WO2022141950A1 - 用于钢结构工程的劣化免疫仿生防护涂层及其制备方法 - Google Patents

用于钢结构工程的劣化免疫仿生防护涂层及其制备方法 Download PDF

Info

Publication number
WO2022141950A1
WO2022141950A1 PCT/CN2021/087333 CN2021087333W WO2022141950A1 WO 2022141950 A1 WO2022141950 A1 WO 2022141950A1 CN 2021087333 W CN2021087333 W CN 2021087333W WO 2022141950 A1 WO2022141950 A1 WO 2022141950A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurea
immune
steel structure
protective coating
primer
Prior art date
Application number
PCT/CN2021/087333
Other languages
English (en)
French (fr)
Inventor
马衍轩
刘加童
葛亚杰
张鹏
吴睿
宋晓辉
薛善彬
崔祎菲
鲍久文
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Priority to KR1020237000304A priority Critical patent/KR102516293B1/ko
Publication of WO2022141950A1 publication Critical patent/WO2022141950A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/002Pretreatement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • B05D7/16Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies using synthetic lacquers or varnishes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • B05D7/26Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials synthetic lacquers or varnishes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D7/00Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal
    • B65D7/12Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal characterised by wall construction or by connections between walls
    • B65D7/24Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal characterised by wall construction or by connections between walls collapsible, e.g. with all parts detachable
    • B65D7/26Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal characterised by wall construction or by connections between walls collapsible, e.g. with all parts detachable with all parts hinged together
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3228Polyamines acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4081Mixtures of compounds of group C08G18/64 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6415Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63 having nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6685Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe
    • B05D2202/15Stainless steel

Definitions

  • the invention belongs to the field of materials and relates to a protective coating and a preparation method thereof, in particular to a steel structure engineering structure degradation immune biomimetic protective coating system and a preparation method thereof.
  • Steel structure is one of the main types of building structures. Its structure is mainly composed of steel beams, steel columns, steel trusses and other components made of section steel and steel plates. and other rust and anti-rust process. Welds, bolts or rivets are usually used to connect the components or parts of the steel structure. Due to its light weight and simple construction, steel structures have been widely used in the construction of large workshops, stadiums, and super high-rise buildings. The number of steel structure buildings marks the economic strength and degree of economic development of a country or a region. With the significant growth of my country's national economy, the national strength has been significantly enhanced, and the steel production has become a world power. It is proposed to "actively and rationally use steel" in construction, and steel structure buildings are gradually increasing in economically developed areas. Especially under the impetus of the 2008 Olympic Games, my country has built a large number of steel structure venues, airports, stations and high-rise buildings, many of which are world-class steel structure buildings, such as the Olympic National Stadium and other buildings.
  • steel structures are easy to corrode, so attention must be paid to protection, especially for thin-walled components. Therefore, steel structures should not be used for buildings in strong corrosive media. Generally, the steel structure needs to be derusted, galvanized or painted, and it needs to be maintained regularly. The steel structure should be thoroughly derusted before painting. The newly constructed steel structure generally needs to be repainted at certain intervals, and the maintenance cost is high. Various high-performance coatings and weathering steels that are not easy to corrode are being developed at home and abroad, and the problem of poor corrosion resistance of steel structures is expected to be solved.
  • the steel structure coating protection technology is commonly used; as long as the coating adheres to the steel structure substrate without failure and damage, it can always provide good protection for the steel structure.
  • Steel structure coating protection can be protected in all stages from the delivery of components, transportation to service, and has the characteristics of full life cycle protection.
  • the protection technology of steel structure coating is difficult to achieve full life cycle protection. This is because: (1) the interfacial adhesion of the coating/steel structure is weak, and it is easy to debond under the action of external load; (2) the existing steel structure coating protection is mostly epoxy coating, and its hardness is high , high brittleness; the coating is prone to damage during processing at the construction site; in other words, the existing coating protection technology cannot take into account mechanical properties and machinability.
  • the existing coating protection technology can only isolate the steel The structural matrix provides corrosion protection, but cannot balance repair and immunity to cracks and erosion factors.
  • the invention discloses a degradation immune bionic protective coating for steel structure engineering.
  • the degraded immune biomimetic protective coating simulates the three lines of defense of the human immune system, adopts the structural system of "blocking-blocking-relaxation", and realizes the biomimetic immune anti-corrosion treatment of the steel structure through the optimized design of the coating structure of the steel structure.
  • the preparation method of the deterioration immune biomimetic protective coating for steel structure engineering comprises the following steps:
  • (1b) Prepare a silane coupling agent solution, immerse the steel structure member I in it, take it out after 5-10 minutes, and then cure at 100-150° C. for 1-3 hours to obtain the treated steel structure member II; the silane coupling agent The concentration of the coupling agent solution is 0.5-1.0%, and the silane coupling agent is KH-550, KH-560 or KH-570; the silane coupling agent solution is prepared by the following method: the silane coupling agent and Mix the alcohol-water mixture, adjust the pH value to 3.5-5.5 according to the type of coupling agent, and let it stand for hydrolysis for 24-48h.
  • the primer becomes The thickness of the film is 80-150 ⁇ m, and the primer is a corrosion inhibitor-polyurethane blend system; the corrosion inhibitor is one of polyaspartic acid and polyphosphate, molybdate, and organic phosphorus corrosion inhibitor. species or combinations.
  • the polyaspartic acid corrosion inhibitor is compounded with other corrosion inhibitors, which has the characteristics of green environmental protection.
  • the corrosion inhibitor in the matrix will be released and tightly adsorbed on the exposed steel structure surface. It blocks the erosion of corrosive ions to steel structural components, and realizes the targeted and controlled release immunity of the primer to erosive factors.
  • the primer is prepared by the following method: vacuum dehydration of polyoxypropylene glycol at 100-120 DEG C for 1-3 hours, cooling to 40-60 DEG C, and slowly adding isocyanate monomer; after the isocyanate monomer is completely added, the temperature is raised to 65 ⁇ 80°C, add acetone for several times to reduce viscosity, react for 1 ⁇ 2h to obtain prepolymer; mix the corrosion inhibitor and polyol according to a certain ratio, add it into the prepolymer, cool down to 40-50°C The reaction was carried out for 1 h, and the temperature was further lowered to room temperature, and water was added to emulsify; finally, the acetone was evaporated under vacuum to obtain a corrosion inhibitor-polyurethane blend system.
  • the key to this step is that the application of the primer must be carried out immediately after the surface treatment of the steel structure is completed, and the surface of the steel structure must not have visible dirt and oxidation; thus ensuring that the primer and the steel structure are connected by chemical bonds.
  • the principle is: the hydroxyl group generated by the oxidation of the surface of the steel structure forms a hydrogen bond with the hydrolysis product of the coupling agent, and then partially dehydrates to form a covalent bond; similarly, the coupling agent forms a covalent bond with the surface of the primer, and the primer and the steel structure form a covalent bond.
  • a chemical bond is formed through a coupling agent.
  • Step (2) Preparation of a non-specific self-healing stress immune layer: after the primer in step (1) is cured, the temperature is raised to 80-100°C and then sprayed with an intermediate paint to ensure that the molecules between the two layers can be permeated and exchanged to obtain non-specific Self-healing stress immune layer.
  • the thickness of the intermediate paint film is 100-400 ⁇ m; the intermediate paint is a self-healing polyurea solution, and the preparation method is as follows:
  • polydopamine microspheres Preparation of polydopamine microspheres; polydopamine is prepared by an aqueous phase oxidation method, a certain concentration of ethanol solution and ammonia water are stirred at 40-50 ° C, a certain amount of dopamine hydrochloride solution is added, and the reaction is stirred for 8 to 10 hours; After the reaction is completed, centrifugation and washing are performed to obtain polydopamine microspheres.
  • the self-repairing polyurea solution combines external self-repairing double-walled microcapsules with intrinsic self-repairing means, not only the microcapsules at the damaged part can release the repairing agent to repair the damage, but also the formation of hydrogen bonds between polydopamine molecules can help.
  • the voids left after the microcapsules are released and the damaged parts where the microcapsules are not triggered are repaired, which further improves the self-healing efficiency of the intermediate paint.
  • the polyetheramine is one or more of D230, D400 and D2000
  • the isocyanate is hexamethylene diisocyanate (HDI), dicyclohexylmethane diisocyanate (HMDI), diphenyl One or more of methane diisocyanate (MDI), toluene diisocyanate (TDI) and isophorone diisocyanate (IPDI);
  • the amine chain extender is diethyltoluene diamine, dimethyl sulfide Ethyltoluenediamine, N,N'-dialkylmethyldiphenylamine, cyclohexanediamine, MDH chloride, ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, diamine Ethylenetriamine, pentaethylenehexamine, hexaethylenediamine, tetraethylenepentamine, 1,6-hexanediamine and 3,3'-4
  • the specific method for spraying the intermediate paint is as follows: adding a certain amount of solvent N,N-dimethylacetamide to the self-repairing polyurea solution obtained in (2c), so that the intermediate paint reaches the spraying standard; It is sprayed evenly over the primer.
  • the initially cured primer and the segments of the sprayed self-healing polyurea penetrate each other at the interface to form a molecular inter-transmission network.
  • the non-specific damage self-differentiation immune layer After the primer spraying is completed, keep the surface temperature not lower than 30 °C, and immediately spray the topcoat to obtain the non-specific damage self-differentiation immune layer, thereby completing the degradation immune biomimetic protective coating layer preparation.
  • the thickness of the topcoat film is 150-500 ⁇ m; the topcoat is a two-dimensional material composite polyurethane/polyurea solution, and the preparation method is as follows: the polyether, the solvent I and the emulsifier are mixed evenly, and the temperature is 100-120 ° C.
  • the polyether used is polyether polyol
  • the polyether used is polyetheramine.
  • the layered distribution of two-dimensional materials in the topcoat can block or prolong the invasion path of the corrosive medium and improve the durability of the protected concrete material, and the light and heat stabilizers in the topcoat can improve the aging resistance of the coating.
  • the functional group equivalent ratio of the hydroxyl group of the polyester polyol-amino chain extender to "hydroxyl+amino" is (0-0.37): 1 and (0.48-1): 1, and in the reaction system—NCO
  • the functional group equivalent ratio with "hydroxyl+amino" is (1.05-1.2): 1
  • the dosage of the two-dimensional material is 0.5-15wt% of the isocyanate monomer
  • the dosage of the ultraviolet light stabilizer is 0.01 of the isocyanate monomer -1wt%
  • the amount of the thermal stabilizer is 0.05-5wt% of the isocyanate monomer.
  • the polyether polyol is one or more of polyoxypropylene glycol, trimethylolpropane polyether, polytetrahydrofuran glycol, tetrahydrofuran-propylene oxide copolymer glycol and polyoxyethylene glycol;
  • Described polyetheramine is one or more in D230, D400, D2000, T403, T5000;
  • Described two-dimensional material is one or more in graphene, mica, montmorillonite, graphite and boron nitride ;
  • Described isocyanate monomers are hexamethylene diisocyanate (HDI), dicyclohexylmethane diisocyanate (HMDI), diphenylmethane diisocyanate (MDI), toluene diisocyanate (TDI) and isophorone diisocyanate
  • HDI hexamethylene diisocyanate
  • HMDI dicyclohexylmethane diisocyanate
  • the specific method for spraying the topcoat is as follows: adding a certain amount of solvent N,N-dimethylacetamide to the two-dimensional material composite polyurethane/polyurea solution to make the primer reach the spraying standard; then uniformly spraying it with a spray gun on the primer.
  • the degraded immune biomimetic protective coating for steel structure engineering prepared by the aforementioned method is a protective coating on a steel structure substrate.
  • the degraded immune biomimetic protective coating is composed of three layers of primer, intermediate paint and topcoat in sequence from the inside to the outside; and the adjacent two layers are mutually diffused and chemically cross-linked to form a molecular cross-linked interpenetrating network.
  • Described primer is corrosion inhibitor-polyurethane blend system, and described corrosion inhibitor is a kind of in polyaspartic acid and polyphosphate, molybdate, organophosphorus corrosion inhibitor, aluminum powder, zinc powder Or several combinations, the thickness of the primer film is 80-150 ⁇ m.
  • the intermediate paint is GO-modified polyurea-based double-walled microcapsules and polydopamine dispersed evenly in the polyurethane-polyurea elastomer to obtain a self-healing polyurea blend solution, and the thickness of the intermediate paint film is 100-400 ⁇ m.
  • the topcoat is a two-dimensional material composite polyurethane/polyurea solution, and the film-forming thickness of the topcoat is 150-500 ⁇ m.
  • primer, intermediate paint and topcoat are sequentially coated on steel structural members when they are not fully cured, so that the two layers of paint at the interface diffuse with the solvent, and the long and short chains of polymer molecules penetrate, diffuse and entangle each other. Interpenetrating network.
  • the unreacted -NCO and the hydroxyl or amino group in the chain extender in the interdiffusion segments between the primer and the intermediate paint, the intermediate paint and the topcoat interface will continue to extend with the unreacted chain extension in the opposite segment.
  • the hydroxyl or amino group in the agent continues to react with -NCO, so that the three-layer paint surface is chemically cross-linked, and finally cured to obtain a molecular cross-linked interpenetrating network.
  • the three-layer structure of the degraded immune biomimetic protective coating has been essentially inseparable, forming one layer.
  • the surface of the steel structure is treated with a silane coupling agent, and the hydroxyl group generated by the oxidation of the steel structure surface forms a hydrogen bond with the hydrolysis product of the coupling agent, and then partially dehydrates to form a covalent bond.
  • the base or unsaturated double bond can participate in the curing reaction of the primer, so that the surface of the steel structure and the primer are connected by chemical bonds, which further improves the interfacial cohesion.
  • the degraded immune bionic protective coating for steel structure engineering simulates the three lines of defense structure of the human immune system, and protects the steel structure from the two aspects of physical crack repair and chemical corrosion resistance, and realizes protection against The immunity of the deterioration of the steel structure overcomes the defect that the protective coating is easily damaged and cannot be repaired in the prior art, and has important economic value and social benefit.
  • the degradation immune biomimetic protective coating for steel structure engineering of the present invention is composed of three layers of primer, intermediate paint and topcoat in turn from the inside to the outside, and not only the two adjacent layers penetrate each other at the interface, The molecular cross-linking and interpenetrating network interface is formed, so that the three lines of defense are integrated, and there is no problem such as weak interface.
  • primer and steel structure interface adopt coupling agent treatment, make primer and steel structure surface be connected with chemical bond form , strengthen paint surface and Bonding force of steel structure.
  • FIG. 1 is one of the structural schematic diagrams of the degraded immune biomimetic protective coating according to the present invention.
  • FIG. 3 is a schematic structural diagram of the intermediate paint in the degraded immune biomimetic protective coating according to the present invention.
  • 1 Topcoat
  • 2 Intermediate paint
  • 3 Primer
  • 4 Steel
  • 5 Corrosive medium
  • 6 Corrosion inhibitor
  • 7 Primer coating substrate
  • 8 Self-healing microcapsules
  • 9 Intermediate Lacquer coating substrate
  • 10 Self-healing polymer
  • 11 Corrosive medium
  • 12 Two-dimensional material
  • 13 Topcoat coating substrate.
  • the degradation immune biomimetic protective coating for marine engineering is a protective coating on a steel structure substrate.
  • the degraded immune biomimetic protective coating is composed of three layers of primer, intermediate paint and topcoat in sequence from the inside to the outside; and the adjacent two layers are mutually diffused and chemically cross-linked to form a molecular cross-linked interpenetrating network;
  • the said The primer is a corrosion inhibitor-polyurethane blend system, and the film-forming thickness of the primer is 100 ⁇ m;
  • the intermediate paint is a self-healing polyurea solution, and the film-forming thickness of the intermediate paint is 250 ⁇ m;
  • the paint is a two-dimensional material composite polyurethane/polyurea solution, and the film thickness of the top paint is 350 ⁇ m.
  • the preparation method is as follows:
  • the surface of the steel is first treated to remove dust, welding spatter, grease and other contaminants on the surface of the steel structure. After the treatment is completed, the oxides, rust, coatings, etc. And make the steel surface have a certain roughness.
  • Surface treatment shall comply with "Visual Evaluation of Surface Cleanliness of Steel Surface Treatment Before Coating" (GB/T 8923).
  • the silane coupling agent KH-560 and the mixture of alcohol and water were mixed to prepare a dilute solution with a concentration of 0.5%, the pH value was adjusted to 4.5, and the solution was allowed to stand for hydrolysis for 48 hours.
  • the preliminarily treated steel structure member I was soaked in the silane coupling agent treatment solution for 10 minutes, taken out, and cured at 100° C. for 1 hour to obtain the treated steel structure member II.
  • the surface of the steel structural member II was immediately painted with primer, and then preliminarily cured at 55 °C for 1 h to obtain a specific targeted controlled-release corrosion-inhibiting immune layer (as shown in Figure 2). Described primer is prepared by following method:
  • the polyoxypropylene glycol was dehydrated under vacuum at 105 °C for 1 h, cooled to 40 °C, and 2,4-toluene diisocyanate monomer was slowly added; after the isocyanate monomer was completely added, the temperature was raised to 65 °C, and acetone was added several times during this period to reduce viscosity. Reaction for 1.5h to obtain a prepolymer; the corrosion inhibitor and polyol are mixed uniformly according to a certain ratio, added to the prepolymer, cooled to 45 ° C for 1 hour, continued to cool to room temperature, and emulsified by adding water; finally, vacuum steamed out Acetone was used to obtain a corrosion inhibitor-polyurethane blend system.
  • the intermediate paint is a self-healing polyurea solution, and the preparation method is as follows:
  • polydopamine microspheres Preparation of polydopamine microspheres; polydopamine was prepared by the aqueous phase oxidation method, 30% ethanol solution and 28% ammonia water were mixed at a volume ratio of 45:1 and stirred at 45 °C, and 10.5 g of 4.8% dopamine hydrochloride was added. The aqueous solution was stirred and reacted for 10h; after the reaction was completed, centrifugation and washing were performed to obtain polydopamine microspheres.
  • the polyetheramine is D230
  • the isocyanate is isophorone diisocyanate (IPDI)
  • the amine chain extender is ethylenediamine.
  • the specific method for spraying the intermediate paint is as follows: adding a certain amount of solvent N,N-dimethylacetamide to the self-repairing polyurea solution obtained in (2c), so that the intermediate paint reaches the spraying standard; It is sprayed evenly over the primer.
  • the topcoat is a two-dimensional material composite polyurethane, and the preparation method is as follows: the polyether, solvent I and emulsifier are mixed uniformly, dehydrated in a vacuum at 105 ° C for 2 hours, then cooled to 55 ° C, slowly adding isocyanate monomer, and prepolymerizing for 5 minutes A prepolymer is obtained.
  • the two-dimensional material, ultraviolet light stabilizer, heat stabilizer, polyester polyol and amino chain extender are added to the solvent II and mixed uniformly, and then added to the aforementioned prepolymer, and the reaction is kept for 2 hours to obtain a two-dimensional material composite polyurethane/ Polyurea solution.
  • the coating base of the topcoat is pure polyurethane.
  • the functional group equivalent ratio of the hydroxyl group of the described polyester polyol-amino chain extender to "hydroxyl+amino" is 1:1
  • the functional group equivalent ratio of -NCO and "hydroxyl+amino" in the reaction system is 1.05 : 1
  • the consumption of the two-dimensional material is 1wt% of the isocyanate monomer
  • the consumption of the ultraviolet light stabilizer is 0.1wt% of the isocyanate monomer
  • the consumption of the thermal stabilizer is 0.5wt% of the isocyanate monomer .
  • the polyether polyol is polyoxypropylene glycol; the two-dimensional material is graphene; the isocyanate monomer is hexamethylene diisocyanate (HDI); the polyester polyol is ethylene glycol diol; the amine-based chain extender is 1,6-hexanediamine; the ultraviolet light stabilizer is phenyl salicylate; the heat stabilizer is tribasic lead sulfate.
  • the solvent I is N,N-dimethylacetamide
  • the solvent II is N,N-dimethylacetamide.
  • the specific method for spraying the topcoat is as follows: adding a certain amount of solvent N,N-dimethylacetamide to the two-dimensional material composite polyurethane solution to make the primer reach the spraying standard; then uniformly spraying it on the primer with a spray gun superior.
  • Example 2 Different from Example 1,
  • the film thickness of the primer is 80 ⁇ m; the film thickness of the intermediate paint is 300 ⁇ m; the film thickness of the top coat is 150 ⁇ m.
  • the preparation method is as follows:
  • the silane coupling agent KH-550 and the alcohol-water mixture were mixed to prepare a dilute solution with a concentration of 1%, the pH value was adjusted to 4, and the solution was allowed to stand for hydrolysis for 24 hours.
  • the preliminarily treated steel structure member I was soaked in the silane coupling agent treatment solution for 5 minutes, taken out, and cured at 120° C. for 1 hour to obtain the treated steel structure member II.
  • the surface of the steel structural member II was immediately painted with primer, and then preliminarily cured at 60 °C for 0.5 h to obtain a specific targeted controlled-release corrosion-inhibiting immune layer (as shown in Figure 2).
  • Described primer is prepared by following method:
  • the polyoxypropylene glycol was dehydrated under vacuum at 105 °C for 1 h, cooled to 40 °C, and 2,4-toluene diisocyanate monomer was slowly added; after the isocyanate monomer was completely added, the temperature was raised to 65 °C, and acetone was added several times during this period to reduce viscosity. Reaction for 1.5h to obtain a prepolymer; the corrosion inhibitor and polyol are mixed uniformly according to a certain ratio, added to the prepolymer, cooled to 45 ° C for 1 hour, continued to cool to room temperature, and emulsified by adding water; finally, vacuum steamed out Acetone was used to obtain a corrosion inhibitor-polyurethane blend system.
  • the intermediate paint is a self-healing polyurea solution, and the preparation method is as follows:
  • polydopamine microspheres Preparation of polydopamine microspheres; polydopamine was prepared by the aqueous phase oxidation method, 30% ethanol solution and 28% ammonia water were mixed at a volume ratio of 45:1 and stirred at 50 °C, and 10.5 g of 4.8% dopamine hydrochloride was added. The aqueous solution was stirred and reacted for 8h; after the reaction was completed, centrifugation and washing were performed to obtain polydopamine microspheres.
  • Dopamine/polyurea elastomer; the GO-modified polyurea-based double-walled microcapsules obtained in (2a) were added to the polydopamine/polyurea elastomer, and the GO-modified polyurea-based double-walled microcapsules were stirred at high speed to make the GO-modified polyurea-based double-walled microcapsules in the
  • the dopamine/polyurea elastomer is uniformly dispersed to obtain a self-healing polyurea solution.
  • the polyetheramine is D2000
  • the isocyanate is hexamethylene diisocyanate (HDI)
  • the amine chain extender is diethylenetriamine.
  • the specific method for spraying the intermediate paint is as follows: adding a certain amount of solvent N,N-dimethylacetamide to the self-repairing polyurea solution obtained in (2c), so that the intermediate paint reaches the spraying standard; It is sprayed evenly over the primer.
  • the thickness of the topcoat film is 150 ⁇ m; the topcoat is a two-dimensional material composite polyurethane/polyurea, and the preparation method is as follows: polyether, solvent I and emulsifier are mixed Mix uniformly, dehydrate under vacuum at 120 °C for 1 h, then cool to 65 °C, slowly add isocyanate monomer, and prepolymerize for 30 min to obtain a prepolymer.
  • the two-dimensional material, ultraviolet light stabilizer, heat stabilizer, polyester polyol and amino chain extender are added to solvent II and mixed uniformly, and then added to the aforementioned prepolymer, and the reaction is kept for 0.5h to obtain a two-dimensional material composite polyurethane /polyurea solution.
  • the coating substrate of the topcoat is a semi-polyurethane semi-polyurea.
  • the functional group equivalent ratio of the hydroxyl group of the described polyester polyol-amino chain extender to "hydroxyl+amino" is 0.48:1
  • the functional group equivalent ratio of -NCO and "hydroxyl+amino" in the reaction system is 1.1 : 1
  • the amount of the two-dimensional material is 10wt% of the isocyanate monomer
  • the amount of the ultraviolet light stabilizer is 1wt% of the isocyanate monomer
  • the amount of the thermal stabilizer is 5wt% of the isocyanate monomer.
  • the solvent I is N,N-dimethylacetamide
  • the solvent II is N,N-dimethylacetamide.
  • the polyether is D230; the two-dimensional material is graphene; the isocyanate monomer is hexamethylene diisocyanate (HDI); the polyester polyol is ethylene glycol; the The amine-based chain extender is ethylenediamine; the ultraviolet light stabilizer is phenyl salicylate; the heat stabilizer is tribasic lead sulfate.
  • the solvent I is N,N-dimethylacetamide, and the solvent II is N,N-dimethylacetamide.
  • the specific method for spraying the topcoat is as follows: adding a certain amount of solvent N,N-dimethylacetamide to the two-dimensional material composite polyurethane solution to make the primer reach the spraying standard; then uniformly spraying it on the primer with a spray gun superior.
  • Example 3 Different from Example 1,
  • the thickness of the primer is 150 ⁇ m; the thickness of the intermediate paint is 400 ⁇ m; the thickness of the topcoat is 250 ⁇ m.
  • the preparation method is as follows:
  • the intermediate paint is a self-healing polyurea solution, and the preparation method is as follows:
  • Dopamine/polyurea elastomer; the GO-modified polyurea-based double-walled microcapsules obtained in (2a) were added to the polydopamine/polyurea elastomer, and the GO-modified polyurea-based double-walled microcapsules were stirred at high speed to make the GO-modified polyurea-based double-walled microcapsules in the
  • the dopamine/polyurea elastomer is uniformly dispersed to obtain a self-healing polyurea solution.
  • the polyetheramine is D400
  • the isocyanate is dicyclohexylmethane diisocyanate (HMDI), diphenylmethane diisocyanate (MDI);
  • the amine chain extender is 1,6-hexane Diamine.
  • the specific method for spraying the intermediate paint is as follows: adding a certain amount of solvent N,N-dimethylacetamide to the self-repairing polyurea solution obtained in (2c), so that the intermediate paint reaches the spraying standard; It is sprayed evenly over the primer.
  • the topcoat is a two-dimensional material composite polyurethane/polyurea solution, and the preparation method is as follows: the polyether, the solvent I and the emulsifier are mixed uniformly, dehydrated in a vacuum at 110 ° C for 1 hour, then cooled to 20 ° C, and the isocyanate monomer is slowly added , prepolymerized for 60min to obtain prepolymer.
  • the two-dimensional material, ultraviolet light stabilizer, heat stabilizer, polyester polyol and amino chain extender are added to the solvent II and mixed uniformly, and then added to the aforementioned prepolymer, and the reaction is kept for 3h to obtain a two-dimensional material composite polyurethane/ Polyurea solution.
  • the coating substrate of the topcoat is a semi-polyurethane semi-polyurea.
  • the functional group equivalent ratio of the hydroxyl group of the polyester polyol-amino chain extender to "hydroxyl+amino" is 0.37:1
  • the functional group equivalent ratio of-NCO and "hydroxyl+amino" in the reaction system is 1.2 : 1
  • the consumption of the two-dimensional material is 5wt% of the isocyanate monomer
  • the consumption of the ultraviolet light stabilizer is 0.01wt% of the isocyanate monomer
  • the consumption of the thermal stabilizer is 1wt% of the isocyanate monomer.
  • the polyether is D2000; the two-dimensional material is mica; the isocyanate monomer is toluene diisocyanate (TDI); the polyester polyol is 1,2-propanediol; the amine group
  • the chain extender is ethylenediamine; the ultraviolet light stabilizer is resorcinol monobenzoate; and the heat stabilizer is dibasic lead phosphite.
  • the solvent I is N,N-dimethylacetamide, and the solvent II is N,N-dimethylacetamide.
  • the specific method for spraying the topcoat is as follows: adding a certain amount of solvent N,N-dimethylacetamide to the two-dimensional material composite polyurethane/polyurea solution to make the primer reach the spraying standard; then uniformly spraying it with a spray gun on the primer.
  • Example 4 Different from Example 1,
  • the thickness of the primer is 100 ⁇ m; the thickness of the intermediate paint is 200 ⁇ m; the thickness of the topcoat is 500 ⁇ m.
  • the preparation method is as follows:
  • the silane coupling agent KH-570 and the alcohol-water mixture were mixed to prepare a dilute solution with a concentration of 1%, the pH value was adjusted to 5.5, and the solution was allowed to stand for hydrolysis for 24 hours.
  • the preliminarily treated steel structure member I was soaked in the silane coupling agent treatment solution for 5 minutes, taken out, and cured at 150° C. for 1 hour to obtain the treated steel structure member II.
  • the surface of the steel structural member II was immediately painted with primer, and then preliminarily cured at 55 °C for 2 h to obtain a specific targeted controlled-release corrosion-inhibiting immune layer (as shown in Figure 2).
  • Described primer is prepared by following method:
  • the polyoxypropylene glycol was dehydrated under vacuum at 120 °C for 1 h, cooled to 60 °C, and 2,4-toluene diisocyanate monomer was slowly added; after the isocyanate monomer was completely added, the temperature was raised to 80 °C, and acetone was added several times during the period to reduce viscosity.
  • the prepolymer was obtained after the reaction for 1 h; the corrosion inhibitor and the polyol were mixed uniformly according to a certain ratio, added to the prepolymer, cooled to 50 °C for 1 h, continued to cool to room temperature, and emulsified by adding water; finally, the acetone was evaporated in a vacuum. , to obtain a corrosion inhibitor-polyurethane blend system.
  • the intermediate paint is a self-healing polyurea solution, and the preparation method is as follows:
  • polydopamine microspheres Preparation of polydopamine microspheres; polydopamine was prepared by the aqueous phase oxidation method, 30% ethanol solution and 28% ammonia water were mixed at a volume ratio of 45:1 and stirred at 40 °C, and 10.5 g of 4.8% dopamine hydrochloride was added. The aqueous solution was stirred and reacted for 10h; after the reaction was completed, centrifugation and washing were performed to obtain polydopamine microspheres.
  • Dopamine/polyurea elastomer; the GO-modified polyurea-based double-walled microcapsules obtained in (2a) were added to the polydopamine/polyurea elastomer, and the GO-modified polyurea-based double-walled microcapsules were stirred at high speed to make the GO-modified polyurea-based double-walled microcapsules in the
  • the dopamine/polyurea elastomer is uniformly dispersed to obtain a self-healing polyurea solution.
  • the polyetheramine is D2000
  • the isocyanate is hexamethylene diisocyanate (HDI)
  • the amine chain extender is diethylenetriamine.
  • the specific method for spraying the intermediate paint is as follows: adding a certain amount of solvent N,N-dimethylacetamide to the self-repairing polyurea solution obtained in (2c), so that the intermediate paint reaches the spraying standard; It is sprayed evenly over the primer.
  • the topcoat is a two-dimensional material composite polyurethane/polyurea solution, and the preparation method is as follows: the polyether, the solvent I and the emulsifier are mixed uniformly, vacuum dehydrated at 100 ° C for 3 hours, then cooled to 35 ° C, and the isocyanate monomer is slowly added , prepolymerized for 15min to obtain prepolymer.
  • the two-dimensional material, ultraviolet light stabilizer, heat stabilizer, polyester polyol and amino chain extender are added to the solvent II and mixed uniformly, and then added to the aforementioned prepolymer, and the reaction is kept for 1 h to obtain a two-dimensional material composite polyurethane/ Polyurea solution.
  • the coating substrate of the topcoat is a semi-polyurethane semi-polyurea.
  • the functional group equivalent ratio of the hydroxyl group of the polyester polyol-amino chain extender to "hydroxyl+amino" is 0.75:1
  • the functional group equivalent ratio of -NCO and "hydroxyl+amino" in the reaction system is 1.1 : 1
  • the consumption of the two-dimensional material is 0.5wt% of the isocyanate monomer
  • the consumption of the ultraviolet light stabilizer is 0.05wt% of the isocyanate monomer
  • the consumption of the thermal stabilizer is 2wt% of the isocyanate monomer .
  • the polyether is polyoxypropylene glycol; the two-dimensional material is montmorillonite; the isocyanate monomer is isophorone diisocyanate (IPDI); the polyester polyol is 1, 6-Hexanediol; the amine chain extender is 1,6-hexanediamine; the UV stabilizer is 2,4-dihydroxybenzophenone; the heat stabilizer is stearic acid calcium.
  • the solvent I is N,N-dimethylacetamide
  • the solvent II is N,N-dimethylacetamide.
  • the specific method for spraying the topcoat is as follows: adding a certain amount of solvent N,N-dimethylacetamide to the two-dimensional material composite polyurethane/polyurea solution to make the primer reach the spraying standard; then uniformly spraying it with a spray gun on the primer.
  • Example 5 Different from Example 1,
  • the film thickness of the primer is 120 ⁇ m; the film thickness of the intermediate paint is 100 ⁇ m; the film thickness of the topcoat is 450 ⁇ m.
  • the preparation method is as follows:
  • the silane coupling agent KH-570 and the alcohol-water mixture were mixed to prepare a dilute solution with a concentration of 1%, the pH value was adjusted to 5.5, and the solution was allowed to stand for hydrolysis for 36 hours.
  • the preliminarily treated steel structure member I was immersed in the silane coupling agent treatment solution for 5 minutes, taken out, and cured at 100° C. for 3 hours to obtain the treated steel structure member II.
  • the surface of the steel structural member II was immediately painted with primer, and then preliminarily cured at 55 °C for 2 h to obtain a specific targeted controlled-release corrosion-inhibiting immune layer (as shown in Figure 2). Described primer is prepared by following method:
  • the polyoxypropylene glycol was dehydrated under vacuum at 100 °C for 3 hours, cooled to 50 °C, and 2,4-toluene diisocyanate monomer was slowly added; after the isocyanate monomer was completely added, the temperature was raised to 70 °C, and acetone was added several times during the period to reduce viscosity.
  • the prepolymer was obtained after the reaction for 2 hours; the corrosion inhibitor and polyol were mixed uniformly according to a certain ratio, added to the prepolymer, cooled to 40 °C for 1 hour, continued to cool to room temperature, and emulsified by adding water; finally, the acetone was evaporated under vacuum , to obtain a corrosion inhibitor-polyurethane blend system.
  • the intermediate paint is a self-healing polyurea solution, and the preparation method is as follows:
  • polydopamine microspheres Preparation of polydopamine microspheres; polydopamine was prepared by the aqueous phase oxidation method, 30% ethanol solution and 28% ammonia water were mixed at a volume ratio of 45:1 and stirred at 50 °C, and 10.5 g of 4.8% dopamine hydrochloride was added. The aqueous solution was stirred and reacted for 8h; after the reaction was completed, centrifugation and washing were performed to obtain polydopamine microspheres.
  • the polyetheramine is D2000
  • the isocyanate is hexamethylene diisocyanate (HDI)
  • the amine chain extender is diethylenetriamine.
  • the specific method for spraying the intermediate paint is as follows: adding a certain amount of solvent N,N-dimethylacetamide to the self-repairing polyurea solution obtained in (2c), so that the intermediate paint reaches the spraying standard; It is sprayed evenly over the primer.
  • the topcoat is a two-dimensional material composite polyurea solution, and the preparation method is as follows: the polyether, solvent I and emulsifier are mixed uniformly, dehydrated in a vacuum at 110 ° C for 1 h, then cooled to 45 ° C, slowly adding isocyanate monomer, preheating. The prepolymer was obtained by polymerizing for 5 min.
  • the two-dimensional material, ultraviolet light stabilizer, heat stabilizer, polyester polyol and amino chain extender are added to the solvent II and mixed uniformly, and then added to the aforementioned prepolymer, and the reaction is kept for 3 hours to obtain a two-dimensional material composite polyurea solution.
  • the coating substrate of the topcoat is pure polyurea.
  • the functional group equivalent ratio of the hydroxyl group of the described polyester polyol-amino chain extender to "hydroxyl+amino" is 0:1
  • the functional group equivalent ratio of-NCO and "hydroxyl+amino" in the reaction system is 1.2 : 1
  • the consumption of the two-dimensional material is 15wt% of the isocyanate monomer
  • the consumption of the ultraviolet light stabilizer is 0.5wt% of the isocyanate monomer
  • the consumption of the thermal stabilizer is 0.05wt% of the isocyanate monomer .
  • the polyether is D230; the two-dimensional material is boron nitride; the isocyanate monomer is toluene diisocyanate (TDI); the amine chain extender is ethylenediamine; the ultraviolet light
  • the stabilizer is resorcinol monobenzoate; the thermal stabilizer is lead dibasic phosphite.
  • the solvent I is N,N-dimethylacetamide, and the solvent II is N,N-dimethylacetamide.
  • the specific method for spraying the topcoat is as follows: adding a certain amount of solvent N,N-dimethylacetamide to the two-dimensional material composite polyurethane/polyurea solution to make the primer reach the spraying standard; then uniformly spraying it with a spray gun on the primer.
  • Example 6 Adhesion test and electrochemical test to detect the deteriorated immune biomimetic protective coatings prepared in Examples 1-5
  • Electrochemical test Uncoated steel sheets, steel sheets coated with common polyurea coating, and degraded immune biomimetic protective coating steel sheets described in Examples 1-5 were used to prepare test pieces required for electrochemical tests.
  • the size of the steel plate is 1cm ⁇ 1cm, the thickness is 1mm, and the ordinary polyurea coating and the coating described in Examples 1-5 are respectively coated, and a blank group without coating is prepared at the same time for control.
  • the test piece was placed in a 3.5% NaCl solution for 3 months and immersed in a three-electrode system with steel plate as the working electrode, saturated calomel electrode as the reference electrode, and titanium mesh as the auxiliary electrode, and the potentiodynamic polarization measurement was carried out. ⁇ 250mV near the open circuit potential, and the scanning speed is 0.5mV/s.
  • the obtained data were processed by Tafel extrapolation to obtain self-corrosion potential and corrosion current density.
  • Adhesion test Carry out the adhesion test of the coating according to the regulations in "Paint and Varnish Pull-Off Adhesion Test” (GB/T5210-2006) and "Adhesion Determination Method” (ASTM-D-4541).
  • a 10cm ⁇ 10cm steel plate with a thickness of 1mm was coated with a common polyurea coating (control) and the coatings described in Examples 1-5, respectively.
  • a smooth and defect-free surface was selected as the experimental surface, the experimental surface and the test column were wiped clean with absolute ethanol, and the test column was bonded to the experimental surface with acrylic adhesive, and the test was carried out after standing for 24 hours.
  • the corrosion potential of the uncoated steel plate after immersion for 3 months is -0.629V, and the corrosion current density is the largest, which is 1.3 ⁇ 10 -5 A ⁇ cm 2 ; it indicates that the steel plate is in active corrosion. state, the corrosion rate is the highest.
  • the corrosion potential of the coated steel plate with common polyurea was shifted to -0.487V, and the corrosion current density decreased to 0.9 ⁇ 10 -8 A ⁇ cm 2 .
  • the corrosion potentials of the samples prepared in Examples 1-5 of the present application are -0.366 to -0.196V, and the corrosion current densities are 2.9 ⁇ 10 -13 to 6.0 ⁇ 10 -9 A ⁇ cm 2 .
  • the corrosion potential of the samples prepared in Examples 1-5 of the present application is shifted by 0.2-0.4V, and the corrosion current density is reduced by 4-7 orders of magnitude;
  • the coating is immune to the corrosion of the steel plate to a certain extent, but the degraded immune biomimetic protective coating described in this application can block the seawater to a greater extent, thereby effectively immune to the corrosion of the steel plate, so that it has a smaller corrosion current Density, delays the occurrence of corrosion, and better realizes the protection of steel structural components.
  • examples 1-5 do not have any damage to the interface between primer and intermediate paint, intermediate paint and topcoat, indicating that the interface between the primer and the intermediate paint, the intermediate paint and the top paint using the interface interpenetrating network has Not lower than the strength of the overall material, it is also confirmed that the three-layer structure has been formed into an overall interface system.
  • the degraded immune biomimetic protective coating for marine engineering described in this application is composed of three layers of primer, intermediate paint and topcoat in sequence from the inside to the outside, the two adjacent layers penetrate each other at the interface. , forming a molecular cross-linking and interpenetrating network interface, integrating the three lines of defense and eliminating the key problem of weak interface.
  • the primer of the protective coating is connected with the surface of the steel structure through chemical bonds, which improves the interfacial adhesion between the coating and the steel structure.
  • the degradation immune biomimetic protective coating can also effectively immune to corrosion of the steel structure.
  • the degraded immune biomimetic protective coating described in the present application overcomes the problem that the protective coating is easily damaged in the prior art, realizes the protection of the steel structure from the aspects of physical crack repair and chemical corrosion resistance, and has important economic benefits. value and social benefit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明公开了用于钢结构工程的劣化免疫仿生防护涂层及制备方法。所述劣化免疫仿生防护涂层为钢结构基体上的防护涂层,由内到外依次由底漆、中间漆和面漆三层组成;且相邻两层互相扩散并发生化学交联,形成分子交联互穿网络。所述的底漆为 缓蚀剂-聚氨酯共混体系,所述底漆成膜的厚度为80-150μm。所述的中间漆为GO改性的聚脲基双壁微胶囊和聚多巴胺在聚氨酯-聚脲弹性体中分散均匀,得到的自修复聚脲共混溶液,所述中间漆成膜的厚度为100-400μm。所述的面漆为二维材料复合聚氨酯/聚脲溶液,所述面漆成膜的厚度为150-500μm。所述劣化免疫仿生防护涂层模拟人体免疫系统的三道防线结构,从物理裂纹修复和耐化学侵蚀两方面对钢结构进行防护,实现了对钢结构劣化的免疫。

Description

用于钢结构工程的劣化免疫仿生防护涂层及其制备方法 技术领域
本发明属于材料领域,涉及一种防护涂层及其制备方法,具体地说,涉及一种钢结构工程结构劣化免疫仿生防护涂层系统及其制备方法。
背景技术
钢结构是主要的建筑结构类型之一,其结构主要由型钢和钢板等制成的钢梁、钢柱、钢桁架等构件组成,并采用硅烷化、纯锰磷化、水洗烘干、镀锌等除锈防锈工艺。钢结构的各构件或部件之间通常采用焊缝、螺栓或铆钉连接。由于钢结构自重较轻,且施工简便,目前已经广泛应用于大型厂房、场馆、超高层的建造领域。钢结构建筑的多少,标志着一个国家或一个地区的经济实力和经济发达程度。随着我国国民经济的显著增长,国力明显增强,钢产量成为世界大国,在建筑中提出了要“积极、合理地用钢”,钢结构建筑在经济发达地区逐渐增多。尤其在2008年奥运会的推动下,我国建成了一大批钢结构场馆、机场、车站和高层建筑,其中不乏具有世界一流水平的钢结构建筑,如奥运会国家体育场等建筑。
然而,钢结构容易锈蚀,因此必须注意防护,特别是薄壁构件,因此,处于较强腐蚀性介质内的建筑物不宜采用钢结构。一般钢结构要除锈、镀锌或涂料,且要定期维护。钢结构在涂油漆前应彻底除锈,新建造的钢结构一般隔一定时间都要重新刷涂料,维护费用较高。国内外正在发展各种高性能的涂料和不易锈蚀的耐候钢,钢结构耐锈蚀性差的问题有望得到解决。目前常用的还是钢结构涂层防护技术;只要涂层粘附在钢结构基体上,没有失效破坏,就能一直对钢结构提供良好的保护。钢结构涂层防护可以从构件的出厂、运输到服役进行全阶段地防护,具有全寿命周期防护的特点。然而在实际应用中,钢结构涂层防护技术却难以实现全寿命周期防护。这是因为:(1)涂层/钢结构的界面粘结力较弱,在外部荷载作用下易发生脱粘;(2)现有钢结构涂层防护多为环氧涂层,其硬度高、脆性大;在施工现场加工时,涂层容易发生破坏;换言之,现有涂层防护技术无法兼顾力学性能与可加工性。对涂层防护技术来说,涂层一旦发生局部破坏,就会导致构件局部发生点蚀现象,从而导致整套涂层防护系统就会失效;(3)现有涂层防护技术仅能通过隔离钢结构基体而提供防腐蚀保护,但无法兼顾对裂纹和侵蚀因子的修复和免疫。
发明内容
针对现有钢结构涂层防护技术所存在的问题,本发明公开了用于钢结构工程的劣化免疫仿生防护涂层。所述劣化免疫仿生防护涂层模拟人体免疫系统三道防线,采用“隔-阻-缓” 的结构体系,通过钢结构涂层结构的优化设计,实现了对钢结构的仿生化免疫防腐处理。
本发明的技术方案:
用于钢结构工程的劣化免疫仿生防护涂层的制备方法,包括以下步骤:
(1)制备特异性靶向控释缓蚀免疫层:
(1a)对钢材表面进行处理,去除钢结构表面浮尘、焊接飞溅物、油脂等污物,处理完成后采用抛丸或喷砂的方式去除钢材表面的氧化物、铁锈、涂层等,并使钢材表面具有一定的粗糙度,得到初步处理后的的钢结构构件I。表面处理需符合《涂覆涂料前钢材表面处理表面清洁度的目视评定》(GB/T 8923)。经处理后的钢材表面必须在24小时内进行底漆的喷涂,若喷涂前发现钢材表面出现锈蚀和污物,需再次进行表面处理。
(1b)配制硅烷偶联剂溶液,将钢结构构件I浸入其中,5-10分钟后取出,然后在100-150℃固化1-3小时,得到处理后的钢结构构件II;所述硅烷偶联剂溶液的浓度为0.5-1.0%,所述的硅烷偶联剂为KH-550、KH-560或KH-570;所述硅烷偶联剂溶液采用如下方法制备得到:将硅烷偶联剂和醇水混合物混合,根据偶联剂种类调节pH值为3.5~5.5,静置水解24-48h。
(1c)在钢结构构件II表面立刻涂刷底漆使其成膜,然后在55-60℃下进行初步固化0.5-2h,得到特异性靶向控释缓蚀免疫层;所述底漆成膜的厚度为80-150μm,所述底漆为缓蚀剂-聚氨酯共混体系;所述缓蚀剂为聚天冬氨酸和聚磷酸盐、钼酸盐、有机磷缓蚀剂中的一种或几种复配。将聚天冬氨酸缓蚀剂与其他缓蚀剂复配,具有绿色环保的特点,当底漆产生破坏时,基体中的缓蚀剂会被释放,并紧密吸附于裸露的钢结构表面,阻隔侵蚀性离子对钢结构构件的侵蚀,实现了底漆对侵蚀因子的靶向控释免疫。
所述的底漆采用如下方法制备得到:将聚氧化丙烯二醇在100-120℃真空脱水1-3h,冷却至40~60℃,缓慢加入异氰酸酯单体;异氰酸酯单体完全加入后,升温至65~80℃,期间多次加入丙酮降粘,反应1~2h得到预聚体;将缓蚀剂与多元醇按照一定的配比混合均匀,加入到预聚体中,降温至40-50℃反应1h,继续降温至室温,加水乳化;最后,真空蒸出丙酮,得到缓蚀剂-聚氨酯共混体系。
本步骤的关键在于:底漆的涂刷必须在钢结构表面处理完成后立刻进行,并且钢结构表面不得有肉眼可见的污物和氧化现象;从而确保底漆与钢结构通过化学键相连。原理为:钢结构表面氧化产生的羟基,与偶联剂的水解产物形成氢键,然后部分脱水形成共价键;同理,偶联剂与底漆表面形成共价键,底漆与钢结构通过偶联剂形成化学键连接。
(2)制备非特异性自修复应力免疫层:步骤(1)的底漆固化完成后,升温至80-100℃后立即喷涂中间漆,以 保证两层间的分子可以发生渗透交换,得到非特异性自修复应力免疫层。所述中间漆成膜的厚度为100-400μm;所述中间漆为自修复聚脲溶液,制备方法如下:
(2a)制备GO改性的聚脲基双壁微胶囊;采用GO-modified double-walled polyurea microcapsules/epoxy composites for marine anticorrosive self-healing coating.(Materials&Design,Ma Y,Zhang Y,Liu J,et al.2020,189:108547)公开的制备方法制备氧化石墨烯改性聚脲基双壁微胶囊。
(2b)制备聚多巴胺微球;采用水相氧化法制备聚多巴胺,将一定浓度的乙醇溶液和氨水在40-50℃下搅拌,加入一定量的多巴胺盐酸盐溶液,搅拌反应8~10h;反应完成后离心、洗涤,得到聚多巴胺微球。
(2c)制备自修复聚脲溶液:在溶剂中加入聚醚胺并搅拌均匀,然后缓慢滴入异氰酸酯中,控制反应温度为0~30℃,滴加完毕后预聚0.5-1h得到预聚物;将(2b)得到的聚多巴胺微球和氨基扩链剂加入到溶剂中混合均匀,再加入到前述预聚物中,控制反应体系中—NCO与NH 2的摩尔比为1.05:1-1.2:1,反应5~10min,得到聚多巴胺/聚脲弹性体;将(2a)得到的GO改性聚脲基双壁微胶囊加入到聚多巴胺/聚脲弹性体中,高速搅拌使GO改性的聚脲基双壁微胶囊在聚多巴胺/聚脲弹性体中分散均匀,得到自修复聚脲溶液。所述自修复聚脲溶液将外援型的自修复双壁微胶囊与本征型的自修复手段相结合,不但损伤处的微胶囊能够释放修复剂修复损伤,而且聚多巴胺分子间形成氢键能够对微胶囊释放后留下的空洞和未触发微胶囊的损伤部位进行修复,进一步提高了中间漆的自修复效率。
其中,所述的聚醚胺是D230、D400和D2000中的一种或几种,所述的异氰酸酯是六亚甲基二异氰酸酯(HDI)、二环己基甲烷二异氰酸酯(HMDI)、二苯基甲烷二异氰酸酯(MDI)、甲苯二异氰酸酯(TDI)和异佛尔酮二异氰酸酯(IPDI)中的一种或几种;所述的胺基扩链剂为二乙基甲苯二胺、二甲硫基甲苯二胺、N,N'-二烷基甲基二苯胺、环己烷二胺、氯化MDH、乙二胺、1,3-二氨基丙烷、1,4-二氨基丁烷、二亚乙基三胺、五亚乙基六胺、六亚乙基二胺、四亚乙基五胺、1,6-己二胺和3,3'-4,4'-二氨基-二苯甲烷中的一种或几种。
其中,所述中间漆喷涂的具体方法为:向(2c)得到的自修复聚脲溶液中加入一定量的溶剂N,N-二甲基乙酰胺,使中间漆达到喷涂标准;然后采用喷枪将其均匀喷涂于底漆上。初步固化的底漆与喷涂自修复聚脲的链段在界面处互相渗透,形成分子互传网络。
(3)制备非特异性损伤自分化免疫层:底漆喷涂完成后,保持表面温度不低于30℃,立刻进行面漆的喷涂,得到非特异性损伤自分化免疫层,从而完成劣化免疫仿生防护涂层的制备。所述面漆成膜的厚度为150-500μm;所述面漆为二维材料复合聚氨酯/聚脲溶液,制备方法如下:将聚醚、溶剂I和乳化剂混合均匀,在100-120℃下真空脱水1-3h,然后冷却至20-65℃,缓慢加入异氰酸酯单体,预聚5-60min得到预聚物。将二维材料、紫外光稳定剂、热稳定剂、聚酯多元醇和氨基扩链剂加入到溶剂II中混合均匀,再加入到前述预聚物中,保 温反应0.5-3h,得到二维材料复合聚氨酯/聚脲溶液。所述面漆的涂层基体是纯聚氨酯、半聚氨酯半聚脲或纯聚脲。当所述涂层基体以聚氨酯为主体时,所用的聚醚为聚醚多元醇;以聚脲为主体时,所用的聚醚为聚醚胺。面漆中二维材料层状分布能够阻断或延长腐蚀介质的入侵路径,提高被保护混凝土材料的耐久性,并且面漆中的光、热稳定剂能够提高涂层的耐老化性能。
其中,所述的聚酯多元醇-氨基扩链剂的羟基与“羟基+氨基”的官能团当量比为(0-0.37):1和(0.48-1):1,所述反应体系中—NCO与“羟基+氨基”的官能团当量比为(1.05-1.2):1,所述二维材料的用量为异氰酸酯单体的0.5~15wt%,所述紫外光稳定剂的用量为异氰酸酯单体的0.01-1wt%,所述热稳定剂的用量为异氰酸酯单体的0.05-5wt%。
其中,所述的聚醚多元醇是聚氧化丙烯二醇、三羟甲基丙烷聚醚、聚四氢呋喃二醇、四氢呋喃-氧化丙烯共聚二醇和聚氧化乙烯二醇中的一种或几种;所述的聚醚胺是D230、D400、D2000、T403、T5000中的一种或几种;所述二维材料为石墨烯、云母、蒙脱石、石墨和氮化硼中的一种或几种;所述的异氰酸酯单体是六亚甲基二异氰酸酯(HDI)、二环己基甲烷二异氰酸酯(HMDI)、二苯基甲烷二异氰酸酯(MDI)、甲苯二异氰酸酯(TDI)和异佛尔酮二异氰酸酯(IPDI)中的一种或几种;所述聚酯多元醇是乙二醇、一缩二乙二醇、1,2-丙二醇、一缩二丙二醇、1,4-丁二醇、新戊二醇、1,6-己二醇、己二酸、三羟甲基丙烷和间苯二甲酸中的一种或几种;所述的胺基扩链剂为二乙基甲苯二胺、二甲硫基甲苯二胺、N,N'-二烷基甲基二苯胺、环己烷二胺、氯化MDH、乙二胺、1,3-二氨基丙烷、1,4-二氨基丁烷、二亚乙基三胺、五亚乙基六胺、六亚乙基二胺、四亚乙基五胺、1,6-己二胺和3,3'-4,4'-二氨基-二苯甲烷中的一种或几种;所述的紫外光稳定剂为水杨酸苯酯、水杨酸-4-辛基苯酯、单苯甲酸间苯二酚酯、2-羟基-4-甲氧基二苯酮、2,4-二羟基二苯酮和2-羟基-4-正辛氧基二苯酮中的一种或几种;所述热稳定剂为三盐基硫酸铅、二盐基亚磷酸铅、二盐基硬脂酸铅、硬脂酸镉、硬脂酸钡、硬脂酸钙、硬脂酸铅、硬脂酸锌、脂肪酸盐和马来酸盐中的一种或几种。
所述面漆喷涂的具体方法为:向二维材料复合聚氨酯/聚脲溶液中加入一定量的溶剂N,N-二甲基乙酰胺,使底漆达到喷涂标准;然后采用喷枪将其均匀喷涂于底漆上。
采用前述方法制备得到的用于钢结构工程的劣化免疫仿生防护涂层,所述劣化免疫仿生防护涂层为钢结构基体上的防护涂层。所述劣化免疫仿生防护涂层由内到外依次由底漆、中间漆和面漆三层组成;且相邻两层互相扩散并发生化学交联,形成分子交联互穿网络。所述的底漆为 缓蚀剂-聚氨酯共混体系,所述缓蚀剂为聚天冬氨酸和聚磷酸盐、钼酸盐、有机磷缓蚀剂、铝粉、锌粉中的一种或几种复配,所述底漆成膜的厚度为80-150μm。所述的中间漆为GO改性的聚脲基双壁微胶囊和聚多巴胺在聚氨酯-聚脲弹性体中分散均匀,得到的自修复聚 脲共混溶液,所述中间漆成膜的厚度为100-400μm。所述的面漆为二维材料复合聚氨酯/聚脲溶液,所述面漆成膜的厚度为150-500μm。
制备原理:底漆、中间漆和面漆在未完全固化时顺序涂装在钢结构构件上,使得界面处两层漆随溶剂相互扩散,聚合物分子的长链短相互渗透、扩散并缠绕形成互穿网络。其中,底漆与中间漆、中间漆与面漆界面间互相扩散的链段中未反应完全的—NCO和扩链剂中的羟基或氨基,会继续与对方链段中未反应完全的扩链剂中的羟基或氨基和—NCO继续反应,从而使三层漆面发生化学交联,最终固化得到分子交联互穿网络。因此,从本质上说,劣化免疫仿生防护涂层的三层结构实质上已经密不可分,形成了一层。此外,钢结构表面采用硅烷偶联剂处理,钢结构表面氧化产生的羟基,与偶联剂的水解产物形成氢键,然后部分脱水形成共价键,偶联剂另一端中的氨基、环氧基或不饱和双键可参与底漆的固化反应,使钢结构表面与底漆通过化学键相连,进一步提高界面粘聚力。
本发明的有益效果:
(1)本发明所述的用于钢结构工程的劣化免疫仿生防护涂层,模拟人体免疫系统的三道防线结构,从物理裂纹修复和耐化学侵蚀两方面对钢结构进行防护,实现了对钢结构劣化的免疫,克服了现有技术中防护涂层容易破损、不能修复的缺陷,具有重要的经济价值和社会效益。
(2)本发明所述的用于钢结构工程的劣化免疫仿生防护涂层,由内到外依次由底漆、中间漆和面漆三层组成,不但相邻两层在界面处相互渗透,形成 分子交联互穿网络界面,使三 道防线融为一体,不存在界面薄弱等问题。
(3)本发明所述的用于钢结构工程的劣化免疫仿生防护涂层,底漆与钢结构界面采用偶联剂处理,使 底漆与钢结构表面以化学键形式连接,增强了漆面与钢结构的结合力。
附图说明
附图1为本发明所述的劣化免疫仿生防护涂层的结构示意图之一。
附图2为本发明所述劣化免疫仿生防护涂层中的底漆的结构示意图;
附图3为本发明所述劣化免疫仿生防护涂层中的中间漆的结构示意图;
附图4为本发明所述劣化免疫仿生防护涂层中的面漆的结构示意图;
其中:1:面漆;2:中间漆;3:底漆;4:钢材;5:腐蚀介质;6:缓蚀剂;7:底漆涂层基体;8:自修复微胶囊;9:中间漆涂层基体;10:自修复聚合物;11:腐蚀介质;12:二维材料;13:面漆涂层基体。
具体实施方式
下面结合实施例对本发明做进一步的说明。
实施例1:
本发明所述的用于海洋工程的劣化免疫仿生防护涂层,是钢结构基体上的防护涂层。所述劣化免疫仿生防护涂层由内到外依次由底漆、中间漆和面漆三层组成;且相邻两层互相扩散并发生化学交联,形成分子交联互穿网络;所述的底漆为缓蚀剂-聚氨酯共混体系,所述底漆成膜的厚度为100μm;所述的中间漆为自修复聚脲溶液,所述中间漆成膜的厚度为250μm;所述的面漆为二维材料复合聚氨酯/聚脲溶液,所述面漆成膜的厚度为350μm。制备方法如下:
(1)特异性靶向控释缓蚀免疫层底漆的制备
选择Q345钢,首先对钢材表面进行处理,去除钢结构表面浮尘、焊接飞溅物、油脂等污物,处理完成后采用抛丸或喷砂的方式去除钢材表面的氧化物、铁锈、涂层等,并使钢材表面具有一定的粗糙度。表面处理需符合《涂覆涂料前钢材表面处理表面清洁度的目视评定》(GB/T 8923)。
将硅烷偶联剂KH-560和醇水混合物混合,配置成0.5%浓度的稀溶液,调节pH值为4.5,并静置水解48h。将初步处理后的钢结构构件I在硅烷偶联剂处理液中浸泡10min后取出,并在100℃固化1小时,得到处理后的钢结构构件II。在钢结构构件II表面立刻涂刷底漆,然后在55℃下进行初步固化1h,得到特异性靶向控释缓蚀免疫层(如图2所示)。所述的底漆采用如下方法制备得到:
将聚氧化丙烯二醇在105℃真空脱水1h,冷却至40℃,缓慢加入2,4-甲苯二异氰酸酯单体;异氰酸酯单体完全加入后,升温至65℃,期间多次加入丙酮降粘,反应1.5h得到预聚体;将缓蚀剂与多元醇按照一定的配比混合均匀,加入到预聚体中,降温至45℃反应1h,继续降温至室温,加水乳化;最后,真空蒸出丙酮,得到缓蚀剂-聚氨酯共混体系。
(2)非特异性自修复应力免疫层中间漆的制备
步骤(1)的底漆固化完成后,升温至80℃后立即喷涂中间漆,以 保证两层间的分子可 以发生渗透交换,得到非特异性自修复应力免疫层(如图3所示)。所述中间漆为自修复聚脲溶液,制备方法如下:
(2a)制备GO改性的聚脲基双壁微胶囊;采用GO-modified double-walled polyurea microcapsules/epoxy composites for marine anticorrosive self-healing coating.(Materials&Design,Ma Y,Zhang Y,Liu J,et al.2020,189:108547)公开的制备方法制备氧化石墨烯改性聚脲基双壁微胶囊。
(2b)制备聚多巴胺微球;采用水相氧化法制备聚多巴胺,将30%乙醇溶液和28%的氨 水按照45:1的体积比混合在45℃下搅拌,加入10.5g 4.8%的盐酸多巴胺水溶液,搅拌反应10h;反应完成后离心、洗涤,得到聚多巴胺微球。
(2c)制备自修复聚脲溶液:在溶剂中加入聚醚胺并搅拌均匀,然后缓慢滴入异氰酸酯中,控制反应温度为20℃,滴加完毕后预聚0.5h得到预聚物;将(2b)得到的聚多巴胺微球和氨基扩链剂加入到溶剂中混合均匀,再加入到前述预聚物中,控制反应体系中—NCO与NH 2的摩尔比为1.05:1,反应5min,得到聚多巴胺/聚脲弹性体;将(2a)得到的GO改性聚脲基双壁微胶囊加入到聚多巴胺/聚脲弹性体中,高速搅拌使GO改性的聚脲基双壁微胶囊在聚多巴胺/聚脲弹性体中分散均匀,得到自修复聚脲溶液。
其中,所述的聚醚胺是D230,所述的异氰酸酯是异佛尔酮二异氰酸酯(IPDI);所述的胺基扩链剂乙二胺。
其中,所述中间漆喷涂的具体方法为:向(2c)得到的自修复聚脲溶液中加入一定量的溶剂N,N-二甲基乙酰胺,使中间漆达到喷涂标准;然后采用喷枪将其均匀喷涂于底漆上。
(3)制备非特异性损伤自分化免疫层:底漆喷涂完成后,保持表面温度不低于30℃,立刻进行面漆的喷涂,得到非特异性损伤自分化免疫层,从而完成劣化免疫仿生防护涂层的制备。所述面漆为二维材料复合聚氨酯,制备方法如下:将聚醚、溶剂I和乳化剂混合均匀,在105℃下真空脱水2h,然后冷却至55℃,缓慢加入异氰酸酯单体,预聚5min得到预聚物。将二维材料、紫外光稳定剂、热稳定剂、聚酯多元醇和氨基扩链剂加入到溶剂II中混合均匀,再加入到前述预聚物中,保温反应2h,得到二维材料复合聚氨酯/聚脲溶液。所述面漆的涂层基体是纯聚氨酯。
其中,所述的聚酯多元醇-氨基扩链剂的羟基与“羟基+氨基”的官能团当量比为1:1,所述反应体系中—NCO与“羟基+氨基”的官能团当量比为1.05:1,所述二维材料的用量为异氰酸酯单体的1wt%,所述紫外光稳定剂的用量为异氰酸酯单体的0.1wt%,所述热稳定剂的用量为异氰酸酯单体的0.5wt%。
其中,所述的聚醚多元醇是聚氧化丙烯二醇;所述二维材料为石墨烯;所述的异氰酸酯单体是六亚甲基二异氰酸酯(HDI);所述聚酯多元醇是乙二醇;所述的胺基扩链剂为1,6-己二胺;所述的紫外光稳定剂为水杨酸苯酯;所述热稳定剂为三盐基硫酸铅。所述的溶剂I为N,N—二甲基乙酰胺,所述的溶剂II为N,N—二甲基乙酰胺。
所述面漆喷涂的具体方法为:向二维材料复合聚氨酯溶液中加入一定量的溶剂N,N-二甲基乙酰胺,使底漆达到喷涂标准;然后采用喷枪将其均匀喷涂于底漆上。
实施例2:与实施例1不同的是,
所述劣化免疫仿生防护涂层中,所述底漆成膜的厚度为80μm;所述的中间漆成膜的厚度为300μm;所述的面漆成膜的厚度为150μm。制备方法如下:
(1)特异性靶向控释缓蚀免疫层底漆的制备
将硅烷偶联剂KH-550和醇水混合物混合,配置成1%浓度的稀溶液,调节pH值为4,并静置水解24h。将初步处理后的钢结构构件I在硅烷偶联剂处理液中浸泡5min后取出,并在120℃固化1小时,得到处理后的钢结构构件II。在钢结构构件II表面立刻涂刷底漆,然后在60℃下进行初步固化0.5h,得到特异性靶向控释缓蚀免疫层(如图2所示)。所述的底漆采用如下方法制备得到:
将聚氧化丙烯二醇在105℃真空脱水1h,冷却至40℃,缓慢加入2,4-甲苯二异氰酸酯单体;异氰酸酯单体完全加入后,升温至65℃,期间多次加入丙酮降粘,反应1.5h得到预聚体;将缓蚀剂与多元醇按照一定的配比混合均匀,加入到预聚体中,降温至45℃反应1h,继续降温至室温,加水乳化;最后,真空蒸出丙酮,得到缓蚀剂-聚氨酯共混体系。
(2)非特异性自修复应力免疫层中间漆的制备
步骤(1)的底漆固化完成后,升温至80℃后立即喷涂中间漆,以保证两层间的分子可以发生渗透交换,得到非特异性自修复应力免疫层(如图3所示)。所述中间漆为自修复聚脲溶液,制备方法如下:
(2a)制备GO改性的聚脲基双壁微胶囊;采用GO-modified double-walled polyurea microcapsules/epoxy composites for marine anticorrosive self-healing coating.(Materials&Design,Ma Y,Zhang Y,Liu J,et al.2020,189:108547)公开的制备方法制备氧化石墨烯改性聚脲基双壁微胶囊。
(2b)制备聚多巴胺微球;采用水相氧化法制备聚多巴胺,将30%乙醇溶液和28%的氨水按照45:1的体积比混合在50℃下搅拌,加入10.5g 4.8%的盐酸多巴胺水溶液,搅拌反应8h;反应完成后离心、洗涤,得到聚多巴胺微球。
(2c)制备自修复聚脲溶液:在溶剂中加入聚醚胺并搅拌均匀,然后缓慢滴入异氰酸酯中,控制反应温度为20℃,滴加完毕后预聚0.5h得到预聚物;将(2b)得到的聚多巴胺微球和氨基扩链剂加入到溶剂中混合均匀,再加入到前述预聚物中,控制反应体系中—NCO与NH2的摩尔比为1.05:1,反应5min,得到聚多巴胺/聚脲弹性体;将(2a)得到的GO改性聚脲基双壁微胶囊加入到聚多巴胺/聚脲弹性体中,高速搅拌使GO改性的聚脲基双壁微胶囊在聚多巴胺/聚脲弹性体中分散均匀,得到自修复聚脲溶液。
其中,所述的聚醚胺是D2000,所述的异氰酸酯是六亚甲基二异氰酸酯(HDI);所述的胺基扩链剂为二亚乙基三胺。
其中,所述中间漆喷涂的具体方法为:向(2c)得到的自修复聚脲溶液中加入一定量的溶剂N,N-二甲基乙酰胺,使中间漆达到喷涂标准;然后采用喷枪将其均匀喷涂于底漆上。
(3)制备非特异性损伤自分化免疫层:所述面漆成膜的厚度为150μm;所述面漆为二维材料复合聚氨酯/聚脲,制备方法如下:将聚醚、溶剂I和乳化剂混合均匀,在120℃下真空脱水1h,然后冷却至65℃,缓慢加入异氰酸酯单体,预聚30min得到预聚物。将二维材料、紫外光稳定剂、热稳定剂、聚酯多元醇和氨基扩链剂加入到溶剂II中混合均匀,再加入到前述预聚物中,保温反应0.5h,得到二维材料复合聚氨酯/聚脲溶液。所述面漆的涂层基体是半聚氨酯半聚脲。
其中,所述的聚酯多元醇-氨基扩链剂的羟基与“羟基+氨基”的官能团当量比为0.48:1,所述反应体系中—NCO与“羟基+氨基”的官能团当量比为1.1:1,所述二维材料的用量为异氰酸酯单体的10wt%,所述紫外光稳定剂的用量为异氰酸酯单体的1wt%,所述热稳定剂的用量为异氰酸酯单体的5wt%。所述的溶剂I为N,N—二甲基乙酰胺,所述的溶剂II为N,N—二甲基乙酰胺。
其中,所述的聚醚是D230;所述二维材料为石墨烯;所述的异氰酸酯单体是六亚甲基二异氰酸酯(HDI);所述聚酯多元醇是乙二醇;所述的胺基扩链剂为乙二胺;所述的紫外光稳定剂为水杨酸苯酯;所述热稳定剂为三盐基硫酸铅。所述的溶剂I为N,N—二甲基乙酰胺,所述的溶剂II为N,N—二甲基乙酰胺。所述面漆喷涂的具体方法为:向二维材料复合聚氨酯溶液中加入一定量的溶剂N,N-二甲基乙酰胺,使底漆达到喷涂标准;然后采用喷枪将其均匀喷涂于底漆上。
实施例3:与实施例1不同的是,
所述劣化免疫仿生防护涂层中,所述底漆成膜的厚度为150μm;所述的中间漆成膜的厚度为400μm;所述的面漆成膜的厚度为250μm。制备方法如下:
(1)特异性靶向控释缓蚀免疫层底漆的制备
同实施例1。
(2)非特异性自修复应力免疫层中间漆的制备
步骤(1)的底漆固化完成后,升温至100℃后立即喷涂中间漆,以 保证两层间的分子可 以发生渗透交换,得到非特异性自修复应力免疫层(如图3所示)。所述中间漆为自修复聚脲溶液,制备方法如下:
(2a)同实施例1。
(2b)同实施例1。
(2c)制备自修复聚脲溶液:在溶剂中加入聚醚胺并搅拌均匀,然后缓慢滴入异氰酸酯中,控制反应温度为10℃,滴加完毕后预聚1h得到预聚物;将(2b)得到的聚多巴胺微球和氨基扩链剂加入到溶剂中混合均匀,再加入到前述预聚物中,控制反应体系中—NCO与NH 2的摩尔比为1.05:1,反应10min,得到聚多巴胺/聚脲弹性体;将(2a)得到的GO改性聚脲基双壁微胶囊加入到聚多巴胺/聚脲弹性体中,高速搅拌使GO改性的聚脲基双壁微胶囊在聚多巴胺/聚脲弹性体中分散均匀,得到自修复聚脲溶液。
其中,所述的聚醚胺是D400,所述的异氰酸酯是二环己基甲烷二异氰酸酯(HMDI)、二苯基甲烷二异氰酸酯(MDI);所述的胺基扩链剂为1,6-己二胺。
其中,所述中间漆喷涂的具体方法为:向(2c)得到的自修复聚脲溶液中加入一定量的溶剂N,N-二甲基乙酰胺,使中间漆达到喷涂标准;然后采用喷枪将其均匀喷涂于底漆上。
(3)制备非特异性损伤自分化免疫层:底漆喷涂完成后,保持表面温度不低于30℃,立刻进行面漆的喷涂,得到非特异性损伤自分化免疫层,从而完成劣化免疫仿生防护涂层的制备。所述面漆为二维材料复合聚氨酯/聚脲溶液,制备方法如下:将聚醚、溶剂I和乳化剂混合均匀,在110℃下真空脱水1h,然后冷却至20℃,缓慢加入异氰酸酯单体,预聚60min得到预聚物。将二维材料、紫外光稳定剂、热稳定剂、聚酯多元醇和氨基扩链剂加入到溶剂II中混合均匀,再加入到前述预聚物中,保温反应3h,得到二维材料复合聚氨酯/聚脲溶液。所述面漆的涂层基体是半聚氨酯半聚脲。
其中,所述的聚酯多元醇-氨基扩链剂的羟基与“羟基+氨基”的官能团当量比为0.37:1,所述反应体系中—NCO与“羟基+氨基”的官能团当量比为1.2:1,所述二维材料的用量为异氰酸酯单体的5wt%,所述紫外光稳定剂的用量为异氰酸酯单体的0.01wt%,所述热稳定剂的用量为异氰酸酯单体的1wt%。
其中,所述的聚醚是D2000;所述二维材料为云母;所述的异氰酸酯单体是甲苯二异氰酸酯(TDI);所述聚酯多元醇是1,2-丙二醇;所述的胺基扩链剂为乙二胺;所述的紫外光稳定剂为单苯甲酸间苯二酚酯;所述热稳定剂为二盐基亚磷酸铅。所述的溶剂I为N,N—二甲基乙酰胺,所述的溶剂II为N,N—二甲基乙酰胺。
所述面漆喷涂的具体方法为:向二维材料复合聚氨酯/聚脲溶液中加入一定量的溶剂N,N-二甲基乙酰胺,使底漆达到喷涂标准;然后采用喷枪将其均匀喷涂于底漆上。
实施例4:与实施例1不同的是,
所述劣化免疫仿生防护涂层中,所述底漆成膜的厚度为100μm;所述的中间漆成膜的厚度为200μm;所述的面漆成膜的厚度为500μm。制备方法如下:
(1)特异性靶向控释缓蚀免疫层底漆的制备
将硅烷偶联剂KH-570和醇水混合物混合,配置成1%浓度的稀溶液,调节pH值为5.5,并静置水解24h。将初步处理后的钢结构构件I在硅烷偶联剂处理液中浸泡5min后取出,并在150℃固化1小时,得到处理后的钢结构构件II。在钢结构构件II表面立刻涂刷底漆,然后在55℃下进行初步固化2h,得到特异性靶向控释缓蚀免疫层(如图2所示)。所述的底漆采用如下方法制备得到:
将聚氧化丙烯二醇在120℃真空脱水1h,冷却至60℃,缓慢加入2,4-甲苯二异氰酸酯单体;异氰酸酯单体完全加入后,升温至80℃,期间多次加入丙酮降粘,反应1h得到预聚体;将缓蚀剂与多元醇按照一定的配比混合均匀,加入到预聚体中,降温至50℃反应1h,继续降温至室温,加水乳化;最后,真空蒸出丙酮,得到缓蚀剂-聚氨酯共混体系。
(2)非特异性自修复应力免疫层中间漆的制备
步骤(1)的底漆固化完成后,升温至90℃后立即喷涂中间漆,以保证两层间的分子可以发生渗透交换,得到非特异性自修复应力免疫层(如图3所示)。所述中间漆为自修复聚脲溶液,制备方法如下:
(2a)制备GO改性的聚脲基双壁微胶囊;采用GO-modified double-walled polyurea microcapsules/epoxy composites for marine anticorrosive self-healing coating.(Materials&Design,Ma Y,Zhang Y,Liu J,et al.2020,189:108547)公开的制备方法制备氧化石墨烯改性聚脲基双壁微胶囊。
(2b)制备聚多巴胺微球;采用水相氧化法制备聚多巴胺,将30%乙醇溶液和28%的氨水按照45:1的体积比混合在40℃下搅拌,加入10.5g 4.8%的盐酸多巴胺水溶液,搅拌反应10h;反应完成后离心、洗涤,得到聚多巴胺微球。
(2c)制备自修复聚脲溶液:在溶剂中加入聚醚胺并搅拌均匀,然后缓慢滴入异氰酸酯中,控制反应温度为30℃,滴加完毕后预聚0.5h得到预聚物;将(2b)得到的聚多巴胺微球和氨基扩链剂加入到溶剂中混合均匀,再加入到前述预聚物中,控制反应体系中—NCO与NH2的摩尔比为1.2:1,反应10min,得到聚多巴胺/聚脲弹性体;将(2a)得到的GO改性聚脲基双壁微胶囊加入到聚多巴胺/聚脲弹性体中,高速搅拌使GO改性的聚脲基双壁微胶囊在聚多巴胺/聚脲弹性体中分散均匀,得到自修复聚脲溶液。
其中,所述的聚醚胺是D2000,所述的异氰酸酯是六亚甲基二异氰酸酯(HDI);所述的胺基扩链剂为二亚乙基三胺。
其中,所述中间漆喷涂的具体方法为:向(2c)得到的自修复聚脲溶液中加入一定量的溶剂N,N-二甲基乙酰胺,使中间漆达到喷涂标准;然后采用喷枪将其均匀喷涂于底漆上。
(3)制备非特异性损伤自分化免疫层:底漆喷涂完成后,保持表面温度不低于30℃,立刻进行面漆的喷涂,得到非特异性损伤自分化免疫层,从而完成劣化免疫仿生防护涂层的制备。所述面漆为二维材料复合聚氨酯/聚脲溶液,制备方法如下:将聚醚、溶剂I和乳化剂混合均匀,在100℃下真空脱水3h,然后冷却至35℃,缓慢加入异氰酸酯单体,预聚15min得到预聚物。将二维材料、紫外光稳定剂、热稳定剂、聚酯多元醇和氨基扩链剂加入到溶剂II中混合均匀,再加入到前述预聚物中,保温反应1h,得到二维材料复合聚氨酯/聚脲溶液。所述面漆的涂层基体是半聚氨酯半聚脲。
其中,所述的聚酯多元醇-氨基扩链剂的羟基与“羟基+氨基”的官能团当量比为0.75:1,所述反应体系中—NCO与“羟基+氨基”的官能团当量比为1.1:1,所述二维材料的用量为异氰酸酯单体的0.5wt%,所述紫外光稳定剂的用量为异氰酸酯单体的0.05wt%,所述热稳定剂的用量为异氰酸酯单体的2wt%。
其中,所述的聚醚是聚氧化丙烯二醇;所述二维材料为蒙脱石;所述的异氰酸酯单体是异佛尔酮二异氰酸酯(IPDI);所述聚酯多元醇是1,6-己二醇;所述的胺基扩链剂为1,6-己二胺;所述的紫外光稳定剂为2,4-二羟基二苯酮;所述热稳定剂为硬脂酸钙。所述的溶剂I为N,N—二甲基乙酰胺,所述的溶剂II为N,N—二甲基乙酰胺。
所述面漆喷涂的具体方法为:向二维材料复合聚氨酯/聚脲溶液中加入一定量的溶剂N,N-二甲基乙酰胺,使底漆达到喷涂标准;然后采用喷枪将其均匀喷涂于底漆上。
实施例5:与实施例1不同的是,
所述劣化免疫仿生防护涂层中,所述底漆成膜的厚度为120μm;所述的中间漆成膜的厚度为100μm;所述的面漆成膜的厚度为450μm。制备方法如下:
(1)特异性靶向控释缓蚀免疫层底漆的制备
将硅烷偶联剂KH-570和醇水混合物混合,配置成1%浓度的稀溶液,调节pH值为5.5,并静置水解36h。将初步处理后的钢结构构件I在硅烷偶联剂处理液中浸泡5min后取出,并在100℃固化3小时,得到处理后的钢结构构件II。在钢结构构件II表面立刻涂刷底漆,然后在55℃下进行初步固化2h,得到特异性靶向控释缓蚀免疫层(如图2所示)。所述的底漆采用如下方法制备得到:
将聚氧化丙烯二醇在100℃真空脱水3h,冷却至50℃,缓慢加入2,4-甲苯二异氰酸酯单体;异氰酸酯单体完全加入后,升温至70℃,期间多次加入丙酮降粘,反应2h得到预聚体;将缓蚀剂与多元醇按照一定的配比混合均匀,加入到预聚体中,降温至40℃反应1h,继续降温至室温,加水乳化;最后,真空蒸出丙酮,得到缓蚀剂-聚氨酯共混体系。
(2)非特异性自修复应力免疫层中间漆的制备
步骤(1)的底漆固化完成后,升温至90℃后立即喷涂中间漆,以保证两层间的分子可以发生渗透交换,得到非特异性自修复应力免疫层(如图3所示)。所述中间漆为自修复聚脲溶液,制备方法如下:
(2a)制备GO改性的聚脲基双壁微胶囊;采用GO-modified double-walled polyurea microcapsules/epoxy composites for marine anticorrosive self-healing coating.(Materials&Design,Ma Y,Zhang Y,Liu J,et al.2020,189:108547)公开的制备方法制备氧化石墨烯改性聚脲基双壁微胶囊。
(2b)制备聚多巴胺微球;采用水相氧化法制备聚多巴胺,将30%乙醇溶液和28%的氨水按照45:1的体积比混合在50℃下搅拌,加入10.5g 4.8%的盐酸多巴胺水溶液,搅拌反应8h;反应完成后离心、洗涤,得到聚多巴胺微球。
(2c)制备自修复聚脲溶液:在溶剂中加入聚醚胺并搅拌均匀,然后缓慢滴入异氰酸酯中,控制反应温度为2℃,滴加完毕后预聚1h得到预聚物;将(2b)得到的聚多巴胺微球和氨基扩链剂加入到溶剂中混合均匀,再加入到前述预聚物中,控制反应体系中—NCO与NH2的摩尔比为1.1:1,反应10min,得到聚多巴胺/聚脲弹性体;将(2a)得到的GO改性聚脲基双壁微胶囊加入到聚多巴胺/聚脲弹性体中,高速搅拌使GO改性的聚脲基双壁微胶囊在聚多巴胺/聚脲弹性体中分散均匀,得到自修复聚脲溶液。
其中,所述的聚醚胺是D2000,所述的异氰酸酯是六亚甲基二异氰酸酯(HDI);所述的胺基扩链剂为二亚乙基三胺。
其中,所述中间漆喷涂的具体方法为:向(2c)得到的自修复聚脲溶液中加入一定量的溶剂N,N-二甲基乙酰胺,使中间漆达到喷涂标准;然后采用喷枪将其均匀喷涂于底漆上。
(3)制备非特异性损伤自分化免疫层:底漆喷涂完成后,保持表面温度不低于30℃,立刻进行面漆的喷涂,得到非特异性损伤自分化免疫层,从而完成劣化免疫仿生防护涂层的制备。所述面漆为二维材料复合聚脲溶液,制备方法如下:将聚醚、溶剂I和乳化剂混合均匀,在110℃下真空脱水1h,然后冷却至45℃,缓慢加入异氰酸酯单体,预聚5min得到预聚物。将二维材料、紫外光稳定剂、热稳定剂、聚酯多元醇和氨基扩链剂加入到溶剂II中混合均匀,再加入到前述预聚物中,保温反应3h,得到二维材料复合聚脲溶液。所述面漆的涂层基体是纯聚脲。
其中,所述的聚酯多元醇-氨基扩链剂的羟基与“羟基+氨基”的官能团当量比为0:1,所述反应体系中—NCO与“羟基+氨基”的官能团当量比为1.2:1,所述二维材料的用量为异氰酸酯单体的15wt%,所述紫外光稳定剂的用量为异氰酸酯单体的0.5wt%,所述热稳定剂的用 量为异氰酸酯单体的0.05wt%。
所述的聚醚是D230;所述二维材料为氮化硼;所述的异氰酸酯单体是甲苯二异氰酸酯(TDI);所述的胺基扩链剂为乙二胺;所述的紫外光稳定剂为单苯甲酸间苯二酚酯;所述热稳定剂为二盐基亚磷酸铅。所述的溶剂I为N,N—二甲基乙酰胺,所述的溶剂II为N,N—二甲基乙酰胺。
所述面漆喷涂的具体方法为:向二维材料复合聚氨酯/聚脲溶液中加入一定量的溶剂N,N-二甲基乙酰胺,使底漆达到喷涂标准;然后采用喷枪将其均匀喷涂于底漆上。
实施例6:附着力试验和电化学试验检测实施例1-5制备的劣化免疫仿生防护涂层
电化学试验:分别以无涂层钢板、涂装普通聚脲涂层的钢板和实施例1-5所述的劣化免疫仿生防护涂层钢板,制备电化学试验所需试件。钢板的尺寸为1cm×1cm,厚度为1mm,分别涂装普通聚脲涂层和实施例1-5所述涂层,同时制备无涂层的空白组进行对照。将试件放置于3.5%NaCl溶液中浸泡3个月,以钢板为工作电极,饱和甘汞电极为参比电极,钛网为辅助电极的三电极系统,进行动电位极化测量,扫描范围为开路电位附近±250mV,扫描速度为0.5mV/s。所得数据采用塔菲尔外推法处理,得到自腐蚀电位和腐蚀电流密度。
附着力试验:参照《色漆和清漆拉开法附着力试验》(GB/T5210-2006)和《附着力测定法》(ASTM-D-4541)中的规定,进行涂层的附着力测试。将10cm×10cm,厚度为1mm的钢板表面分别涂装普通聚脲涂层(对照)和实施例1-5所述涂层。试验前,选取光滑、无缺陷的表面为实验面,将实验面和试柱用无水乙醇擦拭干净,选用丙烯酸胶黏剂将试柱粘接在实验面,静置24h后进行测试。
上述试验结果如表1所示。
表1电化学试验和附着力试验的测试结果
Figure PCTCN2021087333-appb-000001
根据表1中电化学试验的测试结果可知,无涂层钢板在浸泡3个月后腐蚀电位为-0.629V,腐蚀电流密度最大,为1.3×10 -5A·cm 2;说明钢板处于活性腐蚀状态,腐蚀速率最高。涂装普通聚脲涂层钢板的腐蚀电位正移至-0.487V,腐蚀电流密度降低至0.9×10 -8A·cm 2。而本申请实施例1-5制备样品的腐蚀电位为-0.366~-0.196V,腐蚀电流密度为2.9×10 -13~6.0×10 -9A·cm 2。由此可知,与无涂层钢板相比,本申请实施例1-5制备样品的腐蚀电位正移0.2-0.4V,腐蚀电流密度则降低了4-7个数量级;这说明,普通聚脲涂层一定程度上免疫钢板的腐蚀,但本申请所述的劣化免疫仿生防护涂层与之相比,能够在更大程度上阻隔海水,从而有效免疫钢板的腐蚀,使其具有更小的腐蚀电流密度,延缓了腐蚀的发生,更好的实现了对钢结构构件的防护。
根据表1中附着力试验的测试结果可知,实施例1-5制备样品的粘结强度与普通聚脲涂层相比,均有所提高。由于实施例2和实施例4的底漆厚度较小,硅烷扩散进入涂层深度较小,因此与钢板表面的连接相对其他实施例而言较弱;故破坏发生在底漆与钢板表面,与普通聚脲涂层的破坏形式相似,但粘结强度高于普通聚脲涂层,这说明采用偶联剂对底漆与钢板表面处理能够提高涂层与钢结构构件表面的附着力。实施例1、3和5的破坏界面均在涂层内部,说明涂层与钢板表面的粘结强度已经超过了内部材料本身的强度。此外,实施例1-5均未发生底漆与中间漆、中间漆与面漆界面的破坏,说明采用了界面互穿网络的底漆与中间漆、中间漆与面漆的界面间的强度已经不低于整体材料的强度,也证实了三层结构已经形成为整体界面体系。
综上可知,本申请所述的用于海洋工程的劣化免疫仿生防护涂层,虽然由内到外依次由底漆、中间漆和面漆三层组成,但相邻两层在界面处相互渗透,形成分子交联互穿网络界面,使三道防线融为一体,消除了界面薄弱的关键问题。而且,所述防护涂层的底漆与钢结构表面通过化学键相连,提高了涂层与钢结构的界面粘结力。此外,所述劣化免疫仿生防护涂层还能够有效免疫钢结构的腐蚀。因此,本申请所述的劣化免疫仿生防护涂层,克服了现有技术中防护涂层容易破损的问题,从物理裂纹修复和耐化学侵蚀两方面实现了对钢结构的防护,具有重要的经济价值和社会效益。

Claims (10)

  1. 用于钢结构工程的劣化免疫仿生防护涂层的制备方法,其特征在于:包括以下步骤:
    (1)制备特异性靶向控释缓蚀免疫层:(1a)对钢结构表面进行清洁处理,并使钢结构表面保持一定的粗糙度,得到初步处理后的钢结构构件I;(1b)配制硅烷偶联剂溶液,将其均匀涂刷在钢结构构件I表面,室温下固化3-12小时,得到处理后的钢结构构件II;(1c)在钢结构构件II表面立刻涂刷底漆使其成膜,然后在55-60℃下进行初步固化0.5-2h,得到特异性靶向控释缓蚀免疫层;所述底漆成膜的厚度为80-150μm,所述底漆为缓蚀剂-聚氨酯共混体系;所述缓蚀剂为聚天冬氨酸和聚磷酸盐、钼酸盐、有机磷缓蚀剂、铝粉、锌粉中的一种或几种复配;
    (2)制备非特异性自修复应力免疫层:步骤(1)的底漆固化完成后,升温至80-100℃后立即喷涂中间漆,得到非特异性自修复应力免疫层;所述中间漆成膜的厚度为100-400μm;所述中间漆为自修复聚氨酯-聚脲共混溶液,制备方法如下:(2a)制备GO改性的聚脲基双壁微胶囊;(2b)制备聚多巴胺微球;(2c)制备自修复聚脲溶液:在溶剂中加入聚醚胺并搅拌均匀,然后缓慢滴入异氰酸酯中,控制反应温度为2~30℃,滴加完毕后预聚0.5-1h得到预聚物;将(2b)得到的聚多巴胺微球和氨基扩链剂加入到溶剂中混合均匀,再加入到前述预聚物中,控制反应体系中—NCO与NH 2的摩尔比为1.05:1-1.2:1,反应5~10min,得到聚多巴胺/聚脲弹性体;将(2a)得到的GO改性聚脲基双壁微胶囊加入到聚多巴胺/聚脲弹性体中,高速搅拌使GO改性的聚脲基双壁微胶囊在聚多巴胺/聚脲弹性体中分散均匀,得到自修复聚脲溶液;
    (3)制备非特异性损伤自分化免疫层:中间喷涂完成后,保持表面温度不低于30℃,立刻进行面漆的喷涂,得到非特异性损伤自分化免疫层,从而完成劣化免疫仿生防护涂层的制备;所述面漆成膜的厚度为150-500μm;所述面漆为二维材料复合聚氨酯/聚脲溶液,制备方法如下:将聚醚、溶剂I和乳化剂混合均匀,在100-120℃下真空脱水1-3h,然后冷却至20-65℃,缓慢加入异氰酸酯单体,预聚5-60min得到预聚物;将二维材料、紫外光稳定剂、热稳定剂、聚酯多元醇和氨基扩链剂加入到溶剂II中混合均匀,再加入到前述预聚物中,保温反应0.5-3h,得到二维材料复合聚氨酯/聚脲溶液;所述面漆的涂层基体是纯聚氨酯、半聚氨酯半聚脲或纯聚脲,当涂层基体以聚氨酯为主体时,所用的聚醚为聚醚多元醇;以涂层基体以聚脲为主体时,所用的聚醚为聚醚胺。
  2. 根据权利要求1所述的用于钢结构工程的劣化免疫仿生防护涂层的制备方法,其特征在于:步骤(3)中所述的聚酯多元醇-氨基扩链剂的羟基与“羟基+氨基”的官能团当量比为(0-0.37):1和(0.48-1):1,所述反应体系中—NCO与“羟基+氨基”的官能团当量比为(1.05-1.2):1,所述二维材料的用量为异氰酸酯单体的0.5~15wt%,所述紫外光稳定剂 的用量为异氰酸酯单体的0.01-1wt%,所述热稳定剂的用量为异氰酸酯单体的0.05-5wt%。
  3. 根据权利要求2所述的用于钢结构工程的劣化免疫仿生防护涂层的制备方法,其特征在于:步骤(1c)所述的底漆采用如下方法制备得到:将聚氧化丙烯二醇在100-120℃真空脱水1-3h,冷却至40~60℃,缓慢加入异氰酸酯单体;异氰酸酯单体完全加入后,升温至65~80℃,期间多次加入丙酮降粘,反应1~2h得到预聚体;将缓蚀剂与多元醇按照一定的配比混合均匀,加入到预聚体中,降温至40-50℃反应1h,继续降温至室温,加水乳化;最后,真空蒸出丙酮,得到缓蚀剂-聚氨酯共混体系。
  4. 根据权利要求2所述的用于钢结构工程的劣化免疫仿生防护涂层的制备方法,其特征在于:步骤(1b)所述硅烷偶联剂溶液的浓度为0.5-1.0%,所述的硅烷偶联剂为KH-550、KH-560或KH-570;所述硅烷偶联剂溶液采用如下方法制备得到:将硅烷偶联剂和醇水混合物混合,根据偶联剂种类调节pH值为3.5~5.5,静置水解24-48h。
  5. 根据权利要求2所述的用于钢结构工程的劣化免疫仿生防护涂层的制备方法,其特征在于:步骤(2c)所述的聚醚胺是D230、D400和D2000中的一种或几种,所述的异氰酸酯是六亚甲基二异氰酸酯、二环己基甲烷二异氰酸酯、二苯基甲烷二异氰酸酯、甲苯二异氰酸酯和异佛尔酮二异氰酸酯中的一种或几种;所述的胺基扩链剂为二乙基甲苯二胺、二甲硫基甲苯二胺、N,N'-二烷基甲基二苯胺、环己烷二胺、氯化MDH、乙二胺、1,3-二氨基丙烷、1,4-二氨基丁烷、二亚乙基三胺、五亚乙基六胺、六亚乙基二胺、四亚乙基五胺、1,6-己二胺和3,3'-4,4'-二氨基-二苯甲烷中的一种或几种。
  6. 根据权利要求2所述的用于钢结构工程的劣化免疫仿生防护涂层的制备方法,其特征在于:所述中间漆喷涂的具体方法为:向(2c)得到的自修复聚脲共混溶液中加入一定量的溶剂N,N-二甲基乙酰胺,使中间漆达到喷涂标准;然后采用喷枪将其均匀喷涂于底漆上。
  7. 根据权利要求2所述的用于钢结构工程的劣化免疫仿生防护涂层的制备方法,其特征在于:步骤(2b)所述聚多巴胺微球的制备方法具体为:采用水相氧化法制备聚多巴胺,将一定浓度的乙醇溶液和氨水在40-50℃下搅拌,加入一定量的多巴胺盐酸盐溶液,搅拌反应8~10h;反应完成后离心、洗涤,得到聚多巴胺微球。
  8. 根据权利要求2所述的用于钢结构工程的劣化免疫仿生防护涂层的制备方法,其特征在于:步骤(3)所述的聚醚胺是D230、D400、D2000、T403、T5000中的一种或几种;
    所述的二维材料为石墨烯、云母、蒙脱石、石墨和氮化硼中的一种或几种;
    所述的异氰酸酯单体是六亚甲基二异氰酸酯、二环己基甲烷二异氰酸酯、二苯基甲烷二异氰酸酯、甲苯二异氰酸酯和异佛尔酮二异氰酸酯中的一种或几种;
    所述的胺基扩链剂为二乙基甲苯二胺、二甲硫基甲苯二胺、N,N'-二烷基甲基二苯胺、环 己烷二胺、氯化MDH、乙二胺、1,3-二氨基丙烷、1,4-二氨基丁烷、二亚乙基三胺、五亚乙基六胺、六亚乙基二胺、四亚乙基五胺、1,6-己二胺和3,3'-4,4'-二氨基-二苯甲烷中的一种或几种;
    所述紫外光稳定剂为水杨酸苯酯、水杨酸-4-辛基苯酯、单苯甲酸间苯二酚酯、2-羟基-4-甲氧基二苯酮、2,4-二羟基二苯酮和2-羟基-4-正辛氧基二苯酮中的一种或几种;
    所述热稳定剂为三盐基硫酸铅、二盐基亚磷酸铅、二盐基硬脂酸铅、硬脂酸镉、硬脂酸钡、硬脂酸钙、硬脂酸铅、硬脂酸锌、脂肪酸盐和马来酸盐中的一种或几种。
  9. 根据权利要求2所述的用于钢结构工程的劣化免疫仿生防护涂层的制备方法,其特征在于:所述面喷涂的具体方法为:向步骤(3)得到的二维材料复合聚氨酯/聚脲溶液中加入一定量的溶剂N,N-二甲基乙酰胺,使底漆达到喷涂标准;然后采用喷枪将其均匀喷涂于中间漆上。
  10. 采用如权利要求1-9所述的方法制备得到的用于钢结构工程的劣化免疫仿生防护涂层,所述劣化免疫仿生防护涂层为钢结构基体上的防护涂层,其特征在于:所述劣化免疫仿生防护涂层由内到外依次由底漆、中间漆和面漆三层组成;且相邻两层互相扩散并发生化学交联,形成分子交联互穿网络;所述的底漆为 缓蚀剂-聚氨酯共混体系,所述缓蚀剂为聚天冬氨酸和聚磷酸盐、钼酸盐、有机磷缓蚀剂、铝粉、锌粉中的一种或几种复配,所述底漆成膜的厚度为80-150μm;所述的中间漆为GO改性的聚脲基双壁微胶囊和聚多巴胺在聚氨酯-聚脲弹性体中分散均匀,得到的自修复聚脲共混溶液,所述中间漆成膜的厚度为100-400μm;所述的面漆为二维材料复合聚氨酯/聚脲溶液,所述面漆成膜的厚度为150-700μm。
PCT/CN2021/087333 2020-12-28 2021-04-15 用于钢结构工程的劣化免疫仿生防护涂层及其制备方法 WO2022141950A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237000304A KR102516293B1 (ko) 2020-12-28 2021-04-15 강철구조 공정에 사용하는 열화 면역 바이오닉 보호 코팅층 및 이의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011577827.0A CN112694824B (zh) 2020-12-28 2020-12-28 用于钢结构工程的劣化免疫仿生防护涂层及其制备方法
CN202011577827.0 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022141950A1 true WO2022141950A1 (zh) 2022-07-07

Family

ID=75512308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087333 WO2022141950A1 (zh) 2020-12-28 2021-04-15 用于钢结构工程的劣化免疫仿生防护涂层及其制备方法

Country Status (3)

Country Link
KR (1) KR102516293B1 (zh)
CN (1) CN112694824B (zh)
WO (1) WO2022141950A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116285311A (zh) * 2023-01-17 2023-06-23 北京交通大学 新型聚氨酯堵水注浆材料及其制备方法
CN117327448A (zh) * 2023-09-28 2024-01-02 山东冠洲股份有限公司 一种高耐蚀连续封闭聚酯彩涂板及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114874668A (zh) * 2021-04-30 2022-08-09 苏州百联节能科技股份有限公司 一种防水防渗修补涂料及墙体防水修补方法
CN114771081A (zh) * 2022-05-05 2022-07-22 安徽鼎奂节能科技有限公司 一种保温装饰一体化板的加工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100086697A1 (en) * 2008-10-02 2010-04-08 Pjatikin Nicolas J Method of protecting outdoor structures
US20140134426A1 (en) * 2011-06-23 2014-05-15 Rok Investment Group Limited Nano-based self-healing anti-corrosion coating
CN103990588A (zh) * 2014-05-07 2014-08-20 河海大学 海洋钢结构长效防护多层环氧重防腐涂层及制备方法
CN107282388A (zh) * 2017-06-06 2017-10-24 青岛明珠钢结构有限公司 一种钢结构防腐施工工艺及方法
CN107961747A (zh) * 2017-11-30 2018-04-27 青岛理工大学 内修外固型聚脲基双壁自修复微胶囊及其制备方法
CN108285740A (zh) * 2018-01-24 2018-07-17 河海大学 一种海洋钢构件多层超厚重防腐涂层及其制备方法
CN108816709A (zh) * 2018-03-30 2018-11-16 青岛正为能源科技有限公司 一种钢结构防腐涂层及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101587984B1 (ko) * 2013-07-01 2016-01-28 주식회사 엘지화학 표면처리 물품 및 이의 제조방법
CN105505121B (zh) * 2016-01-04 2017-10-20 青岛农业大学 一种具有协同防腐效应的自愈合涂层及其制备方法
KR101971100B1 (ko) * 2018-08-10 2019-04-24 주식회사 광림티엔아이 저온경화형 폴리우레아 코팅 조성물 및 이를 이용한 시공방법
KR101974533B1 (ko) * 2019-03-20 2019-09-05 주식회사 제이에스기술 폴리우레아 수지 도막 방수재 및 그 제조방법, 이를 이용한 방수 시공 방법
KR101998601B1 (ko) * 2019-05-09 2019-07-10 한라케미칼(주) 분사 및 롤링 도포용 폴리우레아 수지 도막 방수재
CN112063251A (zh) * 2020-08-24 2020-12-11 湖南利德森医疗器械有限公司 一种用于妇检鸭嘴扩张器涂层制剂
CN112029314A (zh) * 2020-09-01 2020-12-04 中车青岛四方机车车辆股份有限公司 一种纳米填料及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100086697A1 (en) * 2008-10-02 2010-04-08 Pjatikin Nicolas J Method of protecting outdoor structures
US20140134426A1 (en) * 2011-06-23 2014-05-15 Rok Investment Group Limited Nano-based self-healing anti-corrosion coating
CN103990588A (zh) * 2014-05-07 2014-08-20 河海大学 海洋钢结构长效防护多层环氧重防腐涂层及制备方法
CN107282388A (zh) * 2017-06-06 2017-10-24 青岛明珠钢结构有限公司 一种钢结构防腐施工工艺及方法
CN107961747A (zh) * 2017-11-30 2018-04-27 青岛理工大学 内修外固型聚脲基双壁自修复微胶囊及其制备方法
CN108285740A (zh) * 2018-01-24 2018-07-17 河海大学 一种海洋钢构件多层超厚重防腐涂层及其制备方法
CN108816709A (zh) * 2018-03-30 2018-11-16 青岛正为能源科技有限公司 一种钢结构防腐涂层及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116285311A (zh) * 2023-01-17 2023-06-23 北京交通大学 新型聚氨酯堵水注浆材料及其制备方法
CN117327448A (zh) * 2023-09-28 2024-01-02 山东冠洲股份有限公司 一种高耐蚀连续封闭聚酯彩涂板及其制备方法

Also Published As

Publication number Publication date
KR102516293B1 (ko) 2023-03-31
CN112694824A (zh) 2021-04-23
CN112694824B (zh) 2021-10-01
KR20230016248A (ko) 2023-02-01

Similar Documents

Publication Publication Date Title
WO2022141950A1 (zh) 用于钢结构工程的劣化免疫仿生防护涂层及其制备方法
WO2022141949A1 (zh) 用于水利工程的劣化免疫仿生防护涂层及其制备方法
CN110669415B (zh) 一种有机涂层钢板及其制造方法和应用
CN108250944B (zh) 混凝土涂装防护体系及施工方法
WO2021027368A1 (zh) 一种海洋工程防腐聚脲涂料及其制备方法
KR101921894B1 (ko) 에폭시와 제올라이트를 내면에 코팅한 코팅 강관
KR101943043B1 (ko) 코팅강관 급속냉각 및 이물질 제거 장치
KR101484986B1 (ko) 내마모성이 우수한 고 내구성 방수 방식용 표면마감재 아스파틱 폴리우레아 수지조성물
CN111647337A (zh) 一种锌烯防腐底漆及其应用
CN109135527A (zh) 一种改性聚脲涂料的制备工艺
KR101197197B1 (ko) 방식성 ? 방청성 ? 내약품성 ? 내화학성 및 작업성이 우수한 폴리우레아 도료 조성물 및 이를 이용한 시공방법
KR20200017943A (ko) 중방식 방청 도료 및 열교환 도료를 이용한 구조물의 도막 형성방법
CN110396170A (zh) 高耐久性、耐磨耗性且防水防蚀的天冬聚脲树脂组合物
CN109134813A (zh) 一种聚脲树脂合成工艺
JP5712056B2 (ja) 常温溶射被膜の封孔処理剤及び常温溶射被膜の封孔処理方法
CN110330882B (zh) 一种自修复聚氨酯防腐涂料及制备方法
JP6659385B2 (ja) 水硬性ポリマーセメント組成物及びこれによる床構造
WO2022141948A1 (zh) 用于海洋工程的劣化免疫仿生防护界面及制备方法
KR102103223B1 (ko) 강구조물 방식 도장재 및 그 제조방법
JPS62109868A (ja) 鉄筋コンクリ−ト防食用コ−ト材
CN112210066A (zh) 一种复合聚脲材料及其制备方法以及基于复合聚脲材料的双层防腐结构
CN101413098B (zh) 用于金属表面除锈防腐浆料及处理方法
CN1789355A (zh) 一种单组分聚氨酯防腐涂料及其制备方法
CN111393970A (zh) 高硬度耐磨型、耐久性耐腐蚀且防水的天冬聚脲树脂组合物
JPS5916835B2 (ja) 鉄鋼構造物の塗装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237000304

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21912715

Country of ref document: EP

Kind code of ref document: A1