WO2022143475A1 - 一种信道信息的反馈方法、通信装置及通信系统 - Google Patents

一种信道信息的反馈方法、通信装置及通信系统 Download PDF

Info

Publication number
WO2022143475A1
WO2022143475A1 PCT/CN2021/141326 CN2021141326W WO2022143475A1 WO 2022143475 A1 WO2022143475 A1 WO 2022143475A1 CN 2021141326 W CN2021141326 W CN 2021141326W WO 2022143475 A1 WO2022143475 A1 WO 2022143475A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel information
wireless device
threshold
variation
change amount
Prior art date
Application number
PCT/CN2021/141326
Other languages
English (en)
French (fr)
Inventor
孙滢翔
刘辰辰
韩霄
杜瑞
张美红
杨讯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022143475A1 publication Critical patent/WO2022143475A1/zh
Priority to US18/341,059 priority Critical patent/US20230345283A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/043Power distribution using best eigenmode, e.g. beam forming or beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method, a communication device, and a communication system for feeding back channel information.
  • the wireless passive sensing technology can use the signal reflected by the radio wave on the human body to sense the human body movement. It meets the application requirements of wireless perception such as intrusion detection, elderly care, and indoor people counting.
  • channel state information channel state information, CSI
  • CSI channel state information
  • the receiving end device measures the CSI
  • it needs to feed back the measured CSI or the message used to determine the CSI to the transmitting end device, which occupies too many transmission resources;
  • Using for wireless sensing will reduce the efficiency of analysis of wireless sensing applications such as the originating device.
  • Embodiments of the present application provide a channel information feedback method, a communication device, and a communication system, which save transmission resources by selectively feeding back measurement reports related to channel information.
  • an embodiment of the present application provides a method for feeding back channel information, which is applied to a first wireless device, including: receiving a first message from a second wireless device, where the first message is used to notify measurement channel information, where The first message carries the first indication information related to the first wireless device, and the first indication information indicates the feedback condition; the channel information is measured according to the first message; channel information, and determine the variation of the first channel information; when the variation of the first channel information meets the feedback condition, feedback a measurement report to the second wireless device.
  • the first wireless device can selectively feed back the measurement report related to the channel information according to the feedback condition indicated to it by the second wireless device, so as to reduce the transmission resources occupied by the feedback. Applied to wireless sensing, it can reduce the message traffic in wireless sensing measurement, improve the efficiency of wireless sensing application analysis, and achieve the effect of completing the wireless sensing function at a lower cost.
  • the first indication information includes the first change amount threshold
  • the feedback condition is that the channel information change amount is greater than or equal to the first change amount threshold, or the feedback condition
  • the channel information change amount is less than or equal to the first change amount threshold.
  • the first wireless device determines the lower limit of the change amount or the upper limit of the change amount to be satisfied by the feedback according to the single change amount threshold value indicated to it by the second wireless device and in combination with the channel information change amount evaluation algorithm used by itself, so as to selectively feed back the channel information.
  • the related measurement report can reduce the transmission resources occupied by the feedback.
  • the first indication information includes a second variation threshold and a third variation threshold
  • the feedback condition is that the variation of the channel information is greater than or equal to the second variation threshold
  • the channel information change amount is less than or equal to the third change amount threshold.
  • the first wireless device determines the range of the variation value to be satisfied by the feedback according to the dual variation thresholds indicated to it by the second wireless device, so that the measurement report related to the channel information can be selectively fed back, which can reduce the transmission occupied by the feedback resource.
  • the first indication information includes a first sensitivity level
  • the first sensitivity level is related to a first variation threshold
  • the feedback condition is that the variation of the channel information is greater than or equal to The first change amount threshold, or the feedback condition is that the channel information change amount is less than or equal to the first change amount threshold.
  • the set sensitivity level is related to the change threshold
  • the second wireless device dynamically configures the current sensitivity level and the related change threshold for the first wireless device by indicating a certain sensitivity level, and configures the first wireless device with the current sensitivity level and the related change threshold.
  • the feedback conditions are more flexible and variable, and can be applied to wireless sensing scenarios with different degrees of sensitivity.
  • the first indication information includes a first sensitivity level
  • the first sensitivity level is related to the second variation threshold and the third variation threshold
  • the feedback condition is the channel
  • the information change amount is greater than or equal to the second change amount threshold
  • the channel information change amount is less than or equal to the third change amount threshold.
  • the set sensitivity level is related to the change threshold
  • the second wireless device dynamically configures the current sensitivity level and the related change threshold for the first wireless device by indicating a certain sensitivity level, and configures the first wireless device with the current sensitivity level and the related change threshold.
  • the feedback conditions are more flexible and variable, and can be applied to wireless sensing scenarios with different degrees of sensitivity.
  • the first indication information includes a sensitivity level range
  • the sensitivity level range includes at least one sensitivity level
  • a variation threshold related to the at least one sensitivity level is used to determine the the feedback conditions.
  • the first wireless device dynamically determines its own sensitivity level according to the sensitivity level range indicated by the second wireless device, and combines its own current situation such as signal reception strength, environment, surrounding detectable targets, etc., and then flexibly obtains the sensitivity level.
  • the feedback conditions applicable to the first wireless device can be applicable to wireless sensing scenarios of different sensitivity levels.
  • the first indication information further includes a first identifier, and the first identifier indicates a first channel information variation evaluation algorithm, and the feedback condition is that the channel information variation is greater than or equal to the the first change amount threshold; or the first identifier indicates a second channel information change amount evaluation algorithm, and the feedback condition is that the channel information change amount is less than or equal to the first change amount threshold.
  • the first channel information variation estimation algorithm includes a Mahalanobis distance method
  • the second channel information variation estimation algorithm includes a time-reversal resonance intensity method
  • the first indication information further includes a second identifier for indicating an interval mapping algorithm; the first channel information variation is determined according to the currently measured channel information and the historically measured channel information , comprising: comparing the channel information of the current measurement with the channel information of the historical measurement to obtain the second channel information variation; processing the second channel information variation according to the interval mapping algorithm to obtain the second channel information variation
  • the first channel information change amount, the first channel information change amount is in a first interval; wherein, the first interval includes the first change amount threshold, or the first interval includes the second change amount a threshold value and the third change amount threshold value.
  • the receiving the first message from the second wireless device includes: receiving the first message from the second wireless device at least twice.
  • the measuring the channel information according to the first message includes: after receiving the first message Within the first time period, a measurement message from the second wireless device is acquired, and the measurement message includes a training symbol; and a channel information measurement is performed according to the training symbol in the measurement message.
  • the first indication information further includes a configuration period of a measurement packet, and the measurement packet includes a training symbol; and the channel information measurement according to the first message includes : within the second time period, obtain the measurement message from the second wireless device once every said configuration period; every said configuration period, according to the training symbol in the newly obtained measurement message A measurement of channel information.
  • the second wireless device Within a certain valid time (eg, the second duration), the second wireless device only needs to initially send the first message once by indicating the configuration period of the measurement message, which can save signaling overhead and transmission resources.
  • the measurement packet includes a null data packet NDP
  • the first message includes a null data packet notification NDPA.
  • the first message further carries second indication information, where the second indication information indicates that the measured channel information is used for wireless sensing.
  • the range to be satisfied by feedback is set for the channel information change determined by the measurement, the first wireless device selectively feeds back the measurement report related to the channel information, and the message traffic in the wireless sensing measurement is reduced, and the second wireless device
  • the state of the detectable target around the first wireless device can also be quickly known, which facilitates improving the efficiency of wireless sensing application analysis, and achieves the effect of completing the wireless sensing function at a lower cost.
  • an embodiment of the present application provides a method for feeding back channel information, which is applied to a second wireless device, including: sending a first message to at least one first wireless device, where the first message is used to notify measurement channel information, The first message carries first indication information related to each of the first wireless devices, and the first indication information indicates a feedback condition; when the channel information change measured by the first wireless device meets the feedback condition , and receive a measurement report from the first wireless device.
  • the second wireless device indicates its respective corresponding feedback conditions to at least one first wireless device, and any first wireless device selectively feeds back measurement reports related to channel information based on its corresponding feedback conditions, reducing the number of Transmission resources occupied by the feedback.
  • any first wireless device selectively feeds back measurement reports related to channel information based on its corresponding feedback conditions, reducing the number of Transmission resources occupied by the feedback.
  • it can reduce the message traffic in wireless sensing measurement, improve the efficiency of wireless sensing application analysis, and achieve the effect of completing the wireless sensing function at a lower cost.
  • the first indication information includes the first change amount threshold
  • the feedback condition is that the channel information change amount is greater than or equal to the first change amount threshold, or the feedback condition
  • the channel information change amount is less than or equal to the first change amount threshold.
  • the first indication information includes a second variation threshold and a third variation threshold
  • the feedback condition is that the variation of the channel information is greater than or equal to the second variation threshold
  • the channel information change amount is less than or equal to the third change amount threshold.
  • the first indication information includes a first sensitivity level
  • the first sensitivity level is related to a first variation threshold
  • the feedback condition is that the variation of the channel information is greater than or equal to The first change amount threshold, or the feedback condition is that the channel information change amount is less than or equal to the first change amount threshold.
  • the set sensitivity level is related to the change threshold
  • the second wireless device dynamically configures the current sensitivity level and the related change threshold for the first wireless device by indicating a certain sensitivity level, and configures the first wireless device with the current sensitivity level and the related change threshold.
  • the feedback conditions are more flexible and variable, and can be applied to wireless sensing scenarios with different degrees of sensitivity.
  • the first indication information includes a first sensitivity level
  • the first sensitivity level is related to the second variation threshold and the third variation threshold
  • the feedback condition is the channel
  • the information change amount is greater than or equal to the second change amount threshold
  • the channel information change amount is less than or equal to the third change amount threshold.
  • the set sensitivity level is related to the change threshold
  • the second wireless device dynamically configures the current sensitivity level and the related change threshold for the first wireless device by indicating a certain sensitivity level, and configures the first wireless device with the current sensitivity level and the related change threshold.
  • the feedback conditions are more flexible and variable, and can be applied to wireless sensing scenarios with different degrees of sensitivity.
  • the first indication information includes a sensitivity level range
  • the sensitivity level range includes at least one sensitivity level
  • a variation threshold related to the at least one sensitivity level is used to determine the the feedback conditions.
  • the first indication information further includes a first identifier, and the first identifier indicates a first channel information variation evaluation algorithm, and the feedback condition is that the channel information variation is greater than or equal to the the first change amount threshold; or the first identifier indicates a second channel information change amount evaluation algorithm, and the feedback condition is that the channel information change amount is less than or equal to the first change amount threshold.
  • the first channel information variation estimation algorithm includes a Mahalanobis distance method
  • the second channel information variation estimation algorithm includes a time-reversal resonance intensity method
  • the first indication information further includes a second identifier for indicating the interval mapping algorithm.
  • the channel information variation measured and determined by each first wireless device and the related variation threshold are in the same interval, which facilitates comparison between the two and improves the accuracy of selective feedback.
  • the sending the first message to the at least one first wireless device includes: sending the first message to the at least one first wireless device at least twice.
  • the method further includes: within a first time period after sending the first message, sending a measurement message, where the measurement message includes training symbols ; wherein, the first duration refers to the time difference between two adjacent sending of the first message.
  • the first indication information further includes a configuration period of a measurement packet, and the measurement packet includes a training symbol.
  • the measurement packet includes a null data packet NDP
  • the first message includes a null data packet notification NDPA.
  • the first message further carries second indication information, where the second indication information indicates that the measured channel information is used for wireless sensing.
  • the range that the feedback needs to meet is set for the channel information change determined by the measurement, so that the first wireless device can selectively feed back the measurement report related to the channel information, so as to reduce the message traffic in the wireless sensing measurement, and the second wireless device can selectively feed back the channel information.
  • the device can also quickly learn the state of the detectable target around the first wireless device, which facilitates improving the efficiency of wireless sensing application analysis and achieves the effect of completing the wireless sensing function at a lower cost.
  • an embodiment of the present application provides a communication apparatus, where the communication apparatus is applied to a first wireless device, and the communication apparatus includes a unit (or a unit for executing each step in any optional implementation manner of the first aspect) referred to as modules, functional modules), for example, a communication device includes a communication module and a processing module.
  • the communication module is configured to receive a first message from a second wireless device, where the first message is used to notify measurement channel information, and the first message carries first indication information related to the first wireless device, so The first indication information indicates a feedback condition; the processing module is used to measure the channel information according to the first message; the processing module is also used to determine the channel information according to the current measurement and the channel information of the historical measurement.
  • the first channel information change; the communication module is further configured to feed back a measurement report to the second wireless device when the first channel information change meets the feedback condition.
  • the first wireless device can selectively feed back a measurement report related to channel information according to the feedback condition indicated to it by the second wireless device, so as to reduce the transmission resources occupied by the feedback.
  • a measurement report related to channel information according to the feedback condition indicated to it by the second wireless device, so as to reduce the transmission resources occupied by the feedback.
  • it can reduce the message traffic in wireless sensing measurement, improve the efficiency of wireless sensing application analysis, and achieve the effect of completing the wireless sensing function at a lower cost.
  • the first indication information includes the first change amount threshold
  • the feedback condition is that the channel information change amount is greater than or equal to the first change amount threshold, or the feedback condition
  • the channel information change amount is less than or equal to the first change amount threshold.
  • the first wireless device determines the lower limit of the change amount or the upper limit of the change amount to be satisfied by the feedback according to the single change amount threshold value indicated to it by the second wireless device and in combination with the channel information change amount evaluation algorithm used by itself, so as to selectively feed back the channel information.
  • the related measurement report can reduce the transmission resources occupied by the feedback.
  • the first indication information includes a second variation threshold and a third variation threshold
  • the feedback condition is that the variation of the channel information is greater than or equal to the second variation threshold
  • the channel information change amount is less than or equal to the third change amount threshold.
  • the first wireless device determines the range of the variation value to be satisfied by the feedback according to the dual variation thresholds indicated to it by the second wireless device, so that the measurement report related to the channel information can be selectively fed back, which can reduce the transmission occupied by the feedback resource.
  • the first indication information includes a first sensitivity level
  • the first sensitivity level is related to a first variation threshold
  • the feedback condition is that the variation of the channel information is greater than or equal to The first change amount threshold, or the feedback condition is that the channel information change amount is less than or equal to the first change amount threshold.
  • the set sensitivity level is related to the change threshold
  • the second wireless device dynamically configures the current sensitivity level and the related change threshold for the first wireless device by indicating a certain sensitivity level, and configures the first wireless device with the current sensitivity level and the related change threshold.
  • the feedback conditions are more flexible and variable, and can be applied to wireless sensing scenarios with different degrees of sensitivity.
  • the first indication information includes a first sensitivity level
  • the first sensitivity level is related to the second variation threshold and the third variation threshold
  • the feedback condition is the channel
  • the information change amount is greater than or equal to the second change amount threshold
  • the channel information change amount is less than or equal to the third change amount threshold.
  • the set sensitivity level is related to the change threshold
  • the second wireless device dynamically configures the current sensitivity level and the related change threshold for the first wireless device by indicating a certain sensitivity level, and configures the first wireless device with the current sensitivity level and the related change threshold.
  • the feedback conditions are more flexible and variable, and can be applied to wireless sensing scenarios with different degrees of sensitivity.
  • the first indication information includes a sensitivity level range
  • the sensitivity level range includes at least one sensitivity level
  • a variation threshold related to the at least one sensitivity level is used to determine the the feedback conditions.
  • the first wireless device dynamically determines its own sensitivity level according to the sensitivity level range indicated by the second wireless device, and combines its own current situation such as signal reception strength, environment, surrounding detectable targets, etc., and then flexibly obtains the sensitivity level.
  • the feedback conditions applicable to the first wireless device can be applicable to wireless sensing scenarios of different sensitivity levels.
  • the first indication information further includes a first identifier, and the first identifier indicates a first channel information variation evaluation algorithm, and the feedback condition is that the channel information variation is greater than or equal to the the first change amount threshold; or the first identifier indicates a second channel information change amount evaluation algorithm, and the feedback condition is that the channel information change amount is less than or equal to the first change amount threshold.
  • the first channel information variation estimation algorithm includes a Mahalanobis distance method
  • the second channel information variation estimation algorithm includes a time-reversal resonance intensity method
  • the first indication information further includes a second identifier for indicating an interval mapping algorithm
  • the processing module is further configured to: compare the currently measured channel information with the history Comparing the measured channel information to obtain the second channel information variation; processing the second channel information variation according to the interval mapping algorithm to obtain the first channel information variation, the first channel information variation The amount is in a first interval; wherein the first interval includes the first change threshold, or the first interval includes the second change threshold and the third change threshold.
  • the communication module is specifically configured to receive the first message from the second wireless device at least twice.
  • the communication module is further configured to receive the first message from the second wireless device for any one of the at least two times, and within a first time period after receiving the first message, obtain information from the second wireless device.
  • the measurement message of the second wireless device, where the measurement message includes training symbols; the processing module is further configured to measure the channel information once according to the training symbols in the measurement message.
  • the first indication information further includes a configuration period of a measurement packet, and the measurement packet includes a training symbol; the processing module is further configured to: Acquire the measurement message from the second wireless device once every configuration period; and measure the channel information once every configuration period according to the training symbol in the newly acquired measurement message.
  • the second wireless device Within a certain valid time (eg, the second duration), the second wireless device only needs to initially send the first message once by indicating the configuration period of the measurement message, which can save signaling overhead and transmission resources.
  • the measurement packet includes a null data packet NDP
  • the first message includes a null data packet notification NDPA.
  • the first message further carries second indication information, where the second indication information indicates that the measured channel information is used for wireless sensing.
  • the range to be satisfied by feedback is set for the channel information change determined by the measurement, the first wireless device selectively feeds back the measurement report related to the channel information, and the message traffic in the wireless sensing measurement is reduced, and the second wireless device
  • the state of the detectable target around the first wireless device can also be quickly known, which facilitates improving the efficiency of wireless sensing application analysis, and achieves the effect of completing the wireless sensing function at a lower cost.
  • an embodiment of the present application provides a communication apparatus, where the communication apparatus is applied to a second wireless device, and the communication apparatus includes a unit (or a unit for executing each step in any optional implementation manner of the second aspect) referred to as modules, functional modules), for example, a communication device includes a communication module and a processing module.
  • the processing module is configured to determine at least one first wireless device; the processing module is further configured to determine first indication information related to at least one first wireless device, where the first indication information indicates a feedback condition; and a communication module, is used to send a first message to at least one first wireless device, where the first message is used to notify measurement channel information, and the first message carries first indication information related to each of the first wireless devices; the communication The module is further configured to receive a measurement report from the first wireless device when the channel information variation measured by the first wireless device meets the feedback condition.
  • the second wireless device indicates its respective corresponding feedback conditions to at least one first wireless device, and any first wireless device selectively feeds back measurement reports related to channel information based on its corresponding feedback conditions, reducing the number of Transmission resources occupied by the feedback.
  • any first wireless device selectively feeds back measurement reports related to channel information based on its corresponding feedback conditions, reducing the number of Transmission resources occupied by the feedback.
  • it can reduce the message traffic in wireless sensing measurement, improve the efficiency of wireless sensing application analysis, and achieve the effect of completing the wireless sensing function at a lower cost.
  • the first indication information includes the first change amount threshold
  • the feedback condition is that the channel information change amount is greater than or equal to the first change amount threshold, or the feedback condition
  • the channel information change amount is less than or equal to the first change amount threshold.
  • the first indication information includes a second variation threshold and a third variation threshold
  • the feedback condition is that the variation of the channel information is greater than or equal to the second variation threshold
  • the channel information change amount is less than or equal to the third change amount threshold.
  • the first indication information includes a first sensitivity level
  • the first sensitivity level is related to a first variation threshold
  • the feedback condition is that the variation of the channel information is greater than or equal to The first change amount threshold, or the feedback condition is that the channel information change amount is less than or equal to the first change amount threshold.
  • the set sensitivity level is related to the change threshold
  • the second wireless device dynamically configures the current sensitivity level and the related change threshold for the first wireless device by indicating a certain sensitivity level, and configures the first wireless device with the current sensitivity level and the related change threshold.
  • the feedback conditions are more flexible and variable, and can be applied to wireless sensing scenarios with different degrees of sensitivity.
  • the first indication information includes a first sensitivity level
  • the first sensitivity level is related to the second variation threshold and the third variation threshold
  • the feedback condition is the channel
  • the information change amount is greater than or equal to the second change amount threshold
  • the channel information change amount is less than or equal to the third change amount threshold.
  • the set sensitivity level is related to the change threshold
  • the second wireless device dynamically configures the current sensitivity level and the related change threshold for the first wireless device by indicating a certain sensitivity level, and configures the first wireless device with the current sensitivity level and the related change threshold.
  • the feedback conditions are more flexible and variable, and can be applied to wireless sensing scenarios with different degrees of sensitivity.
  • the first indication information includes a sensitivity level range
  • the sensitivity level range includes at least one sensitivity level
  • a variation threshold related to the at least one sensitivity level is used to determine the the feedback conditions.
  • the first indication information further includes a first identifier, and the first identifier indicates a first channel information variation evaluation algorithm, and the feedback condition is that the channel information variation is greater than or equal to the the first change amount threshold; or the first identifier indicates a second channel information change amount evaluation algorithm, and the feedback condition is that the channel information change amount is less than or equal to the first change amount threshold.
  • the first channel information variation estimation algorithm includes a Mahalanobis distance method
  • the second channel information variation estimation algorithm includes a time-reversal resonance intensity method
  • the first indication information further includes a second identifier for indicating the interval mapping algorithm.
  • the channel information variation measured and determined by each first wireless device and the related variation threshold are in the same interval, which facilitates comparison between the two and improves the accuracy of selective feedback.
  • the communication module is specifically configured to send the first message to the aforementioned at least one first wireless device at least twice.
  • the communication module is further configured to send the first message for any one of the at least two times, and send a measurement message within a first time period after sending the first message, where the measurement message includes training symbol; wherein, the first duration refers to the time difference between two consecutive sending of the first message.
  • the first indication information further includes a configuration period of a measurement packet, and the measurement packet includes a training symbol.
  • the measurement packet includes a null data packet NDP
  • the first message includes a null data packet notification NDPA.
  • the first message further carries second indication information, where the second indication information indicates that the measured channel information is used for wireless sensing.
  • the range that the feedback needs to meet is set for the channel information change determined by the measurement, so that the first wireless device can selectively feed back the measurement report related to the channel information, so as to reduce the message traffic in the wireless sensing measurement, and the second wireless device can selectively feed back the channel information.
  • the device can also quickly learn the state of the detectable target around the first wireless device, which facilitates improving the efficiency of wireless sensing application analysis and achieves the effect of completing the wireless sensing function at a lower cost.
  • an embodiment of the present application provides a communication device, including a processor, wherein the processor is coupled with a memory, the memory is used for storing program instructions, and the processor is used for executing the program instructions, so as to execute the above-mentioned first Various implementations of one aspect or the second aspect.
  • the memory may be located within the device or external to the device.
  • the number of the processors is one or more.
  • an embodiment of the present application provides a communication device, including: a processor and an interface circuit, where the interface circuit is used to communicate with other devices, and the processor is used for each implementation method of the first aspect or the second aspect. .
  • an embodiment of the present application provides a communication system, including: a communication device for executing the implementation methods of the first aspect, and a communication device for executing the implementation methods of the second aspect.
  • an embodiment of the present application further provides a chip system, including: a processor configured to execute each implementation method of the first aspect or the second aspect.
  • an embodiment of the present application further provides a computer program product, the computer product includes a computer program, and when the computer program runs, each implementation method of the first aspect or the second aspect is executed.
  • embodiments of the present application further provide a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium runs on a computer, each of the above-mentioned first aspect or the second aspect can be implemented method is executed.
  • Fig. 1 is a schematic diagram of the principle of wireless perception
  • Fig. 2 is one of the schematic flow charts of the method for determining channel state information
  • FIG. 3 is the second schematic flowchart of the method for determining channel state information
  • FIG. 4 is the third schematic flowchart of the method for determining channel state information
  • FIG. 5 is a fourth schematic flowchart of a method for determining channel state information
  • Fig. 6 is the fifth schematic flow chart of the method for determining channel state information
  • FIG. 7 is an architecture diagram of a communication system provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another application scenario provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a method for feeding back channel information according to an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of transmission between an AP and a STA provided by an embodiment of the present application.
  • FIG. 12 is one of the schematic diagrams of the NDPA frame structure provided by the embodiment of the present application.
  • FIG. 13a is the second schematic diagram of the NDPA frame structure provided by the embodiment of the present application.
  • FIG. 13b is the third schematic diagram of the NDPA frame structure provided by the embodiment of the application.
  • FIG. 14 is a fourth schematic diagram of an NDPA frame structure provided by an embodiment of the present application.
  • FIG. 15a is a fifth schematic diagram of an NDPA frame structure provided by an embodiment of the present application.
  • FIG. 15b is the sixth schematic diagram of the NDPA frame structure provided by the embodiment of the application.
  • FIG. 16 is a seventh schematic diagram of an NDPA frame structure provided by an embodiment of the present application.
  • FIG. 17 is the eighth schematic diagram of the NDPA frame structure provided by the embodiment of the application.
  • FIG. 18 is a structural block diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 19 is one of the schematic structural diagrams of a communication device provided by an embodiment of the present application.
  • FIG. 20 is a second schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the embodiments of the present application can be applied to wireless communication networks, such as WiFi networks, 4G networks (eg, LTE), 5G networks, and the like.
  • wireless communication networks such as WiFi networks, 4G networks (eg, LTE), 5G networks, and the like.
  • the originating device can adjust the phase and amplitude of the transmitted signal to increase the gain of the antenna when transmitting signals in certain spatial directions.
  • the receiving device can also adjust the phase and amplitude of the received signal to increase the gain of the antenna when it receives signals in certain spatial directions.
  • the channel information is used to reflect the status of the wireless channel, including channel state information (CSI).
  • CSI channel state information
  • a wireless fidelity (wireless fidelity, WiFi) protocol measurement is performed for each orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) subcarrier group to obtain a CSI matrix corresponding to the OFDM subcarrier group.
  • the number of rows of the CSI matrix is the number of transmit antennas, and the number of columns of the CSI matrix is the number of receive antennas.
  • the element of each CSI matrix is a complex number with real and imaginary parts. Therefore, in the case of a large number of antennas and a large number of subcarriers, the overall data volume of CSI can reach more than 3000 bytes per packet.
  • the number of subcarriers is 114, and the number of transmit antennas and the number of receive antennas are both 4.
  • the CSI for each subcarrier is a matrix with four rows and columns. Each element in this matrix is a complex number. The real part and the imaginary part of the complex number are each represented by 8 bits. In this way, if CSI on 114 subcarriers is transmitted, 3648 bytes are used for transmission. Even if the compression algorithm in Institute of Electrical and Electronics Engineers (IEEE) 802.11ac is used to process CSI on 114 sub-carriers, the data volume of the processed data is still in the kilobyte, which takes up more transmission resources. , such as a large consumption of communication bandwidth resources.
  • IEEE Institute of Electrical and Electronics Engineers
  • the training symbols are used to measure the channel information.
  • the originating device may include special training symbols in the sent measurement message. In this way, the receiving end device can measure the channel information according to the structure of the known training symbols.
  • the preamble part in the measurement message includes a sequence known to both the sending end device and the receiving end device. After the receiving end device receives the message, the receiving end device extracts the leading part of the message, and divides the received leading part by the known sequence stored at the local end to obtain the corresponding channel information, such as CSI.
  • the measurement packet may be a data packet carrying a special training symbol, such as a null data packet (NDP) or a physical layer protocol date unit (PPDU).
  • NDP null data packet
  • PPDU physical layer protocol date unit
  • Wireless passive sensing is a technology that uses the signal reflected by radio waves on the target to be detected (such as the human body) to perceive the motion of the target to be detected.
  • the wireless device may be a mobile phone, a computer, a wireless router, a smart home device, a wireless sensor, a wireless router, and the like. These wireless devices are characterized by large quantities, low prices, and close proximity to users.
  • the wireless communication device since the movement of the target to be detected (such as the human body) may interfere with the wireless signal, which will lead to the change of the wireless channel, the wireless communication device can perceive the surrounding to be detected based on the change of the wireless channel. target movement.
  • wireless passive sensing technology uses a principle similar to "human radar" to perceive the surrounding human body, as shown in Figure 1.
  • the wireless passive sensing system includes an originating device 110 and a terminating device 120 .
  • the number of the receiving end device 120 may be one or multiple. Only one originating device and one terminating device are shown in FIG. 1 .
  • the originating device 110 and the terminating device 120 may be separate physical devices, or may be set in the same physical device.
  • the wireless signal received by the receiving end device 120 includes the direct signal 140 and the reflected signal 150 reflected by the target 130 to be detected. When the object to be detected 130 moves, the reflected signal 150 also changes. Correspondingly, the superimposed wireless signal received by the receiving end device 120 also changes. At this time, the receiving end device 120 detects that the wireless channel has changed.
  • the change of the wireless channel in the communication protocol is quantified and expressed as the change of the channel information (eg CSI), which can be embodied as the change of the amplitude of the CSI and/or the change of the phase of the CSI. That is to say, based on the measured CSI, the receiving end device 120 perceives whether there is a target to be detected in the surroundings, or the motion status of the target to be detected. Therefore, wireless passive sensing technology can be widely used in wireless sensing applications such as intrusion detection, elderly care, gesture recognition, breathing and sleep monitoring, and indoor people counting.
  • CSI channel information
  • wireless passive sensing technology Compared with traditional sensing technologies based on cameras or wearable devices such as wristbands, wireless passive sensing technology has the following advantages: First, wireless passive sensing technology does not require any hardware cost. Existing wireless communication protocols such as WiFi support the interference of wireless channels in the form of CSI. Second, the user does not need to wear any equipment, and the interference to the user is small. As a result, the wireless passive sensing technology can monitor the elderly, children, etc., and also facilitate the detection of non-cooperative targets (such as intruding thieves). Third, wireless passive sensing technology has little impact on user privacy. Thus, the wireless communication device implementing the wireless passive sensing technology can be deployed in areas such as bedrooms and bathrooms.
  • wireless passive sensing technology can effectively sense. Even wireless passive sensing technology enables multi-room sensing across walls. Fifth, in terms of sensing accuracy, the sensing accuracy of wireless passive sensing technology is very high, and it can sense weak movements such as breathing.
  • the multiple involved in the embodiments of the present application refers to two or more.
  • "And/or" which describes the association relationship of the associated objects, means that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" generally indicates that the associated objects are an "or” relationship.
  • first, second, etc. may be used to describe various objects in the embodiments of the present invention, these objects should not be limited by these terms. These terms are only used to distinguish each object from one another.
  • Existing CSI measurement technologies such as the CSI measurement technology of IEEE 802.11, are mostly designed for beamforming or ranging in the wireless communication process, without considering the application requirements of wireless sensing.
  • the existing CSI measurement technologies mainly include the following five:
  • the first is the implicit feedback of IEEE 802.11n
  • the implicit feedback method of IEEE 802.11n utilizes the reciprocity of the wireless channel (channel reciprocity), that is, in the process of two-way communication, the channel measurement from the receiving device to the sending device and the channel measurement from the sending device to the receiving device are equal. price.
  • the processing steps of the implicit feedback method of IEEE 802.11n include: after the originating device acquires a transmission opportunity (transmit opportunity, TXOP), the originating device sends the first packet to the receiving device.
  • the first packet carries a training request (TRQ).
  • the receiving device receives the first packet from the sending device.
  • the receiving device sends an acknowledgement (acknowledgement, ACK) message to the sending device.
  • the ACK message includes training symbols.
  • the originating device receives the ACK message from the receiving device.
  • the sending device determines the CSI (ie, reverse CSI) of the wireless channel from the receiving device to the sending device according to the training symbols in the ACK message. Then, according to the reciprocity of the wireless channel and the reverse CSI, the CSI of the wireless channel from the originating device to the receiving end device is estimated, and the beamforming is performed according to the CSI of the wireless channel from the originating device to the receiving end device to determine the beam.
  • the assigned parameter When the sending end device sends a packet to the receiving end device, the beamforming parameters can be used to perform beamforming.
  • the transmitting end device transmits the message to the receiving end device using the shaped beam.
  • the receiving device receives the message from the sending device.
  • the parameter part in the message is the data to be transmitted (data).
  • the receiving device After the receiving device determines that the packet is successfully received, the receiving device sends a batch acknowledgement (BA) message to the sending device.
  • the originating device receives the BA message from the terminating device. That is to say, the receiving end device does not feed back the specific information of the CSI, but feeds back the ACK message carrying the training symbols, so that the transmitting end device determines the corresponding CSI.
  • the transmitting end device and the receiving end device first perform a calibration operation.
  • the specific implementation process of the calibration operation is as follows: after the originating device acquires a TXOP, the originating device sends a TRQ to the receiving device to request the receiving device to perform calibration. Afterwards, the transmitting end device and the receiving end device exchange messages carrying training symbols, so that the other party determines CSI according to the messages carrying training symbols. Finally, the receiving end device feeds back the determined CSI to the sending end device.
  • the transmitting end device compares the CSI fed back by the receiving end device and the CSI determined by itself to achieve calibration and reduce the channel reciprocity deviation caused by hardware factors.
  • the channel conditions from the sending device to the receiving device are estimated, without the need for the receiving device to feed back the specific information of the CSI to the sending device, and the CSI determination can be completed within one TXOP.
  • the implicit feedback method of IEEE 802.11n is closely integrated with data transmission, and the applicable scenario is the scenario where data is transmitted over a single link.
  • the second is the explicit feedback of IEEE 802.11n
  • the receiving device directly displays the feedback CSI to the transmitting device, and no calibration process is required.
  • the processing steps of the IEEE 802.11n display feedback method include: the originating device acquires a TXOP, that is, TXOP1 in FIG. 3 .
  • TXOP1 the originating device sends a message to the receiving device.
  • the message includes a Null Data Packet Announcement (NDPA) and a CSI measurement request to inform the receiving end device to prepare for CSI measurement.
  • NDPA Null Data Packet Announcement
  • the receiving device receives the message from the sending device.
  • the receiving device sends a BA message to the sending device to inform the sending device that the message has been received.
  • the originating device receives the BA message from the terminating device.
  • the sending device sends (null data packet, NDP) to the receiving device.
  • the receiving device receives the NDP from the transmitting device.
  • One TXOP ie TXOP1 acquired by the originating device ends.
  • the receiving end device determines the CSI according to the NDP, and acquires a TXOP, namely TXOP2, by means of competing channels.
  • TXOP2 the receiving device sends CSI to the sending device.
  • the originating device receives the CSI from the terminating device.
  • the originating device performs beamforming processing according to the CSI.
  • CSI is carried in a CSI response frame (action frame), a non-compressed beamforming action frame (non-compressed beamforming action frame), or a compressed beamforming action frame (compressed beamforming action frame), and the CSI data can be compressed data, or uncompressed data.
  • the third type the multi-user multiple input multiple output system of IEEE 802.11ac (multi-user multiple input multiple output, MU-MIMO)
  • the IEEE 802.11ac MU-MIMO method supports a multi-user simultaneous transmission protocol, and the sender device requests multiple receiver devices to measure at the same time.
  • the originating device may be an access point (access point, AP).
  • the processing steps of the IEEE 802.11ac MU-MIMO method include: the originating device transmits NDPA in a very high throughput (VHT) format to a plurality of receiving end devices respectively, so as to inform the multiple receiving end devices that the channel measurement.
  • the multiple receiving end devices respectively receive the NDPA in the VHT format from the sending end device.
  • the originating device sends NDPs in VHT format to multiple terminating devices respectively.
  • the multiple receiving end devices respectively receive the NDP from the sending end device.
  • the multiple receiving end devices respectively determine corresponding CSI according to the NDP.
  • the first receiving end device After determining the CSI, the first receiving end device feeds back the CSI to the transmitting end device according to the CSI format indicated by NDPA. Then, the originating device performs the polling process in sequence, and sends a result pulling message to the destination devices other than the first destination device among the multiple destination devices, so as to request the corresponding destination device to send a message to the originating device. Feedback CSI.
  • the receiving-end devices feed back CSI to the sending-end device. In the scenario shown in FIG. 4 , only two end devices are shown, namely end device 1 and end device 2 .
  • the receiving end device 1 is the "first receiving end device”
  • the receiving end device 2 is "the receiving end device other than the first receiving end device among the multiple terminal devices”.
  • the processing steps of the ranging method of IEEE 802.11az include: the originating device sends a ranging poll request to a plurality of terminating devices respectively, and correspondingly, a plurality of terminating devices respectively receive data from the originating device. Ranging pull request. If the receiving end device determines to participate in the ranging, the receiving end device sends a permission to send (cts-to-self) message to the transmitting end device to inform the transmitting end device to participate in the ranging.
  • the originating device sends a range sounding message to a plurality of terminating devices in turn, so as to inform the corresponding terminating devices to feed back the NDP.
  • the receiving end device receives the ranging probe message from the transmitting end device.
  • the receiving device sends an NDP to the sending device.
  • the sending device receives the NDP from the receiving device.
  • the originating device determines the CSI according to the NDP. After the originating device acquires the CSI from the receiving device to the originating device, the originating device sends the NDPA for ranging to the receiving device, so as to inform the receiving device that the CSI measurement is about to be performed. Then, the originating device sends an NDP to the terminating device.
  • the receiving device receives the NDP from the transmitting device.
  • the receiving end device determines the CSI according to the NDP.
  • the receiving end device carries the CSI in a location measurement report (location measurement report, LMR), and feeds back the LMR to the transmitting end device.
  • the originating device receives the LMR from the terminating device. In this way, the originating device can obtain the CSI sent in the uplink direction and the downlink direction, and perform ranging according to the CSI in the two directions.
  • LMR location measurement report
  • the originating device receives the LMR from the terminating device. In this way, the originating device can obtain the CSI sent in the uplink direction and the downlink direction, and perform ranging according to the CSI in the two directions.
  • FIG. 5 only two end devices are shown, namely end device 1 and end device 2 .
  • the receiving end device 1 is the "first receiving end device”
  • the receiving end device 2 is "the receiving end device other than the first receiving end device among the multiple terminal devices”.
  • the processing steps of determining CSI by broadcasting NDP include: the originating device sends NDPAs to multiple terminating devices respectively, and correspondingly, the terminating devices respectively receive NDPAs from the originating devices.
  • NDPA is used to indicate that the receiving end device is about to perform CSI measurement.
  • the originating device sends NDPs to multiple terminating devices respectively.
  • the receiving end device respectively receives the NDP from the transmitting end device.
  • the receiving end device determines the CSI according to the NDP.
  • NDPA is also used to instruct the first receiving end device to feed back CSI.
  • the first receiving device sends CSI to the transmitting device in response to NDPA.
  • the first receiving end device may feed back part of the channel information to the transmitting end device, and may also feed back information indicating that the channel has not changed to the transmitting end device. Then, the originating device sends a CSI pull (poll) message to the other terminating devices except the first terminating device among the multiple terminating devices, so as to request the other terminating devices except the first terminating device among the multiple terminating devices. Other receiving end devices other than feed back CSI.
  • the other receiving end devices except the first receiving end device among the plurality of receiving end devices respectively receive the CSI pull message from the sending end device, and feed back CSI to the sending end device according to the CSI pulling message.
  • end device 1 and end device 2 only two end devices are shown, namely end device 1 and end device 2 .
  • the receiving end device 1 is "the first receiving end device”
  • the receiving end device 2 is "the receiving end device except the first receiving end device among the plurality of receiving end devices”.
  • each receiving end device feeds back messages to the transmitting end device.
  • the wireless sensing application scenario most of the objects in the environment are stationary. If each receiving device feeds back messages to the transmitting device, it may occupy too many transmission resources. And the amount of data is relatively large, and directly used for wireless sensing will reduce the efficiency of wireless sensing application analysis by the originating device.
  • an embodiment of the present application provides a method for feeding back channel information.
  • the transmitting end device can indicate the feedback condition to the receiving end device, and the receiving end device can selectively feed back the measurement report related to the channel information based on the feedback condition.
  • the receiving end device can selectively feed back the measurement report related to the channel information based on the feedback condition.
  • the feedback method of the channel information provided in the embodiments of the present application can be applied to various communication systems, for example, a global system of mobile communication (GSM) system, a code division multiple access (code division multiple access, CDMA) system, Wideband code division multiple access (WCDMA) system, general packet radio service (GPRS), long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (TDD), 5G New Radio (NR) system, universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access, WiMAX), wireless local area network (wireless local area network, WLAN) system or WiFi system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA Wideband code division multiple access
  • GPRS general packet radio service
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD LTE time division duplex
  • NR 5G New Radio
  • the WiFi system includes a second wireless device and a first wireless device.
  • the first wireless device may be a station (station, STA), or a terminal device, such as a mobile phone, a tablet computer, etc., or a device with integrated WiFi function in a home or office environment, such as a printer, a smart TV, a smart light bulbs etc.
  • the second wireless device may be an AP, or may be a terminal device, such as a mobile phone, a tablet computer, and the like.
  • the second wireless device can be used to communicate with the first wireless device through a wireless local area network, and transmit data of the first wireless device to the network side, or transmit data from the network side to the first wireless device.
  • the number of the second wireless device may be one or multiple. Only two second wireless devices such as second wireless device 701 and second wireless device 705 are shown in FIG. 7 .
  • the number of the first wireless device may be one or multiple. Only three first wireless devices, such as first wireless device 702 , first wireless device 703 and first wireless device 704 are shown in FIG. 7 .
  • the link over which the second wireless device receives the information of the first wireless device is called the uplink, such as the uplink 710 shown by the dashed arrow in FIG. 7 .
  • the link over which information is sent from the second wireless device to the first wireless device is called a downlink, such as the downlink 711 shown by the dashed arrow in FIG. 7 .
  • the link between the second wireless devices is referred to as a control link, such as control link 712 shown in FIG. 7 as a solid bidirectional arrow.
  • the control link can be a wired connection or a wireless connection.
  • Information is transmitted between the second wireless devices to coordinate monitoring and meet the application requirements of wireless perception.
  • the embodiments of the present application only take a WiFi system as an example for description, but the embodiments of the present application are not limited thereto, and the methods and apparatuses of the embodiments of the present invention may also be applied to other communication systems.
  • the embodiments of the present application take APs and STAs in a WiFi system as examples for description, but this does not mean that the embodiments of the present application are limited to such examples.
  • the solutions of the embodiments of the present application may also be applied to network devices and terminal devices in other communication systems.
  • the network device implements the function of the second wireless device in the embodiment of the present application
  • the terminal device implements the function of the first wireless device in the embodiment of the present application.
  • the embodiments of the present application focus on describing the transmission process between the second wireless device and the first wireless device.
  • the second wireless device is responsible for notifying the first wireless device to measure channel information and indicating feedback conditions to the first wireless device, and the second wireless device may also be described as a master node or the aforementioned originating device.
  • the first wireless device is responsible for measuring the channel information and decides whether to feed back a measurement message related to the channel information based on the feedback conditions indicated by the second wireless device.
  • the first wireless device may also be described as a measurement node or the aforementioned receiving end device.
  • the application scenarios of the embodiments of the present application include the following two typical scenarios.
  • the first typical scenario applied to the home environment.
  • the second wireless device 801 exchanges information with the first wireless device 802 , the first wireless device 803 , and the first wireless device 806 in the bedroom, respectively, to monitor the user's sleep status.
  • the second wireless device 801 exchanges information with the first wireless device 804 in the living room to monitor the condition of the living room.
  • Information exchange is performed between the second wireless device 801 and the first wireless device 805 in the bathroom to monitor the situation of the bathroom.
  • the second wireless device 801 can send a warning to the device of the medical institution, and notify the medical staff to give rescue in time.
  • the second wireless device 801 exchanges information with the first wireless device 807 in the bedroom to monitor the condition of the bedroom.
  • the second wireless device 801 interacts with the first wireless device 808 in the kitchen to monitor the state of the kitchen.
  • the second typical scenario the area to be monitored specified in the industrial environment, or the to-be-monitored area specified by the scenario applied in the commercial environment.
  • the number of second wireless devices may be multiple.
  • three second wireless devices are arranged, namely a second wireless device 901 , a second wireless device 902 and a second wireless device 903 , and the three second wireless devices are arranged in the center of the area to be monitored area.
  • a solid line with a bidirectional arrow between the two second wireless devices is used to represent the link between the two second wireless devices.
  • the number of the first wireless devices may also be multiple, which are the first wireless device 910, the first wireless device 911, the first wireless device 912, the first wireless device 913, the first wireless device 914, the first wireless device 915, and the The first wireless device 916.
  • the first wireless device 910 , the first wireless device 911 and the first wireless device 912 are arranged in the area near the entrance and exit of the area to be monitored.
  • the first wireless device 913 is arranged in the conference room.
  • the first wireless device 914 , the first wireless device 915 and the first wireless device 916 are arranged in the edge area of the area to be monitored.
  • a dashed line with a double arrow between a second wireless device and a first wireless device is used to represent the link between the second wireless device and the first wireless device.
  • information exchange is performed between the second wireless device 901 and the first wireless device 910 to monitor the access conditions at the entrances and exits of the area to be monitored.
  • Information is exchanged between the second wireless device 903 and the first wireless device 913 to count the occupancy of the conference room and/or the number of people in the conference room.
  • the following describes in detail the feedback method for providing channel information and the interaction between the first wireless device and the second wireless device in the embodiments of the present application.
  • an embodiment of the present application provides a schematic flowchart of a method for feeding back channel information.
  • the method includes the following steps:
  • the second wireless device determines at least one first wireless device, and the at least one first wireless device needs to participate in channel information measurement.
  • the second wireless device may select at least one first wireless device in an idle state to participate in the channel information measurement.
  • the second wireless device is an AP and the first wireless device is a STA.
  • the AP can send a sensing poll frame to all STAs within its range to ask whether each STA is idle and schedule the STAs.
  • An idle (available) STA sends a CTS frame to respond, and participates in the current round of channel information measurement; a busy (busy) or non-idle (unavailable) STA will not respond, that is, does not participate in the current round of channel information measurement.
  • the AP can determine which STAs are idle based on the received can send indication (Clear To Send, CTS) frame, thereby determining at least one STA that needs to participate in the channel information measurement.
  • the second wireless device may also designate at least one first wireless device to participate in the channel information measurement. It should be noted that S1001 may be used as an optional step, that is, the second wireless device may not execute S1001, but directly execute S1002.
  • the second wireless device sends a first message to at least one first wireless device, where the first message is used to notify measurement channel information, and the first message carries first indication information related to each of the first wireless devices , the first indication information indicates a feedback condition.
  • the second wireless device may carry the identifier of each first wireless device and the first indication information corresponding to each identifier in the first message, so that the first message can carry information related to each first wireless device.
  • first indication information refers to indication information that can represent (or indicate) the first wireless device.
  • the identifier of the first wireless device may specifically be the associated identifier of the first wireless device, or the identifier of the first wireless device. equipment identification, etc.
  • the first wireless device may obtain the first indication information related to itself from the received first message, and determine the feedback indicated by the first indication information conditions, or can be understood as determining the feedback conditions applicable to the first wireless device.
  • the first indication information related to different first wireless devices may be the same or different.
  • FIG. 10 specifically illustrates one second wireless device 101 and three first wireless devices, which are respectively the first wireless device 102 , the first wireless device 103 , and the first wireless device 104 .
  • the first wireless device 102 can obtain the first indication information related to the first wireless device 102 from the received first message, and determine the feedback condition applicable to the first wireless device 102 .
  • the implementation manner in which the second wireless device indicates the feedback condition through the first indication information will be described in detail in the subsequent content.
  • the first message further carries second indication information, where the second indication information indicates that the measured channel information is used for wireless sensing.
  • the first wireless device measures channel information according to the first message.
  • the second wireless device may send the first message to at least one first wireless device multiple times, and after each sending the first message and the next time the first message is sent A measurement message is sent before, and the measurement message includes training symbols. Based on this, for any one of the at least one first wireless device, the first wireless device may receive the first message and the measurement packet from the second wireless device at least twice.
  • the measurement packet may be a null data packet NDP
  • the first message may be implemented by using a null data packet notification NDPA.
  • the first wireless device may measure the channel information by referring to the following procedure: Obtain a measurement message from the second wireless device within a first time period after receiving the first message, where the measurement message includes a training symbol; wherein the first time period indicates that the second wireless device sends twice The time difference between the first messages.
  • the first wireless device measures the channel information once according to the training symbol in the measurement packet.
  • the second wireless device may include a configuration period of a measurement packet in the first indication information, and the measurement packet includes a training symbol.
  • the measurement packet may be a null data packet NDP
  • the first message may be implemented by using a null data packet notification NDPA.
  • the measurement of the channel information by the first wireless device according to the first message may be implemented with reference to the following manner: within the second time period, the first wireless device obtains the channel information from the second wireless device once every said configuration period. A measurement message; every configuration period, the first wireless device measures the channel information once according to the training symbol in the newly acquired measurement message. The duration corresponding to the configuration period is less than the second duration.
  • the second duration may be the duration during which the second wireless device obtains a transmission opportunity (TXOP), and the first wireless device may measure the channel information multiple times within the duration corresponding to one TXOP based on the configuration period.
  • TXOP transmission opportunity
  • the second wireless device only needs to initially send the first message once within a certain valid time, which can save signaling overhead and transmission resources.
  • the aforementioned first message may also be a broadcast message including an MPDU (MAC protocol data unit), wherein the TRQ bit in the "HT control" field is set to 1, and the MPDU carries a training symbol.
  • the second wireless device may send the first message multiple times, so that the first wireless device acquires the MPDU once, and then can measure the channel information once based on the training symbols in the MPDU.
  • MPDU MAC protocol data unit
  • the first wireless device saves a measurement result such as the channel information measured this time, so as to facilitate subsequent calculation of the channel information variation.
  • the first wireless device determines a change amount of the first channel information according to the currently measured channel information and the historically measured channel information.
  • the channel information of the historical measurement may be the channel information of the previous measurement relative to the current measurement; or, the channel information of the historical measurement may also be the average of the channel information of the previous measurement relative to the current measurement.
  • the first channel information change amount is used to represent the change degree of the current wireless channel relative to the previous one, and is specifically quantified as a change amount value of the channel information.
  • the measurement report may include measurement results such as measured channel information, or the measurement report may also include related messages for determining channel information.
  • the first wireless device may actively feed back a measurement report to the second wireless device when determining that the amount of change in the first channel information meets the feedback condition, or may also receive a feedback indication from the second wireless device, The measurement report is then fed back to the second wireless device.
  • the embodiment of the present application illustrates that the first wireless device 102 and the first wireless device 104 feed back measurement reports to the second wireless device 101, but the first wireless device 103 does not report to the second wireless device. 101 Feedback the situation of the measurement report.
  • the second wireless device indicates its respective corresponding feedback conditions to at least one first wireless device, and any first wireless device selectively feeds back measurement reports related to channel information based on its corresponding feedback conditions, reducing the number of Transmission resources occupied by the feedback.
  • any first wireless device selectively feeds back measurement reports related to channel information based on its corresponding feedback conditions, reducing the number of Transmission resources occupied by the feedback.
  • it can reduce the message traffic in wireless sensing measurement, improve the efficiency of wireless sensing application analysis, and achieve the effect of completing the wireless sensing function at a lower cost.
  • an embodiment of the present application further provides a schematic flowchart of transmission between an AP and a STA.
  • the second wireless device as an AP
  • the first wireless device as an STA
  • the process of implementing wireless sensing measurement and feedback through interaction between one AP and multiple STAs will be described.
  • FIG. 11 specifically shows that the AP and the four STAs within the communication range of the AP are STA1, STA2, STA3, and STA4, respectively.
  • the first stage the AP asks each STA (STA1, STA2, STA3, and STA4) whether they are idle, and schedules the STAs; as an optional method, the AP can send a poll to STA1, STA2, STA3, and STA4. frame or sensing poll frame.
  • An idle STA sends a CTS frame to respond and participates in the current round of wireless sensing measurement; otherwise, the STA will not respond and will not participate in this round of wireless sensing measurement. For example, idle STA1, STA2, and STA3 send CTS frames to respond respectively, while non-idle STA4 does not respond.
  • the second stage the AP obtains the TXOP opportunity, and sends NDPA or other similar messages to the STA1, STA2, and STA3 that have sent the CTS frame to notify the STA1, STA2, and STA3 to measure the channel information.
  • the AP sends NDPA, it sends NDP carrying training symbols. For example, if NDP is sent simultaneously on multiple spatial streams, STA1, STA2, and STA3 measure the channel information by combining the training symbols in the received NDP.
  • the AP sends NDPA and NDP to STA1, STA2, and STA3, and then STA1, STA2, and STA3 measure the channel information again in combination with the training symbols in the newly received NDP; and so on, STA1, STA2, and STA3 can complete multiple Measurement of secondary channel information.
  • FIG. 11 illustrates only one channel information measurement process, but it does not mean that there is only one measurement.
  • the AP can send NDPA and NDP two or more times within the period of obtaining a TXOP opportunity; it can also send NDPA and NDP only once after obtaining a TXOP opportunity; obtain the next TXOP opportunity Re-issued NDPA and NDP. That is to say, this embodiment of the present application does not limit the time difference between two NDPA transmissions that are adjacent in time sequence, and can be determined according to actual requirements.
  • the NDPA carries the first indication information related to STA1, the first indication information related to STA2, and the first indication information related to STA3, so that STA1, STA2, and STA3 respectively determine their application based on the first indication information related to themselves. feedback conditions.
  • the first indication information can also be replaced with other names, such as a sensing indication (Sensing Indication) or a sensing parameter (Sensing parameter), as long as it can be used to determine the corresponding feedback condition, which is not performed in this embodiment of the present application. limit.
  • multiple terminal information (STA Info) fields may be included in the NPDA frame.
  • Each STA info corresponds to one STA, and each STA info includes an association identifier (AID) of its corresponding STA and first indication information related to its corresponding STA.
  • an NDPA frame includes a frame control (Frame Control) field, a duration (Duration) field, a receiver address (RA) field, and a transmitter address (Transmitter address, TA) field, Sounding Dialog Token field, multiple station information (STA Info) field and FCS (Frame Check Sequence): Frame Check Sequence FCS.
  • the multiple site information (STA Info) fields include STA Info1 corresponding to STA1, STA Info2 corresponding to STA2, STA Info3 corresponding to STA3, and the like.
  • STA Info1 occupies a total of 4 bytes (Octets), that is, 32 bits (bits).
  • the AID occupies 11 bits, and the first indication information occupies 21 bits.
  • a subtype may be used based on a frame control field (frame control) in an NDPA frame to indicate that the measured channel information is used for wireless sensing.
  • frame control a frame control field
  • the frame control field occupies 2 bytes, that is, 16 bits.
  • the Protocol version field occupies 2 bits
  • the Type field occupies 2 bits.
  • the subtype (Subtype) field occupies 4 bits
  • the To DS (To DS) field occupies 1 bit
  • the From DS (From DS) field occupies 1 bit
  • DS refers to the distribution system (Distribution system)
  • the More fragment field occupies 1 bit
  • +HTC (#66) occupies 1 bit; where HTC refers to High throughput control.
  • the content of the corresponding value indication of type and subtype is shown in Figure 12, the value of type is 01, which means control; the value of subtype is 0010, which means trigger (Trigger), and NDPA frame can be used as trigger frame at this time; The value of the subtype is 0101, which means Very High Throughput NDP Announcement (VHT NDP Announcement).
  • VHT NDP Announcement Very High Throughput NDP Announcement
  • the value is 0000, indicating that this NDPA frame is a wireless sensing NDPA (Sensing NDP Announcement), thus indicating that the measured channel information is used for wireless sensing.
  • the aforementioned first indication information may be used to further indicate that the measured channel information is used for wireless sensing, for example, a reserved field in the first indication information is used to indicate that the measured channel information is used for wireless sensing.
  • the third stage the AP asks STA1, STA2, and STA3 whether the channel information currently measured by each of STA1, STA2, and STA3 is compared with the channel information measured in the history, and whether the change degree of the channel information (such as the aforementioned first channel information change) meets the feedback conditions; as a kind of Alternatively, the AP may send a polling (poll) frame or a sensing polling (sensing poll) frame to STA1, STA2, STA3 and STA4.
  • the STA that meets the feedback condition sends a CTS frame to the AP to respond, and the STA that does not meet the feedback condition does not send the CTS frame to the AP.
  • STA1 and STA2 send a CTS frame to the AP in response.
  • Stage 4 The AP sends feedback instructions to STA1 and STA2 that have sent CTS frames in stage 3, such as sounding or report frames, or Sensing sounding or report frames, while STA1 and STA2
  • the measurement report fed back to the AP may be the measured channel information, an NDP packet used to determine the channel information, or a wireless sensing measurement result, and the like.
  • STA1 and STA2 may also actively feed back the measurement report to the second wireless device, that is, the AP does not need to send a feedback indication.
  • the broadcast mode is adopted in the measurement announcement and measurement message sending process, and the wireless perception of a large area can be covered by a mode of simultaneous channel information measurement by a plurality of different STAs after a measurement message is sent.
  • Each STA can independently judge whether there is any action happening around it and whether it needs feedback according to the broadcast measurement message.
  • the environment is relatively quiet in most cases, so this method can greatly reduce the occupancy of the channel by the perception measurement packets in the static environment, reduce the interference to other normal WiFi data streams, and reduce the number of mobile nodes. energy consumption.
  • the STA can give feedback in time to notify the AP that an action occurs. At this time, the system can also quickly sense movement.
  • the following describes in detail the implementation manner in which the second wireless device indicates the feedback condition through the first indication information, and how the first wireless device determines whether to feed back in different indication manners.
  • the first indication information includes the first variation threshold
  • the feedback condition is that the channel information variation is greater than or equal to the first variation threshold, or the feedback condition is the channel information variation is less than or equal to the first change amount threshold.
  • the first wireless device can obtain the first indication information related to the first wireless device from the corresponding STA Info in the NDPA, that is, obtain the first indication information.
  • Variation threshold Figure 13a shows the content of the first indication information (Sensing Indication) in STA Info1.
  • the first indication information has 21 bits in total, of which the first variation threshold (Variation Threshold) occupies 2 bits, and the remaining 19 bits are reserved (reserved) bit.
  • the feedback condition is related to the channel information variation estimation algorithm used by the first wireless device. If the first wireless device uses the first channel information variation evaluation algorithm based on distance (eg cosine distance), entropy (eg cross entropy), etc., the feedback condition related to the first wireless device is that the channel information variation is greater than or equal to the first variation threshold; when the variation of the first channel information determined by the first wireless device is greater than or equal to the first variation threshold, the first wireless device may feed back a measurement report to the second wireless device.
  • distance eg cosine distance
  • entropy eg cross entropy
  • the feedback condition related to the first wireless device is that the channel information change is less than or equal to the first change threshold; the first wireless device When the determined change amount of the first channel information is less than or equal to the first change amount threshold, the first wireless device may feed back a measurement report to the second wireless device.
  • the channel information change evaluation algorithm used by the first wireless device may be a default evaluation algorithm pre-configured by itself, and the first wireless device obtains the first change in its related first indication information. After the threshold is determined, the feedback condition can be determined according to a preconfigured default evaluation algorithm whether the channel information change is greater than or equal to the first change threshold or the channel information change is less than or equal to the first change threshold.
  • the channel information variation estimation algorithm used by the first wireless device may be instructed by the second wireless device.
  • the second wireless device may include a first variation threshold (Variation Threshold) and a first identifier in the first indication information, where the first identifier indicates the first channel information variation estimation algorithm or the second channel information variation estimation algorithm,
  • the first identifier may also be another name, such as an evaluation algorithm (Evaluation Algorithm), which is not limited in this embodiment of the present application.
  • Figure 13b shows the content of the first indication information (Sensing Indication) in STA Info1.
  • the first indication information has 21 bits in total, of which the first variation threshold (Variation Threshold) occupies 2 bits, and the first identifier occupies 2 bits. , the remaining 17 bits are reserved bits.
  • the first identifier may also be replaced with another name, such as an evaluation algorithm (Evaluation Algorithm), as long as it can indicate an evaluation algorithm for the variation of the relevant channel information, which is not limited in this embodiment of the present application.
  • evaluation algorithm Evaluation Algorithm
  • the value of the evaluation algorithm (that is, the first identifier) field included in the first indication information in the NDAP is as shown in Table 1 below.
  • Evaluation Algorithm Field description 0 (corresponding to bit 00) time-reversal resonance intensity method 1 (corresponding to bit 01) Mahalanobis distance method 2-3 (corresponding to bit 10 or 11) reserve
  • the aforementioned first channel information variation evaluation algorithm includes the Mahalanobis Distance method (Mahalanobis Distance, abbreviated as MD); the aforementioned second channel information variation evaluation algorithm includes the Time-Reversal Resonating Strength method (Time-Reversal Resonating Strength, Abbreviated as TRSS).
  • MD Mahalanobis Distance
  • TRSS Time-Reversal Resonating Strength
  • Mahalanobis distance is a commonly used distance indicator in metric learning, which is a distance based on sample distribution. Mahalanobis distance corrects the problem of inconsistent and related dimension scales in Euclidean distance, and is used to evaluate the similarity between data. MD is used to measure the similarity between two channel impulse responses (CIR). The larger the value of MD, the greater the difference between the two CIRs, that is, the greater the change.
  • CIR channel impulse responses
  • the value range of Mahalanobis distance is [0,+ ⁇ ).
  • the projection space of Mahalanobis distance can be obtained by the following steps: rotate the variables according to the principal components, so that the dimensions are independent of each other, and then standardize so that the dimensions are equally distributed.
  • the MD between h 1 and h 2 is calculated by the following formula, denoted as d(h 1 ,h 2 ):
  • E[h 1 ] represents h 1
  • the expectation of , the superscript T denotes the transpose of the matrix.
  • the covariance matrix can simultaneously show the correlation between different dimensions and the variance in each dimension.
  • the elements on the main diagonal are the variance (ie energy) in each dimension, and the other elements are the covariance (ie correlation) between two dimensions. sex).
  • TRRS Time-reversal resonance strength method
  • CIRs channel impulse responses
  • a set threshold such as the aforementioned first variation threshold, it indicates that there is a large change between the two CIRs, and at this time, channel information update and feedback need to be performed.
  • the TRRS between h 1 and h 2 is calculated by the following formula, denoted as ⁇ (h 1 ,h 2 ):
  • the second wireless device indicates to each first wireless device a corresponding single change threshold, and each first wireless device combines the channel information used by itself according to the single change threshold indicated to it by the second wireless device.
  • the variation evaluation algorithm determines the lower limit of the variation or the upper limit of the variation to be satisfied by the feedback, so that the measurement report related to the channel information can be selectively fed back, which can reduce the transmission resources occupied by the feedback.
  • the first indication information includes a second variation threshold and a third variation threshold
  • the feedback condition is that the channel information variation is greater than or equal to the second variation threshold, and the channel information variation is less than or equal to the third change amount threshold.
  • the third change threshold is greater than the second change threshold.
  • the first wireless device can obtain the first indication information related to the first wireless device from the corresponding STA Info in the NDPA, that is, obtain the second indication information.
  • the change amount threshold and the third change amount threshold then the first channel information change determined by the first wireless device is within the value range formed by the second change amount threshold and the third change amount threshold, and the first wireless device can send The second wireless device feeds back the measurement report.
  • the content of the first indication information (Sensing Indication) in STA Info1 is illustrated.
  • the first indication information has 21 bits in total, of which the second variation threshold (Variation Threshold-2) occupies 2 bits, and the third variation threshold The threshold (Variation Threshold-3) occupies 2 bits, and the remaining 17 bits are reserved bits.
  • the second wireless device indicates to each of the first wireless devices their corresponding dual change thresholds, and each first wireless device can determine the range of change values to be satisfied for feedback, thereby selectively feeding back channel information
  • the related measurement report can reduce the transmission resources occupied by the feedback.
  • the first indication information includes a first sensitivity level, and the first sensitivity level is used to determine a feedback condition.
  • the first sensitivity level is related to a first change threshold
  • the feedback condition is that the channel information change is greater than or equal to the first change threshold, or the feedback condition is that the channel The information change amount is less than or equal to the first change amount threshold.
  • the association relationship between the sensitivity level and a single change threshold can be set in a pre-defined manner, and the first wireless device first determines the first sensitivity level after acquiring the first sensitivity level from the first indication information.
  • the algorithm determines whether the feedback condition is that the channel information change amount is greater than or equal to the first change amount threshold, or the channel information change amount is less than or equal to the first change amount threshold.
  • the first wireless device determines, according to the channel information change amount evaluation algorithm indicated by the second wireless device, that the feedback condition is that the channel information change amount is greater than or equal to the first wireless device.
  • a change amount threshold, or the channel information change amount is less than or equal to the first change amount threshold.
  • the value range (or interval) of the change threshold value used to measure the change degree of the channel information can be pre-defined, such as [0, 1], and the value range is divided into q sub-intervals, each sub-interval corresponds to a Sensitivity level. Specifically, it can be implemented by referring to the following manner: the range of [0,1] is divided into q sub-intervals [I start_j , I end_j ), and each sub-interval corresponds to different perceptual sensitivity degrees.
  • I start_j and I end_j are the interval start value and the interval end value of the jth subinterval, respectively.
  • the first wireless device first determines the sub-interval corresponding to the first sensitivity level, and then determines the first change threshold according to the sub-interval; then the first wireless device determines the sub-interval corresponding to the first sensitivity level.
  • the second wireless device does not indicate the channel information change amount evaluation algorithm, combined with its own pre-configured channel information change amount evaluation algorithm, it is determined that the feedback condition is that the channel information change amount is greater than or equal to the
  • the first variation threshold is also the channel information variation smaller than or equal to the first variation threshold.
  • the first wireless device determines, according to the channel information change amount evaluation algorithm indicated by the second wireless device, that the feedback condition is that the channel information change amount is greater than or equal to the first wireless device.
  • a change amount threshold, or the channel information change amount is less than or equal to the first change amount threshold.
  • the aforementioned preset algorithm may be pre-defined, or may be indicated by the second wireless device through the first indication information, for example, the second wireless device is based on the first indication information including the first sensitivity level. , and may further include an identifier for indicating the threshold setting algorithm.
  • the first wireless device can obtain the first indication information related to the first wireless device from the corresponding STA Info in the NDPA, that is, obtain the first indication information.
  • the value range of the first sensitivity level field is shown in Table 2 below. Among them, the numbers from 0 to 3 in ascending order indicate that the sensitivity gradually decreases.
  • the content of the first indication information (Sensing Indication) in STA Info1 is illustrated, the first indication information has 21 bits in total, of which the first sensitivity level (Sensitivity Level) occupies 3 bits to indicate the threshold value
  • the identifier of the setting algorithm, or the threshold setting algorithm field occupies 2 bits, and the remaining 16 bits are reserved bits.
  • the value range of the threshold setting algorithm field is shown in Table 3 below.
  • Threshold setting algorithm field describe 0 Use interval averaging to set thresholds 1-3 reserve
  • the first sensitivity level is related to the second variation threshold and the third variation threshold
  • the feedback condition is that the channel information variation is greater than or equal to the second variation threshold
  • the channel information change amount is less than or equal to the third change amount threshold
  • the relationship between the sensitivity level and the double change threshold can be set in a pre-defined way, the double change threshold is used to indicate a change value range, and the feedback measurement report needs to measure the determined channel information change. is in the range of the variation value. Then, after acquiring the first sensitivity level from the first indication information, the first wireless device first determines the dual change thresholds related to the first sensitivity level, including the second change threshold and the third change threshold; A wireless device may refer to the aforementioned second method, and if the determined change amount of the first channel information is within the change amount range formed by the second change amount threshold and the third change amount threshold, the first wireless device may send the first channel information to the first 2. The wireless device feeds back the measurement report.
  • the value range (or interval) of the change threshold value used to measure the change degree of the channel information can be pre-defined, such as [0, 1], and the value range is divided into q sub-intervals, each sub-interval corresponds to a Sensitivity level. Specifically, it can be implemented by referring to the following manner: the range of [0,1] is divided into q sub-intervals [I start_j , I end_j ), and each sub-interval corresponds to different perceptual sensitivity degrees.
  • I start_j and I end_j are the interval start value and the interval end value of the jth subinterval, respectively.
  • the first wireless device first determines the sub-interval corresponding to the first sensitivity level, and then determines the second variation threshold and the third variation threshold according to the sub-interval. Then the first wireless device can refer to the aforementioned second way, if the determined first channel information change amount is within the value range formed by the second change amount threshold and the third change amount threshold, then the first wireless device can send The second wireless device feeds back the measurement report.
  • the manner in which the first wireless device determines the second variation threshold and the third variation threshold according to the sub-interval may be implemented by referring to the following implementation: the first wireless device, according to a preset algorithm (or rule), is at the first sensitivity level.
  • the specific value of the threshold may be set by using other methods according to the needs of a specific scenario, which is not limited in this embodiment of the present application.
  • the aforementioned preset algorithm may be pre-defined, or may be indicated by the second wireless device through the first indication information, for example, the second wireless device is based on the first indication information including the first sensitivity level. , and may further include an identifier for indicating a threshold setting algorithm.
  • the first wireless device can obtain the first indication information related to the first wireless device from the corresponding STA Info in the NDPA, that is, obtain the first indication information.
  • Sensitivity level As shown in Figure 15a, the content of the first indication information (Sensing Indication) in STA Info1 is shown.
  • the first indication information has 21 bits in total, of which the first sensitivity level (Sensitivity Level) occupies 3 bits, and the remaining 18 bits are reserved. (reserved) bit.
  • the specific value range of the first sensitivity level may be implemented with reference to the second manner, which will not be repeated in this embodiment of the present application. Similarly, as shown in Fig.
  • the first indication information in STA Info1 may also include the identification field of the threshold setting algorithm on the basis of including the first sensitivity level.
  • the algorithm for the threshold value of the change amount can be defined by itself according to the actual situation, which is not limited in this embodiment of the present application.
  • the set sensitivity level is related to the change threshold
  • the second wireless device dynamically configures the current sensitivity level and the related change threshold for the first wireless device by indicating a certain sensitivity level, which is
  • the feedback conditions configured by the first wireless device are more flexible and variable, and can be applicable to wireless sensing scenarios with different degrees of sensitivity.
  • the first indication information includes a sensitivity level range
  • the sensitivity level range includes at least one sensitivity level
  • a variation threshold value related to the at least one sensitivity level is used to determine the feedback condition.
  • the association relationship between the sensitivity level and a single change threshold can be set in a pre-defined manner, and the change threshold associated with each sensitivity level in at least one sensitivity level can be as in the first method described above.
  • a single change amount threshold used to measure the change of channel information after the first wireless device obtains the sensitivity level range from the first indication information, it first determines the first sensitivity level corresponding to the first wireless device within the sensitivity level range, For example, the first wireless device may determine its corresponding first sensitivity level based on information such as the current environment, signal reception strength, and/or detection target to be sensed.
  • the association relationship between the first sensitivity level pre-defined by the first wireless device and the single change threshold is determined, and the first change threshold related to the first sensitivity level is determined; and the first wireless device may, according to the first implementation manner, The feedback condition is determined according to the first variation threshold, which is not repeated in this embodiment of the present application.
  • a pre-defined way can be used to set the relationship between the sensitivity level and the double change amount threshold, and at least one sensitivity level may also be a double value indicating the range of the channel information change amount as in the second method above. Variation threshold. Then, after acquiring the sensitivity level range from the first indication information, the first wireless device first determines the first sensitivity level corresponding to the first wireless device within the sensitivity level range. For example, the first wireless device may , signal reception strength, and/or detection target to be sensed, etc., to determine its corresponding first sensitivity level.
  • the first wireless device pre-defined the relationship between the first sensitivity level and the double change threshold, and determines the second change threshold and the third change threshold related to the first sensitivity level; and then the first wireless device can According to the second implementation manner, the feedback condition is determined according to the second change amount threshold and the third change amount threshold, which will not be repeated in this embodiment of the present application.
  • the first wireless device can obtain the first indication information related to the first wireless device from the corresponding STA Info in the NDPA, that is, obtain the first indication information.
  • Sensitivity level As shown in Figure 16, the content of the first indication information (Sensing Indication) in STA Info1 is shown.
  • the first indication information has a total of 21 bits, of which the sensitivity level range (Sensitivity Level) occupies 3 bits, and the remaining 18 bits are reserved ( reserved) bit.
  • the value of the Sensitivity Level field in NDPA can be 3, indicating that the sensitivity level range includes the sensitivity level indicated by the currently defined 0-3 numbers. .
  • the first wireless device dynamically determines its own sensitivity level according to the range of the sensitivity level indicated by the second wireless device and in combination with its own current situation, such as signal reception strength, environment, surrounding detectable targets, etc. , and then flexibly obtain feedback conditions applicable to the first wireless device, which can be applicable to wireless sensing scenarios with different degrees of sensitivity.
  • the first indication information further includes a second identifier for indicating the interval mapping algorithm; the channel information according to the current measurement and the historical measurement The channel information determines the first channel information variation, which can be implemented with reference to the following manner: comparing the currently measured channel information with the historically measured channel information to obtain the second channel information variation; The second channel information change amount is processed to obtain the first channel information change amount, and the first channel information change amount is in a first interval; wherein, the first interval includes the first change amount threshold, Alternatively, the first interval includes the second change amount threshold and the third change amount threshold.
  • the channel information variation measured and determined by each first wireless device and the related variation threshold are in the same interval, which facilitates comparison between the two and improves the accuracy of selective feedback.
  • the interval mapping algorithm can be implemented by using the [0, 1] normalized interval mapping algorithm.
  • the perceived business types such as gesture recognition, intrusion detection, fall detection, breathing and heartbeat detection, etc.
  • select the required channel information change evaluation algorithm and map the calculation results to the range of [0,1].
  • Mapping_value is the value mapped to the [0,1] range
  • original_value is the change degree of the channel information evaluated by the algorithm during this measurement
  • min_value is the minimum value of the change degree of the channel information evaluated by the algorithm in a period of time
  • max_value is The maximum value of the degree of change in channel information evaluated by the algorithm over a period of time.
  • the first wireless device can obtain the first indication information related to the first wireless device from the corresponding STA Info in the NDPA, where the first indication information includes the second indication logo.
  • the second identifier may also be replaced with another name, such as a mapping type (Mapping Type), as long as it can indicate a relevant interval mapping algorithm, which is not limited in this embodiment of the present application.
  • the mapping type occupies 2 bits in the first indication information, and the values are shown in Table 4 below:
  • map type field describe 0 normalized map 1-3 reserved bit
  • the 2-bit mapping type field described in this embodiment of the present application may be appended to the first indication information in FIG. 13a, FIG. 13b, FIG. 14, FIG. 15a, FIG. 15b, or FIG.
  • a bitmap type field, and the reserved field in the first indication information is correspondingly reduced by 2 bits.
  • the first indication information includes a first change amount threshold occupying 2 bits, a mapping type field occupying 2 bits, and a reserved field occupying 17 bits.
  • an embodiment of the present application provides a communication apparatus 1800 , where the apparatus 1800 includes a communication module 1801 and a processing module 1802 .
  • the communication apparatus 1800 may be a first wireless device, or an apparatus applied to the first wireless device and capable of supporting the first wireless device to perform a method for feeding back channel information, or the communication apparatus 1800 may be a second wireless device, or It may be an apparatus applied to the second wireless device and capable of supporting the second wireless device to perform a method for feeding back channel information.
  • a communication module 1801 configured to receive a first message from a second wireless device, where the first message is used to notify measurement channel information, the first message carries first indication information related to the first wireless device, the The first indication information indicates a feedback condition.
  • the processing module 1802 is configured to measure the channel information according to the first message.
  • the processing module 1802 is further configured to determine the change amount of the first channel information according to the currently measured channel information and the historically measured channel information.
  • the communication module 1801 is further configured to feed back a measurement report to the second wireless device when the change amount of the first channel information meets the feedback condition.
  • the first wireless device can selectively feed back a measurement report related to channel information according to the feedback condition indicated to it by the second wireless device, so as to reduce the transmission resources occupied by the feedback.
  • a measurement report related to channel information according to the feedback condition indicated to it by the second wireless device, so as to reduce the transmission resources occupied by the feedback.
  • it can reduce the message traffic in wireless sensing measurement, improve the efficiency of wireless sensing application analysis, and achieve the effect of completing the wireless sensing function at a lower cost.
  • the first indication information includes the first variation threshold
  • the feedback condition is that the variation of the channel information is greater than or equal to the first variation threshold, or the feedback condition
  • the channel information change amount is less than or equal to the first change amount threshold.
  • the first wireless device determines the lower limit of the change amount or the upper limit of the change amount to be satisfied by the feedback according to the single change amount threshold value indicated to it by the second wireless device and in combination with the channel information change amount evaluation algorithm used by itself, so as to selectively feed back the channel information.
  • the relevant measurement report can reduce the transmission resources occupied by the feedback.
  • the first indication information includes a second variation threshold and a third variation threshold
  • the feedback condition is that the variation of the channel information is greater than or equal to the second variation threshold
  • the channel information change amount is less than or equal to the third change amount threshold.
  • the first wireless device determines the range of the variation value to be satisfied by the feedback according to the dual variation thresholds indicated to it by the second wireless device, so that the measurement report related to the channel information can be selectively fed back, which can reduce the transmission occupied by the feedback resource.
  • the first indication information includes a first sensitivity level
  • the first sensitivity level is related to a first variation threshold
  • the feedback condition is that the variation of the channel information is greater than or equal to The first change amount threshold, or the feedback condition is that the channel information change amount is less than or equal to the first change amount threshold.
  • the set sensitivity level is related to the change threshold
  • the second wireless device dynamically configures the current sensitivity level and the related change threshold for the first wireless device by indicating a certain sensitivity level, and configures the first wireless device with the current sensitivity level and the related change threshold.
  • the feedback conditions are more flexible and variable, and can be applied to wireless sensing scenarios with different degrees of sensitivity.
  • the first indication information includes a first sensitivity level
  • the first sensitivity level is related to the second variation threshold and the third variation threshold
  • the feedback condition is a channel
  • the information change amount is greater than or equal to the second change amount threshold
  • the channel information change amount is less than or equal to the third change amount threshold.
  • the set sensitivity level is related to the change threshold
  • the second wireless device dynamically configures the current sensitivity level and the related change threshold for the first wireless device by indicating a certain sensitivity level, and configures the first wireless device with the current sensitivity level and the related change threshold.
  • the feedback conditions are more flexible and variable, and can be applied to wireless sensing scenarios with different degrees of sensitivity.
  • the first indication information includes a sensitivity level range
  • the sensitivity level range includes at least one sensitivity level
  • a variation threshold related to the at least one sensitivity level is used to determine the the feedback conditions.
  • the first wireless device dynamically determines its own sensitivity level according to the sensitivity level range indicated by the second wireless device, and combines its own current situation such as signal reception strength, environment, surrounding detectable targets, etc., and then flexibly obtains the sensitivity level.
  • the feedback conditions applicable to the first wireless device can be applicable to wireless sensing scenarios of different sensitivity levels.
  • the first indication information further includes a first identifier, the first identifier indicates a first channel information variation evaluation algorithm, and the feedback condition is that the channel information variation is greater than or equal to the the first change amount threshold; or the first identifier indicates a second channel information change amount evaluation algorithm, and the feedback condition is that the channel information change amount is less than or equal to the first change amount threshold.
  • the first channel information variation estimation algorithm includes a Mahalanobis distance method
  • the second channel information variation estimation algorithm includes a time-reversal resonance intensity method
  • the first indication information further includes a second identifier used to indicate an interval mapping algorithm; the processing module 1802 is further configured to: compare the currently measured channel information with the Compare the historically measured channel information to obtain the second channel information change; process the second channel information change according to the interval mapping algorithm to obtain the first channel information change, the first channel information
  • the variation is in a first interval; wherein, the first interval includes the first variation threshold, or the first interval includes the second variation threshold and the third variation threshold.
  • the communication module 1801 is specifically configured to receive the first message from the second wireless device at least twice.
  • the communication module 1801 is further configured to receive the first message from the second wireless device for any one of the at least two times, and within a first period of time after receiving the first message, obtain information from the second wireless device.
  • the measurement message of the second wireless device, the measurement message includes a training symbol; the processing module 1802 is further configured to measure the channel information once according to the training symbol in the measurement message.
  • the first indication information further includes a configuration period of a measurement packet, and the measurement packet includes a training symbol; the processing module 1802 is further configured to: The measurement packet from the second wireless device is acquired every configuration period; and the channel information measurement is performed once every configuration period according to the training symbol in the newly acquired measurement packet.
  • a certain valid time eg, the second duration
  • the second wireless device only needs to initially send the first message once by indicating the configuration period of the measurement message, which can save signaling overhead and transmission resources.
  • the measurement packet includes a null data packet NDP
  • the first message includes a null data packet advertisement NDPA.
  • the first message further carries second indication information, where the second indication information indicates that the measured channel information is used for wireless sensing.
  • the range to be satisfied by feedback is set for the channel information change determined by the measurement, the first wireless device selectively feeds back the measurement report related to the channel information, and the message traffic in the wireless sensing measurement is reduced, and the second wireless device
  • the state of the detectable target around the first wireless device can also be quickly known, which facilitates improving the efficiency of wireless sensing application analysis, and achieves the effect of completing the wireless sensing function at a lower cost.
  • the processing module 1802 is configured to determine at least one first wireless device; the processing module 1802 is further configured to determine first indication information related to the at least one first wireless device, where the first indication information indicates a feedback condition; the communication module 1801 , used to send a first message to at least one first wireless device, where the first message is used to notify measurement channel information, and the first message carries first indication information related to each of the first wireless devices; the The communication module 1801 is further configured to receive a measurement report from the first wireless device when the channel information variation measured by the first wireless device meets the feedback condition.
  • the second wireless device indicates its respective corresponding feedback conditions to at least one first wireless device, and any first wireless device selectively feeds back measurement reports related to channel information based on its corresponding feedback conditions, reducing the number of Transmission resources occupied by the feedback.
  • any first wireless device selectively feeds back measurement reports related to channel information based on its corresponding feedback conditions, reducing the number of Transmission resources occupied by the feedback.
  • it can reduce the message traffic in wireless sensing measurement, improve the efficiency of wireless sensing application analysis, and achieve the effect of completing the wireless sensing function at a lower cost.
  • the first indication information includes the first variation threshold
  • the feedback condition is that the variation of the channel information is greater than or equal to the first variation threshold, or the feedback condition
  • the channel information change amount is less than or equal to the first change amount threshold.
  • the first indication information includes a second variation threshold and a third variation threshold
  • the feedback condition is that the variation of the channel information is greater than or equal to the second variation threshold
  • the channel information change amount is less than or equal to the third change amount threshold.
  • the first indication information includes a first sensitivity level
  • the first sensitivity level is related to a first variation threshold
  • the feedback condition is that the variation of the channel information is greater than or equal to The first change amount threshold, or the feedback condition is that the channel information change amount is less than or equal to the first change amount threshold.
  • the set sensitivity level is related to the change threshold
  • the second wireless device dynamically configures the current sensitivity level and the related change threshold for the first wireless device by indicating a certain sensitivity level, and configures the first wireless device with the current sensitivity level and the related change threshold.
  • the feedback conditions are more flexible and variable, and can be applied to wireless sensing scenarios with different degrees of sensitivity.
  • the first indication information includes a first sensitivity level
  • the first sensitivity level is related to the second variation threshold and the third variation threshold
  • the feedback condition is a channel
  • the information change amount is greater than or equal to the second change amount threshold
  • the channel information change amount is less than or equal to the third change amount threshold.
  • the set sensitivity level is related to the change threshold
  • the second wireless device dynamically configures the current sensitivity level and the related change threshold for the first wireless device by indicating a certain sensitivity level, and configures the first wireless device with the current sensitivity level and the related change threshold.
  • the feedback conditions are more flexible and variable, and can be applied to wireless sensing scenarios with different degrees of sensitivity.
  • the first indication information includes a sensitivity level range
  • the sensitivity level range includes at least one sensitivity level
  • a variation threshold related to the at least one sensitivity level is used to determine the the feedback conditions.
  • the first indication information further includes a first identifier, the first identifier indicates a first channel information variation evaluation algorithm, and the feedback condition is that the channel information variation is greater than or equal to the the first change amount threshold; or the first identifier indicates a second channel information change amount evaluation algorithm, and the feedback condition is that the channel information change amount is less than or equal to the first change amount threshold.
  • the first channel information variation estimation algorithm includes a Mahalanobis distance method
  • the second channel information variation estimation algorithm includes a time-reversal resonance intensity method
  • the first indication information further includes a second identifier for indicating the interval mapping algorithm.
  • the channel information variation measured and determined by each first wireless device and the related variation threshold are in the same interval, which facilitates comparison between the two and improves the accuracy of selective feedback.
  • the communication module 1801 is specifically configured to send the first message to the aforementioned at least one first wireless device at least twice.
  • the communication module 1801 is further configured to send the first message for any one of the at least two times, and send a measurement message within a first time period after sending the first message, where the measurement message includes: Training symbols; wherein, the first duration refers to the time difference between two consecutive sending of the first message.
  • the first indication information further includes a configuration period of a measurement packet, and the measurement packet includes a training symbol.
  • the measurement packet includes a null data packet NDP
  • the first message includes a null data packet advertisement NDPA.
  • the first message further carries second indication information, where the second indication information indicates that the measured channel information is used for wireless sensing.
  • the range that the feedback needs to meet is set for the channel information change determined by the measurement, so that the first wireless device can selectively feed back the measurement report related to the channel information, so as to reduce the message traffic in the wireless sensing measurement, and the second wireless device can selectively feed back the channel information.
  • the device can also quickly learn the state of the detectable target around the first wireless device, which facilitates improving the efficiency of wireless sensing application analysis and achieves the effect of completing the wireless sensing function at a lower cost.
  • an embodiment of the present application provides a communication apparatus 1900 .
  • the communication device 1900 may be a chip or a system of chips.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 1900 can include at least one processor 1910 coupled to a memory, which can optionally be located within the device or external to the device.
  • the communication device 1900 may also include at least one memory 1920.
  • the memory 1920 stores necessary computer programs, program instructions and/or data to implement any of the above embodiments; the processor 1910 may execute the computer programs stored in the memory 1920 to complete the methods in any of the above embodiments.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 1910 may cooperate with memory 1920.
  • the communication apparatus 1900 may further include a transceiver 1930, and the communication apparatus 1900 may exchange information with other devices through the transceiver 1930.
  • the transceiver 1930 can be a circuit, a bus, a transceiver, or any other device that can be used for information exchange.
  • the communication apparatus 1900 may be applied to the first wireless device, and the specific communication apparatus 1900 may be the first wireless device, or may be capable of supporting the first wireless device, so as to implement any of the above-mentioned embodiments Means of functionality in the first wireless device.
  • the memory 1920 holds the necessary computer programs, program instructions and/or data to implement the functions of the first wireless device in any of the above-described embodiments.
  • the processor 1910 can execute the computer program stored in the memory 1920 to complete the method performed by the first wireless device in any of the foregoing embodiments.
  • the communication apparatus 1900 may be applied to a second wireless device, and the specific communication apparatus 1900 may be the second wireless device, or may be capable of supporting the second wireless device, so as to implement any of the above-mentioned implementations
  • the functionality of the second wireless device means.
  • the memory 1920 holds the necessary computer programs, program instructions and/or data to implement the functionality of the second wireless device in any of the above-described embodiments.
  • the processor 1910 can execute the computer program stored in the memory 1920 to complete the method performed by the second wireless device in any of the foregoing embodiments.
  • the communication apparatus 1900 provided in this embodiment can be applied to a first wireless device to complete the method executed by the first wireless device, or applied to a second wireless device to complete the method executed by the second wireless device. Therefore, the technical effects that can be obtained can be referred to the above method embodiments, which will not be repeated here.
  • the specific connection medium between the transceiver 1930, the processor 1910, and the memory 1920 is not limited in the embodiments of the present application.
  • the memory 1920, the processor 1910, and the transceiver 1930 are connected through a bus in FIG. 19.
  • the bus is represented by a thick line in FIG. 19.
  • the connection between other components is only for schematic illustration. It is not limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of presentation, only one thick line is shown in FIG. 19, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or The methods, steps and logic block diagrams disclosed in the embodiments of this application are executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or may also be a volatile memory (volatile memory), for example Random-access memory (RAM).
  • the memory may also be, but is not limited to, any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing computer programs, program instructions and/or data.
  • the embodiment of the present application further provides another communication apparatus 2000, including: an interface circuit 2010 and a processor 2020; the interface circuit 2010 is configured to receive code instructions and transmit them to the processor; the processor 2020 , used to run code instructions to execute the method executed by the first wireless device or the method executed by the second wireless device in any of the foregoing embodiments.
  • the communication apparatus 2000 provided in this embodiment can be applied to a first wireless device to execute the method executed by the first wireless device, or applied to a second wireless device to execute the method executed by the second wireless device. Therefore, the technical effects that can be obtained can be referred to the above method embodiments, which will not be repeated here.
  • embodiments of the present application further provide a communication system, where the communication system includes at least one communication apparatus applied to the first wireless device and at least one communication apparatus applied to the second wireless device.
  • the communication system includes at least one communication apparatus applied to the first wireless device and at least one communication apparatus applied to the second wireless device.
  • the embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium stores instructions, and when the instructions are executed, the method executed by the first wireless device in any of the foregoing embodiments is executed.
  • the method implemented or performed by the second wireless device is implemented.
  • the computer-readable storage medium may include: a USB flash drive, a removable hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk, and other media that can store program codes.
  • an embodiment of the present application further provides a chip, including a processor, for supporting the communication apparatus to implement the first wireless device or the second wireless device in the above method embodiments. functions involved.
  • the chip is connected to a memory or the chip includes a memory for storing necessary program instructions and data of the communication device.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信道信息的反馈方法、通信装置及通信系统,用于解决现有技术中反馈占用过多传输资源的问题。该方法应用于第一无线设备,包括:接收来自第二无线设备的第一消息,第一消息用于通知测量信道信息,第一消息携带第一无线设备相关的第一指示信息,第一指示信息指示反馈条件;根据第一消息进行信道信息的测量;根据当前测量的信道信息与历史测量的信道信息,确定第一信道信息变化量;当第一信道信息变化量符合反馈条件时,向第二无线设备反馈测量报告。

Description

一种信道信息的反馈方法、通信装置及通信系统
相关申请的交叉引用
本申请要求在2020年12月28日提交中国专利局、申请号为202011582356.2、申请名称为“一种信道信息的反馈方法、通信装置及通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种信道信息的反馈方法、通信装置及通信系统。
背景技术
无线无源感知技术可利用无线电波在人体上反射的信号来对人体动作进行感知,在无线设备通信过程中,具体可基于人体运动对无线信号的干扰所导致的信道信息变化来感知人体动作,满足例如入侵检测、老人看护、室内人数统计等无线感知的应用需求。
目前,已有针对无线通信过程中的波束赋型(beamforming)或测距所设计的信道状态信息(channel state information,CSI)测量技术。现有CSI测量技术中,通常是收端设备测量到CSI,均需向发端设备反馈测量的CSI或者是用于确定CSI的报文,占用了过多的传输资源;且数据量较大,直接用于无线感知会降低如发端设备对无线感知应用分析的效率。
发明内容
本申请实施例提供一种信道信息的反馈方法、通信装置及通信系统,通过有选择性的反馈信道信息相关的测量报告,节省传输资源。
第一方面,本申请实施例提供一种信道信息的反馈方法,应用于第一无线设备,包括:接收来自第二无线设备的第一消息,所述第一消息用于通知测量信道信息,所述第一消息携带所述第一无线设备相关的第一指示信息,所述第一指示信息指示反馈条件;根据所述第一消息进行信道信息的测量;根据当前测量的信道信息与历史测量的信道信息,确定第一信道信息变化量;当所述第一信道信息变化量符合所述反馈条件时,向所述第二无线设备反馈测量报告。第一无线设备根据第二无线设备指示给它的反馈条件,能够有选择性的反馈信道信息相关的测量报告,减少反馈所需占用的传输资源。应用于无线感知,能够减少无线感知测量中的消息流量,便于提升无线感知应用分析的效率,达到以较小代价完成无线感知功能的效果。
在一种可选的实现方式中,所述第一指示信息包括所述第一变化量阈值,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值,或者所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。第一无线设备根据第二无线设备指示给它的单个变化量阈值,结合自身使用的信道信息变化量评估算法确定反馈需满足的变化量下限或者是变化量上限,从而有选择性的反馈信道信息相关的测量报告,能够减少反馈所需占用的 传输资源。
在一种可选的实现方式中,所述第一指示信息包括第二变化量阈值和第三变化量阈值,所述反馈条件为信道信息变化量大于或者等于所述第二变化量阈值,且信道信息变化量小于或者等于所述第三变化量阈值。第一无线设备根据第二无线设备指示给它的双变化量阈值,确定反馈需满足的变化量取值范围,从而有选择性的反馈信道信息相关的测量报告,能够减少反馈所需占用的传输资源。
在一种可选的实现方式中,所述第一指示信息包括第一敏感程度等级,所述第一敏感程度等级与第一变化量阈值相关,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值,或者所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。设定敏感程度等级与变化量阈值相关,第二无线设备通过指示某个敏感程度等级,实现动态的为第一无线设备配置当前敏感程度等级以及相关的变化量阈值,为第一无线设备配置的反馈条件更为灵活可变,能够适用于不同敏感程度的无线感知场景。
在一种可选的实现方式中,所述第一指示信息包括第一敏感程度等级,所述第一敏感程度等级与第二变化量阈值和第三变化量阈值相关,所述反馈条件为信道信息变化量大于或者等于所述第二变化量阈值,且信道信息变化量小于或者等于所述第三变化量阈值。设定敏感程度等级与变化量阈值相关,第二无线设备通过指示某个敏感程度等级,实现动态的为第一无线设备配置当前敏感程度等级以及相关的变化量阈值,为第一无线设备配置的反馈条件更为灵活可变,能够适用于不同敏感程度的无线感知场景。
在一种可选的实现方式中,所述第一指示信息包括敏感程度等级范围,所述敏感等级范围包括至少一个敏感程度等级,所述至少一个敏感程度等级相关的变化量阈值用于确定所述反馈条件。第一无线设备根据第二无线设备指示的敏感程度等级范围,结合自身的当前情况例如信号接收强度、所处环境、周围可检测目标等,动态的确定自身的敏感程度等级,进而灵活的获取该第一无线设备适用的反馈条件,能够适用于不同敏感程度的无线感知场景。
在一种可选的实现方式中,所述第一指示信息还包括第一标识,所述第一标识指示第一信道信息变化量评估算法,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值;或者所述第一标识指示第二信道信息变化量评估算法,所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。通过向第一无线设备指示第一变化量阈值以及信道信息变化量评估算法,间接的指示出了第一无线设备所适用的反馈条件。
在一种可选的实现方式中,所述第一信道信息变化量评估算法包括马氏距离法,所述第二信道信息变化量评估算法包括时间反转共鸣强度法。
在一种可选的实现方式中,所述第一指示信息还包括用于指示区间映射算法的第二标识;所述根据当前测量的信道信息与历史测量的信道信息确定第一信道信息变化量,包括:将所述当前测量的信道信息与所述历史测量的信道信息进行比较,得到第二信道信息变化量;根据所述区间映射算法对所述第二信道信息变化量进行处理,得到所述第一信道信息变化量,所述第一信道信息变化量处于第一区间;其中,所述第一区间包含所述第一变化量阈值,或者所述第一区间包含所述第二变化量阈值和所述第三变化量阈值。通过指示区间映射算法,使得第一无线设备测量确定出的信道信息变化量和相关变化量阈值是处于同一区间,便于两者之间进行比较,提升有选择性反馈的准确性。
在一种可选的实现方式中,所述接收来自第二无线设备的第一消息,包括:至少两次 接收来自所述第二无线设备的所述第一消息。针对所述至少两次中任意一次接收来自所述第二无线设备的所述第一消息,所述根据所述第一消息进行信道信息的测量,包括:在接收到所述第一消息之后的第一时长内,获取来自所述第二无线设备的测量报文,所述测量报文中包括训练符号;根据所述测量报文中的训练符号,进行一次信道信息的测量。
在一种可选的实现方式中,所述第一指示信息还包括测量报文的配置周期,所述测量报文中包括训练符号;所述根据所述第一消息进行信道信息的测量,包括:在第二时长内,每隔所述配置周期获取一次来自所述第二无线设备的所述测量报文;每隔所述配置周期,根据最新获取的所述测量报文中的训练符号进行一次信道信息的测量。在一定有效时间(如,第二时长)内,第二无线设备通过指示测量报文的配置周期,仅需初始发送一次第一消息,能够节省信令开销、传输资源。
在一种可选的实现方式中,所述测量报文包括空数据报文NDP,所述第一消息包括空数据报文通告NDPA。
在一种可选的实现方式中,所述第一消息中还携带第二指示信息,所述第二指示信息指示测量的信道信息用于无线感知。应用于无线感知,对测量确定的信道信息变化量设定反馈需满足的范围,第一无线设备有选择性的反馈信道信息相关的测量报告,减少无线感知测量中的消息流量,第二无线设备也能够快速地获知第一无线设备周围可检测目标的状态,便于提升无线感知应用分析的效率,达到以较小代价完成无线感知功能的效果。
第二方面,本申请实施例提供一种信道信息的反馈方法,应用于第二无线设备,包括:向至少一个第一无线设备发送第一消息,所述第一消息用于通知测量信道信息,所述第一消息携带每个所述第一无线设备相关的第一指示信息,所述第一指示信息指示反馈条件;当所述第一无线设备测量的信道信息变化量符合所述反馈条件时,接收来自所述第一无线设备的测量报告。
本申请实施例中,第二无线设备向至少一个第一无线设备指示其各自对应的反馈条件,任意第一无线设备基于其对应的反馈条件,有选择性的反馈信道信息相关的测量报告,减少反馈所需占用的传输资源。应用于无线感知,能够减少无线感知测量中的消息流量,便于提升无线感知应用分析的效率,达到以较小代价完成无线感知功能的效果。
在一种可选的实现方式中,所述第一指示信息包括所述第一变化量阈值,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值,或者所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。通过向各第一无线设备分别指示其对应的单个变化量阈值,任意一个第一无线设备均可结合自身使用的信道信息变化量评估算法确定其反馈需满足的变化量下限或者是变化量上限,从而有选择性的反馈信道信息相关的测量报告,能够减少反馈所需占用的传输资源。
在一种可选的实现方式中,所述第一指示信息包括第二变化量阈值和第三变化量阈值,所述反馈条件为信道信息变化量大于或者等于所述第二变化量阈值,且信道信息变化量小于或者等于所述第三变化量阈值。通过向各第一无线设备分别指示其对应的双变化量阈值,任意一个第一无线设备均可确定其反馈需满足的变化量取值范围,从而有选择性的反馈信道信息相关的测量报告,能够减少反馈所需占用的传输资源。
在一种可选的实现方式中,所述第一指示信息包括第一敏感程度等级,所述第一敏感程度等级与第一变化量阈值相关,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值,或者所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。设 定敏感程度等级与变化量阈值相关,第二无线设备通过指示某个敏感程度等级,实现动态的为第一无线设备配置当前敏感程度等级以及相关的变化量阈值,为第一无线设备配置的反馈条件更为灵活可变,能够适用于不同敏感程度的无线感知场景。
在一种可选的实现方式中,所述第一指示信息包括第一敏感程度等级,所述第一敏感程度等级与第二变化量阈值和第三变化量阈值相关,所述反馈条件为信道信息变化量大于或者等于所述第二变化量阈值,且信道信息变化量小于或者等于所述第三变化量阈值。设定敏感程度等级与变化量阈值相关,第二无线设备通过指示某个敏感程度等级,实现动态的为第一无线设备配置当前敏感程度等级以及相关的变化量阈值,为第一无线设备配置的反馈条件更为灵活可变,能够适用于不同敏感程度的无线感知场景。
在一种可选的实现方式中,所述第一指示信息包括敏感程度等级范围,所述敏感等级范围包括至少一个敏感程度等级,所述至少一个敏感程度等级相关的变化量阈值用于确定所述反馈条件。通过指示敏感程度等级范围,任意一个第一无线设备均可结合自身的当前情况例如信号接收强度、所处环境、周围可检测目标等,动态的确定自身的敏感程度等级,进而灵活的获取该第一无线设备适用的反馈条件,能够适用于不同敏感程度的无线感知场景。
在一种可选的实现方式中,所述第一指示信息还包括第一标识,所述第一标识指示第一信道信息变化量评估算法,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值;或者所述第一标识指示第二信道信息变化量评估算法,所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。通过向各个第一无线设备指示第一变化量阈值以及信道信息变化量评估算法,间接的指示出了各个第一无线设备所适用的反馈条件。
在一种可选的实现方式中,所述第一信道信息变化量评估算法包括马氏距离法,所述第二信道信息变化量评估算法包括时间反转共鸣强度法。
在一种可选的实现方式中,所述第一指示信息还包括用于指示区间映射算法的第二标识。通过指示区间映射算法,使得各个第一无线设备测量确定出的信道信息变化量和相关变化量阈值是处于同一区间,便于两者之间进行比较,提升有选择性反馈的准确性。
在一种可选的实现方式中,所述向至少一个第一无线设备发送第一消息,包括:至少两次向前述至少一个第一无线设备发送所述第一消息。针对所述至少两次中任意一次发送所述第一消息,所述方法还包括:在发送所述第一消息之后的第一时长内,发送测量报文,所述测量报文中包括训练符号;其中,第一时长指的是相邻两次发送所述第一消息之间的时间差。
在一种可选的实现方式中,所述第一指示信息还包括测量报文的配置周期,所述测量报文中包括训练符号。第二无线设备通过指示测量报文的配置周期,在一定有效时间内仅需初始发送一次第一消息,能够节省信令开销、传输资源。
在一种可选的实现方式中,所述测量报文包括空数据报文NDP,所述第一消息包括空数据报文通告NDPA。
在一种可选的实现方式中,所述第一消息中还携带第二指示信息,所述第二指示信息指示测量的信道信息用于无线感知。应用于无线感知,对测量确定的信道信息变化量设定反馈需满足的范围,使得第一无线设备有选择性的反馈信道信息相关的测量报告,减少无线感知测量中的消息流量,第二无线设备也能够快速地获知第一无线设备周围可检测目标的状态,便于提升无线感知应用分析的效率,达到以较小代价完成无线感知功能的效果。
第三方面,本申请实施例提供一种通信装置,该通信装置应用于第一无线设备,该通信装置包括用于执行第一方面中任一项可选的实现方式中各个步骤的单元(或称,模块、功能模块),例如通信装置包括通信模块和处理模块。其中,通信模块,用于接收来自第二无线设备的第一消息,所述第一消息用于通知测量信道信息,所述第一消息携带所述第一无线设备相关的第一指示信息,所述第一指示信息指示反馈条件;所述处理模块,用于根据所述第一消息进行信道信息的测量;所述处理模块,还用于根据当前测量的信道信息与历史测量的信道信息,确定第一信道信息变化量;所述通信模块,还用于在所述第一信道信息变化量符合所述反馈条件时,向所述第二无线设备反馈测量报告。
本申请实施例中,第一无线设备根据第二无线设备指示给它的反馈条件,能够有选择性的反馈信道信息相关的测量报告,减少反馈所需占用的传输资源。应用于无线感知,能够减少无线感知测量中的消息流量,便于提升无线感知应用分析的效率,达到以较小代价完成无线感知功能的效果。
在一种可选的实现方式中,所述第一指示信息包括所述第一变化量阈值,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值,或者所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。第一无线设备根据第二无线设备指示给它的单个变化量阈值,结合自身使用的信道信息变化量评估算法确定反馈需满足的变化量下限或者是变化量上限,从而有选择性的反馈信道信息相关的测量报告,能够减少反馈所需占用的传输资源。
在一种可选的实现方式中,所述第一指示信息包括第二变化量阈值和第三变化量阈值,所述反馈条件为信道信息变化量大于或者等于所述第二变化量阈值,且信道信息变化量小于或者等于所述第三变化量阈值。第一无线设备根据第二无线设备指示给它的双变化量阈值,确定反馈需满足的变化量取值范围,从而有选择性的反馈信道信息相关的测量报告,能够减少反馈所需占用的传输资源。
在一种可选的实现方式中,所述第一指示信息包括第一敏感程度等级,所述第一敏感程度等级与第一变化量阈值相关,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值,或者所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。设定敏感程度等级与变化量阈值相关,第二无线设备通过指示某个敏感程度等级,实现动态的为第一无线设备配置当前敏感程度等级以及相关的变化量阈值,为第一无线设备配置的反馈条件更为灵活可变,能够适用于不同敏感程度的无线感知场景。
在一种可选的实现方式中,所述第一指示信息包括第一敏感程度等级,所述第一敏感程度等级与第二变化量阈值和第三变化量阈值相关,所述反馈条件为信道信息变化量大于或者等于所述第二变化量阈值,且信道信息变化量小于或者等于所述第三变化量阈值。设定敏感程度等级与变化量阈值相关,第二无线设备通过指示某个敏感程度等级,实现动态的为第一无线设备配置当前敏感程度等级以及相关的变化量阈值,为第一无线设备配置的反馈条件更为灵活可变,能够适用于不同敏感程度的无线感知场景。
在一种可选的实现方式中,所述第一指示信息包括敏感程度等级范围,所述敏感等级范围包括至少一个敏感程度等级,所述至少一个敏感程度等级相关的变化量阈值用于确定所述反馈条件。第一无线设备根据第二无线设备指示的敏感程度等级范围,结合自身的当前情况例如信号接收强度、所处环境、周围可检测目标等,动态的确定自身的敏感程度等级,进而灵活的获取该第一无线设备适用的反馈条件,能够适用于不同敏感程度的无线感 知场景。
在一种可选的实现方式中,所述第一指示信息还包括第一标识,所述第一标识指示第一信道信息变化量评估算法,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值;或者所述第一标识指示第二信道信息变化量评估算法,所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。通过向第一无线设备指示第一变化量阈值以及信道信息变化量评估算法,间接的指示出了第一无线设备所适用的反馈条件。
在一种可选的实现方式中,所述第一信道信息变化量评估算法包括马氏距离法,所述第二信道信息变化量评估算法包括时间反转共鸣强度法。
在一种可选的实现方式中,所述第一指示信息还包括用于指示区间映射算法的第二标识;所述处理模块,还用于:将所述当前测量的信道信息与所述历史测量的信道信息进行比较,得到第二信道信息变化量;根据所述区间映射算法对所述第二信道信息变化量进行处理,得到所述第一信道信息变化量,所述第一信道信息变化量处于第一区间;其中,所述第一区间包含所述第一变化量阈值,或者所述第一区间包含所述第二变化量阈值和所述第三变化量阈值。通过指示区间映射算法,使得第一无线设备测量确定出的信道信息变化量和相关变化量阈值是处于同一区间,便于两者之间进行比较,提升有选择性反馈的准确性。
在一种可选的实现方式中,所述通信模块,具体用于至少两次接收来自所述第二无线设备的所述第一消息。所述通信模块,还用于针对所述至少两次中任意一次接收来自所述第二无线设备的所述第一消息,在接收到所述第一消息之后的第一时长内,获取来自所述第二无线设备的测量报文,所述测量报文中包括训练符号;所述处理模块,还用于根据所述测量报文中的训练符号,进行一次信道信息的测量。
在一种可选的实现方式中,所述第一指示信息还包括测量报文的配置周期,所述测量报文中包括训练符号;所述处理模块,还用于在第二时长内,每隔所述配置周期获取一次来自所述第二无线设备的所述测量报文;每隔所述配置周期,根据最新获取的所述测量报文中的训练符号进行一次信道信息的测量。在一定有效时间(如,第二时长)内,第二无线设备通过指示测量报文的配置周期,仅需初始发送一次第一消息,能够节省信令开销、传输资源。
在一种可选的实现方式中,所述测量报文包括空数据报文NDP,所述第一消息包括空数据报文通告NDPA。
在一种可选的实现方式中,所述第一消息中还携带第二指示信息,所述第二指示信息指示测量的信道信息用于无线感知。应用于无线感知,对测量确定的信道信息变化量设定反馈需满足的范围,第一无线设备有选择性的反馈信道信息相关的测量报告,减少无线感知测量中的消息流量,第二无线设备也能够快速地获知第一无线设备周围可检测目标的状态,便于提升无线感知应用分析的效率,达到以较小代价完成无线感知功能的效果。
第四方面,本申请实施例提供一种通信装置,该通信装置应用于第二无线设备,该通信装置包括用于执行第二方面中任一项可选的实现方式中各个步骤的单元(或称,模块、功能模块),例如通信装置包括通信模块和处理模块。其中,处理模块,用于确定至少一个第一无线设备;所述处理模块,还用于确定至少一个第一无线设备相关的第一指示信息,所述第一指示信息指示反馈条件;通信模块,用于向至少一个第一无线设备发送第一消息,所述第一消息用于通知测量信道信息,所述第一消息携带每个所述第一无线设备相关的第 一指示信息;所述通信模块,还用于当所述第一无线设备测量的信道信息变化量符合所述反馈条件时,接收来自所述第一无线设备的测量报告。
本申请实施例中,第二无线设备向至少一个第一无线设备指示其各自对应的反馈条件,任意第一无线设备基于其对应的反馈条件,有选择性的反馈信道信息相关的测量报告,减少反馈所需占用的传输资源。应用于无线感知,能够减少无线感知测量中的消息流量,便于提升无线感知应用分析的效率,达到以较小代价完成无线感知功能的效果。
在一种可选的实现方式中,所述第一指示信息包括所述第一变化量阈值,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值,或者所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。通过向各第一无线设备分别指示其对应的单个变化量阈值,任意一个第一无线设备均可结合自身使用的信道信息变化量评估算法确定其反馈需满足的变化量下限或者是变化量上限,从而有选择性的反馈信道信息相关的测量报告,能够减少反馈所需占用的传输资源。
在一种可选的实现方式中,所述第一指示信息包括第二变化量阈值和第三变化量阈值,所述反馈条件为信道信息变化量大于或者等于所述第二变化量阈值,且信道信息变化量小于或者等于所述第三变化量阈值。通过向各第一无线设备分别指示其对应的双变化量阈值,任意一个第一无线设备均可确定其反馈需满足的变化量取值范围,从而有选择性的反馈信道信息相关的测量报告,能够减少反馈所需占用的传输资源。
在一种可选的实现方式中,所述第一指示信息包括第一敏感程度等级,所述第一敏感程度等级与第一变化量阈值相关,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值,或者所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。设定敏感程度等级与变化量阈值相关,第二无线设备通过指示某个敏感程度等级,实现动态的为第一无线设备配置当前敏感程度等级以及相关的变化量阈值,为第一无线设备配置的反馈条件更为灵活可变,能够适用于不同敏感程度的无线感知场景。
在一种可选的实现方式中,所述第一指示信息包括第一敏感程度等级,所述第一敏感程度等级与第二变化量阈值和第三变化量阈值相关,所述反馈条件为信道信息变化量大于或者等于所述第二变化量阈值,且信道信息变化量小于或者等于所述第三变化量阈值。设定敏感程度等级与变化量阈值相关,第二无线设备通过指示某个敏感程度等级,实现动态的为第一无线设备配置当前敏感程度等级以及相关的变化量阈值,为第一无线设备配置的反馈条件更为灵活可变,能够适用于不同敏感程度的无线感知场景。
在一种可选的实现方式中,所述第一指示信息包括敏感程度等级范围,所述敏感等级范围包括至少一个敏感程度等级,所述至少一个敏感程度等级相关的变化量阈值用于确定所述反馈条件。通过指示敏感程度等级范围,任意一个第一无线设备均可结合自身的当前情况例如信号接收强度、所处环境、周围可检测目标等,动态的确定自身的敏感程度等级,进而灵活的获取该第一无线设备适用的反馈条件,能够适用于不同敏感程度的无线感知场景。
在一种可选的实现方式中,所述第一指示信息还包括第一标识,所述第一标识指示第一信道信息变化量评估算法,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值;或者所述第一标识指示第二信道信息变化量评估算法,所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。通过向各个第一无线设备指示第一变化量阈值以及信道信息变化量评估算法,间接的指示出了各个第一无线设备所适用的反馈条件。
在一种可选的实现方式中,所述第一信道信息变化量评估算法包括马氏距离法,所述第二信道信息变化量评估算法包括时间反转共鸣强度法。
在一种可选的实现方式中,所述第一指示信息还包括用于指示区间映射算法的第二标识。通过指示区间映射算法,使得各个第一无线设备测量确定出的信道信息变化量和相关变化量阈值是处于同一区间,便于两者之间进行比较,提升有选择性反馈的准确性。
在一种可选的实现方式中,所述通信模块,具体用于至少两次向前述至少一个第一无线设备发送所述第一消息。所述通信模块,还用于针对所述至少两次中任意一次发送所述第一消息,在发送所述第一消息之后的第一时长内发送测量报文,所述测量报文中包括训练符号;其中,第一时长指的是相邻两次发送所述第一消息之间的时间差。
在一种可选的实现方式中,所述第一指示信息还包括测量报文的配置周期,所述测量报文中包括训练符号。第二无线设备通过指示测量报文的配置周期,在一定有效时间内仅需初始发送一次第一消息,能够节省信令开销、传输资源。
在一种可选的实现方式中,所述测量报文包括空数据报文NDP,所述第一消息包括空数据报文通告NDPA。
在一种可选的实现方式中,所述第一消息中还携带第二指示信息,所述第二指示信息指示测量的信道信息用于无线感知。应用于无线感知,对测量确定的信道信息变化量设定反馈需满足的范围,使得第一无线设备有选择性的反馈信道信息相关的测量报告,减少无线感知测量中的消息流量,第二无线设备也能够快速地获知第一无线设备周围可检测目标的状态,便于提升无线感知应用分析的效率,达到以较小代价完成无线感知功能的效果。
第五方面,本申请实施例提供一种通信装置,包括处理器,所述处理器和存储器耦合,所述存储器用于存储程序指令,所述处理器用于执行所述程序指令,以执行上述第一方面或第二方面的各实现方法。该存储器可以位于该装置之内,也可以位于该装置之外。该处理器的数量为一个或多个。
第六方面,本申请实施例提供一种通信装置,包括:处理器和接口电路,所述接口电路用于与其它装置通信,所述处理器用于上述第一方面或第二方面的各实现方法。
第七方面,本申请实施例提供一种通信系统,包括:用于执行上述第一方面各实现方法的通信装置,和用于执行上述第二方面各实现方法的通信装置。
第八方面,本申请实施例还提供一种芯片系统,包括:处理器,用于执行上述第一方面或第二方面的各实现方法。
第九方面,本申请实施例还提供一种计算机程序产品,该计算机产品包括计算机程序,当计算机程序运行时,使得上述第一方面或第二方面的各实现方法被执行。
第十方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得上述第一方面或第二方面的各实现方法被执行。
上述第五方面至第十方面可以达到的技术效果请参照上述第一方面至第二方面中相应技术方案可以带来的技术效果,此处不再重复赘述。
附图说明
图1为一种无线感知的原理示意图;
图2为信道状态信息确定方法的流程示意图之一;
图3为信道状态信息确定方法的流程示意图之二;
图4为信道状态信息确定方法的流程示意图之三;
图5为信道状态信息确定方法的流程示意图之四;
图6为信道状态信息确定方法的流程示意图之五;
图7为本申请实施例提供的一种通信系统架构图;
图8为本申请实施例提供的一种应用场景示意图;
图9为本申请实施例提供的另一种应用场景示意图;
图10为本申请实施例提供的一种信道信息的反馈方法流程示意图;
图11本申请实施例提供的一种AP和STA之间传输的流程示意图;
图12为本申请实施例提供的NDPA帧结构示意图之一;
图13a为本申请实施例提供的NDPA帧结构示意图之二;
图13b为本申请实施例提供的NDPA帧结构示意图之三;
图14为本申请实施例提供的NDPA帧结构示意图之四;
图15a为本申请实施例提供的NDPA帧结构示意图之五;
图15b为本申请实施例提供的NDPA帧结构示意图之六;
图16为本申请实施例提供的NDPA帧结构示意图之七;
图17为本申请实施例提供的NDPA帧结构示意图之八;
图18为本申请实施例提供的一种通信装置的结构框图;
图19为本申请实施例提供的一种通信装置的结构示意图之一;
图20为本申请实施例提供的一种通信装置的结构示意图之二。
具体实施方式
本申请实施例可应用于无线通信网络,例如WiFi网络、4G网络(如LTE),5G网络等。
以下对本申请中提供的部分用语进行解释说明,方便本领域技术人员理解:
(1)波束赋型(beamforming)
在无线通信过程中,若发端设备(或称,发送无线信号的无线设备)具有多根天线,发端设备可以通过调整发射信号的相位及幅度,使得天线在发射某些空间方向的信号时增益增加。类似的,若收端设备(或称,接收无线信号的无线设备)具有多根天线,收端设备也可以通过调整接收信号的相位及幅度,使得天线在接收某些空间方向的信号时增益增加。
(2)信道信息
信道信息用于反应无线信道的状况,包括信道状态信息(channel state information,CSI)。在无线保真(wireless fidelity,WiFi)协议中,针对每一个正交频分复用(orthogonal frequency division multiplexing,OFDM)子载波组进行测量,获取该OFDM子载波组对应的CSI矩阵。CSI矩阵的行数为发射天线数,CSI矩阵的列数为接收天线数。每个CSI矩阵的元素是一个包含实部与虚部的复数。因此,在天线数量大、子载波数目多的情况下,CSI的总体数据量可以达到每个报文3000个字节以上。例如,子载波的数量为114,发送天线数量和接收天线数量均为4。每个子载波的CSI是一个矩阵,该矩阵的行数和列数均为4。该矩阵中的每个元素是一个复数。该复数的实部和虚部分别用8比特表示。如此,若传输114个子载波上 的CSI,则采用3648个字节进行传输。即使采用电气电子工程师协会(institute of electrical and electronics engineers,IEEE)802.11ac中的压缩算法处理114个子载波上的CSI,处理后的数据的数据量也在上千字节,占用较多的传输资源,如对通信带宽资源消耗较大。
(3)训练符号以及测量报文
训练符号用于信道信息的测量,在对信道信息进行测量时,发端设备可在发送的测量报文中包含特殊的训练符号。这样,收端设备可根据已知训练符号的结构进行信道信息的测量。
作为一种实现方式,测量报文中的前导部分包括发端设备和收端设备双方均已知的序列。收端设备接收到报文之后,收端设备提取报文中的前导部分,将接收到的前导部分除以本地端存储的已知序列,得到相应的信道信息,如CSI。
示例性的,测量报文可以是携带特殊的训练符号的数据报文,如空数据报文(null data packet,NDP)或者物理层协议数据单元(physical layer protocol date units,PPDU)。
(4)无线无源感知
无线无源感知是利用无线电波在待检测目标(如人体)上反射的信号来对待检测目标的动作进行感知的技术。
具体在无线通信技术中,各类无线设备已大量应用于人们的日常生活中。其中,无线设备可以是手机、电脑、无线路由器、智能家居设备、无线传感器及无线路由器等。这些无线设备具有数量庞大、价格低廉、距离用户近等特点。在这些无线通信设备进行无线通信过程中,由于待检测目标(如人体)的运动可能对无线信号产生干扰,进而导致无线信道发生变化,因此无线通信设备可基于无线信道的变化来感知周围待检测目标的运动。从基本原理上来说,无线无源感知技术是利用类似“人体雷达”的原理来感知周围人体的,具体如图1所示。
参见图1,无线无源感知系统包括发端设备110和收端设备120。在实际应用过程中,发端设备110可以是一个,也可以是多个。收端设备120可以是一个,也可以是多个。图1中仅示出了一个发端设备和一个收端设备。发端设备110和收端设备120可以是分立的物理设备,也可以设置在同一物理设备中。收端设备120收到的无线信号包括直达信号140以及被待检测目标130反射回来的反射信号150。当待检测目标130运动时,反射信号150也发生变化。相应的,收端设备120收到的叠加后的无线信号也产生变化。此时,收端设备120探测到无线信道产生了变化。通常,在通信协议中无线信道的变化被量化表示为信道信息(如CSI)的变化,具体可体现为CSI的幅度的变化和/或CSI的相位的变化。也就是说,收端设备120基于测量的CSI,来感知周围是否有待检测目标,或待检测目标的运动状况。因此,无线无源感知技术可以广泛应用于入侵检测、老人看护、手势识别、呼吸睡眠监测、室内人数统计等无线感知应用。
与传统的基于摄像头或基于手环等穿戴设备的感知技术相比,无线无源感知技术具有如下的好处:第一,无线无源感知技术无需任何硬件成本。现有的WiFi等无线通信协议支持以CSI的方式来呈现无线信道受到的干扰。第二,用户无需佩戴任何设备,对用户干扰小。由此,无线无源感知技术能够对老人、小孩等进行监护,同时也方便对非配合目标(如入侵的窃贼)等进行检测。第三,无线无源感知技术对用户隐私影响小。由此,实现无线无源感知技术的无线通信设备可以部署在卧室、卫生间等区域。第四,即使在光照条件差的情况(如存在窗帘、木制家具等遮挡物)下,无线无源感知技术也能够有效地进行感知。 甚至,无线无源感知技术也可以跨越墙壁进行多房间感知。第五,在感知精度上,无线无源感知技术的感知精度非常高,能够感知到如呼吸这样微弱的运动。
(5)本申请实施例中涉及的多个,是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。另外,应当理解,尽管在本发明实施例中可能采用术语第一、第二等来描述各对象、但这些对象不应限于这些术语。这些术语仅用来将各对象彼此区分开。
(6)本申请实施例的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
以下对现有测量CSI的技术方案进行说明。
现有的CSI测量技术,如IEEE 802.11的CSI测量技术,多是针对无线通信过程中的波束赋型(beamforming)或测距来设计的,未考虑无线感知的应用需求。其中,现有的CSI测量技术主要包括如下五种:
第一种,IEEE 802.11n的隐含反馈(implicit feedback)
该IEEE 802.11n的隐含反馈方法利用了无线信道的互易性(channel reciprocity),即在双向通信过程中,收端设备到发端设备的信道测量和发端设备到收端设备的信道测量是等价的。参见图2,该IEEE 802.11n的隐含反馈方法的处理步骤包括:发端设备获取一次发送机会(transmit opportunity,TXOP)之后,发端设备向收端设备发送第一个报文。这里,第一个报文中携带训练请求(training request,TRQ)。相应的,收端设备接收来自发端设备的第一个报文。收端设备响应于第一个报文中的TRQ,向发端设备发送确认响应(acknowledgement,ACK)消息。其中,ACK消息中包括训练符号。相应的,发端设备接收来自收端设备的ACK消息。发端设备根据ACK消息中的训练符号,确定从收端设备到发端设备的无线信道的CSI(即反向的CSI)。然后,根据无线信道的互易性和反向的CSI,推测由发端设备到收端设备的无线信道的CSI,并根据发端设备到收端设备的无线信道的CSI来进行波束赋型,确定波束赋型的参数。发端设备向收端设备发送报文时,即可利用该波束赋型的参数进行波束赋型。发端设备采用赋型后的波束向收端设备传输报文。相应的,收端设备接收来自发端设备的报文。其中,报文中的参数部分为待传输的数据(data)。在收端设备确定报文接收成功之后,收端设备向发端设备发送批量确认响应(batch acknowledgement,BA)消息。相应的,发端设备接收来自收端设备的BA消息。也就是说,收端设备不反馈CSI的具体信息,而是反馈携带训练符号的ACK消息,以使发端设备确定相应的CSI。
为了提高CSI的准确性,在发端设备确定CSI之前,发端设备和收端设备首先进行校准操作。其中,校准操作的具体实现过程如下:发端设备获取一次TXOP之后,发端设备向收端设备发送TRQ,以请求收端设备进行校准。之后,发端设备和收端设备互发携带训练 符号的报文,以使对方根据携带训练符号的报文确定CSI。最后,收端设备将确定的CSI反馈给发端设备。发端设备对比收端设备反馈的CSI和自身确定的CSI,以实现校准,降低由于硬件因素所带来的信道互易偏差。校准之后,基于收端设备到发端设备的CSI,来推测发端设备到收端设备的信道状况,无需收端设备向发端设备反馈CSI的具体信息,且能够在一个TXOP内完成CSI的确定。
然而,IEEE 802.11n的隐含反馈方法与数据传输紧密结合,所适用的场景为单条链路传输数据的场景。
第二种,IEEE 802.11n的显示反馈(explicit feedback)
在IEEE 802.11n的显示反馈方法中,收端设备直接向发端设备显示反馈CSI,且无需校准过程。
参见图3,该IEEE 802.11n的显示反馈方法的处理步骤包括:发端设备获取一次TXOP,即图3中的TXOP1。在TXOP1中,发端设备向收端设备发送报文。其中,报文包括空数据报文通告(null data packet announcement,NDPA)及CSI测量请求,以告知收端设备准备进行CSI测量。相应的,收端设备接收来自发端设备的报文。在TXOP1中,收端设备向发端设备发送BA消息,以告知发端设备报文已收到。相应的,发端设备接收来自收端设备的BA消息。在TXOP1中,发端设备向收端设备发送(null data packet,NDP)。相应的,收端设备接收来自发端设备的NDP。发端设备所获取的一次TXOP(即TXOP1)结束。收端设备根据NDP,确定CSI,并通过竞争信道的方式获取一次TXOP,即TXOP2。在TXOP2中,收端设备向发端设备发送CSI。相应地,发端设备接收来自收端设备的CSI。在发端设备获取的下一个TXOP(如TXOP2之后的一个TXOP)中,发端设备根据CSI执行波束赋型处理。其中,CSI承载于CSI响应帧(action frame),无压缩波束赋型响应帧(non-compressed beamforming action frame),或压缩波束成型响应帧(compressed beamforming action frame),且CSI的数据可以是压缩后的数据,也可以是非压缩的数据。
第三种,IEEE 802.11ac的多用户多输入多输出系统(multi-user multiple input multiple output,MU-MIMO)
IEEE 802.11ac MU-MIMO方法支持多用户同时传输协议,由发端设备请求多个收端设备同时进行测量。其中,发端设备可以是接入点(access point,AP)。
参见图4,IEEE 802.11ac MU-MIMO方法的处理步骤包括:发端设备分别向多个收端设备发送超高吞吐量(very high throughput,VHT)格式的NDPA,以告知多个收端设备即将进行信道测量。相应的,多个收端设备分别接收来自发端设备的VHT格式的NDPA。然后,发端设备分别向多个收端设备发送VHT格式的NDP。相应的,多个收端设备分别接收来自发端设备的NDP。多个收端设备分别根据NDP,确定相应的CSI。在确定CSI之后,第一个收端设备按照NDPA所指示的CSI格式,向发端设备反馈CSI。然后,发端设备依次执行结果拉取(polling)处理,向多个收端设备中除第一个收端设备之外的收端设备发送结果拉取消息,以请求相应的收端设备向发端设备反馈CSI。相应的,多个收端设备中除第一个收端设备之外的收端设备接收结果拉取消息之后,向发端设备反馈CSI。在图4所示的场景中,仅示出了两个收端设备,分别为收端设备1和收端设备2。其中,收端设备1即为“第一个收端设备”,收端设备2即为“多个终端设备中除第一个收端设备之外的收端设备”。
第四种,IEEE 802.11az的测距(ranging)方法
在IEEE 802.11az的距离测量方法中,利用CSI来进行测距。参见图5,IEEE 802.11az的 测距方法的处理步骤包括:发端设备分别向多个收端设备发送测距拉取(ranging poll)请求,相应地,多个收端设备分别接收来自发端设备的测距拉取请求。若收端设备确定参与测距,则收端设备向发端设备发送允许发送(cts-to-self)消息,以告知发端设备参与测距。随后,发端设备依次向多个收端设备发送测距探测(range sounding)消息,以告知相应的收端设备反馈NDP。相应地,收端设备接收来自发端设备的测距探测消息。之后,收端设备向发端设备发送NDP。相应地。发端设备接收来自收端设备的NDP。发端设备根据NDP,确定CSI。在发端设备获取从收端设备到发端设备的CSI之后,发端设备向收端设备发送用于测距的NDPA,以告知收端设备即将进行CSI测量。随后,发端设备向收端设备发送NDP。相应的,收端设备接收来自发端设备的NDP。收端设备根据NDP,确定CSI。收端设备将CSI承载于定位测量报告(location measurement report,LMR),向发端设备反馈LMR。相应的,发端设备接收来自收端设备的LMR。如此,发端设备即可获取到上行方向和下行发送的CSI,并根据两个方向的CSI进行测距。在图5所示的场景中,仅示出了两个收端设备,分别为收端设备1和收端设备2。其中,收端设备1即为“第一个收端设备”,收端设备2即为“多个终端设备中除第一个收端设备之外的收端设备”。
第五种,通过广播NDP的方式确定CSI
参见图6,通过广播NDP的方式确定CSI的处理步骤包括:发端设备分别向多个收端设备发送NDPA,相应地,收端设备分别接收来自发端设备的NDPA。其中,NDPA用于指示收端设备即将进行CSI测量。随后,发端设备分别向多个收端设备发送NDP。相应的,收端设备分别接收来自发端设备的NDP。收端设备根据NDP,确定CSI。另外,NDPA还用于指示第一个收端设备反馈CSI。第一个收端设备响应于NDPA,向发端设备发送CSI。其中,第一个收端设备可以向发端设备反馈部分信道信息,也可以向发端设备反馈指示信道无变化的信息。随后,发端设备向多个收端设备中除第一个收端设备之外的其他收端设备发送CSI拉取(poll)消息,以请求多个收端设备中除第一个收端设备之外的其他收端设备反馈CSI。相应的,多个收端设备中除第一个收端设备之外的其他收端设备分别接收来自发端设备的CSI拉取消息,并根据CSI拉取消息向发端设备反馈CSI。在图6所示的场景中,仅示出了两个收端设备,分别为收端设备1和收端设备2。其中,收端设备1即为“第一个收端设备”,收端设备2即为“多个收端设备中除第一个收端设备之外的收端设备”。
综上,现有的CSI测量技术多是针对波束赋型或测距的,各个收端设备均向发端设备反馈消息。而在无线感知应用场景中,环境中物体大部分是静止的,若各个接收设备均向发端设备反馈消息,则导致可能占用过多的传输资源。且数据量较大,直接用于无线感知会降低如发端设备对无线感知应用分析的效率。
有鉴于此,本申请实施例提供了一种信道信息的反馈方法。发端设备可向收端设备指示反馈条件,收端设备基于反馈条件有选择性的反馈信道信息相关的测量报告。以减少反馈所需占用的传输资源,减少数据量,便于提升无线感知应用分析的效率。
本申请实施例提供的该信道信息的反馈方法可以应用于各种通信系统,例如,全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、5G新空口(New Radio,NR)系统、通用移动通信系统(universal mobile  telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)、无线局域网(wireless local area network,WLAN)系统或WiFi系统等。
下面以Wifi系统为例进行说明。参见图7,WiFi系统包括第二无线设备和第一无线设备。其中,第一无线设备可以是站点(station,STA),也可以终端设备,如手机、平板电脑等,还可以是家居或办公环境中集成了WiFi功能的设备,如打印机、智能电视机、智能灯泡等。第二无线设备可以是AP,也可以是终端设备,如手机、平板电脑等。第二无线设备可用于与第一无线设备通过无线局域网进行通信,并将第一无线设备的数据传输至网络侧,或将来自网络侧的数据传输至第一无线设备。其中,第二无线设备的数量可以是一个,也可以是多个。图7中仅示出了两个第二无线设备,如第二无线设备701和第二无线设备705。第一无线设备的数量可以是一个,也可以是多个。图7中仅示出了三个第一无线设备,如第一无线设备702、第一无线设备703和第一无线设备704。第二无线设备接收第一无线设备的信息的链路称为上行链路,如图7中虚线箭头所示的上行链路710。由第二无线设备向第一无线设备发送信息的链路称为下行链路,如图7中虚线箭头所示的下行链路711。第二无线设备之间的链路称为控制链路,如图7中实线双向箭头所示的控制链路712。控制链路可以是有线连接或无线连接。第二无线设备之间传输信息,以协调进行监测,满足无线感知的应用需求。应理解,本申请实施例仅以WiFi系统为例进行说明,但本申请实施例并不限于此,本发明实施例的方法和装置还可以应用于其它通信系统。类似地,本申请实施例以WiFi系统中的AP和STA作为举例进行说明,但不表示本申请实施例限于这种示例。本申请实施例的方案还可以应用于其它通信系统中的网络设备和终端设备。作为一种实现方式,网络设备实现本申请实施例中第二无线设备的功能,终端设备实现本申请实施例中第一无线设备的功能。
本申请实施例重点描述第二无线设备与第一无线设备之间的传输过程。第二无线设备负责通知第一无线设备测量信道信息以及向第一无线设备指示反馈条件,第二无线设备也可以描述为主控节点或前述发端设备。第一无线设备负责测量信道信息并基于第二无线设备指示的反馈条件,决定是否反馈信道信息相关的测量报文,第一无线设备也可以描述为测量节点或前述收端设备。
示例性的,本申请实施例的应用场景包括以下两种典型场景。
第一种典型场景:应用于居家环境。
参见图8,在居家环境中,第二无线设备可以为一个,且布设于客厅。第一无线设备可以为多个,分别布设于卧室、卫生间等。第二无线设备和第一无线设备对整个居家环境进行监控。图8中的带箭头的虚线表示第二无线设备和第一无线设备之间的链路。在图8所示的场景中,第二无线设备801分别和卧室中的第一无线设备802、第一无线设备803及第一无线设备806进行信息交互,以监控用户的睡眠状况。第二无线设备801和客厅中的第一无线设备804进行信息交互,以监控客厅的状况。第二无线设备801和卫生间中的第一无线设备805之间进行信息交互,以监控卫生间的情况。在监测到人体滑倒的动作后,第二无线设备801可以向医疗机构的设备发送警告,通知医护人员及时进行救护。第二无线设备801和卧室中的第一无线设备807进行信息交互,以监控该卧室的状况。第二无线设备801和厨房中的第一无线设备808进行信息交互,以监控厨房的状况。
第二种典型场景:应用于工业环境所指定的待监测区域,或应用于商业环境的场景所 指定的待监测区域。
参见图9,在待监测区域的面积较大时,第二无线设备的数量可以为多个。在图9所示的场景中,布设三个第二无线设备,分别为第二无线设备901、第二无线设备902和第二无线设备903,三个第二无线设备布设于待监测区域的中心区域。两个第二无线设备之间的带有双向箭头的实线用于表示两个第二无线设备之间的链路。第一无线设备的数量也可以是多个,分别为第一无线设备910、第一无线设备911、第一无线设备912、第一无线设备913、第一无线设备914、第一无线设备915和第一无线设备916。其中,第一无线设备910、第一无线设备911和第一无线设备912布设于待监测区域的出入口附近的区域。第一无线设备913布设于会议室中。第一无线设备914、第一无线设备915和第一无线设备916布设于待监测区域的边缘区域。一个第二无线设备和一个第一无线设备之间的带有双向箭头的虚线用于表示该第二无线设备和该第一无线设备之间的链路。例如,在图9所示的场景中,第二无线设备901与第一无线设备910之间进行信息交互,以监控待监测区域的出入口处的出入状况。第二无线设备903与第一无线设备913之间进行信息交互,以统计会议室的占用情况和/或会议室中的人员数量。
本申请实施例描述的通信系统以及应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
以下对本申请实施例提供信道信息的反馈方法,以及第一无线设备和第二无线设备之间的交互进行详细说明。
参见图10,本申请实施例提供一种信道信息的反馈方法流程示意图。该方法包括如下步骤:
S1001,第二无线设备确定至少一个第一无线设备,该至少一个第一无线设备需参与信道信息测量。
一种可选的实施方式中,第二无线设备可选择处于空闲状态的至少一个第一无线设备参与信道信息测量。例如在前述WiFi系统中,第二无线设备为AP,第一无线设备为STA,AP可向其所在范围内所有的STA发送sensing poll帧,询问各STA是否空闲,对STA进行调度。空闲(available)的STA发送CTS帧进行应答,参与本轮信道信息的测量;忙碌(busy)或称非空闲(unavailable)的STA将不进行应答,即不参与本轮信道信息的测量。则AP基于收到的可以发送指示(Clear To Send,CTS)帧可以确定哪些STA空闲,从而确定出需参与信道信息测量的至少一个STA。另一种可选的实施方式中,第二无线设备也可以指定至少一个第一无线设备参与信道信息测量。需要说明的是,S1001可以作为一个可选步骤,即第二无线设备可以不执行S1001,而是直接执行S1002。
S1002,第二无线设备向至少一个第一无线设备发送第一消息,所述第一消息用于通知测量信道信息,所述第一消息携带每个所述第一无线设备相关的第一指示信息,所述第一指示信息指示反馈条件。
可选的,第二无线设备可以通过在第一消息中携带每个第一无线设备的标识,以及每个标识对应的第一指示信息,来实现第一消息携带每个第一无线设备相关的第一指示信息。第一无线设备的标识指的是能够代表(或称,指示)该第一无线设备的指示信息,例如第一无线设备的标识可以具体是第一无线设备的关联标识,或者第一无线设备的设备标识等。
对于前述至少一个第一无线设备中的任意一个第一无线设备来说,第一无线设备可以从接收的第一消息中获取自身相关的第一指示信息,确定该第一指示信息所指示的反馈条 件,或者可以理解为确定该第一无线设备所适用的反馈条件。不同的第一无线设备相关的第一指示信息可以相同也可以不同。为加以区分,图10中具体示意出了1个第二无线设备101和3个第一无线设备,分别为第一无线设备102,第一无线设备103,第一无线设备104。以第一无线设备102为例,第一无线设备102可从接收到第一消息中获取第一无线设备102相关的第一指示信息,并确定对于第一无线设备102所适用的反馈条件。关于第二无线设备通过第一指示信息指示反馈条件的实施方式,将在后续内容进行详细说明。
可选的,所述第一消息中还携带第二指示信息,所述第二指示信息指示测量的信道信息用于无线感知。
S1003,针对前述指示一个第一无线设备中的任意一个第一无线设备,第一无线设备根据所述第一消息进行信道信息的测量。
一种可选的实施方式中,前述步骤S1002,第二无线设备可以多次地向至少一个第一无线设备发送第一消息,并在每次发送第一消息之后的且在下一次发送第一消息之前发送测量报文,该测量报文中包括训练符号。基于此,针对至少一个第一无线设备中的任意一个第一无线设备,第一无线设备可以至少两次的接收来自第二无线设备的第一消息以及测量报文。其中,测量报文可以是空数据报文NDP,则可选的,第一消息可以采用空数据报文通告NDPA实现。
具体的,第一无线设备针对所述至少两次中任意一次接收来自所述第二无线设备的所述第一消息,第一无线设备可参照如下流程进行信道信息的测量:第一无线设备在接收到所述第一消息之后的第一时长内,获取来自所述第二无线设备的测量报文,所述测量报文中包括训练符号;其中,第一时长表示第二无线设备两次发送第一消息之间的时间差。第一无线设备根据所述测量报文中的训练符号,进行一次信道信息的测量。以此类推,若第二无线设备发送N次第一消息以及测量报文,则第一无线设备可以进行N次信道信息的测量。
另一种可选的实施方式中,第二无线设备可以在所述第一指示信息中包括测量报文的配置周期,所述测量报文中包括训练符号。其中,测量报文可以是空数据报文NDP,则可选的,第一消息可以采用空数据报文通告NDPA实现。则第一无线设备根据所述第一消息进行信道信息的测量可参照如下方式实施:在第二时长内,第一无线设备每隔所述配置周期获取一次来自所述第二无线设备的所述测量报文;每隔所述配置周期,第一无线设备根据最新获取的所述测量报文中的训练符号进行一次信道信息的测量。其中,配置周期对应的时长小于第二时长。可选的,第二时长可以是第二无线设备获取一次发送机会(TXOP)的时长,则第一无线设备基于配置周期,可以在前述一次TXOP对应的时长内进行多次信道信息的测量。第二无线设备通过指示测量报文的配置周期,在一定有效时间内仅需初始发送一次第一消息,能够节省信令开销、传输资源。
此外,前述第一消息也可以是包括MPDU(MAC protocol data unit)的广播消息,其中“HT控制”字段中的TRQ比特置为1,该MPDU中携带训练符号。第二无线设备可以多次发送第一消息,使得第一无线设备获取一次MPDU,则可基于MPDU中的训练符号进行一次信道信息的测量。
进一步可选的,第一无线设备在每进行一次信道信息的测量后,则保存一次测量结果如该次测量到的信道信息,便于后续计算信道信息变化量。
S1004,针对前述指示一个第一无线设备中的任意一个第一无线设备,第一无线设备 根据当前测量的信道信息与历史测量的信道信息,确定第一信道信息变化量。
其中,历史测量的信道信息可以是相对于当前测量来说的上一次测量的信道信息;或者,历史测量的信道信息也可以是相对于当前测量来说之前测量的信道信息的平均。第一信道信息变化量用于表征当前无线信道相对于此前的变化程度,具体量化为信道信息的变化量值。
S1005,针对前述指示一个第一无线设备中的任意一个第一无线设备,第一无线设备确定所述第一信道信息变化量符合所述反馈条件时,则向所述第二无线设备反馈测量报告。
其中,测量报告可以包括测量结果例如测量到的信道信息,或者,测量报告也可以包括用于确定信道信息的相关报文。可选的,第一无线设备在确定第一信道信息变化量符合反馈条件时,可以主动地向第二无线设备反馈测量报告,或者也可以在接收来自第二无线设备的反馈指示的情况下,再向第二无线设备反馈测量报告。
示例性的,本申请实施例在图10中的S1006示意出了第一无线设备102和第一无线设备104向第二无线设备101反馈测量报告,而第一无线设备103未向第二无线设备101反馈测量报告的情况。
本申请实施例中,第二无线设备向至少一个第一无线设备指示其各自对应的反馈条件,任意第一无线设备基于其对应的反馈条件,有选择性的反馈信道信息相关的测量报告,减少反馈所需占用的传输资源。应用于无线感知,能够减少无线感知测量中的消息流量,便于提升无线感知应用分析的效率,达到以较小代价完成无线感知功能的效果。
参见图11,本申请实施例还提供了一种AP和STA之间传输的流程示意图。具体以第二无线设备是AP,第一无线设备是STA为例,对于一个AP与多个STA之间交互,实现无线感知测量及反馈的过程进行说明。图11中具体示意出了AP以及处于该AP通信范围内的4个STA分别为STA1、STA2、STA3以及STA4。
第一阶段:AP询问各STA(STA1、STA2、STA3以及STA4)是否空闲,并对STA进行调度;作为一种可选的方式,AP可以向STA1、STA2、STA3以及STA4发送拉取(poll)帧或者感知拉取(sensing poll)帧。空闲的STA发送CTS帧进行应答,参与本轮无线感知测量;否则STA将不进行应答,不参与本轮无线感知测量。例如空闲的STA1、STA2、STA3分别发送CTS帧进行应答,而非空闲的STA4不进行应答。
第二阶段:AP获取TXOP机会,向发送了CTS帧的STA1、STA2、STA3发送NDPA或者是其他类似的消息通知STA1、STA2、STA3进行信道信息的测量。AP发送NDPA之后发送携带训练符号的NDP,例如在多个空间流上同时发送NDP,则STA1、STA2、STA3结合所收NDP中的训练符号进行一次信道信息的测量。AP再向STA1、STA2、STA3发送NDPA以及NDP,则STA1、STA2、STA3结合所最新收到的NDP中的训练符号进行再一次信道信息的测量;依次类推,STA1、STA2、STA3即可完成多次信道信息的测量。图11作为示例,仅示意出了一次信道信息测量的过程,但不代表仅有一次。此外,需要说明的是,AP可以在是获取了一次TXOP机会内,发送两次或两次以上的NDPA和NDP;也可以是获取一次TXOP机会只发一次的NDPA和NDP;获取下一次TXOP机会再发一次的NDPA和NDP。也就是说,本申请实施例对于时间顺序上相邻的两次发送NDPA的时间差并不进行限定,可以依据实际需求决定。
可选的,该NDPA中携带STA1相关的第一指示信息,STA2相关的第一指示信息以及STA3相关的第一指示信息,使得STA1、STA2、STA3分别基于自身相关的第一指示信 息确定其适用的反馈条件。当然,第一指示信息也可以换作其他名称,如感知指示(Sensing Indication)或者是感知参数(Sensing parameter),只要其能够用于确定相应的反馈条件即可,本申请实施例对此不进行限制。作为一种实现方式,可以在NPDA帧中包含多个终端信息(STA Info)字段。每个STA info对应一个STA,每个STA info包含其所对应STA的关联标识(AID),以及其所对应STA相关的第一指示信息。如图12所示的一种NDPA帧结构示意图,NDPA帧包括帧控制(Frame Control)字段、时长(Duration)字段、接收端地址(Receiver address,RA)字段、发送端地址(Transmitter address,TA)字段、探测对话令牌(Sounding Dialog Token)字段、多个站点信息(STA Info)字段以及FCS(Frame Check Sequence):帧校验序列FCS。其中,多个站点信息(STA Info)字段中包含STA1对应的STA Info1、STA2对应的STA Info2、STA3对应的STA Info3等。以STA Info1为例,该STA Info1字段共占4个字节(Octets)即32比特(bits),作为一种可选的方式,32比特中AID占11比特,第一指示信息占21比特。
可选的,可以基于NDPA帧中的帧控制字段(frame control)使用子类型(subtype)来指示测量的信道信息用于无线感知。具体的,如图12中示意的帧控制字段包括的内容,帧控制字段共占2个字节即16比特,16比特中协议版本(Protocol version)字段占2个比特,类型(Type)字段占2比特,子类型(Subtype)字段占4比特,去往DS(To DS)字段占1个比特,来自DS(From DS)字段占1个比特,DS指的是分布式系统(Distribution system),更多分片(More fragment)字段占1个比特,+HTC(#66)占1个比特;其中,HTC指的是高吞吐量控制(High throughput control)。
其中,类型和子类型对应取值指示的内容如图12所示,类型取值为01,表示控制;子类型的取值为0010表示为触发器(Trigger),此时NDPA帧可以作为触发帧;子类型的取值为0101表示为超高吞吐量空数据报文通告(Very High Throughput NDP Announcement,VHT NDP Announcement)。另基于原先未定义的保留位,也就是如图12中所示划掉的类型取值为01,子类型取值为0000-0001的一行,新增定义类型的取值为01,子类型的取值为0000,表示此NDPA帧是无线感知NDPA(Sensing NDP Announcement),从而表明测量的信道信息用于无线感知。或者,也可以是利用前述第一指示信息来进一步指示测量的信道信息用于无线感知,例如使用第一指示信息中的保留字段指示测量的信道信息用于无线感知。
第三阶段:AP询问STA1、STA2、STA3各自当前测量的信道信息与历史测量的信道信息相比较,信道信息的变化程度(如前述的第一信道信息变化量)是否符合反馈条件;作为一种可选的方式,AP可以向STA1、STA2、STA3以及STA4发送拉取(poll)帧或者感知拉取(sensing poll)帧。符合反馈条件的STA向AP发送CTS帧进行应答,不符合反馈条件的STA则不向AP发送CTS帧。如图11所示,STA1和STA2向AP发送CTS帧进行应答。
第四阶段:AP向第三阶段中发了CTS帧的STA1和STA2发送反馈指示,例如探测或报告(sounding or report)帧,或者感知探测或报告(Sensing sounding or report)帧,STA1和STA2则向AP反馈测量报告,可以是测量的信道信息、用于确定信道信息的NDP报文或者无线感知测量结果等。或者,STA1和STA2也可以主动地向第二无线设备反馈测量报告,即无需AP发送反馈指示。
本实施例中在测量通告和测量报文发送过程中采用广播的方式,可以通过一次发送测 量报文后,由多个不同STA同时进行信道信息测量的方式来覆盖大范围区域的无线感知。各个STA可独立地根据广播测量报文来判断自己周围是否有动作发生,是否需要反馈。由于在实际环境中,大多数情况下环境是比较安静的,所以这种方式可以大大减小在静止环境下感知测量报文对信道的占用,降低对其他正常WiFi数据流的干扰,减少移动节点的能量消耗。另一方面,在周围发生动作时,STA可以及时进行反馈,通知AP有动作发生。这时,系统也可以迅速感知到运动。
以下针对上述第二无线设备通过第一指示信息指示反馈条件的实施方式,以及不同指示方式下第一无线设备如何判断是否反馈进行详细的说明。
第一种方式:所述第一指示信息包括所述第一变化量阈值,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值,或者所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。
可选的,若携带第一指示信息的第一消息为NDPA,则第一无线设备可从NDPA中与其对应的STA Info中获取与该第一无线设备相关的第一指示信息,即获取第一变化量阈值。如图13a,示意出了STA Info1中第一指示信息(Sensing Indication)的内容,该第一指示信息共21比特,其中第一变化量阈值(Variation Threshold)占2比特,余下的19比特为保留(reserved)位。
可选的,反馈条件与第一无线设备使用的信道信息变化量评估算法有关。若第一无线设备使用的是基于距离(例如余弦距离)、熵值(例如交叉熵)等的第一信道信息变化量评估算法,则该第一无线设备相关的反馈条件为信道信息变化量大于或等于第一变化量阈值;该第一无线设备确定的第一信道信息变化量大于或等于第一变化量阈值时,第一无线设备可以向第二无线设备反馈测量报告。若第一无线设备使用的是基于相关系数的第二信道信息变化量评估算法,则该第一无线设备相关的反馈条件为信道信息变化量小于或等于第一变化量阈值;该第一无线设备确定的第一信道信息变化量小于或等于第一变化量阈值时,第一无线设备可以向第二无线设备反馈测量报告。
可选的,作为一种实现方式,第一无线设备使用的信道信息变化量评估算法可以是自身预先配置的默认评估算法,第一无线设备在获取到其相关第一指示信息中的第一变化量阈值后,可根据预先配置的默认评估算法确定反馈条件该是信道信息变化量大于或者等于第一变化量阈值还是信道信息变化量小于或者等于第一变化量阈值。作为另一种实现方式,第一无线设备使用的信道信息变化量评估算法可以是由第二无线设备指示的。例如第二无线设备可以在第一指示信息中包含第一变化量阈值(Variation Threshold)以及第一标识,该第一标识指示第一信道信息变化量评估算法或者第二信道信息变化量评估算法,该第一标识也可以是其他的名称,例如评估算法(Evaluation Algorithm),本申请实施例对此不进行限制。如图13b,示意出了STA Info1中第一指示信息(Sensing Indication)的内容,该第一指示信息共21比特,其中第一变化量阈值(Variation Threshold)占2比特,第一标识占2比特,余下的17比特为保留(reserved)位。其中,第一标识也可以换作其他名称,如评估算法(Evaluation Algorithm),只要其能够指示相关信道信息变化量评估算法即可,本申请实施例对此不进行限制。示例性的,NDAP中第一指示信息包含的评估算法(也即第一标识)字段取值如下1表所示。
表1
评估算法字段 描述(description)
0(对应比特00) 时间反转共鸣强度法
1(对应比特01) 马氏距离法
2-3(对应比特10或11) 保留
可选的,前述第一信道信息变化量评估算法包括马氏距离法(Mahalanobis Distance,简写为MD);前述第二信道信息变化量评估算法包括时间反转共鸣强度法(Time-Reversal Resonating Strength,简写为TRSS)。
其中,马氏距离(MD)是度量学习中的一种常用的距离指标,是基于样本分布的一种距离。马氏距离修正了欧式距离中各个维度尺度不一致且相关的问题,用作评定数据之间的相似度。将MD用于衡量两个信道冲击响应(Channel impulse response,CIR)之间的相似性,MD的值越大,两个CIR之间的差异越大,即发生的变化越大。马氏距离的取值范围为[0,+∞)。马氏距离的投影空间可由如下步骤得到:将变量按照主成分进行旋转,让维度间相互独立,然后进行标准化,让维度同分布。由主成分分析可知,由于主成分就是特征向量方向,每个方向的方差就是对应的特征值,所以只需要按照特征向量的方向旋转,然后缩放特征值倍。对于一个要感知的区域,假设t 1时刻STA做信道信息测量接收到的CIR为h 1=[h 1[0],h 1[1],…,h 1[L-1]],t 2时刻STA接收到的CIR为h 2=[h 2[0],h 2[1],…,h 2[L-1]]。当MD大于或者等于设定的阈值例如前述第一变化量阈值时,则表示两个CIR之间有较大变化,此时需要进行信道信息更新和反馈。h 1和h 2之间的MD由如下公式计算得到,记为d(h 1,h 2):
Figure PCTCN2021141326-appb-000001
其中,∑=cov(h 1,h 2)=E[(h 1-E[h 1])(h 2-E[h 2]) T]为协方差矩阵,E[h 1]表示h 1的期望,上标 T表示矩阵的转置。协方差矩阵可以同时展现不同维度间的相关性以及各个维度上的方差,主对角线上的元素是各个维度上的方差(即能量),其他元素是两两维度间的协方差(即相关性)。
时间反转共鸣强度法TRRS是两个信道冲击响应(CIR)做卷积得到的互相关系数的最大幅度,用于衡量两个CIR之间的相似性,TRRS的值越大,则两个CIR越相似,表明发生的变化越小。TRSS的取值范围为[0,1]。
对于一个要感知的区域,假设t 1时刻STA做感知测量接收到的CIR为h 1=[h 1[0],h 1[1],…,h 1[L-1]],t 2时刻STA接收到的CIR为h 2=[h 2[0],h 2[1],…,h 2[L-1]],其中L表示CIR序列的长度。当TRRS小于或者等于设定的阈值例如前述第一变化量阈值时,则表示两个CIR之间有较大变化,此时需要进行信道信息更新和反馈。h 1和h 2之间的TRRS由以下公式计算得到,记为η(h 1,h 2):
Figure PCTCN2021141326-appb-000002
其中,g 2=[g 2[0],g 2[1],…,g 2[L-1]]是对h 2时间反转和共轭之后得到的,g 2[k]=h * 2[L-1-k],k=0,1,…,L-1,h * 2表示的h 2共轭。
本申请实施例中,第二无线设备向各个第一无线设备指示各自对应的单个变化量阈值,各第一无线设备根据第二无线设备指示给它的单个变化量阈值,结合自身使用的信道信息变化量评估算法确定反馈需满足的变化量下限或者是变化量上限,从而有选择性的反馈信 道信息相关的测量报告,能够减少反馈所需占用的传输资源。
第二种方式:所述第一指示信息包括第二变化量阈值和第三变化量阈值,所述反馈条件为信道信息变化量大于或者等于所述第二变化量阈值,且信道信息变化量小于或者等于所述第三变化量阈值。其中,第三变化量阈值大于第二变化量阈值。
可选的,若携带第一指示信息的第一消息为NDPA,则第一无线设备可从NDPA中与其对应的STA Info中获取与该第一无线设备相关的第一指示信息,即获取第二变化量阈值和第三变化量阈值,则第一无线设备确定的第一信道信息变化量处于由第二变化量阈值及第三变化量阈值构成的取值范围之内,第一无线设备可以向第二无线设备反馈测量报告。如图14,示意出了STA Info1中第一指示信息(Sensing Indication)的内容,该第一指示信息共21比特,其中第二变化量阈值(Variation Threshold-2)占2比特,第三变化量阈值(Variation Threshold-3)占2比特,余下的17比特为保留(reserved)位。
本申请实施例中,第二无线设备向各第一无线设备指示各自对应的双变化量阈值,各第一无线设备可以确定反馈需满足的变化量取值范围,从而有选择性的反馈信道信息相关的测量报告,能够减少反馈所需占用的传输资源。
第三种方式:所述第一指示信息包括第一敏感程度等级,该第一敏感程度等级用于确定反馈条件。
一种可选的方式中,所述第一敏感程度等级与第一变化量阈值相关,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值,或者所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。
可选的,可以采用预先定义的方式设定敏感程度等级与单个变化量阈值的关联关系,则第一无线设备从第一指示信息中获取第一敏感程度等级后,先确定与该第一敏感程度等级相关的第一变化量阈值;然后第一无线设备可以参照前述第一种方式,在第二无线设备未指示信道信息变化量评估算法的情况下,结合自身预先配置的信道信息变化量评估算法,确定反馈条件是信道信息变化量大于或者等于所述第一变化量阈值,还是信道信息变化量小于或者等于所述第一变化量阈值。或者,第一无线设备在第二无线设备指示信道信息变化量评估算法的情况下,根据第二无线设备指示的信道信息变化量评估算法,确定反馈条件是信道信息变化量大于或者等于所述第一变化量阈值,还是信道信息变化量小于或者等于所述第一变化量阈值。
可选的,可预先定义用于衡量信道信息变化程度的变化量阈值的取值范围(或称区间)如[0,1],将该取值范围内划分q个子区间,每个子区间对应一个敏感程度等级。具体的可参照如下方式实施:将[0,1]的范围划分为q个子区间[I start_j,I end_j),各子区间对应于不同的感知敏感程度。其中,I start_j和I end_j分别为第j个子区间的区间起始值和区间终止值。则第一无线设备从第一指示信息中获取第一敏感程度等级后,先确定与该第一敏感程度等级对应的子区间,然后根据该子区间确定第一变化量阈值;然后第一无线设备可以参照前述第一种方式,在第二无线设备未指示信道信息变化量评估算法的情况下,结合自身预先配置的信道信息变化量评估算法,确定反馈条件是信道信息变化量大于或者等于所述第一变化量阈值,还是信道信息变化量小于或者等于所述第一变化量阈值。或者,第一无线设备在第二无线设备指示信道信息变化量评估算法的情况下,根据第二无线设备指示的信道信息变化量评估算法,确定反馈条件是信道信息变化量大于或者等于所述第一变化量阈值,还是信道信息变化量小于或者等于所述第一变化量阈值。
其中,第一无线设备根据该子区间确定第一变化量阈值的方式可参照如下实施:第一无线设备按照预设的算法(或称规则),在第一敏感程度等级对应的子区间[I start_j,I end_j)里设置第一变化量阈值,比如使用区间平均(Interval average)法将阈值设置为Δ Var_th=(I start_j+I end_j)/2,此外,阈值的具体数值可根据具体场景需要,使用其他方法进行设置,本申请实施例对此并不进行限制。可选的,前述预设的算法可以是预先定义好的,也可以是第二无线设备通过第一指示信息指示的,例如第二无线设备在第一指示信息包括第一敏感程度等级的基础上,进一步还可以包括用于指示阈值设置算法的标识。
示例性的,若携带第一指示信息的第一消息为NDPA,则第一无线设备可从NDPA中与其对应的STA Info中获取与该第一无线设备相关的第一指示信息,即获取第一敏感程度等级。可选的,可第一指示信息中在使用m+n个比特来表示第一敏感程度等级,前述子区间的数量q也根据m+n来确定:前m bits可指示值为Value_m∈[0,2 m-1]的Value_m个整数,后n比特指示2 n个整数。因此,可将[0,1]的范围总共划分为Interval_num=(1+Value_m)×2 n个子区间。当Value_m=2 m-1时,此(m+n)比特划分的子区间个数最多,此时共划分Interval_num=2 m+n个子区间。其中,Value_m为m比特指示的值,Interval_num为划分的子区间的总个数。可根据不同的感知场景需求设定Interval_num,子区间数量越多,感知敏感程度的等级划分得越细。本申请实施例使用m+n=3,如图15a,示意出了STA Info1中第一指示信息(Sensing Indication)的内容,该第一指示信息共21比特,其中第一敏感程度等级(Sensitivity Level)占3比特,余下的18比特为保留(reserved)位。
假设m=2,n=1,将[0,1]划分了2 2个子区间,使用0到3的数字指示这些区间,并表示感知敏感程度。第一敏感程度等级字段的取值范围如下表2所示。其中,0到3的数字按照升序依次表示敏感程度逐渐降低。
表2
Figure PCTCN2021141326-appb-000003
进一步,参见图15b,示意出了STA Info1中第一指示信息(Sensing Indication)的内容,该第一指示信息共21比特,其中第一敏感程度等级(Sensitivity Level)占3比特,用于指示阈值设置算法的标识,或称阈值设置算法字段占2比特,余下的16比特为保留(reserved)位。阈值设置算法字段的取值范围如下表3所示。
表3
阈值设置算法字段 描述
0 使用区间平均法设置阈值
1-3 保留
另一种可选的方式中,所述第一敏感程度等级与第二变化量阈值和第三变化量阈值相关,所述反馈条件为信道信息变化量大于或者等于所述第二变化量阈值,且信道信息变化量小于或者等于所述第三变化量阈值。
可选的,可以采用预先定义的方式设定敏感程度等级与双变化量阈值的关联关系,该双变化量阈值用于指示一个变化量取值范围,反馈测量报告需要测量确定的信道信息变化量处于该变化量取值范围。则第一无线设备从第一指示信息中获取第一敏感程度等级后,先确定与该第一敏感程度等级相关的双变化量阈值,包括第二变化量阈值以及第三变化量阈值;然后第一无线设备可以参照前述第二种方式,若确定的第一信道信息变化量处于由第二变化量阈值以及第三变化量阈值构成的变化量取值范围内,则第一无线设备可以向第二无线设备反馈测量报告。
可选的,可预先定义用于衡量信道信息变化程度的变化量阈值的取值范围(或称区间)如[0,1],将该取值范围内划分q个子区间,每个子区间对应一个敏感程度等级。具体的可参照如下方式实施:将[0,1]的范围划分为q个子区间[I start_j,I end_j),各子区间对应于不同的感知敏感程度。其中,I start_j和I end_j分别为第j个子区间的区间起始值和区间终止值。则第一无线设备从第一指示信息中获取第一敏感程度等级后,先确定与该第一敏感程度等级对应的子区间,然后根据该子区间确定第二变化量阈值和第三变化量阈值;然后第一无线设备可以参照前述第二种方式,若确定的第一信道信息变化量处于由第二变化量阈值以及第三变化量阈值构成的取值范围内,则第一无线设备可以向第二无线设备反馈测量报告。其中,第一无线设备根据该子区间确定第二变化量阈值和第三变化量阈值的方式可参照如下实施:第一无线设备按照预设的算法(或称规则),在第一敏感程度等级对应的子区间[I start_j,I end_j)里设置第二变化量阈值和第三变化量阈值,比如使用四分位法在区间内靠近I start_j设置Δ Var_th=3/4×I start_j+1/4×I end_j作为第二变化量阈值,靠近I end_j设置Δ Var_th=1/4×I start_j+3/4×I end_j作为第三变化量阈值。此外,阈值的具体数值可根据具体场景需要,使用其他方法进行设置,本申请实施例对此并不进行限制。可选的,前述预设的算法可以是预先定义好的,也可以是第二无线设备通过第一指示信息指示的,例如第二无线设备在第一指示信息包括第一敏感程度等级的基础上,进一步还可以包括用于指示阈值设置算法的标识。
示例性的,若携带第一指示信息的第一消息为NDPA,则第一无线设备可从NDPA中与其对应的STA Info中获取与该第一无线设备相关的第一指示信息,即获取第一敏感程度等级。如图15a,示意出了STA Info1中第一指示信息(Sensing Indication)的内容,该第一指示信息共21比特,其中第一敏感程度等级(Sensitivity Level)占3比特,余下的18比特为保留(reserved)位。具体第一敏感程度等级的取值范围可参照第二种方式实施,本申请实施例对此不再进行赘述。类似地,如图15b所示,STA Info1中第一指示信息在包括第一敏感程度等级的基础上,也还可以包括阈值设置算法的标识字段,关于用于设置第二变化量阈值和第三变化量阈值的算法可以根据实际情况自行定义,本申请实施例对此不进行限制。
本申请实施例中,设定敏感程度等级与变化量阈值相关,第二无线设备通过指示某个敏感程度等级,实现动态的为第一无线设备配置当前敏感程度等级以及相关的变化量阈值,为第一无线设备配置的反馈条件更为灵活可变,能够适用于不同敏感程度的无线感知场景。
第四种方式:所述第一指示信息包括敏感程度等级范围,所述敏感等级范围包括至少 一个敏感程度等级,所述至少一个敏感程度等级相关的变化量阈值用于确定所述反馈条件。
可选的,可以采用预先定义的方式设定敏感程度等级与单个变化量阈值的关联关系,至少一个敏感程度等级中每个敏感程度等级相关的变化量阈值可以是如前述第一种方式中的用于衡量信道信息变化的单个变化量阈值,则第一无线设备从第一指示信息中获取敏感程度等级范围后,首先在敏感程度等级范围内确定第一无线设备对应的第一敏感程度等级,例如第一无线设备可基于对当前所处环境、信号接收强度和/或需感知的检测目标等信息,确定其对应的第一敏感程度等级。然后第一无线设备预先定义的第一敏感程度等级与单个变化量阈值的关联关系,确定该第一敏感程度等级相关的第一变化量阈值;进而第一无线设备可按照第一种实施方式,根据第一变化量阈值确定反馈条件,本申请实施例对此不再进行赘述。
可选的,可以采用预先定义的方式设定敏感程度等级与双变化量阈值的关联关系,至少一个敏感程度等级中也可以是如前述第二种方式中指示信道信息变化量取值范围的双变化量阈值。则第一无线设备从第一指示信息中获取敏感程度等级范围后,首先在敏感程度等级范围内确定第一无线设备对应的第一敏感程度等级,例如第一无线设备可基于对当前所处环境、信号接收强度和/或需感知的检测目标等信息,确定其对应的第一敏感程度等级。然后第一无线设备预先定义的第一敏感程度等级与双变化量阈值的关联关系,并确定该第一敏感程度等级相关的第二变化量阈值和第三变化量阈值;进而第一无线设备可按照第二种实施方式,根据第二变化量阈值和第三变化量阈值确定反馈条件,本申请实施例对此不再进行赘述。
示例性的,若携带第一指示信息的第一消息为NDPA,则第一无线设备可从NDPA中与其对应的STA Info中获取与该第一无线设备相关的第一指示信息,即获取第一敏感程度等级。如图16,示意出了STA Info1中第一指示信息(Sensing Indication)的内容,该第一指示信息共21比特,其中敏感程度等级范围(Sensitivity Level)占3比特,余下的18比特为保留(reserved)位。具体的参照表2所示的敏感程度等级划分,NDPA中的敏感程度等级范围(Sensitivity Level)字段取值可以是3,表示敏感程度等级范围包括当前已定义的0-3数字指示的敏感程度等级。
本申请实施例中,第一无线设备根据第二无线设备指示的敏感程度等级范围,结合自身的当前情况例如信号接收强度、所处环境、周围可检测目标等,动态的确定自身的敏感程度等级,进而灵活的获取该第一无线设备适用的反馈条件,能够适用于不同敏感程度的无线感知场景。
进一步的,在上述第一种至第四种方式中的任意一种,所述第一指示信息还包括用于指示区间映射算法的第二标识;所述根据当前测量的信道信息与历史测量的信道信息确定第一信道信息变化量,可参照如下方式实施:将所述当前测量的信道信息与所述历史测量的信道信息进行比较,得到第二信道信息变化量;根据所述区间映射算法对所述第二信道信息变化量进行处理,得到所述第一信道信息变化量,所述第一信道信息变化量处于第一区间;其中,所述第一区间包含所述第一变化量阈值,或者所述第一区间包含所述第二变化量阈值和所述第三变化量阈值。通过指示区间映射算法,使得各个第一无线设备测量确定出的信道信息变化量和相关变化量阈值是处于同一区间,便于两者之间进行比较,提升有选择性反馈的准确性。
可选的,区间映射算法可以采用[0,1]归一化区间的映射算法来实现。根据感知的业 务种类,比如手势识别、入侵检测、摔倒检测、呼吸心跳检测等,选择所需要的信道信息变化量评估算法,并将计算结果映射到[0,1]的范围内。比如,对于每次测量,可以使用归一化(Normalization)映射法Mapping_value=(original_value-min_value)/(max_value-min_value)。其中,Mapping_value为映射到[0,1]范围之后的值,original_value是本次测量时算法评估的信道信息的变化程度,min_value是一段时间内算法评估的信道信息的变化程度的最小值,max_value是一段时间内算法评估的信道信息的变化程度的最大值。
若携带第一指示信息的第一消息为NDPA,则第一无线设备可从NDPA中与其对应的STA Info中获取与该第一无线设备相关的第一指示信息,该第一指示信息包含第二标识。其中,第二标识也可以换作其他名称,如映射类型(Mapping Type),只要其能够指示相关区间映射算法即可,本申请实施例对此不进行限制。该映射类型在第一指示信息中占2比特,取值如下表4所示:
表4
映射类型字段 描述
0 归一化映射
1-3 保留位
可以理解的是,本申请实施例中所述的2个比特的映射类型字段可以被附加在图13a、图13b、图14、图15a、图15b或者图16的第一指示信息中,附加2个比特映射类型字段,第一指示信息中的保留字段则相应减少2个比特。示例性的,参见图17,示意出了第一指示信息包括占2比特的第一变化量阈值、占2比特的映射类型字段以及占17比特的保留字段。
基于同一构思,参见图18,本申请实施例提供了一种通信装置1800,该装置1800包括通信模块1801和处理模块1802。该通信装置1800可以是第一无线设备,也可以是应用于第一无线设备,能够支持第一无线设备执行信道信息的反馈方法的装置,或者,该通信装置1800可以是第二无线设备,也可以是应用于第二无线设备,能够支持第二无线设备执行信道信息的反馈方法的装置。
以下对该装置1800应用于第一无线设备的实施方式进行详细说明。
通信模块1801,用于接收来自第二无线设备的第一消息,所述第一消息用于通知测量信道信息,所述第一消息携带所述第一无线设备相关的第一指示信息,所述第一指示信息指示反馈条件。
所述处理模块1802,用于根据所述第一消息进行信道信息的测量。
所述处理模块1802,还用于根据当前测量的信道信息与历史测量的信道信息,确定第一信道信息变化量。
所述通信模块1801,还用于在所述第一信道信息变化量符合所述反馈条件时,向所述第二无线设备反馈测量报告。
本申请实施例中,第一无线设备根据第二无线设备指示给它的反馈条件,能够有选择性的反馈信道信息相关的测量报告,减少反馈所需占用的传输资源。应用于无线感知,能够减少无线感知测量中的消息流量,便于提升无线感知应用分析的效率,达到以较小代价完成无线感知功能的效果。
在一种可选的实施方式中,所述第一指示信息包括所述第一变化量阈值,所述反馈条 件为信道信息变化量大于或者等于所述第一变化量阈值,或者所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。第一无线设备根据第二无线设备指示给它的单个变化量阈值,结合自身使用的信道信息变化量评估算法确定反馈需满足的变化量下限或者是变化量上限,从而有选择性的反馈信道信息相关的测量报告,能够减少反馈所需占用的传输资源。
在一种可选的实施方式中,所述第一指示信息包括第二变化量阈值和第三变化量阈值,所述反馈条件为信道信息变化量大于或者等于所述第二变化量阈值,且信道信息变化量小于或者等于所述第三变化量阈值。第一无线设备根据第二无线设备指示给它的双变化量阈值,确定反馈需满足的变化量取值范围,从而有选择性的反馈信道信息相关的测量报告,能够减少反馈所需占用的传输资源。
在一种可选的实施方式中,所述第一指示信息包括第一敏感程度等级,所述第一敏感程度等级与第一变化量阈值相关,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值,或者所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。设定敏感程度等级与变化量阈值相关,第二无线设备通过指示某个敏感程度等级,实现动态的为第一无线设备配置当前敏感程度等级以及相关的变化量阈值,为第一无线设备配置的反馈条件更为灵活可变,能够适用于不同敏感程度的无线感知场景。
在一种可选的实施方式中,所述第一指示信息包括第一敏感程度等级,所述第一敏感程度等级与第二变化量阈值和第三变化量阈值相关,所述反馈条件为信道信息变化量大于或者等于所述第二变化量阈值,且信道信息变化量小于或者等于所述第三变化量阈值。设定敏感程度等级与变化量阈值相关,第二无线设备通过指示某个敏感程度等级,实现动态的为第一无线设备配置当前敏感程度等级以及相关的变化量阈值,为第一无线设备配置的反馈条件更为灵活可变,能够适用于不同敏感程度的无线感知场景。
在一种可选的实施方式中,所述第一指示信息包括敏感程度等级范围,所述敏感等级范围包括至少一个敏感程度等级,所述至少一个敏感程度等级相关的变化量阈值用于确定所述反馈条件。第一无线设备根据第二无线设备指示的敏感程度等级范围,结合自身的当前情况例如信号接收强度、所处环境、周围可检测目标等,动态的确定自身的敏感程度等级,进而灵活的获取该第一无线设备适用的反馈条件,能够适用于不同敏感程度的无线感知场景。
在一种可选的实施方式中,所述第一指示信息还包括第一标识,所述第一标识指示第一信道信息变化量评估算法,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值;或者所述第一标识指示第二信道信息变化量评估算法,所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。通过向第一无线设备指示第一变化量阈值以及信道信息变化量评估算法,间接的指示出了第一无线设备所适用的反馈条件。
在一种可选的实施方式中,所述第一信道信息变化量评估算法包括马氏距离法,所述第二信道信息变化量评估算法包括时间反转共鸣强度法。
在一种可选的实施方式中,所述第一指示信息还包括用于指示区间映射算法的第二标识;所述处理模块1802,还用于:将所述当前测量的信道信息与所述历史测量的信道信息进行比较,得到第二信道信息变化量;根据所述区间映射算法对所述第二信道信息变化量进行处理,得到所述第一信道信息变化量,所述第一信道信息变化量处于第一区间;其中,所述第一区间包含所述第一变化量阈值,或者所述第一区间包含所述第二变化量阈值和所 述第三变化量阈值。通过指示区间映射算法,使得第一无线设备测量确定出的信道信息变化量和相关变化量阈值是处于同一区间,便于两者之间进行比较,提升有选择性反馈的准确性。
在一种可选的实施方式中,所述通信模块1801,具体用于至少两次接收来自所述第二无线设备的所述第一消息。所述通信模块1801,还用于针对所述至少两次中任意一次接收来自所述第二无线设备的所述第一消息,在接收到所述第一消息之后的第一时长内,获取来自所述第二无线设备的测量报文,所述测量报文中包括训练符号;所述处理模块1802,还用于根据所述测量报文中的训练符号,进行一次信道信息的测量。
在一种可选的实施方式中,所述第一指示信息还包括测量报文的配置周期,所述测量报文中包括训练符号;所述处理模块1802,还用于在第二时长内,每隔所述配置周期获取一次来自所述第二无线设备的所述测量报文;每隔所述配置周期,根据最新获取的所述测量报文中的训练符号进行一次信道信息的测量。在一定有效时间(如,第二时长)内,第二无线设备通过指示测量报文的配置周期,仅需初始发送一次第一消息,能够节省信令开销、传输资源。
在一种可选的实施方式中,所述测量报文包括空数据报文NDP,所述第一消息包括空数据报文通告NDPA。
在一种可选的实施方式中,所述第一消息中还携带第二指示信息,所述第二指示信息指示测量的信道信息用于无线感知。应用于无线感知,对测量确定的信道信息变化量设定反馈需满足的范围,第一无线设备有选择性的反馈信道信息相关的测量报告,减少无线感知测量中的消息流量,第二无线设备也能够快速地获知第一无线设备周围可检测目标的状态,便于提升无线感知应用分析的效率,达到以较小代价完成无线感知功能的效果。
以下对该装置1800应用于第二无线设备的实施方式进行详细说明。
处理模块1802,用于确定至少一个第一无线设备;所述处理模块1802,还用于确定至少一个第一无线设备相关的第一指示信息,所述第一指示信息指示反馈条件;通信模块1801,用于向至少一个第一无线设备发送第一消息,所述第一消息用于通知测量信道信息,所述第一消息携带每个所述第一无线设备相关的第一指示信息;所述通信模块1801,还用于当所述第一无线设备测量的信道信息变化量符合所述反馈条件时,接收来自所述第一无线设备的测量报告。
本申请实施例中,第二无线设备向至少一个第一无线设备指示其各自对应的反馈条件,任意第一无线设备基于其对应的反馈条件,有选择性的反馈信道信息相关的测量报告,减少反馈所需占用的传输资源。应用于无线感知,能够减少无线感知测量中的消息流量,便于提升无线感知应用分析的效率,达到以较小代价完成无线感知功能的效果。
在一种可选的实施方式中,所述第一指示信息包括所述第一变化量阈值,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值,或者所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。通过向各第一无线设备分别指示其对应的单个变化量阈值,任意一个第一无线设备均可结合自身使用的信道信息变化量评估算法确定其反馈需满足的变化量下限或者是变化量上限,从而有选择性的反馈信道信息相关的测量报告,能够减少反馈所需占用的传输资源。
在一种可选的实施方式中,所述第一指示信息包括第二变化量阈值和第三变化量阈值,所述反馈条件为信道信息变化量大于或者等于所述第二变化量阈值,且信道信息变化量小 于或者等于所述第三变化量阈值。通过向各第一无线设备分别指示其对应的双变化量阈值,任意一个第一无线设备均可确定其反馈需满足的变化量取值范围,从而有选择性的反馈信道信息相关的测量报告,能够减少反馈所需占用的传输资源。
在一种可选的实施方式中,所述第一指示信息包括第一敏感程度等级,所述第一敏感程度等级与第一变化量阈值相关,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值,或者所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。设定敏感程度等级与变化量阈值相关,第二无线设备通过指示某个敏感程度等级,实现动态的为第一无线设备配置当前敏感程度等级以及相关的变化量阈值,为第一无线设备配置的反馈条件更为灵活可变,能够适用于不同敏感程度的无线感知场景。
在一种可选的实施方式中,所述第一指示信息包括第一敏感程度等级,所述第一敏感程度等级与第二变化量阈值和第三变化量阈值相关,所述反馈条件为信道信息变化量大于或者等于所述第二变化量阈值,且信道信息变化量小于或者等于所述第三变化量阈值。设定敏感程度等级与变化量阈值相关,第二无线设备通过指示某个敏感程度等级,实现动态的为第一无线设备配置当前敏感程度等级以及相关的变化量阈值,为第一无线设备配置的反馈条件更为灵活可变,能够适用于不同敏感程度的无线感知场景。
在一种可选的实施方式中,所述第一指示信息包括敏感程度等级范围,所述敏感等级范围包括至少一个敏感程度等级,所述至少一个敏感程度等级相关的变化量阈值用于确定所述反馈条件。通过指示敏感程度等级范围,任意一个第一无线设备均可结合自身的当前情况例如信号接收强度、所处环境、周围可检测目标等,动态的确定自身的敏感程度等级,进而灵活的获取该第一无线设备适用的反馈条件,能够适用于不同敏感程度的无线感知场景。
在一种可选的实施方式中,所述第一指示信息还包括第一标识,所述第一标识指示第一信道信息变化量评估算法,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值;或者所述第一标识指示第二信道信息变化量评估算法,所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。通过向各个第一无线设备指示第一变化量阈值以及信道信息变化量评估算法,间接的指示出了各个第一无线设备所适用的反馈条件。
在一种可选的实施方式中,所述第一信道信息变化量评估算法包括马氏距离法,所述第二信道信息变化量评估算法包括时间反转共鸣强度法。
在一种可选的实施方式中,所述第一指示信息还包括用于指示区间映射算法的第二标识。通过指示区间映射算法,使得各个第一无线设备测量确定出的信道信息变化量和相关变化量阈值是处于同一区间,便于两者之间进行比较,提升有选择性反馈的准确性。
在一种可选的实施方式中,所述通信模块1801,具体用于至少两次向前述至少一个第一无线设备发送所述第一消息。所述通信模块1801,还用于针对所述至少两次中任意一次发送所述第一消息,在发送所述第一消息之后的第一时长内发送测量报文,所述测量报文中包括训练符号;其中,第一时长指的是相邻两次发送所述第一消息之间的时间差。
在一种可选的实施方式中,所述第一指示信息还包括测量报文的配置周期,所述测量报文中包括训练符号。第二无线设备通过指示测量报文的配置周期,在一定有效时间内仅需初始发送一次第一消息,能够节省信令开销、传输资源。
在一种可选的实施方式中,所述测量报文包括空数据报文NDP,所述第一消息包括空数据报文通告NDPA。
在一种可选的实施方式中,所述第一消息中还携带第二指示信息,所述第二指示信息指示测量的信道信息用于无线感知。应用于无线感知,对测量确定的信道信息变化量设定反馈需满足的范围,使得第一无线设备有选择性的反馈信道信息相关的测量报告,减少无线感知测量中的消息流量,第二无线设备也能够快速地获知第一无线设备周围可检测目标的状态,便于提升无线感知应用分析的效率,达到以较小代价完成无线感知功能的效果。
基于同一构思,如图19所示,本申请实施例提供一种通信装置1900。示例性地,通信装置1900可以是芯片或芯片系统。可选的,在本申请实施例中芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置1900可以包括至少一个处理器1910,该处理器1910与存储器耦合,可选的,存储器可以位于该装置之内,也可以位于该装置之外。例如,通信装置1900还可以包括至少一个存储器1920。存储器1920保存实施上述任一实施例中必要计算机程序、程序指令和/或数据;处理器1910可能执行存储器1920中存储的计算机程序,完成上述任一实施例中的方法。
本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1910可能和存储器1920协同操作。
通信装置1900中还可以包括收发器1930,通信装置1900可以通过收发器1930和其它设备进行信息交互。收发器1930可以是电路、总线、收发器或者其它任意可以用于进行信息交互的装置。
在一种可能的实施方式中,该通信装置1900可以应用于第一无线设备,具体通信装置1900可以是第一无线设备,也可以是能够支持第一无线设备,实现上述涉及的任一实施例中第一无线设备的功能的装置。存储器1920保存实现上述任一实施例中的第一无线设备的功能的必要计算机程序、程序指令和/或数据。处理器1910可执行存储器1920存储的计算机程序,完成上述任一实施例中第一无线设备执行的方法。
在另一种可能的实施方式中,该通信装置1900可以应用于第二无线设备,具体通信装置1900可以是第二无线设备,也可以是能够支持第二无线设备,实现上述涉及的任一实施例中第二无线设备的功能的装置。存储器1920保存实现上述任一实施例中的第二无线设备的功能的必要计算机程序、程序指令和/或数据。处理器1910可执行存储器1920存储的计算机程序,完成上述任一实施例中第二无线设备执行的方法。
由于本实施例提供的通信装置1900可应用于第一无线设备,完成上述第一无线设备执行的方法,或者应用于第二无线设备,完成第二无线设备执行的方法。因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请实施例中不限定上述收发器1930、处理器1910以及存储器1920之间的具体连接介质。本申请实施例在图19中以存储器1920、处理器1910以及收发器1930之间通过总线连接,总线在图19中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图19中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件, 可以实施或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实施存储功能的装置,用于存储计算机程序、程序指令和/或数据。
基于以上实施例,参见图20,本申请实施例还提供另一种通信装置2000,包括:接口电路2010和处理器2020;接口电路2010,用于接收代码指令并传输至处理器;处理器2020,用于运行代码指令以执行上述任一实施例中第一无线设备执行的方法或者第二无线设备执行的方法。由于本实施例提供的通信装置2000可应用于第一无线设备,执行上述第一无线设备所执行的方法,或者应用于第二无线设备,执行第二无线设备所执行的方法。因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
基于以上实施例,本申请实施例还提供一种通信系统,该通信系统包括至少一个应用于第一无线设备的通信装置和至少一个应用于第二无线设备的通信装置。所能获得的技术效果可参考上述方法实施例,在此不再赘述。
基于以上实施例,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有指令,当指令被执行时,使上述任一实施例中第一无线设备执行的方法被实施或者第二无线设备执行的方法被实施。该计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
为了实现上述图19~图20的通信装置的功能,本申请实施例还提供一种芯片,包括处理器,用于支持该通信装置实现上述方法实施例中第一无线设备或者第二无线设备所涉及的功能。在一种可能的设计中,该芯片与存储器连接或者该芯片包括存储器,该存储器用于保存该通信装置必要的程序指令和数据。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种信道信息的反馈方法,其特征在于,应用于第一无线设备,包括:
    接收来自第二无线设备的第一消息,所述第一消息用于通知测量信道信息,所述第一消息携带所述第一无线设备相关的第一指示信息,所述第一指示信息指示反馈条件;
    根据所述第一消息进行信道信息的测量;
    根据当前测量的信道信息与历史测量的信道信息,确定第一信道信息变化量;
    当所述第一信道信息变化量符合所述反馈条件时,向所述第二无线设备反馈测量报告。
  2. 如权利要求1所述的方法,其特征在于,所述第一指示信息包括所述第一变化量阈值,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值,或者所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。
  3. 如权利要求1所述的方法,其特征在于,所述第一指示信息包括第二变化量阈值和第三变化量阈值,所述反馈条件为信道信息变化量大于或者等于所述第二变化量阈值,且信道信息变化量小于或者等于所述第三变化量阈值。
  4. 如权利要求1所述的方法,其特征在于,所述第一指示信息包括第一敏感程度等级,所述第一敏感程度等级与第一变化量阈值相关,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值,或者所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。
  5. 如权利要求1所述的方法,其特征在于,所述第一指示信息包括第一敏感程度等级,所述第一敏感程度等级与第二变化量阈值和第三变化量阈值相关,所述反馈条件为信道信息变化量大于或者等于所述第二变化量阈值,且信道信息变化量小于或者等于所述第三变化量阈值。
  6. 如权利要求1所述的方法,其特征在于,所述第一指示信息包括敏感程度等级范围,所述敏感等级范围包括至少一个敏感程度等级,所述至少一个敏感程度等级相关的变化量阈值用于确定所述反馈条件。
  7. 如权利要求2或4所述的方法,其特征在于,所述第一指示信息还包括第一标识,所述第一标识指示第一信道信息变化量评估算法,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值;或者所述第一标识指示第二信道信息变化量评估算法,所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。
  8. 如权利要求7所述的方法,其特征在于,所述第一信道信息变化量评估算法包括马氏距离法,所述第二信道信息变化量评估算法包括时间反转共鸣强度法。
  9. 如权利要求2-8任一项所述的方法,其特征在于,所述第一指示信息还包括用于指示区间映射算法的第二标识;所述根据当前测量的信道信息与历史测量的信道信息确定第一信道信息变化量,包括:
    将所述当前测量的信道信息与所述历史测量的信道信息进行比较,得到第二信道信息变化量;
    根据所述区间映射算法对所述第二信道信息变化量进行处理,得到所述第一信道信息变化量,所述第一信道信息变化量处于第一区间;其中,所述第一区间包含所述第一变化量阈值,或者所述第一区间包含所述第二变化量阈值和所述第三变化量阈值。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述第一消息包括空数据报文通 告NDPA。
  11. 一种信道信息的反馈方法,其特征在于,应用于第二无线设备,包括:
    向至少一个第一无线设备发送第一消息,所述第一消息用于通知测量信道信息,所述第一消息携带每个所述第一无线设备相关的第一指示信息,所述第一指示信息指示反馈条件;
    当所述第一无线设备测量的信道信息变化量符合所述反馈条件时,接收来自所述第一无线设备的测量报告。
  12. 如权利要求11所述的方法,其特征在于,所述第一指示信息包括所述第一变化量阈值,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值,或者所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。
  13. 如权利要求11所述的方法,其特征在于,所述第一指示信息包括第二变化量阈值和第三变化量阈值,所述反馈条件为信道信息变化量大于或者等于所述第二变化量阈值,且信道信息变化量小于或者等于所述第三变化量阈值。
  14. 如权利要求11所述的方法,其特征在于,所述第一指示信息包括第一敏感程度等级,所述第一敏感程度等级与第一变化量阈值相关,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值,或者所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。
  15. 如权利要求11所述的方法,其特征在于,所述第一指示信息包括第一敏感程度等级,所述第一敏感程度等级与第二变化量阈值和第三变化量阈值相关,所述反馈条件为信道信息变化量大于或者等于所述第二变化量阈值,且信道信息变化量小于或者等于所述第三变化量阈值。
  16. 如权利要求11所述的方法,其特征在于,所述第一指示信息包括敏感程度等级范围,所述敏感等级范围包括至少一个敏感程度等级,所述至少一个敏感程度等级相关的变化量阈值用于确定所述反馈条件。
  17. 如权利要求12或14所述的方法,其特征在于,所述第一指示信息还包括第一标识,所述第一标识指示第一信道信息变化量评估算法,所述反馈条件为信道信息变化量大于或者等于所述第一变化量阈值;或者所述第一标识指示第二信道信息变化量评估算法,所述反馈条件为信道信息变化量小于或者等于所述第一变化量阈值。
  18. 如权利要求17所述的方法,其特征在于,所述第一信道信息变化量评估算法包括马氏距离法,所述第二信道信息变化量评估算法包括时间反转共鸣强度法。
  19. 如权利要求12-18任一项所述的方法,其特征在于,所述第一指示信息还包括用于指示区间映射算法的第二标识。
  20. 如权利要求11-19任一项所述的方法,其特征在于,所述第一消息包括空数据报文通告NDPA。
  21. 如权利要求1所述的方法,其特征在于,所述第一信道信息变化量反应所述当前测量的信道信息与所述历史测量的信道信息的变化程度,所述第一信道信息变化量用0到1之间的数值来表示。
  22. 如权利要求21所述的方法,其特征在于,所述数值1指示所述第一信道信息变化程度最大。
  23. 如权利要求21所述的方法,其特征在于,所述数值0指示所述第一信道信息变化 程度最小。
  24. 如权利要求21-23任一项所述的方法,其特征在于,所述0到1之间的数值是由所述第一信道信息变化量通过归一化映射算法得到。
  25. 一种通信装置,其特征在于,包括:用于执行权利要求1-10和21-24中任一项所述方法中的各个步骤的单元。
  26. 一种通信装置,其特征在于,包括:用于执行权利要求11-20任一项所述方法中的各个步骤的单元。
  27. 一种通信装置,其特征在于,包括:
    处理器,所述处理器和存储器耦合,所述存储器用于存储程序指令,所述处理器用于执行所述程序指令,以实现权利要求1-24任一项所述的方法。
  28. 一种通信装置,其特征在于,包括:处理器和接口电路,所述接口电路用于与其它装置通信,所述处理器用于执行权利要求1-24任一项所述的方法。
  29. 一种通信系统,其特征在于,包括用于执行如权利要求1-10和21-24中任一项所述方法的通信装置,和用于执行如权利要求11-20任一项所述方法的通信装置。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有指令,当所述指令在计算机上运行时,实现权利要求1-24任一项所述的方法。
PCT/CN2021/141326 2020-12-28 2021-12-24 一种信道信息的反馈方法、通信装置及通信系统 WO2022143475A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/341,059 US20230345283A1 (en) 2020-12-28 2023-06-26 Channel information feedback method, communication apparatus, and communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011582356.2A CN114696877A (zh) 2020-12-28 2020-12-28 一种信道信息的反馈方法、通信装置及通信系统
CN202011582356.2 2020-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/341,059 Continuation US20230345283A1 (en) 2020-12-28 2023-06-26 Channel information feedback method, communication apparatus, and communication system

Publications (1)

Publication Number Publication Date
WO2022143475A1 true WO2022143475A1 (zh) 2022-07-07

Family

ID=82130313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141326 WO2022143475A1 (zh) 2020-12-28 2021-12-24 一种信道信息的反馈方法、通信装置及通信系统

Country Status (3)

Country Link
US (1) US20230345283A1 (zh)
CN (1) CN114696877A (zh)
WO (1) WO2022143475A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065711A1 (zh) * 2022-09-30 2024-04-04 华为技术有限公司 一种测距方法、装置和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180227714A1 (en) * 2017-02-06 2018-08-09 Qualcomm Incorporated Method and apparatus for motion detection systems
CN110113818A (zh) * 2018-02-01 2019-08-09 北京三星通信技术研究有限公司 信道状态信息上报方法、用户设备、基站和计算机可读介质
CN110383722A (zh) * 2017-01-09 2019-10-25 Lg电子株式会社 报告测量数据的方法及其终端
CN110547000A (zh) * 2019-07-11 2019-12-06 北京小米移动软件有限公司 直连通信的功率控制方法、装置、终端及存储介质
CN110855381A (zh) * 2018-08-21 2020-02-28 马维尔国际贸易有限公司 基于无线通信信号中信道相关性来检测运动的系统和方法
EP3695783A1 (en) * 2019-02-15 2020-08-19 Origin Wireless, Inc. Method, apparatus, and system for wireless gait recognition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9813135B2 (en) * 2010-09-29 2017-11-07 Qualcomm, Incorporated Systems and methods for communication of channel state information
US9882624B2 (en) * 2010-09-29 2018-01-30 Qualcomm, Incorporated Systems and methods for communication of channel state information
CN107666365B (zh) * 2016-07-28 2021-09-07 华为技术有限公司 一种csi的获取方法,服务器,终端以及ap
CN110138421B (zh) * 2018-02-08 2022-05-17 华为技术有限公司 信道探测方法及相关装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383722A (zh) * 2017-01-09 2019-10-25 Lg电子株式会社 报告测量数据的方法及其终端
US20180227714A1 (en) * 2017-02-06 2018-08-09 Qualcomm Incorporated Method and apparatus for motion detection systems
CN110113818A (zh) * 2018-02-01 2019-08-09 北京三星通信技术研究有限公司 信道状态信息上报方法、用户设备、基站和计算机可读介质
CN110855381A (zh) * 2018-08-21 2020-02-28 马维尔国际贸易有限公司 基于无线通信信号中信道相关性来检测运动的系统和方法
EP3695783A1 (en) * 2019-02-15 2020-08-19 Origin Wireless, Inc. Method, apparatus, and system for wireless gait recognition
CN110547000A (zh) * 2019-07-11 2019-12-06 北京小米移动软件有限公司 直连通信的功率控制方法、装置、终端及存储介质

Also Published As

Publication number Publication date
US20230345283A1 (en) 2023-10-26
CN114696877A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2021139736A1 (zh) 通信方法及装置
US11758427B2 (en) WLAN sensing frame exchange protocol
KR20140033222A (ko) 페이징 프레임 및 웨이크업 프레임 전송 방법 및 장치
US20230254842A1 (en) Method and device for determining sidelink resource
CN117580069B (zh) 用于Wi-Fi感测的系统和方法
US20230318721A1 (en) Receiver, transmitter, device, methods and computer programs for feedback sensing
CA3173370A1 (en) Systems and methods for time domain channel representation information for wi-fi sensing
WO2022143475A1 (zh) 一种信道信息的反馈方法、通信装置及通信系统
US20240056852A1 (en) Communication method and apparatus
CN114696965B (zh) 一种信息上报方法及通信装置
WO2022263982A1 (en) Systems and methods for dynamic time domain channel representations
EP4356075A1 (en) Systems and methods for dynamic time domain channel representations
CN115915182A (zh) 通信方法以及装置
WO2020147133A1 (zh) 用户设备和基站以及由用户设备、基站执行的方法
WO2022170990A1 (zh) 一种测量报文发送方法及通信装置
US20240113758A1 (en) Feedback method, and apparatus
US12038493B2 (en) Systems and methods for motion detection using sensing transmission clusters
WO2023142975A1 (zh) 一种信道探测方法及装置
WO2023093747A1 (zh) 一种通信方法及装置
WO2023223217A1 (en) Systems and methods for selecting and updating a set of sounding devices
WO2024069528A1 (en) Systems and methods for wi-fi network evaluation
WO2024089534A1 (en) Systems and methods for determination of sensing roles in a mesh network
WO2023126727A1 (en) Methods and systems for the allocation of orthogonal frequency division multiple access resource units to a sensing measurement
JP2024513338A (ja) Wlanセンシングのオーバーヘッド削減のための通信装置および通信方法
CN118235491A (zh) 通信方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914212

Country of ref document: EP

Kind code of ref document: A1