WO2022142397A1 - 粘胶纤维硫酸钠废液再生循环利用工艺 - Google Patents

粘胶纤维硫酸钠废液再生循环利用工艺 Download PDF

Info

Publication number
WO2022142397A1
WO2022142397A1 PCT/CN2021/114183 CN2021114183W WO2022142397A1 WO 2022142397 A1 WO2022142397 A1 WO 2022142397A1 CN 2021114183 W CN2021114183 W CN 2021114183W WO 2022142397 A1 WO2022142397 A1 WO 2022142397A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
sodium sulfate
lye
concentration
solution
Prior art date
Application number
PCT/CN2021/114183
Other languages
English (en)
French (fr)
Inventor
贺敏
田启兵
陈勇君
夏长林
胡小东
王云
廖磊
Original Assignee
宜宾丝丽雅股份有限公司
宜宾丝丽雅集团有限公司
宜宾海丝特纤维有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宜宾丝丽雅股份有限公司, 宜宾丝丽雅集团有限公司, 宜宾海丝特纤维有限责任公司 filed Critical 宜宾丝丽雅股份有限公司
Publication of WO2022142397A1 publication Critical patent/WO2022142397A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F13/00Recovery of starting material, waste material or solvents during the manufacture of artificial filaments or the like
    • D01F13/02Recovery of starting material, waste material or solvents during the manufacture of artificial filaments or the like of cellulose, cellulose derivatives or proteins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/445Ion-selective electrodialysis with bipolar membranes; Water splitting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear

Definitions

  • the invention relates to the technical field of viscose fiber production, in particular to a regeneration and recycling process of viscose fiber sodium sulfate waste liquid.
  • Viscose fiber is a chemical fiber processed by chemical and mechanical methods using polymer materials such as wood pulp and cotton pulp containing natural cellulose. It is the most similar type of chemical fiber to natural fiber clothing. It has the characteristics of breathability, hanging and elegant, bright dyeing, anti-static and easy to textile processing. It is a regenerated cellulose fiber derived from nature and superior to natural.
  • the viscose fiber production and spinning process requires a large amount of chemical raw materials, which leads to a large amount of harmful waste water.
  • the waste water contains sulfuric acid, zinc sulfate, carbon disulfide, cellulose, dissolved organic matter, etc. It is one of the main pollution sources of the textile industry.
  • the bipolar membrane electrodialysis system by virtue of its characteristics of dissociating water and sodium sulfate, regenerates ions and regenerates acid and alkali, has well solved some of the long-standing traditional sodium sulfate pollution control methods in the viscose fiber industry in environmental engineering. Technical difficulties; reuse the regenerated acid and alkali in viscose fiber production to realize the closed-loop treatment of sodium sulfate in the viscose fiber industry, which is environmentally friendly and greatly reduces the labor intensity of workers.
  • this technology mainly converts the salt (ie sodium sulfate) in viscose fiber wastewater into acid, alkali and light brine through bipolar membrane electrodialysis system; wherein, the acid is formed by evaporation and concentration Concentrated acid and alkali are evaporated to obtain concentrated alkali, and the light brine is separated into sodium sulfate and water after biochemical and reverse osmosis treatment for reuse in the bipolar membrane electrodialysis system; it solves the problem that sodium sulfate cannot be treated as a waste salt, and reduces the Corporate solid waste emissions.
  • Patent CN109970274A is a method for treating acid waste water and alkaline waste water in viscose fiber industry.
  • the technical problem to be solved by this invention is: the sodium sulfate waste liquid that produces in the existing viscose fiber production process is not combined with concrete viscose fiber production and needs to carry out rational recycling.
  • a process for regenerating and recycling viscose fiber sodium sulfate waste liquid comprising the following steps: after the sodium sulfate waste liquid is processed by a bipolar membrane treatment system, lye, sulfuric acid solution and acid-containing dilute brine are obtained,
  • the utilization of the lye includes three process branches, and the first lye utilization branch is as follows: after being treated with a nanofiltration membrane, the filtrated lye and the concentrated lye are obtained, and the filtrated lye is passed into the gel making process once.
  • the concentrated lye solution is used for bipolar membrane pretreatment;
  • the second lye solution utilization branch is: as a raw material for thread pressure washing;
  • the third lye solution utilization branch is: as a The agent for resin regeneration in bipolar membrane pretreatment process;
  • the utilization of the sulfuric acid solution includes two process branches, the first sulfuric acid solution utilization branch is: as a raw material for thread pressure washing; the second sulfuric acid solution utilization branch is: as a medicament for resin regeneration in the bipolar membrane pretreatment process; The third sulfuric acid solution utilization branch is: as the raw material of sulfuric acid in the spinning acid bath process;
  • the acid-containing dilute brine enters the multi-effect evaporation process.
  • the invention can realize the complete circulation treatment of viscose fiber sodium sulfate, greatly reduces the consumption of acid and alkali resources in the viscose fiber production process; the process is simple, the number of equipment is small, and it has good economy, which is in line with most viscose fibers. Environmental protection needs of fiber enterprises.
  • the concentrated lye solution is used for bipolar membrane pretreatment, neutralizing the acid in the brine, and adjusting the pH value of the sodium sulfate solution to 7-11; part of the concentrated lye solution can also be used in the alkali spray system as waste gas for acid production
  • auxiliary materials specifically, the hydrogen sulfide gas generated in the viscose fiber production acid bath process reacts with the concentrated alkali solution after nanofiltration to generate sodium sulfide and water, and then uses the sulfuric acid solution produced by the bipolar membrane system to dissolve the solid sodium sulfide, thereby The hydrogen sulfide gas with higher concentration is extracted, and the method of combustion is used as the raw material for the production of sulfuric acid.
  • Part of the sulfuric acid solution is sent to the alkali spray system as an auxiliary material for acid production from waste gas.
  • the utilization of the lye also includes a fourth lye utilization branch, and the fourth lye utilization branch is: the lye is used as a dilution of the waste rubber for recycling the lye in the waste rubber, so that The consumption of lye in the whole system can be further reduced.
  • the sodium sulfate waste liquid before being processed by the bipolar membrane treatment system, is first subjected to brine preparation and pretreatment, and after the brine preparation, the concentration of sodium sulfate is 15-30%; the bipolar membrane pretreatment Including sequential filtration and resin adsorption treatment, filtration and resin treatment are beneficial to improve the purity of sodium sulfate and reduce the damage to the bipolar membrane caused by impurities in the sodium sulfate.
  • the sodium sulfate waste liquid also includes the preparation of solid sodium sulfate before being modulated by brine, and the specific steps include: in the spinning acid bath process, acid and alkali react to generate a large amount of acid-containing sodium sulfate waste liquid, The acid-containing sodium sulfate waste liquid is filtered and degassed, and then subjected to multiple-effect evaporation, low-temperature crystallization and centrifugation to obtain solid sodium sulfate.
  • the solid sodium sulfate obtained by the multi-effect evaporation and centrifugal separation is used in the spinning acid bath.
  • the present invention obtains solid sodium sulfate through multi-effect evaporation, low-temperature crystallization and centrifuge, and through crystallization treatment, the purity of sodium sulfate is improved to a certain extent, and the solid sodium sulfate is then adjusted with demineralized water into a sodium sulfate solution with a concentration of 15-30% , and then carry out filtration and resin adsorption to remove divalent metal ions, fine fibers and monosaccharides in the sodium sulfate solution to obtain a further purified sodium sulfate solution, thereby effectively reducing the damage to the bipolar membrane caused by impurities in the sodium sulfate.
  • the bipolar membrane treatment system can use 99% of the raw material on the market to prepare acid and alkali through manual/automatic feeding, chemical feeding, pretreatment, etc., for use in related processes in viscose fiber production; or by evaporation Concentrated for sale.
  • the brine modulation of the sodium sulfate waste liquid is carried out in a modulation container, and the modulation container is connected with a vertical stirring shaft by a motor, and the stirring shaft is driven to rotate, and the demineralized water and solid state that are put into the modulation container are uniformly stirred.
  • resin recovery treatment is required.
  • the resin recovery treatment steps include: subjecting the saturated resin to brine replacement, high-pressure air washing, acid washing, water washing and alkali washing in sequence, and the acid is washed with water.
  • the acid used for washing includes the sulfuric acid solution obtained after being treated by the bipolar membrane treatment system, and the alkali used in the alkali washing includes the alkaline solution obtained after being treated by the bipolar membrane treatment system.
  • the resin recovery process of the present invention adopts brine replacement flushing, high-pressure air flushing, and acid cleaning to treat the resin saturated with adsorption.
  • the brine replacement flushing can dilute the concentration of the sodium sulfate solution in the resin tower and prevent the sodium sulfate crystals from adhering to the resin surface.
  • the brine replacement is specifically as follows: the sodium sulfate solution in the resin tower is drained, and 12-15m 3 /hour of demineralized water is introduced from the bottom of the resin tower, the resin is rinsed for 4-6 hours, and the water is retained after the rinse is completed.
  • the high-pressure air flushing is as follows: the compressed air is introduced into the bottom of the resin tower by an air compressor. There are 3 air inlets evenly distributed at the bottom of the resin tower, and an air uniform distributor is distributed inside. The air pressure is 2-4bar, and the introduction time For 1.5 hours, air was discharged from the top of the resin column.
  • the acid washing is specifically as follows: the sulfuric acid solution coming out of the bipolar membrane, the concentration of which is 4-9%, and the total amount of sulfuric acid solution of 40-80m 3 is introduced from the bottom of the resin tower at a speed of 12-15m 3 / hour, and discharged from the top. The water outlet is discharged, and the duration is 5-6 hours.
  • the water washing is specifically as follows: draining the dilute acid water in the resin tower, using 12-15m 3 / hour of demineralized water to pass in from the bottom of the resin tower, until the resin tower effluent becomes neutral, which takes about 8 hours.
  • the alkali washing is specifically as follows: the alkali solution after the bipolar membrane treatment, its concentration is 4-9%, and the total amount is 26-40m 3 of sodium hydroxide solution, which is passed through the bottom of the resin tower at a speed of 12-15m 3 / hour. Add until the internal pH of the resin tower is adjusted to 9-10, and the resin regeneration is completed, which takes about 8 hours.
  • the leached lye solution is used as dipping solution, referred to as dipping lye solution, because the leached lye solution contains substances such as hemifibers, it is necessary to carry out impurity removal treatment, and the impurity removal treatment adopts VCF filter to remove impurities.
  • the filter element of the VCF filter is pre-coated with a layer of cellulose layer, and the cellulose layer adopts plant cellulose with a size of 40-60 ⁇ m.
  • the lye-dipping cleaning method of the present invention can greatly improve the filtration precision by pre-coating a cellulose layer on the filter element of the VCF filter, can effectively filter the large particles in the lye solution, and at the same time, the filter residue can be easily disassembled and washed without manual labor. operation, reduce labor intensity, improve efficiency, less water consumption for flushing, and filter residue is dry cake, which can reduce the discharge of waste lye, which is economical and environmentally friendly.
  • the specific method is as follows: 1) Fill the VCF filter with cellulose solution until all the internal gas is discharged, continuously add the cellulose solution, and pre-coat the filter element of the VCF filter with cellulose; 2) After the cellulose pre-coating is completed, The dipping lye that needs to be filtered is passed into the VCF filter until the dipping lye reaches the reuse standard and then discharged.
  • step 1) the cellulose is firstly added into the stirring tank and mixed with clean water, then the cellulose solution flow is added into the feeding tank, and the cellulose solution is pumped out from the feeding tank by a circulating pump and hits the filter for pre-coating.
  • step 2 After the cellulose pre-coating in step 2) is completed, the lye to be filtered is passed into the lye to be filtered while the pre-applied water is discharged from the VCF filter, the pre-applied water is replaced and removed by alkali, and the lye filtration is started.
  • the thickness of the cellulose layer is 5-10 ⁇ m.
  • the main steps of the cleaning method of the present invention are as follows:
  • Pre-coating cellulose pre-coating is performed on the VCF filter
  • Recoating monitor the change of differential pressure, when the differential pressure rises sharply, meter and mix cellulose to re-establish the pre-coating and slow down the rising speed of differential pressure;
  • the leaching of the lye solution also includes concentration treatment, and the concentrated lye solution after the concentration treatment is used for the primary dipping, secondary dipping and yellowing processes.
  • the concentration treatment is carried out in a concentration treatment system, the concentration treatment system includes a primary concentration system, and the primary concentration system is used to concentrate the filtrated lye to form semi-fiber and dilute solution.
  • alkali liquor the concentration treatment system further includes a dilute alkali solution treatment system, the dilute alkali solution treatment system includes an electrodialysis concentration component, and the electrodialysis concentration component is used to receive the diluted alkali solution processed by the primary concentration system Alkali, the low-concentration alkali water outlet end of the electrodialysis concentration component is connected to the low-concentration alkali water tank, the low-concentration alkali water tank is connected to the dilute alkali solution inlet end of the primary concentration system, and the electrodialysis extractor is connected to the low-concentration alkali water tank.
  • the high-concentration lye liquor outlet end of the concentrated component is connected with a high-concentration lye liquor tank, and the high-concentration lye liquor tank is
  • the primary concentration system includes a concentration tank for storing lye, the concentration tank is connected with the inlet of the first nanofiltration membrane module, the concentrated solution outlet end of the first nanofiltration membrane module is connected with the concentrated solution collection tank, The concentrated solution collection tank is connected with the mixing tank, the mixing tank is connected with the inlet end of the second nanofiltration membrane assembly, and the semi-fiber outlet end and the dilute lye outlet end of the second nanofiltration membrane assembly are respectively connected with the semi-fiber collection tank and the outlet end of the dilute lye.
  • the electrodialysis concentration component is connected, and the low-concentration alkali water tank is connected with the concentration tank.
  • the filtrate outlet end of the first nanofiltration membrane module is connected to the filtrate collection tank.
  • the mixing tank is connected with the demineralized water tank.
  • Both the concentration tank and the preparation tank are provided with stirring devices.
  • the dipping liquid preparation tank is connected with the dipping tank, and the dipping tank is used for dipping the fibers.
  • the dissolving lye preparation tank is connected with the yellowing machine.
  • Two of the electrodialysis concentration components are arranged in parallel.
  • an acid bath filtration treatment is also included, and the acid bath filter needs to be backwashed after the acid bath filtration treatment.
  • the backwashing treatment is carried out in a filter backwashing device
  • the filter backwashing device includes a filter, a dirty acid tank, a plate-and-frame filter press and an acid cleaning tank
  • the filter includes The first liquid outlet and the first liquid inlet, the first liquid outlet of the filter is connected with the inlet of the dirty acid tank, and the outlet of the dirty acid tank is connected with the inlet of the plate-and-frame filter press.
  • the outlet of the filter press is connected with the inlet of the acid cleaning tank, and the outlet of the acid cleaning tank is connected with the first liquid inlet of the filter.
  • the filter further includes a first air inlet and a first air outlet, the first air inlet is used for conveying compressed air, and the first air outlet is used for conveying backwash gas.
  • the dirty acid tank is connected with the plate and frame filter press through the first acid bath conveying pump.
  • the acid cleaning tank is connected to the filter through the second acid bath transfer pump.
  • the plate and frame filter press is used to filter turbid acid baths.
  • the dirty acid tank is used to store the turbid acid bath.
  • This technology uses concentrated acid crystallization system to extract the sodium sulfate produced in the acid bath process of viscose fiber production, and purifies the sodium sulfate through the modulation of sodium sulfate concentration and the primary and secondary refining, which is used by the bipolar membrane electrodialysis system to regenerate dilute sodium sulfate.
  • Acid solution, dilute alkali solution and acid-containing dilute brine; the regenerated products do not undergo evaporation and concentration treatment, and the dilute acid solution is directly transported to the acid station process in the viscose fiber production process for use as acid demineralized water.
  • the concentrated acid After the concentrated acid is crystallized, it is returned to the bipolar membrane for use; the dilute lye is directly reused for yellowing and dipping in the glue making process, used for the preparation of alkali fiber and viscose, and the viscose is reacted with acid in the acid bath again. Sodium sulfate is generated, which is extracted through the concentrated acid crystallization system and returned to the bipolar membrane for use.
  • the present invention has the following advantages and beneficial effects:
  • the combination of multi-effect evaporation/low temperature crystallization+centrifuge+bipolar membrane pretreatment system (salt water modulation, filtration, resin adsorption)+bipolar membrane system of sodium sulfate waste liquid Prepare acid and alkali and acid-containing dilute brine, and recycle all products.
  • the dilute acid solution, dilute alkali solution and acid-containing dilute brine produced by the bipolar membrane system in this patented technology do not undergo storage, transportation and evaporation extraction.
  • Concentration treatment directly used in the production system of viscose fiber filaments and short filaments, to achieve closed-loop environmental protection treatment of ammonium sulfate, the present invention can increase the existing 50%-65% sodium sulfate utilization rate of the bipolar membrane to more than 95% .
  • the lye prepared in the viscose fiber production process of the present invention is respectively used for the dipping process and the yellowing process in the viscose fiber production process, the recovery agent of the resin, and the refining process in the viscose fiber production process.
  • the raw material for pressure washing and the alkali spraying process in the waste gas acid production system realize the complete utilization of the lye produced by the bipolar membrane and greatly reduce the consumption of the lye.
  • the sulfuric acid solution prepared by the bipolar membrane of the present invention is respectively used in the spinning acid bath in the production process of viscose fiber, the raw material for pressing and washing in the refining process in the production process of viscose fiber, the recovery agent of resin, and the acid production from waste gas.
  • the sodium sulfide in the system is dissolved and used.
  • the present invention adopts salt water replacement, compressed air rinsing and pickling, which can remove the impurities in the excess sodium sulfate produced in the spinning process of viscose fiber production attached to the resin surface and the resin group, so as to achieve bipolar membrane pretreatment.
  • the entire resin regeneration cycle only takes about 30 hours, shortening the conventional resin regeneration time, improving the quality of resin recovery, and the resin adsorption capacity after recovery can be restored to more than 99% (in the same resin feed, impurities
  • saline replacement flushing can dilute the concentration of sodium sulfate solution in the resin tower, prevent sodium sulfate crystals from adhering to the resin surface, affecting cleaning, and at the same time It can remove impurities such as calcium hydroxide, zinc hydroxide, and magnesium hydroxide attached to the resin surface, thereby improving the ion exchange rate during subsequent resin recovery;
  • high-pressure air flushing uses the mutual friction and vibration of resin, water and air to separate the resin surface The COD and the divalent metal ions in the sodium sulfate solution react with sodium hydroxide to produce floc precipitation, thereby
  • the present invention carries out primary purification by first crystallization, solidification and separation of sodium sulfate, and then carries out secondary purification through demineralized water modulation, filtration and resin adsorption, which greatly improves the purity of sodium sulfate solution and reduces impurities in the sodium sulfate solution. Damage to the polar membrane treatment system.
  • the present invention processes the lye produced by the bipolar membrane used for dipping the lye by setting the lye concentration system, so that the deep cleaning of the dipping lye can be realized, so that it can be better applied to the dipping of the glue making process. in process.
  • a filter backwashing device is provided. By improving the backwashing structure and method, it can reduce the consumption of production water and the effect of acid bath loss, reduce the use of production water, and reduce the amount of sewage. Discharge, reduce the pressure of environmental protection, and achieve zero discharge during the backwashing process of the tow filter.
  • Fig. 1 is the flow chart of the regeneration and recycling process of sodium sulfate waste liquid of the present invention.
  • Fig. 2 is the structure diagram of the alkali liquor concentration system of the present invention.
  • FIG. 3 is a structural diagram of the backwashing of the acid bath filter of the present invention.
  • the second nanofiltration membrane module 10- Impregnation tank, 11- Impregnation liquid preparation tank, 12- High concentration alkali liquid tank, 13- Dissolved alkali liquid preparation tank, 14- Yellowing machine, 15- Low-concentration alkaline water tank, 16-filter, 17-sulfur acid tank, 18-plate and frame filter press, 19-clean acid tank, 20-first acid bath delivery pump, 21-second acid bath delivery pump.
  • a viscose fiber sodium sulfate waste liquid regeneration and recycling process includes the following steps: Step 1: Preparation of solid sodium sulfate
  • Spinning the acid bath produces an acid bath, which includes sulfuric acid and sodium sulfate. After filtering and degassing, it enters the multi-effect evaporation and concentration system for evaporation and concentration. After crystallization and centrifugation, solid sodium sulfate is obtained. Sulfuric acid is used in the spinning acid bath process;
  • Step 2 Sodium sulfate brine preparation and impurity removal
  • Sodium carbonate precipitates the sodium sulfate solution of zinc ions, after a primary filtration, that is, a plate-and - frame filter, removes the zinc ion precipitate, and the sodium sulfate solution after a primary filtration adopts O oxidation to remove the sodium sulfate solution.
  • the sodium sulfate solution after the removal of reducing substances by O 3 oxidation is filtered by a secondary plate and frame filter, which can effectively remove large particles of impurities in the sodium sulfate solution.
  • the sodium sulfate solution passes through the activated carbon device, which can effectively remove organic substances and some fine particles.
  • the sodium sulfate solution after the activated carbon treatment passes through the ion exchange resin system to remove the residual zinc ions in the solution, so that the divalent metal ions are effective against the double ions.
  • Step 3 Bipolar Membrane Treatment with Sodium Sulfate Solution
  • the sodium sulfate solution is processed by the bipolar membrane treatment system to obtain lye, sulfuric acid solution and acid-containing dilute brine, wherein the concentration of the alkali solution is 4-9%, the concentration of the sulfuric acid solution is 4-9%, and the In acid-containing dilute brine, the concentration of sodium sulfate is 8-15%, and the concentration of sulfuric acid solution is 2-5%.
  • Step 4 Recycling of lye, sulfuric acid solution and acid-containing dilute brine
  • the utilization of the lye includes four process branches, and the first lye utilization branch is as follows: after being treated with a nanofiltration membrane, the filtrated lye and the concentrated lye are obtained, and the filtrated lye has a concentration of 2-12% and is directly It is passed into the alkaline solution preparation tank/alkali station as the alkaline demineralized water to configure the alkaline concentration, and is passed into the primary dipping, secondary dipping and yellowing processes in the rubber making process, and the concentrated lye solution is used for bipolar membrane pretreatment and Alkali spraying, the second lye utilization branch is: transported to the spinning and refining workshop, as the raw material for thread pressure washing, and the third lye utilization branch is: transported to the lye preparation tank, as the bipolar membrane pretreatment process.
  • the agent for resin regeneration, the fourth lye utilization branch, the fourth lye utilization branch is: the bipolar membrane lye is used as the diluent of the waste rubber to recover the lye in the waste rubber, which can further reduce the overall lye consumption in the system.
  • the concentrated lye solution is used for bipolar membrane pretreatment, neutralizing the acid in the brine, and adjusting the pH value of the sodium sulfate solution to 7-11; part of the concentrated lye solution can also be used in the alkali spray system as waste gas for acid production
  • auxiliary materials specifically, the hydrogen sulfide gas generated in the viscose fiber production acid bath process reacts with the concentrated alkali solution after nanofiltration to generate sodium sulfide and water, and then uses the sulfuric acid solution produced by the bipolar membrane system to dissolve the solid sodium sulfide, thereby The hydrogen sulfide gas with higher concentration is extracted, and the method of combustion is used as the raw material for the production of sulfuric acid.
  • the utilization of the sulfuric acid solution includes two process branches, the first acid solution utilization branch is: transported to the spinning and refining workshop, as the raw material for thread pressure washing, and the second acid solution utilization branch is: transported to the acid solution preparation tank, As an agent for resin regeneration in the bipolar membrane pretreatment process, part of the sulfuric acid solution is sent to the alkali spray system as an auxiliary material for acid production from waste gas.
  • the acid-containing dilute brine enters the multi-effect evaporation process, and is mixed with the acid bath after filtration and degassing to make up for the sulfuric acid consumed by the acid-base reaction in the spinning process.
  • the concentrated acid crystallization system and the centrifuge system are precipitated and used again as raw materials for the front end of the bipolar membrane pretreatment; through the combined use of the bipolar membrane system and the viscose staple concentrated acid crystallization system, the bipolar membrane system in the prior art can be used.
  • the utilization rate of membrane sodium sulfate is increased from 50-65% to more than 95%; it can effectively reduce the energy consumption of producing sulfuric acid by short filaments.
  • the invention can realize the complete circulation treatment of viscose fiber sodium sulfate, greatly reduces the consumption of acid and alkali resources in the viscose fiber production process; the process is simple, the number of equipment is small, and it has good economy, which is in line with most viscose fibers. Environmental protection needs of fiber enterprises.
  • the present invention obtains solid sodium sulfate through multi-effect evaporation, low-temperature crystallization and centrifuge, and through crystallization treatment, the purity of sodium sulfate is improved to a certain extent, and the solid sodium sulfate is then adjusted with demineralized water into a sodium sulfate solution with a concentration of 15-30% , and then carry out filtration and resin adsorption to remove divalent metal ions, fine fibers and monosaccharides in the sodium sulfate solution to obtain a further purified sodium sulfate solution, thereby effectively reducing the damage to the bipolar membrane caused by impurities in the sodium sulfate.
  • Example 1 The difference between this example and Example 1 is that resin recovery treatment is required after the resin used for impurity removal with sodium sulfate is saturated with adsorption. Rinsing, pickling, water washing and alkali washing, the acid used in the acid washing includes the sulfuric acid solution obtained after the bipolar membrane treatment system, and the alkali used in the alkali washing includes the lye solution obtained after the bipolar membrane treatment system.
  • the resin recovery process of the present invention adopts brine replacement flushing, high-pressure air flushing, and acid cleaning to treat the resin saturated with adsorption.
  • the brine replacement flushing can dilute the concentration of the sodium sulfate solution in the resin tower and prevent the sodium sulfate crystals from adhering to the resin surface.
  • the brine replacement is specifically as follows: the sodium sulfate solution in the resin tower is drained, and 12-15m 3 /hour of demineralized water is introduced from the bottom of the resin tower, the resin is rinsed for 4-6 hours, and the water is retained after the rinse is completed.
  • the high-pressure air flushing is as follows: the compressed air is introduced into the bottom of the resin tower by an air compressor. There are 3 air inlets evenly distributed at the bottom of the resin tower, and an air uniform distributor is distributed inside. The air pressure is 2-4bar, and the introduction time For 1.5 hours, air was discharged from the top of the resin column.
  • the acid washing is specifically as follows: the sulfuric acid solution coming out of the bipolar membrane, the concentration of which is 4-9%, and the total amount of sulfuric acid solution of 40-80m 3 is introduced from the bottom of the resin tower at a speed of 12-15m 3 / hour, and discharged from the top. The water outlet is discharged, and the duration is 5-6 hours.
  • the water washing is specifically as follows: draining the dilute acid water in the resin tower, using 12-15m 3 / hour of demineralized water to pass in from the bottom of the resin tower, until the resin tower effluent becomes neutral, which takes about 8 hours.
  • the alkali washing is specifically as follows: the alkali solution after the bipolar membrane treatment, its concentration is 4-9%, and the total amount is 26-40m 3 of sodium hydroxide solution, which is passed through the bottom of the resin tower at a speed of 12-15m 3 / hour. Add until the internal pH of the resin tower is adjusted to 9-10, and the resin regeneration is completed, which takes about 8 hours.
  • the lye that is filtered out after being treated by the nanofiltration membrane is used in the dipping of the rubber making process, which is called dipping lye, and also needs to be treated with impurity removal.
  • the filter element of the VCF filter is pre-coated with a layer of cellulose layer, and the cellulose layer adopts plant cellulose with a size of 40-60 ⁇ m.
  • the lye-dipping cleaning method of the present invention can greatly improve the filtration precision by pre-coating a cellulose layer on the filter element of the VCF filter, can effectively filter the large particles in the lye solution, and at the same time, the filter residue can be easily disassembled and washed without manual labor. operation, reduce labor intensity, improve efficiency, less water consumption for flushing, and filter residue is dry cake, which can reduce the discharge of waste lye, which is economical and environmentally friendly.
  • the specific method is as follows: 1) Fill the VCF filter with cellulose solution until all the internal gas is discharged, continuously add the cellulose solution, and pre-coat the filter element of the VCF filter with cellulose; 2) After the cellulose pre-coating is completed, The dipping lye that needs to be filtered is passed into the VCF filter until the dipping lye reaches the reuse standard and then discharged.
  • step 1) the cellulose is firstly added into the stirring tank and mixed with clean water, then the cellulose solution flow is added into the feeding tank, and the cellulose solution is pumped out from the feeding tank by a circulating pump and hits the filter for pre-coating.
  • step 2 After the cellulose pre-coating in step 2) is completed, the lye to be filtered is passed into the lye to be filtered while the pre-applied water is discharged from the VCF filter, the pre-applied water is replaced and removed by alkali, and the lye filtration is started.
  • the main steps of the cleaning method of the present invention are as follows:
  • Pre-coating cellulose pre-coating is performed on the VCF filter
  • Recoating monitor the change of differential pressure, when the differential pressure rises sharply, meter and mix cellulose to re-establish the pre-coating and slow down the rising speed of differential pressure;
  • the difference between this embodiment and Embodiment 3 is that the lye solution after being treated by the nanofiltration membrane is filtered out and used in the dipping and yellowing processes of the rubber making process, and the concentration is too dilute. It is also necessary to carry out concentration treatment, and the concentration treatment is carried out in a concentration system, and the concentration system includes a primary concentration system.
  • the primary concentration system includes a concentration tank 1 for storing waste lye, the concentration tank 1 is connected to the inlet of the first nanofiltration membrane module 2, and the filtrate of the first nanofiltration membrane module 2
  • the outlet end is connected with the filtrate collection tank 5
  • the concentrate outlet end of the first nanofiltration membrane module 2 is connected with the concentrate collection tank 6, and the concentrate collection tank 6 is connected with the deployment tank 7, and the deployment tank 7
  • the mixing tank 7 is connected with the inlet end of the second nanofiltration membrane assembly 9, and the semi-fiber outlet end and the dilute lye outlet end of the second nanofiltration membrane assembly 9 are respectively connected with the semi-fiber collection tank 3 and the second nanofiltration membrane assembly 9.
  • the electrodialysis concentration component 4 is connected, the low-concentration alkaline water tank 15 is connected to the concentration tank 1, and also includes a dilute alkali solution treatment system, which includes an electrodialysis concentration component 4.
  • the concentrated component 4 is used to receive the dilute alkali solution processed by the primary concentration system, and the low-concentration alkali water outlet end of the electrodialysis concentration component 4 is connected to the low-concentration alkali water tank 15, and the low-concentration alkali water tank 15 is connected to the low-concentration alkali water tank 15.
  • the waste alkali liquor inlet end of the primary concentration system is connected, and the high concentration alkali liquor outlet end of the electrodialysis concentration assembly 4 is connected to the high concentration alkali liquor tank 12, and the high concentration alkali liquor tank 12 is connected with the immersion liquid preparation tank 11.
  • the dipping solution preparation tank 11 is connected with the dipping tank 10
  • the dipping tank 10 is used for soaking the fibers
  • the dissolving lye preparation tank 13 is connected with the yellowing machine 14 for production Viscose.
  • the concentration tank 1 is connected with a plurality of systems that generate waste lye; the concentration tank 1 is provided with a stirring device; the mixing tank 7 is provided with a stirring device; the electrodialysis concentration component 4 is provided with two parallel indivual.
  • the difference between this embodiment and Embodiment 1 is that in the spinning acid bath process, an acid bath filtration treatment is also included, and the acid bath filter needs to be backwashed after the acid bath filtration treatment.
  • the acid bath filter backwash device includes a filter 16, a dirty acid tank 17, a plate-and-frame filter press 18 and a clean acid tank 4, and the outlet of the filter 16 is connected to the inlet of the dirty acid tank 17, so The outlet of the dirty acid tank 17 is connected with the inlet of the plate and frame filter press 18, the outlet of the plate and frame filter press 18 is connected with the inlet of the acid cleaning tank 4, and the outlet of the acid cleaning tank 19 is connected with the filter 16 of the inlets are connected.
  • the filter 16 also includes a first air inlet and a first air outlet, the first air inlet is used for conveying compressed air, and the first air outlet is used for conveying backwash gas, and the backwash gas is Alkali spray absorption treatment of waste gas treatment device; during the backwashing, part of the acid bath of the filter 16 is vented to the flower plate of the filter 16, and the first air inlet is opened to transport the compressed air into the filter 16 through the air inlet pipe, and agitate About 30 minutes after the tow of the filter 16, the first air inlet is closed, the first air outlet of the filter 16 is opened, the backwash gas is discharged into the atmosphere through the first air outlet, and the first liquid outlet is opened to stir the above-mentioned compressed air The latter turbid acid bath is vented to the dirty acid tank 17 .
  • the dirty acid tank 17 is connected to the plate and frame filter press 18 through the first acid bath transfer pump 20; the turbid acid bath of the dirty acid tank 17 is transferred to the plate and frame filter press through the first acid bath transfer pump 20 18 After filtration, a clean acid bath with a transmittance close to that of water is obtained.
  • the acid cleaning tank 19 is connected to the filter 16 through the second acid bath delivery pump 21; the acid cleaning bath enters the acid cleaning tank 19, and is then transported to the filter 16 through the second acid bath delivery pump 21 for backwash filtration .
  • the plate and frame filter press 18 is used to filter the turbid acid bath; the plate and frame filter press 18 filters the turbid acid bath into a clean acid bath with a light transmittance close to that of water.
  • the dirty acid tank 17 is used for storing the turbid acid bath.
  • Example 1 The difference between this example and Example 1 is that the bipolar membrane system uses 99% sodium bile powder as raw material on the market, and after pretreatment, it is passed into the bipolar membrane system to prepare acid and alkali for viscose production.
  • the lye, sulfuric acid solution and dilute brine produced after the bipolar membrane treatment are stored in respective intermediate storage tanks, and are recycled according to the needs of the site.
  • this example takes the production of 100kg viscose fiber as an example.
  • 82.13kg of sulfuric acid and 73.17kg of sodium hydroxide were used to produce 5g/L sulfuric acid, 260kg/L sodium sulfate, 0.4 g/L zinc sulfate, 0.009g/L cellulose and sodium sulfate waste liquid containing 0.5g/L other substances were filtered, degassed, concentrated by multi-effect evaporation, crystallization centrifugation, filtration, resin adsorption, bipolar membrane Treatment, lye reuse, sulfuric acid solution reuse and acid-containing dilute brine reuse.
  • the acid bath waste liquid with high sodium sulfate content is filtered to remove solid particles and impurities, and then degassed. After the acid bath waste liquid is evaporated by multiple effects, the excess sodium sulfate is separated in the form of Glauber's salt by a centrifuge.
  • the sodium sulfate waste liquid is adjusted to pH 8-11 by adding sodium hydroxide, 0.4g/L zinc sulfate, 0.009g/L cellulose and 0.5g/L other substances (mainly calcium, magnesium, iron, etc.) 80% is precipitated in the form of precipitation, and after filtration, 10-15% of the above-mentioned substances are intercepted; finally, it is treated by resin tower adsorption;
  • the purified sodium sulfate solution after adsorption treatment by resin tower is treated by bipolar membrane to generate 8% sulfuric acid, 8% sodium hydroxide and 5-13% dilute salt;

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种粘胶纤维硫酸钠废液再生循环利用工艺,解决了现有的粘胶纤维生产过程中产生的硫酸钠废液并没有结合到具体的粘胶纤维生产需要进行合理的循环再利用的技术问题。包括如下:硫酸钠废液通过双极膜处理系统处理后得到碱液、硫酸溶液和含酸稀盐水,碱液的利用:部分碱液通过纳滤膜处理后得到滤出碱液和浓缩碱液,滤出碱液用于一次浸渍、二次浸渍和黄化工序中,浓缩碱液用于双极膜预处理;部分碱液作为丝条压洗的原料,部分碱液作为双极膜预处理工序中的树脂再生药剂。酸液的利用:部分作为丝条压洗的原料,部分作为双极膜预处理工序中的树脂再生的药剂,含酸稀盐水进入多效蒸发工序,最终实现硫酸钠废液的闭环利用。

Description

一种粘胶纤维硫酸钠废液再生循环利用工艺 技术领域
本发明涉及粘胶纤维生产技术领域,具体涉及一种粘胶纤维硫酸钠废液再生循环利用工艺。
背景技术
粘胶纤维是利用含有天然纤维素的高分子材料木浆、棉浆等经过化学与机械方法加工而成的化学纤维,其为化纤中与天然纤维服装性能最为接近的品种,具有手感柔软、吸湿透气、垂悬飘逸、染色鲜艳、抗静电较易于纺织加工等特点,是源于天然而优于天然的再生纤维素纤维,是纺织工业原料的重要材料之一。粘胶纤维生产、纺丝过程中需要大量的化工原料,这就导致有害废水的大量产生,该废水中含有硫酸、硫酸锌、二硫化碳、纤维素、溶解性有机物等,均对环境产生很大的危害,是纺织工业的主要污染源之一。
其中,在粘胶纤维生产的酸浴工序中,会消耗大量的硫酸和氢氧化钠,酸碱反应产生大量的富余含酸硫酸钠。随着全球工业化进程的快速发展,粘胶纤维生产过程中的硫酸钠环保处理成为行业的难题;行业传统处理硫酸钠的方式是以烘干焙烧制元明粉,其劳动强度大,设备较多,且元明粉市场饱和度较高,使得化工资源得不到有效利用。双极膜电渗析系统凭借其将水和硫酸钠解离后将离子重组再生酸碱的特点,很好地解决了长久以来传统粘胶纤维行业硫酸钠治污方法在环境工程中积存在的一些技术难题;将再生酸碱回用于粘胶纤维生产中,实现粘胶纤维行业硫酸钠的闭环处理,对环境友好,且极大的降低了工人劳动强度低。
根据现有已知的工艺技术可知,该技术主要将粘胶纤维废水中的盐(即硫酸钠)通过双极膜电渗析系统转化为酸、碱和淡盐水;其中,酸通过蒸发浓缩后生成浓酸,碱通过蒸发后得浓缩碱,淡盐水经过生化和反渗透处理后分离成硫酸钠和水回用于双极膜电渗析系统;解决了硫酸钠作为废盐无法处理的问题,减少了企业固废的排放量。专利CN109970274A一种处理粘胶纤维行业酸性废水和碱性废水的方法,该技术在酸、碱浓缩过程中能耗大,稀盐水浓度较高,且含有部分硫酸,生化处理和反渗透处理难度较大,各工序人力资源占有率高,操作蒸发和反渗透等高温高压设备的员工技能水平要求较高。
针对现有技术的不足,有必要结合粘胶纤维生产的工艺特点开发新的硫酸钠废液进行再生循环利用工艺。
发明内容
本发明所要解决的技术问题是:现有的粘胶纤维生产过程中产生的硫酸钠废液并没有 结合到具体的粘胶纤维生产需要进行合理的循环再利用。
本发明通过下述技术方案实现:
一种粘胶纤维硫酸钠废液再生循环利用工艺,包括如下步骤:硫酸钠废液通过双极膜处理系统处理后得到碱液、硫酸溶液和含酸稀盐水,
所述碱液的利用包括三条工艺分支,第一碱液利用分支为:通过纳滤膜处理后得到滤出碱液和浓缩碱液,将所述滤出碱液通入制胶工艺中的一次浸渍、二次浸渍和黄化工序中,将所述浓缩碱液用于双极膜预处理;第二碱液利用分支为:作为丝条压洗的原料;第三碱液利用分支为:作为双极膜预处理工序中的树脂再生的药剂;
所述硫酸溶液的利用包括两条工艺分支,第一硫酸溶液利用分支为:作为丝条压洗的原料;第二硫酸溶液利用分支为:作为双极膜预处理工序中的树脂再生的药剂;第三硫酸溶液利用分支为:作为纺丝酸浴工序中硫酸的原料;
所述含酸稀盐水进入多效蒸发工序。
本发明能够实现粘胶纤维硫酸钠的完全循环处理,极大的降低了粘胶纤维生产过程中的酸、碱资源消耗;工艺简单,设备数量较少,具有良好的经济性,符合多数粘胶纤维企业的环保需求。
所述浓缩碱液用于双极膜预处理,中和盐水中的酸,并将硫酸钠溶液的pH值调制到7-11;部分浓缩碱液还可用于碱喷淋系统,作为废气制酸的辅料使用,具体为粘胶纤维生产酸浴工序中产生的硫化氢气体与纳滤后的浓缩碱液反应生成硫化钠和水,再使用双极膜系统产生的硫酸溶液溶解固态硫化钠,从而提取浓度较高的硫化氢气体,采用燃烧的办法作为制取硫酸的原料。
部分硫酸溶液输送至碱喷淋系统作为废气制酸的辅料使用。
进一步的优选方案,所述碱液的利用还包括第四碱液利用分支,所述第四碱液利用分支为:碱液作为废胶的稀释液,用于回收废胶中的碱液,这样可以进一步减少整个系统中的碱液消耗。
进一步的优选方案,在经过双极膜处理系统处理之前,所述硫酸钠废液先进行盐水调制和预处理,盐水调制后,硫酸钠的浓度为15-30%;所述双极膜预处理包括依次进行的过滤和树脂吸附处理,过滤和树脂处理有利于提高硫酸钠的纯度,减少硫酸钠中的杂质对双极膜的损害。
进一步的优选方案,所述硫酸钠废液在经盐水调制前,还包括固态硫酸钠的制备,具体步骤包括:纺丝酸浴工序中,酸和碱反应生成大量的含酸硫酸钠废液,所述含酸硫酸钠废液经过过滤和脱气后,经过多效蒸发、低温结晶和离心处理,得到固态硫酸钠。
所述多效蒸发和离心分离得到的固态硫酸钠,用于纺丝酸浴中。
本发明通过多效蒸发、低温结晶和离心机来获得固态硫酸钠,通过结晶处理,硫酸钠的纯度得到一定的提高,固态硫酸钠再采用除盐水调制为浓度为15-30%的硫酸钠溶液,再进行过滤和树脂吸附除去硫酸钠溶液中的二价金属离子、细小纤维和单糖等,得到进一步纯化的硫酸钠溶液,从而有效减少硫酸钠中的杂质对双极膜的损害。
双极膜处理系统可采用将市场上99%元明粉作为原料,通过手/自动投料、化料、预处理等方式制取酸碱,供粘胶纤维生产中的相关工序使用;或经蒸发浓缩后外售。
进一步地,所述硫酸钠废液的盐水调制在调制容器中进行,所述调制容器通过电机和立式的搅拌轴连接,驱动搅拌轴转动,均匀地搅拌投入到调制容器中的除盐水和固态硫酸钠,使得硫酸钠完全溶解在除盐水中。
进一步的优选方案,树脂吸附饱和后,需要进行树脂复苏处理,所述树脂复苏处理步骤包括:将吸附饱和后的树脂依次经过盐水置换、高压空气冲洗、酸洗、水洗和碱洗,所述酸洗所用的酸包括经双极膜处理系统处理后得到的硫酸溶液,所述碱洗所用的碱包括经双极膜处理系统处理后得到的碱液。
本发明树脂复苏工艺,采用盐水置换冲洗、高压空气冲洗、酸洗对吸附饱和的树脂进行处理,首先,盐水置换冲洗能够稀释树脂塔内的硫酸钠溶液的浓度,防止硫酸钠结晶附着在树脂表面,影响清洗,同时能够去除树脂表面附着的氢氧化钙、氢氧化锌、氢氧化镁等杂质,从而提高后续树脂复苏时离子交换速率;其次,高压空气冲洗,利用树脂、水、空气的相互摩擦和震荡作用,能够分离树脂表面的COD和硫酸钠溶液中的二价金属离子与氢氧化钠反应所产生的絮状物沉淀,从而为后续采用酸洗复苏再生树脂提供条件;最后,用酸进行冲洗,利用酸液内部大量游离的氢离子来置换吸附饱和树脂基团内部的大量锌离子和少量钙镁离子,最后实现树脂的复苏(再生);由于盐水置换和高压空气冲洗,大大提高了氢离子与锌离子、钙镁离子的交换速率。
盐水置换具体为:将树脂塔内硫酸钠溶液排尽,并采用12-15m 3/小时的除盐水从树脂塔底部通入,冲洗树脂4-6小时,冲洗完成后保水。
高压空气冲洗具体为:采用空气压缩机将压缩后的空气通入树脂塔底部,树脂塔底部均布有3个进气口,内部分布有空气均匀分布器,空气压力2-4bar,通入时间为1.5小时,空气从树脂塔顶部排出。
酸洗具体为:采用双极膜出来的硫酸溶液,其浓度为4-9%,总量40-80m 3的硫酸溶液,以12-15m 3/小时速度从树脂塔底部通入,从顶部出水口排出,持续时间5-6小时。
酸洗后还包括水洗和碱洗。
水洗具体为:将树脂塔内的稀酸水排尽,采用12-15m 3/小时的除盐水从树脂塔底部通入,直至树脂塔出水至中性即可,需要约8小时。
碱洗具体为:采用双极膜处理后的碱液,其浓度为4-9%,总量为26-40m 3的氢氧化钠溶液,以12-15m 3/小时的速度从树脂塔底部通入,直到树脂塔内部PH调至9-10,完成树脂再生,需要约8小时。
进一步的优选方案,所述滤出碱液用作浸渍液,简称浸渍碱液,由于滤出碱液中含有半纤维等物质,还需要进行除杂处理,所述除杂处理采用VCF过滤器对浸渍碱液进行过滤,所述VCF过滤器的滤芯上预敷一层纤维素层,所述纤维素层采用尺寸为40-60μm的植物纤维素。
本发明的浸渍碱液清洁方法,通过在VCF过滤器的滤芯上预敷一层纤维素层,能够大大的提高过滤精度,能够有效过滤碱液中的大颗粒,同时滤渣拆卸冲洗方便,无需人工操作,降低劳动强度,提高了效率,冲洗用水量少,滤渣为干饼,可降低排出废碱液,即经济又环保。
具体方法如下:1)向VCF过滤器中填充纤维素溶液直至内部气体全部被排出,持续流加纤维素溶液,纤维素对VCF过滤器的滤芯进行预涂;2)纤维素预涂完成之后,向VCF过滤器中通入需要过滤处理的浸渍碱液,直至浸渍碱液达到回用标准后排出。
步骤1)中首先将纤维素加入搅拌罐中与清水混合,然后将纤维素溶液流加入加料槽中,利用循环泵将纤维素溶液从加料槽中泵出打向过滤器进行预涂。
步骤2)中纤维素预涂完成之后,在VCF过滤器排出预敷水的同时通入待过滤碱液,利用碱将预敷的水置换除去,并开始碱液过滤。
纤维素层的厚度为5-10μm。
在浸渍碱液过滤过程中,当VCF过滤器进液出液压差上升时,继续向VCF过滤器内流加纤维素重新建立纤维素层;当压差达到3.5bar或者流量低于40m 3/h时,过滤器停止碱液通入,利用压缩空气将VCF过滤器内液体压出,然后利用压缩空气从过滤器滤芯内部反吹,将附着在过滤器滤芯上的纤维素层震落,清洗后进入下一过滤周期。
本发明清洗方法的主要步骤如下:
1)调配预涂料:取清水加入纤维素滤材搅拌均匀;
2)预涂:对VCF滤机进行纤维素预涂;
3)置换顶水:尽量将多余水排出,并开始进碱过滤开始过滤,尽量用碱将预敷的水置换除去;
4)过滤:开始过滤,颗粒杂质被预涂层拦截,滤出液达到回用标准;
5)再涂:监测压差变化,在压差急剧上升时计量混入纤维素重新建立预涂层,减缓压差上升速度;
6)反吹出渣:当压差达到最大值时,进行气体反吹出渣;
7)清洗:清洗再生好的系统重新开始进行过滤。
进一步的优选方案,所述滤出碱液还包括提浓处理,所述提浓处理后的浓碱液用于所述一次浸渍、二次浸渍以及黄化工序。
进一步的优选方案,所述提浓处理在提浓处理系统中进行,所述提浓处理系统包括初级提浓系统,所述初级提浓系统用于将滤出碱液提浓形成半纤和稀碱液;所述提浓处理系统还包括稀碱液处理系统,所述稀碱液处理系统包括电渗析提浓组件,所述电渗析提浓组件用于接收经初级提浓系统处理后的稀碱液,所述电渗析提浓组件的低浓碱水出口端与低浓碱水罐连接,所述低浓碱水罐与初级提浓系统的稀碱液进入端连接,所述电渗析提浓组件的高浓碱液出口端与高浓碱液罐连接,所述高浓碱液罐与浸渍液调配罐和溶解碱液调配罐连接。
所述初级提浓系统包括用于储存碱液的浓缩罐,所述浓缩罐与第一纳滤膜组件的入口连接,所述第一纳滤膜组件的浓缩液出口端与浓缩液收集罐,所述浓缩液收集罐与调配罐连接,所述调配罐与第二纳滤膜组件的入口端连接,第二纳滤膜组件半纤出口端和稀碱液出口端分别与半纤收集罐和电渗析提浓组件连接,所述低浓碱水罐与浓缩罐连接。
所述第一纳滤膜组件的滤出液出口端与滤出液收集罐连接。
所述调配罐与除盐水罐连接。
所述浓缩罐和调配罐内均设置有搅拌装置。
所述浸渍液调配罐与浸渍罐连接,所述浸渍罐用于浸泡纤维。
所述溶解碱液调配罐与黄化机连接。
所述电渗析提浓组件并联设置有两个。
进一步的优选方案,纺丝酸浴工序中,还包括酸浴过滤处理,所述酸浴过滤处理后还需要对酸浴过滤器进行反洗处理。
进一步的优选方案,所述反洗处理在过滤器反洗装置中进行,所述过滤器反洗装置包括过滤器、污酸槽、板框式压滤机和净酸槽,所述过滤器包括第一液体出口和第一液体进口,所述过滤器的第一液体出口与污酸槽的进口相连,所述污酸槽的出口与板框式压滤机的进口相连,所述板框式压滤机的出口与净酸槽的进口相连,所述净酸槽的出口与过滤器的第一液体进口相连。
所述过滤器还包括第一进气口和第一出气口,所述第一进气口用于输送压缩空气,所 述第一出气口用于输送反洗气体。
所述污酸槽通过第一酸浴输送泵与板框式压滤机连接。
所述净酸槽通过第二酸浴输送泵与过滤器相连。
所述板框式压滤机用于过滤浑浊酸浴。
所述污酸槽用于存放浑浊酸浴。
本技术采用浓酸结晶系统提取粘胶纤维生产的酸浴工序中产生的硫酸钠,通过硫酸钠浓度的调制和一次、二次精制将硫酸钠提纯,供双极膜电渗析系统使用,再生稀酸溶液、稀碱溶液和含酸稀盐水;其再生产物不经过蒸发提浓处理,稀酸溶液直接输送至粘胶纤维生产过程中的酸站工序用作酸性除盐水使用,残余的硫酸钠经浓酸结晶后返回双极膜使用;稀碱液直接回用于制胶工序中的黄化和浸渍,用于碱纤制备和粘胶制备,制成的粘胶在酸浴中与酸反应再次生成硫酸钠,通过浓酸结晶系统提出,返回双极膜使用。
本发明与现有技术相比,具有如下的优点和有益效果:
1、本发明在粘胶纤维生产过程中硫酸钠废液的通过多效蒸发/低温结晶+离心机+双极膜预处理系统(盐水调制、过滤、树脂吸附)+双极膜系统的组合,制取酸和碱以及含酸淡盐水,并将所有产物全部回收利用,本专利技术中双极膜系统制取的稀酸溶液、稀碱溶液和含酸稀盐水不经过储存、运输和蒸发提浓处理,直接用于粘胶纤维长丝和短丝的生产系统,实现硫酸铵的闭环环保处理,本发明能够将双极膜现有50%-65%的硫酸钠利用率提升至95%以上。
2、本发明在粘胶纤维生产过程中制取的碱液分别用于粘胶纤维生产的制胶工艺中的浸渍工序和黄化工序,树脂的复苏药剂,粘胶纤维生产过程中的精炼工序的压洗原料,以及废气制酸系统中碱喷淋工序使用,实现了双极膜产生的碱液的完全利用,大大减少碱液的消耗。
3、本发明双极膜制取的硫酸溶液分别用于粘胶纤维生产过程中的纺丝酸浴,粘胶纤维生产过程中的精炼工序的压洗原料,树脂的复苏药剂,以及废气制酸系统中的硫化钠溶解使用。
4、本发明采用盐水置换、压缩空气冲洗和酸洗,能够去除附着在树脂表面和树脂基团中的粘胶纤维生产的纺丝工序中产生的富余硫酸钠中的杂质,达到双极膜预处理树脂的循环吸附使用,整个树脂再生周期只需约30小时,缩短常规树脂再生时间,提高树脂复苏的质量,且复苏后树脂吸附能力能够恢复到99%以上(在树脂的进料相同、杂质含量相同情况下,复苏前使用周期和复苏后使用周期的差值<1%),盐水置换冲洗能够稀释树脂塔内的硫酸钠溶液的浓度,防止硫酸钠结晶附着在树脂表面,影响清洗,同时能够去除树脂表面 附着的氢氧化钙、氢氧化锌、氢氧化镁等杂质,从而提高后续树脂复苏时离子交换速率;高压空气冲洗利用树脂、水、空气的相互摩擦和震荡作用,能够分离树脂表面的COD和硫酸钠溶液中的二价金属离子与氢氧化钠反应所产生的絮状物沉淀,从而为后续采用酸洗复苏再生树脂提供条件。
5、本发明通过对硫酸钠先结晶固化分离进行一次纯化,再通过除盐水调制、过滤和树脂吸附进行二次提纯,极大地提高了硫酸钠溶液的纯度,减少硫酸钠溶液中的杂质对双极膜处理系统的损害。
6、本发明通过设置碱液提浓系统来对作为浸渍碱液用的双极膜产生的碱液进行处理,能够实现浸渍碱液的深度清洁,使其更好地应用在制胶工艺的浸渍工序中。
7、本发明在酸浴工序中,设置有过滤器反洗装置,通过改进反洗结构和方式,能减少生产水的消耗和酸浴损失的效果,降低了生产水的使用,减少的污水的排放,减轻环保压力,实现丝束过滤器反洗过程中实现零排放。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1为本发明硫酸钠废液再生循环利用工艺的流程图。
图2为本发明碱液提浓系统的结构图。
图3为本发明酸浴过滤器反洗的结构图。
附图中标记及对应的零部件名称:
1-浓缩罐,2-第一纳滤膜组件,3-半纤收集罐,4-电渗析提浓组件,5-滤出液收集罐,6-浓缩液收集罐,7-调配罐,8-除盐水罐,9-第二纳滤膜组件,10-浸渍罐,11-浸渍液调配罐,12-高浓碱液罐,13-溶解碱液调配罐,14-黄化机,15-低浓碱水罐,16-过滤器,17-污酸槽,18-板框式压滤机,19-净酸槽,20-第一酸浴输送泵,21-第二酸浴输送泵。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例1
如图1所示,一种粘胶纤维硫酸钠废液再生循环利用工艺,包括如下步骤:步骤1:固态硫酸钠的制备
纺丝酸浴产生酸浴回酸夜,其中包括硫酸和硫酸钠,通过过滤和脱气处理,再进入多 效蒸发浓缩系统进行蒸发浓缩后结晶离心得到固态硫酸钠,多效蒸发以及离心产生的硫酸用于纺丝酸浴工序中;
步骤2:硫酸钠的盐水调制和除杂
在调制容器中同时加入除盐水和固态硫酸钠进行搅拌,调制为浓度为15-30%的硫酸钠溶液,并通入预处理系统,通过预处理系统的过滤以及树脂吸附后去除硫酸钠溶液中的二价金属离子、细小纤维和单糖等,得到纯净的硫酸钠溶液并通入双极膜系统。
所述过滤和树脂吸附的具体步骤为:先向调制好的硫酸钠溶液中加入NaOH进行pH值调节,调至pH=8,将硫酸钠溶液中的锌离子最大化的沉淀,所述经过加入碳酸钠沉淀锌离子的硫酸钠溶液,经过一次初过滤,即一次板框过滤器,除去锌离子沉淀物,所述经过一次初过滤后的硫酸钠溶液,采用O 3氧化法去除硫酸钠溶液的还原性物质,所述经过O 3氧化去除还原性物质后的硫酸钠溶液经过二次板框过滤机进行过滤,可以有效地出去硫酸钠溶液中的大颗粒杂质,所述经过二次初过滤后的硫酸钠溶液再经过活性炭装置,可以有效去除有机物质以及一些细微颗粒,所述经过活性炭处理后的硫酸钠溶液经过离子交换树脂系统,去除溶液中的残余锌离子,使得二价金属离子对双极膜电渗析的影响降到最低;所述经过离子交换树脂系统的硫酸钠溶液再经过pp微孔过滤器精滤,即可得到符合进入双极膜电渗析膜组器指标的处理液。
步骤3:硫酸钠溶液的双极膜处理
硫酸钠溶液通过双极膜处理系统处理后得到碱液、硫酸溶液和含酸稀盐水,其中所述碱液的浓度为4-9%,所述硫酸溶液的浓度为4-9%,所述含酸稀盐水中,硫酸钠的浓度为8-15%,硫酸溶液的浓度为2-5%。
步骤4:碱液、硫酸溶液和含酸稀盐水的循环利用
1、双极膜处理后的碱液循环利用:
所述碱液的利用包括四条工艺分支,第一碱液利用分支为:通过纳滤膜处理后得到滤出碱液和浓缩碱液,所述滤出碱液,浓度为2-12%,直接通入碱液调配罐/碱站作为碱性除盐水配置碱浓,通入制胶工艺中的一次浸渍、二次浸渍和黄化工序中,所述浓缩碱液用于双极膜预处理和碱喷淋,第二碱液利用分支为:输送至纺丝精炼车间,作为丝条压洗的原料,第三碱液利用分支为:输送至碱液调制罐,作为双极膜预处理工序中的树脂再生的药剂,第四碱液利用分支,所述第四碱液利用分支为:双极膜碱液作为废胶的稀释液,用于回收废胶中的碱液,这样可以进一步减少整个系统中的碱液消耗。
所述浓缩碱液用于双极膜预处理,中和盐水中的酸,并将硫酸钠溶液的PH值调制到7-11;部分浓缩碱液还可用于碱喷淋系统,作为废气制酸的辅料使用,具体为粘胶纤维生产 酸浴工序中产生的硫化氢气体与纳滤后的浓缩碱液反应生成硫化钠和水,再使用双极膜系统产生的硫酸溶液溶解固态硫化钠,从而提取浓度较高的硫化氢气体,采用燃烧的办法作为制取硫酸的原料。
2、双极膜处理后的酸液循环利用:
所述硫酸溶液的利用包括两条工艺分支,第一酸液利用分支为:输送至纺丝精炼车间,作为丝条压洗的原料,第二酸液利用分支为:输送至酸液调制罐,作为双极膜预处理工序中的树脂再生的药剂,部分硫酸溶液输送至碱喷淋系统作为废气制酸的辅料使用。
3、双极膜处理后含酸稀盐水的循环利用:
所述含酸稀盐水进入多效蒸发工序,与经过滤、脱气后的酸浴回酸混合,填补纺丝过程中酸碱反应所消耗的硫酸;其中含酸淡盐水中的硫酸钠会随着浓酸结晶系统和离心机系统析出,再次用作双极膜预处理前端的原料使用;通过双极膜系统和粘胶短纤浓酸结晶系统的组合使用,能够将现有技术中双极膜硫酸钠利用率从50-65%提升至95%以上;能够有效降低短丝生产硫酸的能源消耗。
本发明能够实现粘胶纤维硫酸钠的完全循环处理,极大的降低了粘胶纤维生产过程中的酸、碱资源消耗;工艺简单,设备数量较少,具有良好的经济性,符合多数粘胶纤维企业的环保需求。
本发明通过多效蒸发、低温结晶和离心机来获得固态硫酸钠,通过结晶处理,硫酸钠的纯度得到一定的提高,固态硫酸钠再采用除盐水调制为浓度为15-30%的硫酸钠溶液,再进行过滤和树脂吸附除去硫酸钠溶液中的二价金属离子、细小纤维和单糖等,得到进一步纯化的硫酸钠溶液,从而有效减少硫酸钠中的杂质对双极膜的损害。
实施例2
本实施例与实施例1的区别在于,硫酸钠的除杂用的树脂吸附饱和后需要进行树脂复苏处理,所述树脂的复苏处理步骤包括:将吸附饱和后的树脂依次经过盐水置换、高压空气冲洗、酸洗、水洗和碱洗,所述酸洗所用的酸包括双极膜处理系统处理后得到的硫酸溶液,所述碱洗所用的碱包括双极膜处理系统处理后得到的碱液。
本发明树脂复苏工艺,采用盐水置换冲洗、高压空气冲洗、酸洗对吸附饱和的树脂进行处理,首先,盐水置换冲洗能够稀释树脂塔内的硫酸钠溶液的浓度,防止硫酸钠结晶附着在树脂表面,影响清洗,同时能够去除树脂表面附着的氢氧化钙、氢氧化锌、氢氧化镁等杂质,从而提高后续树脂复苏时离子交换速率;其次,高压空气冲洗,利用树脂、水、空气的相互摩擦和震荡作用,能够分离树脂表面的COD和硫酸钠溶液中的二价金属离子与氢氧化钠反应所产生的絮状物沉淀,从而为后续采用酸洗复苏再生树脂提供条件;最后, 用酸进行冲洗,利用酸液内部大量游离的氢离子来置换吸附饱和树脂基团内部的大量锌离子和少量钙镁离子,最后实现树脂的复苏(再生);由于盐水置换和高压空气冲洗,大大提高了氢离子与锌离子、钙镁离子的交换速率。
盐水置换具体为:将树脂塔内硫酸钠溶液排尽,并采用12-15m 3/小时的除盐水从树脂塔底部通入,冲洗树脂4-6小时,冲洗完成后保水。
高压空气冲洗具体为:采用空气压缩机将压缩后的空气通入树脂塔底部,树脂塔底部均布有3个进气口,内部分布有空气均匀分布器,空气压力2-4bar,通入时间为1.5小时,空气从树脂塔顶部排出。
酸洗具体为:采用双极膜出来的硫酸溶液,其浓度为4-9%,总量40-80m 3的硫酸溶液,以12-15m 3/小时速度从树脂塔底部通入,从顶部出水口排出,持续时间5-6小时。
酸洗后还包括水洗和碱洗。
水洗具体为:将树脂塔内的稀酸水排尽,采用12-15m 3/小时的除盐水从树脂塔底部通入,直至树脂塔出水至中性即可,需要约8小时。
碱洗具体为:采用双极膜处理后的碱液,其浓度为4-9%,总量为26-40m 3的氢氧化钠溶液,以12-15m 3/小时的速度从树脂塔底部通入,直到树脂塔内部PH调至9-10,完成树脂再生,需要约8小时。
实施例3
所述碱液经过纳滤膜处理后的滤出碱液,用于制胶工序的浸渍中,称为浸渍碱液,还需要进行除杂处理,所述除杂处理采用VCF过滤器对浸渍碱液进行过滤,所述VCF过滤器的滤芯上预敷一层纤维素层,所述纤维素层采用尺寸为40-60μm的植物纤维素。
本发明的浸渍碱液清洁方法,通过在VCF过滤器的滤芯上预敷一层纤维素层,能够大大的提高过滤精度,能够有效过滤碱液中的大颗粒,同时滤渣拆卸冲洗方便,无需人工操作,降低劳动强度,提高了效率,冲洗用水量少,滤渣为干饼,可降低排出废碱液,即经济又环保。
具体方法如下:1)向VCF过滤器中填充纤维素溶液直至内部气体全部被排出,持续流加纤维素溶液,纤维素对VCF过滤器的滤芯进行预涂;2)纤维素预涂完成之后,向VCF过滤器中通入需要过滤处理的浸渍碱液,直至浸渍碱液达到回用标准后排出。
步骤1)中首先将纤维素加入搅拌罐中与清水混合,然后将纤维素溶液流加入加料槽中,利用循环泵将纤维素溶液从加料槽中泵出打向过滤器进行预涂。
步骤2)中纤维素预涂完成之后,在VCF过滤器排出预敷水的同时通入待过滤碱液,利用碱将预敷的水置换除去,并开始碱液过滤。
在浸渍碱液过滤过程中,当VCF过滤器进液出液压差上升时,继续向VCF过滤器内流加纤维素重新建立纤维素层;当压差达到3.5bar或者流量低于40m 3/h时,过滤器停止碱液通入,利用压缩空气将VCF过滤器内液体压出,然后利用压缩空气从过滤器滤芯内部反吹,将附着在过滤器滤芯上的纤维素层震落,清洗后进入下一过滤周期。
本发明清洗方法的主要步骤如下:
1)调配预涂料:取清水加入纤维素滤材搅拌均匀;
2)预涂:对VCF滤机进行纤维素预涂;
3)置换顶水:尽量将多余水排出,并开始进碱过滤开始过滤,尽量用碱将预敷的水置换除去;
4)过滤:开始过滤,颗粒杂质被预涂层拦截,滤出液达到回用标准;
5)再涂:监测压差变化,在压差急剧上升时计量混入纤维素重新建立预涂层,减缓压差上升速度;
6)反吹出渣:当压差达到最大值时,进行气体反吹出渣;
7)清洗:清洗再生好的系统重新开始进行过滤。
实施例4
如图2所示,本实施例与实施例3的区别在于,所述碱液经过纳滤膜处理后的滤出碱液,用于制胶工序的浸渍和黄化工序中,浓度太稀,还需要进行提浓处理,所述提浓处理在提浓系统中进行,所述提浓系统包括初级提浓系统,所述初级提浓系统用于将废碱液提浓形成半纤和稀碱液,所述初级提浓系统包括用于储存废碱液的浓缩罐1,所述浓缩罐1与第一纳滤膜组件2的入口连接,所述第一纳滤膜组件2的滤出液出口端与滤出液收集罐5连接,所述第一纳滤膜组件2的浓缩液出口端与浓缩液收集罐6,所述浓缩液收集罐6与调配罐7连接,所述调配罐7与除盐水罐8连接,所述调配罐7与第二纳滤膜组件9的入口端连接,第二纳滤膜组件9半纤出口端和稀碱液出口端分别与半纤收集罐3和电渗析提浓组件4连接,所述低浓碱水罐15与浓缩罐1连接,还包括稀碱液处理系统,所述稀碱液处理系统包括电渗析提浓组件4,所述电渗析提浓组件4用于接收初级提浓系统处理后的稀碱液,所述电渗析提浓组件4的低浓碱水出口端与低浓碱水罐15连接,所述低浓碱水罐15与初级提浓系统的废碱液进入端连接,所述电渗析提浓组件4的高浓碱液出口端与高浓碱液罐12连接,所述高浓碱液罐12与浸渍液调配罐11和溶解碱液调配罐13连接,所述浸渍液调配罐11与浸渍罐10连接,所述浸渍罐10用于浸泡纤维,所述溶解碱液调配罐13与黄化机14连接,用于生产粘纤。
所述浓缩罐1与多个产生废碱液的系统连接;所述浓缩罐1内设置有搅拌装置;所述 调配罐7内设置有搅拌装置;所述电渗析提浓组件4并联设置有两个。
实施例5
如图3所示,本实施例与实施例1的区别在于,在纺丝酸浴工序中,还包括酸浴过滤处理,所述酸浴过滤处理后还需要对酸浴过滤器进行反洗处理,所述酸浴过滤器反洗装置包括过滤器16、污酸槽17、板框式压滤机18和净酸槽4,所述过滤器16的出口与污酸槽17的进口相连,所述污酸槽17的出口与板框式压滤机18的进口相连,所述板框式压滤机18的出口与净酸槽4的进口相连,所述净酸槽19的出口与过滤器16的进口相连。
所述过滤器16还包括第一进气口和第一出气口,所述第一进气口用于输送压缩空气,所述第一出气口用于输送反洗气体,所述反洗气体经废气处理装置碱喷淋吸收处理;所述反洗时放空过滤器16部分酸浴至过滤器16花板处,打开第一进气口将压缩空气通过进气管道输送到过滤器16中,搅动过滤器16丝束约30分钟后,关闭第一进气口,打开过滤器16第一出气口,将反洗气体通过第一出气口排放到大气中,打开第一液体出口将上述压缩空气搅动后的浑浊酸浴放空至污酸槽17。
所述污酸槽17通过第一酸浴输送泵20与板框式压滤机18连接;所述污酸槽17的浑浊酸浴通过第一酸浴输送泵20输送至板框式压滤机18过滤后得到透光度接近水的清洁酸浴。
所述净酸槽19通过第二酸浴输送泵21与过滤器16相连;所述洁酸浴进入净酸槽19,再通过第二酸浴输送泵21输送至过滤器16用于反洗过滤。
所述板框式压滤机18用于过滤浑浊酸浴;所述板框式压滤机18将浑浊酸浴过滤成透光度接近水的清洁酸浴。
所述污酸槽17用于存放浑浊酸浴。
操作过程:反洗时放空过滤器16部分酸浴至过滤器16花板处,打开压缩空气进气管道和过滤器16上脱气管道,搅动过滤器16丝束约30分钟后,关闭压缩空气进气管道,打开过滤器16放酸管道,将上述压缩空气搅动后的浑浊酸浴放空至污酸槽17,上述污酸槽17的浑浊酸浴通过泵输送至板框式压滤机18过滤后得到透光度接近水的清洁酸浴,上述清洁酸浴进入净酸槽19,再通过泵输送至过滤器16用于反洗过滤,如此形成一个闭环的反洗循环系统,实现反洗零排放。
实施例6
本实施例与实施例1的区别在于,所述双极膜系统采用市场上99%元明粉作为原料,经预处理后通入双极膜系统,制取酸碱,用于粘胶生产。
本发明中,双极膜处理后产生的碱液、硫酸溶液和稀盐水分别储存在各自的中间储罐 中,根据现场需要进行循环利用。
实施例7
基于实施例1-6,本实施例以生产100kg粘胶纤维为例,就酸浴工序中,使用82.13kg硫酸和73.17kg氢氧化钠,产生含有5g/L硫酸、260kg/L硫酸钠、0.4g/L硫酸锌、0.009g/L纤维素以及含量0.5g/L其他物质的硫酸钠废液,分别经过滤、脱气处理、多效蒸发浓缩、结晶离心、过滤、树脂吸附、双极膜处理、碱液再利用、硫酸溶液再利用和含酸稀盐水再利用。
涉及具体处理工艺如下:
1、在纺丝工序中,1090L粘胶在酸浴中消耗掉82.13kg硫酸,可以生产出100kg纤维。其中,会产生约119kg硫酸钠被酸浴带走,由于这部分硫酸钠改变了酸浴工艺,需要被提炼出来;
2、硫酸钠含量偏高的酸浴废液经过过滤除去固体颗粒杂质后,再经过脱气处理。酸浴废液经多效蒸发后,多余的硫酸钠以芒硝的形式通过离心机分离出来,分离出来的芒硝使用除盐水溶解后,得到含有5g/L硫酸、260kg/L硫酸钠、0.4g/L硫酸锌、0.009g/L纤维素以及0.5g/L其他物质的硫酸钠废液;
3、硫酸钠废液通过加入氢氧化钠调节pH到8-11,0.4g/L硫酸锌、0.009g/L纤维素以及0.5g/L其他物质(主要是钙、镁、铁等物质)的80%以沉淀形式沉淀,再经过滤后,拦截10-15%的上述物质;最后,经树脂塔吸附处理;
4、经树脂塔吸附处理后的精制硫酸钠溶液经过双极膜处理,生成质量分数为8%硫酸、质量分数为8%氢氧化钠和质量分数为5-13%的稀盐;
5、所得的硫酸、氢氧化钠溶液回到粘胶纤维产业循环使用,5-13%稀盐再补充至高浓度硫酸钠溶液中,后循环使用。
综上,100kg粘胶纤维生产过程中,可减排约119kg硫酸钠,同时可回用生产65kg氢氧化钠和55kg硫酸,即减排了硫酸钠,又可减少酸碱的采购。保证了成本节约,以及以废物创造经济价值的循环经济目的。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种粘胶纤维硫酸钠废液再生循环利用工艺,其特征在于,包括如下步骤:硫酸钠废液通过双极膜处理系统处理后得到碱液、硫酸溶液和含酸稀盐水,
    所述碱液的利用包括三条工艺分支,第一碱液利用分支为:通过纳滤膜处理后得到滤出碱液和浓缩碱液,将所述滤出碱液通入制胶工艺中的一次浸渍、二次浸渍和黄化工序中,将所述浓缩碱液用于双极膜预处理;第二碱液利用分支为:作为丝条压洗的原料;第三碱液利用分支为:作为双极膜预处理工序中的树脂再生的药剂;
    所述硫酸溶液的利用包括两条工艺分支,第一硫酸溶液利用分支为:作为丝条压洗的原料;第二硫酸溶液利用分支为:作为双极膜预处理工序中的树脂再生的药剂;第三硫酸溶液利用分支为:作为纺丝酸浴工序中硫酸的原料;
    所述含酸稀盐水返回多效蒸发浓缩工序。
  2. 根据权利要求1所述的一种粘胶纤维硫酸钠废液再生循环利用工艺,其特征在于,所述碱液的利用还包括第四碱液利用分支,所述第四碱液利用分支为:作为废胶的稀释液,用于回收废胶中的碱液。
  3. 根据权利要求1或2所述的一种粘胶纤维硫酸钠废液再生循环利用工艺,其特征在于,在经过双极膜处理系统处理之前,所述硫酸钠废液先进行盐水调制和预处理,盐水调制后,硫酸钠的浓度为15-30%;所述预处理包括依次进行的过滤和树脂吸附处理。
  4. 根据权利要求3所述的一种粘胶纤维硫酸钠废液再生循环利用工艺,其特征在于,所述硫酸钠废液在经盐水调制前,还包括固态硫酸钠的制备,具体步骤包括:纺丝酸浴工序中,酸和碱反应生成大量的含酸硫酸钠废液,所述含酸硫酸钠废液经过多效蒸发浓缩、低温结晶和离心处理,得到固态硫酸钠。
  5. 根据权利要求3所述的一种粘胶纤维硫酸钠废液再生循环利用工艺,其特征在于,树脂吸附饱和后,需要进行树脂复苏处理,所述树脂复苏处理步骤包括:将吸附饱和后的树脂依次经过盐水置换、高压空气冲洗、酸洗、水洗和碱洗,所述酸洗所用的酸包括经双极膜处理系统处理后得到的硫酸溶液,所述碱洗所用的碱包括经双极膜处理系统处理后得到的碱液。
  6. 根据权利要求1或2所述的一种粘胶纤维硫酸钠废液再生循环利用工艺,其特征在于,所述滤出碱液还需要进行除杂处理,所述除杂处理采用VCF过滤器(16)对浸渍碱液进行过滤,所述VCF过滤器(16)的滤芯上预敷一层纤维素层,所述纤维素层采用尺寸为40-60μm的植物纤维素。
  7. 根据权利要求1或2所述的一种粘胶纤维硫酸钠废液再生循环利用工艺,其特征在于,所述滤出碱液还包括提浓处理,所述提浓处理后的浓碱液用于所述一次浸渍、二次浸 渍以及黄化工序。
  8. 根据权利要求7所述的一种粘胶纤维硫酸钠废液再生循环利用工艺,其特征在于,所述提浓处理在提浓处理系统中进行,所述提浓处理系统包括初级提浓系统,所述初级提浓系统用于将滤出碱液提浓形成半纤和稀碱液;所述提浓处理系统还包括稀碱液处理系统,所述稀碱液处理系统包括电渗析提浓组件(4),所述电渗析提浓组件(4)用于接收经初级提浓系统处理后的稀碱液,所述电渗析提浓组件(4)的低浓碱水出口端与低浓碱水罐(15)连接,所述低浓碱水罐(15)与初级提浓系统的稀碱液进入端连接,所述电渗析提浓组件(4)的高浓碱液出口端与高浓碱液罐(12)连接,所述高浓碱液罐(12)与浸渍液调配罐(11)和溶解碱液调配罐(13)连接。
  9. 根据权利要求1或2所述的一种粘胶纤维硫酸钠废液再生循环利用工艺,其特征在于,纺丝酸浴工序中,还包括酸浴过滤处理,经所述酸浴过滤处理后还需要对酸浴过滤器(16)进行反洗处理。
  10. 根据权利要求9所述的一种粘胶纤维硫酸钠废液再生循环利用工艺,其特征在于,所述反洗处理在过滤器反洗装置中进行,所述过滤器反洗装置包括过滤器(16)、污酸槽(17)、板框式压滤机(18)和净酸槽(19),所述过滤器(16)包括第一液体出口和第一液体进口,所述过滤器(16)的第一液体出口与污酸槽(17)的进口相连,所述污酸槽(17)的出口与板框式压滤机(18)的进口相连,所述板框式压滤机(18)的出口与净酸槽(19)的进口相连,所述净酸槽(19)的出口与过滤器(16)的第一液体进口相连。
PCT/CN2021/114183 2020-12-28 2021-08-24 粘胶纤维硫酸钠废液再生循环利用工艺 WO2022142397A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011583030.1 2020-12-28
CN202011583030.1A CN112725942A (zh) 2020-12-28 2020-12-28 一种粘胶纤维硫酸钠废液再生循环利用工艺

Publications (1)

Publication Number Publication Date
WO2022142397A1 true WO2022142397A1 (zh) 2022-07-07

Family

ID=75606613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114183 WO2022142397A1 (zh) 2020-12-28 2021-08-24 粘胶纤维硫酸钠废液再生循环利用工艺

Country Status (2)

Country Link
CN (1) CN112725942A (zh)
WO (1) WO2022142397A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115677797A (zh) * 2022-10-27 2023-02-03 四川雅华生物有限公司 一种适用于以半纤维素制备木糖的四膜法联合工艺
CN116832601A (zh) * 2023-07-27 2023-10-03 新乡化纤股份有限公司 一种粘胶纤维行业锅炉烟气、压洗废水的综合处理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725942A (zh) * 2020-12-28 2021-04-30 宜宾丝丽雅股份有限公司 一种粘胶纤维硫酸钠废液再生循环利用工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294316A (en) * 1989-10-31 1994-03-15 Lenzing Aktiengesellschaft Process and apparatus for electrodialysis of an alkali sulfate containing aqueous solution
CN103343403A (zh) * 2013-07-24 2013-10-09 宜宾海翔化工有限责任公司 一种粘胶纤维硫酸钠废液经双极膜电渗析法回收酸碱的工艺
CN105110521A (zh) * 2015-08-25 2015-12-02 杭州蓝然环境技术有限公司 一种脱硫废水的循环利用方法
CN108927004A (zh) * 2018-07-28 2018-12-04 宁波和源环境治理有限责任公司 一种用双极膜电渗析法使芒硝转换成酸和碱的新工艺
CN109133447A (zh) * 2018-11-06 2019-01-04 宜宾海丝特纤维有限责任公司 一种粘胶废液的在线监测系统及方法
CN112725942A (zh) * 2020-12-28 2021-04-30 宜宾丝丽雅股份有限公司 一种粘胶纤维硫酸钠废液再生循环利用工艺

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102380252B (zh) * 2011-08-02 2013-11-27 山东雅美科技有限公司 一种丝束过滤器反洗水减排的方法
CN103341321A (zh) * 2013-07-24 2013-10-09 宜宾海翔化工有限责任公司 粘胶纤维硫酸钠废液经双极膜电渗析法回收酸碱的工艺
CN103397405B (zh) * 2013-07-24 2015-07-01 宜宾海丝特纤维有限责任公司 一种粘胶纤维生产中压榨液电渗析碱回收的预处理工艺
CN103388198B (zh) * 2013-07-24 2016-05-25 宜宾海翔化工有限责任公司 一种双极膜电渗析法从粘胶纤维硫酸钠废液制取酸碱的方法
CN105126402B (zh) * 2015-09-22 2016-06-08 九江恒生化纤股份有限公司 一种自动反洗的板框过滤机
CN106868635A (zh) * 2015-12-10 2017-06-20 宜宾丝丽雅集团有限公司 粘胶纤维生产中酸浴废水的电驱动膜处理工艺
CN109133448B (zh) * 2018-11-06 2023-08-25 宜宾海丝特纤维有限责任公司 一种粘胶废液的循环环保处理工艺及系统
CN109160644B (zh) * 2018-11-06 2023-08-22 宜宾海丝特纤维有限责任公司 一种粘胶废液环保处理系统的在线清洗方法及系统
CN109970274B (zh) * 2019-03-29 2021-12-28 杭州蓝然环境技术股份有限公司 一种处理粘胶纤维行业酸性废水和碱性废水的方法
CN112758957A (zh) * 2020-12-28 2021-05-07 宜宾丝丽雅股份有限公司 一种电渗析提纯氢氧化钠浓度的工艺
CN112853550A (zh) * 2020-12-28 2021-05-28 宜宾丝丽雅股份有限公司 一种碱液循环使用的处理方法
CN214389618U (zh) * 2020-12-28 2021-10-15 宜宾丝丽雅股份有限公司 一种电渗析提浓碱液回用处理系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294316A (en) * 1989-10-31 1994-03-15 Lenzing Aktiengesellschaft Process and apparatus for electrodialysis of an alkali sulfate containing aqueous solution
CN103343403A (zh) * 2013-07-24 2013-10-09 宜宾海翔化工有限责任公司 一种粘胶纤维硫酸钠废液经双极膜电渗析法回收酸碱的工艺
CN105110521A (zh) * 2015-08-25 2015-12-02 杭州蓝然环境技术有限公司 一种脱硫废水的循环利用方法
CN108927004A (zh) * 2018-07-28 2018-12-04 宁波和源环境治理有限责任公司 一种用双极膜电渗析法使芒硝转换成酸和碱的新工艺
CN109133447A (zh) * 2018-11-06 2019-01-04 宜宾海丝特纤维有限责任公司 一种粘胶废液的在线监测系统及方法
CN112725942A (zh) * 2020-12-28 2021-04-30 宜宾丝丽雅股份有限公司 一种粘胶纤维硫酸钠废液再生循环利用工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115677797A (zh) * 2022-10-27 2023-02-03 四川雅华生物有限公司 一种适用于以半纤维素制备木糖的四膜法联合工艺
CN116832601A (zh) * 2023-07-27 2023-10-03 新乡化纤股份有限公司 一种粘胶纤维行业锅炉烟气、压洗废水的综合处理方法

Also Published As

Publication number Publication date
CN112725942A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2022142397A1 (zh) 粘胶纤维硫酸钠废液再生循环利用工艺
CN106145496B (zh) 黏胶纤维酸性废水的综合利用工艺
CN101503353B (zh) 碱减量废水回收粗对苯二甲酸的纯化工艺
CN109133448B (zh) 一种粘胶废液的循环环保处理工艺及系统
CN105692989B (zh) 黏胶纤维酸性废水的综合利用工艺
CN103388198B (zh) 一种双极膜电渗析法从粘胶纤维硫酸钠废液制取酸碱的方法
CN108927004A (zh) 一种用双极膜电渗析法使芒硝转换成酸和碱的新工艺
CN211770721U (zh) 一种用于粘胶纤维生产中硫酸钠废液的精制系统
CN103341320A (zh) 粘胶纤维硫酸钠废液经双极膜电渗析法回收酸碱的新工艺
CN109293112B (zh) 一种粘胶纤维酸性废水资源化利用的处理方法
CN106564987B (zh) 从含钨稀溶液废水中回收钨的离子交换工艺
CN109970274A (zh) 一种处理粘胶纤维行业酸性废水和碱性废水的方法
CN107500464A (zh) 一种处理粘胶纤维工厂酸性废水的方法
CN103341321A (zh) 粘胶纤维硫酸钠废液经双极膜电渗析法回收酸碱的工艺
CN107686204B (zh) 一种处理粘胶纤维酸性废水过程中的热能综合利用的方法
CN108927003A (zh) 一种用双极膜电渗析法使芒硝转换成酸和碱的预处理工艺
CN104150519B (zh) 一种利用硫酸钠废液制备硫酸钡和碳酸钠的方法
CN100386475C (zh) 电镀镍清洗水综合利用技术
CN205151980U (zh) 一种电镀废水零排放处理装置
CN109019987A (zh) 一种印染废水的高效回收方法
CN103341322A (zh) 一种双极膜电渗析法从粘胶纤维硫酸钠废液制取酸碱的预处理方法
CN109160644B (zh) 一种粘胶废液环保处理系统的在线清洗方法及系统
CN103343403B (zh) 一种粘胶纤维硫酸钠废液经双极膜电渗析法回收酸碱的工艺
CN205258348U (zh) 一种二甲酚生产过程中的除盐装置
CN211198622U (zh) 一种用于粘胶纤维生产中硫酸钠和硫酸的分离系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913144

Country of ref document: EP

Kind code of ref document: A1