WO2022141787A1 - 一种柔性装配系统及方法 - Google Patents

一种柔性装配系统及方法 Download PDF

Info

Publication number
WO2022141787A1
WO2022141787A1 PCT/CN2021/078811 CN2021078811W WO2022141787A1 WO 2022141787 A1 WO2022141787 A1 WO 2022141787A1 CN 2021078811 W CN2021078811 W CN 2021078811W WO 2022141787 A1 WO2022141787 A1 WO 2022141787A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
platform
inner ring
load cell
outer ring
Prior art date
Application number
PCT/CN2021/078811
Other languages
English (en)
French (fr)
Inventor
陈涛
田玉祥
田显东
孙立宁
倪克健
黄志颖
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US17/909,188 priority Critical patent/US11724344B2/en
Publication of WO2022141787A1 publication Critical patent/WO2022141787A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J7/00Micromanipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P21/00Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/023Cartesian coordinate type

Definitions

  • the invention relates to the technical field of micro-assembly, and in particular, to a flexible assembly system and method.
  • Micro-assembly technology plays an important role in the national defense industry and the development of the national economy. It plays an important role in promoting the miniaturization and intelligence of weapons and equipment and improving the performance of high-tech civilian products. Therefore, the development of high-precision, high-efficiency, flexible, and intelligent assembly robot technology to replace traditional manual and semi-automatic assembly technology has become the main development direction, and has attracted the attention of various industrial powers. One of the key technical means of industrial demand.
  • the size of the micro-gripper is large, and it is difficult to integrate sensors to detect external forces; and it is easily affected by the gravity of the part itself, resulting in low detection accuracy of subsequent forces.
  • the vibration problem encountered in the flexible assembly process of the parts it generally depends on the experience of the operator to adjust the active interference, or wait for the parts to stabilize independently, which will delay the assembly time and cannot meet the needs of the parts assembly process.
  • Requirements for intelligence and rapidity in addition, operators also need to concentrate for a long time during the operation process, and it is difficult to provide continuous work output.
  • the micro-assembly system usually uses microscopic vision and visual servo technology.
  • the system design is relatively complex, and the precision of the visual sensor (camera) is relatively high.
  • the identification and positioning technology of the corresponding operating environment, the automatic conversion and calibration technology of the operating space, and the use of system identification to obtain the transformation matrix (Jacobian matrix) parameters required for system calibration, etc. cannot achieve comprehensive utilization of multi-source information, such as visual navigation.
  • the purpose of the present invention is to provide a flexible assembly system and method.
  • a flexible assembly system includes an industrial computer, a data acquisition card, a motion control card, a six-degree-of-freedom assembly platform, a first vision platform, a second vision platform and a support platform, wherein the data acquisition card and the motion control card are the same as the
  • the industrial computer is connected to each other, and the six-degree-of-freedom assembly platform includes a four-degree-of-freedom motion platform and a two-degree-of-freedom adjusting device, and the two-degree-of-freedom adjusting device includes a two-degree-of-freedom moving platform and a
  • the clamping mechanism includes an outer frame, a flexible wrist rotatably connected in the outer frame, two clamping sheets mounted on the flexible wrist, corresponding to the two clamping sheets two driving parts, two first load cells on the outer frame and two second load cells on the flexible wrist, the first visual platform is mounted with a first image Acquisition equipment, a second image acquisition equipment is installed on the second vision platform.
  • the four-degree-of-freedom motion platform includes a base, a first motor, a second motor, a third motor, a fourth motor, a Y-axis linear motion platform mounted on the base, and a Y-axis linear motion platform mounted on the base.
  • the two-degree-of-freedom motion platform includes a fifth motor, a sixth motor, an X-axis rotary motion platform, and a Y-axis rotary motion platform
  • the fifth motor drives the X-axis rotary motion platform to rotate around the X axis
  • the sixth motor drives the Y-axis rotary motion platform to rotate around the Y-axis.
  • the flexible wrist includes an outer ring and an inner ring
  • the outer ring is rotatably connected to the outer frame
  • the inner ring is rotatably connected to the outer ring
  • the two clamping pieces are installed on the
  • the two first load cells are respectively the first outer ring load cell and the second outer ring load cell
  • the two second load cells are respectively the first inner ring load cell , the second inner ring load cell, the first outer ring load cell and the second outer ring load cell are relatively installed on the outer frame, the first inner ring load cell, the second inner ring load cell
  • the force sensor is relatively installed on the outer ring, and the first inner ring force sensor, the second inner ring force sensor, the first outer ring force sensor, and the second outer ring force sensor are all connected with the data collection card is connected.
  • the clamping piece is an iron piece
  • the driving member is a magnet
  • the clamping sheet is a piezoelectric ceramic sheet
  • the driving member includes three metal wires.
  • the diameter of the metal wire is 20 ⁇ m.
  • the inner ring is provided with a mounting hole, a middle part of the mounting hole is connected with a counterweight block, and at least one counterweight hole is provided on the counterweight block.
  • a flexible assembly method using the above system, includes the following steps:
  • the industrial computer controls the movement of the first vision platform and the second vision platform through the motion control card, so that the first image acquisition device and the second image acquisition device are in the best viewing angle position;
  • the industrial computer acquires the image signals of the first image acquisition device and the second image acquisition device to acquire the position and attitude of the second to-be-assembled part, and controls the six-degree-of-freedom assembly platform to roughly adjust the first to-be-assembled part Then the industrial computer controls the two-degree-of-freedom adjustment device to stabilize the clamping state of the first to-be-assembled part, and then controls the first to-be-assembled part to approach the second to-be-assembled part through the six-degree-of-freedom assembly platform. 1. Fine adjustment of the posture of the parts to be assembled;
  • the industrial computer obtains the force signal for clamping the first part to be assembled through the data acquisition card, and in the in-depth assembly stage, the motion control card is used to control the six freedoms
  • the assembly platform performs fine movement adjustment, and finally completes the assembly of the first to-be-assembled part and the second to-be-assembled part.
  • the industrial computer controls the two-degree-of-freedom adjustment device to stabilize the clamping state of the first to-be-assembled part, including:
  • the outer ring When the industrial computer detects the force signal of the first outer ring load cell, the outer ring is in a state of left deflection around the X axis along the positive direction of the X axis, and the industrial computer controls the two-degree-of-freedom rotating platform along the positive direction of the X axis Swing to the right around the X-axis; when the industrial computer detects that the force signal of the first outer ring force sensor is less than a certain threshold, the outer ring and the first outer ring force sensor are in a state of disengagement or no force;
  • the outer ring When the industrial computer detects the force signal of the second outer ring load cell, the outer ring is in a state of rightward deflection around the X axis along the positive direction of the X axis. The axis swings to the left; when the industrial computer detects that the force signal of the second outer ring load cell is less than a certain threshold, the outer ring and the second outer ring load cell are in a state of disengagement or no force;
  • the inner ring When the industrial computer detects the force signal of the first inner ring load cell, the inner ring is in a state of left swinging around the Y axis in the positive direction of the Y axis, and the industrial computer controls the two-degree-of-freedom rotating platform to revolve around the Y axis along the positive direction of the Y axis.
  • the axis swings to the right; when the industrial computer detects that the force signal of the first inner ring force measuring sensor is less than a certain threshold, the inner ring and the first inner ring force measuring sensor are in a state of disengagement or no force;
  • the inner ring When the industrial computer detects the force signal of the second inner ring load cell, the inner ring is in a state of swinging to the right around the Y axis along the positive direction of the Y axis, and the industrial computer controls the two-degree-of-freedom rotating platform to revolve around the Y axis along the positive direction of the Y axis.
  • the axis swings to the left; when the industrial computer detects that the force signal of the second inner ring load cell is less than a certain threshold, the inner ring and the second inner ring load cell are in a state of disengagement or no force;
  • the outer ring, the first outer ring load cell, and the second outer ring load cell are in a disengaged state or a force-free state, the outer ring, the first outer ring load cell, and the second outer ring load cell
  • the sensors are all in a stable state, and the outer ring is adjusted;
  • the inner ring, the first inner ring load cell, and the second inner ring load cell are all in a disengaged state or a force-free state, the inner ring, the first inner ring load cell, and the second inner ring load cell
  • the sensors are in a stable state, and the inner ring is adjusted;
  • the present invention has a simple structure, a simple and practical control method, and a low device cost. It can quickly pass the active adjustment strategy, quickly eliminate the chattering problem in the part assembly process, and save the part adjustment time, thereby improving the efficiency of the part assembly and improving the efficiency of the parts assembly.
  • the assembly process is fast, stable, intelligent and efficient, and has strong practicability, which can be applied to the application working environment of two-degree-of-freedom flexible rotating assembly.
  • the device can eliminate the influence of the gravity of the parts on the force detection accuracy, realize the deflection detection of micro-forces at the Microbull level, and can also realize the microbull-level deflection detection for the clamping of large-sized parts.
  • the arrangement of micro-force sensors can be completed in a small assembly space, which greatly improves the success rate and efficiency of micro-assembly.
  • the present invention has a wide range of applications, and can clamp parts with multiple sizes ranging from medium and small sizes to large sizes.
  • the front end of the gripper can clamp in a large size range, and during assembly, it can provide a large axial force.
  • the first inner ring force sensor, the second inner ring force sensor, the first outer ring force sensor, and the second outer ring force sensor of the present invention are all composite range micro force sensors.
  • the three cantilever beams with the measuring range and force detection accuracy are arranged in parallel, which can make use of the difference in the force detection range and force detection accuracy of the three cantilever beams to organically combine and complement, so as to use the three cantilever beams to detect different forces respectively.
  • the detection range and/or force detection accuracy are required, the corresponding force detection is performed, so that the force sensor has both a strong detection range and a high force detection accuracy, and the force change of the cantilever beam can be detected in real time through the corresponding Wheatstone bridge circuit. state, thereby improving the control simplicity and working stability of the force sensor, the micro force sensor not only improves the force detection resolution, but also increases the force measurement range, and detects the force change through the Wheatstone bridge circuit, detection and control methods Simple and stable.
  • Two-dimensional force detection can be applied to the micro-assembly process, so that the micro-assembly can not only use visual navigation but also combine the micro-force detection to complete the force control in the assembly process, which solves the problem of the high-force detection of the micro-part's own gravity when the micro-part is assembled.
  • the problem of the influence of the resolution is to increase the force detection resolution in the micro-assembly process to the uN level, which increases the applicability of the gripper and greatly increases the application of the serialized gripper in the micro-assembly process.
  • Fig. 1 is the structural representation of the present invention
  • FIG. 2 is a schematic structural diagram of a six-degree-of-freedom assembly platform and a support platform of the present invention
  • FIG. 3 is a schematic structural diagram of a two-degree-of-freedom adjustment device according to a preferred embodiment 1 of the present invention
  • FIG. 4 is a top view of the clamping mechanism according to the preferred embodiment 1 of the present invention.
  • FIG. 5 is a side view of the clamping mechanism of the preferred embodiment 1 of the present invention.
  • FIG. 6 is a schematic structural diagram of the clamping mechanism according to the preferred embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of the internal structure of the clamping mechanism according to the preferred embodiment 1 of the present invention.
  • FIG. 8 is a top view of the outer frame and the flexible wrist according to the preferred embodiment 1 of the present invention.
  • FIG. 9 is a schematic structural diagram of two electromagnets disposed on the casing of the preferred embodiment 1 of the present invention.
  • FIG. 10 is a schematic structural diagram of a first inner ring load cell, a second inner ring load cell, a first outer ring load cell, and a second outer ring load cell provided by the present invention
  • FIG. 11 is a schematic diagram of the circuit layout structure of the first inner ring force sensor, the second inner ring force sensor, the first outer ring force sensor, and the second outer ring force sensor provided by the present invention
  • FIG. 12 is a control principle diagram of the preferred embodiment 1 of the present invention.
  • FIG. 13 is a schematic structural diagram of a two-degree-of-freedom adjustment device according to the second preferred embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of the connection between the outer frame, the flexible wrist and the piezoelectric ceramic sheet according to the second preferred embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of the clamping mechanism according to the second preferred embodiment of the present invention.
  • FIG. 16 is a control principle diagram of the second preferred embodiment of the present invention.
  • a flexible assembly system includes an industrial computer 1, a data acquisition card 2, a motion control card 3, a six-degree-of-freedom assembly platform 4, a first vision platform 5, a second vision platform 6 and a support Platform 7, data acquisition card 2 and motion control card 3 are all connected to industrial computer 1.
  • Six-DOF assembly platform 4 includes a four-DOF motion platform and a two-DOF adjusting device, and the two-DOF adjusting device includes a two-DOF motion platform.
  • a clamping mechanism installed on a two-degree-of-freedom motion platform includes an outer frame 401, a flexible wrist rotatably connected to the outer frame 401, two clamping sheets installed on the flexible wrist, and two clamping The two driving parts corresponding to the sheet, the two first load cells arranged on the outer frame 401 and the two second load cells arranged on the flexible wrist, the first visual platform 5 is provided with a first image acquisition equipment, a second image acquisition device is installed on the second vision platform 6, the first vision platform 5 is used to obtain the field of view information in the X-axis direction of the assembly space of the first to-be-assembled part and the second to-be-assembled part, and the second vision platform 6 is used for acquiring the field of view information in the Y-axis direction of the assembly space of the first part to be assembled and the second part to be assembled, and the support platform 7 is used to support the second part to be assembled.
  • the preferred four-degree-of-freedom motion platform of the present invention includes a base 402, a first motor 403, a second motor 404, a third motor 405, a fourth motor 406, a Y-axis linear motion platform 407 installed on the base 402, and a Y-axis linear motion platform 407 installed on the base 402.
  • the Y axis linear motion platform 407 can be driven to move along the Y axis
  • the second motor 404 can drive the X axis linear motion platform 408 to move along the X axis
  • the third motor 404 can drive the Z axis linear motion platform 409 to move along the Z axis
  • the fourth motor 404 can drive the Z axis linear motion platform 409 to move along the Z axis.
  • the 406 is capable of driving the Z-axis rotary motion platform 410 to rotate about the Z-axis.
  • the Z-axis rotary motion platform 410 adopts a standard 360° rotary slide table of Suruga Seiki, and the model is KRW06360.
  • the two-degree-of-freedom motion platform includes a fifth motor 420, a sixth motor 421, an X-axis rotary motion platform 422, and a Y-axis rotary motion platform 423.
  • the fifth motor 420 drives the X-axis rotary motion platform 422 to rotate around the X axis
  • the sixth motor 421 drives the Y-axis rotary motion platform 423 to rotate around the Y-axis.
  • the output shaft of the fifth motor 420 is connected with the X-axis rotary motion platform 422 through the first coupling 424, and the output shaft of the sixth motor 421 is connected with the Y-axis rotary motion platform 423 through the second coupling 425,
  • the outer frame 401 is mounted on the Y-axis rotary motion platform 423 .
  • the X-axis rotary motion platform 422 and the Y-axis rotary motion platform 423 both adopt the standard rotary slide table of Suruga Seiki, and the model is KGW04040-L.
  • the preferred flexible wrist of the present invention includes an outer ring 426 and an inner ring 427, the outer ring 426 is rotatably connected to the outer frame 401, the inner ring 427 is rotatably connected to the outer ring 426, two clamping pieces are mounted on the inner ring 427, two The first load cells are respectively the first outer ring load cell 428 and the second outer ring load cell 429, and the two second load cells are respectively the first inner ring load cell 430 and the second inner ring load cell 431, the first outer ring load cell 428 and the second outer ring load cell 429 are relatively installed on the outer frame 401, and the first inner ring load cell 430 and the second inner ring load cell 431 are relatively installed on the outer ring 426 , the first inner ring force sensor 430 , the second inner ring force sensor 431 , the first outer ring force sensor 428 , and the second outer ring force sensor 429 are all connected to the data acquisition card 2 .
  • the inner ring 427 is provided with a mounting hole 432, and the middle part of the mounting hole 432 is connected with a counterweight 433.
  • the counterweight 433 is used to balance the weight of the clamping piece and the clamping parts, so that the inner ring 427 is always balanced
  • At least one counterweight hole 434 is provided on the counterweight block 433.
  • At least one first pin 435 is connected between the outer ring 426 and the outer frame 401, the outer ring 426 can rotate around the X axis, and the inner ring 427 and the outer ring 426 At least one second pin 436 is connected between, and the inner ring 427 can rotate around the Y axis.
  • the clamping piece is an iron piece 437
  • the driving member is an electromagnet 438
  • the two iron pieces 437 are arranged opposite to each other, and the two electromagnets 438 are arranged opposite to each other.
  • the industrial computer 1 is connected to the microcontroller 8
  • the microcontroller 8 is connected to two electromagnet drive circuits 9
  • the two electromagnets 438 are respectively connected to the two electromagnet drive circuits 9 .
  • the present invention further includes a casing 439 .
  • the casing 439 is fixedly connected to the outer frame 401 .
  • one end of each iron piece 437 is adhered to the side wall of the installation hole 432 , and the counterweight 433 is adhered to the middle portion of the installation hole 432 .
  • the other end of each iron piece 437 is connected with a contact head 440 to facilitate stable clamping of the parts.
  • the contact head 440 and the iron sheet 437 are bonded by glue.
  • the present invention is also provided with a rear cover 441 , which is fixedly connected with the outer frame 401 .
  • the motion control card 3 is connected with a plurality of motor drivers 11, the first motor 403, the second motor 404, the third motor 405, the fourth motor
  • the motor 406 , the fifth motor 420 , the sixth motor 421 , the seventh motor 501 , the eighth motor 502 , the ninth motor 503 , the tenth motor 601 , the eleventh motor 602 , and the twelfth motor 603 are respectively associated with the corresponding motor drivers 11 is connected.
  • the preferred microcontroller 8 of the present invention is an arduino nano.
  • the preferred data acquisition card 2 is the multifunctional data acquisition card PCI-8062 of Altai Company.
  • the preferred motion control card 3 is the 12-axis motion control card DMC3C00 of Lexel.
  • the model of the motor driver 11 is KR-A55MB.
  • the electromagnet drive circuit 9 is to supply a voltage of 12V to an electromagnet 438, and the electromagnet 438 can be energized to generate magnetism, and the iron piece 437 can be adsorbed.
  • the preferred electromagnet 437 is a DC electromagnet industrial suction cup, LY-1809, DC12V/suction force 1.2kg.
  • the first inner ring force sensor 430, the second inner ring force sensor 431, the first outer ring force sensor 428, and the second outer ring force sensor 429 are all composite range micro force sensors, including a first cantilever beam 450, the second cantilever beam 451 and the third cantilever beam 452; wherein, the first cantilever beam 450, the second cantilever beam 451 and the third cantilever beam 452 are sequentially arranged in parallel on the same plane; the first cantilever beam 450, the second cantilever beam 451 and the third cantilever beam 452 have the same length and the same thickness; the widths of the first cantilever beam 450, the second cantilever beam 451 and the third cantilever beam 452 increase in sequence; the The first cantilever beam 450 is connected with a first measurement circuit, and the first measurement circuit is used to convert the force signal detected by the first cantilever beam 450 into an electrical signal; the second cantilever beam 451 is connected with a second measurement
  • the composite range micro-force sensor can use the three cantilever beams in the force detection range and force detection range by arranging three cantilever beams with different force detection ranges and force detection precisions in parallel.
  • the differences in detection accuracy are organically combined and complemented, so that the three cantilever beams are used to perform corresponding force detection for different force detection ranges and/or force detection accuracy requirements, so that the force sensor has both a strong detection range and a force detection range.
  • High force detection accuracy and also detects the force change state of the cantilever beam in real time through the corresponding Wheatstone bridge circuit, thereby improving the control simplicity and working stability of the force sensor.
  • the composite range micro-force sensor arranges three cantilever beams with different widths in parallel, so that the force sensor can perform high-precision and large-range force values in the actual measurement process. measurement, thereby improving the measurement reliability and stability of the force sensor.
  • the composite range micro-force sensor further includes a fixed end surface 453, and the fixed end surface 453 is disposed on the same plane; the first cantilever beam 450, the second cantilever beam 451 and the third cantilever beam 452 each include oppositely disposed A fixed end and a free end; the respective fixed ends of the first cantilever beam 450 , the second cantilever beam 451 and the third cantilever beam 452 are connected to the fixed end surface 453 .
  • the beneficial effects of the above technical solutions are: by arranging a fixed end face on the same plane, and arranging the fixed ends of the first cantilever beam, the second cantilever beam and the third cantilever beam together on the fixed end face, the three cantilever beams can be effectively
  • the cantilever beam is fixedly installed and the stability of the relative position of the three cantilever beams is ensured.
  • the free end of the first cantilever beam 450 is provided with a first boss 454; the free end of the second cantilever beam 451 is provided with a second boss 455; the height of the first boss 454 is greater than that of the second boss Height of table 455.
  • the free ends of the first cantilever beam and the second cantilever beam are provided with bosses with different heights, and the free end of the third cantilever beam is not provided with any bosses, which makes the three cantilever beams
  • the free ends of the cantilevers have different relative height positions, so as to ensure that during the measurement process, the three cantilever beams simultaneously contact the micro-force signal to be detected, so as to ensure that only one cantilever beam contacts the micro-force signal to be detected at the same time, so that This guarantees the measurement accuracy of the force sensor.
  • the boss on the free end of the first cantilever beam since the boss on the free end of the first cantilever beam has the highest height, the first cantilever beam will first come into contact with the small force signal to be detected, and the detection process at this time corresponds to the detection of the smallest force. range and maximum force detection accuracy, and before the first cantilever beam reaches the maximum force detection value, the boss corresponding to the free end of the second cantilever beam will contact the tiny force signal to be detected, and similarly when the second cantilever beam reaches the maximum force detection value Before the force detection value, the free end of the third cantilever beam will come into contact with the small force signal to be detected, and the detection process at this time corresponds to the maximum force detection accuracy.
  • the successively decreasing measurement process of the three cantilever beams can simultaneously realize the measurement operation of high force detection range and high force detection accuracy.
  • the first measurement circuit is a first Wheatstone bridge measurement circuit; wherein,
  • the first Wheatstone bridge measurement circuit includes four force-sensitive resistors R1, R2, R3, and R4;
  • the force-sensitive resistors R2 and R3 are arranged in the region where the first cantilever beam 450 is deformed the most when the first cantilever beam 450 is in a stressed state.
  • the force-sensitive resistors R1 and R4 are arranged on the fixed end face 453 of the composite range micro-force sensor, and the resistances of the force-sensitive resistors R1 and R4 do not change with the deformation of the first cantilever beam 450 .
  • the force-sensitive resistors R1, R2, R3, and R4 are electrically connected end to end in sequence;
  • the connected ends of the force-sensitive resistors R1 and R2 are connected to the output electrode EO1 of the first Wheatstone bridge measurement circuit, and the connected ends of the force-sensitive resistors R1 and R3 are connected to the input electrode EI1 of the first Wheatstone bridge measurement circuit connected, the connected ends of the force-sensitive resistors R2 and R4 are connected to the input electrode EI2 of the first Wheatstone bridge measurement circuit, and the connected ends of the force-sensitive resistors R3 and R4 are connected to the output of the first Wheatstone bridge measurement circuit
  • the electrodes EO2 are connected; the input electrode EI1 of the first Wheatstone bridge measurement circuit and the input electrode EI2 of the first Wheatstone bridge measurement circuit are respectively connected to both ends of the input voltage, and the output electrode of the first Wheatstone bridge measurement circuit EO1 and the output electrode EO2 of the first Wheatstone bridge measurement circuit are used to output the measurement voltage.
  • the beneficial effects of the above technical solutions are: in actual measurement, the boss at the free end of the first cantilever beam contacts the tiny force signal to be detected, and the root of the first cantilever beam is deformed at this time, so that the force-sensitive resistors R2 and R3 With the deformation of the first cantilever beam, the resistance value changes, and the voltage output by the first Wheatstone bridge measurement circuit changes. Finally, the force can be obtained by calculating the proportional relationship between the output voltage and the force signal. The magnitude of the force corresponding to the signal.
  • the second measurement circuit is a second Wheatstone bridge measurement circuit; wherein,
  • the second Wheatstone bridge measurement circuit includes four force-sensitive resistors R5, R6, R7, R8;
  • the force-sensitive resistors R6 and R7 are arranged in the region where the second cantilever beam 451 is in a state of force with the greatest deformation.
  • the force-sensitive resistors R5 and R8 are arranged on the fixed end face 453 of the composite range micro-force sensor, and the resistances of the force-sensitive resistors R5 and R8 do not change with the deformation of the second cantilever beam 451 .
  • the force-sensitive resistors R5, R6, R3, and R4 are electrically connected end to end in sequence;
  • the connecting ends of the force-sensitive resistors R5 and R6 are connected to the output electrode EO1 of the second Wheatstone bridge measuring circuit, and the connecting ends of the force-sensitive resistors R5 and R7 are connected to the input electrode EI1 of the second Wheatstone bridge measuring circuit Connected, the connected ends of the force-sensitive resistors R6 and R8 are connected with the input electrode EI2 of the second Wheatstone bridge measurement circuit, and the connected ends of the force-sensitive resistors R7 and R8 are connected with the output of the second Wheatstone bridge measurement circuit
  • the electrodes EO2 are connected; the input electrode EI1 of the second Wheatstone bridge measurement circuit and the input electrode EI2 of the second Wheatstone bridge measurement circuit are respectively connected to both ends of the input voltage, and the output electrode of the second Wheatstone bridge measurement circuit EO1 and the output electrode EO2 of the second Wheatstone bridge measurement circuit are used to output the measurement voltage.
  • the beneficial effects of the above technical solutions are: in actual measurement, the boss at the free end of the second cantilever beam contacts the tiny force signal to be detected, and the root of the second cantilever beam is deformed at this time, so that the force-sensitive resistors R6 and R7 are deformed. With the deformation of the second cantilever beam, the resistance value changes, and the voltage output by the second Wheatstone bridge measurement circuit changes. Finally, the force can be calculated through the proportional relationship between the output voltage and the force signal. The magnitude of the force corresponding to the signal.
  • the third measurement circuit is a third Wheatstone bridge measurement circuit; wherein,
  • the third Wheatstone bridge measurement circuit includes four force-sensitive resistors R9, R10, R11, and R12; the force-sensitive resistors R10 and R11 are arranged in the region where the third cantilever beam 452 is in a state of force, where the deformation is the largest, and the force
  • the resistances of the sensitive resistors R10 and R11 change with the change of the deformation intensity of the third cantilever beam 452.
  • the force sensitive resistors R9 and R12 are arranged on the fixed end face 453 of the composite range micro-force sensor. The resistance does not change as the third cantilever beam 452 is deformed.
  • the force-sensitive resistors R9, R10, R11, and R12 are electrically connected end to end in sequence;
  • the connected ends of the force-sensitive resistors R9 and R10 are connected to the output electrode EO1 of the third Wheatstone bridge measurement circuit, and the connected ends of the force-sensitive resistors R9 and R11 are connected to the input electrode EI1 of the third Wheatstone bridge measurement circuit connected, the connected ends of the force-sensitive resistors R10 and R12 are connected to the input electrode EI2 of the third Wheatstone bridge measurement circuit, and the connected ends of the force-sensitive resistors R11 and R12 are connected to the output of the third Wheatstone bridge measurement circuit
  • the electrodes EO2 are connected; the input electrode EI1 of the third Wheatstone bridge measurement circuit and the input electrode EI2 of the third Wheatstone bridge measurement circuit are respectively connected to both ends of the input voltage, and the output electrode of the third Wheatstone bridge measurement circuit EO1 and the output electrode EO2 of the third Wheatstone bridge measurement circuit are used to output the measurement voltage.
  • the beneficial effects of the above technical solutions are: in actual measurement, the free end of the third cantilever beam contacts the tiny force signal to be detected, and the root of the third cantilever beam is deformed at this time, so that the force-sensitive resistors R10 and R11 With the deformation of the third cantilever beam, the resistance value changes, and the voltage output by the third Wheatstone bridge measurement circuit changes. Finally, the force signal can be obtained by calculating the proportional relationship between the output voltage and the force signal. The corresponding force value.
  • the lengths of the first cantilever beam 450 , the second cantilever beam 451 and the third cantilever beam 452 are 1000-3000 ⁇ m; alternatively, the first cantilever beam 450 , the second cantilever beam 451 and the third cantilever beam 452
  • the thickness of the beam 452 is 50-100 ⁇ m; or, the width of the first cantilever beam 450 is 500 ⁇ m, the width of the second cantilever beam 451 is 3000 ⁇ m, and the width of the third cantilever beam 452 is 10000 ⁇ m; or; the first cantilever beam
  • the minimum force signal detection resolution of the beam 450 is 10 ⁇ N, and the force signal detection range of the first cantilever beam 450 is 10-400 ⁇ N; or; the minimum force signal detection resolution of the second cantilever beam 451 is 400 ⁇ N, and the second cantilever beam
  • the force signal detection range of the beam 451 is 400-30000 ⁇ N; or; the minimum force signal detection resolution of the third cantile
  • the length, width and height dimensions of the first cantilever beam 450 , the second cantilever beam 451 and the third cantilever beam 452 can be specifically shown in Table 1 below:
  • the first cantilever beam 450 adopts a hollow design at the root, which can ensure that the first cantilever beam 450 has the highest force detection sensitivity among the three cantilever beams, which can meet the micro-force detection resolution of 20 ⁇ N.
  • a square slot hole of 100 ⁇ m*100 ⁇ m may be excavated at the root of the first cantilever beam 450 .
  • the detection parameters of the first cantilever beam 450 , the second cantilever beam 451 and the third cantilever beam 452 can be specifically shown in Table 2 below:
  • the manufacturing process of the first cantilever beam 450, the second cantilever beam 451 and the third cantilever beam 452 may include:
  • a lead hole is formed by etching on the photoresist.
  • the etching of the lead hole corresponds to an implantation energy of 50KeV and an implantation dose of 215cm 2 , followed by annealing at 1100° C. and 40s;
  • Metal sputtering is performed on the lead hole to form an Al lead of 700 nm, and an annealing treatment is performed at 4500° C. and 20 min;
  • Plasma-enhanced chemical vapor deposition is performed on the surface of the substrate to form a SiN insulating dielectric layer with a thickness of 1 ⁇ m;
  • the composite range micro-force sensor includes a first cantilever beam, a second cantilever beam and a third cantilever beam; wherein the first cantilever beam, the second cantilever beam and the third cantilever beam are parallel in sequence Arranged on the same plane; the first cantilever beam, the second cantilever beam and the third cantilever beam have the same length and the same thickness; the first cantilever beam, the second cantilever beam and the third cantilever beam
  • the width of the first cantilever increases sequentially; the first cantilever beam is connected with a first measurement circuit, which is used to convert the force signal detected by the first cantilever beam into an electrical signal; the second cantilever beam is connected with a second a measurement circuit, the second measurement circuit is used for converting the force signal detected by the second cantilever beam into an electrical signal; the third cantilever beam is connected with a third measurement circuit, and the third measurement circuit is used for the third cantilever beam The detected force signal is converted
  • the first visual platform 5 includes a seventh motor 501 , an eighth motor 502 , a ninth motor 503 , a first visual Y-axis motion platform 504 , a first visual X-axis motion platform 505 , and a first visual Z-axis motion platform 506
  • the seventh motor 501 drives the first vision Y-axis motion platform 504 to move along the Y axis
  • the eighth motor 502 drives the first vision X-axis motion platform 505 to move along the X axis
  • the ninth motor 503 drives the first vision Z-axis motion platform 506 Move along the Z axis.
  • the second vision platform 6 of the present invention includes a tenth motor 601, an eleventh motor 602, a twelfth motor 603, a second vision X-axis motion platform 604, a second vision Y-axis motion platform 605, and a second vision Z-axis motion
  • the platform 606 the tenth motor 601 drives the second vision X-axis motion platform 604 to move along the Y axis
  • the eleventh motor 602 drives the second vision Y-axis motion platform 605 to move along the X axis
  • the twelfth motor 603 drives the second vision Z Axis motion stage 606 moves along the Z axis.
  • the first image capturing device is the first CCD camera 507
  • the second image capturing device is the second CCD camera 607
  • an image capture card 10 is also included, the first CCD camera 507 and the second CCD camera 607 are both connected to the image capture card 10 , and the image capture card 10 is connected to the industrial computer 1 .
  • the following introduces a flexible assembly method according to the first embodiment of the present invention.
  • Using the flexible assembly system according to the first embodiment of the present invention includes the following steps:
  • the electromagnet drive circuit 9 controls the two electromagnets 438 to be energized, and the two electromagnets 438 are respectively The two iron pieces 437 are sucked so that the front ends of the two iron pieces 437 are opened at a certain angle.
  • the area to be clamped is the area between the two contact heads 440, which improves the stability of clamping the first part to be assembled.
  • the industrial computer 1 sends a signal to the microcontroller 8, the microcontroller 8 sends a signal to the electromagnet drive circuit 9, and the electromagnet drive circuit 9 makes the electromagnet 438 power off, the electromagnet 438 is demagnetized, and the iron piece 437 is restored. deformation to realize the clamping of the first to-be-assembled part.
  • the industrial computer 1 controls the movement of the first vision platform 5 and the second vision platform 6 through the motion control card 3, so that the first image acquisition device and the second image acquisition device are in the best viewing angle position.
  • the motion control card 3 controls the seventh motor 501, the eighth motor 502, and the ninth motor 503 to work through the motor driver 11, and further controls the first vision Y-axis motion platform 504, the first vision X-axis motion platform 505, The first vision Z-axis motion platform 506 moves so that the first CCD camera 507 is in the best viewing angle position; at the same time, the motion control card 3 controls the tenth motor 601 , the eleventh motor 602 and the twelfth motor 603 to work through the motor driver 11 .
  • the industrial computer 1 acquires the image signals of the first image acquisition device and the second image acquisition device to acquire the position and posture of the second part to be assembled, and controls the six-degree-of-freedom assembly platform 4 to roughly adjust the posture of the first part to be assembled Then, the industrial computer 1 controls the two-degree-of-freedom adjustment device to stabilize the clamping state of the first part to be assembled, and then controls the first part to be assembled by the six-degree-of-freedom assembly platform 4 to approach the second part. A fine adjustment of the attitude of the parts to be assembled.
  • the industrial computer 1 obtains the image signals of the first CCD camera 507 and the second CCD camera 607 through the image capture card 10 to obtain the position and posture of the second to-be-assembled part.
  • the industrial computer 1 controls the motor driver 11 through the motion control card 3 , and the motor driver 11 controls the fourth motor 406 , the fifth motor 420 , and the sixth motor 421 , and then controls the Z-axis rotary motion platform 410 and the X-axis rotary motion platform 422 .
  • the Y-axis rotary motion platform 423 rotates to drive the first part to be assembled to rotate, so as to realize rough adjustment of the posture of the first part to be assembled.
  • the outer ring 426 When the industrial computer 1 detects the force signal of the first outer ring load cell 428 through the data acquisition card 2, the outer ring 426 is in a state of swinging to the left around the X axis along the positive direction of the X axis, and the industrial computer 1 sends a signal to the movement
  • the control card 3 the motion control card 3 sends a signal to the motor driver 11, and the fifth motor 420 drives the X-axis rotary motion platform 422 to swing rightward around the X-axis along the positive direction of the X-axis;
  • the force signal of the first outer ring load cell 428 When the force signal of the first outer ring load cell 428 is less than a certain threshold, the outer ring 426 and the first outer ring load cell 428 are in a disengaged state or a force-free state;
  • the outer ring 426 When the industrial computer 1 detects the force signal of the second outer ring load cell 429 through the data acquisition card 2, the outer ring 426 is in a state of swinging to the right around the X axis along the positive direction of the X axis, and the industrial computer 1 sends a signal to the motion
  • the control card 3 the motion control card 3 sends a signal to the motor driver 11, and the fifth motor 420 drives the X-axis rotary motion platform 422 to swing leftward along the X-axis along the positive direction of the X-axis;
  • the force signal of the second outer ring load cell 429 When the force signal of the second outer ring load cell 429 is less than a certain threshold, the outer ring 426 and the second outer ring load cell 429 are in a disengaged state or a force-free state;
  • the inner ring 427 When the industrial computer 1 detects the force signal of the first inner ring load cell 430 through the data acquisition card 2, the inner ring 427 is in a state of swinging to the left around the Y axis along the positive direction of the Y axis, and the industrial computer 1 sends a signal to the movement
  • the control card 3 the motion control card 3 sends a signal to the motor driver 11, and the sixth motor 421 drives the Y-axis rotary motion platform 423 to swing rightward around the Y-axis along the positive direction of the Y-axis;
  • the force signal of the first inner ring force sensor 430 When the force signal of the first inner ring force sensor 430 is less than a certain threshold, the inner ring 427 and the first inner ring force sensor 430 are in a disengaged state or a force-free state;
  • the inner ring 427 When the industrial computer 1 detects the force signal of the second inner ring load cell 431 through the data acquisition card 2, the inner ring 427 is in a state of swinging to the right around the Y axis along the positive direction of the Y axis, and the industrial computer 1 sends a signal to the motion
  • the control card 3 the motion control card 3 sends a signal to the motor driver 11, and the sixth motor 421 drives the Y-axis rotary motion platform 423 to swing leftward around the Y-axis along the positive direction of the Y-axis;
  • the force signal of the second inner ring force sensor 431 When the force signal of the second inner ring force sensor 431 is less than a certain threshold, the inner ring 427 and the second inner ring force sensor 431 are in a disengaged state or a force-free state;
  • outer ring 426 and the first outer ring load cell 428 and the second outer ring load cell 429 are all in a disengaged state or a non-stressed state, the outer ring 426, the first outer ring load cell 428, the first outer ring load cell 428, the The two outer ring load cells 429 are in a stable state, and the outer ring 426 is adjusted;
  • the industrial computer 1 obtains the force signal for clamping the first part to be assembled through the data acquisition card 2, so as to obtain the first part to be assembled and the second part in real time. 2.
  • the clamping piece is a piezoelectric ceramic piece 460, and the driving member includes three metal wires.
  • the piezoelectric ceramic sheet 460 has three terminals (not shown in the figure), and the three metal wires are respectively welded to the corresponding three terminals.
  • the diameter of the metal wire is 20 ⁇ m, which can realize welding with the terminal, avoid melting, and avoid affecting the rotation of the inner ring 427 .
  • the metal wire is silver wire 461, but it is not limited to silver wire, and can also be gold wire.
  • a piezoelectric ceramic sheet driving circuit 12 is also provided, the microcontroller 8 is connected to the piezoelectric ceramic sheet driving circuit 12 , and the piezoelectric ceramic sheet driving circuit 12 is connected to the piezoelectric ceramic sheet 460 through three silver wires 461 .
  • the piezoelectric ceramic sheet driving circuit 12 preferably adopts a 150V three-channel power supply, and the model is the HPV series piezoelectric ceramic driving power supply system.
  • the second embodiment also provides a flexible assembly method, using the flexible assembly system of the second embodiment of the present invention, including the following steps:
  • the area to be clamped is the area between the two contact heads 440, which improves the stability of clamping the first part to be assembled.
  • the industrial computer 1 sends a signal to the microcontroller 8, and the microcontroller 8 sends a signal to the piezoelectric ceramic sheet driving circuit 12.
  • the piezoelectric ceramic sheet driving circuit 12 makes the silver wire 461 energized, and the piezoelectric ceramic sheet 460 bends. , which clamps the first component to be assembled.
  • the industrial computer 1 controls the movement of the first vision platform 5 and the second vision platform 6 through the motion control card 3, so that the first image acquisition device and the second image acquisition device are in the best viewing angle position.
  • the motion control card 3 controls the seventh motor 501, the eighth motor 502, and the ninth motor 503 to work through the motor driver 11, and further controls the first vision Y-axis motion platform 504, the first vision X-axis motion platform 505, The first vision Z-axis motion platform 506 moves so that the first CCD camera 507 is in the best viewing angle position; at the same time, the motion control card 3 controls the tenth motor 601 , the eleventh motor 602 and the twelfth motor 603 to work through the motor driver 11 .
  • the industrial computer 1 acquires the image signals of the first image acquisition device and the second image acquisition device to acquire the position and posture of the second part to be assembled, and controls the six-degree-of-freedom assembly platform 4 to roughly adjust the posture of the first part to be assembled Then, the industrial computer 1 controls the two-degree-of-freedom adjustment device to stabilize the clamping state of the first part to be assembled, and then controls the first part to be assembled by the six-degree-of-freedom assembly platform 4 to approach the second part. A fine adjustment of the attitude of the parts to be assembled.
  • the industrial computer 1 obtains the image signals of the first CCD camera 507 and the second CCD camera 607 through the image capture card 10 to obtain the position and posture of the second to-be-assembled part.
  • the industrial computer 1 controls the motor driver 11 through the motion control card 3 , and the motor driver 11 controls the fourth motor 406 , the fifth motor 420 , and the sixth motor 421 , and then controls the Z-axis rotary motion platform 410 and the X-axis rotary motion platform 422 .
  • the Y-axis rotary motion platform 423 rotates to drive the first part to be assembled to rotate, so as to realize rough adjustment of the posture of the first part to be assembled.
  • the outer ring 426 When the industrial computer 1 detects the force signal of the first outer ring load cell 428 through the data acquisition card 2, the outer ring 426 is in a state of swinging to the left around the X axis along the positive direction of the X axis, and the industrial computer 1 sends a signal to the movement
  • the control card 3 the motion control card 3 sends a signal to the motor driver 11, and the fifth motor 420 drives the X-axis rotary motion platform 422 to swing rightward around the X-axis along the positive direction of the X-axis;
  • the force signal of the first outer ring load cell 428 When the force signal of the first outer ring load cell 428 is less than a certain threshold, the outer ring 426 and the first outer ring load cell 428 are in a disengaged state or a force-free state;
  • the outer ring 426 When the industrial computer 1 detects the force signal of the second outer ring load cell 429 through the data acquisition card 2, the outer ring 426 is in a state of swinging to the right around the X axis along the positive direction of the X axis, and the industrial computer 1 sends a signal to the motion
  • the control card 3 the motion control card 3 sends a signal to the motor driver 11, and the fifth motor 420 drives the X-axis rotary motion platform 422 to swing leftward along the X-axis along the positive direction of the X-axis;
  • the force signal of the second outer ring load cell 429 When the force signal of the second outer ring load cell 429 is less than a certain threshold, the outer ring 426 and the second outer ring load cell 429 are in a disengaged state or a force-free state;
  • the inner ring 427 When the industrial computer 1 detects the force signal of the first inner ring load cell 430 through the data acquisition card 2, the inner ring 427 is in a state of swinging to the left around the Y axis along the positive direction of the Y axis, and the industrial computer 1 sends a signal to the movement
  • the control card 3 the motion control card 3 sends a signal to the motor driver 11, and the sixth motor 421 drives the Y-axis rotary motion platform 423 to swing rightward around the Y-axis along the positive direction of the Y-axis;
  • the force signal of the first inner ring load cell 430 When the force signal of the first inner ring load cell 430 is less than a certain threshold, the inner ring 427 and the first inner ring load cell 430 are in a disengaged state or a force-free state;
  • the inner ring 427 When the industrial computer 1 detects the force signal of the second inner ring load cell 431 through the data acquisition card 2, the inner ring 427 is in a state of swinging to the right around the Y axis along the positive direction of the Y axis, and the industrial computer 1 sends a signal to the motion
  • the control card 3 the motion control card 3 sends a signal to the motor driver 11, and the sixth motor 421 drives the Y-axis rotary motion platform 423 to swing leftward around the Y-axis along the positive direction of the Y-axis;
  • the force signal of the second inner ring force sensor 431 When the force signal of the second inner ring force sensor 431 is less than a certain threshold, the inner ring 427 and the second inner ring force sensor 431 are in a disengaged state or a force-free state;
  • outer ring 426 and the first outer ring load cell 428 and the second outer ring load cell 429 are all in a disengaged state or a non-stressed state, the outer ring 426, the first outer ring load cell 428, the first outer ring load cell 428, the The two outer ring load cells 429 are in a stable state, and the outer ring 426 is adjusted;
  • the industrial computer 1 obtains the force signal for clamping the first part to be assembled through the data acquisition card 2, so as to obtain the first part to be assembled and the second part in real time. 2.
  • the industrial computer 1 obtains the forces of the first outer ring force sensor 428 , the second outer ring force sensor 429 , the first inner ring force sensor 430 , and the second inner ring force sensor 431 through the data acquisition card 2 .
  • signal to obtain the force signal for clamping the first part to be assembled so as to obtain the assembly contact state of the first part to be assembled and the second part to be assembled in real time, and then use the motion control card 3 to make the respective motor drivers 11 drive the corresponding motors to rotate , and then make the first part to be assembled rotate.
  • the respective motor drivers 11 are driven by the motion control card 3 to drive the first motor 403, the second motor 403, and the third motor 405, so as to realize the edge of the first part to be assembled.
  • the X-axis, Y-axis, and Z-axis directions are finely moved and adjusted, and finally the assembly of the first to-be-assembled part and the second to-be-assembled part is completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Human Computer Interaction (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

本发明公开了一种柔性装配系统,包括工控机、数据采集卡、运动控制卡、六自由度装配平台、第一视觉平台、第二视觉平台和支承平台,六自由度装配平台包括四自由度运动平台和两自由度调节装置,两自由度调节装置包括两自由度运动平台、夹持机构,夹持机构包括外框、可转动连接在外框内的柔性腕、安装在柔性腕上的两个夹持片、与两个夹持片相对应的两个驱动件、设于外框上的两个第一测力传感器以及设于柔性腕上的两个第二测力传感器,第一视觉平台上安装有第一图像采集设备,第二视觉平台上安装有第二图像采集设备。本发明还公开了一种柔性装配方法。本发明快速消除零件装配过程中的振颤问题,提升零件装配的效率,提高装配过程的快速性、稳定性。

Description

一种柔性装配系统及方法 技术领域
本发明涉及微装配技术领域,尤其涉及一种柔性装配系统及方法。
背景技术
微装配技术在国防工业以及国民经济发展中有着重要的地位,在促进武器装备小型化、智能化,提升民用高科技产品性能方面发挥着重要的作用。因此,开发高精度、高效率和柔性化、智能化的装配机器人技术,取代传统的手工、半自动组装技术已成为主要发展方向,受到各工业大国的重视,并成为应对快速、小批量、定制化产业需求的关键技术手段之一。
目前,微夹持器的尺寸较大,很难做到集成传感器来检测外部受力;且容易受零件自身重力的影响,导致后续力的检测精度低。其次,对零件的柔性装配过程中遇到的震颤问题,一般会依赖于操作人员的经验进行主动干扰调整,或是等待零件自主趋于稳定,这都会耽误装配的时间,不能满足零件装配过程中对智能化、快速性的要求;此外,操作人员在操作过程也需要长时间集中精力,难以提供持续性的工作产出。而且,在目前的国内外研究当中,微装配系统通常要采用显微视觉和视觉伺服技术,系统设计相对复杂,对视觉传感器(摄像头)的精度要求较高,为了保证系统能自动操作,还需要相应操作环境的识别与定位技术和操作空间的自动转换与标定技术,以及采用系统辨识获取系统标定所需的转换矩阵(雅可比矩阵)参数等,无法达到多源信息的综合利用,比如视觉导航和力检测反馈相结合的技术。
技术问题 技术解决方案
针对现有技术不足,本发明的目的在于提供一种柔性装配系统及方法。
为了实现上述目的,本发明一实施例提供的技术方案如下:
一种柔性装配系统,包括工控机、数据采集卡、运动控制卡、六自由度装配平台、第一视觉平台、第二视觉平台和支承平台,所述数据采集卡、运动控制卡均与所述工控机相连接,所述六自由度装配平台包括四自由度运动平台和两自由度调节装置,所述两自由度调节装置包括两自由度运动平台、安装在所述两自由度运动平台上的夹持机构,所述夹持机构包括外框、可转动连接在所述外框内的柔性腕、安装在所述柔性腕上的两个夹持片、与两个所述夹持片相对应的两个驱动件、设于所述外框上的两个第一测力传感器以及设于所述柔性腕上的两个第二测力传感器,所述第一视觉平台上安装有第一图像采集设备,所述第二视觉平台上安装有第二图像采集设备。
优选地,所述四自由度运动平台包括底座、第一电机、第二电机、第三电机、第四电机、安装在所述底座上的Y轴直线运动平台、安装在所述Y轴直线运动平台上的X轴直线运动平台、安装在所述X轴直线运动平台上的Z轴直线运动平台以及安装在所述Z轴直线运动平台上的Z轴旋转运动平台。
优选地,所述两自由度运动平台包括第五电机、第六电机、X轴旋转运动平台和Y轴旋转运动平台,所述第五电机驱动所述X轴旋转运动平台绕X轴旋转,所述第六电机驱动所述Y轴旋转运动平台绕Y轴旋转。
优选地,所述柔性腕包括外环和内环,所述外环与所述外框可转动连接,所述内环与所述外环可转动连接,两个所述夹持片安装在所述内环上,两个所述第一测力传感器分别为第一外环测力传感器、第二外环测力传感器,两个所述第二测力传感器分别为第一内环测力传感器、第二内环测力传感器,所述第一外环测力传感器、第二外环测力传感器相对安装在所述外框上,所述第一内环测力传感器、第二内环测力传感器相对安装在所述外环上,所述第一内环测力传感器、第二内环测力传感器、第一外环测力传感器、第二外环测力传感器均与所述数据采集卡相连接。
优选地,所述夹持片为铁片,所述驱动件为磁铁。
优选地,所述夹持片为压电陶瓷片,所述驱动件包括三根金属丝。
优选地,所述金属丝的直径为20μm。
优选地,所述内环上设置有安装孔,所述安装孔的中间部位连接有配重块,所述配重块上设置有至少一个配重孔。
一种柔性装配方法,使用上述系统,包括以下步骤:
(1)将第一待装配零件放入待夹持区域,将第二待装配零件放置在所述支承平台上;
(2)通过所述工控机控制两个所述夹持片夹持住第一待装配零件;
(3)所述工控机通过所述运动控制卡控制第一视觉平台、第二视觉平台移动,使第一图像采集设备、第二图像采集设备处于最佳视角位置;
(4)所述工控机获取所述第一图像采集设备、第二图像采集设备的图像信号从而获取第二待装配零件的位置与姿态,并控制六自由度装配平台粗调整第一待装配零件的姿态,接着工控机控制两自由度调节装置实现第一待装配零件夹持状态的稳定,再通过六自由度装配平台控制第一待装配零件接近第二待装配零件的过程中,缓慢完成第一待装配零件姿态的精调整;
(5)在第一待装配零件与第二待装配零件的装配接触阶段,工控机通过数据采集卡获取夹持第一待装配零件的力信号,在深入装配阶段,通过运动控制卡控制六自由度装配平台进行细微移动调整,最终完成第一待装配零件与第二待装配零件的装配。
优选地,所述步骤(4)中,工控机控制两自由度调节装置实现第一待装配零件夹持状态的稳定,包括:
当工控机检测到第一外环测力传感器的力信号时,此时外环处于沿X轴正方向绕X轴向左偏摆的状态,工控机控制两自由度旋转平台沿X轴正方向绕X轴向右偏摆;当工控机检测到第一外环测力传感器的力信号小于一定阈值时,外环与第一外环测力传感器处于脱离接触状态或者不受力状态;
当工控机检测到第二外环测力传感器的力信号时,外环处于沿X轴正方向绕X轴向右偏摆的状态,工控机控制两自由度旋转平台沿X轴正方向绕X轴向左偏摆;当工控机检测到第二外环测力传感器的力信号小于一定阈值时,此时外环与第二外环测力传感器处于脱离接触状态或者不受力状态;
当工控机检测到第一内环测力传感器的力信号时,内环处于沿Y轴正方向绕Y轴向左偏摆的状态,工控机控制两自由度旋转平台沿Y轴正方向绕Y轴向右偏摆;当工控机检测到第一内环测力传感器的力信号小于一定阈值时,此时内环与第一内环测力传感器处于脱离接触状态或者不受力状态;
当工控机检测到第二内环测力传感器的力信号时,内环处于沿Y轴正方向绕Y轴向右偏摆的状态,工控机控制两自由度旋转平台沿Y轴正方向绕Y轴向左偏摆;当工控机检测到第二内环测力传感器的力信号小于一定阈值时,此时内环与第二内环测力传感器处于脱离接触状态或者不受力状态;
当外环与第一外环测力传感器、第二外环测力传感器均处于脱离接触状态或者不受力状态时,此时外环、第一外环测力传感器、第二外环测力传感器均处于稳定状态,外环调节完毕;
当内环与第一内环测力传感器、第二内环测力传感器均处于脱离接触状态或者不受力状态时,此时内环、第一内环测力传感器、第二内环测力传感器均处于稳定状态,内环调节完毕;
当外环和内环均调节完毕,此时夹持的第一待装配零件调节完毕,处于稳定状态。
有益效果
(1)本发明结构简单,控制方法简单实用,且装置成本低,能够快速通过主动调整策略,快速消除零件装配过程中的振颤问题,节省零件调整时间,从而提升零件装配的效率,提高了装配过程的快速性、稳定性,智能高效,实用性强,可适用于两自由度柔性旋转装配的应用工作环境。
(2)本发明在进行微装配时,该装置可以消除零件自身重力对力的检测精度的影响,实现微牛级别微小受力的偏转检测,对于大尺寸零件的夹持,亦可实现微牛级别的力检测,同时实现了在微小装配空间中完成微力传感器的布置,极大的提高了微装配成功率和效率。
(3)本发明适用范围广,中小尺寸到大尺寸多个尺寸范围的零件的夹持,夹持器前端可实现大尺寸范围夹持,并且装配时,可提供较大的轴向力。
(4)本发明的第一内环测力传感器、第二内环测力传感器、第一外环测力传感器、第二外环测力传感器均为复合量程微力传感器,通过将具有不同力检测量程和力检测精度的三个悬臂梁平行排布,其能够利用该三个悬臂梁在力检测量程和力检测精度上的差异进行有机的结合与互补,以此利用该三个悬臂梁分别对不同力检测量程和/或力检测精度需求场合进行相应的力检测,以使得力传感器同时具备大力检测量程和高力检测精度,并且还通过相应的惠斯通电桥电路来实时检测悬臂梁的受力变化状态,从而改善力传感器的控制简便性和工作稳定性,微力传感器既提高了力检测分辨率,又增大了力测量量程范围,且通过惠斯通电桥电路检测力的变化,检测和控制方法简单,稳定性好。
(5)能够将二维力检测应用于微装配过程,使微装配不仅采用视觉导航而且能结合微力检测完成装配过程中力控制,解决了在微零件装配时,微零件自身重力对高力检测分辨率的影响的问题,将微装配过程中力检测分辨率提高uN级别,增加了夹持器的适用性,极大的增加了微装配过程中系列化夹持器的应用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的结构示意图;
图2为本发明的六自由度装配平台和支承平台的结构示意图;
图3为本发明的优选实施例一的两自由度调节装置的结构示意图;
图4为本发明的优选实施例一的夹持机构的俯视图;
图5为本发明的优选实施例一的夹持机构的侧视图;
图6为本发明的优选实施例一的夹持机构的结构示意图;
图7为本发明的优选实施例一的夹持机构的内部结构示意图;
图8为本发明的优选实施例一的外框与柔性腕的俯视图;
图9为本发明的优选实施例一的外壳上设置两个电磁铁的结构示意图;
图10为本发明提供的第一内环测力传感器、第二内环测力传感器、第一外环测力传感器、第二外环测力传感器的结构示意图;
图11为本发明提供的第一内环测力传感器、第二内环测力传感器、第一外环测力传感器、第二外环测力传感器中的电路布局结构示意图;
图12为本发明的优选实施例一的控制原理图;
图13为本发明的优选实施例二的两自由度调节装置的结构示意图;
图14为本发明的优选实施例二的外框、柔性腕和压电陶瓷片连接的结构示意图;
图15为本发明的优选实施例二的夹持机构的结构示意图;
图16为本发明的优选实施例二的控制原理图。
本发明的实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
实施例一
如图1-图12所示,一种柔性装配系统,包括工控机1、数据采集卡2、运动控制卡3、六自由度装配平台4、第一视觉平台5、第二视觉平台6和支承平台7,数据采集卡2、运动控制卡3均与工控机1相连接,六自由度装配平台4包括四自由度运动平台和两自由度调节装置,两自由度调节装置包括两自由度运动平台、安装在两自由度运动平台上的夹持机构,夹持机构包括外框401、可转动连接在外框401内的柔性腕、安装在柔性腕上的两个夹持片、与两个夹持片相对应的两个驱动件、设于外框401上的两个第一测力传感器以及设于柔性腕上的两个第二测力传感器,第一视觉平台5上安装有第一图像采集设备,第二视觉平台6上安装有第二图像采集设备,第一视觉平台5用于获取第一待装配零件和第二待装配零件的装配空间X轴方向的视场信息,第二视觉平台6用于获取第一待装配零件和第二待装配零件的装配空间Y轴方向的视场信息,支承平台7用于支撑第二待装配零件。
本发明优选四自由度运动平台包括底座402、第一电机403、第二电机404、第三电机405、第四电机406、安装在底座402上的Y轴直线运动平台407、安装在Y轴直线运动平台407上的X轴直线运动平台408、安装在X轴直线运动平台408上的Z轴直线运动平台409以及安装在Z轴直线运动平台409上的Z轴旋转运动平台410,第一电机403能够驱动Y轴直线运动平台407沿Y轴移动,第二电机404能够驱动X轴直线运动平台408沿X轴移动,第三电机404能够驱动Z轴直线运动平台409沿Z轴移动,第四电机406能够驱动Z轴旋转运动平台410绕Z轴旋转。优选地,Z轴旋转运动平台410采用的是骏河精机的标准360°旋转滑台,型号为KRW06360。
优选两自由度运动平台包括第五电机420、第六电机421、X轴旋转运动平台422和Y轴旋转运动平台423,第五电机420驱动X轴旋转运动平台422绕X轴旋转,第六电机421驱动Y轴旋转运动平台423绕Y轴旋转。进一步优选第五电机420的输出轴通过第一联轴器424与X轴旋转运动平台422相连接,第六电机421的输出轴通过第二联轴器425与Y轴旋转运动平台423相连接,外框401安装在Y轴旋转运动平台423上。
进一步优选X轴旋转运动平台422、Y轴旋转运动平台423均采用骏河精机的标准转动滑台,型号为KGW04040-L。
本发明优选柔性腕包括外环426和内环427,外环426与外框401可转动连接,内环427与外环426可转动连接,两个夹持片安装在内环427上,两个第一测力传感器分别为第一外环测力传感器428、第二外环测力传感器429,两个第二测力传感器分别为第一内环测力传感器430、第二内环测力传感器431,第一外环测力传感器428、第二外环测力传感器429相对安装在外框401上,第一内环测力传感器430、第二内环测力传感器431相对安装在外环426上,第一内环测力传感器430、第二内环测力传感器431、第一外环测力传感器428、第二外环测力传感器429均与数据采集卡2相连接。
本发明优选内环427内设置有安装孔432,安装孔432的中间部位连接有配重块433,通过配重块433来平衡夹持片和夹持零件的重量,使内环427始终保持平衡的状态,配重块433上设置有至少一个配重孔434,当更换夹持零件后由于零件的重量发生改变,可以在配重孔434中添加或者减少相应的重量,使装配过程相对简单并且增加了夹持片的适用性,降低成本。
为了便于外环426和内环427的转动,本发明优选外环426与外框401之间连接有至少一个第一销钉435,外环426能够绕X轴旋转,内环427与外环426之间连接有至少一个第二销钉436,内环427能够绕Y轴旋转。
优选地,夹持片为铁片437,驱动件为电磁铁438。两个铁片437相对设置,两个电磁铁438相对设置,每个铁片437的一端安装在内环427上,另一端从两个电磁铁438之间穿过。工控机1连接微控制器8,微控制器8连接两个电磁铁驱动电路9,两个电磁铁438分别与两个电磁铁驱动电路9连接。
为了便于电磁铁438的安装,本发明还包括外壳439,外壳439与外框401固定连接,两个电磁铁438均安装在外壳439上,每个铁片437的另一端伸出外壳439。优选每个铁片437的一端粘连在安装孔432的侧壁上,配重块433粘连在安装孔432的中间部位。优选每个铁片437的另一端连接有接触头440,便于稳定的夹持零件。优选接触头440与铁片437采用胶水粘接。
本发明还设置有后盖441,后盖441与外框401固定连接。
为了便于第一电机403、第二电机404、第三电机405、第四电机406、第五电机420、第六电机421、第七电机501、第八电机502、第九电机503、第十电机601、第十一电机602、第十二电机603的启动或停止,本发明优选运动控制卡3连接有多个电机驱动器11,第一电机403、第二电机404、第三电机405、第四电机406、第五电机420、第六电机421、第七电机501、第八电机502、第九电机503、第十电机601、第十一电机602、第十二电机603分别与对应的电机驱动器11相连接。
本发明优选微控制器8为arduino nano。优选数据采集卡2为阿尔泰公司的多功能数据采集卡PCI-8062。优选运动控制卡3为雷赛12轴运动控制卡DMC3C00。优选电机驱动器11的型号为KR-A55MB。电磁铁驱动电路9,就是给一个电磁铁438一个12V的电压,电磁铁438通电生磁,就可吸附铁片437。优选电磁铁437采用直流电磁铁工业吸盘,LY-1809,DC12V/吸力1.2kg。
本发明优选第一内环测力传感器430、第二内环测力传感器431、第一外环测力传感器428、第二外环测力传感器429均为复合量程微力传感器,包括第一悬臂梁450、第二悬臂梁451和第三悬臂梁452;其中,该第一悬臂梁450、该第二悬臂梁451和该第三悬臂梁452依次平行排布在同一平面上;该第一悬臂梁450、该第二悬臂梁451和该第三悬臂梁452具有相同的长度和相同的厚度;该第一悬臂梁450、该第二悬臂梁451和该第三悬臂梁452的宽度依次递增;该第一悬臂梁450连接有第一测量电路,该第一测量电路用于将该第一悬臂梁450检测到的力信号转换为电信号;该第二悬臂梁451连接有第二测量电路,该第二测量电路用于将该第二悬臂梁451检测到的力信号转换为电信号;该第三悬臂梁452连接有第三测量电路,该第三测量电路用于将该第三悬臂,64检测到的力信号转换为电信号;该第一悬臂梁450、该第二悬臂梁451和该第三悬臂梁452的力信号检测分辨率依次减小;该第一悬臂梁450、该第二悬臂梁451和该第三悬臂梁452的力信号检测量程依次增大。
上述复合量程微力传感器的技术方案的有益效果为:该复合量程微力传感器通过将具有不同力检测量程和力检测精度的三个悬臂梁平行排布,其能够利用该三个悬臂梁在力检测量程和力检测精度上的差异进行有机的结合与互补,以此利用该三个悬臂梁分别对不同力检测量程和/或力检测精度需求场合进行相应的力检测,以使得力传感器同时具备大力检测量程和高力检测精度,并且还通过相应的惠斯通电桥电路来实时检测悬臂梁的受力变化状态,从而改善力传感器的控制简便性和工作稳定性。具体而言,由于当力传感器中悬臂梁的宽度越大,其对应的力检测量程越大且力检测精度越小,相反地,当力传感器中悬臂梁的宽度越小,其对应的力检测量程越小且力检测精度越大,该复合量程微力传感器通过将三个具有不同宽度的悬臂梁依次平行排布,这样能够使得力传感器能够在实际测量过程中进行高精度和大量程的力值测量,从而提高力传感器的测量可靠性和稳定性。
优选地,该复合量程微力传感器还包括固定端面453,该固定端面453设置在该同一平面上;该第一悬臂梁450、该第二悬臂梁451和该第三悬臂梁452各自包括相对设置的一固定端和一自由端;该第一悬臂梁450、该第二悬臂梁451和该第三悬臂梁452各自的固定端均与该固定端面453连接。
上述技术方案的有益效果为:通过在同一平面上设置固定端面,并将第一悬臂梁、第二悬臂梁和第三悬臂梁的固定端共同设置在该固定端面上,能够有效地对三个悬臂梁进行固定安装和保证三个悬臂梁相对位置的稳固性。
优选地,该第一悬臂梁450的自由端设置有第一凸台454;该第二悬臂梁451的自由端设置有第二凸台455;该第一凸台454的高度大于该第二凸台455的高度。
上述技术方案的有益效果为:该第一悬臂梁和第二悬臂梁的自由端设置有高度不同的凸台,并且该第三悬臂梁的自由端没有设置任何凸台,这使得三个悬臂梁的自由端具有不同的相对高度位置,从而保证在测量过程中,三个悬臂梁同时接触到待检测的微小力信号,以保证在同一时刻只有一个悬臂梁接触到待检测的微小力信号,以此保证力传感器的测量准确性。在实际测量中,由于第一悬臂梁自由端上的凸台具有最高的高度,这使得该第一悬臂梁会首先接触到待检测的微小力信号,此时的检测过程对应具有最小的力检测量程和最大的力检测精度,并在第一悬臂梁达到最大力检测值前,第二悬臂梁自由端对应的凸台会接触到待检测的微小力信号,同样地在第二悬臂梁达到最大力检测值前,第三悬臂梁的自由端会接触到待检测的微小力信号,此时的检测过程对应具有最大的力检测精度,通过上述从第一悬臂梁到第二悬臂梁再到第三悬臂梁的依次递减测量过程,能够同时实现大力检测量程和高力检测精度的测量操作。
优选地,该第一测量电路为第一惠斯通电桥测量电路;其中,
该第一惠斯通电桥测量电路包括四个力敏电阻R1、R2、R3、R4;
该力敏电阻R2和R3设置在该第一悬臂梁450处于受力状态时形变最大的区域,该力敏电阻R2和R3的电阻随着该第一悬臂梁450的形变强度变化而变化,该力敏电阻R1和R4设置在该复合量程微力传感器的固定端面453上,该力敏电阻R1和R4的电阻不随该第一悬臂梁450发生形变而变化。
优选地,该力敏电阻R1、R2、R3、R4依次首尾电连接;
该力敏电阻R1和R2的相连端与该第一惠斯通电桥测量电路的输出电极EO1相连,该力敏电阻R1和R3的相连端与该第一惠斯通电桥测量电路的输入电极EI1相连,该力敏电阻R2和R4的相连端与该第一惠斯通电桥测量电路的输入电极EI2相连,该力敏电阻R3和R4的相连端与该第一惠斯通电桥测量电路的输出电极EO2相连;该第一惠斯通电桥测量电路的输入电极EI1和该第一惠斯通电桥测量电路的输入电极EI2分别连接输入电压两端,该第一惠斯通电桥测量电路的输出电极EO1和该第一惠斯通电桥测量电路的输出电极EO2用于输出测量电压。
上述技术方案的有益效果为:在实际测量中,第一悬臂梁自由端的凸台接触到待检测的微小力信号,此时第一悬臂梁的根部会发生形变,从而使得力敏电阻R2和R3随着第一悬臂梁发生形变而产生电阻阻值的变化,并使得该第一惠斯通电桥测量电路输出的电压发生变化,最终通过输出电压与力信号之间的比例关系能够计算获得该力信号对应的力值大小。
优选地,该第二测量电路为第二惠斯通电桥测量电路;其中,
该第二惠斯通电桥测量电路包括四个力敏电阻R5、R6、R7、R8;
该力敏电阻R6和R7设置在该第二悬臂梁451处于受力状态时形变最大的区域,该力敏电阻R6和R7的电阻随着该第二悬臂梁451的形变强度变化而变化,该力敏电阻R5和R8设置在该复合量程微力传感器的固定端面453上,该力敏电阻R5和R8的电阻不随该第二悬臂梁451发生形变而变化。
优选地,该力敏电阻R5、R6、R3、R4依次首尾电连接;
该力敏电阻R5和R6的相连端与该第二惠斯通电桥测量电路的输出电极EO1相连,该力敏电阻R5和R7的相连端与该第二惠斯通电桥测量电路的输入电极EI1相连,该力敏电阻R6和R8的相连端与该第二惠斯通电桥测量电路的输入电极EI2相连,该力敏电阻R7和R8的相连端与该第二惠斯通电桥测量电路的输出电极EO2相连;该第二惠斯通电桥测量电路的输入电极EI1和该第二惠斯通电桥测量电路的输入电极EI2分别连接输入电压两端,该第二惠斯通电桥测量电路的输出电极EO1和该第二惠斯通电桥测量电路的输出电极EO2用于输出测量电压。
上述技术方案的有益效果为:在实际测量中,第二悬臂梁自由端的凸台接触到待检测的微小力信号,此时第二悬臂梁的根部会发生形变,从而使得力敏电阻R6和R7随着第二悬臂梁发生形变而产生电阻阻值的变化,并使得该第二惠斯通电桥测量电路输出的电压发生变化,最终通过输出电压与力信号之间的比例关系能够计算获得该力信号对应的力值大小。
优选地,该第三测量电路为第三惠斯通电桥测量电路;其中,
该第三惠斯通电桥测量电路包括四个力敏电阻R9、R10、R11、R12;该力敏电阻R10和R11设置在该第三悬臂梁452处于受力状态时形变最大的区域,该力敏电阻R10和R11的电阻随着该第三悬臂梁452的形变强度变化而变化,该力敏电阻R9和R12设置在该复合量程微力传感器的固定端面453上,该力敏电阻R9和R12的电阻不随该第三悬臂梁452发生形变而变化。
优选地,该力敏电阻R9、R10、R11、R12依次首尾电连接;
该力敏电阻R9和R10的相连端与该第三惠斯通电桥测量电路的输出电极EO1相连,该力敏电阻R9和R11的相连端与该第三惠斯通电桥测量电路的输入电极EI1相连,该力敏电阻R10和R12的相连端与该第三惠斯通电桥测量电路的输入电极EI2相连,该力敏电阻R11和R12的相连端与该第三惠斯通电桥测量电路的输出电极EO2相连;该第三惠斯通电桥测量电路的输入电极EI1和该第三惠斯通电桥测量电路的输入电极EI2分别连接输入电压两端,该第三惠斯通电桥测量电路的输出电极EO1和该第三惠斯通电桥测量电路的输出电极EO2用于输出测量电压。
上述技术方案的有益效果为:在实际测量中,第三悬臂梁的自由端接触到待检测的微小力信号,此时第三悬臂梁的根部会发生形变,从而使得力敏电阻R10和R11随着第三悬臂梁发生形变而产生电阻阻值的变化,并使得该第三惠斯通电桥测量电路输出的电压发生变化,最终通过输出电压与力信号之间的比例关系能够计算获得该力信号对应的力值大小。
优选地,该第一悬臂梁450、该第二悬臂梁451和该第三悬臂梁452的长度为1000-3000μm;或者,该第一悬臂梁450、该第二悬臂梁451和该第三悬臂梁452的厚度为50-100μm;或者,该第一悬臂梁450的宽度为500μm,该第二悬臂梁451的宽度为3000μm,该第三悬臂梁452的宽度为10000μm;或者;该第一悬臂梁450的最小力信号检测分辨率为10μN,该第一悬臂梁450的力信号检测量程为10-400μN;或者;该第二悬臂梁451的最小力信号检测分辨率为400μN,该第二悬臂梁451的力信号检测量程为400-30000μN;或者;该第三悬臂梁452的最小力信号检测分辨率为2000μN,该第三悬臂梁452的力信号检测量程为2000-250000μN;或者,该第一悬臂梁450、该第二悬臂梁451和该第三悬臂梁452均在SiO2上通过光刻工艺制作形成。
在实际应用中,该第一悬臂梁450、该第二悬臂梁451和该第三悬臂梁452的长度、宽度和高度尺寸具体可如下面表1所示:
Figure 273839dest_path_image001
特别地,该第一悬臂梁450采用根部挖空设计,这样能够保证该第一悬臂梁450在三个悬臂梁中具有最高的力检测灵敏度,其能够满足20μN的微力检测分辨率。可选地,可以在该第一悬臂梁450的根部挖出形成100μm*100μm的方形槽孔。
在实际应用中,该第一悬臂梁450、该第二悬臂梁451和该第三悬臂梁452的检测参数具体可如下面表2所示:
Figure 137890dest_path_image002
另外,该第一悬臂梁450、该第二悬臂梁451和该第三悬臂梁452的制作工艺流程可包括:
(1)在基底的表面热生长形成一层厚度为25nm的SiO2,以此作为离子注入保护层;
(2)在SiO2的正面旋涂一层厚度为2μm的光刻胶;
(3)对该光刻胶进行光刻处理,以光刻胶作为掩膜刻蚀形成力敏电阻槽;
(4)在该力敏电阻槽内注入高浓度硼离子,以此形成力敏电阻,其中高浓度硼离子的注入能量为50KeV、注入剂量为214cm 2,然后对该力敏电阻进行1100℃和40s的退火处理,再在该力敏电阻表面上形成一层厚度为0.3μm的氧化层;
(5)对该光刻胶上刻蚀形成引线孔,该引线孔的刻蚀对应的注入能量为50KeV、注入剂量为215cm 2,然后进行1100℃和40s的退火处理;
(6)在该引线孔进行金属溅射,从而形成700nm的Al引线,并进行4500℃和20min的退火处理;
(7)在基底的表面进行等离子体增强化学气相沉积处理,以此形成厚度为1μm的SiN绝缘介质层;
(8)在SiN绝缘介质层上形成图案化的接触焊盘;
(9)对基底进行各项同性处理、掏出反应腔和释放悬臂梁。
从上述实施例的内容可知,该复合量程微力传感器包括第一悬臂梁、第二悬臂梁和第三悬臂梁;其中,该第一悬臂梁、该第二悬臂梁和该第三悬臂梁依次平行排布在同一平面上;该第一悬臂梁、该第二悬臂梁和该第三悬臂梁具有相同的长度和相同的厚度;该第一悬臂梁、该第二悬臂梁和该第三悬臂梁的宽度依次递增;该第一悬臂梁连接有第一测量电路,该第一测量电路用于将所述第一悬臂梁检测到的力信号转换为电信号;该第二悬臂梁连接有第二测量电路,该第二测量电路用于将该第二悬臂梁检测到的力信号转换为电信号;该第三悬臂梁连接有第三测量电路该第三测量电路用于将该第三悬臂梁检测到的力信号转换为电信号;该第一悬臂梁、该第二悬臂梁和该第三悬臂梁的力信号检测检测分辨率减小;该第一悬臂梁、该第二悬臂梁和该第三悬臂梁的力信号检测量程依次增大;可见,该复合量程微力传感器通过将具有不同力检测量程和力检测精度的三个悬臂梁平行排布,其能够利用该三个悬臂梁在力检测量程和力检测精度上的差异进行有机的结合与互补,以此利用该三个悬臂梁分别对不同力检测量程和/或力检测精度需求场合进行相应的力检测,以使得力传感器同时具备大力检测量程和高力检测精度,并且还通过相应的惠斯通电桥电路来实时检测悬臂梁的受力变化状态,从而改善力传感器的控制简便性和工作稳定性。
本发明优选第一视觉平台5包括第七电机501、第八电机502、第九电机503、第一视觉Y轴运动平台504、第一视觉X轴运动平台505、第一视觉Z轴运动平台506,第七电机501驱动第一视觉Y轴运动平台504沿Y轴移动,第八电机502驱动第一视觉X轴运动平台505沿X轴移动,第九电机503驱动第一视觉Z轴运动平台506沿Z轴移动。
本发明优选第二视觉平台6包括第十电机601、第十一电机602、第十二电机603、第二视觉X轴运动平台604、第二视觉Y轴运动平台605、第二视觉Z轴运动平台606,第十电机601驱动第二视觉X轴运动平台604沿Y轴移动,第十一电机602驱动第二视觉Y轴运动平台605沿X轴移动,第十二电机603驱动第二视觉Z轴运动平台606沿Z轴移动。进一步优选第一图像采集设备为第一CCD相机507,第二图像采集设备为第二CCD相机607。进一步优选还包括图像采集卡10,第一CCD相机507、第二CCD相机607均与图像采集卡10相连接,图像采集卡10与工控机1相连接。
以下介绍本发明实施例一的一种柔性装配方法,使用本发明实施例一的柔性装配系统,包括以下步骤:
(1)将第一待装配零件放入待夹持区域,将第二待装配零件放置在支承平台7上。
其中,在将第一待装配零件放入待夹持区域之前,还包括通过工控机1发送信号给微控制器8,电磁铁驱动电路9控制两个电磁铁438通电,两个电磁铁438分别吸住两个铁片437,使两个铁片437前端均张开一定角度。
待夹持区域为两个接触头440之间的区域,提高对第一待装配零件夹持的稳定性。
(2)通过工控机1控制两个夹持片夹持住第一待装配零件。
具体的,通过工控机1发送信号给微控制器8,微控制器8发送信号给电磁铁驱动电路9,电磁铁驱动电路9使得电磁铁438断电,电磁铁438去磁,铁片437恢复形变,实现对第一待装配零件的夹持。
(3)工控机1通过运动控制卡3控制第一视觉平台5、第二视觉平台6移动,使第一图像采集设备、第二图像采集设备处于最佳视角位置。
具体的,运动控制卡3通过电机驱动器11,控制第七电机501、第八电机502、第九电机503工作,进而分别控制第一视觉Y轴运动平台504、第一视觉X轴运动平台505、第一视觉Z轴运动平台506移动,使得第一CCD相机507处于最佳视角位置;同时运动控制卡3通过电机驱动器11,控制第十电机601、第十一电机602、第十二电机603工作,进而分别控制第二视觉X轴运动平台604、第二视觉Y轴运动平台605、第二视觉Z轴运动平台606移动,使得第二CCD相机607处于最佳视角位置。
(4)工控机1获取第一图像采集设备、第二图像采集设备的图像信号从而获取第二待装配零件的位置与姿态,并控制六自由度装配平台4粗调整第一待装配零件的姿态,接着工控机1控制两自由度调节装置实现第一待装配零件夹持状态的稳定,再通过六自由度装配平台4控制第一待装配零件接近第二待装配零件的过程中,缓慢完成第一待装配零件姿态的精调整。
具体的,工控机1通过图像采集卡10获取第一CCD相机507、第二CCD相机607的图像信号从而获取第二待装配零件的位置与姿态。
具体的,工控机1通过运动控制卡3控制电机驱动器11,电机驱动器11控制第四电机406、第五电机420、第六电机421,进而控制Z轴旋转运动平台410、X轴旋转运动平台422、Y轴旋转运动平台423转动,带动第一待装配零件旋转,实现对第一待装配零件的姿态的粗调整。
当工控机1通过数据采集卡2检测到第一外环测力传感器428的力信号时,外环426处于沿X轴正方向绕X轴向左偏摆的状态,工控机1发送信号给运动控制卡3,运动控制卡3发送信号给电机驱动器11,第五电机420驱动X轴旋转运动平台422沿X轴正方向绕X轴向右偏摆;当工控机1通过数据采集卡2检测到第一外环测力传感器428的力信号小于一定阈值时,外环426与第一外环测力传感器428处于脱离接触状态或者不受力状态;
当工控机1通过数据采集卡2检测到第二外环测力传感器429的力信号时,外环426处于沿X轴正方向绕X轴向右偏摆的状态,工控机1发送信号给运动控制卡3,运动控制卡3发送信号给电机驱动器11,第五电机420驱动X轴旋转运动平台422沿X轴正方向绕X轴向左偏摆;当工控机1通过数据采集卡2检测到第二外环测力传感器429的力信号小于一定阈值时,此时外环426与第二外环测力传感器429处于脱离接触状态或者不受力状态;
当工控机1通过数据采集卡2检测到第一内环测力传感器430的力信号时,内环427处于沿Y轴正方向绕Y轴向左偏摆的状态,工控机1发送信号给运动控制卡3,运动控制卡3发送信号给电机驱动器11,第六电机421驱动Y轴旋转运动平台423沿Y轴正方向绕Y轴向右偏摆;当工控机1通过数据采集卡2检测到第一内环测力传感器430的力信号小于一定阈值时,此时内环427与第一内环测力传感器430处于脱离接触状态或者不受力状态;
当工控机1通过数据采集卡2检测到第二内环测力传感器431的力信号时,内环427处于沿Y轴正方向绕Y轴向右偏摆的状态,工控机1发送信号给运动控制卡3,运动控制卡3发送信号给电机驱动器11,第六电机421驱动Y轴旋转运动平台423沿Y轴正方向绕Y轴向左偏摆;当工控机1通过数据采集卡2检测到第二内环测力传感器431的力信号小于一定阈值时,此时内环427与第二内环测力传感器431处于脱离接触状态或者不受力状态;
当外环426与第一外环测力传感器428、第二外环测力传感器429均处于脱离接触状态或者不受力状态时,此时外环426、第一外环测力传感器428、第二外环测力传感器429均处于稳定状态,外环426调节完毕;
当内环427与第一内环测力传感器430、第二内环测力传感器431均处于脱离接触状态或者不受力状态时,此时内环427、第一内环测力传感器430、第二内环测力传感器431均处于稳定状态,内环427调节完毕;
当外环426和内环427均调节完毕,此时夹持的第一待装配零件调节完毕,处于稳定状态。
(5)在第一待装配零件与第二待装配零件的装配接触阶段,工控机1通过数据采集卡2获取夹持第一待装配零件的力信号,从而实时获取第一待装配零件与第二待装配零件的装配接触状态,控制相应的电机做出相应的位置调整,在深入装配阶段,通过运动控制卡3控制六自由度装配平台4进行细微移动调整,最终完成第一待装配零件与第二待装配零件的装配。
实施例二
如图1、图2、图10、图11、图13-图16所示,本发明实施例二的柔性装配系统与实施例一的柔性装配系统的区别在于:
夹持片为压电陶瓷片460,驱动件包括三根金属丝。优选地,压电陶瓷片460上有三个接线柱(图中未示出),三根金属丝分别焊接在对应的三个接线柱上。优选地,金属丝的直径为20μm,能够实现与接线柱的焊接,避免融化,同时能够避免影响内环427的转动。优选地,金属丝为银丝461,但并不局限于银丝,也可以为金丝。优选地,还设置有压电陶瓷片驱动电路12,微控制器8与压电陶瓷片驱动电路12相连接,压电陶瓷片驱动电路12通过三根银丝461与压电陶瓷片460相连接。本实施例优选压电陶瓷片驱动电路12采用150V三通道电源,型号是HPV 系列压电陶瓷驱动电源系统。
本实施例二还提供了一种柔性装配方法,使用本发明实施例二的柔性装配系统,包括以下步骤:
(1)将第一待装配零件放入待夹持区域,将第二待装配零件放置在支承平台7上。
待夹持区域为两个接触头440之间的区域,提高对第一待装配零件夹持的稳定性。
(2)通过工控机1控制两个夹持片夹持住第一待装配零件。
具体的,通过工控机1发送信号给微控制器8,微控制器8发送信号给压电陶瓷片驱动电路12,压电陶瓷片驱动电路12使得银丝461通电,压电陶瓷片460发生弯曲,夹持住第一待装配零件。
(3)工控机1通过运动控制卡3控制第一视觉平台5、第二视觉平台6移动,使第一图像采集设备、第二图像采集设备处于最佳视角位置。
具体的,运动控制卡3通过电机驱动器11,控制第七电机501、第八电机502、第九电机503工作,进而分别控制第一视觉Y轴运动平台504、第一视觉X轴运动平台505、第一视觉Z轴运动平台506移动,使得第一CCD相机507处于最佳视角位置;同时运动控制卡3通过电机驱动器11,控制第十电机601、第十一电机602、第十二电机603工作,进而分别控制第二视觉X轴运动平台604、第二视觉Y轴运动平台605、第二视觉Z轴运动平台606移动,使得第二CCD相机607处于最佳视角位置。
(4)工控机1获取第一图像采集设备、第二图像采集设备的图像信号从而获取第二待装配零件的位置与姿态,并控制六自由度装配平台4粗调整第一待装配零件的姿态,接着工控机1控制两自由度调节装置实现第一待装配零件夹持状态的稳定,再通过六自由度装配平台4控制第一待装配零件接近第二待装配零件的过程中,缓慢完成第一待装配零件姿态的精调整。
具体的,工控机1通过图像采集卡10获取第一CCD相机507、第二CCD相机607的图像信号从而获取第二待装配零件的位置与姿态。
具体的,工控机1通过运动控制卡3控制电机驱动器11,电机驱动器11控制第四电机406、第五电机420、第六电机421,进而控制Z轴旋转运动平台410、X轴旋转运动平台422、Y轴旋转运动平台423转动,带动第一待装配零件旋转,实现对第一待装配零件的姿态的粗调整。
当工控机1通过数据采集卡2检测到第一外环测力传感器428的力信号时,外环426处于沿X轴正方向绕X轴向左偏摆的状态,工控机1发送信号给运动控制卡3,运动控制卡3发送信号给电机驱动器11,第五电机420驱动X轴旋转运动平台422沿X轴正方向绕X轴向右偏摆;当工控机1通过数据采集卡2检测到第一外环测力传感器428的力信号小于一定阈值时,外环426与第一外环测力传感器428处于脱离接触状态或者不受力状态;
当工控机1通过数据采集卡2检测到第二外环测力传感器429的力信号时,外环426处于沿X轴正方向绕X轴向右偏摆的状态,工控机1发送信号给运动控制卡3,运动控制卡3发送信号给电机驱动器11,第五电机420驱动X轴旋转运动平台422沿X轴正方向绕X轴向左偏摆;当工控机1通过数据采集卡2检测到第二外环测力传感器429的力信号小于一定阈值时,此时外环426与第二外环测力传感器429处于脱离接触状态或者不受力状态;
当工控机1通过数据采集卡2检测到第一内环测力传感器430的力信号时,内环427处于沿Y轴正方向绕Y轴向左偏摆的状态,工控机1发送信号给运动控制卡3,运动控制卡3发送信号给电机驱动器11,第六电机421驱动Y轴旋转运动平台423沿Y轴正方向绕Y轴向右偏摆;当工控机1通过数据采集卡2检测到第一内环测力传感器430的力信号小于一定阈值时,此时内环427与第一内环测力传感器430处于脱离接触状态或者不受力状态;
当工控机1通过数据采集卡2检测到第二内环测力传感器431的力信号时,内环427处于沿Y轴正方向绕Y轴向右偏摆的状态,工控机1发送信号给运动控制卡3,运动控制卡3发送信号给电机驱动器11,第六电机421驱动Y轴旋转运动平台423沿Y轴正方向绕Y轴向左偏摆;当工控机1通过数据采集卡2检测到第二内环测力传感器431的力信号小于一定阈值时,此时内环427与第二内环测力传感器431处于脱离接触状态或者不受力状态;
当外环426与第一外环测力传感器428、第二外环测力传感器429均处于脱离接触状态或者不受力状态时,此时外环426、第一外环测力传感器428、第二外环测力传感器429均处于稳定状态,外环426调节完毕;
当内环427与第一内环测力传感器430、第二内环测力传感器431均处于脱离接触状态或者不受力状态时,此时内环427、第一内环测力传感器430、第二内环测力传感器431均处于稳定状态,内环427调节完毕;
当外环426和内环427均调节完毕,此时夹持的第一待装配零件调节完毕,处于稳定状态。
(5)在第一待装配零件与第二待装配零件的装配接触阶段,工控机1通过数据采集卡2获取夹持第一待装配零件的力信号,从而实时获取第一待装配零件与第二待装配零件的装配接触状态,控制相应的电机做出相应的位置调整,在深入装配阶段,通过运动控制卡3控制六自由度装配平台4进行细微移动调整,最终完成第一待装配零件与第二待装配零件的装配。
具体的,工控机1通过数据采集卡2获取第一外环测力传感器428、第二外环测力传感器429、第一内环测力传感器430、第二内环测力传感器431、的力信号从而获取夹持第一待装配零件的力信号,从而实时获取第一待装配零件与第二待装配零件的装配接触状态,再通过运动控制卡3使得各自的电机驱动器11驱动对应的电机转动,进而使得第一待装配零件旋转,在深入装配阶段,通过运动控制卡3使得各自的电机驱动器11驱动第一电机403、第二电机403、第三电机405,实现第一待装配零件的沿X轴、Y轴、Z轴方向进行细微移动调整,最终完成第一待装配零件与第二待装配零件的装配。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (10)

  1. 一种柔性装配系统,其特征在于,包括工控机、数据采集卡、运动控制卡、六自由度装配平台、第一视觉平台、第二视觉平台和支承平台,所述数据采集卡、运动控制卡均与所述工控机相连接,所述六自由度装配平台包括四自由度运动平台和两自由度调节装置,所述两自由度调节装置包括两自由度运动平台、安装在所述两自由度运动平台上的夹持机构,所述夹持机构包括外框、可转动连接在所述外框内的柔性腕、安装在所述柔性腕上的两个夹持片、与两个所述夹持片相对应的两个驱动件、设于所述外框上的两个第一测力传感器以及设于所述柔性腕上的两个第二测力传感器,所述第一视觉平台上安装有第一图像采集设备,所述第二视觉平台上安装有第二图像采集设备。
  2. 根据权利要求1所述的一种柔性装配系统,其特征在于,所述四自由度运动平台包括底座、第一电机、第二电机、第三电机、第四电机、安装在所述底座上的Y轴直线运动平台、安装在所述Y轴直线运动平台上的X轴直线运动平台、安装在所述X轴直线运动平台上的Z轴直线运动平台以及安装在所述Z轴直线运动平台上的Z轴旋转运动平台。
  3. 根据权利要求2所述的一种柔性装配系统,其特征在于,所述两自由度运动平台包括第五电机、第六电机、X轴旋转运动平台和Y轴旋转运动平台,所述第五电机驱动所述X轴旋转运动平台绕X轴旋转,所述第六电机驱动所述Y轴旋转运动平台绕Y轴旋转。
  4. 根据权利要求1所述的一种柔性装配系统,其特征在于,所述柔性腕包括外环和内环,所述外环与所述外框可转动连接,所述内环与所述外环可转动连接,两个所述夹持片安装在所述内环上,两个所述第一测力传感器分别为第一外环测力传感器、第二外环测力传感器,两个所述第二测力传感器分别为第一内环测力传感器、第二内环测力传感器,所述第一外环测力传感器、第二外环测力传感器相对安装在所述外框上,所述第一内环测力传感器、第二内环测力传感器相对安装在所述外环上,所述第一内环测力传感器、第二内环测力传感器、第一外环测力传感器、第二外环测力传感器均与所述数据采集卡相连接。
  5. 根据权利要求1所述的一种柔性装配系统,其特征在于,所述夹持片为铁片,所述驱动件为磁铁。
  6. 根据权利要求1所述的一种柔性装配系统,其特征在于,所述夹持片为压电陶瓷片,所述驱动件包括三根金属丝。
  7. 根据权利要求6所述的一种柔性装配系统,其特征在于,所述金属丝的直径为20μm。
  8. 根据权利要求1所述的一种柔性装配系统,其特征在于,所述内环上设置有安装孔,所述安装孔的中间部位连接有配重块,所述配重块上设置有至少一个配重孔。
  9. 一种柔性装配方法,其特征在于,使用如权利要求1-8中任一项所述的系统,包括以下步骤:
    (1)将第一待装配零件放入待夹持区域,将第二待装配零件放置在所述支承平台上;
    (2)通过所述工控机控制两个所述夹持片夹持住第一待装配零件;
    (3)所述工控机通过所述运动控制卡控制第一视觉平台、第二视觉平台移动,使第一图像采集设备、第二图像采集设备处于最佳视角位置;
    (4)所述工控机获取所述第一图像采集设备、第二图像采集设备的图像信号从而获取第二待装配零件的位置与姿态,并控制六自由度装配平台粗调整第一待装配零件的姿态,接着工控机控制两自由度调节装置实现第一待装配零件夹持状态的稳定,再通过六自由度装配平台控制第一待装配零件接近第二待装配零件的过程中,缓慢完成第一待装配零件姿态的精调整;
    (5)在第一待装配零件与第二待装配零件的装配接触阶段,工控机通过数据采集卡获取夹持第一待装配零件的力信号,在深入装配阶段,通过运动控制卡控制六自由度装配平台进行细微移动调整,最终完成第一待装配零件与第二待装配零件的装配。
  10. 根据权利要求9所述的一种柔性装配方法,其特征在于,所述步骤(4)中,工控机控制两自由度调节装置实现第一待装配零件夹持状态的稳定,包括:
    当工控机检测到第一外环测力传感器的力信号时,此时外环处于沿X轴正方向绕X轴向左偏摆的状态,工控机控制两自由度旋转平台沿X轴正方向绕X轴向右偏摆;当工控机检测到第一外环测力传感器的力信号小于一定阈值时,外环与第一外环测力传感器处于脱离接触状态或者不受力状态;
    当工控机检测到第二外环测力传感器的力信号时,外环处于沿X轴正方向绕X轴向右偏摆的状态,工控机控制两自由度旋转平台沿X轴正方向绕X轴向左偏摆;当工控机检测到第二外环测力传感器的力信号小于一定阈值时,此时外环与第二外环测力传感器处于脱离接触状态或者不受力状态;
    当工控机检测到第一内环测力传感器的力信号时,内环处于沿Y轴正方向绕Y轴向左偏摆的状态,工控机控制两自由度旋转平台沿Y轴正方向绕Y轴向右偏摆;当工控机检测到第一内环测力传感器的力信号小于一定阈值时,此时内环与第一内环测力传感器处于脱离接触状态或者不受力状态;
    当工控机检测到第二内环测力传感器的力信号时,内环处于沿Y轴正方向绕Y轴向右偏摆的状态,工控机控制两自由度旋转平台沿Y轴正方向绕Y轴向左偏摆;当工控机检测到第二内环测力传感器的力信号小于一定阈值时,此时内环与第二内环测力传感器处于脱离接触状态或者不受力状态;
    当外环与第一外环测力传感器、第二外环测力传感器均处于脱离接触状态或者不受力状态时,此时外环、第一外环测力传感器、第二外环测力传感器均处于稳定状态,外环调节完毕;
    当内环与第一内环测力传感器、第二内环测力传感器均处于脱离接触状态或者不受力状态时,此时内环、第一内环测力传感器、第二内环测力传感器均处于稳定状态,内环调节完毕;
    当外环和内环均调节完毕,此时夹持的第一待装配零件调节完毕,处于稳定状态。
PCT/CN2021/078811 2020-12-31 2021-03-03 一种柔性装配系统及方法 WO2022141787A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/909,188 US11724344B2 (en) 2020-12-31 2021-03-03 Flexible assembly system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011617592.3 2020-12-31
CN202011617592.3A CN112775639B (zh) 2020-12-31 2020-12-31 一种柔性装配系统及方法

Publications (1)

Publication Number Publication Date
WO2022141787A1 true WO2022141787A1 (zh) 2022-07-07

Family

ID=75754171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078811 WO2022141787A1 (zh) 2020-12-31 2021-03-03 一种柔性装配系统及方法

Country Status (3)

Country Link
US (1) US11724344B2 (zh)
CN (1) CN112775639B (zh)
WO (1) WO2022141787A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115709464A (zh) * 2022-11-22 2023-02-24 遨天科技(北京)有限公司 一种微装配动作执行机构及精度补偿方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112775639B (zh) * 2020-12-31 2022-04-22 苏州大学 一种柔性装配系统及方法
CN116394190B (zh) * 2023-03-30 2023-11-07 深圳市亿图视觉自动化技术有限公司 一种曲面屏幕的组装方法及组装设备
CN117484177B (zh) * 2023-12-29 2024-04-09 歌尔股份有限公司 一种组装设备、及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103753519A (zh) * 2014-01-13 2014-04-30 东南大学 针对三自由度力反馈手控器的标定方法的平台机构
US20170144480A1 (en) * 2014-07-01 2017-05-25 Arkk Engineering Robotic wheel gripper with a tmp sensor
CN109454653A (zh) * 2019-01-19 2019-03-12 嘉兴市宏丰机械有限公司 一种具有柔性腕关节机器人的控制系统及控制方法
CN111299996A (zh) * 2020-03-10 2020-06-19 重庆大学 一种微夹持机器人

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4694230A (en) * 1986-03-11 1987-09-15 Usa As Represented By The Secretary Of Commerce Micromanipulator system
WO2012170673A1 (en) * 2011-06-07 2012-12-13 Flir Systems, Inc. Gimbal system with a translational mount
JP6291484B2 (ja) * 2012-06-01 2018-03-14 インテュイティブ サージカル オペレーションズ, インコーポレイテッド ゼロ空間を使用して手術用マニピュレータの命令された再構成を取るためのシステム及び方法
CN107421632B (zh) * 2017-07-18 2023-07-18 华南理工大学 基于激光双目视觉的双柔性悬臂梁振动测控装置与方法
CN107942933A (zh) * 2017-12-29 2018-04-20 华南理工大学 一种视觉伺服的平面三自由度宏微复合定位系统及方法
US11148295B2 (en) * 2018-06-17 2021-10-19 Robotics Materials, Inc. Systems, devices, components, and methods for a compact robotic gripper with palm-mounted sensing, grasping, and computing devices and components
CN111941346B (zh) * 2020-07-13 2021-06-01 珠海格力电器股份有限公司 一种柔性螺纹件装配机构、系统、机器人及其控制方法
CN112775639B (zh) * 2020-12-31 2022-04-22 苏州大学 一种柔性装配系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103753519A (zh) * 2014-01-13 2014-04-30 东南大学 针对三自由度力反馈手控器的标定方法的平台机构
US20170144480A1 (en) * 2014-07-01 2017-05-25 Arkk Engineering Robotic wheel gripper with a tmp sensor
CN109454653A (zh) * 2019-01-19 2019-03-12 嘉兴市宏丰机械有限公司 一种具有柔性腕关节机器人的控制系统及控制方法
CN111299996A (zh) * 2020-03-10 2020-06-19 重庆大学 一种微夹持机器人

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115709464A (zh) * 2022-11-22 2023-02-24 遨天科技(北京)有限公司 一种微装配动作执行机构及精度补偿方法

Also Published As

Publication number Publication date
US11724344B2 (en) 2023-08-15
CN112775639B (zh) 2022-04-22
US20230087847A1 (en) 2023-03-23
CN112775639A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
WO2022141787A1 (zh) 一种柔性装配系统及方法
Wang et al. Design of a novel dual-axis micromanipulator with an asymmetric compliant structure
Jain et al. Design and manufacturing of mobile micro manipulation system with a compliant piezoelectric actuator based micro gripper
Wason et al. Automated multiprobe microassembly using vision feedback
JP2012514544A5 (zh)
Das et al. Design, analysis, and experimental investigation of a single-stage and low parasitic motion piezoelectric actuated microgripper
Chen et al. Design and fabrication of a four-arm-structure MEMS gripper
US7564209B2 (en) Micro-manipulator
Hesselbach et al. Centering electrostatic microgripper and magazines for microassembly tasks
Sanchez-Salmeron et al. Recent development in micro-handling systems for micro-manufacturing
CN112676889B (zh) 微装配用操作系统
Karidis et al. The Hummingbird minipositioner-providing three-axis motion at 50 G's with low reactions
JP2005342846A (ja) マイクロマニュピュレータ
Bolopion et al. Stable haptic feedback based on a dynamic vision sensor for microrobotics
CN112762139B (zh) 一种两自由度旋转调节装置及其主动抑振控制方法
CN112834091A (zh) 微装配用微力传感器及压电陶瓷驱动微夹持器
Jain et al. Development of piezoelectric actuator based compliant micro gripper for robotic peg-in-hole assembly
CN112720287B (zh) 一种可转动的二自由度电磁驱动被动柔顺微夹钳
WO2022213614A1 (zh) 一种面向空间环境的自供电多模态感知方法
Wason et al. Vision guided multi-probe assembly of 3d microstructures
Fantoni et al. Design of a novel electrostatic gripper
JPH08257926A (ja) ホルダー付きマイクログリッパー
Enikov et al. An optically transparent gripper for micro-assembly
CN112828860A (zh) 一种基于柔性腕结构的电磁驱动微夹持器
CN214238222U (zh) 一种基于柔性腕结构的电磁驱动微夹持器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21912557

Country of ref document: EP

Kind code of ref document: A1