖动进行补偿;其中z轴与所述摄像模组主体的光轴方向平行。
  7. 根据权利要求2所述的具有云台的摄像模组,其特征在于,所述SMA线在常温下呈刚性;并且在所述SMA线通入电流超过预设阈值时所述SMA线发生奥氏体相变,所述SMA线在奥氏体相下呈松弛状态。
  8. 根据权利要求2所述的具有云台的摄像模组,其特征在于,所述SMA线具有刚性模式、伸缩模式和软化模式;在所述刚性模式下,所述SMA线呈刚性,在所述伸缩模式下,所述SMA线可实现基于电流大小的受控伸缩,在所述软化模式下,所述SMA线软化。
  9. 根据权利要求8所述的具有云台的摄像模组,其特征在于,所述软化模式下,向所述SMA线供给的电流大于所述伸缩模式下向所述SMA线供给的电流;所述伸缩模式下,向所述SMA线供给的电流大于所述刚性模式下向所述SMA线供给的电流。
  10. 根据权利要求2所述的具有云台的摄像模组,其特征在于,所述外框架包括底板和固定于所述底板边缘区域的固定框架,所述固定框架围绕在所述模组本体的周围。
  11. 根据权利要求10所述的具有云台的摄像模组,其特征在于,所述底板与所述模组本体的底面之间具有阻尼结构或阻尼材料。
  12. 根据权利要求10所述的具有云台的摄像模组,其特征在于,所述底板为PCB板。
  13. 根据权利要求2所述的具有云台的摄像模组,其特征在于,所述感光组件包括线路板、安装于线路板的感光芯片、安装于线路板且设置在所述感光芯片周围的镜座以及安装于镜座并位于感光芯片上方的滤光片。
  14. 根据权利要求13所述的具有云台的摄像模组,其特征在于,所述线路板包括线路板主体和与所述线路板主体连接的柔性连接带,所述外框架的侧面具有通孔,所述柔性连接带穿过所述通孔。
  15. 根据权利要求14所述的具有云台的摄像模组,其特征在于,所述柔性连接带具有镂空结构;其中所述镂空结构为条形缝隙,所述条形缝隙的长度方向与所述柔性连接带的长度方向一致。
  16. 根据权利要求15所述的具有云台的摄像模组,其特征在于,所述柔性连接带弯曲折叠。
  17. 根据权利要求15所述的具有云台的摄像模组,其特征在于,所述线路板主体为PCB板,所述柔性连接带为FPC板。
  18. 根据权利要求1所述的具有云台的摄像模组,其特征在于,所述镜头组件包括光学镜头和马达,所述光学镜头安装于所述马达内,所述马达适于在z轴方向移动所述光学镜头以实现对焦。
  19. 根据权利要求2所述的具有云台的摄像模组,其特征在于,在防抖过程中,安装于所述外框架的所述线圈通电,以对安装于所述模组本体的对应磁体或线圈施加电磁力,进而驱动所述模组本体在绕x轴和/或绕y轴旋转的方向上移动,以矫正所述模组本体的抖动,其中所述x轴和所述y轴是垂直于所述摄像模组的光轴的两个坐标轴,并且所述x轴和所述y轴互相垂直。
  20. 一种具有云台的摄像模组,其特征在于,包括:
    模组本体,其包括镜头组件和感光组件,所述感光组件包括线路板,所述线路板包括硬板和柔性连接带,所述柔性连接带的一端连接所述硬板,其另一端用于连接电子设备的主板,所述电子设备是搭载所述摄像模组的电子设备;以及
    云台结构,其包括设置在所述模组本体外部的固定座、将所述模组本体悬挂在所述固定座内部的SMA线;
    其中,所述SMA线的一端与所述固定座电连接以接受驱动电流,其另一端与所述模组本体连接,所述SMA线根据不同大小的驱动电流实现伸缩,以带动所述模组本体相对于所述固定座移动;以及所述柔性连接带具有弯折部,所述弯折部通过热压弯折成型。
  21. 根据权利要求20所述的具有云台的摄像模组,其特征在于,所述柔性连接带具有镂空结构。
  22. 根据权利要求21所述的具有云台的摄像模组,其特征在于,所述镂空结构位于所述弯折部到硬板连接端之间,所述硬板连接端是所述柔性连接带连接所述硬板的一端。
  23. 根据权利要求20所述的具有云台的摄像模组,其特征在于,所述弯折部通过粘结或焊接的方式固定于所述固定座。
  24. 根据权利要求23所述的具有云台的摄像模组,其特征在于,所述弯折部固定于所述固定座的侧壁。
  25. 根据权利要求20所述的具有云台的摄像模组,其特征在于,所述固定座的侧壁具有避让孔,所述柔性连接带穿过所述避让孔,所述弯折部固定于所述避让孔所在的所述侧壁的外侧面。
  26. 根据权利要求20所述的具有云台的摄像模组,其特征在于,所述固定座包括底板和呈筒形的侧壁;或者所述固定座本身呈筒形,所述固定座的底部直接安装于所述电子设备的主板。
  27. 根据权利要求20所述的具有云台的摄像模组,其特征在于,所述云台结构还包括SMA驱动装置,所述SMA驱动装置包括所述的SMA线、上连接件和下连接件,所述SMA线包括第一SMA线和第二SMA线;所述第一SMA 线的一端连接所述固定座,其另一端连接所述上连接件,所述上连接件连接所述镜头组件;所述第二SMA线的一端连接所述固定座,其另一端连接所述下连接件,所述下连接件连接所述感光组件。
  28. 根据权利要求27所述的具有云台的摄像模组,其特征在于,所述上连接件和所述下连接件均呈环形。
  29. 根据权利要求28所述的具有云台的摄像模组,其特征在于,所述上连接件呈圆环形,其固定于所述镜头组件的顶部。
  30. 根据权利要求28所述的具有云台的摄像模组,其特征在于,所述下连接件呈矩形环状,其固定于所述感光组件的外侧部。
  31. 根据权利要求20所述的具有云台的摄像模组,其特征在于,所述SMA线呈直线型。
  32. 根据权利要求20所述的具有云台的摄像模组,其特征在于,所述SMA线呈弹簧状。
  33. 根据权利要求20所述的具有云台的摄像模组,其特征在于,所述云台结构还包括SMA驱动装置,所述SMA驱动装置包括多条分别设置在不同方位的所述SMA线,多条分别设置在不同方位的所述SMA线通过环形的上连接件连接所述镜头组件;在防抖模式下,通过对其中一条或多条所述的SMA线通电来使相应的所述SMA线收缩,以调整所述镜头组件的倾角。
  34. 根据权利要求20所述的具有云台的摄像模组,其特征在于,所述SMA线包括第一SMA线和第二SMA线,所述云台结构还包括SMA驱动装置,所述SMA驱动装置包括四条分别设置在不同方位的所述第一SMA线和四条分别设置在不同方位的所述第二SMA线,四条所述的第一SMA线通过环形的上连接件连接所述镜头组件,四条所述的第二SMA线通过环形的下连接件连接所述感光组件;在防抖模式下,通过对其中一条或多条所述的第一SMA线通电 来使相应的所述第一SMA线收缩,以调整所述模组本体的倾角,或者对其中一条或多条所述的第二SMA线通电来使相应的所述第二SMA线收缩,以调整所述模组本体的倾角。
  35. 根据权利要求34所述的具有云台的摄像模组,其特征在于,四条所述第一SMA线分别位于前、后、左、右四个方位,四条所述第二SMA线分别位于前、后、左、右四个方位;在防抖模式下,前侧的所述第一SMA线与后侧的所述第二SMA线同时通电,或者后侧的所述第一SMA线与前侧的所述第二SMA线同时通电,以使所述模组本体在俯仰摇摆方向上旋转,左侧的所述第一SMA线与右侧的所述第二SMA线同时通电,或者右侧的所述第一SMA线与左侧的所述第二SMA线同时通电,以使所述模组本体在左右摇摆方向上旋转。
PCT/CN2021/100072 2020-07-15 2021-06-15 具有云台的摄像模组 WO2022012246A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180060863.6A CN116349236A (zh) 2020-07-15 2021-06-15 具有云台的摄像模组

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010678999.0A CN113949788B (zh) 2020-07-15 2020-07-15 具有云台的摄像模组
CN202010678999.0 2020-07-15
CN202010691362.5A CN113949792B (zh) 2020-07-17 2020-07-17 具有云台的摄像模组
CN202010691362.5 2020-07-17

Publications (1)

Publication Number Publication Date
WO2022012246A1 true WO2022012246A1 (zh) 2022-01-20

Family

ID=79556127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100072 WO2022012246A1 (zh) 2020-07-15 2021-06-15 具有云台的摄像模组

Country Status (2)

Country Link
CN (1) CN116349236A (zh)
WO (1) WO2022012246A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115209020A (zh) * 2022-06-27 2022-10-18 联想(北京)有限公司 一种电子设备及信息处理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120019675A1 (en) * 2009-02-09 2012-01-26 Andrew Benjamin David Brown Optical image stabilisation
CN102770804A (zh) * 2010-02-26 2012-11-07 剑桥机电有限公司 Sma致动装置
US20130155197A1 (en) * 2011-12-16 2013-06-20 Hon Hai Precision Industry Co., Ltd. Stereo image capturing device
CN105900006A (zh) * 2014-01-10 2016-08-24 夏普株式会社 摄像机组件
CN106131435A (zh) * 2016-08-25 2016-11-16 东莞市亚登电子有限公司 微型光学防抖摄像头模组
CN107340667A (zh) * 2017-08-25 2017-11-10 高瞻创新科技有限公司 一种整合相机模组的防抖微型云台
CN110673297A (zh) * 2019-11-12 2020-01-10 东莞市亚登电子有限公司 微型光学镜头自动对焦及防抖的驱动装置
CN111212214A (zh) * 2020-03-19 2020-05-29 维沃移动通信有限公司 防抖机构、摄像头模组及电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120019675A1 (en) * 2009-02-09 2012-01-26 Andrew Benjamin David Brown Optical image stabilisation
CN102770804A (zh) * 2010-02-26 2012-11-07 剑桥机电有限公司 Sma致动装置
US20130155197A1 (en) * 2011-12-16 2013-06-20 Hon Hai Precision Industry Co., Ltd. Stereo image capturing device
CN105900006A (zh) * 2014-01-10 2016-08-24 夏普株式会社 摄像机组件
CN106131435A (zh) * 2016-08-25 2016-11-16 东莞市亚登电子有限公司 微型光学防抖摄像头模组
CN107340667A (zh) * 2017-08-25 2017-11-10 高瞻创新科技有限公司 一种整合相机模组的防抖微型云台
CN110673297A (zh) * 2019-11-12 2020-01-10 东莞市亚登电子有限公司 微型光学镜头自动对焦及防抖的驱动装置
CN111212214A (zh) * 2020-03-19 2020-05-29 维沃移动通信有限公司 防抖机构、摄像头模组及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115209020A (zh) * 2022-06-27 2022-10-18 联想(北京)有限公司 一种电子设备及信息处理方法
CN115209020B (zh) * 2022-06-27 2024-03-05 联想(北京)有限公司 一种电子设备及信息处理方法

Also Published As

Publication number Publication date
CN116349236A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
CN206584105U (zh) 镜头驱动机构
WO2021104013A1 (zh) 摄像头模组及电子设备
US9491364B2 (en) Camera module
CN107277304A (zh) 摄像模块及其控制方法
WO2021104017A1 (zh) 摄像头模组及电子设备
US11650430B2 (en) Method of adjusting optical system
CN206850893U (zh) 相机模块
TWM541586U (zh) 雙鏡頭驅動裝置及電子裝置
CN113572918B (zh) 潜望式连续光变模组及相应的多摄模组
US11493727B2 (en) Optical system
WO2020248444A1 (zh) 摄像头模组、电子设备及其光学防抖方法
JP2021535443A (ja) カメラモジュール
TW202132885A (zh) 相機模組與電子裝置
WO2022012246A1 (zh) 具有云台的摄像模组
WO2021232948A1 (zh) 具有防抖功能的感光组件、摄像模组及其组装方法
CN214381107U (zh) 相机模组及移动终端
US20230072601A1 (en) Prism actuator
CN213302731U (zh) 相机模块
CN114222051B (zh) 摄像组件和电子设备
CN215453078U (zh) 一种基于传感器位移技术的定焦马达结构
CN113949792B (zh) 具有云台的摄像模组
CN113949788B (zh) 具有云台的摄像模组
CN216057227U (zh) 一种感测组件、摄像模组及电子设备
WO2022147839A1 (zh) 线路板组件、摄像头模组及电子设备
WO2022161092A1 (zh) 一种云台模组、摄像头模组和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21841974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21841974

Country of ref document: EP

Kind code of ref document: A1