WO2022143238A1 - 一种透镜及灯具 - Google Patents

一种透镜及灯具 Download PDF

Info

Publication number
WO2022143238A1
WO2022143238A1 PCT/CN2021/139456 CN2021139456W WO2022143238A1 WO 2022143238 A1 WO2022143238 A1 WO 2022143238A1 CN 2021139456 W CN2021139456 W CN 2021139456W WO 2022143238 A1 WO2022143238 A1 WO 2022143238A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
microstructure
microstructures
strip
Prior art date
Application number
PCT/CN2021/139456
Other languages
English (en)
French (fr)
Inventor
卜晨曦
Original Assignee
欧普照明股份有限公司
苏州欧普照明有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202023264471.3U external-priority patent/CN214619394U/zh
Priority claimed from CN202011602971.5A external-priority patent/CN112664906A/zh
Application filed by 欧普照明股份有限公司, 苏州欧普照明有限公司 filed Critical 欧普照明股份有限公司
Publication of WO2022143238A1 publication Critical patent/WO2022143238A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present application relates to a lens, in particular to a lens for a lighting fixture and a fixture including the lens.
  • the light mixing technology of LED lens has always been a difficult problem in the industry.
  • small-angle spotlight lenses due to the phosphor coating process of white LEDs, the color at the edge of the LED (yellowish) and the color in the middle (bluish) are different, so the problem of macular has always troubled designers.
  • uneven light mixing will result in mottled colors, which seriously affects the user experience.
  • the traditional lens mixing method is to use surface frosting or etching, but this method loses more light efficiency, and the depth of etching is not easy to control.
  • the light distribution angle needs to be adjusted several times to be accurate. Many designers add some beaded microstructures to the light-emitting surface of the lens to mix light. This light mixing method has insufficient light mixing ability due to the short light mixing distance. Macular spots or color unevenness are often not eliminated, and sometimes a light etching of the surface is required.
  • the purpose of the present application is to solve at least one of the above problems, and to provide a lens and a lamp that can achieve a good light mixing effect.
  • the technical solution adopted in this application is to provide a lens, wherein the lens includes:
  • a light incident surface where light enters the lens from the outside through the light incident surface to be refracted, and at least part of the light incident surface is provided with a first microstructure, and the first microstructure is a strip-shaped protrusion arranged in an array;
  • the light is emitted from the inside of the lens, and is refracted by the light emitting surface, at least part of the light emitting surface is provided with a second microstructure, and the second microstructure is a strip-shaped protrusion arranged in an array; the The arrangement directions of the first microstructure and the second microstructure are perpendicular to each other.
  • the lens further includes a reflective surface disposed between the light incident surface and the light emitting surface, the light inside the lens is reflected at the reflective surface, and at least part of the reflective surface is provided with a third microscopic surface. structure.
  • the third microstructures are protruding structures whose arrangement direction is perpendicular to the arrangement direction of the first microstructures or the second microstructures.
  • the third microstructure is a protruding structure whose arrangement direction is perpendicular to the arrangement direction of the first microstructure and the second microstructure.
  • the lens is a gyroscope formed by rotating around a central axis
  • one of the first microstructure and the second microstructure is a strip-shaped protrusion arranged circumferentially around the central axis or The extension direction of the fan-shaped strip protrusions intersects with the central axis, and the other is annular protrusions arranged in an array, and the central axis is perpendicular to the plane where any of the annular protrusions is located.
  • the third microstructures are strip-shaped protrusions circumferentially arranged around the central axis, or fan-shaped strip-shaped protrusions, or annular protrusions arranged in an array, and the central axis is perpendicular to The plane where any of the annular protrusions is located may be a scaly carapace structure having both a circumferential arrangement and a radial arrangement.
  • the section of the strip-shaped protrusion is tooth-shaped or the top of the section is an arc.
  • the lens is a Fresnel lens, comprising at least two of the light incident surfaces and at least two of the reflective surfaces, and the light incident surfaces and the reflective surfaces are alternately arranged.
  • the present application also provides a lamp, comprising a lamp body and a light source disposed in the lamp body, wherein: the lamp further includes the above-mentioned lens, and the lens covers the light source. .
  • the lens provided by the present application adopts mutually orthogonal microstructures on the light-emitting surface and the light-incident surface of the lens to mix light, which can be mixed in different directions, and the optical path is longer compared with the traditional bead surface microstructure.
  • the light mixing ability is more powerful.
  • the lens can produce good results in solving the chromatic aberration problem of small-angle lenses, the ghosting problem of multiple SMDs, and the uneven color mixing of RGB lamps.
  • FIG. 1 is a schematic structural diagram of a preferred embodiment of the lens of the present application.
  • Fig. 2 is a front view of the lens of Fig. 1;
  • FIG. 3 is a rear view of the lens of FIG. 1;
  • Fig. 4 is the mixed light path diagram of the lens of Fig. 1;
  • FIG. 5 is a schematic structural diagram of another preferred embodiment of the lens of the present application.
  • Fig. 6 is the structural representation of another direction of the lens of Fig. 5;
  • FIG. 7 is a schematic structural diagram of another preferred embodiment of the lens of the present application.
  • FIG. 8 is a schematic view of the structure of the lens of FIG. 7 in another direction;
  • Fig. 9 is an exploded view of a preferred embodiment of the lamp of the present application.
  • the lens is a gyroscopic lens, which is a gyroscopic body rotated around a central axis, including a light incident surface 101 , a light exit surface 102 and The reflecting surface 103 of the light incident surface 101 and the light exit surface 102 is connected.
  • the lens may also be a stretched lens that is linearly stretched with a cross-section similar to FIG. 4 , or a ring-shaped lens, which is not limited in this application.
  • the lens of this embodiment is provided with a first microstructure 1011 on the light incident surface 101 and a second microstructure 1021 on the light exit surface 102 for light mixing, so that the two light mixing structures have a long optical path and the best light mixing effect.
  • the microstructures provided on the light incident surface 101 and the light exit surface 102 may cover the entire surface, or may only be provided with microstructures in partial areas of the light incident surface 101 and the light exit surface 102 , which are not limited in this application.
  • the light incident surface 101 includes a top surface and a side surface, and the whole is in the shape of a truncated cone.
  • the first microstructure 1011 is only provided at the top of the truncated truncated cone. Arrange. Since the top surface of the truncated cone is an arc surface, the annular projections are not on the same plane, and the central axis of the lens is perpendicular to the plane where each annular projection is located.
  • the light-emitting surface 102 is a plane, and the second microstructures 1021 disposed thereon are strip-shaped protrusions fanned out around the central axis.
  • the arrangement direction of the first microstructures 1011 is the radial direction
  • the arrangement direction of the second microstructures 1021 is the circumferential direction when the second microstructures 1021 are fanned out. Mixing light can achieve the best combined light mixing effect.
  • a third microstructure 1031 is arranged on the reflective surface 103 in this embodiment.
  • the third microstructure 1031 is an annular protrusion arranged on the surface of the reflective surface 103.
  • the central axis of the lens is perpendicular to the The plane on which each annular protrusion is located has the same arrangement direction as the first microstructures 1011 and is perpendicular to the arrangement direction of the second microstructures 1021 .
  • the third microstructures 1031 can also be strip-shaped protrusions arranged circumferentially around the central axis of the lens, and the arrangement direction of the first microstructures 1011 is perpendicular to each other.
  • the addition of the third microstructure 1031 enables the light to pass through three optical surfaces provided with microstructures from entering the lens to exiting, and the color of the light is more uniform after three times of light mixing.
  • the arrangement direction of the third microstructures 1031 is selected to be perpendicular to the arrangement direction of one of the first microstructures 1011 and the second microstructures 1021 , which also helps to improve the light mixing effect.
  • the tops of the cross-sections of the strip-shaped protrusions of the first microstructure 1011 , the second microstructure 1021 , and the third microstructure 1031 are arcs.
  • a strip-shaped structure with a tooth-shaped cross-section can also be used.
  • the arrangement direction of the third microstructure 1031 is perpendicular to the arrangement direction of the first microstructure 1011 and the second microstructure 1021 at the same time, that is, the existing ring It is arranged in the shape of a scale, and it is also arranged in the circumferential direction, forming a scaly structure, and its light mixing effect is better.
  • the structures of the light incident surface 101 and the light exit surface 102 in the embodiment of FIG. 5 are the same as those of the embodiment of FIG. 1 , which will not be repeated here.
  • the lens is a gyroscopic Fresnel lens. It includes more light incident surfaces 101 and reflection surfaces 103 arranged alternately. Each light incident surface 101 is provided with first microstructures 1011 , and the first microstructures 1011 are strip-shaped protrusions circumferentially arranged around the central axis of the lens. Each reflecting surface 103 is provided with a third microstructure 1031 , and the third microstructure 1031 is a strip-shaped protrusion arranged circumferentially around the central axis of the lens.
  • the top surface of the lens is the light emitting surface 102, and the second microstructure 1021 is disposed on the light emitting surface 102.
  • the second microstructure 1021 is a plurality of annular protrusions arranged radially outward.
  • the arrangement direction of the second microstructures 1021 is perpendicular to the arrangement direction of the first microstructures 1011 and the third microstructures 1031 .
  • the light is mixed three times in the lens, which can effectively eliminate the macula, and the light mixing effect is good.
  • the microstructures cover all the optical surfaces as proposed in the present application, and the microstructures arranged in different optical surfaces are arranged perpendicular to each other.
  • the effect of the present application can also be achieved by only disposing the microstructures in some areas thereof.
  • the first microstructure 1011 , the second microstructure 1021 , and the third microstructure 1031 are all arranged only on the part of the optical surface where they are located.
  • no microstructure is provided on the top surface thereof.
  • the reflective surface 102 no microstructure is provided in the portion of the outermost layer close to the light-emitting surface 103 .
  • a bead-level structure is arranged in the middle position, and the strip-shaped protrusions that are perpendicular to other optical surface microstructures proposed in the present application are not arranged. After experiments, the lens also obtained a good light mixing effect.
  • FIG. 9 is a preferred embodiment of a lamp proposed in the present application.
  • the lamp is a spotlight, including a face ring 5 , a lamp body 4 , a light source 3 , a back cover 2 and the lens 1 described in the embodiment of FIG. 7 .
  • the lamp body 4 and the back cover 2 constitute a lamp body, and a light source 3 and a lens 1 are arranged in the lamp body.
  • the lens 1 covers the light source 3 and distributes light to the light source 3 .
  • the face ring 5 is disposed on the outer side of the lamp body 4 , and a mounting portion for fixing the lamp is disposed thereon.
  • the spotlight of this embodiment distributes light to the LED light source 3 through the lens 1 proposed in the present application, the light color is uniform, and the light mixing effect is good.
  • the lens 1 proposed in this application can also be used for other types of lamps, such as ceiling lamps, table lamps, etc., which is not limited in this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

本申请所述透镜,包括:入光面,光线由外部经所述入光面进入所述透镜发生折射,至少部分所述入光面设置有第一微结构,所述第一微结构为阵列排布的条状凸起;出光面,光线从所述透镜内部射出,经所述出光面发生折射,至少部分所述出光面设置有第二微结构,所述微结构为阵列排布的条状凸起;所述第一微结构和所述第二微结构的排布方向相互垂直。该透镜在透镜的出光面和入光面分别采用相互正交的微结构进行混光,可在不同的方向进行混光,相对于传统的珠面微结构来说光程更长,混光能力更为强大。该透镜在解决小角度透镜的色差问题,多颗SMD的重影问题,RGB灯具的颜色混合不均的问题中均可产生较好的效果。

Description

一种透镜及灯具
本申请要求了申请日为2020年12月30日,申请号为202011602971.5和202023264471.3,发明名称为“一种透镜及灯具”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种透镜,特别是一种用于照明灯具的透镜以及包括该透镜的灯具。
背景技术
LED透镜的混光技术一直是业界难题。在小角度射灯透镜中,由于白光LED的荧光粉涂覆工艺问题,LED边缘的颜色(偏黄)和中间的颜色(偏蓝)不同,因此黄斑的问题一直困扰设计者。在使用RGB的彩光LED的灯具中,由于混光不均会导致色彩斑驳,严重影响用户体验。传统的透镜混光方式是采用表面磨砂或者蚀纹的方式,但是这种方式光效损失较多,且蚀纹深度不易控制。配光角度需要经过多次调试才能准确,很多的设计者会在透镜的出光面添加一些珠面微结构来进行混光,这种混光方式由于混光距离较短,因此混光能力不足,经常不能够消除黄斑或者颜色不均的问题,有时候需要在表面再进行轻微的蚀纹。
发明内容
本申请的目的是为了至少解决上述问题之一,提供一种可以实现良好混光效果的透镜及灯具。
本申请为实现上述功能,所采用的技术方案是提供一种透镜,其中,所述透镜包括:
入光面,光线由外部经所述入光面进入所述透镜发生折射,至少部分所述入光面设置有第一微结构,所述第一微结构为阵列排布的条状凸起;
出光面,光线从所述透镜内部射出,经所述出光面发生折射,至少部分所述出光面设置有第二微结构,所述第二微结构为阵列排布的条状凸起;所述第一微结构和所述第二微结构的排布方向相互垂直。
优选地,所述透镜还包括设置在所述入光面和出光面之间的反射面,所述透镜内部的光线在所述反射面处发生反射,至少部分所述反射面设置有第三微结构。
优选地,所述第三微结构为排布方向与第一微结构或第二微结构的排布方向相互垂直的凸起结构。
优选地,所述第三微结构为排布方向与第一微结构和第二微结构的排布方向均相互垂直的凸起结构。
优选地,所述透镜为绕中心轴旋转而成的回旋体,所述第一微结构和所述第二微结构中的一者为绕所述中心轴周向排布的条状凸起或扇面展开的条状凸起,其延伸方向和所述中心轴相交,另一者为阵列排布的环状凸起,所述中心轴垂直于任一所述环状凸起所在平面。
优选地,所述第三微结构为绕所述中心轴周向排布的条状凸起,或扇面展开的条状凸起, 或阵列排布的环状凸起,所述中心轴垂直于任一所述环状凸起所在平面,或为同时具有周向排布及径向排布的鳞甲结构。
优选地,所述条状凸起其截面呈齿状或其截面顶部为弧线。
优选地,所述透镜为菲涅尔透镜,包括至少两个所述入光面及至少两个所述反射面,所述入光面和所述反射面交替设置。
本申请还提供一种灯具,包括灯体和设置在灯体内的光源,其中:所述灯具还包括如上所述的透镜,所述透镜覆盖所述光源。。
本申请提供的透镜在透镜的出光面和入光面分别采用相互正交的微结构进行混光,可在不同的方向进行混光,相对于传统的珠面微结构来说光程更长,混光能力更为强大。该透镜在解决小角度透镜的色差问题,多颗SMD的重影问题,RGB灯具的颜色混合不均的问题中均可产生较好的效果。
附图说明
图1是本申请透镜一优选实施例的结构示意图;
图2是图1透镜的正面视图;
图3是图1透镜的背面视图;
图4是图1透镜的混光光路图;
图5是本申请透镜另一优选实施例的结构示意图;
图6是图5透镜另一方向的结构示意图;
图7是本申请透镜又一优选实施例的结构示意图;
图8是图7透镜另一方向的结构示意图;
图9是本申请灯具一优选实施例的爆炸视图。
具体实施方式
以下结合附图和具体实施例对本申请提出的透镜及灯具作进一步的详细说明。
本申请一优选实施例的透镜如图1、图2、图3所示,该透镜为一回旋型透镜,为绕一中心轴旋转而成的回旋体,包括入光面101、出光面102以及连接入光面101和出光面102的反射面103。在其他较佳实施例中,透镜也可以为以类似图4的截面进行直线拉伸的拉伸型透镜,或者为环形透镜,本申请对此不作限定。光线由外部经入光面101进入透镜时发生第一次折射,由透镜内部行进至反射面103处发生反射,再经过出光面102出射发生第二次折射。由入光面101到出光面102是光线在透镜内部走过的最长光程。本实施例透镜分别在入光面101设置第一微结构1011、出光面102设置第二微结构1021用于混光,这样可使得两个混光结构光程长,混光效果最佳。
在入光面101和出光面102设置的微结构可以覆盖整个表面,也可以仅在入光面101和出光面102的部分区域设置微结构,本申请对此不作限定。在本实施例中,设置在入光面101包括顶面和侧面,整体呈圆台状,第一微结构1011仅设置在圆台顶部位置,为多个同 心的环形凸起,沿径向由内向外排布。由于圆台顶面为弧面,各环形凸起并不在同一平面,透镜的中心轴垂直于每一个环状凸起所在的平面。出光面102为平面,其上设置的第二微结构1021为围绕中心轴扇面展开的条状凸起。在这个实施例中,第一微结构1011的排布方向为径向,第二微结构1021扇面展开其排布方向为周向,这两者的排布方向相互垂直,从不同方向对光束进行混光,可以达到最好的组合混光效果。
为了取得更好的混光效果,在本实施中的反射面103上设置了第三微结构1031,第三微结构1031为设置在反射面103表面的环状凸起,透镜的中心轴垂直于每一个环状凸起所在的平面,其排布方向和第一微结构1011一样垂直于第二微结构1021的排布方向。在其他较佳实施例中,第三微结构1031也可以为绕透镜中心轴周向排布的条状凸起,和第一微结构1011的排布方向相互垂直。第三微结构1031的加入使得光线从进入透镜到出射一共经过了三个设置有微结构的光学表面,通过三次混光光色更为均匀,其混光光路图如图4所示。而第三微结构1031的排布方向选择和第一微结构1011、第二微结构1021中的一者的排布方向垂直,也有助于提升混光效果。
在本实施例中,第一微结构1011、第二微结构1021、第三微结构1031的条状突起,其截面顶部为弧线。在其他较佳实施例中也可以采用截面为齿状的条状结构。
而在如图5、图6的另一较佳实施例中,第三微结构1031的排布方向同时和第一微结构1011、第二微结构1021的排布方向垂直,即其既有环状排布,又有沿周向的排布,形成一种鳞甲结构,其混光效果更佳。图5实施例的入光面101、出光面102均和图1实施例结构一致,这里就不再赘述。
本申请的另一优选实施例为如图7、图8所示,该透镜为回旋型菲涅尔透镜。包括更多个交替设置的入光面101和反射面103。各入光面101上均设置有第一微结构1011,第一微结构1011为绕所述透镜中心轴周向排布的条状突起。各反射面103上均设置有第三微结构1031,第三微结构1031为绕所述透镜中心轴周向排布的条状突起。透镜顶面为出光面102,出光面102上设置有第二微结构1021,第二微结构1021为沿径向向外排布的多个环状凸起。第二微结构1021的排布方向和第一微结构1011、第三微结构1031的排布方向垂直。光线在透镜中经过三次混光,可有效消除黄斑,混光效果好。
本申请提出的在不同光学表面设置排布方向相互垂直的微结构,并不要求微结构覆盖全部光学表面,仅在其部分区域设置微结构也可实现本申请效果。如在图7实施例中,第一微结构1011、第二微结构1021、第三微结构1031均仅设置在所在光学表面的部分。在入光面101,其顶部表面未设置微结构。在反射面102,其最外层接近出光面103部分未设置微结构。在出光面103,中间位置设置了珠面级结构,而未设置本申请提出的和其他光学表面微结构相互垂直的条状凸起。经过试验,该透镜同样获得了较好的混光效果。
图9为本申请提出灯具的一较佳实施例,该灯具为一射灯,包括面环5、灯体4、光源3、后盖2以及图7实施例所述的透镜1。灯体4和后盖2构成灯具主体,其内设置有光源3 和透镜1,透镜1覆盖光源3对光源3进行配光。面环5设置灯体4外侧,其上设置有用以固定灯具的安装部。该实施例射灯通过本申请提出的透镜1对LED光源3进行配光,光色均匀,混光效果好。当然本申请提出的透镜1还可用于其他各类灯具,如吸顶灯、台灯等,本申请对此不作限定。
上文对本申请优选实施例的描述是为了说明和描述,并非想要把本申请穷尽或局限于所公开的具体形式,显然,可能做出许多修改和变化,这些修改和变化可能对于本领域技术人员来说是显然的,应当包括在由所附权利要求书定义的本申请的范围之内。

Claims (9)

  1. 一种透镜,其中,所述透镜包括:
    入光面,光线由外部经所述入光面进入所述透镜发生折射,至少部分所述入光面设置有第一微结构,所述第一微结构为阵列排布的条状凸起;
    出光面,光线从所述透镜内部射出,经所述出光面发生折射,至少部分所述出光面设置有第二微结构,所述第二微结构为阵列排布的条状凸起;所述第一微结构和所述第二微结构的排布方向相互垂直。
  2. 根据权利要求1所述的透镜,其中:所述透镜还包括设置在所述入光面和出光面之间的反射面,所述透镜内部的光线在所述反射面处发生反射,至少部分所述反射面设置有第三微结构。
  3. 根据权利要求2所述的透镜,其中:所述第三微结构为排布方向与第一微结构或第二微结构的排布方向相互垂直的凸起结构。
  4. 根据权利要求2所述的透镜,其中:所述第三微结构为排布方向与第一微结构和第二微结构的排布方向均相互垂直的凸起结构。
  5. 根据权利要求1-4任一所述的透镜,其中:所述透镜为绕中心轴旋转而成的回旋体,所述第一微结构和所述第二微结构中的一者为绕所述中心轴周向排布的条状凸起或扇面展开的条状凸起,其延伸方向和所述中心轴相交,另一者为阵列排布的环状凸起,所述中心轴垂直于任一所述环状凸起所在平面。
  6. 根据权利要求5所述的透镜,其中:所述第三微结构为绕所述中心轴周向排布的条状凸起,或扇面展开的条状凸起,或阵列排布的环状凸起,所述中心轴垂直于任一所述环状凸起所在平面,或为同时具有周向排布及径向排布的鳞甲结构。
  7. 根据权利要求6所述的透镜,其中:所述条状凸起其截面呈齿状或其截面顶部为弧线。
  8. 根据权利要求6所述的透镜,其中:所述透镜为菲涅尔透镜,包括至少两个所述入光面及至少两个所述反射面,所述入光面和所述反射面交替设置。
  9. 一种灯具,包括灯体和设置在灯体内的光源,其中:所述灯具还包括如权利要求1-8任一所述的透镜,所述透镜覆盖所述光源。
PCT/CN2021/139456 2020-12-30 2021-12-20 一种透镜及灯具 WO2022143238A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202023264471.3 2020-12-30
CN202023264471.3U CN214619394U (zh) 2020-12-30 2020-12-30 一种透镜及灯具
CN202011602971.5 2020-12-30
CN202011602971.5A CN112664906A (zh) 2020-12-30 2020-12-30 一种透镜及灯具

Publications (1)

Publication Number Publication Date
WO2022143238A1 true WO2022143238A1 (zh) 2022-07-07

Family

ID=82259908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139456 WO2022143238A1 (zh) 2020-12-30 2021-12-20 一种透镜及灯具

Country Status (1)

Country Link
WO (1) WO2022143238A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207162442U (zh) * 2016-12-30 2018-03-30 佛山市中山大学研究院 一种准直透镜
CN208997993U (zh) * 2018-08-13 2019-06-18 漳州立达信灯具有限公司 一种混色均匀的透镜
CN111043571A (zh) * 2020-01-08 2020-04-21 成都恒坤光电科技有限公司 一种二次混光的led透镜及灯具
CN210860981U (zh) * 2019-12-23 2020-06-26 欧普照明股份有限公司 一种透镜及灯具
CN211083964U (zh) * 2019-12-31 2020-07-24 扬州雷笛克光学有限公司 一种透镜、盖片
CN112664906A (zh) * 2020-12-30 2021-04-16 欧普照明股份有限公司 一种透镜及灯具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207162442U (zh) * 2016-12-30 2018-03-30 佛山市中山大学研究院 一种准直透镜
CN208997993U (zh) * 2018-08-13 2019-06-18 漳州立达信灯具有限公司 一种混色均匀的透镜
CN210860981U (zh) * 2019-12-23 2020-06-26 欧普照明股份有限公司 一种透镜及灯具
CN211083964U (zh) * 2019-12-31 2020-07-24 扬州雷笛克光学有限公司 一种透镜、盖片
CN111043571A (zh) * 2020-01-08 2020-04-21 成都恒坤光电科技有限公司 一种二次混光的led透镜及灯具
CN112664906A (zh) * 2020-12-30 2021-04-16 欧普照明股份有限公司 一种透镜及灯具

Similar Documents

Publication Publication Date Title
CN102047156B (zh) 圆弧形照明设备
JP2006222413A (ja) 発光光源及び発光光源アレイ
CN104302970A (zh) 照明系统及方法
JP4970172B2 (ja) 照明器具
US6264346B1 (en) Apparatus for mixing light from different color LEDs
JP2016507764A (ja) 光学面、レンズ、リフレクタ、光学構成、及び照明装置
JP2006324224A (ja) イルミネーションシステム
WO2020024223A1 (zh) 灯罩结构及灯具
CN111207366A (zh) 一种分光透镜、全周发光灯具及其工作方法
JP5785551B2 (ja) 照明器具及び光学部品
US20200378580A1 (en) Lighting fixture
WO2022143238A1 (zh) 一种透镜及灯具
CN214619394U (zh) 一种透镜及灯具
JP5931079B2 (ja) 照明装置、照明器具及び照明システム
JP2003065960A (ja) Led照明装置
CN104748067A (zh) 用于形成环形光斑的透镜和灯具
CN112664906A (zh) 一种透镜及灯具
CN212226945U (zh) 一种分光透镜及全周发光灯具
WO2018076466A1 (zh) 一种灯罩、灯具及飞行器
JP2009534789A (ja) 照明システム
US20220290844A1 (en) Lighting device for providing a sparkling appearance
CN104296070B (zh) 一种新型广角透镜
CN209744283U (zh) 一种用于调整光束角的筒灯透镜板
CN220582288U (zh) 一种均匀混色的光学组件
CN211952651U (zh) 一种匀光系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913979

Country of ref document: EP

Kind code of ref document: A1