WO2022142482A1 - 一种蓄电设备的双向充电电路、装置及控制方法 - Google Patents

一种蓄电设备的双向充电电路、装置及控制方法 Download PDF

Info

Publication number
WO2022142482A1
WO2022142482A1 PCT/CN2021/118723 CN2021118723W WO2022142482A1 WO 2022142482 A1 WO2022142482 A1 WO 2022142482A1 CN 2021118723 W CN2021118723 W CN 2021118723W WO 2022142482 A1 WO2022142482 A1 WO 2022142482A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
field effect
effect transistor
storage device
switch
Prior art date
Application number
PCT/CN2021/118723
Other languages
English (en)
French (fr)
Inventor
钟小军
Original Assignee
广州奥鹏能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州奥鹏能源科技有限公司 filed Critical 广州奥鹏能源科技有限公司
Priority to US18/029,299 priority Critical patent/US20230369873A1/en
Publication of WO2022142482A1 publication Critical patent/WO2022142482A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/068Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • the present invention relates to the technical field of storage batteries, and in particular, to a bidirectional charging circuit, device and control method of an electrical storage device.
  • the battery is charged by the charging module, and when outputting electric energy, the inverter module converts it into voltages of different specifications to supply power to the power receiving equipment.
  • existing batteries cannot be simultaneously charged while being discharged.
  • the charging circuit and the discharging circuit are independent of each other, and the two independent modules occupy a large amount of physical space, which makes the scale of the bidirectional charging circuit with the charging module and the discharging module large, and the circuit is complex and the circuit There are many components in the middle, which makes the overall circuit larger; in addition, the charging circuit and the discharging circuit of the existing bidirectional charging circuit are used separately, and the charging module is used for charging, and the discharging module is used for discharging. Discharging, even if it can, can seriously prolong the completion time of a charge.
  • the present invention provides a bidirectional charging circuit, device and control method for a power storage device, which can provide a bidirectional charging solution for charging and discharging.
  • the technical solution is as follows:
  • An embodiment of the present invention provides a bidirectional charging circuit for a power storage device, including a boost and buck switching module, an inverter rectification module, a switch module, and a main control module;
  • the step-up and step-down switching module is provided with a battery connection terminal connected with the battery pack, the switch module is provided with a load connection terminal connected with the electrical appliance and a first mains access terminal, and the main control module is provided with a second power connection terminal. Two mains access terminals;
  • the step-up and step-down switching module is connected to the inverter rectifier module, and the inverter rectifier module is connected to the switch module;
  • the main control module is respectively connected to the step-up and step-down switch module, the inverter rectifier module and the switch module.
  • the inverter rectifier module includes an inverter controller and a first full bridge circuit composed of a field effect transistor and its parasitic diode.
  • the switching control of the field effect transistor of the first full bridge circuit The terminals are all connected to the inverter controller.
  • the step-up and step-down switching module includes a step-up module, a step-down module and a transformer;
  • the boosting module includes a boosting controller and a second full bridge circuit composed of a field effect transistor and its parasitic diode, and the switch control terminals of the field effect transistors of the second full bridge circuit are all connected to the boost controller;
  • the step-down module includes a step-down controller and a third full bridge circuit composed of a field effect transistor and its parasitic diode, and the switch control terminals of the field effect transistor of the third full bridge circuit are all connected to the Buck controller;
  • One end of the transformer is connected to the second full-bridge circuit, and the other end of the transformer is connected to the third full-bridge circuit.
  • any one of the first full-bridge circuit, the second full-bridge circuit or the third full-bridge circuit includes a first field effect transistor, a second field effect transistor, and a third field effect transistor.
  • tube and the fourth field effect tube its specific composition is as follows:
  • the drain electrode of the first field effect transistor is connected to the drain electrode of the second field effect transistor, and the source electrode of the third field effect transistor is connected to the source electrode of the fourth field effect transistor;
  • the source electrode of the first field effect transistor is connected to the drain electrode of the third field effect transistor, and the source electrode of the second field effect transistor is connected to the drain electrode of the fourth field effect transistor.
  • the first field effect transistor, the second field effect transistor, the third field effect transistor and the fourth field effect transistor are all N-channel MOS transistors.
  • the step-up and step-down switching module further includes a capacitor for filtering, and the capacitor is connected in parallel with the second full-bridge circuit or the third full-bridge circuit.
  • an embodiment of the present invention provides a bidirectional charging device for a power storage device, including a battery pack and the above-mentioned bidirectional charging circuit for a power storage device, wherein the battery pack and the power storage device are connected to each other.
  • the battery connection terminal of the bidirectional charging circuit is connected.
  • an embodiment of the present invention provides a bidirectional charging control method for a power storage device, which is characterized in that it is applicable to the bidirectional charging circuit of the power storage device or the bidirectional charging device of the power storage device as described above;
  • the main control module is used for:
  • the switch module When the connected mains is detected through the second mains access terminal, the switch module is controlled to turn on the circuit, so that the mains is connected to the electrical appliance through the load connection terminal on the one hand, and the electrical appliance is connected to the electrical appliance on the other hand. On the one hand, it is connected to the battery pack after passing through the switch module, the inverter rectifier module, and the step-up and step-down switch module in sequence;
  • the step-up and step-down switching module is controlled to switch to the step-down function, so as to convert the high voltage of the commercial power into a low voltage.
  • the main control module is also used for:
  • the switch module is controlled to maintain the channel so that the power output from the battery pack passes through the step-up and step-down switch module, the inverter rectifier module, and the switch module in sequence. transmitted to the consumer;
  • the inverter rectification module is controlled to switch to an inverter function, so as to convert the DC power output by the battery pack into AC power.
  • the main control module is also used for:
  • the switch module is controlled to disconnect the circuit to stop supplying power to the electrical appliance.
  • the present invention provides a bidirectional charging circuit, device and control method for a power storage device.
  • the boosting and bucking switching module has switching functions of boosting and bucking, and the boosting and bucking
  • the switching module increases the output voltage of the battery pack by switching to the boosting function, and inverts the DC current into alternating current through the inverter rectifier module to discharge the battery pack outward, thereby realizing the discharging function; the boosting voltage drops
  • the voltage switching module converts the AC power input into the commercial power into DC power by using the rectification function of the inverter rectifier module, and then reduces the input voltage to a voltage that meets the specifications of the battery pack, thereby charging the battery pack.
  • the charging current Since the charging current reaches the battery pack or the discharging current is output to the electric appliance, it must pass through the inverter rectifier module, that is, the inverter rectifier module is shared for both the charging function and the discharge function, compared to configuring the rectifier circuit and the inverter circuit separately.
  • the charging module and the discharging module are designed in the same way. While realizing the bidirectional technology of charging and discharging, the scheme can effectively simplify the circuit, save the space occupied by the charging module and the discharging module respectively, and reduce the circuit scale of the overall circuit.
  • FIG. 1 is a structural diagram of an exemplary embodiment of a bidirectional charging circuit of a power storage device in an embodiment of the present invention
  • FIG. 2 is a circuit diagram of a preferred embodiment of a bidirectional charging circuit of a power storage device in an embodiment of the present invention
  • FIG. 3 is a flow chart of steps of a method for controlling bidirectional charging of a power storage device in an embodiment of the present invention.
  • this solution provides an exemplary embodiment, a bidirectional charging circuit for a power storage device, including a boost and buck switching module, an inverter rectifier module, a switch module, and a main control module;
  • the step-up and step-down switching module is provided with a battery connection terminal connected with the battery pack, the switch module is provided with a load connection terminal connected with the electrical appliance and a first mains access terminal, and the main control module is provided with a second power connection terminal. Two mains access terminals;
  • the step-up and step-down switching module is connected to the inverter rectifier module, and the inverter rectifier module is connected to the switch module;
  • the main control module is respectively connected to the step-up and step-down switch module, the inverter rectifier module and the switch module.
  • the boost-buck switching module includes a boost circuit for realizing voltage increase and a step-down circuit for realizing voltage reduction;
  • the inverter rectifier module includes an inverter controller and a first full-bridge circuit composed of a field effect transistor and its parasitic diode.
  • the switch control terminals are all connected to the inverter controller.
  • all field effect transistors are MOS transistors.
  • the step-up and step-down switching module includes a step-up circuit, a step-down circuit and a switch;
  • the boost circuit and the step-down circuit are respectively connected to the switch;
  • the switch When the switch receives a boosting command from the main control module, it closes the connection with the boosting circuit and simultaneously disconnects the connection with the bucking circuit; or,
  • the switch When the switch receives a step-down command from the main control module, it closes the connection with the step-down circuit and disconnects the connection with the step-up circuit.
  • the step-up and step-down switching module includes a step-up module, a step-down module and a transformer;
  • the boosting module includes a boosting controller and a second full bridge circuit composed of a field effect transistor and its parasitic diode, and the switch control terminals of the field effect transistors of the second full bridge circuit are all connected to the boost controller;
  • the step-down module includes a step-down controller and a third full bridge circuit composed of a field effect transistor and its parasitic diode, and the switch control terminals of the field effect transistor of the third full bridge circuit are all connected to the Buck controller;
  • One end of the transformer is connected to the second full-bridge circuit, and the other end of the transformer is connected to the third full-bridge circuit.
  • the step-up and step-down switching module further includes a capacitor for filtering, and the capacitor is connected in parallel with the second full-bridge circuit or the third full-bridge circuit.
  • a bidirectional charging circuit of a power storage device specifically:
  • the step-up and step-down switching module includes a step-up module, a step-down module and a transformer; the step-up module includes a step-up controller and a second full-bridge circuit, and the step-down module includes a step-down controller and a third full bridge circuit.
  • the inverter rectifier module includes an inverter controller and a first full bridge circuit.
  • any one of the first full-bridge circuit, the second full-bridge circuit, or the third full-bridge circuit includes a first field effect transistor, a second field effect transistor, and a third field effect transistor
  • the fourth field effect tube its specific composition is as follows:
  • the drain electrode of the first field effect transistor is connected to the drain electrode of the second field effect transistor, and the source electrode of the third field effect transistor is connected to the source electrode of the fourth field effect transistor;
  • the source of the first field effect transistor is connected to the drain of the third field effect transistor, and the source of the second field effect transistor is connected to the drain of the fourth field effect transistor;
  • the first field effect transistor, the second field effect transistor, the third field effect transistor and the fourth field effect transistor are all N-channel MOS transistors.
  • the first full-bridge circuit is composed of MOS transistors and their parasitic diodes Q3A, Q3B, Q3C, and Q3D.
  • the gates of each of the MOS transistors and their parasitic diodes Q3A, Q3B, Q3C, and Q3D are connected to the the inverter controller;
  • the inverter controller is connected to the main control module
  • the two pins of the first full-bridge circuit connected to both ends of the second capacitor C2 are also connected to two of the pins of the third full-bridge circuit.
  • the third full-bridge circuit is composed of MOS transistors and their parasitic diodes Q2A, Q2B, Q2C, and Q2D.
  • the gates of each of the MOS transistors and their parasitic diodes Q2A, Q2B, Q2C, and Q2D are connected to the the step-down controller;
  • the step-down controller is connected to the main control module
  • the other two pins of the third full-bridge circuit are connected to one end of the transformer T1, and the other end of the transformer T1 is connected to two of the pins of the second full-bridge circuit.
  • the second full-bridge circuit is composed of MOS transistors and their parasitic diodes Q1A, Q1B, Q1C, and Q1D.
  • the gates of each of the MOS transistors and their parasitic diodes Q1A, Q1B, Q1C, and Q1D are connected to the the boost controller;
  • the boost controller is connected to the main control module
  • the other two pins of the third full-bridge circuit are connected to both ends of the first capacitor C1 and are respectively connected to the positive and negative electrodes of the battery pack.
  • the step-up and step-down switching module is composed of a step-up module and a step-down module, and the step-up module and the step-down module share a transformer, the step-up module and the step-down module are avoided.
  • the step-down module uses two transformers separately and takes up too much space, so this embodiment is beneficial to simplify the overall circuit.
  • the overall circuit of this embodiment is three full-bridge circuits, 12 MOSs, Q1A-Q1D, Q2A-Q2D, Q3A-Q3D, and the parasitic diodes form an overall bridge rectifier circuit, and the inverter
  • the controller, the boost controller, and the step-down controller all use a full-bridge PWM (Pulse-Width-Modulation) control mode to control three full-bridge circuits respectively.
  • PWM Pulse-Width-Modulation
  • the inverter controller, the boost controller, and the step-down controller control cooperatively to make the whole circuit switch to a boost inverter conversion device; when the battery pack needs to be charged, all The inverter controller, the boost controller, and the step-down controller are cooperatively controlled to switch the entire circuit into a rectification and step-down conversion device. It can be seen that, in the circuit of this embodiment, no matter where the current flows during charging or discharging, the current flows through the entire circuit, and the circuit of this embodiment has higher integrity than the circuit with current shunting.
  • a bidirectional charging device for a power storage device comprising a battery pack and the bidirectional charging circuit for the power storage device, the battery pack and the battery of the bidirectional charging circuit for the power storage device Connection end connection.
  • the present solution further provides an exemplary embodiment, a bidirectional charging control method for a power storage device, which is applicable to the bidirectional charging circuit of the power storage device or the bidirectional charging device of the power storage device;
  • the bidirectional charging circuit of the power storage device includes the bidirectional charging circuit of the power storage device, and the circuit includes a step-up and step-down switching module, an inverter rectifier module, a switch module and a main control module;
  • the step-up and step-down switching module is provided with a battery connection terminal connected with the battery pack, the switch module is provided with a load connection terminal connected with the electrical appliance and a first mains access terminal, and the main control module is provided with a second power connection terminal. Two mains access terminals;
  • the step-up and step-down switching module is connected to the inverter rectifier module, and the inverter rectifier module is connected to the switch module;
  • the main control module is respectively connected to the step-up and step-down switch module, the inverter rectifier module and the switch module.
  • the main control module is used for:
  • the main control module will receive the signal of the mains access, and then output the signal to control the switch module to turn on the switch, so that the mains is directly supplied to the electrical appliance to work; Then close the inverter circuit, and then close the boost circuit. After rectification, the commercial power becomes high-voltage direct current, and after reducing the voltage, it becomes low-voltage direct current to charge the battery pack.
  • the step-up and step-down switching module includes a step-up module, a step-down module and a transformer; the step-up module includes a step-up controller and a second full-bridge circuit, and the step-down module includes a step-down controller and a third full bridge circuit.
  • the inverter rectifier module includes an inverter controller and a first full bridge circuit.
  • the first full-bridge circuit is composed of MOS transistors and their parasitic diodes Q3A, Q3B, Q3C, and Q3D.
  • the gates of each of the MOS transistors and their parasitic diodes Q3A, Q3B, Q3C, and Q3D are connected to the the inverter controller;
  • the inverter controller is connected to the main control module
  • the two pins of the first full-bridge circuit connected to both ends of the second capacitor C2 are also connected to two of the pins of the third full-bridge circuit.
  • the third full-bridge circuit is composed of MOS transistors and their parasitic diodes Q2A, Q2B, Q2C, and Q2D.
  • the gates of each of the MOS transistors and their parasitic diodes Q2A, Q2B, Q2C, and Q2D are connected to the the step-down controller;
  • the step-down controller is connected to the main control module
  • the other two pins of the third full-bridge circuit are connected to one end of the transformer T1, and the other end of the transformer T1 is connected to two of the pins of the second full-bridge circuit.
  • the second full-bridge circuit is composed of MOS transistors and their parasitic diodes Q1A, Q1B, Q1C, and Q1D.
  • the gates of each of the MOS transistors and their parasitic diodes Q1A, Q1B, Q1C, and Q1D are connected to the the boost controller;
  • the boost controller is connected to the main control module
  • the other two pins of the third full-bridge circuit are connected to both ends of the first capacitor C1 and are respectively connected to the positive and negative electrodes of the battery pack.
  • the main control MCU receives the mains signal, and the output signal turns off the inverter control and boost control, and turns on the switch and step-down control circuits.
  • the mains one channel is directly output to the electrical appliances through the switch; the other channel is rectified by the diodes on Q3A-Q3D and becomes high-voltage DC, and the high-frequency pulse voltage is formed by Q2A-Q2D, the transformer T1 is stepped down, and the diodes on Q1A-Q1D are rectified.
  • C1 filter form low-voltage direct current to charge the battery pack.
  • the mains directly supplies power to the electrical appliances, and the other channel is rectified and stepped down to charge the batteries, which realizes the simultaneous charging of the battery pack and the power supply to the electrical appliances.
  • Power supply neither affects the work of electrical appliances, nor does it affect the charging time of the battery pack.
  • the main control module is also used for:
  • the switch module is controlled to maintain the channel so that the power output from the battery pack passes through the step-up and step-down switch module, the inverter rectifier module, and the switch module in sequence. transmitted to the consumer;
  • the inverter rectification module is controlled to switch to an inverter function, so as to convert the DC power output by the battery pack into AC power.
  • the main control MCU detects that there is no mains power, it outputs a signal to make the boost control circuit and inverter control work, and the step-down control is turned off.
  • the battery pack voltage is converted into high-frequency pulse voltage by Q1A-Q1D, coupled by transformer T1, diode bridge rectifier by Q2A-Q2D, filtered by C2, converted into high-voltage direct current, and then inverted into alternating current by Q3A-Q3D, which is provided to electrical appliances use.
  • the main control module is also used for:
  • the switch module is controlled to disconnect the circuit to stop supplying power to the electrical appliance.
  • the switch module when the switch module is turned off, that is, the inverter power switch is turned off, the main control sends an instruction to turn off the boost, buck, and inverter control circuits. If there is no utility power added, the whole machine is turned off. state.
  • the present invention provides a bidirectional charging circuit, device and control method for a power storage device.
  • the boosting and bucking switching module has switching functions of boosting and bucking, and the boosting and bucking
  • the switching module increases the output voltage of the battery pack by switching to the boosting function, and inverts the DC current into alternating current through the inverter rectifier module to discharge the battery pack outward, thereby realizing the discharging function; the boosting voltage drops
  • the voltage switching module converts the AC power input into the commercial power into DC power by using the rectification function of the inverter rectifier module, and then reduces the input voltage to a voltage that meets the specifications of the battery pack, thereby charging the battery pack.
  • the charging current Since the charging current reaches the battery pack or the discharging current is output to the electric appliance, it must pass through the inverter rectifier module, that is, the inverter rectifier module is shared for both the charging function and the discharge function, compared to configuring the rectifier circuit and the inverter circuit separately.
  • the charging module and the discharging module are designed in the same way. While realizing the bidirectional technology of charging and discharging, the scheme can effectively simplify the circuit, save the space occupied by the charging module and the discharging module respectively, and reduce the circuit scale of the overall circuit.
  • one channel of the commercial power directly supplies power to the electrical appliances, and the other channel is rectified and stepped down to charge the battery, so that the charging of the battery pack and the power supply to the electrical appliances are performed synchronously.
  • the commercial power shunt charges the battery pack and supplies power to the electrical appliances, which does not affect the work of the electrical appliances and does not affect the charging time of the battery pack.
  • the overall circuit of this solution shares transformers, capacitors, and MOS tubes, which can reduce the space of DC-AC circuit by 30%-50%.
  • the degree of integration is high, which greatly reduces the space occupied by components and greatly reduces PCB space. cost, improve the product cost performance by more than 20%, and can greatly improve the heat dissipation conditions, while reducing the accident rate, making the high-voltage and low-current solution safer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种蓄电设备的双向充电电路,包括升压降压切换模块、逆变整流模块、开关模块以及主控模块;所述升压降压切换模块设有与电池组连接的电池连接端,所述开关模块设有与用电器连接的负载连接端以及第一市电接入端,所述主控模块设有第二市电接入端;所述升压降压切换模块与所述逆变整流模块连接,所述逆变整流模块与所述开关模块连接;所述主控模块分别连接所述升压降压切换模块、所述逆变整流模块、所述开关模块。本发明提供了一种蓄电设备的双向充电电路、装置及控制方法,可以提供一种实现充电放电的双向充电解决方案。

Description

一种蓄电设备的双向充电电路、装置及控制方法 技术领域
本发明涉及蓄电池技术领域,尤其是涉及一种蓄电设备的双向充电电路、装置及控制方法。
背景技术
蓄电池,通过充电模块进行充电,输出电能时由逆变模块转换成不同规格的电压以向受电设备供电。但是,现有的蓄电池在放电的时候不能同步充电。在现有的技术方案中,充电电路和放电电路是相互独立的,两个独立的模块占用大量物理空间,这使得具备充电模块和放电模块的双向充电电路的规模较大,而且电路复杂,电路中元器件很多,使整体电路的体积较大;另外,现有的双向充电电路的充电电路和放电电路是分开使用的,充电时使用充电模块,放电时使用放电模块,充电时一般禁止向外放电,即使能放电,也会严重延长充电的完成时间。
发明内容
针对上述技术问题,本发明提供了一种蓄电设备的双向充电电路、装置及控制方法,可以提供一种实现充电放电的双向充电解决方案。本技术方案如下:
本发明实施例提供了一种蓄电设备的双向充电电路,包括升压降压切换模块、逆变整流模块、开关模块以及主控模块;
所述升压降压切换模块设有与电池组连接的电池连接端,所述开关模块设有与用电器连接的负载连接端以及第一市电接入端,所述主控模块设有第二市电接入端;
所述升压降压切换模块与所述逆变整流模块连接,所述逆变整流模块与所述开关模块连接;
所述主控模块分别连接所述升压降压切换模块、所述逆变整流模块、所述开关模块。
作为优选方案,所述逆变整流模块,包括逆变控制器以及由场效应管及其寄 体二极管组成的第一全桥式电路,所述第一全桥式电路的场效应管的开关控制端均连接至所述逆变控制器。
作为优选方案,所述升压降压切换模块包括升压模块、降压模块和变压器;
所述升压模块包括升压控制器以及由场效应管及其寄体二极管组成的第二全桥式电路,所述第二全桥式电路的场效应管的开关控制端均连接至所述升压控制器;
所述降压模块包括降压控制器以及由场效应管及其寄体二极管组成的第三全桥式电路,所述第三全桥式电路的场效应管的开关控制端均连接至所述降压控制器;
所述变压器的一端连接所述第二全桥式电路,所述变压器的另一端连接所述第三全桥式电路。
作为优选方案,任一所述第一全桥式电路、所述第二全桥式电路或所述第三全桥式电路,包括第一场效应管、第二场效应管、第三场效应管和第四场效应管,其具体的构成方式如下:
所述第一场效应管的漏极与所述第二场效应管的漏极连接,所述第三场效应管的源极与所述第四场效应管的源极连接;
所述第一场效应管的源极与所述第三场效应管的漏极连接,所述第二场效应管的源极与所述第四场效应管的漏极连接。
作为优选方案,所述第一场效应管、所述第二场效应管、所述第三场效应管和所述第四场效应管均为N沟道MOS管。
作为优选方案,所述升压降压切换模块还包括用于滤波的电容器,所述电容器与所述第二全桥式电路或所述第三全桥式电路并联。
为了解决相同的技术问题,本发明实施例提供了一种蓄电设备的双向充电装置,包括电池组以及如上所述的蓄电设备的双向充电电路,所述电池组与所述蓄电设备的双向充电电路的电池连接端连接。
此外,本发明实施例提供了一种蓄电设备的双向充电控制方法,其特征在于,适用于如上所述的蓄电设备的双向充电电路或如上所述的蓄电设备的双向充电 装置;
所述主控模块用于:
当通过所述第二市电接入端检测到接入的市电时,控制所述开关模块接通电路,以使所述市电一方面通过所述负载连接端接入到用电器,另一方面依次经过所述开关模块、所述逆变整流模块、所述升压降压切换模块后接入到电池组;
控制所述逆变整流模块切换到整流功能,以使所述市电经过整流后转变成直流电;
控制所述升压降压切换模块切换到降压功能,以使所述市电的高电压转换成低电压。
作为优选方案,所述主控模块还用于:
当没有检测到接入的市电时,控制所述开关模块保持通路以使所述电池组输出的电能依次经过所述升压降压切换模块、所述逆变整流模块、所述开关模块后传输给所述用电器;
控制所述升压降压切换模块切换到升压功能,以使所述电池组输出的低电压转换成高电压;
控制所述逆变整流模块切换到逆变功能,以使所述电池组输出的直流电转换成交流电。
作为优选方案,所述主控模块还用于:
控制所述开关模块断开电路以停止向用电器供电。
相比于现有技术,本发明实施例具有如下有益效果:
本发明提供了一种蓄电设备的双向充电电路、装置及控制方法,在本方案的电路中,所述升压降压切换模块具备升压和降压的切换功能,所述升压降压切换模块通过切换至升压功能,使电池组的输出电压升高并经过所述逆变整流模块将直流电流逆变成交流电以使电池组向外放电,从而实现放电功能;所述升压降压切换模块通过切换至降压功能,输入市电的交流电利用所述逆变整流模块的整流功能,变成直流电,然后将输入电压降至符合电池组规格的电压,从而实现向电 池组充电。由于充电电流到达电池组或者放电电流向用电器输出都要经过所述逆变整流模块,即实现充电功能或放电功能都共用所述逆变整流模块,相比起分别配置整流电路和逆变电路的充电模块和放电模块,本方案在实现充电和放电的双向技术的同时,可以有效简化电路,节省充电模块和放电模块分别占用的空间,缩小整体电路的电路规模。
附图说明
图1是本发明实施例中的一种蓄电设备的双向充电电路的示例性实施例的结构图;
图2是本发明实施例中的一种蓄电设备的双向充电电路的优选实施例的电路图;
图3是本发明实施例中的一种蓄电设备的双向充电控制方法的步骤流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参见图1,本方案提供一种示例性实施例,一种蓄电设备的双向充电电路,包括升压降压切换模块、逆变整流模块、开关模块以及主控模块;
所述升压降压切换模块设有与电池组连接的电池连接端,所述开关模块设有与用电器连接的负载连接端以及第一市电接入端,所述主控模块设有第二市电接入端;
所述升压降压切换模块与所述逆变整流模块连接,所述逆变整流模块与所述开关模块连接;
所述主控模块分别连接所述升压降压切换模块、所述逆变整流模块、所述开关模块。
可以理解的是,升压降压切换模块包含用于实现电压升高的升压电路和用于 实现电压降低的降压电路;
在本实施例中,所述逆变整流模块,包括逆变控制器以及由场效应管及其寄体二极管组成的第一全桥式电路,所述第一全桥式电路的场效应管的开关控制端均连接至所述逆变控制器。
优选地,在所述由场效应管组成的全桥式电路中,所有场效应管均为MOS管。
本实施例提供一种实施方式,所述升压降压切换模块包括升压电路、降压电路以及切换开关;
所述升压电路、所述降压电路分别连接所述切换开关;
当所述切换开关接收到来自所述主控模块的升压指令时,闭合与所述升压电路的连接同时断开与所述降压电路的连接;或者,
当所述切换开关接收到来自所述主控模块的降压指令时,闭合与所述降压电路的连接同时断开与所述升压电路的连接。
本实施例还提供另一种实施方式,所述升压降压切换模块包括升压模块、降压模块和变压器;
所述升压模块包括升压控制器以及由场效应管及其寄体二极管组成的第二全桥式电路,所述第二全桥式电路的场效应管的开关控制端均连接至所述升压控制器;
所述降压模块包括降压控制器以及由场效应管及其寄体二极管组成的第三全桥式电路,所述第三全桥式电路的场效应管的开关控制端均连接至所述降压控制器;
所述变压器的一端连接所述第二全桥式电路,所述变压器的另一端连接所述第三全桥式电路。
优选地,所述升压降压切换模块还包括用于滤波的电容器,所述电容器与所述第二全桥式电路或所述第三全桥式电路并联。
请参见图2,一种蓄电设备的双向充电电路,具体为:
所述升压降压切换模块包括升压模块、降压模块和变压器;所述升压模块包括升压控制器和第二全桥式电路,所述降压模块包括降压控制器和第三全桥式电路。
所述逆变整流模块,包括逆变控制器和第一全桥式电路。
具体地,任一所述第一全桥式电路、所述第二全桥式电路或所述第三全桥式电路,包括第一场效应管、第二场效应管、第三场效应管和第四场效应管,其具体的构成方式如下:
所述第一场效应管的漏极与所述第二场效应管的漏极连接,所述第三场效应管的源极与所述第四场效应管的源极连接;
所述第一场效应管的源极与所述第三场效应管的漏极连接,所述第二场效应管的源极与所述第四场效应管的漏极连接;
所述第一场效应管、所述第二场效应管、所述第三场效应管和所述第四场效应管均为N沟道MOS管。
所述第一全桥式电路由MOS管及其寄体二极管Q3A、Q3B、Q3C、Q3D组成,每一所述MOS管及其寄体二极管Q3A、Q3B、Q3C、Q3D的栅极均连接至所述逆变控制器;
所述逆变控制器连接所述主控模块;
所述第一全桥式电路的两个相同输出/输入功能的引脚连接所述开关模块,另外两个相同输出/输入功能的引脚连接第二电容C2的两端。
所述第一全桥式电路的两个连接所述第二电容C2的两端的引脚还连接第三全桥式电路的其中两个引脚。
所述第三全桥式电路由MOS管及其寄体二极管Q2A、Q2B、Q2C、Q2D组成,每一所述MOS管及其寄体二极管Q2A、Q2B、Q2C、Q2D的栅极均连接至所述降压控制器;
所述降压控制器连接所述主控模块;
所述第三全桥式电路的另外两个引脚连接所述变压器T1的一端,所述变压器T1的另一端连接第二全桥式电路的其中两个引脚。
所述第二全桥式电路由MOS管及其寄体二极管Q1A、Q1B、Q1C、Q1D组成,每一所述MOS管及其寄体二极管Q1A、Q1B、Q1C、Q1D的栅极均连接至所述升压控制器;
所述升压控制器连接所述主控模块;
所述第三全桥式电路的另外两个引脚连接第一电容C1的两端并分别连接电池组的正极和负极。
在本实施例中,一方面因为所述升压降压切换模块由升压模块、降压模块构成,且所述升压模块和所述降压模块共用一个变压器,避免所述升压模块、所述降压模块分开独立使用两个变压器而占用过多空间,所以本实施例有利于简化整体电路。另一方面,本实施例的整体电路为三个全桥电路,12个MOS,Q1A-Q1D,Q2A-Q2D,Q3A-Q3D,其寄体二极管又形成整体桥式整流电路,而且所述逆变控制器、所述升压控制器、所述降压控制器均采用和全桥式PWM(Pulse-Width-Modulation脉冲宽度调制)控制方式分别对应控制三个全桥电路。当需要电池组放电时,所述逆变控制器、所述升压控制器、所述降压控制器协同控制以使整体电路切换成升压逆变转换装置;当需要电池组充电时,所述逆变控制器、所述升压控制器、所述降压控制器协同控制以使整体电路切换成整流降压变换装置。由此可见,本实施的电路无论充电还是放电时电流流向何处,电流都流经整个电路,相比起电流分流的电路,本实施例的电路的整体性更高。
本方案还提供一种示例性实施例,一种蓄电设备的双向充电装置,包括电池组以及上述蓄电设备的双向充电电路,所述电池组与所述蓄电设备的双向充电电路的电池连接端连接。
请参见图3,本方案另外提供一种示例性实施例,一种蓄电设备的双向充电控制方法,适用于上述蓄电设备的双向充电电路或上述蓄电设备的双向充电装置;
所述蓄电设备的双向充电电路,包括所述蓄电设备的双向充电电路,所述电 路包括升压降压切换模块、逆变整流模块、开关模块以及主控模块;
所述升压降压切换模块设有与电池组连接的电池连接端,所述开关模块设有与用电器连接的负载连接端以及第一市电接入端,所述主控模块设有第二市电接入端;
所述升压降压切换模块与所述逆变整流模块连接,所述逆变整流模块与所述开关模块连接;
所述主控模块分别连接所述升压降压切换模块、所述逆变整流模块、所述开关模块。所述主控模块用于:
S101、当通过所述第二市电接入端检测到接入的市电时,控制所述开关模块接通电路,以使所述市电一方面通过所述负载连接端接入到用电器,另一方面依次经过所述开关模块、所述逆变整流模块、所述升压降压切换模块后接入到电池组;
S102、控制所述逆变整流模块切换到整流功能,以使所述市电经过整流后转变成直流电;
S103、控制所述升压降压切换模块切换到降压功能,以使所述市电的高电压转换成低电压。
在本实施例中,市电接入后,主控模块会接收到市电接入的信号,然后输出信号以控制所述开关模块,打开切换开关,从而使市电直接输给用电器工作;然后关闭逆变电路,再关闭升压电路。市电经整流后变成高压直流,经降压后变成低压直流电,给电池组充电。
本实施所述的蓄电设备的双向充电电路,具体为:
所述升压降压切换模块包括升压模块、降压模块和变压器;所述升压模块包括升压控制器和第二全桥式电路,所述降压模块包括降压控制器和第三全桥式电路。
所述逆变整流模块,包括逆变控制器和第一全桥式电路。
所述第一全桥式电路由MOS管及其寄体二极管Q3A、Q3B、Q3C、Q3D组成,每一所述MOS管及其寄体二极管Q3A、Q3B、Q3C、Q3D的栅极均连接至所述逆 变控制器;
所述逆变控制器连接所述主控模块;
所述第一全桥式电路的两个相同输出/输入功能的引脚连接所述开关模块,另外两个相同输出/输入功能的引脚连接第二电容C2的两端。
所述第一全桥式电路的两个连接所述第二电容C2的两端的引脚还连接第三全桥式电路的其中两个引脚。
所述第三全桥式电路由MOS管及其寄体二极管Q2A、Q2B、Q2C、Q2D组成,每一所述MOS管及其寄体二极管Q2A、Q2B、Q2C、Q2D的栅极均连接至所述降压控制器;
所述降压控制器连接所述主控模块;
所述第三全桥式电路的另外两个引脚连接所述变压器T1的一端,所述变压器T1的另一端连接第二全桥式电路的其中两个引脚。
所述第二全桥式电路由MOS管及其寄体二极管Q1A、Q1B、Q1C、Q1D组成,每一所述MOS管及其寄体二极管Q1A、Q1B、Q1C、Q1D的栅极均连接至所述升压控制器;
所述升压控制器连接所述主控模块;
所述第三全桥式电路的另外两个引脚连接第一电容C1的两端并分别连接电池组的正极和负极。
本方案提供的一个优选实施例的具体实施方式,市电接入,主控MCU接收到时市电信号,输出信号关闭逆变控制、升压控制,并打开切换开关、降压控制电路。市电一路经切换开关直接输给用电器工作;一路经Q3A-Q3D上的二极管整流后变成高压直流,经Q2A-Q2D形成高频脉冲电压,变压器T1降压,Q1A-Q1D上的二极管整流,C1滤波,形成低压直流电给电池组充电。如此,市电一路直接给用电器供电,另一路经整流、降压给电池充电,实现了给电池组充电和向用电器供电同步进行,又因为市电分路给电池组充电和向用电器供电,既不影响用电器工作,同时又不影响电池组的充电时间。
因为共用了逆变电路的变压器,电容器,和MOS管,这就是储能产品双向充 电的原理,它大大的缩小了元器件占用空间,可以极大的改善散热条件。
在本实施例中,所述主控模块还用于:
当没有检测到接入的市电时,控制所述开关模块保持通路以使所述电池组输出的电能依次经过所述升压降压切换模块、所述逆变整流模块、所述开关模块后传输给所述用电器;
控制所述升压降压切换模块切换到升压功能,以使所述电池组输出的低电压转换成高电压;
控制所述逆变整流模块切换到逆变功能,以使所述电池组输出的直流电转换成交流电。
一个优选实施例的具体实施方式,如果市电中断,即主控MCU检测到无市电,则输出信号,让升压控制电路、逆变控制工作,降压控制关闭。电池组电压经Q1A-Q1D转变成高频脉冲电压,经变压器T1耦合,Q2A-Q2D的二极管桥式整流,C2滤波,变成高压直流电,再经Q3A-Q3D逆变成交流电,提供给用电器使用。
在本实施例中,所述主控模块还用于:
控制所述开关模块断开电路以停止向用电器供电。
可以理解的是,当关断所述开关模块后,即关闭逆变电源开关,则主控发出指令关闭升压、降压、逆变控制电路,如此时没有市电加入,则整机处于关闭状态。
本发明提供了一种蓄电设备的双向充电电路、装置及控制方法,在本方案的电路中,所述升压降压切换模块具备升压和降压的切换功能,所述升压降压切换模块通过切换至升压功能,使电池组的输出电压升高并经过所述逆变整流模块将直流电流逆变成交流电以使电池组向外放电,从而实现放电功能;所述升压降压切换模块通过切换至降压功能,输入市电的交流电利用所述逆变整流模块的整流功能,变成直流电,然后将输入电压降至符合电池组规格的电压,从而实现向电池组充电。由于充电电流到达电池组或者放电电流向用电器输出都要经过所述逆变整流模块,即实现充电功能或放电功能都共用所述逆变整流模块,相比起分别配置整流电路和逆变电路的充电模块和放电模块,本方案在实现充电和放电的双 向技术的同时,可以有效简化电路,节省充电模块和放电模块分别占用的空间,缩小整体电路的电路规模。
而且,利用所述蓄电设备的双向充电控制方法,市电一路直接给用电器供电,另一路经整流、降压给电池充电,实现了给电池组充电和向用电器供电同步进行,又因为市电分路给电池组充电和向用电器供电,既不影响用电器工作,同时又不影响电池组的充电时间。
另外,本方案的整体电路共用了变压器,电容器,MOS管,可以减少30%-50%的空间DC-AC的电路空间,集成化程度高,大大的缩小了元器件占用空间,大幅减少PCB的成本,提高产品性价比20%以上,而且可以极大的改善散热条件,同时减少事故率,使高电压小电流方案更安全。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

  1. 一种蓄电设备的双向充电电路,其特征在于,包括升压降压切换模块、逆变整流模块、开关模块以及主控模块;
    所述升压降压切换模块设有与电池组连接的电池连接端,所述开关模块设有与用电器连接的负载连接端以及第一市电接入端,所述主控模块设有第二市电接入端;
    所述升压降压切换模块与所述逆变整流模块连接,所述逆变整流模块与所述开关模块连接;
    所述主控模块分别连接所述升压降压切换模块、所述逆变整流模块、所述开关模块。
  2. 如权利要求1所述的蓄电设备的双向充电电路,其特征在于,所述逆变整流模块,包括逆变控制器以及由场效应管及其寄体二极管组成的第一全桥式电路,所述第一全桥式电路的场效应管的开关控制端均连接至所述逆变控制器。
  3. 如权利要求2所述的蓄电设备的双向充电电路,其特征在于,所述升压降压切换模块包括升压模块、降压模块和变压器;
    所述升压模块包括升压控制器以及由场效应管及其寄体二极管组成的第二全桥式电路,所述第二全桥式电路的场效应管的开关控制端均连接至所述升压控制器;
    所述降压模块包括降压控制器以及由场效应管及其寄体二极管组成的第三全桥式电路,所述第三全桥式电路的场效应管的开关控制端均连接至所述降压控制器;
    所述变压器的一端连接所述第二全桥式电路,所述变压器的另一端连接所述第三全桥式电路。
  4. 如权利要求3所述的蓄电设备的双向充电电路,其特征在于,任一所述 第一全桥式电路、所述第二全桥式电路或所述第三全桥式电路,包括第一场效应管、第二场效应管、第三场效应管和第四场效应管,其具体的构成方式如下:
    所述第一场效应管的漏极与所述第二场效应管的漏极连接,所述第三场效应管的源极与所述第四场效应管的源极连接;
    所述第一场效应管的源极与所述第三场效应管的漏极连接,所述第二场效应管的源极与所述第四场效应管的漏极连接。
  5. 如权利要求4所述的蓄电设备的双向充电电路,其特征在于,所述第一场效应管、所述第二场效应管、所述第三场效应管和所述第四场效应管均为N沟道MOS管。
  6. 如权利要求3所述的蓄电设备的双向充电电路,其特征在于,所述升压降压切换模块还包括用于滤波的电容器,所述电容器与所述第二全桥式电路或所述第三全桥式电路并联。
  7. 一种蓄电设备的双向充电装置,其特征在于,包括电池组以及如权利要求1至6任一所述的蓄电设备的双向充电电路,所述电池组与所述蓄电设备的双向充电电路的电池连接端连接。
  8. 一种蓄电设备的双向充电控制方法,其特征在于,适用于如权利要求1至6任一所述的蓄电设备的双向充电电路或如权利要求7所述的蓄电设备的双向充电装置;
    所述主控模块用于:
    当通过所述第二市电接入端检测到接入的市电时,控制所述开关模块接通电路,以使所述市电一方面通过所述负载连接端接入到用电器,另一方面依次经过所述开关模块、所述逆变整流模块、所述升压降压切换模块后接入到电池组;
    控制所述逆变整流模块切换到整流功能,以使所述市电经过整流后转变成直 流电;
    控制所述升压降压切换模块切换到降压功能,以使所述市电的高电压转换成低电压。
  9. 如权利要求8所述的蓄电设备的双向充电控制方法,其特征在于,所述主控模块还用于:
    当没有检测到接入的市电时,控制所述开关模块保持通路以使所述电池组输出的电能依次经过所述升压降压切换模块、所述逆变整流模块、所述开关模块后传输给所述用电器;
    控制所述升压降压切换模块切换到升压功能,以使所述电池组输出的低电压转换成高电压;
    控制所述逆变整流模块切换到逆变功能,以使所述电池组输出的直流电转换成交流电。
  10. 如权利要求9所述的蓄电设备的双向充电控制方法,其特征在于,所述主控模块还用于:
    控制所述开关模块断开电路以停止向用电器供电。
PCT/CN2021/118723 2020-12-30 2021-09-16 一种蓄电设备的双向充电电路、装置及控制方法 WO2022142482A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/029,299 US20230369873A1 (en) 2020-12-30 2021-09-16 Bidirectional charging circuit, apparatus, and control method of electricity storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011610967.3 2020-12-30
CN202011610967.3A CN112769181A (zh) 2020-12-30 2020-12-30 一种蓄电设备的双向充电电路、装置及控制方法

Publications (1)

Publication Number Publication Date
WO2022142482A1 true WO2022142482A1 (zh) 2022-07-07

Family

ID=75695932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118723 WO2022142482A1 (zh) 2020-12-30 2021-09-16 一种蓄电设备的双向充电电路、装置及控制方法

Country Status (3)

Country Link
US (1) US20230369873A1 (zh)
CN (1) CN112769181A (zh)
WO (1) WO2022142482A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116155153A (zh) * 2022-09-08 2023-05-23 深圳市勤信隆电子有限公司 一种电子变压器控制系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112769181A (zh) * 2020-12-30 2021-05-07 广州奥鹏能源科技有限公司 一种蓄电设备的双向充电电路、装置及控制方法
CN217994170U (zh) * 2022-08-24 2022-12-09 比亚迪股份有限公司 电动车辆的充电系统和电动车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576731A (zh) * 2014-10-17 2016-05-11 天宝电子(惠州)有限公司 一种车载充电与逆变双向变流电源系统
CN107359682A (zh) * 2017-07-29 2017-11-17 深圳市国电赛思科技有限公司 一种双向充电与直流转换二合一的电源系统及其控制方法
US20190190299A1 (en) * 2017-12-20 2019-06-20 The Florida International University Board Of Trustees Integrated bidirectional inductive/conductive electrical apparatus
CN109950943A (zh) * 2018-10-12 2019-06-28 深圳市永联科技股份有限公司 一种四向转换车载充电机及控制方法
CN112769181A (zh) * 2020-12-30 2021-05-07 广州奥鹏能源科技有限公司 一种蓄电设备的双向充电电路、装置及控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4719567B2 (ja) * 2005-12-21 2011-07-06 日立オートモティブシステムズ株式会社 双方向dc−dcコンバータおよびその制御方法
CN205883050U (zh) * 2016-03-31 2017-01-11 昆明理工大学 一种具有升降压功能的双向dc‑dc装置
CN111130203A (zh) * 2020-02-28 2020-05-08 广州奥鹏能源科技有限公司 一种无人基站供电储能系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576731A (zh) * 2014-10-17 2016-05-11 天宝电子(惠州)有限公司 一种车载充电与逆变双向变流电源系统
CN107359682A (zh) * 2017-07-29 2017-11-17 深圳市国电赛思科技有限公司 一种双向充电与直流转换二合一的电源系统及其控制方法
US20190190299A1 (en) * 2017-12-20 2019-06-20 The Florida International University Board Of Trustees Integrated bidirectional inductive/conductive electrical apparatus
CN109950943A (zh) * 2018-10-12 2019-06-28 深圳市永联科技股份有限公司 一种四向转换车载充电机及控制方法
CN112769181A (zh) * 2020-12-30 2021-05-07 广州奥鹏能源科技有限公司 一种蓄电设备的双向充电电路、装置及控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116155153A (zh) * 2022-09-08 2023-05-23 深圳市勤信隆电子有限公司 一种电子变压器控制系统
CN116155153B (zh) * 2022-09-08 2023-11-03 深圳市勤信隆电子有限公司 一种电子变压器控制系统

Also Published As

Publication number Publication date
US20230369873A1 (en) 2023-11-16
CN112769181A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
WO2022142482A1 (zh) 一种蓄电设备的双向充电电路、装置及控制方法
WO2021232785A1 (zh) 三桥臂拓扑装置、控制方法、以及不间断电源系统
CN106505726B (zh) 基于电池和超级电容的直流不间断电源
TWI473376B (zh) 電源供應系統及其控制方法
KR20150073291A (ko) 전력 변환 장치
CN203674793U (zh) 在线式工频不间断电源
CN112600455B (zh) 一种供电系统及太阳能光伏逆变器
CN208386212U (zh) 一种不间断电源
WO2021232749A1 (zh) 三桥臂拓扑装置及不间断电源系统
WO2015096613A1 (zh) 在线互动式不间断电源及其控制方法
CN108032740A (zh) 一种储能式电动汽车充电桩系统
CN209805420U (zh) 一种高兼容性楼宇直流配电系统
US20190372382A1 (en) Dc charging system for storage battery of electric vehicle
CN102868198A (zh) Ups备用电源升压和充电复用电路
CN219181416U (zh) 电源电路及储能装置
CN108808833A (zh) 一种ups电路
CN103346607A (zh) 交直流转换装置及不间断电源装置
CN207719888U (zh) 一种不间断电源变换器电路
CA3019619C (en) Power supply connection device, and charging-discharging control method for same
CN104269897B (zh) 医疗电源控制系统
CN213007662U (zh) 充放电装置和电动车辆
CN112572192B (zh) 车载充电系统及具有其的车辆
TW201334351A (zh) 市電併網型電源供應系統的控制方法
CN112572189A (zh) 车载充放电系统及具有其的车辆
CN210839028U (zh) 一种后备式锂电ups电源电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913229

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.11.2023)