WO2022142883A1 - 电池包 - Google Patents

电池包 Download PDF

Info

Publication number
WO2022142883A1
WO2022142883A1 PCT/CN2021/132715 CN2021132715W WO2022142883A1 WO 2022142883 A1 WO2022142883 A1 WO 2022142883A1 CN 2021132715 W CN2021132715 W CN 2021132715W WO 2022142883 A1 WO2022142883 A1 WO 2022142883A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
working medium
heat
accommodating cavity
battery
Prior art date
Application number
PCT/CN2021/132715
Other languages
English (en)
French (fr)
Inventor
杨德中
朱荣根
Original Assignee
南京泉峰科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京泉峰科技有限公司 filed Critical 南京泉峰科技有限公司
Priority to EP21913625.6A priority Critical patent/EP4239758A1/en
Priority to CN202180016415.6A priority patent/CN115244760A/zh
Publication of WO2022142883A1 publication Critical patent/WO2022142883A1/zh
Priority to US18/333,630 priority patent/US20230327229A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to a battery pack.
  • the temperature rise of the battery pack is an important factor affecting the performance of the battery pack.
  • the phase change temperature of the phase change material will affect its heat dissipation capacity.
  • the cost of materials with a high phase change temperature is high.
  • the phase change material can absorb a large amount of heat through the phase change when the battery pack reaches above the phase change temperature of the phase change material, which is not conducive to the effective heat dissipation of the battery pack.
  • phase change material needs to have at least two phase states
  • how to store the phase change material and make the phase change material fully contact with the battery pack cannot solve the above problems well, which will seriously affect the heat dissipation efficiency.
  • the embodiment of the present application discloses a battery pack, which includes: a plurality of battery cells; a casing, which forms an accommodating cavity at least for accommodating the plurality of battery cells, and the accommodating cavity is a closed space; On the outside of the unit, the interior of the insulator is filled with a working medium for dissipating heat from the cell unit; wherein, when at least one of the plurality of cell units reaches a preset temperature, the working medium changes from a liquid phase to a gaseous state to make the cell unit heat dissipation.
  • the embodiment of the present application further discloses a battery pack, comprising: a plurality of battery cells;
  • the housing forms an accommodating cavity for accommodating at least a plurality of electric cores, and the accommodating cavity is a closed space; an insulator is arranged on the outside of the plurality of electric cores, and the interior of the insulator is filled with a working medium for dissipating heat from the electric cores; In the confined space, the battery cell, the insulator, the working medium and the shell together form a dynamic heat dissipation system with a vapor-liquid-vapor cycle phase transition.
  • the embodiment of the present application further discloses a battery pack, comprising: a casing with a accommodating cavity formed therein; at least one battery cell unit, the battery core unit being arranged in the accommodating cavity; the battery further comprising: an isolation layer surrounding the battery cell unit;
  • the working medium can be switched between the liquid state and the gaseous state according to the temperature change of the cell unit, the accommodating cavity is sealed, and the pressure of the accommodating cavity is not equal to the atmospheric pressure.
  • the embodiment of the present application further discloses a battery pack, comprising: a casing with a accommodating cavity formed therein; at least one battery cell unit, the battery cell unit being arranged in the accommodating cavity; the battery further comprising: a heat insulator arranged in the accommodating cavity , the insulator supports the cell power supply, and the insulator also includes capillary channels; the isolation layer surrounds the cell unit, and the isolation layer is arranged between the insulator and the cell unit; the working fluid has at least two states of liquid and gas, and When the working medium is liquid, the working medium can be stored in the capillary channel of the insulator.
  • FIG. 1 is a perspective structural view of a battery pack according to an embodiment of the present application
  • Fig. 2 is the internal schematic diagram of the battery pack in Fig. 1 of the present application;
  • FIG. 3 is a schematic cross-sectional view of the battery pack in FIG. 1 of the present application.
  • FIG. 4 is an enlarged schematic view of part 1A of the battery pack in FIG. 3 of the present application.
  • FIG. 5 is a schematic diagram of the heat absorption of the working fluid of the battery pack in FIG. 3 of the present application.
  • FIG. 6 is a schematic diagram of the heat release of the working fluid of the battery pack in FIG. 3 of the present application.
  • FIG. 7 is a schematic diagram of the relationship between ambient pressure and boiling point when the working fluid of the present application is water.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • connection may be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • the battery pack 100 includes a housing 110 , a cell unit 120 and a pole piece 111 , and the cell unit 120 and the pole piece 111 are encapsulated by the housing 110 .
  • An accommodating cavity 112 for accommodating at least a plurality of cell units is formed inside the casing 110 , and the cell units 120 are arranged in the accommodating cavity 112 .
  • the accommodating cavity 112 forms a closed space with a preset pressure.
  • the battery pack further includes an insulator 140 , a working medium 300 and an isolation layer 130 .
  • the insulator 140 is used to support or surround the plurality of battery cells 120 , and the isolation layer 130 surrounds the battery cells 120 .
  • the heat insulator is disposed outside the plurality of cell units.
  • the thermal insulator 140 is disposed in the accommodating cavity 112 , and the thermal insulator 140 includes a plurality of thermal insulation channels for accommodating the battery cell units 120 .
  • the thermal insulator is a porous material.
  • the interior of the insulator is filled with a working medium for dissipating heat from the cells.
  • the battery cell unit, the insulator, the working medium and the shell together form a dynamic heat dissipation system with a vapor-liquid-vapor cycle phase transition.
  • the working medium 300 has at least two states of liquid state and gaseous state.
  • the working medium 300 can be switched between liquid and gaseous states according to the temperature change of the cell unit 120 .
  • the working medium changes from a liquid phase to a gaseous state to dissipate heat from the battery cells.
  • the dashed arrows refer to the schematic diagram of the flow direction of heat
  • the solid line arrows refer to the schematic diagram of the flow direction of the working medium.
  • the thermal conductivity of the insulator is low, which can prevent the stored heat of the vaporized molecules from being transferred back to the battery cell unit, thereby further improving the heat dissipation efficiency of the battery pack.
  • Each cell unit is independently arranged in the channel formed by the insulator. Due to the thermal insulation effect of the insulator, the heat of the adjacent cell units is isolated and not conducted. The insulator can prevent the thermal runaway of the battery pack. The firewall between the cell units is integrated, and the fire or explosion of a single cell unit will be isolated by the insulator, so that other cell units will not be affected, thereby improving the performance and safety of the battery pack.
  • the pressure in the accommodating chamber 112 is set to be lower than the atmospheric pressure to reduce the boiling point of the working fluid.
  • the working fluid can vaporize and absorb heat in time, so that the in order to avoid overheating of the battery pack 100 .
  • the cell unit 120 is supported by the heat insulator 140 , so that the structure of the battery pack is compact, and the contact area between the working medium 300 and the cell unit 120 is increased.
  • the working medium 300 includes water, and the working medium 300 may be completely water, or may be a mixture of water or other materials.
  • the accommodating cavity 112 is a sealed environment. Referring to FIG. 7 , the pressure of the accommodating cavity 112 is set to be less than 40 kPa, so that the boiling point of the working medium 300 in the accommodating cavity 112 is below 70 degrees. In one embodiment, the boiling point of the working medium 300 Can be set from 50 degrees to 60 degrees, or 55 degrees, 65 degrees.
  • the working medium 300 may be other phase change materials, such as alcohol materials. In one embodiment, the working medium 300 may be a mixture of phase-change materials and non-phase-change materials.
  • the working medium 300 is a mixture of liquid material and solid material, and the thermal insulator 140 can accommodate the liquid material and connect or support the solid material.
  • the working medium 300 may be a material that can have two states of solid state and liquid state in the battery pack, and cools the battery pack by absorbing heat when the solid is melted into a liquid.
  • the pressure of the accommodating chamber 112 is set so that the boiling point of the working medium 300 is less than or equal to 70 degrees.
  • the accommodating cavity 112 is a sealed environment, and the pressure of the accommodating cavity 112 is set to be less than 40 kPa. In one embodiment, the pressure of the containment chamber 112 is set to be less than 20 kPa.
  • the material of the casing 110 may be plastic, or at least a part of metal material, so as to improve the heat dissipation efficiency.
  • the inner surface of the casing 110 is a substance that does not react with the working medium 300 , such as organic substances or dense metal oxides or other inorganic substances. Preventing the shell 110 from reacting with the working medium 300 reduces heat dissipation efficiency and damages the structure of the battery pack.
  • the inner surface of the casing 110 is further provided with a coating, and the coating material is a non-reactive substance with the working medium 300 , such as non-reactive organic substances or metal oxides. It is used to block the working medium 300 and the shell 110 to prevent the shell 110 and the working medium 300 from reacting in a high temperature environment, or to block the flow of the working medium 300 from the shell 110 to improve the sealing of the shell 110 .
  • the material of the casing includes one or a combination of aluminum, copper and stainless steel.
  • the thermal insulator 140 forms a capillary channel 141 , which is absorbed by capillary action to store the working medium, so that the working medium can be stored in the capillary channel 141 of the thermal insulator 140 .
  • the thermal insulator 140 is in contact with the isolation layer 130, the heat of the battery core is transferred to the thermal insulator 140 and the working medium 300 in the thermal insulator 140 through the isolation layer 130, and the working medium 300 absorbs heat and vaporizes to continue to absorb heat and vaporize.
  • the condensed working medium 300 is adsorbed by the heat insulator 140 again.
  • the thermal insulator 140 is a porous material.
  • the thermal insulator is sparse and porous and can store liquid in the capillary channels.
  • the material for making the thermal insulator 140 is at least partially diatomaceous earth.
  • diatomite can effectively prevent the casing 110 of the battery pack 100 from overheating, and can effectively reduce the probability of fire and explosion of the battery pack 100 , thereby improving the safety of the battery pack 100 .
  • the working medium 300 is stored through diatomite.
  • the accommodating cavity is a closed space
  • the change of part of the working medium 300 from liquid to gas will increase the internal pressure of the accommodating cavity.
  • the working medium is in a state of equilibrium between gas and liquid. Due to the hygroscopic property of diatomite, the working medium 300 in liquid state can return to the surroundings of the cell unit 120 through the capillary channel 141 , and repeatedly dissipate heat to the cell unit 120 .
  • the battery cell, the insulator, the working medium and the shell together form a dynamic heat dissipation system with a vapor-liquid-vapor cycle phase transition.
  • the thermal insulator further includes an exhaust channel, and when the working medium 300 in the thermal insulator is converted into gas, it can be discharged from the thermal insulator through the exhaust channel, thereby accelerating the process of transferring the working medium 300 to the inner wall of the casing.
  • the heat insulator 140 is used to support the cell unit 120 , and the heat insulator 140 is disposed on the peripheral side of the cell unit 120 . In one embodiment, the heat insulator 140 is disposed on at least one of the front, the rear, and the side of the cell unit 120 . one or more places. The cell unit 120 is in contact with the heat insulator 140 through the isolation layer 130 . The heat exchange efficiency between the cell unit 120 and the working medium 300 is improved by the insulator 140 .
  • the thermal insulator 140 is self-formed into an integrally formed housing and has a plurality of through holes, and the thermal insulator 140 includes through holes for accommodating the cell units 120 into which the cell units 120 are inserted. In one embodiment, the thermal insulator 140 covers at least 30% of the outer surface area of the cell unit 120 . In one embodiment, the thermal insulator 140 covers at least 30% to 80% of the outer surface of the cell unit 120 .
  • the airtight space formed by the accommodating cavity 112 is a vacuum setting, and vacuum means that the content of non-condensable gas contained in the airtight space is lower than 20% of the volume of the airtight space, or the airtight space is a full vacuum environment.
  • Non-condensable gas refers to the gas that does not condense with the cooling material and does not produce refrigeration effect.
  • the battery pack further includes an air valve, and the air valve is located on the casing, and is used for evacuating the accommodating cavity 112 when the battery pack is fabricated.
  • the battery pack further includes an air pressure sensor for detecting the pressure of the accommodating cavity 112 to obtain the current heat dissipation capability of the battery pack, so as to facilitate power supply management for the battery pack.
  • the difference between the preset pressure of the accommodating cavity 112 and the atmospheric pressure is not zero.
  • the preset pressure in the accommodating cavity By adjusting the preset pressure in the accommodating cavity, the boiling point of the working medium 300 in the sealed accommodating cavity 112 is changed, so that the working medium in the accommodating cavity 112 can be adjusted.
  • the adjustment of the phase transition temperature of 300 enables the working medium 300 to undergo a phase transition at a desired ambient temperature and absorb a large amount of heat.
  • the preset pressure of the accommodating chamber 112 is lower than the atmospheric pressure, and the working medium is water or other materials whose boiling point is higher than the ideal temperature under the atmospheric pressure.
  • the preset pressure of the accommodating chamber 112 is higher than the atmospheric pressure, and the working medium is a material whose boiling point is lower than the ideal temperature under atmospheric pressure, such as some organic materials.
  • the casing 110 includes a pressure adjusting device for adjusting the influence on the pressure of the accommodating chamber 112 when the working medium 300 undergoes a phase transition.
  • the isolation layer 130 is disposed between the insulator 140 and the cell unit 120 , and the isolation layer 130 is disposed to block the working medium from entering the cell unit 120 .
  • the isolation layer 130 should at least include a waterproof layer.
  • the isolation layer 130 covers the surface of the cell unit 120 by vapor deposition.
  • the thickness of the isolation layer 130 is greater than or equal to 100 nanometers and less than or equal to 600 nanometers, the impedance of the isolation layer 130 in the thickness direction is less than or equal to 100 milliohms, and the isolation layer 130 includes the first material in the form of particles with a particle size of less than or equal to 100 nanometers.
  • the isolation layer further includes an insulating layer.
  • a battery pack including at least one cell unit, the cell unit is arranged in the accommodating cavity, the isolation layer surrounds the cell unit, the working medium, and the environment within 100° C.
  • the thermal insulator is arranged in the accommodation cavity, the thermal insulator also includes capillary channels, and when the working medium is liquid, the working medium can be stored in the in the capillary channel of the thermal insulator.
  • the battery pack further includes a support for supporting the cell unit, and in one embodiment, the thermal insulator is in contact with the cell unit.
  • the battery pack further includes an outer casing, which is arranged outside the casing and constitutes a casing of the battery pack, and the outer casing is held by the user.
  • a manufacturing method of a battery pack 100 including: disposing an isolation layer 130 outside a cell unit 120; placing the cell unit 120 in a through hole of a heat insulator 140; placing the heat insulator 140 on a housing 110, and make the heat insulator 140 store the working medium; after adjusting the pressure of the accommodating cavity 112 in the housing 110, the accommodating cavity 112 is sealed.
  • a battery pack which includes a casing and at least one cell unit, and a closed accommodating cavity is formed inside, and the cell unit is arranged in the accommodating cavity.
  • the battery also includes: a working medium, which has at least two states of liquid and gas in an environment within 100 ° C, an insulator, a storage medium, and the insulator is arranged in the accommodating cavity. When the working medium is converted between liquid and gas states , moving between the insulator and the inner surface of the shell.
  • a battery pack which includes a heat dissipation component and at least one battery cell unit, the heat dissipation component includes a condensation part and a heat absorption part, and the condensation part forms a closed accommodating cavity.
  • the cell unit is arranged in the accommodating cavity, and the heat absorption part is arranged between the cell unit and the condensation part.
  • the battery pack further includes a working medium, which is stored in the heat absorbing part, and at least part of the working medium can absorb heat to change from liquid to gas, and condense from gas to liquid in the condensing part.
  • a battery pack comprising a casing with a accommodating cavity formed therein; at least one battery cell unit, the battery cell unit being arranged in the accommodating cavity; the battery pack further comprising: an isolation layer surrounding the battery cell unit;
  • the thermal insulator is arranged in the accommodating cavity, the thermal insulator supports the cell unit, and the thermal insulator also includes capillary channels; the working medium has at least two states of liquid and gas, and when the working medium is liquid, the working medium can be stored in the in the capillary channel of the thermal insulator.
  • a battery pack comprising: a casing with a accommodating cavity formed therein; at least one battery cell unit, the battery cell unit being arranged in the accommodating cavity; the battery pack further comprising: an isolation layer surrounding the battery cell unit ;
  • the working medium is arranged in the accommodating cavity, the working medium can be switched between the liquid state and the gaseous state according to the temperature change of the electric core unit, and the accommodating cavity is sealed.
  • the embodiment of the present application discloses a battery pack, which has good heat dissipation effect and high safety performance.
  • the thermal insulator is provided to store the working medium, the heat dissipation efficiency of the working medium to the battery pack is improved, and the thermal insulator prevents the battery pack from burning or exploding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例公开一种电池包,包括:多个电芯单元;壳体,形成至少用于容纳多个电芯单元的容纳腔,容纳腔为密闭空间;绝热体,设置在多个电芯单元的外侧,绝热体的内部填充有用于使电芯单元散热的工质;其中,多个电芯单元中的至少一个达到预设温度时,工质由液态相变为气态以使电芯单元散热。

Description

电池包
本申请要求在2020年12月31日提交中国专利局、申请号为202011636161.1的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种电池包。
背景技术
电池包的温升是影响电池包性能的重要因素,有人提出通过相变材料的相变吸热而大量吸收电池包的热量,但是相变材料的相变温度会影响其散热能力,采用低相变温度的材料成本较高,采用高相变温度的材料,在电池包达到相变材料相变温度以上时,相变材料才能通过相变大量吸热,不利于对电池包的有效散热。另外,因为相变材料需要具有至少两种相态,如何对相变材料进行储存,以及使得相变材料充分和电池包接触,不能较好的解决以上问题会严重影响散热效率。同时,还需要保证电池包的安全性能,防止相变材料的相态变化对电池包内部元件的影响。
发明内容
本申请实施例公开一种电池包,包括:多个电芯单元;壳体,形成至少用于容纳多个电芯单元的容纳腔,容纳腔为密闭空间;绝热体,设置在多个电芯单元的外侧,绝热体的内部填充有用于使电芯单元散热的工质;其中,多个电芯单元中的至少一个达到预设温度时,工质由液态相变为气态以使电芯单元散热。
本申请实施例还公开一种电池包,包括:多个电芯;
壳体,形成至少用于容纳多个电芯的容纳腔,容纳腔为密闭空间;绝热体,设置在多个电芯的外侧,绝热体的内部填充用于使电芯散热的工质;在密闭空间内,电芯、绝热体、工质和壳体共同构成汽态-液态-汽态循环相变的动态散热系统。
本申请实施例还公开一种电池包,包括:壳体,内部形成容纳腔;至少一电芯单元,电芯单元被设置在容纳腔内;电池还包括:隔离层,包围电芯单元;工质,设置在容纳腔内,工质能根据电芯单元的温度变化在液态和气态之间切换,容纳腔为密闭设置,且容纳腔的压强不等于大气压强。
本申请实施例还公开一种电池包,包括:壳体,内部形成容纳腔;至少一电芯单元,电芯单元被设置在容纳腔内;电池还包括:绝热体,被设置在容纳腔内,绝热体支撑电芯电源,绝热体还包括毛细孔道;隔离层,包围电芯单元,隔离层被设置在绝热体和电芯单元之间;工质,至少具有液态和气态两种状态,且在工质为液态时,工质能被储存在绝热体的毛细孔道内。
附图说明
图1是本申请的一个实施方式的电池包的立体结构图;
图2是本申请图1中的电池包的内部示意图;
图3是本申请图1中的电池包的剖面示意图;
图4是本申请图3中的电池包1A部分的放大示意图;
图5是本申请图3中的电池包的工质的吸热示意图;
图6是本申请图3中的电池包的工质的放热示意图;
图7是本申请工质为水时环境压强和沸点的关系示意图。
具体实施方式
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
参考图1,电池包100包括壳体110、电芯单元120以及极片111,由壳体110封装电芯单元120和极片111。壳体110内部形成至少用于容纳多个电芯单元的容纳腔112,电芯单元120被设置在容纳腔112内。容纳腔112形成具有预设压强的密闭空间。
电池包还包括绝热体140、工质300以及隔离层130,绝热体140用于支撑或包围多个电芯单元120,隔离层130包围电芯单元120。
作为具体实施方式的一种,如图2和图3所示,绝热体设置在多个电芯单元的外侧。绝热体140被设置在容纳腔112内,绝热体140包括多个用于容纳电芯单元120的绝热通道。绝热体为多孔材料。绝热体的内部填充有用于使电芯散热的工质。在容纳腔形成的密闭空间内,电芯单元,绝热体,工质和壳体共同构成汽态-液态-汽态循环相变的动态散热系统。
在100℃以内的环境中,工质300至少具有液态和气态两种状态,工质300能根据电芯单元120的温度变化在液态和气态之间切换,利用工质300吸收电芯单元120在电池包100放电时产生的热量,多个电芯单元中的至少一个达到预设温度时,工质由液态相变为气态以为电芯单元散热。
参照图5和图6,虚线箭头是指热量的流向示意图,实线箭头是指工质的流向示意图,在电芯单元120的热量高于工质的沸点时,工质由液态转换成气态,通过工质大量吸收电池包100内部的热量,从而有效对电池包100进行散热。工质300的汽化分子散布在容纳腔112,部分汽化分子在壳体110内表面凝结,散热将部分热量传递给壳体110,由壳体110将热量传递给外部,相较于传统固态-液态相变散热,这种液态-汽态-液态动态循环散热的方式能够将电芯单元的热量经由壳体散出。
绝热体的导热率较低,可以防止汽化分子的储存热量往回传递给电芯单元,从而进一步的提升电池包的散热效率。每个电芯单元分别独立设置于绝热体形成的通道内,因绝热体的绝热作用,使得彼此相邻的电芯单元的热量被隔离,不传导,绝热体可以防止电池包热失控,通过绝热体化构建电芯单元之间的防火墙,单个电芯单元的失火或者爆炸将被绝热体隔绝,从而不会影响其他电芯单元,从而提升电池包的性能和安全性。
为了提升对电池包100的散热效率,设置容纳腔112内的压强低于大气压强,以降低工质的沸点,在电池包100温升到一定程度时,工质能及时汽化吸热,从而可以在避免电池包100过热。在一实施例中,用绝热体140支撑电芯单元120,使得电池包结构紧凑的同时,提升工质300和电芯单元120的接触面积。
在一实施例中,工质300包括水,工质300可以完全是水,也可以是水或者其它材料的混合物。容纳腔112为密封环境,参照图7,容纳腔112的压强被设置小于40千帕,使得容纳腔112内的工质300的沸点处于70度以下,在一实施例中,工质300的沸点可以被设置在50度到60度,或55度、65度。在一实施例中,工质300可以是其它相变材料,如醇类材料。在一实施例中,工质300可以是相变材料和非相变材料的混合物。在一实施例中,工质300是液体材料和固体材料的混合物,绝热体140可以容纳液体材料,并连接或支撑固体材料。在一实施例中,工质300可以是在电池包中能有固态和液态两种状态的材料,通过从固体融化成液体时吸热对电池包降温。
容纳腔112的压强被设置为使得工质300的沸点小于等于70度。工质300 被设置为水时,容纳腔112为密封环境,且容纳腔112的压强被设置小于40千帕。在一实施例中,容纳腔112的压强被设置小于20千帕。
壳体110的材料可以是塑料,也可以至少部分是金属材料,以提升散热效率。在一实施例中,壳体110的内表面为与工质300不反应的物质,如有机物或致密的金属氧化物或其它无机物。防止壳体110与工质300反应降低散热效率,并毁坏电池包的结构。在一实施例中,壳体110内表面还设有涂层,涂层的制作材料为与工质300不反应的物质,如不反应的有机物或者金属氧化物。用于阻断工质300和壳体110,防止壳体110体和工质300在高温环境下发生反应,或者用于阻断工质300从壳体110中流出,提升壳体110的密封性。
在一实施例中,壳体的制作材料包括铝、铜以及不锈钢的一种或组合。
绝热体140形成毛细孔道141,通过毛细作用吸收以储存工质,使得工质能被储存在绝热体140的毛细孔道141内。在一实施例中,绝热体140与隔离层130接触,电池芯的热量通过隔离层130传递到绝热体140和绝热体140内的工质300,工质300吸热并汽化继续吸热,汽化分子散布在容纳腔112,部分汽化分子在壳体110内表面凝结,散热将部分热量传递给壳体110,从而提升散热效率。凝结后的工质300再被绝热体140吸附。绝热体140为多孔材料。绝热体稀疏多孔,可在毛细孔道内储存液体。在一实施例中,绝热体140的制作材料至少部分为硅藻土。利用硅藻土的耐热、阻燃的特性,硅藻土能有效防止电池包100的壳体110过热,并且能有效降低电池包100起火爆炸的概率,提升了电池包100的安全性。利用硅藻土多孔的特性,通过硅藻土储存工质300。
在工质300汽化过程,因为容纳腔为密闭空间,部分工质300由液体变换到气体会增加容纳腔的内部压强,随着容纳腔内部压强增加,工质300的沸点随之改变,在某一特定的压力和温度下,工质处于气态和液态平衡状态。由于硅藻土吸湿的特性,处于液态的工质300能通过毛细孔道141回到电芯单元120周围,重复对电芯单元120散热。在密闭空间内,电芯、绝热体、工质和壳体共同构成汽态-液态-汽态循环相变的动态散热系统。
在一实施例中,绝热体还包括排气道,绝热体内的工质300转换成气体时,能通过排气道从绝热体内排出,加速工质300传递到壳体内壁的过程。
绝热体140用于支撑电芯单元120,绝热体140设置在电芯单元120的周侧,在一实施例中,绝热体140设置在电芯单元120的前部、后部以及侧部的至少一处或多处。电芯单元120通过隔离层130与绝热体140接触。通过绝热体140提升电芯单元120和工质300的热交换效率。在一实施例中,绝热体140自形 成一体成型的壳体,并具有多个通孔,绝热体140包括容纳电芯单元120的通孔,电芯单元120被置入通孔。在一实施例中,绝热体140至少覆盖电芯单元120的外表面面积的30%。在一实施例中,绝热体140至少覆盖电芯单元120的外表面的30%到80%。
在一实施例中,容纳腔112形成的密闭空间为真空设置,真空是指密闭空间包含的不凝性气体的含量低于该密闭空间体积的20%,或者密闭空间为全真空环境。不凝性气体是指不随冷却材料一起冷凝,不产生制冷效应的气体。
电池包还包括气阀,气阀位于壳体上,用于电池包制作时对容纳腔112抽真空。在一实施例中,电池包还包括气压传感器,用于检测容纳腔112的压强,以获取电池包的当前散热能力,便于对电池包的供电管理。
容纳腔112的预设压强与大气压强的差值不为零,通过调节容纳腔内的预设压强,改变处于密封的容纳腔112内工质300的沸点,实现对容纳腔112内的工质300的相变温度的调节,使得工质300能在期望的环境温度相变而大量吸热。在一实施例中,容纳腔112的预设压强小于大气压强,此时工质为水或其他大气压强下沸点高于理想温度的材料。在一实施例中,容纳腔112的预设压强大于大气压强,此时工质为某些有机材料等大气压强下沸点低于理想温度的材料。
在一实施例中,壳体110包括压强调节装置,用于调节工质300相变时对容纳腔112压强的影响。
隔离层130被设置在绝热体140和电芯单元120之间,隔离层130被设置阻断工质进入电芯单元120。在工质被设置为水时,隔离层130应至少包括防水层,在一实施例中,隔离层130采用气相沉积的方式覆盖在电芯单元120表面。隔离层130的厚度大于等于100纳米且小于等于600纳米,隔离层130在厚度方向上的阻抗小于等于100毫欧,隔离层130包括以粒度小于等于100纳米的颗粒的形式存在的第一材料。在一实施例中,隔离层还包括绝缘层。
在一实施例中,提供一种电池包,包括至少一电芯单元,电芯单元被设置在所述容纳腔内,隔离层,包围所述电芯单元,工质,在100℃以内的环境中,至少具有液态和气态两种状态,绝热体,被设置在所述容纳腔内,所述绝热体还包括毛细孔道,且在所述工质为液态时,所述工质能被储存在所述绝热体的毛细孔道内。电池包还包括支撑件,支撑件用于支撑电芯单元,在一实施例中,绝热体和电芯单元接触。
电池包还包括外壳体,设置在壳体外部,组成电池包的壳体,外壳体供用 户握持。
提供一种电池包100的制作方法,包括:在电芯单元120外部设置隔离层130;将所述电芯单元120置入绝热体140的通孔内;将所述绝热体140放置在壳体110内,并使得绝热体140储存工质;调节壳体110内的容纳腔112的压强后密封容纳腔112。
一种实施方式中,提出一种电池包,包括壳体和至少一电芯单元,内部形成密闭的容纳腔,电芯单元被设置在容纳腔内。电池还包括:工质,在100℃以内的环境中,至少具有液态和气态两种状态,绝热体,储存工质,绝热体被设置在容纳腔内,工质在液态和气态之间转换时,在绝热体和壳体内表面之间移动。
一种实施方式中,提出一种电池包,包括散热组件和至少一电芯单元,散热组件包括冷凝部和吸热部,冷凝部形成密闭的容纳腔。电芯单元被设置在容纳腔内,吸热部被设置在电芯单元和冷凝部之间。电池包还包括工质,储存于吸热部,至少部分工质能吸收热量由液体相变为气体,并在冷凝部从气体凝结为液体。
一种实施方式中,提供一种电池包,包括壳体,内部形成容纳腔;至少一电芯单元,电芯单元被设置在容纳腔内;电池包还包括:隔离层,包围电芯单元;绝热体,被设置在容纳腔内,绝热体支撑电芯单元,绝热体还包括毛细孔道;工质,至少具有液态和气态两种状态,且在工质为液态时,工质能被储存在绝热体的毛细孔道内。
一种实施方式中,提供一种电池包,包括:壳体,内部形成容纳腔;至少一电芯单元,电芯单元被设置在容纳腔内;电池包还包括:隔离层,包围电芯单元;工质,设置在容纳腔内,工质能根据电芯单元的温度变化在液态和气态之间切换,容纳腔为密闭设置。
为解决相关技术的不足,本申请实施例公开一种电池包,其散热效果良好,安全性能高。
本申请一些实施例公开的电池包通过设置绝热体储存工质,提升工质对电池包的散热效率,并且通过绝热体起到防止电池包燃烧或爆炸的作用。
以上显示和描述了本申请的基本原理、主要特征和优点。本行业的技术人员应该了解,上述实施例不以任何形式限制本申请,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本申请的保护范围内。

Claims (21)

  1. 一种电池包,包括:
    多个电芯单元(120);
    壳体(110),形成至少用于容纳所述多个电芯单元(120)的容纳腔(112),所述容纳腔(112)为密闭空间;
    绝热体(140),设置在所述多个电芯单元(120)的外侧,所述绝热体(140)的内部填充有用于使所述电芯单元(120)散热的工质;
    其中,
    多个所述电芯单元(120)中的至少一个达到预设温度时,所述工质由液态相变为气态以使所述电芯单元(120)散热。
  2. 如权利要求1所述的电池包,其中,所述绝热体(140)为多孔材料。
  3. 如权利要求1所述的电池包,其中,所述工质为水。
  4. 如权利要求1所述的电池包,其中,所述密闭空间的压强小于或等于40千帕。
  5. 如权利要求1所述的电池包,其中,所述绝热体(140)包括毛细孔道(141),所述工质能在所述毛细孔道(141)内移动。
  6. 如权利要求5所述的电池包,其中,所述绝热体(140)还包括排气道,所述工质处于气态时,部分所述工质能通过所述排气道排出所述绝热体(140)。
  7. 如权利要求1所述的电池包,其中,所述壳体(110)的材料包括金属材料和塑料。
  8. 如权利要求1所述的电池包,其中,
    所述壳体(110)的内表面包括与所述工质不反应的物质。
  9. 如权利要求1所述的电池包,其中,
    所述壳体(110)的内表面包括涂层,所述涂层的制作材料为与所述工质不反应的物质。
  10. 一种电池包,包括:
    多个电芯;
    壳体(110),形成至少用于容纳所述多个电芯的容纳腔(112),所述容纳腔(112)为密闭空间;
    绝热体(140),设置在所述多个电芯的外侧,所述绝热体(140)的内部填充用于使所述电芯散热的工质;
    其中,
    在所述密闭空间内,所述电芯、所述绝热体(140)、所述工质和所述壳体(110) 共同构成汽态-液态-汽态循环相变的动态散热系统。
  11. 如权利要求10所述的电池包,所述电池包还包括:
    隔离层(130),设置在所述电芯和所述绝热体(140)之间。
  12. 如权利要求10所述的电池包,所述电池包还包括:
    气阀,位于所述壳体(110)上。
  13. 如权利要求10所述的电池包,所述电池包还包括外壳体,设置在所述壳体(110)外。
  14. 如权利要求10所述的电池包,所述电池包还包括压强传感器,用于检测所述容纳腔(112)内的压强。
  15. 如权利要求10所述的电池包,其中,所述壳体(110)的制作材料包括铝、铜以及不锈钢的一种或组合。
  16. 如权利要求10所述的电池包,其中,所述绝热体(140)至少覆盖电芯单元(120)的外表面面积的30%。
  17. 如权利要求10所述的电池包,所述电池包还包括:
    支撑件,用于支撑所述绝热体(140)和电芯单元(120)。
  18. 如权利要求10所述的电池包,其中,所述容纳腔(112)的内部压强与大气压强的差值不等于零。
  19. 一种电池包,包括:
    壳体(110),内部形成容纳腔(112);
    至少一电芯单元(120),被设置在所述容纳腔(112)内;
    所述电池包还包括:
    工质,在100℃以内的环境中,至少具有液态和气态两种状态;绝热体(140),用于储存所述工质,所述绝热体(140)被设置在容纳腔(112)内,当所述工质在液态和气态之间转换时,在所述绝热体(140)和所述壳体(110)的内表面之间移动。
  20. 一种电池包,包括:
    至少一电芯单元(120);
    散热组件,所述散热组件包括冷凝部和吸热部,所述冷凝部形成密闭的容纳腔(112);所述电芯单元(120)被设置在所述容纳腔(112)内,所述吸热部被设置在所述电芯单元(120)和所述冷凝部之间;
    所述电池包还包括:
    工质,储存于吸热部,至少部分所述工质能吸收热量由液体相变为气体,并在所述冷凝部从气体凝结为液体。
  21. 一种电池包,包括:
    壳体(110),内部形成容纳腔(112);
    至少一电芯单元(120),被设置在所述容纳腔(112)内;
    所述电池包还包括:
    绝热体(140),被设置在所述容纳腔(112)内,所述绝热体(140)支撑所述电芯单元(120),所述绝热体(140)还包括毛细孔道(141);
    隔离层(130),包围所述电芯单元(120),所述隔离层(130)被设置在所述绝热体(140)和所述电芯单元(120)之间;
    工质,至少具有液态和气态两种状态,且在所述工质为液态时,所述工质能被储存在所述绝热体(140)的所述毛细孔道(141)内。
PCT/CN2021/132715 2020-12-31 2021-11-24 电池包 WO2022142883A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21913625.6A EP4239758A1 (en) 2020-12-31 2021-11-24 Battery pack
CN202180016415.6A CN115244760A (zh) 2020-12-31 2021-11-24 电池包
US18/333,630 US20230327229A1 (en) 2020-12-31 2023-06-13 Battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011636161 2020-12-31
CN202011636161.1 2020-12-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/333,630 Continuation US20230327229A1 (en) 2020-12-31 2023-06-13 Battery pack

Publications (1)

Publication Number Publication Date
WO2022142883A1 true WO2022142883A1 (zh) 2022-07-07

Family

ID=82260188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132715 WO2022142883A1 (zh) 2020-12-31 2021-11-24 电池包

Country Status (4)

Country Link
US (1) US20230327229A1 (zh)
EP (1) EP4239758A1 (zh)
CN (1) CN115244760A (zh)
WO (1) WO2022142883A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206388743U (zh) * 2017-01-11 2017-08-08 长沙理工大学 一种用于电动汽车电池箱的散热箱盖
CN107196014A (zh) * 2017-06-15 2017-09-22 成都动力核芯科技有限公司 一种电动汽车锂离子电池相变散热结构
CN209232907U (zh) * 2018-12-29 2019-08-09 宁德时代新能源科技股份有限公司 具有冷却功能的电子装置及电池模组
CN112382805A (zh) * 2020-11-17 2021-02-19 合肥工业大学 一种基于脉动热管的圆柱电池热管理模块

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206388743U (zh) * 2017-01-11 2017-08-08 长沙理工大学 一种用于电动汽车电池箱的散热箱盖
CN107196014A (zh) * 2017-06-15 2017-09-22 成都动力核芯科技有限公司 一种电动汽车锂离子电池相变散热结构
CN209232907U (zh) * 2018-12-29 2019-08-09 宁德时代新能源科技股份有限公司 具有冷却功能的电子装置及电池模组
CN112382805A (zh) * 2020-11-17 2021-02-19 合肥工业大学 一种基于脉动热管的圆柱电池热管理模块

Also Published As

Publication number Publication date
US20230327229A1 (en) 2023-10-12
CN115244760A (zh) 2022-10-25
EP4239758A1 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
JP5593331B2 (ja) 電池、該電池を含む電池アセンブリ及び該電池を冷却するための方法
CN105206895A (zh) 电池组的冷却方法及带有冷却装置的电池组
CN108206316A (zh) 一种热管和相变材料耦合的电池模组热管理装置
CN110808432A (zh) 一种转动式自散热锂电池
JP2010211963A (ja) 蓄電装置
CN104538700A (zh) 一种车用动力电池内插扁平微热管散热装置及其散热方法
CN205335394U (zh) 带有冷却装置的电池组
CN102751451B (zh) 一种辅助恒温电池盒
TW200409584A (en) Multi-position liquid storage tank temperature conduction apparatus and method
WO2022142883A1 (zh) 电池包
CN112002959B (zh) 一种用于通信基站电池热管理的相变材料
WO2024087564A1 (zh) 一种基于高导热均热板的动力电池模组系统
WO2015058376A1 (en) Vehicle battery and vehicle using the same
WO2023070905A1 (zh) 一种动力电池模块及其动力电池包和热管理方法
CN212848585U (zh) 一种电池组
CN211182266U (zh) 一种安全性能高的锂电池电芯
CN204441415U (zh) 一种车用动力电池内插扁平微热管散热装置
CN210723106U (zh) 一种石墨烯防热电池
CN219801022U (zh) 一种具备热管的电池结构
JP2002063947A (ja) 集合電池用真空断熱容器及び放熱量調節方法
CN114284594A (zh) 一种电池及电池包
CN110061324A (zh) 一种电池包的热管理结构
CN111864307A (zh) 一种电池组
CN219163507U (zh) 一种直冷动力电池系统、动力电池及电动汽车
CN221041281U (zh) 电池模组、电池及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913625

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021913625

Country of ref document: EP

Effective date: 20230531

NENP Non-entry into the national phase

Ref country code: DE