WO2022143392A1 - 电动汽车控制系统 - Google Patents
电动汽车控制系统 Download PDFInfo
- Publication number
- WO2022143392A1 WO2022143392A1 PCT/CN2021/140778 CN2021140778W WO2022143392A1 WO 2022143392 A1 WO2022143392 A1 WO 2022143392A1 CN 2021140778 W CN2021140778 W CN 2021140778W WO 2022143392 A1 WO2022143392 A1 WO 2022143392A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- power
- domain controller
- voltage
- control
- Prior art date
Links
- 239000000498 cooling water Substances 0.000 claims abstract description 21
- 238000001816 cooling Methods 0.000 claims abstract description 14
- 238000006243 chemical reaction Methods 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 230000006641 stabilisation Effects 0.000 claims description 6
- 238000011105 stabilization Methods 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- 230000004622 sleep time Effects 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 claims description 3
- 238000012795 verification Methods 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K11/00—Arrangement in connection with cooling of propulsion units
- B60K11/02—Arrangement in connection with cooling of propulsion units with liquid cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
- B60R16/023—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
- B60R16/0231—Circuits relating to the driving or the functioning of the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/545—Temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present application relates to the technical field of vehicles, for example, to an electric vehicle control system.
- the present application provides an electric vehicle control system, which can optimize the structure of the electric vehicle control system and simplify the control process.
- the application provides an electric vehicle control system, including: a power domain controller, a motor controller, a high-voltage drive board, a power drive board and additional devices;
- the additional components include: cooling water pump, cooling water valve, charging indicator light, electric air intake grille, brake pedal sensor, accelerator pedal sensor, temperature sensor, charging gun identification interface, cooling fan, heater and compressor;
- the motor controller, the high-voltage drive board and the power drive board are connected to the power domain controller through a controller area network (Controller Area Network, CAN line connection); cooling water pump, cooling water valve, charging indicator light , the electric air intake grille, heater and compressor are all connected with the power domain controller through a local area interconnection network (local area interconnection network, LIN) line; the brake pedal sensor, accelerator pedal sensor, temperature sensor, The charging gun identification interface and the cooling fan are connected to the power domain controller through hard wires;
- controller area network Controller Area Network, CAN line connection
- cooling water pump, cooling water valve, charging indicator light , the electric air intake grille, heater and compressor are all connected with the power domain controller through a local area interconnection network (local area interconnection network, LIN) line
- the brake pedal sensor, accelerator pedal sensor, temperature sensor The charging gun identification interface and the cooling fan are connected to the power domain controller through hard wires;
- the power domain controller is configured to realize the vehicle driving control function and the energy management function
- the motor controller is configured to drive the motor to work according to the first control instruction sent by the power domain controller;
- the high-voltage drive board is configured to collect battery information according to the second control command sent by the power domain controller, and drive the high-voltage relay;
- the power driver board is configured to drive voltage conversion and charging related circuits to be turned on or off according to a third control command sent by the power domain controller.
- the system further includes: a body stabilization unit, a steering assist unit, an airbag control unit, an electronic shifter, and a gateway;
- the body stabilization unit, the power steering unit, the airbag control and the electronic shifter are all connected with the power domain controller through a CAN line;
- the gateway is connected to the dynamic domain controller through Ethernet.
- the driving control functions include driving mode control, torque control and gear control functions; and the energy management functions include low voltage power management, high voltage power management, battery energy management, charging management and thermal management functions.
- the driving mode control function is implemented by: inputting a driving mode selection signal into the power domain controller, and outputting a driving mode status signal.
- the torque control function is implemented in the following manner: accelerator pedal sensor position signal, brake pedal sensor position signal, electronic shifter gear position request signal, vehicle speed signal, acceleration signal, yaw rate signal, steering assist System (Electric Power Steering, EPS) signal and body stability system (Electronic Stability Control, ESC) torque intervention signal, automatic driving system signal, radar signal, camera signal and motor actual torque and maximum torque signal are input to the power domain controller, Output motor torque demand signal.
- EPS Electronic Power Steering
- ESC Electronic Stability Control
- the implementation of the gear control function is as follows:
- the gear position request signal, the brake pedal signal and the unlock button state signal are input to the power domain controller, and the gear position control signal and the gear position display signal are output.
- the low-voltage power management function is implemented by: inputting at least one of a network management message signal, a charging gun identification signal, a charging pile communication signal, and a key door signal to the power domain controller to realize a wake-up state and sleep state switching.
- the implementation process of the high-voltage power management function is: key door signal, gear signal, charging gun identification signal, brake pedal signal, anti-theft verification result signal, motor status signal, battery status signal, high-voltage system signal
- the state signal, voltage signal, collision signal and high-voltage relay state signal are input to the power domain controller, and a plurality of high-voltage relay control commands and power system preparation signals or power system failure signals are output.
- the battery energy management function is implemented by: inputting a plurality of sub-board voltage signals, temperature signals, and vehicle power-off sleep time signals into the power domain controller, and outputting power battery remaining power signals and allowable power Signal.
- the implementation process of the charging management function is: charging gun identification signal, power battery remaining power signal, target charging power signal, high voltage relay status signal, high voltage system status signal, charging port temperature signal, power battery temperature signal , power battery voltage signal, charging current signal and charging voltage signal are input to the power domain controller, and output charging current control signal, charging voltage control signal, charging heating control signal, charging indicator light control signal, charging start signal and relay control signal ;
- the realization process of the thermal management function is: input the power battery temperature signal, the motor temperature signal, the cooling water temperature signal, the cooling system allowable power signal into the power domain controller, and output the water pump control signal, the water valve control signal, and the fan control signal. , intake grille control signal, heater control signal and compressor control signal.
- FIG. 1 is a schematic structural diagram of an electric vehicle control system provided in Embodiment 1 of the application;
- FIG. 2 is a working principle diagram of a dynamic domain controller according to Embodiment 1 of the present application.
- FIG. 1 is a schematic structural diagram of an electric vehicle control system according to Embodiment 1 of the present application. As shown in FIG. 1 , the system includes: a power domain controller, a motor controller, a high-voltage drive board, a power drive board, and additional devices.
- the additional components include: cooling water pump, cooling water valve, charging indicator light, electric air intake grille, brake pedal sensor, accelerator pedal sensor, temperature sensor, charging gun identification interface, cooling fan, heater and compressor.
- the motor controller, high-voltage drive board and power drive board are all connected to the power domain controller through CAN lines; the cooling water pump, cooling water valve, charging indicator light, electric air intake grille, heater and compressor are all connected to the power domain controller Connected by LIN line; brake pedal sensor, accelerator pedal sensor, temperature sensor, charging gun identification interface, cooling fan are all connected with power domain controller by hard line.
- the power domain controller is set to realize the vehicle driving control function and energy management function.
- the motor controller is configured to drive the motor to work according to the first control instruction sent by the power domain controller.
- the high-voltage driving board is configured to collect battery information according to the second control command sent by the power domain controller, and drive the high-voltage relay.
- the power driver board is configured to drive the voltage conversion and charging related circuits to be turned on or off according to the third control command sent by the power domain controller.
- the motor controller receives the first control command of the power domain controller to realize the motor drive function.
- the high-voltage driver board receives the second control command of the power domain controller, drives the high-voltage relay, and transmits the collected battery pack voltage and temperature data to the power domain controller, so as to realize the battery information collection and driving function.
- the power driver board receives the third control command of the power domain controller, and drives the voltage conversion and charging related circuits to be turned on and off, so as to realize the high-voltage circuit driving function.
- the system further includes: a body stabilization unit, a steering assist unit, an airbag control unit, an electronic shifter, a gateway and other vehicle control units.
- the body stabilization unit, power steering unit, airbag control unit and electronic shifter are all connected to the power domain controller through CAN lines; the gateway is connected to the power domain controller through Ethernet, and other vehicle control units are connected to the gateway through Ethernet , to achieve signal transmission with the dynamic domain controller.
- FIG. 2 is a working principle diagram of a power supply domain controller according to Embodiment 1 of the present application.
- the driving control functions include driving mode control, torque control and gear control functions; energy management functions include low-voltage power management, high-voltage power management, battery energy management, charging management and thermal management functions.
- the driving mode control function means that the driver selects the driving mode by operating the knob, the central instrument controller sends the driver's selection result signal to the gateway controller, and the gateway controller routes the above information to the power domain controller, and the power domain realizes driving.
- the mode is switched, and the switching result is fed back to the central control instrument, which is displayed on the instrument to inform the driver.
- the input signal of the driving mode control function is the driving mode selection signal, and the output signal is the driving mode status signal.
- the torque control function refers to the state of the accelerator pedal and brake pedal collected by the power domain controller according to the hard line, the allowable power of the drive system, the current gear state fed back by the Electronic Gear Selector Module (EGSM), and the power steering.
- EGSM Electronic Gear Selector Module
- Steering system status fed back by EPS and chassis system status fed back by ESC, adaptive cruise system on and off status and torque request, automatic driving system on and off status and torque request, and other assisted driving systems on and off status and motor actual torque and allowable torque comprehensively analyze and process the above information, calculate the output torque of the motor, and drive the motor to execute the torque demand by the motor controller to realize the driver's driving intention.
- the input signals of torque control function include accelerator pedal sensor position signal, brake pedal sensor position signal, electronic shifter gear position request signal, vehicle speed signal, acceleration signal, yaw rate signal, power steering system EPS signal and body stability system ESC Torque intervention signal, automatic driving system signal, radar signal, camera signal, and motor actual torque and maximum torque signal, and the output signal is the motor torque demand signal.
- the gear control function means that the power domain controller feeds back the gear position signal according to the electronic shifter EGSM, identifies the driver's shifting intention, and sends the target gear signal to the motor controller MCU, and the motor controller MCU realizes the gear switching. .
- the gear status information is sent to the gateway, and the gateway forwards it to the central control instrument to inform the driver of the current vehicle gear information.
- the input signal of the gear control function includes the gear request signal, the brake pedal signal and the unlock button state signal, and the output signal includes the gear control signal and the gear display signal.
- the low-voltage power management function means that the power domain controller receives the wake-up source signal, enters the wake-up state from the sleep state, and wakes up other controllers in the power domain at the same time; the power domain controller is based on the driver's operation requirements and vehicle status information, and related control in the power domain.
- the device enters the sleep state from the wake-up state together.
- the relevant signals of the low-voltage power management function include network management message signals, charging gun identification signals, charging pile communication signals, and key door signals.
- the high-voltage power management function means that the power domain controller recognizes the driver's operation intention, high-voltage system status information and vehicle status information, issues high-voltage relay opening and closing control commands, and the high-voltage drive board drives the corresponding relay to control the high-voltage system to complete power-on and off. , and the gateway will forward the power-on result signal to the central control instrument to inform the driver that the vehicle power system has entered a ready state or a fault state.
- the input signals of high voltage power management function include key door signal, gear position signal, charging gun identification signal, brake pedal signal, anti-theft verification result signal, motor status signal, battery status signal, high voltage system status signal, voltage signal, collision signal And high-voltage relay status signal, the output signal is multiple high-voltage relay control commands, power system Ready signal and power system fault signal.
- the battery energy management function means that the power domain controller receives the voltage and temperature information of the battery sub-board collected by the high-voltage drive board, and calculates the allowable power and remaining energy of the high-voltage battery in combination with the power-off sleep time of the vehicle.
- the input signals of the battery management function include multiple sub-board voltage signals, temperature signals, and vehicle power-off sleep time signals, and the output signals include power battery remaining power signals and allowable power signals.
- the charging management function means that the power domain controller identifies the charging gun through the hardware interface, and sends a charging request in combination with the driver's charging settings, the power battery status information collected by the high-voltage driver board, and the information obtained by interacting with the charging pile, and controls the related relays to turn on and off. , monitor the charging process, and control the charging indicator light to display the working status of the charging system to realize the driver's charging intention.
- the input signals of the charging management function include charging gun identification signal, power battery remaining power signal, target charging power signal, high voltage relay status signal, high voltage system status signal, charging port temperature signal, power battery temperature signal, power battery voltage signal, charging current signal and charging voltage signal.
- the output signals include charging current control signal, charging voltage control signal, charging heating control signal, charging indicator light control signal, charging start signal and relay control signal.
- the thermal management function means that the power domain controller controls and drives the water pump, water valve, fan, air intake grille,
- the heater and compressor work to realize the functions of battery heating, battery cooling, motor cooling and temperature control of the crew cabin.
- the input signals of the thermal management function include the power battery temperature signal, the motor temperature signal, the cooling water circuit temperature signal, the cooling system allowable power signal, and the output signals include the water pump control signal, the water valve control signal, the fan control signal, and the air intake grille control signal. , heater control signal and compressor control signal.
- the embodiment of the present application discloses an electric vehicle control system, including: a power domain controller, a motor controller, a high-voltage drive board, a power drive board, and additional devices. Additional components include: cooling water pump, cooling water valve, charging indicator light, electric air intake grille, brake pedal sensor, accelerator pedal sensor, temperature sensor, charging gun identification interface, cooling fan, heater and compressor.
- the motor controller, high-voltage drive board and power drive board are all connected with the power domain controller through CAN lines; the driving cooling water pump, cooling water valve, charging indicator light, electric air intake grille, heater and compressor are all connected with the power domain controller
- the controller is connected through LIN line; the brake pedal sensor, accelerator pedal sensor, temperature sensor, charging gun identification interface, and cooling fan are all connected with the power domain controller through hard wires;
- the power domain controller is set to realize the vehicle driving control function and energy management function;
- the motor controller is set to drive the motor to work according to the first control command sent by the power domain controller;
- the high-voltage drive board is set to collect battery information according to the second control command sent by the power domain controller, and drive the high-voltage relay; power drive board It is configured to drive the voltage conversion and charging related circuits to be turned on or off according to the third control command sent by the power domain controller. It can optimize the structure of the electric vehicle control system and simplify the control process.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
一种电动汽车控制系统,包括:动力域控制器、电机控制器、高压驱动板、功率驱动板及附加器件;电机控制器、高压驱动板及功率驱动板均与动力域控制器通过CAN线连接;冷却水泵、冷却水阀、充电指示灯、电动进气格栅、加热器及压缩机均与动力域控制器通过LIN线连接;制动踏板传感器、加速踏板传感器、温度传感器、充电枪识别接口、冷却风扇均与动力域控制器通过硬线连接;电机控制器根据动力域控制器发送的第一控制指令驱动电机工作;高压驱动板根据动力域控制器发送的第二控制指令采集电池信息,驱动高压继电器;功率驱动板根据动力域控制器发送的第三控制指令驱动电压转换和充电相关电路开启或关闭。
Description
本申请要求在2020年12月28日提交中国专利局、申请号为202011583481.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
本申请涉及车辆技术领域,例如涉及一种电动汽车控制系统。
电动化、智能化、网联化和共享化是汽车产业未来发展方向。与传统汽车相比,新能源汽车尤其是纯电动汽车具有零排放、低噪声等优点,得到世界多国的重视及大力发展。随着汽车电子电气技术的飞速发展,整车上的控制器数量不断增加。一方面是由于在过去车载芯片能力不足的前提下,很多整车级别的功能都由多个控制器协同实现的;另一方面由于技术相对不够成熟,车载功能是逐渐完善的,控制器数量也不断增加。以上情况带来了如下的问题:
1、由于多个控制器不是满负荷运行,都会有一定的资源预留,随着控制器数量的增加,整车上的控制器资源预留总量急剧增长,造成硬件资源浪费。
2、由于多个控制器开发过程中都需要完成部分相同内容开发,包括通信、诊断等基础功能的开发,控制器数量越多,重复工作量越大,造成人力资源浪费。
3、由于控制器数量增加,多个控制器之间通信线束的长度也不断增加,一定程度上也增加了整车成本。
4、由于多个控制器之间在功能上存在一定程度的耦合,互相之间的交互及时间配合也异常复杂,如需要增加新功能,需要大量相关控制器进行修改及测试,不利于整车模块化及平台化的发展。
发明内容
本申请提供一种电动汽车控制系统,可以优化电动汽车控制系统结构,简化控制过程。
本申请提供了一种电动汽车控制系统,包括:动力域控制器、电机控制器、高压驱动板、功率驱动板及附加器件;
所述附加器件包括:冷却水泵、冷却水阀、充电指示灯、电动进气格栅、 制动踏板传感器、加速踏板传感器、温度传感器、充电枪识别接口、冷却风扇、加热器和压缩机;
所述电机控制器、所述高压驱动板及所述功率驱动板均与所述动力域控制器通过控制器局域网络(Controller Area Network,CAN线连接);冷却水泵、冷却水阀、充电指示灯、电动进气格栅、加热器及压缩机均与所述动力域控制器通过局域互联网络(局域互联网络,LIN)线连接;所述制动踏板传感器、加速踏板传感器、温度传感器、充电枪识别接口、冷却风扇均与所述动力域控制器通过硬线连接;
所述动力域控制器设置为实现整车行驶控制功能和能量管理功能;
所述电机控制器设置为根据所述动力域控制器发送的第一控制指令驱动电机工作;
所述高压驱动板设置为根据所述动力域控制器发送的第二控制指令采集电池信息,驱动高压继电器;
所述功率驱动板设置为根据所述动力域控制器发送的第三控制指令驱动电压转换和充电相关电路开启或关闭。
一实施例中,所述系统还包括:车身稳定单元、转向助力单元、安全气囊控制单元、电子换挡器、及网关;
所述车身稳定单元、转向助力单元、安全气囊控制及电子换挡器均与所述动力域控制器通过CAN线连接;
所述网关与所述动力域控制器通过以太网相连。
一实施例中,行驶控制功能包括驾驶模式控制、扭矩控制及档位控制功能;能量管理功能包括低压电源管理、高压电源管理、电池能量管理、充电管理及热管理功能。
一实施例中,所述驾驶模式控制功能实现方式为:将驾驶模式选择信号输入所述动力域控制器,输出驾驶模式状态信号。
一实施例中,所述扭矩控制功能的实现方式为:加速踏板传感器位置信号、制动踏板传感器位置信号、电子换挡器档位请求信号、车速信号、加速度信号、横摆角速度信号、转向助力系统(Electric Power Steering,EPS)信号及车身稳定系统(Electronic Stability Control,ESC)扭矩介入信号、自动驾驶系统信号、雷达信号、摄像头信号及电机实际扭矩和最大扭矩信号输入所述动力域控制器,输出电机扭矩需求信号。
一实施例中,所述档位控制功能的实现方式为:
将档位请求信号、制动踏板信号及解锁按键状态信号输入所述动力域控制器,输出档位控制信号及档位显示信号。
一实施例中,所述低压电源管理功能的实现方式为:网络管理报文信号、充电枪识别信号、充电桩通信信号及钥匙门信号中的至少一个输入所述动力域控制器,实现唤醒状态和休眠状态的切换。
一实施例中,所述高压电源管理功能的实现过程为:钥匙门信号、档位信号、充电枪识别信号、制动踏板信号、防盗校验结果信号、电机状态信号、电池状态信号、高压系统状态信号、电压信号、碰撞信号及高压继电器状态信号输入所述动力域控制器,输出多个高压继电器控制指令和动力系统准备信号或者动力系统故障信号。
一实施例中,所述电池能量管理功能的实现方式为:将多个子板电压信号、温度信号、车辆下电休眠时间信号输入所述动力域控制器,输出动力电池剩余电量信号、许用功率信号。
一实施例中,所述充电管理功能的实现过程为:充电枪识别信号、动力电池剩余电量信号、目标充电电量信号、高压继电器状态信号、高压系统状态信号、充电口温度信号、动力电池温度信号、动力电池电压信号、充电电流信号和充电电压信号输入所述动力域控制器,输出充电电流控制信号、充电电压控制信号、充电加热控制信号、充电指示灯控制信号、充电启动信号和继电器控制信号;
热管理功能的实现过程为:将动力电池温度信号、电机温度信号、冷却水路温度信号、冷却系统许用功率信号输入所述动力域控制器,输出水泵控制信号、水阀控制信号、风扇控制信号、进气格栅控制信号、加热器控制信号及压缩器控制信号。
图1为本申请实施例一提供的一种电动汽车控制系统的结构示意图;
图2为本申请实施例一提供的一种动力域控制器的工作原理图。
下面结合附图和实施例对本申请进行说明。此处所描述的具体实施例仅仅用于解释本申请。为了便于描述,附图中仅示出了与本申请相关的部分。
实施例一
图1为本申请实施例一提供的一种电动汽车控制系统的结构示意图,如图1 所示,该系统包括:动力域控制器、电机控制器、高压驱动板、功率驱动板及附加器件。
所述附加器件包括:冷却水泵、冷却水阀、充电指示灯、电动进气格栅、制动踏板传感器、加速踏板传感器、温度传感器、充电枪识别接口、冷却风扇、加热器和压缩机。
电机控制器、高压驱动板及功率驱动板均与动力域控制器通过CAN线连接;冷却水泵、冷却水阀、充电指示灯、电动进气格栅、加热器及压缩机均与动力域控制器通过LIN线连接;制动踏板传感器、加速踏板传感器、温度传感器、充电枪识别接口、冷却风扇均与动力域控制器通过硬线连接。
动力域控制器设置为实现整车行驶控制功能和能量管理功能。电机控制器设置为根据动力域控制器发送的第一控制指令驱动电机工作。高压驱动板设置为根据动力域控制器发送的第二控制指令采集电池信息,驱动高压继电器。功率驱动板设置为根据动力域控制器发送的第三控制指令驱动电压转换和充电相关电路开启或关闭。
电机控制器(Motor Control Unit,MCU)接收动力域控制器的第一控制指令,实现电机驱动功能。高压驱动板接收动力域控制器的第二控制指令,驱动高压继电器,并将采集的电池包电压、温度数据传输给动力域控制器,实现电池信息采集驱动功能。功率驱动板接收动力域控制器的第三控制指令,驱动电压转换和充电相关电路开启关闭,实现高压电路驱动功能。
可选的,如图1所示,该系统还包括:车身稳定单元、转向助力单元、安全气囊控制单元、电子换挡器、网关及其他整车控制单元。车身稳定单元、转向助力单元、安全气囊控制单元及电子换挡器均与动力域控制器通过CAN线连接;网关与动力域控制器通过以太网相连,其他整车控制单元与网关通过以太网相连,实现与所述动力域控制器信号传输。
图2为本申请实施例一提供的一提供动力域控制器的工作原理图。如图2所示,行驶控制功能包括驾驶模式控制、扭矩控制及档位控制功能;能量管理功能包括低压电源管理、高压电源管理、电池能量管理、充电管理及热管理功能。
驾驶模式控制功能是指驾驶员通过操作旋钮选择驾驶模式,中控仪表控制器将驾驶员选择结果信号发送到网关控制器,网关控制器将以上信息路由给动力域控制器,由动力域实现驾驶模式切换,并将切换结果反馈给中控仪表,在仪表上显示告知驾驶员。驾驶模式控制功能的输入信号为驾驶模式选择信号,输出信号为驾驶模式状态信号。
扭矩控制功能是指动力域控制器根据硬线采集到的加速踏板及制动踏板状态、驱动系统许用功率、电子换挡器(Electronic Gear Selector Module,EGSM)反馈的当前档位状态、转向助力系统EPS反馈的转向系统状态及车身稳定系统ESC反馈的底盘系统状态、自适应巡航系统开启关闭状态及扭矩请求、自动驾驶系统开启关闭状态及扭矩请求以及其他辅助驾驶系统开启关闭状态及电机实际扭矩和许用扭矩,综合分析处理以上信息,计算得出电机输出扭矩,由电机控制器驱动电机执行扭矩需求,实现驾驶员的驾驶意图。扭矩控制功能的输入信号包括加速踏板传感器位置信号、制动踏板传感器位置信号、电子换挡器档位请求信号、车速信号、加速度信号、横摆角速度信号、转向助力系统EPS信号及车身稳定系统ESC扭矩介入信号、自动驾驶系统信号、雷达信号、摄像头信号及电机实际扭矩和最大扭矩信号,输出信号为电机扭矩需求信号。
档位控制功能是指动力域控制器根据电子换挡器EGSM反馈档位位置信号,识别驾驶员换挡意图,将目标档位信号发送给电机控制器MCU,由电机控制器MCU实现档位切换。同时将档位状态信息发送给网关,由网关转发给中控仪表,告知驾驶员当前整车档位信息。档位控制功能的输入信号包括档位请求信号、制动踏板信号及解锁按键状态信号,输出信号包括档位控制信号及档位显示信号。
低压电源管理功能是指动力域控制器接收唤醒源信号,从休眠状态进入唤醒状态,同时唤醒动力域内其他控制器;动力域控制器根据驾驶员操作需求及整车状态信息,与动力域内相关控制器共同由唤醒状态进入休眠状态。低压电源管理功能的相关信号包括网络管理报文信号、充电枪识别信号、充电桩通信信号、钥匙门信号。
高压电源管理功能是指动力域控制器识别驾驶员操作意图、高压系统状态信息及整车状态信息,发出高压继电器打开及闭合控制指令,由高压驱动板驱动对应的继电器,控制高压系统完成上下电,并由网关将上电结果信号转发给中控仪表,告知驾驶员车辆动力系统已进入就绪状态或故障状态。高压电源管理功能的输入信号包括钥匙门信号、档位信号、充电枪识别信号、制动踏板信号、防盗校验结果信号、电机状态信号、电池状态信号、高压系统状态信号、电压信号、碰撞信号及高压继电器状态信号,输出信号为多个高压继电器控制指令、动力系统Ready信号和动力系统故障信号。
电池能量管理功能是指动力域控制器接收高压驱动板采集的电池子板电压及温度信息并结合车辆下电休眠时间,计算高压电池许用功率及剩余能量。电池管理功能的输入信号包括多个子板电压信号、温度信号、车辆下电休眠时间信号,输出信号包括动力电池剩余电量信号、许用功率信号。
充电管理功能是指动力域控制器通过硬件接口识别充电枪、并结合驾驶员充电设置、高压驱动板采集的动力电池状态信息及与充电桩交互得到的信息发出充电请求,控制相关继电器开启和关闭,监控充电过程,并控制充电指示灯工作,显示充电系统工作状态,实现驾驶员充电意图。充电管理功能的输入信号包括充电枪识别信号、动力电池剩余电量信号、目标充电电量信号、高压继电器状态信号、高压系统状态信号、充电口温度信号、动力电池温度信号、动力电池电压信号、充电电流信号和充电电压信号。输出信号包括充电电流控制信号、充电电压控制信号、充电加热控制信号、充电指示灯控制信号、充电启动信号和继电器控制信号。
热管理功能是指动力域控制器通过接收动力电池冷却系统温度信号、采集电机冷却系统温度信号、乘员舱温度信号并根据驾驶员操作需求,控制驱动水泵、水阀、风扇、进气格栅、加热器及压缩机工作,实现电池加热、电池冷却、电机冷却及成员舱温度控制功能。热管理功能的输入信号包括动力电池温度信号、电机温度信号、冷却水路温度信号、冷却系统许用功率信号,输出信号包括水泵控制信号、水阀控制信号、风扇控制信号、进气格栅控制信号、加热器控制信号及压缩器控制信号。
本申请实施例公开了一种电动汽车控制系统,包括:动力域控制器、电机控制器、高压驱动板、功率驱动板及附加器件。附加器件包括:冷却水泵、冷却水阀、充电指示灯、电动进气格栅、制动踏板传感器、加速踏板传感器、温度传感器、充电枪识别接口、冷却风扇、加热器和压缩机。电机控制器、高压驱动板及功率驱动板均与动力域控制器通过CAN线连接;驱动冷却水泵、冷却水阀、充电指示灯、电动进气格栅、加热器及压缩机均与动力域控制器通过LIN线连接;制动踏板传感器、加速踏板传感器、温度传感器、充电枪识别接口、冷却风扇均与动力域控制器通过硬线连接;动力域控制器设置为实现整车行驶控制功能和能量管理功能;电机控制器设置为根据动力域控制器发送的第一控制指令驱动电机工作;高压驱动板设置为根据动力域控制器发送的第二控制指令采集电池信息,驱动高压继电器;功率驱动板设置为根据动力域控制器发送的第三控制指令驱动电压转换和充电相关电路开启或关闭。可以优化电动汽车控制系统结构,简化控制过程。
Claims (10)
- 一种电动汽车控制系统,包括:动力域控制器、电机控制器、高压驱动板、功率驱动板及附加器件;所述附加器件包括:冷却水泵、冷却水阀、充电指示灯、电动进气格栅、制动踏板传感器、加速踏板传感器、温度传感器、充电枪识别接口、冷却风扇、加热器和压缩机;所述电机控制器、所述高压驱动板及所述功率驱动板均与所述动力域控制器通过控制器局域网络CAN线连接;所述冷却水泵、所述冷却水阀、所述充电指示灯、所述电动进气格栅、所述加热器及所述压缩机均与所述动力域控制器通过局域互联网络LIN线连接;所述制动踏板传感器、所述加速踏板传感器、所述温度传感器、所述充电枪识别接口、及所述冷却风扇均与所述动力域控制器通过硬线连接;所述动力域控制器设置为实现整车行驶控制功能和能量管理功能;所述电机控制器设置为根据所述动力域控制器发送的第一控制指令驱动电机工作;所述高压驱动板设置为根据所述动力域控制器发送的第二控制指令采集电池信息,驱动高压继电器;所述功率驱动板设置为根据所述动力域控制器发送的第三控制指令驱动电压转换和充电相关电路开启或关闭。
- 根据权利要求1所述的系统,还包括:车身稳定单元、转向助力单元、安全气囊控制单元、电子换挡器、及网关;所述车身稳定单元、所述转向助力单元、所述安全气囊控制单元及所述电子换挡器均与所述动力域控制器通过CAN线连接;所述网关与所述动力域控制器通过以太网相连。
- 根据权利要求1所述的系统,其中,所述行驶控制功能包括驾驶模式控制功能、扭矩控制功能及档位控制功能;所述能量管理功能包括低压电源管理功能、高压电源管理功能、电池能量管理功能、充电管理功能及热管理功能。
- 根据权利要求3所述系统,其中,所述动力域控制器设置为通过如下方式实现所述驾驶模式控制功能:所述动力域控制器设置为接收驾驶模式选择信号,并输出驾驶模式状态信号。
- 根据权利要求3所述系统,其中,所述动力域控制器设置为通过如下方 式实现所述扭矩控制功能:所述动力域控制器设置为接收加速踏板传感器位置信号、制动踏板传感器位置信号、电子换挡器档位请求信号、车速信号、加速度信号、横摆角速度信号、转向助力系统EPS信号、车身稳定系统ESC扭矩介入信号、自动驾驶系统信号、雷达信号、摄像头信号、电机实际扭矩和最大扭矩信号,并输出电机扭矩需求信号。
- 根据权利要求3所述的系统,其中,所述动力域控制器设置为通过如下方式实现所述档位控制功:所述动力域控制器设置为接收档位请求信号、制动踏板信号及解锁按键状态信号,并输出档位控制信号及档位显示信号。
- 根据权利要求3所述的系统,其中,所述动力域控制器设置为通过如下方式实现所述低压电源管理功能:所述动力域控制器设置为接收网络管理报文信号、充电枪识别信号、充电桩通信信号及钥匙门信号中的至少一个,以实现唤醒状态和休眠状态的切换。
- 根据权利要求3所述的系统,其中,所述动力域控制器设置为通过如下方式实现所述高压电源管理功能:所述动力域控制器设置为接收钥匙门信号、档位信号、充电枪识别信号、制动踏板信号、防盗校验结果信号、电机状态信号、电池状态信号、高压系统状态信号、电压信号、碰撞信号及高压继电器状态信号,并输出多个高压继电器控制指令、和动力系统准备信号或者动力系统故障信号。
- 根据权利要求3所述的系统,其中,所述动力域控制器设置为通过如下方式实现所述电池能量管理功能:所述动力域控制器设置为接收多个子板电压信号、温度信号、及车辆下电休眠时间信号,并输出动力电池剩余电量信号、及许用功率信号。
- 根据权利要求3所述的系统,其中,所述动力域控制器设置为通过如下方式实现所述充电管理功能:所述动力域控制器设置为接收充电枪识别信号、动力电池剩余电量信号、目标充电电量信号、高压继电器状态信号、高压系统状态信号、充电口温度信号、动力电池温度信号、动力电池电压信号、充电电流信号和充电电压信号输入所述动力域控制器,输出充电电流控制信号、充电电压控制信号、充电加热控制信号、充电指示灯控制信号、充电启动信号和继电器控制信号;所述动力域控制器设置为通过如下方式实现所述热管理功能:所述动力域控制器设置为接收动力电池温度信号、电机温度信号、冷却水路温度信号、及冷却系统许用功率信号,并输出水泵控制信号、水阀控制信号、风扇控制信号、进气格栅控制信号、加热器控制信号及压缩器控制信号。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011583481.5A CN112644293A (zh) | 2020-12-28 | 2020-12-28 | 一种电动汽车控制系统 |
CN202011583481.5 | 2020-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022143392A1 true WO2022143392A1 (zh) | 2022-07-07 |
Family
ID=75363787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/140778 WO2022143392A1 (zh) | 2020-12-28 | 2021-12-23 | 电动汽车控制系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112644293A (zh) |
WO (1) | WO2022143392A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115079618A (zh) * | 2022-07-27 | 2022-09-20 | 福思(杭州)智能科技有限公司 | 域控制器的控制方法和装置、存储介质及电子装置 |
CN116215239A (zh) * | 2023-03-10 | 2023-06-06 | 江苏师范大学科文学院 | 一种用于电动工程机械的上电启动控制策略及系统 |
CN116788061A (zh) * | 2023-08-29 | 2023-09-22 | 三一重型装备有限公司 | 一种车辆动力装置、车辆动力装置的控制方法及车辆 |
CN117477918A (zh) * | 2023-12-27 | 2024-01-30 | 成都氮矽科技有限公司 | 驱动信号输入检测电路、GaN栅驱动器和MOSFET栅驱动器 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112644293A (zh) * | 2020-12-28 | 2021-04-13 | 中国第一汽车股份有限公司 | 一种电动汽车控制系统 |
CN113352878B (zh) * | 2021-07-21 | 2022-12-16 | 中国第一汽车股份有限公司 | 车辆辅助转向输入装置 |
CN114701473A (zh) * | 2021-12-27 | 2022-07-05 | 瀚德万安(上海)电控制动系统有限公司 | 电控制动装置的通讯系统 |
CN116545247B (zh) * | 2023-05-08 | 2024-04-09 | 浙江伊控动力系统有限公司 | 一种带定时唤醒的xEV功能集成式电机控制器的上下电方法 |
CN117212114A (zh) * | 2023-09-06 | 2023-12-12 | 深圳市天技电子技术有限公司 | 基于can、lin通信的汽车机油泵控制系统 |
CN117261923A (zh) * | 2023-10-11 | 2023-12-22 | 浙江伊控动力系统有限公司 | 一种动力总成与自动驾驶集成式动力域控制器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011056265A1 (en) * | 2009-11-06 | 2011-05-12 | International Truck Intellectual Property Company, Llc | Control system for equipment on a vehicle with a hybridelectric powertrain |
CN105936269A (zh) * | 2016-05-13 | 2016-09-14 | 合肥中航新能源技术研究院有限责任公司 | 纯电动汽车集成式控制系统及控制方法 |
CN208881733U (zh) * | 2018-08-27 | 2019-05-21 | 郑州日产汽车有限公司 | 纯电动汽车用汽车级整车控制器 |
CN111845596A (zh) * | 2020-08-26 | 2020-10-30 | 珠海格力电器股份有限公司 | 新能源车辆动力系统集成控制方法和装置、中央控制板 |
CN112644293A (zh) * | 2020-12-28 | 2021-04-13 | 中国第一汽车股份有限公司 | 一种电动汽车控制系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107284288A (zh) * | 2016-04-13 | 2017-10-24 | 江苏陆地方舟新能源电动汽车有限公司 | 一种新能源汽车集成式电控系统和电控方法 |
EP3495192A1 (en) * | 2017-12-07 | 2019-06-12 | Honda Research Institute Europe GmbH | Controller for controlling an output power of an electric vehicle, electric vehicle comprising such controller and corresponding method |
CN110667436B (zh) * | 2019-10-08 | 2022-10-21 | 天津易鼎丰动力科技有限公司 | 一种电动汽车用动力域控制系统及其控制方法 |
CN111086398A (zh) * | 2019-12-31 | 2020-05-01 | 浙江合众新能源汽车有限公司 | 一种动力域控制器系统 |
CN111572364A (zh) * | 2020-04-28 | 2020-08-25 | 东风汽车集团有限公司 | 一种电动汽车的动力域控制系统 |
-
2020
- 2020-12-28 CN CN202011583481.5A patent/CN112644293A/zh active Pending
-
2021
- 2021-12-23 WO PCT/CN2021/140778 patent/WO2022143392A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011056265A1 (en) * | 2009-11-06 | 2011-05-12 | International Truck Intellectual Property Company, Llc | Control system for equipment on a vehicle with a hybridelectric powertrain |
CN102712316A (zh) * | 2009-11-06 | 2012-10-03 | 万国卡车知识产权有限公司 | 用于具有混合电动系统的车辆上设备的控制系统 |
CN105936269A (zh) * | 2016-05-13 | 2016-09-14 | 合肥中航新能源技术研究院有限责任公司 | 纯电动汽车集成式控制系统及控制方法 |
CN208881733U (zh) * | 2018-08-27 | 2019-05-21 | 郑州日产汽车有限公司 | 纯电动汽车用汽车级整车控制器 |
CN111845596A (zh) * | 2020-08-26 | 2020-10-30 | 珠海格力电器股份有限公司 | 新能源车辆动力系统集成控制方法和装置、中央控制板 |
CN112644293A (zh) * | 2020-12-28 | 2021-04-13 | 中国第一汽车股份有限公司 | 一种电动汽车控制系统 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115079618A (zh) * | 2022-07-27 | 2022-09-20 | 福思(杭州)智能科技有限公司 | 域控制器的控制方法和装置、存储介质及电子装置 |
CN116215239A (zh) * | 2023-03-10 | 2023-06-06 | 江苏师范大学科文学院 | 一种用于电动工程机械的上电启动控制策略及系统 |
CN116788061A (zh) * | 2023-08-29 | 2023-09-22 | 三一重型装备有限公司 | 一种车辆动力装置、车辆动力装置的控制方法及车辆 |
CN116788061B (zh) * | 2023-08-29 | 2023-10-20 | 三一重型装备有限公司 | 一种车辆动力装置、车辆动力装置的控制方法及车辆 |
CN117477918A (zh) * | 2023-12-27 | 2024-01-30 | 成都氮矽科技有限公司 | 驱动信号输入检测电路、GaN栅驱动器和MOSFET栅驱动器 |
CN117477918B (zh) * | 2023-12-27 | 2024-03-29 | 成都氮矽科技有限公司 | 驱动信号输入检测电路、GaN栅驱动器和MOSFET栅驱动器 |
Also Published As
Publication number | Publication date |
---|---|
CN112644293A (zh) | 2021-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022143392A1 (zh) | 电动汽车控制系统 | |
CN109318834B (zh) | 一种动力底盘域控制架构及汽车 | |
CN107415926B (zh) | 车辆控制系统 | |
CN105922989A (zh) | 一种插电式四驱混合动力汽车驱动模式能量管理控制装置 | |
CN108674410B (zh) | 一种分布式混合动力系统及其控制方法 | |
CN114347805B (zh) | 电动汽车集成车辆控制的双电机驱动系统及其控制方法 | |
CN109353330B (zh) | 一种混合动力车辆、工作模式控制系统及其方法 | |
DE102013111437A1 (de) | Systemaufhebung für einen vom Benutzer ausgewählten ausschließlich elektrischen Betrieb eines Hybridfahrzeugs | |
CN212765683U (zh) | 一种搅拌运输车混合动力系统 | |
EP3885199A1 (en) | Energy management method for electric automobile, energy storage management controller and energy management unit | |
CN112406557A (zh) | 一种新能源汽车集成控制系统 | |
JP2012232724A (ja) | 作業車両 | |
KR20140100287A (ko) | 친환경 자동차의 통합 전자전력 제어장치 | |
CN112124296A (zh) | 车辆控制系统及具有其的车辆 | |
CN113859148A (zh) | 车辆的控制系统、方法及车辆 | |
CN215475071U (zh) | 自动驾驶车辆控制系统 | |
CN1555991A (zh) | 一种混合动力轿车控制系统 | |
CN107487229A (zh) | 一种纯电动汽车启动控制方法 | |
CN106394562B (zh) | 混合动力汽车控制系统及整车控制器 | |
CN103754215B (zh) | 一种混合动力整车控制系统 | |
CN210405350U (zh) | 一种用于商用车的网络系统 | |
CN111845596A (zh) | 新能源车辆动力系统集成控制方法和装置、中央控制板 | |
CN115246361A (zh) | 一种域集中式汽车电子电气系统 | |
CN109532459A (zh) | 应用于混合动力乘用车的并联式动力系统及其运行方法 | |
WO2024187702A1 (zh) | 动力控制系统、动力控制方法和车辆 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21914129 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21914129 Country of ref document: EP Kind code of ref document: A1 |