WO2022142133A1 - 一种制动能量回收与辅助驱动的控制方法及控制系统 - Google Patents

一种制动能量回收与辅助驱动的控制方法及控制系统 Download PDF

Info

Publication number
WO2022142133A1
WO2022142133A1 PCT/CN2021/098318 CN2021098318W WO2022142133A1 WO 2022142133 A1 WO2022142133 A1 WO 2022142133A1 CN 2021098318 W CN2021098318 W CN 2021098318W WO 2022142133 A1 WO2022142133 A1 WO 2022142133A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
engine
vehicle
energy recovery
semi
Prior art date
Application number
PCT/CN2021/098318
Other languages
English (en)
French (fr)
Inventor
罗公祥
张蒙
包寿红
王兵
Original Assignee
上海锣响汽车集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海锣响汽车集团有限公司 filed Critical 上海锣响汽车集团有限公司
Publication of WO2022142133A1 publication Critical patent/WO2022142133A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D53/00Tractor-trailer combinations; Road trains
    • B62D53/04Tractor-trailer combinations; Road trains comprising a vehicle carrying an essential part of the other vehicle's load by having supporting means for the front or rear part of the other vehicle
    • B62D53/06Semi-trailers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K2025/005Auxiliary drives driven by electric motors forming part of the propulsion unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/28Trailers

Definitions

  • the present application relates to the field of new energy vehicles, and in particular, to a control method and control system for braking energy recovery and auxiliary driving.
  • China's new energy vehicle market is basically new energy passenger cars and passenger cars, and there are few new energy heavy trucks.
  • heavy-duty truck manufacturers on the one hand, it is necessary to cope with the increasingly stringent environmental protection requirements and continuously improve the emission upgrade of diesel vehicles.
  • the purpose of the present invention is to provide a control method and control system for braking energy recovery and auxiliary driving, which can control the power part of the semi-trailer to perform auxiliary driving and/or braking in combination with the information of the semi-trailer while determining the running state of the whole vehicle.
  • Kinetic energy recovery and auxiliary drive can improve the engine operating conditions of the power part of the tractor, and braking energy recovery can achieve energy saving and emission reduction.
  • a first aspect of the present invention provides a control method for braking energy recovery and auxiliary driving, which is applied to a semi-trailer vehicle.
  • the semi-trailer vehicle includes a power part of a tractor and a power part of a semi-trailer.
  • the method includes:
  • the vehicle information and engine information determine the vehicle running status
  • the power part of the semi-trailer is controlled to perform auxiliary driving and/or braking energy recovery.
  • the power part of the tractor includes an engine, a brake, a gear shifter, a steering gear and a reversing switch
  • the power part of the semi-trailer includes a battery unit, a motor unit and a brake management unit BMU manager,
  • the BMU manager monitors the engine, brakes, gear shifter, steering gear and reverse switch, and obtains vehicle information and engine information.
  • Vehicle information includes at least one of brake information, gear shifter information, steering gear information and reverse switch information. ;
  • the BMU manager monitors the battery unit and the motor unit, and obtains the semi-trailer information.
  • the semi-trailer information includes battery information and motor information.
  • control the power part of the semi-trailer to perform auxiliary driving and/or braking energy recovery according to the running state of the whole vehicle and the information of the semi-trailer including:
  • the BMU manager calculates the starting auxiliary driving torque value according to the preset vehicle demand and battery information, and controls the motor unit to output the starting auxiliary driving torque to perform the starting auxiliary driving, so that the engine is in the optimal state work point;
  • the BMU manager calculates the passive auxiliary driving torque value according to the engine information, battery information and engine operating point, and controls the motor unit to output the passive auxiliary driving torque for passive auxiliary driving;
  • the BMU manager calculates the active auxiliary driving torque value and the active braking energy recovery torque value according to the engine information, battery information and engine operating point, and controls the motor unit to output the active auxiliary Driving torque and active braking energy recovery torque, active auxiliary driving and active braking energy recovery, so as to adjust the engine operating point and charge the battery unit;
  • the BMU manager calculates the passive braking energy recovery power according to the brake information, battery information and motor information, and controls the motor unit and the battery unit according to the passive braking energy recovery power. Perform passive braking energy recovery.
  • the method also includes:
  • the BMU manager controls the power part of the semi-trailer not to perform active/passive auxiliary driving and active/passive braking energy recovery.
  • the power part of the tractor includes an engine controller, an engine, a brake, a shifter, a steering gear and a reverse switch
  • the power part of the semi-trailer includes a battery unit, a motor unit and a brake management unit BMU manager,
  • the engine controller monitors the engine, brakes, gear shifter, steering gear and reversing switch, and obtains vehicle information and engine information, and the vehicle information includes at least one of brake information, gear shifter information, steering gear information and reversing switch information ;
  • the engine controller monitors the battery unit and the motor unit through the BMU manager, and obtains the semi-trailer information.
  • the semi-trailer information includes battery information and motor information.
  • control the power part of the semi-trailer to perform auxiliary driving and/or braking energy recovery according to the running state of the whole vehicle and the information of the semi-trailer including:
  • the engine controller calculates the starting auxiliary driving torque value according to the preset vehicle demand and battery information, and sends the starting auxiliary driving torque value to the BMU manager, so that the BMU manager controls the output of the motor unit. Start assist drive torque, start assist drive, so that the engine is at the optimal working point;
  • the engine controller calculates the passive auxiliary driving torque value according to the engine information, battery information and engine operating point, and sends the passive auxiliary driving torque value to the BMU manager, so that the BMU management
  • the controller controls the motor unit to output passive auxiliary drive torque for passive auxiliary drive;
  • the engine controller calculates the active auxiliary driving torque value and the active braking energy recovery torque value according to the engine information, battery information and engine operating point, and sends the active auxiliary driving torque value to the BMU manager.
  • the auxiliary driving torque value and the active braking energy recovery torque value make the BMU manager control the motor unit to output the active auxiliary driving torque and active braking energy recovery torque, and perform active auxiliary driving and active braking energy recovery, so as to adjust the engine operating point and charge the battery cells;
  • the engine controller calculates the passive braking energy recovery power according to the brake information, battery information and motor information, and sends the passive braking energy recovery power to the BMU manager, so that The BMU manager controls the motor unit and the battery unit for passive braking energy recovery according to the passive braking energy recovery power.
  • the method also includes:
  • the engine controller controls the power part of the semi-trailer not to perform active/passive auxiliary driving and active/passive braking energy recovery.
  • a second aspect of the present invention provides a control system for braking energy recovery and auxiliary driving, which is applied to a semi-trailer vehicle.
  • the semi-trailer vehicle includes a tractor power part and a semi-trailer power part, including:
  • the brake energy recovery and auxiliary drive manager is used to obtain the vehicle information and engine information of the power part of the tractor, and the semi-trailer information of the power part of the semi-trailer. Vehicle running status and semi-trailer information, control the semi-trailer power part for auxiliary drive and/or braking energy recovery.
  • the power part of the tractor includes engine, brake, gear shifter, steering gear and reverse switch
  • the power part of the semi-trailer includes battery unit, motor unit and brake management unit BMU manager, brake energy recovery and auxiliary drive manager is the BMU manager;
  • the BMU manager is used to monitor the engine, brakes, gear shifter, steering gear and reverse switch, and obtain vehicle information and engine information.
  • Vehicle information includes brake information, gear shifter information, steering gear information and reverse switch information. at least one;
  • the BMU manager is also used to monitor the battery unit and the motor unit, and obtain the semi-trailer information, which includes battery information and motor information;
  • the BMU manager is also used to calculate the starting auxiliary driving torque value according to the preset vehicle demand and battery information when the running state of the whole vehicle is the starting state, and control the motor unit to output the starting auxiliary driving torque to perform the starting auxiliary driving, so that the starting auxiliary driving is performed.
  • the engine is at the optimal operating point;
  • the BMU manager is also used to calculate the passive auxiliary driving torque value according to the engine information, battery information and engine operating point when the running state of the whole vehicle is in the forward state and accelerate the driving, and control the motor unit to output the passive auxiliary driving torque.
  • passive auxiliary drive
  • the BMU manager is also used to calculate the active auxiliary driving torque value and active braking energy recovery torque value according to the engine information, battery information and engine operating point when the vehicle is running at a forward state and driving at a constant speed to control the motor.
  • the unit outputs active auxiliary driving torque and active braking energy recovery torque, and performs active auxiliary driving and active braking energy recovery, so as to adjust the engine operating point and charge the battery unit;
  • the BMU manager is also used to calculate the passive braking energy recovery power according to the brake information, battery information and motor information when the vehicle is running in the forward state and braking, and control the motor according to the passive braking energy recovery power.
  • the unit and the battery unit perform passive braking energy recovery.
  • the BMU manager is also used to control the power part of the semi-trailer not to perform active/passive auxiliary driving and active/passive braking energy recovery when the vehicle is running in a forward state and decelerating, parking or reversing.
  • the power part of the tractor includes an engine controller, an engine, a brake, a gear shifter, a steering gear and a reversing switch
  • the power part of the semi-trailer includes a battery unit, a motor unit and a brake management unit BMU manager.
  • the auxiliary drive manager is the engine controller;
  • the engine controller is used to monitor the engine, brakes, gear shifter, steering gear and reversing switch, and obtain vehicle information and engine information.
  • Vehicle information includes brake information, gear shifter information, steering gear information and reversing switch information. at least one;
  • the engine controller is also used to monitor the battery unit and the motor unit through the BMU manager, and obtain the semi-trailer information.
  • the semi-trailer information includes battery information and motor information;
  • the engine controller is also used to calculate the starting auxiliary driving torque value according to the preset vehicle demand and battery information when the running state of the whole vehicle is the starting state, and send the starting auxiliary driving torque value to the BMU manager, so that the BMU manager can obtain the starting auxiliary driving torque value.
  • Control the motor unit to output the starting auxiliary driving torque to carry out the starting auxiliary driving, so that the engine is at the optimal working point;
  • the engine controller is also used to calculate the passive auxiliary driving torque value according to the engine information, battery information and engine operating point when the running state of the whole vehicle is in the forward state and accelerate driving, and send the passive auxiliary driving torque value to the BMU manager. , so that the BMU manager controls the motor unit to output passive auxiliary drive torque for passive auxiliary drive;
  • the engine controller is also used to calculate the active auxiliary driving torque value and the active braking energy recovery torque value according to the engine information, battery information and engine operating point when the running state of the whole vehicle is in the forward state and driving at a constant speed, and send it to the BMU.
  • the manager sends the active auxiliary driving torque value and the active braking energy recovery torque value, so that the BMU manager controls the motor unit to output the active auxiliary driving torque and active braking energy recovery torque, and performs active auxiliary driving and active braking energy recovery.
  • the engine controller is also used to calculate the passive braking energy recovery power according to the brake information, battery information and motor information when the running state of the whole vehicle is in the forward state and braking, and send the passive braking energy to the BMU manager. Recover power, so that the BMU manager controls the motor unit and battery unit to recover passive braking energy according to the passive braking energy recovery power;
  • the engine controller is also used to control the power part of the semi-trailer not to perform active/passive auxiliary driving and active/passive braking energy recovery when the vehicle is running in a forward state and decelerating, parking or reversing.
  • the present invention is applied to a semi-trailer vehicle having a power part of a tractor and a power part of a semi-trailer, to obtain the vehicle information and engine information of the power part of the tractor, and the semi-trailer information of the power part of the semi-trailer, according to the vehicle information and engine information, determine the running state of the whole vehicle, and control the power part of the semi-trailer to perform auxiliary driving and/or braking energy recovery according to the running state of the whole vehicle and the information of the semi-trailer.
  • the existing pure electric semi-trailer vehicle can control the power part of the semi-trailer to perform auxiliary driving and/or braking energy recovery while determining the running state of the whole vehicle, combined with the information of the semi-trailer, and the auxiliary driving can improve the power of the tractor.
  • Part of the engine operating conditions, and braking energy recovery can achieve energy saving and emission reduction.
  • FIG. 1 is a schematic flowchart of an embodiment of a control method for braking energy recovery and auxiliary driving provided by the present invention
  • FIG. 2 is a schematic flowchart of another embodiment of the control method for braking energy recovery and auxiliary driving provided by the present invention
  • FIG. 3 is a schematic flowchart of another embodiment of the control method for braking energy recovery and auxiliary driving provided by the present invention.
  • FIG. 4 is a schematic structural diagram of an embodiment of a control system for braking energy recovery and auxiliary driving provided by the present invention
  • FIG. 5 is a schematic structural diagram of another embodiment of the control system for braking energy recovery and auxiliary driving provided by the present invention.
  • FIG. 6 is a schematic structural diagram of another embodiment of the control system for braking energy recovery and auxiliary driving provided by the present invention.
  • the application discloses a control method and control system for braking energy recovery and auxiliary driving, which can control the power part of the semi-trailer to perform auxiliary driving and/or braking energy recovery in combination with the information of the semi-trailer while determining the running state of the whole vehicle , the auxiliary drive can improve the engine condition of the power part of the tractor, and the braking energy recovery can realize energy saving and emission reduction.
  • the terms "connected”, “fixed” and the like should be understood in a broad sense, for example, “fixed” may be a fixed connection, a detachable connection, or an integrated; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal communication between two elements or an interaction relationship between the two elements, unless otherwise explicitly defined.
  • “fixed” may be a fixed connection, a detachable connection, or an integrated; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal communication between two elements or an interaction relationship between the two elements, unless otherwise explicitly defined.
  • an embodiment of the present invention provides a control method for braking energy recovery and auxiliary driving, including:
  • the semi-trailer is composed of a tractor part and a semi-trailer part, the tractor part has a tractor power part, the semi-trailer part has a semi-trailer power part, and the engine is installed in the tractor power part, Then, by monitoring each device and engine in the power part of the tractor, the vehicle information and engine information of the power part of the tractor can be obtained, and the information of the semi-trailer can be obtained by monitoring each device of the power part of the semi-trailer.
  • the vehicle information affects the operation of the semi-trailer vehicle.
  • the vehicle operation status can be determined by combining the vehicle information and the engine information.
  • the vehicle information may be brakes, gear shifters, steering
  • the running state of the vehicle can be in various states, such as starting state, accelerating driving in the forward state, driving at a constant speed in the forward state, braking driving in the forward state, decelerating driving in the forward state, parking state or reversing state, etc.
  • the power part of the semi-trailer can provide auxiliary driving, the engine operating condition can be improved, and because the power part of the semi-trailer uses Therefore, according to different vehicle operating states and semi-trailer information, the power part of the semi-trailer can be controlled to perform auxiliary driving and/or braking energy recovery.
  • the whole vehicle information and engine information of the power part of the tractor and the semi-trailer information of the power part of the semi-trailer are obtained.
  • Engine information determine the running state of the whole vehicle, and control the power part of the semi-trailer to perform auxiliary driving and/or braking energy recovery according to the running state of the whole vehicle and the semi-trailer information.
  • the existing pure electric semi-trailer vehicle can control the power part of the semi-trailer to perform auxiliary driving and/or braking energy recovery while determining the running state of the whole vehicle, combined with the information of the semi-trailer, and the auxiliary driving can improve the power of the tractor.
  • Part of the engine operating conditions, and braking energy recovery can achieve energy saving and emission reduction.
  • the main body that performs braking energy recovery and auxiliary driving does not specify which power part of the semi-trailer is in. Specifically, it can be controlled by the power part of the semi-trailer, or it can be controlled by the semi-trailer power part. It is controlled by the power part of the tractor, which will be described in detail below through embodiments.
  • the power part of the semi-trailer is used as the main control of braking energy recovery and auxiliary drive;
  • an embodiment of the present invention provides a control method for braking energy recovery and auxiliary driving, including:
  • the BMU manager monitors the engine, brakes, gear shifter, steering gear and reversing switch, and obtains vehicle information and engine information, and the vehicle information includes at least one of brake information, gear shifter information, steering gear information and reversing switch information.
  • the power part of the tractor includes an engine, a brake, a gear shifter, a steering gear and a reverse switch
  • the power part of the semi-trailer includes a battery unit, a motor unit and a Brake Management Unit (BMU) manager.
  • the BMU The manager monitors each device to obtain vehicle information and engine information, and the vehicle information includes at least one of brake information, gear shifter information, steering gear information and reversing switch information.
  • the battery unit may specifically be a power battery
  • the motor unit may specifically include a motor controller, a motor, etc.
  • the power part of the semi-trailer may also include a display, a cooling system, a mode switch, and the like.
  • the BMU manager monitors the battery unit and the motor unit, and obtains the semi-trailer information, and the semi-trailer information includes battery information and motor information;
  • the BMU manager monitors the battery unit and the motor unit to obtain semi-trailer information, and the semi-trailer information includes battery information and motor information.
  • the BMU manager determines the running state of the vehicle according to the vehicle information and engine information;
  • the brake information, gear shifter information, steering gear information and reversing switch information in the overall information, as well as the engine information, it can be judged that the running state of the whole vehicle is the starting state, the acceleration driving in the forward state, and the uniform speed in the forward state.
  • the BMU manager calculates the starting auxiliary driving torque value according to the preset vehicle demand and battery information, controls the motor unit to output the starting auxiliary driving torque, and performs the starting auxiliary driving, so that the engine is in the starting position. optimal working point;
  • the BMU manager calculates and obtains the starting auxiliary driving torque value according to the preset vehicle demand and battery information.
  • the preset vehicle demand is set according to the requirements of the vehicle's power performance and economic performance, and the battery information is specifically the temperature and state of charge (SOC) of the power battery.
  • the control motor unit outputs the starting auxiliary driving torque according to the starting auxiliary driving torque value, and performs the starting auxiliary driving, so that the engine is at the optimal working point.
  • the BMU manager calculates and obtains the passive auxiliary driving torque value according to the engine information, battery information and engine operating point, and controls the motor unit to output the passive auxiliary driving torque for passive auxiliary driving. drive;
  • the passive auxiliary driving torque value is calculated and obtained according to the engine information, battery information and engine operating point.
  • the engine information may specifically be the accelerator, torque, rotational speed, etc.
  • the battery information may specifically be the SOC, and the motor unit is controlled to output the passive auxiliary driving torque according to the passive auxiliary driving torque value to perform the passive auxiliary driving.
  • the BMU manager calculates the active auxiliary driving torque value and the active braking energy recovery torque value according to the engine information, battery information and engine operating point, and controls the output of the motor unit. Active auxiliary driving torque and active braking energy recovery torque, active auxiliary driving and active braking energy recovery, so as to adjust the engine operating point and charge the battery unit;
  • the BMU manager calculates the active auxiliary driving torque value and the active braking energy recovery torque value according to the engine information, battery information and engine operating point, and the engine
  • the information can be throttle, torque, speed, etc.
  • the battery information can be SOC.
  • the motor unit is controlled to output the active auxiliary driving torque according to the active auxiliary driving torque value, and the active auxiliary driving is performed, and the motor unit is controlled to recover the torque value according to the active braking energy. Active braking energy recovery to adjust the engine operating point and charge the battery cells.
  • the BMU manager calculates the passive braking energy recovery power according to the brake information, battery information and motor information, and controls the motor unit and the motor according to the passive braking energy recovery power.
  • the battery unit performs passive braking energy recovery;
  • the BMU manager calculates and obtains the passive braking energy recovery power according to the brake information, battery information and motor information.
  • the brake information specifically includes the brake pedal, Wheel cylinder pressure, vehicle speed and other information
  • battery information specifically includes SOC, temperature, electronic control and other information
  • motor information specifically includes motor speed and other information.
  • the motor unit and the battery unit are controlled to perform passive braking energy recovery.
  • the BMU manager controls the power part of the semi-trailer not to perform active/passive auxiliary driving and active/passive braking energy recovery.
  • the BMU manager controls the power part of the semi-trailer not to perform active/passive auxiliary drive and active/passive braking energy recovery.
  • the power part of the tractor is used as the main control of braking energy recovery and auxiliary drive.
  • an embodiment of the present invention provides a control method for braking energy recovery and auxiliary driving, including:
  • the engine controller monitors the engine, brakes, gear shifter, steering gear and reversing switch, and obtains vehicle information and engine information, and the vehicle information includes at least one of brake information, gear shifter information, steering gear information and reversing switch information.
  • the power part of the tractor includes an engine, a brake, a gear shifter, a steering gear and a reversing switch
  • the power part of the semi-trailer includes a battery unit, a motor unit and a BMU manager.
  • the engine controller monitors each device and obtains vehicle information and engine information, the vehicle information includes at least one of brake information, gear shifter information, steering gear information and reverse switch information.
  • the battery unit may specifically be a power battery
  • the motor unit may specifically include a motor controller, a motor, etc.
  • the power part of the semi-trailer may also include a display, a cooling system, a mode switch, and the like.
  • the engine controller monitors the battery unit and the motor unit through the BMU manager, and obtains the semi-trailer information, and the semi-trailer information includes battery information and motor information;
  • the engine controller obtains the semi-trailer information by monitoring the battery unit and the motor unit through the BMU manager, and the semi-trailer information includes battery information and motor information.
  • the engine controller determines the running state of the entire vehicle according to the vehicle information and the engine information;
  • the engine controller can determine whether the running state of the whole vehicle is the start state, the forward state, acceleration driving, Driving at a constant speed in the forward state, braking in the forward state, decelerating in the forward state, parking or reversing.
  • the engine controller calculates and obtains the starting auxiliary driving torque value according to the preset vehicle demand and battery information, and sends the starting auxiliary driving torque value to the BMU manager, so that the BMU manager controls the motor.
  • the unit outputs the starting auxiliary driving torque to carry out the starting auxiliary driving, so that the engine is at the optimal working point;
  • the engine controller calculates and obtains the starting auxiliary driving torque value according to the preset vehicle demand and battery information.
  • the preset vehicle demand is set according to the requirements of the vehicle power performance and economic performance, and the battery information is specifically the temperature and SOC of the power battery.
  • the engine controller sends the starting auxiliary driving torque value to the BMU manager, so that the BMU manager controls the motor unit to output the starting auxiliary driving torque to perform the starting auxiliary driving, so that the engine is at the optimal working point.
  • the engine controller calculates the passive auxiliary driving torque value according to the engine information, battery information and engine operating point, and sends the passive auxiliary driving torque value to the BMU manager, so that the passive auxiliary driving torque value is sent to the BMU manager.
  • the BMU manager controls the motor unit to output passive auxiliary drive torque for passive auxiliary drive;
  • the engine controller calculates the passive auxiliary driving torque value according to the engine information, the battery information and the engine operating point.
  • the battery information may specifically be the SOC, and the passive auxiliary driving torque value is sent to the BMU manager, so that the BMU manager controls the motor unit to output the passive auxiliary driving torque for passive auxiliary driving.
  • the engine controller calculates the active auxiliary driving torque value and the active braking energy recovery torque value according to the engine information, battery information and engine operating point, and reports it to the BMU manager. Send the active auxiliary driving torque value and the active braking energy recovery torque value, so that the BMU manager controls the motor unit to output the active auxiliary driving torque and active braking energy recovery torque, perform active auxiliary driving and active braking energy recovery, so as to adjust the engine work point and charge the battery unit;
  • the engine controller calculates the active auxiliary driving torque value and the active braking energy recovery torque value according to the engine information, battery information and engine operating point, and the engine
  • the information can be throttle, torque, speed, etc.
  • the battery information can be SOC.
  • the active auxiliary driving torque value and the active braking energy recovery torque value are sent to the BMU manager, so that the BMU manager controls the motor unit to output the active auxiliary driving torque and Active braking energy recovery torque, active auxiliary drive and active braking energy recovery, so as to adjust the engine operating point and charge the battery unit.
  • the engine controller calculates the passive braking energy recovery power according to the brake information, battery information and motor information, and sends the passive braking energy recovery power to the BMU manager. , so that the BMU manager controls the motor unit and the battery unit to perform passive braking energy recovery according to the passive braking energy recovery power;
  • the engine controller calculates the passive braking energy recovery power according to the brake information, battery information and motor information, and the brake information specifically includes the brake pedal, Wheel cylinder pressure, vehicle speed and other information, battery information specifically includes SOC, temperature, electronic control and other information, and motor information specifically includes motor speed and other information.
  • the passive braking energy recovery power is sent to the BMU manager, so that the BMU manager controls the motor unit and the battery unit to perform passive braking energy recovery according to the passive braking energy recovery power.
  • the engine controller controls the power part of the semi-trailer not to perform active/passive auxiliary driving and active/passive braking energy recovery.
  • the engine controller controls the power part of the semi-trailer not to perform active/passive auxiliary driving and active/passive braking energy recovery.
  • an embodiment of the present invention provides a control system for braking energy recovery and auxiliary driving, which is applied to a semi-trailer vehicle 400.
  • the semi-trailer vehicle 400 includes a tractor power part 401 and a semi-trailer power part 402, including:
  • the braking energy recovery and auxiliary drive manager 403 is used to obtain the whole vehicle information and engine information of the power part 401 of the tractor, and the semitrailer information of the power part 402 of the semitrailer, and determine the operation of the whole vehicle according to the whole vehicle information and the engine information state, according to the running state of the whole vehicle and the information of the semi-trailer, the power part 402 of the semi-trailer is controlled to perform auxiliary driving and/or braking energy recovery.
  • the brake energy recovery and auxiliary drive manager 403 obtains the vehicle information and engine information of the power part 401 of the tractor, and The semi-trailer information of the semi-trailer power part 402 determines the running state of the complete vehicle according to the complete vehicle information and engine information, and controls the semi-trailer power part 402 to perform auxiliary driving and/or braking energy recovery according to the running state of the complete vehicle and the semi-trailer information .
  • the existing pure electric semi-trailer vehicle can control the power part of the semi-trailer to perform auxiliary driving and/or braking energy recovery while determining the running state of the whole vehicle, combined with the information of the semi-trailer, and the auxiliary driving can improve the power of the tractor.
  • Part of the engine operating conditions, and braking energy recovery can achieve energy saving and emission reduction.
  • the power part 401 of the tractor includes an engine 501 , a brake 502 , a gear shifter 503 , a steering gear 504 and a reverse switch 505 .
  • the power part 402 includes a battery unit 506, a motor unit 507 and a BMU manager 508, and the brake energy recovery and auxiliary drive manager is the BMU manager 508;
  • the BMU manager 508 is used to monitor the engine 501, the brake 502, the gear shifter 503, the steering gear 504 and the reverse switch 501, and obtain the vehicle information and the engine information.
  • the vehicle information includes the brake information, the gear shifter information, and the steering gear information. and at least one of the reversing switch information;
  • the BMU manager 508 is also used to monitor the battery unit 506 and the motor unit 507 to obtain semi-trailer information, and the semi-trailer information includes battery information and motor information;
  • the BMU manager 508 is further configured to calculate the starting assist driving torque value according to the preset vehicle demand and battery information when the running state of the entire vehicle is the starting state, and control the motor unit 507 to output the starting assist driving torque to perform the starting assist driving , so that the engine 501 is at the optimal operating point;
  • the BMU manager 508 is also used to calculate the passive auxiliary driving torque value according to the engine information, battery information and engine operating point when the vehicle running state is the forward state and the vehicle is accelerating, and control the motor unit 507 to output the passive auxiliary driving torque , for passive auxiliary drive;
  • the BMU manager 508 is also used to calculate the active auxiliary driving torque value and the active braking energy recovery torque value according to the engine information, battery information and engine operating point when the running state of the whole vehicle is in the forward state and driving at a constant speed, and control the
  • the motor unit 507 outputs active auxiliary driving torque and active braking energy recovery torque, and performs active auxiliary driving and active braking energy recovery, thereby adjusting the engine operating point and charging the battery unit 506;
  • the BMU manager 508 is also used to calculate the passive braking energy recovery power according to the brake information, battery information and motor information when the vehicle running state is the forward state and braking and driving, and control the energy recovery power according to the passive braking energy recovery power.
  • the motor unit 507 and the battery unit 506 perform passive braking energy recovery;
  • the BMU manager 508 is further configured to control the power part of the semi-trailer not to perform active/passive auxiliary driving and active/passive braking energy recovery when the vehicle running state is in the forward state and decelerates, parks or reverses.
  • FIG. 5 also includes a motor controller 509 , a display 510 , a cooling system 511 and a mode switch 512 .
  • the power part 401 of the tractor includes an engine controller 601 , an engine 602 , a brake 603 , a gear shifter 604 , a steering 605 and reverse switch 606,
  • the semi-trailer power part 402 includes a battery unit 607, a motor unit 608 and a BMU manager 609, and the brake energy recovery and auxiliary drive manager is the engine controller 601;
  • the engine controller 601 is used to monitor the engine 602, the brake 603, the shifter 604, the steering gear 605 and the reversing switch 606, and obtain the vehicle information and the engine information.
  • vehicle information includes the brake information, the gear shifter information and the steering gear information. and at least one of the reversing switch information;
  • the engine controller 601 is also used to monitor the battery unit 607 and the motor unit 608 through the BMU manager 609, and obtain semi-trailer information, and the semi-trailer information includes battery information and motor information;
  • the engine controller 601 is further configured to calculate and obtain the starting auxiliary driving torque value according to the preset vehicle demand and battery information when the running state of the whole vehicle is the starting state, and send the starting auxiliary driving torque value to the BMU manager 609, so that the BMU The manager 609 controls the motor unit to output the starting auxiliary driving torque to perform the starting auxiliary driving, so that the engine is at the optimal working point;
  • the engine controller 601 is also used to calculate the passive auxiliary driving torque value according to the engine information, battery information and engine operating point when the running state of the whole vehicle is in the forward state and accelerate driving, and send the passive auxiliary driving torque value to the BMU manager 609 Torque value, so that the BMU manager 609 controls the motor unit to output passive auxiliary driving torque to perform passive auxiliary driving;
  • the engine controller 601 is also used to calculate the active auxiliary driving torque value and the active braking energy recovery torque value according to the engine information, battery information and engine operating point when the running state of the whole vehicle is in the forward state and the vehicle is running at a constant speed, and use the engine controller 601 to calculate the active auxiliary driving torque value and the active braking energy recovery torque value.
  • the BMU manager 609 sends the active auxiliary driving torque value and the active braking energy recovery torque value, so that the BMU manager 609 controls the motor unit to output the active auxiliary driving torque and the active braking energy recovery torque, and performs the active auxiliary driving and active braking energy recovery. , thereby adjusting the engine operating point and charging the battery unit;
  • the engine controller 601 is also used to calculate the passive braking energy recovery power according to the brake information, battery information and motor information when the running state of the whole vehicle is in the forward state and braking and driving, and send the passive braking energy to the BMU manager 609. Kinetic energy recovery power, so that the BMU manager 609 controls the motor unit 608 and the battery unit 607 to perform passive braking energy recovery according to the passive braking energy recovery power;
  • the engine controller 601 is also used to control the power part of the semi-trailer not to perform active/passive auxiliary driving and active/passive braking energy recovery when the running state of the entire vehicle is in the forward state and decelerates, parks or reverses.
  • FIG. 6 also includes a motor controller 610 , a display 611 , a cooling system 612 and a mode switch 613 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种制动能量回收与辅助驱动的控制方法,控制方法包括:步骤101:获取牵引车动力部分的整车信息和发动机信息,及半挂车动力部分的半挂车信息;步骤102:根据整车信息和发动机信息,确定整车运行状态;步骤103:根据整车运行状态及半挂车信息,控制半挂车动力部分进行辅助驱动和/或制动能量回收。还公开了一种制动能量回收与辅助驱动的控制系统。此控制方法能够在确定整车运行状态的同时,结合半挂车信息,控制半挂车动力部分进行辅助驱动和/或制动能量回收,辅助驱动能够改善牵引车动力部分的发动机工况,并且制动能量回收能够实现节能减排。

Description

一种制动能量回收与辅助驱动的控制方法及控制系统
本申请要求于2020年12月28日提交中国专利局、申请号为202011583578.6、发明名称为“一种制动能量回收与辅助驱动的控制方法及控制系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及新能源车辆领域,特别是涉及一种制动能量回收与辅助驱动的控制方法及控制系统。
背景技术
中国新能源汽车市场,基本为新能源乘用车和客车,很少有新能源重卡。但是对于重卡生产企业而言,一方面要应对日益严格的环保要求,不断做好柴油车的排放升级工作,另一方面也需要提升发动机的节油效果,降低运营成本。
半挂车等重卡车型,整备质量基达到20吨以上,百公里油耗大致在40L左右,因此节油空间很大。在整体市场的影响下,国内纯电动重卡发展非常迅速,如陕汽、东风、一汽解放、联合卡车、中国重汽等,均开始布局重卡的纯电动新能源车型的研发,但目前来说,国内新能源纯电重卡以纯电动较多,根据交强险终端数据,在2019年,新能源重卡全年市场销量同比增长665.35%,全部是纯电动重卡,主要是自卸车。但混动重卡基本处在概念车的阶段或上公告阶段,真正市场商业化的很少,国外有关混动重卡基本上也未达到市场商业的运用。但是纯电动重卡也有较多缺点,影响了市场的推广使用。主要缺点如下:
1)纯电动重卡车载电池能量不足,导致续驶较短;
2)由于需要装配的电池更多,导致系统初始投入成本过高;
3)大容量电池导致电动卡车普遍要比同类型的柴油卡车重3-4吨;
4)纯电动重卡充电慢,一般需要1.5~3小时,对于工程使用有一定影响;
为解决以上问题,特别是有关电机、电控、电池等成本问题,需要在传统半挂车基础上,通过一种低成本新能源装置,做到既能改善发动机工况,又能实现制动能量回收的功能,从而达到节能减排的目的。
发明内容
本发明的目的是提供了一种制动能量回收与辅助驱动的控制方法及控制系统,能够在确定整车运行状态的同时,结合半挂车信息,控制半挂车动力部分进行辅助驱动和/或制动能量回收,辅助驱动能够改善牵引车动力部分的发动机工况,并且制动能量回收能够实现节能减排。
本发明第一方面提供一种制动能量回收与辅助驱动的控制方法,应用于半挂车辆,半挂车辆包括牵引车动力部分和半挂车动力部分,方法包括:
获取牵引车动力部分的整车信息和发动机信息,及半挂车动力部分的半挂车信息;
根据整车信息和发动机信息,确定整车运行状态;
根据整车运行状态及半挂车信息,控制半挂车动力部分进行辅助驱动和/或制动能量回收。
进一步的,牵引车动力部分包括发动机、制动器、换挡器、转向器及倒车开关,半挂车动力部分包括电池单元、电机单元及制动管理单元BMU管理器,
获取牵引车动力部分的整车信息和发动机信息,及半挂车动力部分的半挂车信息,包括:
BMU管理器监测发动机、制动器、换挡器、转向器及倒车开关,得到整车信息和发动机信息,整车信息包括制动器信息、换挡器信息、转向器信息及倒车开关信息中的至少一种;
BMU管理器监测电池单元及电机单元,得到半挂车信息,半挂车信息包括电池信息及电机信息。
进一步的,根据整车运行状态及半挂车信息,控制半挂车动力部分进行辅助驱动和/或制动能量回收,包括:
当整车运行状态为起步状态时,BMU管理器根据预设整车需求及电池 信息,计算得到起步辅助驱动扭矩值,控制电机单元输出起步辅助驱动扭矩,进行起步辅助驱动,使得发动机处于最优工作点;
当整车运行状态为前进状态,且加速行驶时,BMU管理器根据发动机信息、电池信息及发动机工作点,计算得到被动辅助驱动扭矩值,控制电机单元输出被动辅助驱动扭矩,进行被动辅助驱动;
当整车运行状态为前进状态,且匀速行驶时,BMU管理器根据发动机信息、电池信息及发动机工作点,计算得到主动辅助驱动扭矩值及主动制动能量回收扭矩值,控制电机单元输出主动辅助驱动扭矩及主动制动能量回收扭矩,进行主动辅助驱动及主动制动能量回收,从而调整发动机工作点及为电池单元充能;
当整车运行状态为前进状态,且制动行驶时,BMU管理器根据制动器信息、电池信息及电机信息,计算得到被动制动能量回收功率,根据被动制动能量回收功率控制电机单元及电池单元进行被动制动能量回收。
进一步的,方法还包括:
当整车运行状态为前进状态且减速行驶、驻车状态或倒车状态时,BMU管理器控制半挂车动力部分不进行主动/被动辅助驱动及主动/被动制动能量回收。
进一步的,牵引车动力部分包括发动机控制器、发动机、制动器、换挡器、转向器及倒车开关,半挂车动力部分包括电池单元、电机单元及制动管理单元BMU管理器,
获取牵引车动力部分的整车信息和发动机信息,及半挂车动力部分的半挂车信息,包括:
发动机控制器监测发动机、制动器、换挡器、转向器及倒车开关,得到整车信息和发动机信息,整车信息包括制动器信息、换挡器信息、转向器信息及倒车开关信息中的至少一种;
发动机控制器通过BMU管理器监测电池单元及电机单元,获取半挂车信息,半挂车信息包括电池信息及电机信息。
进一步的,根据整车运行状态及半挂车信息,控制半挂车动力部分进行辅助驱动和/或制动能量回收,包括:
当整车运行状态为起步状态时,发动机控制器根据预设整车需求及电池信息,计算得到起步辅助驱动扭矩值,向BMU管理器发送起步辅助驱动扭矩值,使得BMU管理器控制电机单元输出起步辅助驱动扭矩,进行起步辅助驱动,使得发动机处于最优工作点;
当整车运行状态为前进状态,且加速行驶时,发动机控制器根据发动机信息、电池信息及发动机工作点,计算得到被动辅助驱动扭矩值,向BMU管理器发送被动辅助驱动扭矩值,使得BMU管理器控制电机单元输出被动辅助驱动扭矩,进行被动辅助驱动;
当整车运行状态为前进状态,且匀速行驶时,发动机控制器根据发动机信息、电池信息及发动机工作点,计算得到主动辅助驱动扭矩值及主动制动能量回收扭矩值,向BMU管理器发送主动辅助驱动扭矩值及主动制动能量回收扭矩值,使得BMU管理器控制电机单元输出主动辅助驱动扭矩及主动制动能量回收扭矩,进行主动辅助驱动及主动制动能量回收,从而调整发动机工作点及为电池单元充能;
当整车运行状态为前进状态,且制动行驶时,发动机控制器根据制动器信息、电池信息及电机信息,计算得到被动制动能量回收功率,向BMU管理器发送被动制动能量回收功率,使得BMU管理器根据被动制动能量回收功率控制电机单元及电池单元进行被动制动能量回收。
进一步的,方法还包括:
当整车运行状态为前进状态且减速行驶、驻车状态或倒车状态时,发动机控制器控制半挂车动力部分不进行主动/被动辅助驱动及主动/被动制动能量回收。
本发明第二方面提供一种制动能量回收与辅助驱动的控制系统,应用于半挂车辆,半挂车辆包括牵引车动力部分和半挂车动力部分,包括:
制动能量回收与辅助驱动管理器,用于获取牵引车动力部分的整车信息和发动机信息,及半挂车动力部分的半挂车信息,根据整车信息和发动机信息,确定整车运行状态,根据整车运行状态及半挂车信息,控制半挂车动力部分进行辅助驱动和/或制动能量回收。
进一步的,牵引车动力部分包括发动机、制动器、换挡器、转向器及 倒车开关,半挂车动力部分包括电池单元、电机单元及制动管理单元BMU管理器,制动能量回收与辅助驱动管理器为BMU管理器;
BMU管理器,用于监测发动机、制动器、换挡器、转向器及倒车开关,得到整车信息和发动机信息,整车信息包括制动器信息、换挡器信息、转向器信息及倒车开关信息中的至少一种;
BMU管理器,还用于监测电池单元及电机单元,得到半挂车信息,半挂车信息包括电池信息及电机信息;
BMU管理器,还用于当整车运行状态为起步状态时,根据预设整车需求及电池信息,计算得到起步辅助驱动扭矩值,控制电机单元输出起步辅助驱动扭矩,进行起步辅助驱动,使得发动机处于最优工作点;
BMU管理器,还用于当整车运行状态为前进状态,且加速行驶时,根据发动机信息、电池信息及发动机工作点,计算得到被动辅助驱动扭矩值,控制电机单元输出被动辅助驱动扭矩,进行被动辅助驱动;
BMU管理器,还用于当整车运行状态为前进状态,且匀速行驶时,根据发动机信息、电池信息及发动机工作点,计算得到主动辅助驱动扭矩值及主动制动能量回收扭矩值,控制电机单元输出主动辅助驱动扭矩及主动制动能量回收扭矩,进行主动辅助驱动及主动制动能量回收,从而调整发动机工作点及为电池单元充能;
BMU管理器,还用于当整车运行状态为前进状态,且制动行驶时,根据制动器信息、电池信息及电机信息,计算得到被动制动能量回收功率,根据被动制动能量回收功率控制电机单元及电池单元进行被动制动能量回收。
BMU管理器,还用于当整车运行状态为前进状态且减速行驶、驻车状态或倒车状态时,控制半挂车动力部分不进行主动/被动辅助驱动及主动/被动制动能量回收。
进一步的,牵引车动力部分包括发动机控制器、发动机、制动器、换挡器、转向器及倒车开关,半挂车动力部分包括电池单元、电机单元及制动管理单元BMU管理器,制动能量回收与辅助驱动管理器为发动机控制器;
发动机控制器,用于监测发动机、制动器、换挡器、转向器及倒车开关,得到整车信息和发动机信息,整车信息包括制动器信息、换挡器信息、转向器信息及倒车开关信息中的至少一种;
发动机控制器,还用于通过BMU管理器监测电池单元及电机单元,获取半挂车信息,半挂车信息包括电池信息及电机信息;
发动机控制器,还用于当整车运行状态为起步状态时,根据预设整车需求及电池信息,计算得到起步辅助驱动扭矩值,向BMU管理器发送起步辅助驱动扭矩值,使得BMU管理器控制电机单元输出起步辅助驱动扭矩,进行起步辅助驱动,使得发动机处于最优工作点;
发动机控制器,还用于当整车运行状态为前进状态,且加速行驶时,根据发动机信息、电池信息及发动机工作点,计算得到被动辅助驱动扭矩值,向BMU管理器发送被动辅助驱动扭矩值,使得BMU管理器控制电机单元输出被动辅助驱动扭矩,进行被动辅助驱动;
发动机控制器,还用于当整车运行状态为前进状态,且匀速行驶时,根据发动机信息、电池信息及发动机工作点,计算得到主动辅助驱动扭矩值及主动制动能量回收扭矩值,向BMU管理器发送主动辅助驱动扭矩值及主动制动能量回收扭矩值,使得BMU管理器控制电机单元输出主动辅助驱动扭矩及主动制动能量回收扭矩,进行主动辅助驱动及主动制动能量回收,从而调整发动机工作点及为电池单元充能;
发动机控制器,还用于当整车运行状态为前进状态,且制动行驶时,据制动器信息、电池信息及电机信息,计算得到被动制动能量回收功率,向BMU管理器发送被动制动能量回收功率,使得BMU管理器根据被动制动能量回收功率控制电机单元及电池单元进行被动制动能量回收;
发动机控制器,还用于当整车运行状态为前进状态且减速行驶、驻车状态或倒车状态时,控制半挂车动力部分不进行主动/被动辅助驱动及主动/被动制动能量回收。
由此可见,本发明应用在具有牵引车动力部分和半挂车动力部分的半挂车辆,获取牵引车动力部分的整车信息和发动机信息,及半挂车动力部 分的半挂车信息,根据整车信息和发动机信息,确定整车运行状态,根据整车运行状态及半挂车信息,控制半挂车动力部分进行辅助驱动和/或制动能量回收。与现有的纯电动半挂车辆相比,能够在确定整车运行状态的同时,结合半挂车信息,控制半挂车动力部分进行辅助驱动和/或制动能量回收,辅助驱动能够改善牵引车动力部分的发动机工况,并且制动能量回收能够实现节能减排。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的制动能量回收与辅助驱动的控制方法的一个实施例的流程示意图;
图2为本发明提供的制动能量回收与辅助驱动的控制方法的另一个实施例的流程示意图;
图3为本发明提供的制动能量回收与辅助驱动的控制方法的又一个实施例的流程示意图;
图4为本发明提供的制动能量回收与辅助驱动的控制系统的一个实施例的结构示意图;
图5为本发明提供的制动能量回收与辅助驱动的控制系统的另一个实施例的结构示意图;
图6为本发明提供的制动能量回收与辅助驱动的控制系统的又一个实施例的结构示意图。
具体实施方式
本申请公开了一种制动能量回收与辅助驱动的控制方法及控制系统,能够在确定整车运行状态的同时,结合半挂车信息,控制半挂车动力部分 进行辅助驱动和/或制动能量回收,辅助驱动能够改善牵引车动力部分的发动机工况,并且制动能量回收能够实现节能减排。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
请参考图1,本发明实施例提供一种制动能量回收与辅助驱动的控制方法,包括:
101、获取牵引车动力部分的整车信息和发动机信息,及半挂车动力部分的半挂车信息;
本实施例中,半挂车辆是由牵引车部分和半挂车部分组成的,在牵引车部分具有牵引车动力部分,在半挂车部分具有半挂车动力部分,发动机是安装在牵引车动力部分的,那么通过监测牵引车动力部分中的各个器件及发动机,就能得到牵引车动力部分的整车信息和发动机信息,通过监测半挂车动力部分的各器件就能得到半挂车信息。
102、根据整车信息和发动机信息,确定整车运行状态;
本实施例中,整车信息是影响到半挂车辆的运行的,那么结合整车信息和发动机信息,就能确定整车运行状态,具体的,整车信息可以是制动器、换挡器、转向器及倒车开关的信号,整车运行状态可以有多种,例如,起步状态、前进状态加速行驶、前进状态匀速行驶、前进状态制动行驶、前进状态减速行驶、驻车状态或倒车状态等。
103、根据整车运行状态及半挂车信息,控制半挂车动力部分进行辅助驱动和/或制动能量回收。
本实施例中,针对不同的整车运行状态,由于牵引车动力部分是提供主要牵引作用的,如果半挂车动力部分能够提供辅助驱动,那么就可以改善发动机工况,而由于半挂车动力部分利用的是电能,那么还可以回收制动能量,达到节省电能的目的,因此根据不同的整车运行状态及半挂车信息,可以控制半挂车动力部分进行辅助驱动和/或制动能量回收。
本发明实施例中,在具有牵引车动力部分和半挂车动力部分的半挂车辆,获取牵引车动力部分的整车信息和发动机信息,及半挂车动力部分的半挂车信息,根据整车信息和发动机信息,确定整车运行状态,根据整车运行状态及半挂车信息,控制半挂车动力部分进行辅助驱动和/或制动能量回收。与现有的纯电动半挂车辆相比,能够在确定整车运行状态的同时,结合半挂车信息,控制半挂车动力部分进行辅助驱动和/或制动能量回收,辅助驱动能够改善牵引车动力部分的发动机工况,并且制动能量回收能够实现节能减排。
在以上图1所示的实施例中,进行制动能量回收与辅助驱动的主体并没有说明在半挂车辆的哪个动力部分,具体的,可以是由半挂车动力部分来控制,也可以是由牵引车动力部分来控制,下面通过实施例进行详细说明。
(一)、半挂车动力部分作为制动能量回收与辅助驱动的主控;
请参考图2,本发明实施例提供一种制动能量回收与辅助驱动的控制方法,包括:
201、BMU管理器监测发动机、制动器、换挡器、转向器及倒车开关,得到整车信息和发动机信息,整车信息包括制动器信息、换挡器信息、转向器信息及倒车开关信息中的至少一种;
本实施例中,牵引车动力部分包括发动机、制动器、换挡器、转向器及倒车开关,半挂车动力部分包括电池单元、电机单元及制动管理单元(Brake Management Unit,BMU)管理器,BMU管理器监测各器件,得到整车信息和发动机信息,整车信息包括制动器信息、换挡器信息、转向器信息及倒车开关信息中的至少一种。需要说明的是,电池单元具体可以是动力电池、电机单元具体包括电机控制器、电机等,半挂车动力部分还可以包括显示器、冷却系统、模式开关等。
202、BMU管理器监测电池单元及电机单元,得到半挂车信息,半挂车信息包括电池信息及电机信息;
本实施例中,BMU管理器监测电池单元及电机单元得到半挂车信息,半挂车信息包括电池信息及电机信息。
203、BMU管理器根据整车信息和发动机信息,确定整车运行状态;
本实施例中,通过整体信息中的制动器信息、换挡器信息、转向器信息及倒车开关信息,以及结合发动机信息,就能判断整车运行状态是起步状态、前进状态加速行驶、前进状态匀速行驶、前进状态制动行驶、前进状态减速行驶、驻车状态或倒车状态。
204、当整车运行状态为起步状态时,BMU管理器根据预设整车需求及电池信息,计算得到起步辅助驱动扭矩值,控制电机单元输出起步辅助驱动扭矩,进行起步辅助驱动,使得发动机处于最优工作点;
本实施例中,当整车运行状态为起步状态时,BMU管理器根据预设整车需求及电池信息,计算得到起步辅助驱动扭矩值。预设整车需求是按照整车动力性能和经济性能的要求进行设定的,电池信息具体是动力电池的温度、电量(State of Charge,SOC)。控制电机单元按照起步辅助驱动扭矩值输出起步辅助驱动扭矩,进行起步辅助驱动,使得发动机处于最优工作点。
205、当整车运行状态为前进状态,且加速行驶时,BMU管理器根据发动机信息、电池信息及发动机工作点,计算得到被动辅助驱动扭矩值,控制电机单元输出被动辅助驱动扭矩,进行被动辅助驱动;
本实施例中,当整车运行状态为前进状态,且加速行驶时,根据发动机信息、电池信息及发动机工作点,计算得到被动辅助驱动扭矩值,发动机信息具体可以是油门、扭矩、转速等,电池信息具体可以是SOC,控制电机单元按照被动辅助驱动扭矩值输出被动辅助驱动扭矩,进行被动辅助驱动。
206、当整车运行状态为前进状态,且匀速行驶时,BMU管理器根据发动机信息、电池信息及发动机工作点,计算得到主动辅助驱动扭矩值及主动制动能量回收扭矩值,控制电机单元输出主动辅助驱动扭矩及主动制动能量回收扭矩,进行主动辅助驱动及主动制动能量回收,从而调整发动机工作点及为电池单元充能;
本实施例中,当整车运行状态为前进状态,且匀速行驶时,BMU管理器根据发动机信息、电池信息及发动机工作点,计算得到主动辅助驱动扭矩值及主动制动能量回收扭矩值,发动机信息具体可以是油门、扭矩、转速等,电池信息具体可以是SOC,控制电机单元按照主动辅助驱动扭矩值输出主动辅助驱动扭矩,进行主动辅助驱动,并控制电机单元按照主动制动能量回收扭矩值进行主动制动能量回收,从而调整发动机工作点及为电池单元充能。
207、当整车运行状态为前进状态,且制动行驶时,BMU管理器根据制动器信息、电池信息及电机信息,计算得到被动制动能量回收功率,根据被动制动能量回收功率控制电机单元及电池单元进行被动制动能量回收;
本实施例中,当整车运行状态为前进状态,且制动行驶时,BMU管理器根据制动器信息、电池信息及电机信息,计算得到被动制动能量回收功率,制动器信息具体包括制动踏板、轮缸压力、车速等信息,电池信息具体包括SOC、温度、电控等信息,电机信息具体包括电机转速等信息。根据被动制动能量回收功率控制电机单元及电池单元进行被动制动能量回收。
208、当整车运行状态为前进状态且减速行驶、驻车状态或倒车状态时,BMU管理器控制半挂车动力部分不进行主动/被动辅助驱动及主动/被动制动能量回收。
本实施例中,当整车运行状态为前进状态且减速行驶、驻车状态或倒车状态时,BMU管理器控制半挂车动力部分不进行主动/被动辅助驱动及主动/被动制动能量回收。
(二)、牵引车动力部分作为制动能量回收与辅助驱动的主控。
请参考图3,本发明实施例提供一种制动能量回收与辅助驱动的控制方法,包括:
301、发动机控制器监测发动机、制动器、换挡器、转向器及倒车开关,得到整车信息和发动机信息,整车信息包括制动器信息、换挡器信息、转向器信息及倒车开关信息中的至少一种;
本实施例中,牵引车动力部分包括发动机、制动器、换挡器、转向器及倒车开关,半挂车动力部分包括电池单元、电机单元及BMU管理器,发动机控制器监测各器件,得到整车信息和发动机信息,整车信息包括制动器信息、换挡器信息、转向器信息及倒车开关信息中的至少一种。需要说明的是,电池单元具体可以是动力电池、电机单元具体包括电机控制器、电机等,半挂车动力部分还可以包括显示器、冷却系统、模式开关等。
302、发动机控制器通过BMU管理器监测电池单元及电机单元,获取半挂车信息,半挂车信息包括电池信息及电机信息;
本实施例中,发动机控制器通过BMU管理器监测电池单元及电机单元得到半挂车信息,半挂车信息包括电池信息及电机信息。
303、发动机控制器根据整车信息和发动机信息,确定整车运行状态;
本实施例中,发动机控制器通过整体信息中的制动器信息、换挡器信息、转向器信息及倒车开关信息,以及结合发动机信息,就能判断整车运行状态是起步状态、前进状态加速行驶、前进状态匀速行驶、前进状态制动行驶、前进状态减速行驶、驻车状态或倒车状态。
304、当整车运行状态为起步状态时,发动机控制器根据预设整车需求及电池信息,计算得到起步辅助驱动扭矩值,向BMU管理器发送起步辅助驱动扭矩值,使得BMU管理器控制电机单元输出起步辅助驱动扭矩,进行起步辅助驱动,使得发动机处于最优工作点;
本实施例中,当整车运行状态为起步状态时,发动机控制器根据预设整车需求及电池信息,计算得到起步辅助驱动扭矩值。预设整车需求是按照整车动力性能和经济性能的要求进行设定的,电池信息具体是动力电池的温度、SOC。发动机控制器向BMU管理器发送起步辅助驱动扭矩值,使得BMU管理器控制电机单元输出起步辅助驱动扭矩,进行起步辅助驱动,使得发动机处于最优工作点。
305、当整车运行状态为前进状态,且加速行驶时,发动机控制器根据发动机信息、电池信息及发动机工作点,计算得到被动辅助驱动扭矩值,向BMU管理器发送被动辅助驱动扭矩值,使得BMU管理器控制电机单元输出被动辅助驱动扭矩,进行被动辅助驱动;
本实施例中,当整车运行状态为前进状态,且加速行驶时,发动机控制器根据发动机信息、电池信息及发动机工作点,计算得到被动辅助驱动扭矩值,发动机信息具体可以是油门、扭矩、转速等,电池信息具体可以是SOC,向BMU管理器发送被动辅助驱动扭矩值,使得BMU管理器控制电机单元输出被动辅助驱动扭矩,进行被动辅助驱动。
306、当整车运行状态为前进状态,且匀速行驶时,发动机控制器根据发动机信息、电池信息及发动机工作点,计算得到主动辅助驱动扭矩值及主动制动能量回收扭矩值,向BMU管理器发送主动辅助驱动扭矩值及主动制动能量回收扭矩值,使得BMU管理器控制电机单元输出主动辅助驱动扭矩及主动制动能量回收扭矩,进行主动辅助驱动及主动制动能量回收,从而调整发动机工作点及为电池单元充能;
本实施例中,当整车运行状态为前进状态,且匀速行驶时,发动机控制器根据发动机信息、电池信息及发动机工作点,计算得到主动辅助驱动扭矩值及主动制动能量回收扭矩值,发动机信息具体可以是油门、扭矩、转速等,电池信息具体可以是SOC,向BMU管理器发送主动辅助驱动扭矩值及主动制动能量回收扭矩值,使得BMU管理器控制电机单元输出主动辅助驱动扭矩及主动制动能量回收扭矩,进行主动辅助驱动及主动制动能量回收,从而调整发动机工作点及为电池单元充能。
307、当整车运行状态为前进状态,且制动行驶时,发动机控制器根据制动器信息、电池信息及电机信息,计算得到被动制动能量回收功率,向BMU管理器发送被动制动能量回收功率,使得BMU管理器根据被动制动能量回收功率控制电机单元及电池单元进行被动制动能量回收;
本实施例中,当整车运行状态为前进状态,且制动行驶时,发动机控制器根据制动器信息、电池信息及电机信息,计算得到被动制动能量回收功率,制动器信息具体包括制动踏板、轮缸压力、车速等信息,电池信息具体包括SOC、温度、电控等信息,电机信息具体包括电机转速等信息。向BMU管理器发送被动制动能量回收功率,使得BMU管理器根据被动制动能量回收功率控制电机单元及电池单元进行被动制动能量回收。
308、当整车运行状态为前进状态且减速行驶、驻车状态或倒车状态时,发动机控制器控制半挂车动力部分不进行主动/被动辅助驱动及主动/被动制动能量回收。
本实施例中,当整车运行状态为前进状态且减速行驶、驻车状态或倒车状态时,发动机控制器控制半挂车动力部分不进行主动/被动辅助驱动及主动/被动制动能量回收。
请参考图4,本发明实施例提供一种制动能量回收与辅助驱动的控制系统,应用于半挂车辆400,半挂车辆400包括牵引车动力部分401和半挂车动力部分402,包括:
制动能量回收与辅助驱动管理器403,用于获取牵引车动力部分401的整车信息和发动机信息,及半挂车动力部分402的半挂车信息,根据整车信息和发动机信息,确定整车运行状态,根据整车运行状态及半挂车信息,控制半挂车动力部分402进行辅助驱动和/或制动能量回收。
本发明实施例中,具有牵引车动力部分401和半挂车动力部分402的半挂车辆400中,制动能量回收与辅助驱动管理器403获取牵引车动力部分401的整车信息和发动机信息,及半挂车动力部分402的半挂车信息,根据整车信息和发动机信息,确定整车运行状态,根据整车运行状态及半挂车信息,控制半挂车动力部分402进行辅助驱动和/或制动能量回收。与现有的纯电动半挂车辆相比,能够在确定整车运行状态的同时,结合半挂车信息,控制半挂车动力部分进行辅助驱动和/或制动能量回收,辅助驱动能够改善牵引车动力部分的发动机工况,并且制动能量回收能够实现节能减排。
结合图4所示的实施例,如图5所示,本发明的一些实施例中,牵引车动力部分401包括发动机501、制动器502、换挡器503、转向器504及倒车开关505,半挂车动力部分402包括电池单元506、电机单元507及BMU管理器508,制动能量回收与辅助驱动管理器为BMU管理器508;
BMU管理器508,用于监测发动机501、制动器502、换挡器503、转向器504及倒车开关501,得到整车信息和发动机信息,整车信息包括制动器信息、换挡器信息、转向器信息及倒车开关信息中的至少一种;
BMU管理器508,还用于监测电池单元506及电机单元507,得到半挂车信息,半挂车信息包括电池信息及电机信息;
BMU管理器508,还用于当整车运行状态为起步状态时,根据预设整车需求及电池信息,计算得到起步辅助驱动扭矩值,控制电机单元507输 出起步辅助驱动扭矩,进行起步辅助驱动,使得发动机501处于最优工作点;
BMU管理器508,还用于当整车运行状态为前进状态,且加速行驶时,根据发动机信息、电池信息及发动机工作点,计算得到被动辅助驱动扭矩值,控制电机单元507输出被动辅助驱动扭矩,进行被动辅助驱动;
BMU管理器508,还用于当整车运行状态为前进状态,且匀速行驶时,根据发动机信息、电池信息及发动机工作点,计算得到主动辅助驱动扭矩值及主动制动能量回收扭矩值,控制电机单元507输出主动辅助驱动扭矩及主动制动能量回收扭矩,进行主动辅助驱动及主动制动能量回收,从而调整发动机工作点及为电池单元506充能;
BMU管理器508,还用于当整车运行状态为前进状态,且制动行驶时,根据制动器信息、电池信息及电机信息,计算得到被动制动能量回收功率,根据被动制动能量回收功率控制电机单元507及电池单元506进行被动制动能量回收;
BMU管理器508,还用于当整车运行状态为前进状态且减速行驶、驻车状态或倒车状态时,控制半挂车动力部分不进行主动/被动辅助驱动及主动/被动制动能量回收。
需要说明的是,在图5中还包括电机控制器509、显示器510、冷却系统511及模式开关512。
可选的,结合图4所示的实施例,如图6所示,本发明的一些实施例中,牵引车动力部分401包括发动机控制器601、发动机602、制动器603、换挡器604、转向器605及倒车开关606,半挂车动力部分402包括电池单元607、电机单元608及BMU管理器609,制动能量回收与辅助驱动管理器为发动机控制器601;
发动机控制器601,用于监测发动机602、制动器603、换挡器604、转向器605及倒车开关606,得到整车信息和发动机信息,整车信息包括制动器信息、换挡器信息、转向器信息及倒车开关信息中的至少一种;
发动机控制器601,还用于通过BMU管理器609监测电池单元607及电机单元608,获取半挂车信息,半挂车信息包括电池信息及电机信息;
发动机控制器601,还用于当整车运行状态为起步状态时,根据预设整车需求及电池信息,计算得到起步辅助驱动扭矩值,向BMU管理器609发送起步辅助驱动扭矩值,使得BMU管理器609控制电机单元输出起步辅助驱动扭矩,进行起步辅助驱动,使得发动机处于最优工作点;
发动机控制器601,还用于当整车运行状态为前进状态,且加速行驶时,根据发动机信息、电池信息及发动机工作点,计算得到被动辅助驱动扭矩值,向BMU管理器609发送被动辅助驱动扭矩值,使得BMU管理器609控制电机单元输出被动辅助驱动扭矩,进行被动辅助驱动;
发动机控制器601,还用于当整车运行状态为前进状态,且匀速行驶时,根据发动机信息、电池信息及发动机工作点,计算得到主动辅助驱动扭矩值及主动制动能量回收扭矩值,向BMU管理器609发送主动辅助驱动扭矩值及主动制动能量回收扭矩值,使得BMU管理器609控制电机单元输出主动辅助驱动扭矩及主动制动能量回收扭矩,进行主动辅助驱动及主动制动能量回收,从而调整发动机工作点及为电池单元充能;
发动机控制器601,还用于当整车运行状态为前进状态,且制动行驶时,据制动器信息、电池信息及电机信息,计算得到被动制动能量回收功率,向BMU管理器609发送被动制动能量回收功率,使得BMU管理器609根据被动制动能量回收功率控制电机单元608及电池单元607进行被动制动能量回收;
发动机控制器601,还用于当整车运行状态为前进状态且减速行驶、驻车状态或倒车状态时,控制半挂车动力部分不进行主动/被动辅助驱动及主动/被动制动能量回收。
需要说明的是,在图6中还包括电机控制器610、显示器611、冷却系统612及模式开关613。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即 可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种制动能量回收与辅助驱动的控制方法,其特征在于,应用于半挂车辆,所述半挂车辆包括牵引车动力部分和半挂车动力部分,所述方法包括:
    获取所述牵引车动力部分的整车信息和发动机信息,及所述半挂车动力部分的半挂车信息;
    根据所述整车信息和所述发动机信息,确定整车运行状态;
    根据所述整车运行状态及所述半挂车信息,控制所述半挂车动力部分进行辅助驱动和/或制动能量回收。
  2. 根据权利要求1所述的控制方法,其特征在于,所述牵引车动力部分包括发动机、制动器、换挡器、转向器及倒车开关,所述半挂车动力部分包括电池单元、电机单元及制动管理单元BMU管理器,
    所述获取所述牵引车动力部分的整车信息和发动机信息,及所述半挂车动力部分的半挂车信息,包括:
    所述BMU管理器监测所述发动机、所述制动器、所述换挡器、所述转向器及所述倒车开关,得到整车信息和发动机信息,所述整车信息包括制动器信息、换挡器信息、转向器信息及倒车开关信息中的至少一种;
    所述BMU管理器监测所述电池单元及所述电机单元,得到半挂车信息,所述半挂车信息包括电池信息及电机信息。
  3. 根据权利要求2所述的控制方法,其特征在于,所述根据所述整车运行状态及所述半挂车信息,控制所述半挂车动力部分进行辅助驱动和/或制动能量回收,包括:
    当所述整车运行状态为起步状态时,所述BMU管理器根据预设整车需求及所述电池信息,计算得到起步辅助驱动扭矩值,控制所述电机单元输出起步辅助驱动扭矩,进行起步辅助驱动,使得所述发动机处于最优工作点;
    当所述整车运行状态为前进状态,且加速行驶时,所述BMU管理器根据所述发动机信息、所述电池信息及发动机工作点,计算得到被动辅助 驱动扭矩值,控制所述电机单元输出被动辅助驱动扭矩,进行被动辅助驱动;
    当所述整车运行状态为前进状态,且匀速行驶时,所述BMU管理器根据所述发动机信息、所述电池信息及所述发动机工作点,计算得到主动辅助驱动扭矩值及主动制动能量回收扭矩值,控制所述电机单元输出主动辅助驱动扭矩及主动制动能量回收扭矩,进行主动辅助驱动及主动制动能量回收,从而调整所述发动机工作点及为所述电池单元充能;
    当所述整车运行状态为前进状态,且制动行驶时,所述BMU管理器根据所述制动器信息、所述电池信息及所述电机信息,计算得到被动制动能量回收功率,根据所述被动制动能量回收功率控制所述电机单元及所述电池单元进行被动制动能量回收。
  4. 根据权利要求3所述的控制方法,其特征在于,所述方法还包括:
    当所述整车运行状态为前进状态且减速行驶、驻车状态或倒车状态时,所述BMU管理器控制所述半挂车动力部分不进行主动/被动辅助驱动及主动/被动制动能量回收。
  5. 根据权利要求1所述的控制方法,其特征在于,所述牵引车动力部分包括发动机控制器、发动机、制动器、换挡器、转向器及倒车开关,所述半挂车动力部分包括电池单元、电机单元及制动管理单元BMU管理器,
    所述获取所述牵引车动力部分的整车信息和发动机信息,及所述半挂车动力部分的半挂车信息,包括:
    所述发动机控制器监测所述发动机、所述制动器、所述换挡器、所述转向器及所述倒车开关,得到整车信息和发动机信息,所述整车信息包括制动器信息、换挡器信息、转向器信息及倒车开关信息中的至少一种;
    所述发动机控制器通过所述BMU管理器监测所述电池单元及所述电机单元,获取半挂车信息,所述半挂车信息包括电池信息及电机信息。
  6. 根据权利要求5所述的控制方法,其特征在于,所述根据所述整车运行状态及所述半挂车信息,控制所述半挂车动力部分进行辅助驱动和/或制动能量回收,包括:
    当所述整车运行状态为起步状态时,所述发动机控制器根据预设整车需求及所述电池信息,计算得到起步辅助驱动扭矩值,向所述BMU管理器发送所述起步辅助驱动扭矩值,使得所述BMU管理器控制所述电机单元输出起步辅助驱动扭矩,进行起步辅助驱动,使得所述发动机处于最优工作点;
    当所述整车运行状态为前进状态,且加速行驶时,所述发动机控制器根据所述发动机信息、所述电池信息及发动机工作点,计算得到被动辅助驱动扭矩值,向所述BMU管理器发送所述被动辅助驱动扭矩值,使得所述BMU管理器控制所述电机单元输出被动辅助驱动扭矩,进行被动辅助驱动;
    当所述整车运行状态为前进状态,且匀速行驶时,所述发动机控制器根据所述发动机信息、所述电池信息及所述发动机工作点,计算得到主动辅助驱动扭矩值及主动制动能量回收扭矩值,向所述BMU管理器发送所述主动辅助驱动扭矩值及所述主动制动能量回收扭矩值,使得所述BMU管理器控制所述电机单元输出主动辅助驱动扭矩及主动制动能量回收扭矩,进行主动辅助驱动及主动制动能量回收,从而调整所述发动机工作点及为所述电池单元充能;
    当所述整车运行状态为前进状态,且制动行驶时,所述发动机控制器根据所述制动器信息、所述电池信息及所述电机信息,计算得到被动制动能量回收功率,向所述BMU管理器发送所述被动制动能量回收功率,使得所述BMU管理器根据所述被动制动能量回收功率控制所述电机单元及所述电池单元进行被动制动能量回收。
  7. 根据权利要求6所述的控制方法,其特征在于,所述方法还包括:
    当所述整车运行状态为前进状态且减速行驶、驻车状态或倒车状态时,所述发动机控制器控制所述半挂车动力部分不进行主动/被动辅助驱动及主动/被动制动能量回收。
  8. 一种制动能量回收与辅助驱动的控制系统,其特征在于,应用于半挂车辆,所述半挂车辆包括牵引车动力部分和半挂车动力部分,包括:
    制动能量回收与辅助驱动管理器,用于获取所述牵引车动力部分的整车信息和发动机信息,及所述半挂车动力部分的半挂车信息,根据所述整车信息和所述发动机信息,确定整车运行状态,根据所述整车运行状态及所述半挂车信息,控制所述半挂车动力部分进行辅助驱动和/或制动能量回收。
  9. 根据权利要求8所述的控制系统,其特征在于,所述牵引车动力部分包括发动机、制动器、换挡器、转向器及倒车开关,所述半挂车动力部分包括电池单元、电机单元及制动管理单元BMU管理器,所述制动能量回收与辅助驱动管理器为所述BMU管理器;
    所述BMU管理器,用于监测所述发动机、所述制动器、所述换挡器、所述转向器及所述倒车开关,得到整车信息和发动机信息,所述整车信息包括制动器信息、换挡器信息、转向器信息及倒车开关信息中的至少一种;
    所述BMU管理器,还用于监测所述电池单元及所述电机单元,得到半挂车信息,所述半挂车信息包括电池信息及电机信息;
    所述BMU管理器,还用于当所述整车运行状态为起步状态时,根据预设整车需求及所述电池信息,计算得到起步辅助驱动扭矩值,控制所述电机单元输出起步辅助驱动扭矩,进行起步辅助驱动,使得所述发动机处于最优工作点;
    所述BMU管理器,还用于当所述整车运行状态为前进状态,且加速行驶时,根据所述发动机信息、所述电池信息及发动机工作点,计算得到被动辅助驱动扭矩值,控制所述电机单元输出被动辅助驱动扭矩,进行被动辅助驱动;
    所述BMU管理器,还用于当所述整车运行状态为前进状态,且匀速行驶时,根据所述发动机信息、所述电池信息及所述发动机工作点,计算得到主动辅助驱动扭矩值及主动制动能量回收扭矩值,控制所述电机单元输出主动辅助驱动扭矩及主动制动能量回收扭矩,进行主动辅助驱动及主动制动能量回收,从而调整所述发动机工作点及为所述电池单元充能;
    所述BMU管理器,还用于当所述整车运行状态为前进状态,且制动行驶时,根据所述制动器信息、所述电池信息及所述电机信息,计算得到 被动制动能量回收功率,根据所述被动制动能量回收功率控制所述电机单元及所述电池单元进行被动制动能量回收;
    所述BMU管理器,还用于当所述整车运行状态为前进状态且减速行驶、驻车状态或倒车状态时,控制所述半挂车动力部分不进行主动/被动辅助驱动及主动/被动制动能量回收。
  10. 根据权利要求8所述的控制系统,其特征在于,所述牵引车动力部分包括发动机控制器、发动机、制动器、换挡器、转向器及倒车开关,所述半挂车动力部分包括电池单元、电机单元及制动管理单元BMU管理器,所述制动能量回收与辅助驱动管理器为所述发动机控制器;
    所述发动机控制器,用于监测所述发动机、所述制动器、所述换挡器、所述转向器及所述倒车开关,得到整车信息和发动机信息,所述整车信息包括制动器信息、换挡器信息、转向器信息及倒车开关信息中的至少一种;
    所述发动机控制器,还用于通过所述BMU管理器监测所述电池单元及所述电机单元,获取半挂车信息,所述半挂车信息包括电池信息及电机信息;
    所述发动机控制器,还用于当所述整车运行状态为起步状态时,根据预设整车需求及所述电池信息,计算得到起步辅助驱动扭矩值,向所述BMU管理器发送所述起步辅助驱动扭矩值,使得所述BMU管理器控制所述电机单元输出起步辅助驱动扭矩,进行起步辅助驱动,使得所述发动机处于最优工作点;
    所述发动机控制器,还用于当所述整车运行状态为前进状态,且加速行驶时,根据所述发动机信息、所述电池信息及发动机工作点,计算得到被动辅助驱动扭矩值,向所述BMU管理器发送所述被动辅助驱动扭矩值,使得所述BMU管理器控制所述电机单元输出被动辅助驱动扭矩,进行被动辅助驱动;
    所述发动机控制器,还用于当所述整车运行状态为前进状态,且匀速行驶时,根据所述发动机信息、所述电池信息及所述发动机工作点,计算得到主动辅助驱动扭矩值及主动制动能量回收扭矩值,向所述BMU管理器发送所述主动辅助驱动扭矩值及所述主动制动能量回收扭矩值,使得所 述BMU管理器控制所述电机单元输出主动辅助驱动扭矩及主动制动能量回收扭矩,进行主动辅助驱动及主动制动能量回收,从而调整所述发动机工作点及为所述电池单元充能;
    所述发动机控制器,还用于当所述整车运行状态为前进状态,且制动行驶时,据所述制动器信息、所述电池信息及所述电机信息,计算得到被动制动能量回收功率,向所述BMU管理器发送所述被动制动能量回收功率,使得所述BMU管理器根据所述被动制动能量回收功率控制所述电机单元及所述电池单元进行被动制动能量回收;
    所述发动机控制器,还用于当所述整车运行状态为前进状态且减速行驶、驻车状态或倒车状态时,控制所述半挂车动力部分不进行主动/被动辅助驱动及主动/被动制动能量回收。
PCT/CN2021/098318 2020-12-28 2021-06-04 一种制动能量回收与辅助驱动的控制方法及控制系统 WO2022142133A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011583578.6 2020-12-28
CN202011583578.6A CN112572157A (zh) 2020-12-28 2020-12-28 一种制动能量回收与辅助驱动的控制方法及控制系统

Publications (1)

Publication Number Publication Date
WO2022142133A1 true WO2022142133A1 (zh) 2022-07-07

Family

ID=75140320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098318 WO2022142133A1 (zh) 2020-12-28 2021-06-04 一种制动能量回收与辅助驱动的控制方法及控制系统

Country Status (2)

Country Link
CN (1) CN112572157A (zh)
WO (1) WO2022142133A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116533770A (zh) * 2023-05-25 2023-08-04 重庆青山工业有限责任公司 一种多挡位混动系统制动能量回收回馈控制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112572157A (zh) * 2020-12-28 2021-03-30 上海锣响汽车集团有限公司 一种制动能量回收与辅助驱动的控制方法及控制系统
CN113246745B (zh) * 2021-05-19 2022-08-30 郑州新大方重工科技有限公司 一种新能源半挂车的辅助驱动控制方法及新能源半挂车
CN113895239B (zh) * 2021-09-22 2023-07-04 三一汽车制造有限公司 电动作业机械及其能量回收方法和装置
CN115009037B (zh) * 2022-07-25 2023-06-23 常州星宇车灯股份有限公司 一种电动汽车辅助驾驶节能控制系统的控制方法
CN115709650A (zh) * 2022-11-21 2023-02-24 四川欣智造科技有限公司 一种适用于挂车车头的辅助行驶装置及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184584A (ja) * 2012-03-08 2013-09-19 Daimler Ag 連結車両の制御装置
CN107298133A (zh) * 2017-06-08 2017-10-27 深圳市海梁科技有限公司 挂式车辆及挂车
CN108263199A (zh) * 2018-03-16 2018-07-10 中国矿业大学 一种重型运输车分布式混合动力系统及动力切换方法
CN207790922U (zh) * 2017-12-26 2018-08-31 长沙智能驾驶研究院有限公司 智能车辆、智能半挂车及智能半挂车的控制系统
CN112078361A (zh) * 2020-08-28 2020-12-15 邢旻玥 新能源纯电动助力拖挂车
CN112572157A (zh) * 2020-12-28 2021-03-30 上海锣响汽车集团有限公司 一种制动能量回收与辅助驱动的控制方法及控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184584A (ja) * 2012-03-08 2013-09-19 Daimler Ag 連結車両の制御装置
CN107298133A (zh) * 2017-06-08 2017-10-27 深圳市海梁科技有限公司 挂式车辆及挂车
CN207790922U (zh) * 2017-12-26 2018-08-31 长沙智能驾驶研究院有限公司 智能车辆、智能半挂车及智能半挂车的控制系统
CN108263199A (zh) * 2018-03-16 2018-07-10 中国矿业大学 一种重型运输车分布式混合动力系统及动力切换方法
CN112078361A (zh) * 2020-08-28 2020-12-15 邢旻玥 新能源纯电动助力拖挂车
CN112572157A (zh) * 2020-12-28 2021-03-30 上海锣响汽车集团有限公司 一种制动能量回收与辅助驱动的控制方法及控制系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116533770A (zh) * 2023-05-25 2023-08-04 重庆青山工业有限责任公司 一种多挡位混动系统制动能量回收回馈控制方法
CN116533770B (zh) * 2023-05-25 2024-05-03 重庆青山工业有限责任公司 一种多挡位混动系统制动能量回收回馈控制方法

Also Published As

Publication number Publication date
CN112572157A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2022142133A1 (zh) 一种制动能量回收与辅助驱动的控制方法及控制系统
JP3094872B2 (ja) ハイブリッド車用制御装置
EP2371646B1 (en) Apparatus for hybrid drive torque control
CN106274468B (zh) 一种电动汽车的四轮驱动系统和电动汽车
CN101691118B (zh) 一种混合动力汽车的电机辅助驱动模式控制方法
CN1974285B (zh) 一种混合动力汽车的再生制动控制方法
WO2010139275A1 (zh) 四驱混合动力汽车的驱动系统及其驱动管理方法
US8397850B2 (en) System and method for driving hybrid electric vehicle
CN102060016A (zh) 再生制动扭矩补偿装置、方法及包含其的混合动力车
CN102092272A (zh) 一种插电式混合动力四驱汽车的动力总成系统
JP6008425B2 (ja) ハイブリッド車両のオートクルーズ制御装置
CN101386303A (zh) 一种混合动力汽车电机驱动控制方法
CN106965795A (zh) 插电式四驱混合动力汽车整车控制系统
CN111231966A (zh) 一种重卡动力系统驱动模式切换控制系统及控制方法
CN210792810U (zh) 一种新能源汽车两级电力制动与能量回收系统
KR20140081050A (ko) 하이브리드 차량용 조향 장치 및 이의 제어방법
CN102514568A (zh) 一种四驱混合动力汽车驱动扭矩的控制方法及其驱动系统
CN109693548B (zh) 一种可进行制动能量回收的能量再利用系统
CN110816309A (zh) 一种增程式电动汽车和驱动控制方法
CN112549974A (zh) 一种氢能汽车能量回馈管理系统及其管理方法
CN101134438B (zh) 一种分散混合动力型铰接式汽车
CN214138252U (zh) 一种半挂车制动能量回收与辅助驱动系统
CN111267634B (zh) 车辆控制方法及系统、电子设备和计算机存储介质
CN111391647A (zh) 商用车弱混系统
CN201116074Y (zh) 由轮毂电机前驱动发动机后驱动的混合动力车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912894

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023013002

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023013002

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230628

122 Ep: pct application non-entry in european phase

Ref document number: 21912894

Country of ref document: EP

Kind code of ref document: A1