WO2022141363A1 - 一种盘式电机定子及其绕线方法 - Google Patents

一种盘式电机定子及其绕线方法 Download PDF

Info

Publication number
WO2022141363A1
WO2022141363A1 PCT/CN2020/141995 CN2020141995W WO2022141363A1 WO 2022141363 A1 WO2022141363 A1 WO 2022141363A1 CN 2020141995 W CN2020141995 W CN 2020141995W WO 2022141363 A1 WO2022141363 A1 WO 2022141363A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
wire
slot
stator
disc
Prior art date
Application number
PCT/CN2020/141995
Other languages
English (en)
French (fr)
Inventor
余仁伟
Original Assignee
余仁伟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 余仁伟 filed Critical 余仁伟
Priority to AU2020483987A priority Critical patent/AU2020483987B2/en
Priority to DE112020007061.1T priority patent/DE112020007061T5/de
Priority to PCT/CN2020/141995 priority patent/WO2022141363A1/zh
Priority to CN202080018478.0A priority patent/CN113557648B/zh
Publication of WO2022141363A1 publication Critical patent/WO2022141363A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0056Manufacturing winding connections
    • H02K15/0068Connecting winding sections; Forming leads; Connecting leads to terminals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0435Wound windings
    • H02K15/0464Lap windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • H02K15/085Forming windings by laying conductors into or around core parts by laying conductors into slotted stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/47Air-gap windings, i.e. iron-free windings

Definitions

  • the invention relates to a disc motor, in particular to a disc motor stator.
  • the power density of the traditional disc motor is relatively low, and the inventors have found through experiments a disc motor technical solution that can break through the bottleneck of the traditional disc motor.
  • the stator of the disc generator Applied to the disc generator, for the stator of the disc generator, the stator of the disc generator in the prior art has an iron core, which is large in size, heavy in weight, and low in copper ratio, resulting in low output efficiency and poor power quality. The flexibility is poor, therefore, the disc motor has long been difficult to be widely used.
  • the technical problem to be solved by the present invention is to provide a disc generator stator, which can ensure the stability of the stator coil while minimizing the distance between the rotor and each part of the stator coil, and is conducive to efficient production and simplification of the production process, reducing the pulse rate. Vibration torque, improve motor running stability.
  • the stator of a disc motor is characterized in that it comprises a disc-shaped stator disc and a coil unit fixed in a coil slot of the stator disc.
  • the stator disc is a flat plate made of non-magnetically conductive insulating material, and is provided with a coil slot around the center of the circle, and the stator disc radially outside the coil slot is provided with a connecting wire joint hole and a connecting wire including a jumper wire,
  • the connecting wire is connected with the coil in the coil slot through the connecting wire slot, and the outer side of the connecting wire slot is open on the surface of the stator disc or embedded in the stator disc;
  • the wire is arranged in the wire-crossing slot on the stator disk, and the two ends of the wire-crossing slot are connected to the adjacent coil slots; each connecting wire joint hole is communicated with the coil slot through the corresponding connecting wire slot.
  • the stator disc is provided with one-phase or multi-phase main windings, the main windings are formed by the coil units of their respective phases in series, the same-phase single coils in a coil slot of the main winding form a coil unit, and a single coil consists of a coil wire without a coil. It is composed of branched and ironless winding in the same direction.
  • a single coil consists of two layers of single-layer coils that are axially superimposed and placed in a coil slot.
  • the axial thickness of a single-layer coil is the width of a single coil wire.
  • the width direction is the axial direction of the stator disc.
  • the single-layer coil is a helical coil in the same plane, and the two wire ends of a single coil belong to the upper-layer single-layer coil and the lower-layer single-layer coil respectively, and the two wire ends are located outside the spiral coil.
  • each phase winding is composed of a plurality of single coils connected in series by jumping wires and/or flying wires.
  • the connecting wire is at least partially embedded in the flying wire slot, and one end of the flying wire slot is communicated with the coil slot.
  • only a single-phase winding is provided on one stator disk.
  • the coil unit is composed of an even number of single coils axially superimposed
  • the connecting wire joint hole includes a string wire joint hole, different single coils in the same coil unit are connected by a string wire, and the string wire is welded in the string wire joint hole through a wire slot.
  • each of the coil slots of the main winding is filled with a plurality of coil units, the coil units are composed of single coils, and the coil units are not connected.
  • an auxiliary wire slot is further provided in a coil slot around the center of the circle, and an auxiliary winding independent of the main winding is filled in the auxiliary wire slot.
  • the cross section of the coil wire is a rectangle or a rectangle with rounded corners.
  • a method for winding the above-mentioned disc motor stator characterized in that it comprises the following steps:
  • each single coil set the wire head of the upper single-layer coil as the incoming wire head, and the wire head of the lower single-layer coil as the outgoing wire head. If a serial wire needs to be connected in the coil slot, the single coil is used as the wire head of the serial wire connection. In the groove; the single coil is embedded in the jumper slot where the corresponding jumper connector hole is located as the wire head connected to the jumper; if the flying wire needs to be connected, it is embedded in the corresponding flying wire slot as the wire head connected with the flying wire and the phase wire.
  • the current direction of the single-layer coils passing through this phase in sequence is kept single, so as to select the line joints that need to be connected to the serial line, the cross line and the flying lead.
  • the winding method of the single coil is to wind the middle part of the coil wire in the opposite direction at the same time for a set number of turns, and then lay them in coaxial double layers, so as to form a thread from one thread end and then the same rotation direction from the other thread end. Winding double coil.
  • the magnetic field strength is inversely proportional to the square of the distance to the magnet, and the vertical distance between each part of the stator coil and the rotor magnet needs to be as close as possible. If a multi-layer rotor is used, then The distance between adjacent rotors needs to be as close as possible, and at the same time to ensure the stability and reliability of the electronic coil.
  • the disc motor stator of the present invention maximizes the utilization rate of the magnetic field space through reasonable coil arrangement, omits the iron core, eliminates the iron loss, and at the same time utilizes the space to increase the copper ratio.
  • the present invention further provides a stator structure and a winding method for compressing the axial thickness of the stator to the maximum extent.
  • the coil itself is only coiled with a single layer, the multiple layers are directly stacked, the coil unit is modular, and the coil itself has no oblique wiring. Therefore, no space is occupied by the oblique wiring, and the thickness of one layer of coils is only one line width, which maximizes the axial thickness space of the stator, and the coil copper ratio is high, and the output efficiency is high.
  • connection between coils is standardized, and the connection is classified into three types: serial wire, cross wire and flying wire, and it is clearly used in the corresponding structure.
  • the serial wire is used in the coil slot
  • the cross wire is used between adjacent slots
  • the flying wire is used for the spaced coil components.
  • the splicing method of the coil is flexible and changeable, and can be lapped into different phases and different output voltages according to the needs, which can be used for the main coil or the auxiliary coil.
  • the distribution position of each connection is regular, the connection is not easy to make mistakes, the disk surface is easy to identify, and it is also convenient to realize the automation of the production process, which is beneficial to improve the production efficiency.
  • the thickness of the stator disc is the thickness of the coil. All kinds of wires are extended to the radial outer ring through the wire slot on the stator disc for welding, and the line that affects the thickness is converted to the wire slot connection on the radial outer side of the coil, which compresses the shaft of the stator disc as much as possible. to thickness. And the connection specification is easy to achieve standardized automatic welding.
  • the connecting wire is routed through the wire slot of the stator disc, which has good insulation performance and good stability, and at the same time realizes the phase-to-phase insulation of the multi-connected wire without relying on the insulation layer of the wire.
  • stator coil does not use iron core, still uses most of the magnetic flux, and provides additional magnetic flux for the multi-layer disk, while reducing the eddy current loss and reducing the stator
  • the volume and weight are reduced, and the space saving is used to fill the sub-coil, and the experiment proves that the output efficiency is improved instead.
  • Detection and auxiliary means can also be provided with stator discs radially outside of the coils.
  • An auxiliary coil slot is set in the coil slot for cutting the magnetic field line, and an independent auxiliary coil is set.
  • the same stator disk is used to provide an independent power supply, which serves the monitoring and measurement of the motor itself, and can be adjusted to reduce the output of the main coil.
  • the current waveform distortion rate is the main coil to provide higher quality waveform output.
  • the structure of the invention can realize the staggered superposition of the multi-layer stator disk and the multi-layer rotor disk, and the output efficiency can be further improved by utilizing the multiple superimposed magnetic fields of the rotor magnets.
  • FIG. 1 is a schematic diagram of the three-dimensional structure of the present invention.
  • FIG. 2 is a schematic diagram of the front structure of the first embodiment of the stator disk.
  • FIG. 3 is a schematic diagram of the rear structure of the first embodiment of the stator disk.
  • FIG. 4 is a partial schematic diagram of the winding arrangement in axial section of the embodiment of the 27-slot stator coil.
  • FIG. 5 is a partial schematic diagram of the winding arrangement in axial section of the embodiment of the 12-slot stator coil.
  • FIG. 6 is a schematic diagram of the winding connection method of the embodiment of the 27-slot stator coil.
  • FIG. 7 is a schematic diagram of the winding connection method of the embodiment of the 12-slot stator coil.
  • FIG. 8 is a schematic diagram of a winding connection method of an embodiment with an auxiliary coil.
  • FIG. 9 is a schematic view of the front structure of the second embodiment of the stator disk.
  • FIG. 10 is a schematic diagram of the back structure of the second embodiment of the stator disk.
  • FIG. 11 is a schematic view of the front structure of the stator disk according to the third embodiment.
  • FIG. 12 is a schematic diagram of the structure of the back of the stator disk according to the third embodiment.
  • FIG. 13 is a schematic diagram of the front structure of the fourth embodiment of the stator disk.
  • FIG. 14 is a schematic diagram of the rear structure of the fourth embodiment of the stator disk.
  • the stator of the disc motor as shown in FIG. 1 includes a disc-shaped stator disc 12 and a coil unit 20 fixed in the stator disc. fixed to the outer frame.
  • a rotor that generates a magnetic field is arranged on one or both sides of the stator disc. The shorter the distance between the stator and the rotor, the greater the obtained magnetic field strength.
  • the magnetic field strength is inversely proportional to the square of the distance. Therefore, especially for motors that need to obtain high output efficiency or need to be light in weight and small in size, the spacing between the two-sided rotors needs to be as small as possible.
  • the stator disk 12 is flat plate and made of non-magnetic insulating material.
  • the thickness of the stator disk 12 is related to the thickness of the coil unit. In theory, the larger radial space of the stator disc will not hinder the operation of the motor and the utilization of the magnetic field.
  • the inner ring of the stator disk 12 is left empty for the motor fan that rotates with the rotor, and radially outward is a ring of coil slots 1 arranged around the center of the circle.
  • the coil slots 1 are used to fix and embed coils.
  • Figures 2, 3, 8-13 are the two side structures of the stator disk in the four embodiments.
  • the main winding on one stator disk 12 can be provided with single-phase winding or multi-phase winding, and the multi-phase winding can provide multi-phase load, which is beneficial to balance current distribution and reduce pulse torque.
  • Auxiliary wire slots 31 can also be arranged between the main wire slots 32 of the main winding to provide an output voltage or output power different from that of the main winding to meet the detection or control needs of the motor itself.
  • each of the coil slots 1 is fixed and filled with a coil unit 20 of one phase.
  • a coil unit 20 is composed of an even number of single coils 21 axially superimposed.
  • the basic power generation unit the output voltage of one winding is an integer multiple of the voltage generated by the coil units connected in series.
  • Auxiliary coil units different from the main winding coil units can be provided as required.
  • the stator disk is provided with an auxiliary wire slot 31 , and an auxiliary coil unit is arranged in the auxiliary wire slot 31 .
  • a plurality of coil units 20 may also be arranged in one coil slot 1, and the plurality of coil units 20 in one coil slot 1 respectively belong to windings of different phases.
  • the stator disk 12 on the radially outer side of the coil slot 1 is provided with a cross-wire slot 10 and a flying wire slot. 3.
  • the wire slots and holes can be distributed evenly with equal radii in the circumferential direction on the stator disk, or distributed in the area outside the radial direction of the coil slot 1, which can flexibly play the role of the stator disk.
  • the output current and voltage can be set through the series-parallel connection of the coil, and the placement position of the detection element can also be set in the connection area.
  • Rotor magnetic field for running parameter detection is set through the wire slot or the embedded lead.
  • stator discs are provided with cross-wire slots 10, and both ends of the cross-wire slots 10 are connected to adjacent coil slots 10, which can be arranged on one side or both sides of the stator disc; multi-phase windings will be provided with flying wire slots 3.
  • One end of the flying wire slot 3 is connected to the coil slot 10.
  • the flying wire slot 3 is arranged on one side or both sides of the stator disk as required, or runs through the disk surface of the stator disk.
  • the coil wires in the slot are connected in series, and the jump wire 18 is embedded in the jump wire slot, which refers to the connecting wire of the single coil in the adjacent coil slot 1, and the flying wire 14 is embedded in the flying wire slot, which means that more than one coil is spaced apart.
  • the string 19 refers to the connection line between different single coils in the same coil slot 1, and the flying lead can be a series connection of non-adjacent coils on the same side, or a series connection of coils on different sides.
  • the serial wire joint hole 8 and the cross wire joint hole 7 communicate with the coil slot 10 through grooves, respectively.
  • the jumper wire and the flying wire can be embedded in the jumper wire slot 10 and the flying wire slot 3 respectively, and the connection wire can be welded at the connection between the flying wire and the coil wire.
  • Auxiliary wire slots 31 are also provided for the stator disk provided with auxiliary windings.
  • the auxiliary wire slots and the coil slots of the main winding are arranged in a ring shape and are arranged between the coil slots.
  • the coil wires can be connected stably without protruding from the disc surface, and the insulation between different wires can be directly realized without the need for the insulation layer of the wires. Moreover, the connecting line can be visually observed from the disk surface, which is convenient for identifying different types of stator disks.
  • the coil unit can be connected flexibly by using the wire slot, which can be set as many individual phase outputs according to the needs, or set for the needs of different voltage and current loads. Due to the modularity of the coil unit, it is also easy to replace and quick to assemble.
  • the coil unit 20 of a main winding is a single coil 21 composed of a coil wire 27 that is wound in the same direction without branches and iron cores, and a single coil 21 is composed of two layers of single-layer coils 22 Axial stacking structure, the cross section of a single-layer coil 22 is a rectangle or a rounded rectangle, with respect to the axial direction of the stator disk, the thickness of the single-layer coil 22 is the width of a single coil wire 27, and the width direction of the coil wire 27 is the axial direction of the stator disc.
  • the single-layer coil 22 is spirally wound in a disk shape in a plane.
  • the two wire ends of a single coil 21 belong to the upper-layer single-layer coil 16 and the lower-layer single-layer coil 17 respectively, and the two wire ends are located outside the spiral coil.
  • the upper-layer single-layer coil is wound from the outer ring to the inner ring, directly across the layer to the inner ring of the lower-layer single-layer coil, and then wound out in a disc shape.
  • the one-phase winding in the multi-phase winding is composed of a plurality of single coils 21 connected in series with each other through the string wire 19, the cross wire 18 and the flying wire 14.
  • Each phase winding can be distributed symmetrically with respect to the center of the stator disk on a stator disk. It is also possible that auxiliary coils or coil slots of non-main windings are inserted into the coil slot arrangement of the disk surface of the stator disk, so the distribution is not symmetrical to the center.
  • the coil units are the arrangement structure of the multi-phase winding of the main winding, and when there is only one coil unit in one coil slot, multiple coil units in each coil slot 1
  • a smallest thick line frame represents a coil unit, and the number in each cell represents the thread head number of a single coil, and the upper row in a coil unit is the upper layer single Coils, the lower row is the lower single coil, the solid lines, densely spaced dashed lines and sparsely spaced dashed lines in Figures 6 and 7 respectively represent the wires of the three-phase winding.
  • each phase winding has 9 coil units, divided into 3 groups, each group has 3 coil units, where M, N and P are respectively are 9, 3, and 3, and the stator disk structure corresponding to Figure 6 is shown in Figures 2 and 3.
  • 8 is a schematic diagram of the connection mode between single coils with auxiliary windings.
  • the three auxiliary windings D1-L1, D2-L2, and D3-L3 are auxiliary windings, and the electric energy is output independently.
  • Figures 13 and 14 show the stator disc structure with only single-phase windings on the stator disc.
  • the winding method of the disc motor stator mainly includes the following steps:
  • a single coil is composed of an upper single-layer coil and a lower single-layer coil with uninterrupted coil wires.
  • the single-coil is wound in the middle of the coil wire in the opposite direction at the same time for a set number of turns, and then coaxially double-layered, so as to form the same rotation direction after being screwed in from one wire end A two-layer single-layer coil wound from another wire end.
  • the final wound profile needs to be able to fit into the coil slot 1 .
  • the stator disc is the stator base with the planned connection position and welding position, which can be formed by a polymer material and a mold at one time.
  • Figures 2 and 3 show an embodiment of the stator disc without coils installed.
  • the wire ends of the single coils extend to the predetermined slot, and the fixing glue is applied between the single coil 21 and the placed coil slot 1 to make the fixing glue For coagulation, the single coil is fixed.
  • the wire head of the upper single-layer coil 16 is set as the incoming wire head
  • the wire head of the lower single-layer coil 17 is set as the outgoing wire head
  • the single coil wire head of each phase needs to be found in the connection slot during the wiring process.
  • the single coils are connected in the radially outer area of the coils by string wires, jump wires or flying wires as required.
  • the final connection needs to be welded through the welding hole.
  • the wire end of the single coil is arranged to the corresponding wire slot position.
  • the single coils must be connected by a series line, and there are only two connection methods, and the current directions of the two connection methods are opposite.
  • the coils on a stator plate need to be pre-planned as a whole, the current direction of each phase coil wire is the same, and the current direction needs to be coordinated with the magnetic pole position. Under this principle, plan the corresponding positions of cross-line, cross-line and flying line.
  • the wire head connected as a cross-wire is embedded in the cross-wire groove and the cross-wire joint hole 8
  • the wire head of the adjacent single coil as a cross-wire connection is embedded in the corresponding cross-wire groove and the cross-wire joint hole 7
  • the wire head connected as a flying lead and a phase wire is embedded in the corresponding cross-wire groove and the cross-wire joint hole 7
  • the flying lead slot 3 if necessary, fix the insulated wire as the flying lead 14 at the corresponding position on the outer circumference of the stator disc 12.
  • Figures 6 and 7 are an arrangement of 27-hole and 12-hole coil slots, respectively.
  • the connecting head After the position of the wire head of each phase coil wire is arranged in the corresponding wire slot, weld the connected string and/or cross wire. After solidification, the connecting head can be inserted into the serial wire joint hole 8 or the jump wire joint hole 7 to eliminate the connecting wire joints protruding from the surface of the stator disk after welding. The connection of the overall coil wire is completed after a unified over-tin soldering.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Windings For Motors And Generators (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

一种盘式电机定子及其绕线方法,圆盘状的定子盘(12)上设有一周填设于线圈槽(1)内的线圈单元(20);线圈槽(1)径向外侧设有跨线槽(10)、飞线槽(3)以及跨线接头孔(7),线圈盘状绕制叠层填设在线圈槽内,通过嵌设于定子盘(12)的连接线以相同电流方向串接。

Description

一种盘式电机定子及其绕线方法 技术领域
本发明涉及盘式电机,具体说是一种盘式电机定子。
背景技术
传统的盘式电机的功率密度偏低,本发明人通过实验发现了可以突破传统盘式电机瓶颈的盘式电机技术方案。应用于盘式发电机,针对盘式发电机的定子,现有技术的盘式发电机定子带有铁芯,体积大、重量大,铜占比低,使得输出效率低,用电质量差,灵活性差,因此,盘式电机长期以来难以得到广泛的应用。
技术问题
本发明所要解决的技术问题是提供一种盘式发电机定子,保证定子线圈稳固的同时尽量减小转子与定子线圈各部分之间的距离,并且有利于高效生产和简化生产流程,减小脉振转矩,提高电机运转平稳性。
技术解决方案
所述的一种盘式电机定子,其特征在于:包括圆盘状的定子盘和固定于定子盘的线圈槽内的线圈单元。
所述定子盘为由不导磁绝缘材料制成的平板状,设有围绕圆心的一圈线圈槽,线圈槽径向外侧的定子盘上设有连接线接头孔以及包括跨线的连接线,连接线通过连接线槽与线圈槽内的线圈连接,所述连接线槽外侧开口于定子盘的表面或埋设在定子盘内;所述跨线是指相邻线圈槽内线圈的连接线,跨线设于定子盘上的跨线槽内,所述跨线槽的两端连通相邻的线圈槽;每一个连接线接头孔均通过对应的连接线槽与线圈槽连通。
定子盘上设有一相或多相主绕组,主绕组由各自相的线圈单元串联而成,主绕组的一个线圈槽内的同一相单线圈组成一个线圈单元,一个单线圈由一根线圈线无分支、无铁芯地同向绕制构成,一个单线圈由两层单层线圈轴向叠合置于一个线圈槽内,一个单层线圈的轴向厚度为单根线圈线的宽度,线圈线的宽度方向为定子盘的轴向。
其中,单层线圈为在同一个平面内的螺旋状线圈,一个单线圈的两个线头分别属于上层单层线圈和下层单层线圈,两个线头都位于螺旋状线圈的外侧。
一种绕组相数的实施例为,定子盘上设有多相绕组时,每一相绕组由多个单线圈通过跨线和/或飞线串联构成,飞线是指间隔一个以上线圈槽间的连接线,飞线至少部分嵌设于飞线槽内,飞线槽的一端与线圈槽连通。
另一种绕组相数的实施例,一个定子盘上仅设有单相绕组。
作为实施例,线圈单元由偶数个单线圈轴向叠合构成,连接线接头孔包括串线接头孔,同一个线圈单元内的不同的单线圈通过串线连接,串线通过线槽在串线接头孔焊接。
作为不同的实施例,主绕组的每一个所述线圈槽填设有多个线圈单元,线圈单元由单线圈组成,线圈单元之间不连接。
作为实施例,围绕圆心的一圈线圈槽内还设有辅助线槽,辅助线槽内填设有独立于主绕组的辅助绕组。
优选地,所述线圈线的横截面为矩形或圆角矩形。
一种上述盘式电机定子的绕线方法,其特征在于:包括如下步骤:
一、将预制的单线圈以偶数层叠放填入线圈槽后,在单线圈与所放入的线圈槽间涂上固定胶,使固定胶凝固。
二、每一个单线圈,设定上层单层线圈的线头为进线头,下层单层线圈的线头为出线头,线圈槽内如果需要连接串线,单线圈作为串线连接的线头嵌入串线接头孔所在的凹槽内;单线圈作为与跨线连接的线头嵌入对应的跨线接头孔所在的跨线槽内;如果需要连接飞线,作为与飞线和相线连接的线头嵌入对应的飞线槽。
从相线接入到接出,保持这一相依次经过的各单层线圈的电流方向单一,以此选择串线、跨线和飞线所需连接的线接头。
三、将有连接的串线和/或跨线焊接,在必要时,将飞线的线头与对应的飞线连接端连接,消除焊接后凸出于定子盘表面的连线接头。
作为实施例,所述单线圈的绕制方式为在线圈线的中部同时反旋向绕制设定圈数后同轴双层叠放,构成从一个线头旋入后以同旋向从另一个线头绕出的双层线圈。
有益效果
盘式电机的定子为了保证在尽量大的磁场强度下切割磁力线,磁场强度与到磁铁距离的平方成反比,定子线圈的各部分与转子磁铁的垂直距离需要尽量靠近,如果采用多层转子,则相邻转子之间的间距需要尽量靠近,同时要保证电子线圈的稳固可靠。本发明的盘式电机定子通过合理的线圈排布,尽量提高磁场空间的利用率,省略了铁芯,杜绝了铁损,同时将空间利用来提高铜占比,如果在定子线圈的两侧设置一对带有永久磁铁的转子距离足够近的情况下,在基于合理的结构和工艺条件下,同等体积和质量的电机输出功率密度和效率有大幅提高,远高于目前的桶式电机和盘式电机的输出效率。
因此本发明进一步提出了一种最大限度压缩定子轴向厚度的定子结构和绕线方法。
1、              线圈本身仅使用单层盘绕,多层直接叠加,线圈单元模块化,且线圈本身没有斜向走线。因此不会有空间被斜向走线占用,而一层线圈的厚度仅仅是一个线宽,最大限度利用了定子的轴向厚度空间,且线圈铜占比高,输出效率高。
2、              线圈间的连线标准化,连线分类为串线、跨线和飞线三类,并明确在对应的结构使用,线圈槽内使用串线,相邻槽间使用跨线,间隔的线圈组件使用飞线,线圈的拼接方式灵活多变,可以根据需要搭接为不同相数和不同输出电压,可以用于主线圈或辅助线圈。各连线分布位置形成规律,连线不易出错,盘面易于辨识,也便于实现生产工艺自动化,有利提高生产效率。
3、              定子盘厚度就是线圈厚度,各类连线通过定子盘上的线槽延伸到径向外圈进行焊接,将影响厚度的线路转换到线圈径向外侧的线槽连接,尽量压缩了定子盘的轴向厚度。且连线规范,易于实现标准化的自动焊接。通过定子盘的线槽走连接线,绝缘性能好,稳定性好,同时实现多相连线的相间绝缘,而不依靠导线的绝缘层。
4、              定子与转子的盘片距离足够近,定子线圈不使用铁芯,仍然利用了绝大部分的磁通,并且为多层盘片提供了额外的磁通量,同时减小了涡流损耗、减小了定子的体积和重量,利用节省的空间填设定子线圈,实验证明反而提高了输出效率。 还可利用线圈径向外侧的定子盘设置检测和辅助装置。
5、              在切割磁力线的线圈槽中设置辅助线圈槽,并设置独立的辅助线圈,利用了同一个定子盘,可提供独立供电电源,服务于对电机本身的监控和测量,同时可以调整降低主线圈的输出电流波形畸变率,是主线圈提供更高质量的波形输出。
6、              本发明的结构可以实现多层定子盘与多层转子盘的交错叠加,利用转子磁铁的多重叠加磁场,可进一步提高输出效率。
便于实现盘式电机的多相输出,均衡负载分布,提高电能利用率和转化效率,同时多相线圈均衡分配后脉振转矩小,带来的脉振小,稳定性好,可以进一步提高转速和能量转化效率。
附图说明
图1 是本发明立体结构示意图。
图2 是定子盘实施例一正面结构示意图。
图3 是定子盘实施例一背面结构示意图。
图4 是27槽定子线圈实施例的轴向截面绕线布置局部示意图。
图5 是12槽定子线圈实施例的轴向截面绕线布置局部示意图。
图6 是27槽定子线圈实施例的绕线接法示意图。
图7 是12槽定子线圈实施例的绕线接法示意图。
图8 是带辅助线圈实施例的绕线接法示意图。
图9 是定子盘实施例二正面结构示意图。
图10 是定子盘实施例二背面结构示意图。
图11是定子盘实施例三正面结构示意图。
图12是定子盘实施例三背面结构示意图。
图13是定子盘实施例四正面结构示意图。
图14是定子盘实施例四背面结构示意图。
图中:1-线圈槽,2-风扇孔,3-飞线槽,4-绑线孔,5-紧固孔,6-背面串线接头孔,7-跨线接头孔,8-串线接头孔,9-背面跨线接头孔,10-跨线槽,11-紧固圈,12-定子盘,13-相线进线端,14-飞线,15-相线出线端,16-上层单层线圈,17-下层单层线圈,18-跨线,19-串线,20-线圈单元,21-单线圈,22-单层线圈,23-线头编码,24-相进线线头编码,25-上层单线圈,26-下层单线圈,27-线圈线,28-相出线线头编码, 31-辅助线槽,32-主线槽,33-连接线接头孔,34-辅助线圈。
本发明的实施方式
下面结合附图和实施例对本发明进一步说明:如图1中所示的盘式电机定子,包括圆盘状的定子盘12和固定于定子盘内的线圈单元20,定子盘12 通过紧固钉固定在外框架上。对于盘式电机,在定子盘的一侧或两侧设置产生磁场的转子,定子距离转子的距离越短,所获得的磁场强度越大,磁场强度与间距的平方成反比。因此,特别是对于需要获得高输出效率或需要重量轻体积小的电机,双侧转子的间距需要尽可能小。
所述定子盘12为平板状,由不导磁绝缘材料制成,定子盘12的厚度与线圈单元的厚度相关,这一厚度足够在线圈槽1径向外侧开设槽道或进行埋设。理论上更大的定子盘径向空间不会阻碍电机的运转和磁场的利用。
定子盘12 的内圈留空给随转子转动的电机风扇,径向向外是围绕圆心的一圈排列为环状的线圈槽1,线圈槽1用来固定嵌设线圈。如图2、3、8-13是四个实施例中定子盘的两个侧面结构。
根据不同的需要,一个定子盘12上的主绕组可以设有单相绕组或多相绕组,多相绕组可以提供多相负载,有利于平衡电流分布,减小脉振转矩。还可以在主绕组的主线槽32间设置辅助线槽31,提供与主绕组不同的输出电压或输出功率,以满足电机本身的检测或控制需要。
对于主绕组而言,每一个所述线圈槽1分别固定填设一相的一个线圈单元20,一个线圈单元20由偶数个单线圈21轴向叠合构成,在一个定子盘上,线圈单元是基本的电能产生单元,一个绕组的输出电压是所串接的线圈单元所产生电压的整数倍。可以根据需要设置不同于主绕组线圈单元的辅助线圈单元,如图9、10为设有辅助线槽31的定子盘,辅助线槽31内设有辅助线圈单元。
一个线圈槽1内也可以设置多个线圈单元20,一个线圈槽1内的多个线圈单元20分别属于不同相的绕组。
在一个线圈槽1内单个线圈单元20的情况下,如图2、3的实施例一,多相绕组中,线圈槽1径向外侧的定子盘12上设有跨线槽10、飞线槽3以及串线接头孔8和跨线接头孔7,各线槽和孔分别在定子盘上环向可以以等半径均布,或者分布在线圈槽1径向以外的区域,可以灵活地发挥定子盘的作用,例如将与线圈连接的连线通过线槽或预埋引线引出后,通过对线圈的串并连接实现对输出电流和电压的设置,还可以在连接区域设置检测元件的安置位,利用转子磁场进行运行参数检测。
绝大多数定子盘都设置有跨线槽10,所述跨线槽10的两端连通相邻线圈槽10,可以设置在定子盘的一侧或两侧;多相绕组会设置有飞线槽3,飞线槽3的一端与线圈槽10连通,飞线槽3根据需要设置在定子盘的一侧或两侧面,或者贯通定子盘的盘面,跨线槽的两端是将同侧面的线圈槽内的线圈线串接,跨线18嵌设于跨线槽内,是指相邻线圈槽1内单线圈的连接线,飞线14嵌设于飞线槽内,是指间隔一个以上线圈槽1内单线圈的连接线。串线19是指在同一个线圈槽1内不同单线圈之间的连接线,飞线可以是将同侧的不相邻的线圈串接,也可能是将不同侧面的线圈串接。串线接头孔8和跨线接头孔7分别通过凹槽与线圈槽10连通。跨线槽10和飞线槽3可以分别预埋跨线和飞线,在飞线与线圈线的连接处将连线焊接。对于设置有辅助绕组的定子盘还会设有辅助线槽31,辅助线槽与主绕组的线圈槽共同排列为环状,设置在线圈槽之间,辅助线圈绕组独立,不串接任一主绕组。图9、10为带有辅助线槽31的定子盘结构。
使用定子盘的线槽,可以稳定、不凸出盘面地将线圈线连接,可以直接实现不同导线间的绝缘,而不需要导线的绝缘层。而且连接线从盘面可以直观地观察到,便于识别不同类型的定子盘。同时,利用线槽可以对线圈单元进行灵活的连接设置,可以根据需要设置为非常多的单独相输出,或者为不同的电压、电流负载的需要而设置。由于线圈单元模块化,也便于更换和快速组装。
参见图4、5实施例,一个主绕组的线圈单元20是一个单线圈21由一根线圈线27无分支、无铁芯地同向绕制构成,一个单线圈21由两层单层线圈22轴向叠合构成,一个单层线圈22的横截面为矩形或圆角矩形,相对于定子盘的轴向,单层线圈22的厚度为单根线圈线27的宽度,线圈线27的宽度方向为定子盘的轴向。单层线圈22是在一个平面内盘状螺旋形绕制而成,一个单线圈21的两个线头分别属于上层单层线圈16和下层单层线圈17,两个线头都位于螺旋状线圈的外侧,上层单层线圈由外圈绕到内圈,直接跨层到下层单层线圈的内圈,再盘状绕出而成。
多相绕组中的一相绕组由多个单线圈21通过串线19、跨线18和飞线14相互串联构成,每一相绕组在一个定子盘上相对于定子盘的圆心可以呈中心对称分布,也可能定子盘的盘面线圈槽排列中插入了辅助线圈或非主绕组的线圈槽,因此不呈中心对称分布。
如图4、5,如果不考虑辅助线圈绕组,线圈单元均为主绕组的多相绕组的布置结构,且一个线圈槽中仅有一个线圈单元的情况下,每一个线圈槽1中的多个单线圈21串接为一个线圈单元20,每一相绕组共有M个线圈单元20,M=主绕组的总线圈槽数/相数,M个线圈单元均分为N个区,每个区有P个线圈单元,M、N和P均为大于1的自然数。以图6、7为例,在图6、7中,一个最小的粗线框表示一个线圈单元,每一个单元格内的数字表示单线圈的线头编号,在一个线圈单元内上排为上层单线圈,下排为下层单线圈,图6、7中实线、密间距虚线和疏间距虚线分别表示三相绕组的导线。在图7中,有12个线圈槽,3相绕组,每一相绕组有4个线圈单元,分为了2个组,每一组有2个线圈单元,这里的M、N和P分别为4、2、2,图7 对应的定子盘结构如图11、12。在图6中,有27个线圈槽,分为3相绕组,每一相绕组有9个线圈单元,分为了3个组,每一组有3个线圈单元,这里的M、N和P分别为9、3、3,图6 对应的定子盘结构如图2、3。图8为带有辅助绕组的单线圈间的连线方式示意图,图中辅助线圈D1-L1,D2-L2,D3-L3三个绕组为辅助绕组,电能独立输出。
图13、14是定子盘上只有单相绕组的定子盘结构,这样的定子盘,只需要在跨线槽内的跨线连接各主绕组线圈槽内的线圈。盘式电机定子的绕线方法,主要包括如下步骤:
1、         分别制作单线圈和定子盘。
由于单线圈的模块化,单线圈可以独立制作并可以在定子盘上更换。使得单线圈可以作为一种半成品生产。一个单线圈是由线圈线不间断的上层单层线圈和下层单层线圈组成一体。
作为单线圈绕线实施例,所述单线圈的绕制方式为在线圈线的中部同时反旋向绕制设定圈数后同轴双层叠放,构成从一个线头旋入后以同旋向从另一个线头绕出的两层单层线圈。最后绕制成型的轮廓需要能够嵌入线圈槽1内。
定子盘是已经规划好连接位置和焊接位置的定子基座,可以由高分子材料由模具一次成型。图2、3是没有安装线圈的定子盘实施例。
将预制的单线圈21以偶数层叠放填入线圈槽1后,单线圈的线头伸出到预定的线槽,在单线圈21与所放入的线圈槽1间涂上固定胶,使固定胶凝固,将单线圈固定。
2、         牵线。
每一个单线圈,设定上层单层线圈16的线头为进线头,下层单层线圈17的线头为出线头,牵线的过程需要将每一相的单线圈线头找到连接的槽位。将单线圈根据需要通过串线、跨线或飞线在线圈径向外侧的区域进行连接。最后的连接需要通过焊接孔焊接,在牵线步骤中,将单线圈的线头布置到对应的连线槽位置。
如果同一个线圈槽1内仅有一相线圈,则单线圈之间必然会通过串线连接,且仅有两种连接方式,两种连接方式的电流方向相反。一个定子盘上的线圈需要预先作整体规划,每一相的线圈线电流方向一致,电流方向需要与磁极位置配合做出。在这一原则下,规划串线、跨线和飞线的对应位置。
作为串线连接的线头嵌入串线凹槽和串线接头孔8,相邻单线圈作为跨线连接的线头嵌入对应的跨线凹槽和跨线接头孔7,作为飞线和相线连接的线头嵌入对应的飞线槽3;需要时,在定子盘12的外周对应位置固定作为飞线14的带绝缘层导线。
图6、7分别是27孔和12孔线圈槽的一种布置方案。
3、         连接。
每一相线圈线的线头位置布置到对应的线槽内以后,将有连接的串线和/或跨线焊接,存在飞线时,将飞线的线头与对应的飞线连接端连接,焊线凝固后,可以将连接头塞入串线接头孔8或跨线接头孔7,消除焊接后凸出于定子盘表面的连线接头。一次统一的过锡焊接后即完成了整体线圈线的连接。

Claims (8)

  1. 一种盘式电机定子,其特征在于:包括圆盘状的定子盘(12)和固定于定子盘的线圈槽内的线圈单元(20);
    所述定子盘(12)为由不导磁绝缘材料制成的平板状,设有围绕圆心的一圈线圈槽(1),线圈槽(1)径向外侧的定子盘(12)上设有连接线接头孔(33)以及包括跨线(18)的连接线,连接线通过连接线槽与线圈槽(1)内的线圈连接,所述连接线槽外侧开口于定子盘(12)的表面或埋设在定子盘(12)内;所述跨线(18)是指相邻线圈槽(1)内线圈的连接线,跨线(18)设于定子盘(12)上的跨线槽(10)内,所述跨线槽(10)的两端连通相邻的线圈槽(1);每一个连接线接头孔(33)均通过对应的连接线槽与线圈槽(1)连通;
    定子盘(12)上设有一相或多相主绕组,主绕组由各自相的线圈单元(20)串联而成,主绕组的一个线圈槽(1)内的同一相单线圈(21)组成一个线圈单元(20),一个单线圈(21)由一根线圈线(27)无分支、无铁芯地同向绕制构成,一个单线圈(21)由两层单层线圈(22)轴向叠合置于一个线圈槽(1)内,一个单层线圈(22)的轴向厚度为单根线圈线(27)的宽度,线圈线(27)的宽度方向为定子盘的轴向。
  2. 根据权利要求1所述的盘式电机定子,其特征在于:单层线圈(22)为在同一个平面内的螺旋状线圈,一个单线圈(21)的两个线头分别属于上层单层线圈(16)和下层单层线圈(17),两个线头都位于螺旋状线圈的外侧。
  3. 根据权利要求2所述的盘式电机定子,其特征在于:定子盘(12)上设有多相绕组时,每一相绕组由多个单线圈(21)通过跨线(18)和/或飞线(14)串联构成,飞线(14)是指间隔一个以上线圈槽(1)间的连接线,飞线(14)至少部分嵌设于飞线槽(3)内,飞线槽(3)的一端与线圈槽(10)连通。
  4. 根据权利要求1所述的盘式电机定子,其特征在于:线圈单元(20)由偶数个单线圈(21)轴向叠合构成,连接线接头孔(33)包括串线接头孔(8),同一个线圈单元(20)内的不同的单线圈(21)通过串线(19)连接,串线(19)通过线槽在串线接头孔(8)焊接。
  5. 根据权利要求1所述的盘式电机定子,其特征在于:围绕圆心的一圈线圈槽(1)内还设有辅助线槽(31),辅助线槽(31)内填设有独立于主绕组的辅助绕组。
  6. 根据权利要求1所述的盘式电机定子,其特征在于:所述线圈线(27)的横截面为矩形或圆角矩形。
  7. 一种如权利要求1~6之任一所述盘式电机定子的绕线方法,其特征在于:包括如下步骤:
    一、将预制的单线圈(21)以偶数层叠放填入线圈槽(1)后,在单线圈(21)与所放入的线圈槽(1)间涂上固定胶,使固定胶凝固;
    二、每一个单线圈,设定上层单层线圈(16)的线头为进线头,下层单层线圈(17)的线头为出线头,线圈槽(1)内如果需要连接串线(19),单线圈作为串线连接的线头嵌入串线接头孔(8)所在的凹槽内;单线圈作为与跨线连接的线头嵌入对应的跨线接头孔(7)所在的跨线槽(10)内;如果需要连接飞线,作为与飞线(14)和相线连接的线头嵌入对应的飞线槽(3);
    从相线接入到接出,保持这一相依次经过的各单层线圈(22)的电流方向单一,以此选择串线(19)、跨线(18)和飞线(14)所需连接的线接头;
    三、将有连接的串线和/或跨线焊接,在必要时,将飞线的线头与对应的飞线连接端连接,消除焊接后凸出于定子盘表面的连线接头。
  8. 根据权利要求7所述的盘式电机定子的绕线方法,其特征在于:所述单线圈的绕制方式为在线圈线的中部同时反旋向绕制设定圈数后同轴双层叠放,构成从一个线头旋入后以同旋向从另一个线头绕出的双层线圈。
PCT/CN2020/141995 2020-12-31 2020-12-31 一种盘式电机定子及其绕线方法 WO2022141363A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2020483987A AU2020483987B2 (en) 2020-12-31 2020-12-31 Disc-type motor stator and winding method therefor
DE112020007061.1T DE112020007061T5 (de) 2020-12-31 2020-12-31 Scheibenmotorstator und Wickelverfahren dafür
PCT/CN2020/141995 WO2022141363A1 (zh) 2020-12-31 2020-12-31 一种盘式电机定子及其绕线方法
CN202080018478.0A CN113557648B (zh) 2020-12-31 2020-12-31 一种盘式电机定子及其绕线方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/141995 WO2022141363A1 (zh) 2020-12-31 2020-12-31 一种盘式电机定子及其绕线方法

Publications (1)

Publication Number Publication Date
WO2022141363A1 true WO2022141363A1 (zh) 2022-07-07

Family

ID=78102202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141995 WO2022141363A1 (zh) 2020-12-31 2020-12-31 一种盘式电机定子及其绕线方法

Country Status (4)

Country Link
CN (1) CN113557648B (zh)
AU (1) AU2020483987B2 (zh)
DE (1) DE112020007061T5 (zh)
WO (1) WO2022141363A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4363988A (en) * 1978-06-12 1982-12-14 General Electric Company Induction disk motor with metal tape components
CN105896760A (zh) * 2016-05-27 2016-08-24 天津大学 一种应用模块化pcb定子的盘式无铁芯永磁电机
CN106341017A (zh) * 2016-10-09 2017-01-18 常州工学院 一种盘式单元层叠无铁芯直流电机
CN108809022A (zh) * 2017-04-28 2018-11-13 南方科技大学 一种盘式发电机
CN110048567A (zh) * 2018-01-12 2019-07-23 开利公司 具有双转子和无绕线架定子的电动马达
CN111786489A (zh) * 2020-08-04 2020-10-16 姜晓明 一种拼接式的绕线线圈
CN211830523U (zh) * 2020-01-13 2020-10-30 浙江盘毂动力科技有限公司 一种混合磁通复合结构盘式电机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07298534A (ja) * 1994-04-26 1995-11-10 Hayashi Tokei Kogyo Kk 電動機
JPH09266656A (ja) * 1996-03-28 1997-10-07 Tec Corp 偏平形ブラシレスモータ
JPH11187635A (ja) * 1997-12-19 1999-07-09 Sawafuji Electric Co Ltd フラット回転機
JP5450361B2 (ja) * 2010-11-30 2014-03-26 ニスカ株式会社 アキシャルギャップ型回転機及びアキシャルギャップ型発電機
CN104734389A (zh) * 2013-12-20 2015-06-24 湖北海山科技有限公司上海分公司 定子盘及轴向磁通永磁动能装置
GB2532478B (en) * 2014-11-20 2021-08-25 Time To Act Ltd Generator
CN204578242U (zh) * 2015-04-21 2015-08-19 李龙 集中绕组电机的绕组端接线盘

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4363988A (en) * 1978-06-12 1982-12-14 General Electric Company Induction disk motor with metal tape components
CN105896760A (zh) * 2016-05-27 2016-08-24 天津大学 一种应用模块化pcb定子的盘式无铁芯永磁电机
CN106341017A (zh) * 2016-10-09 2017-01-18 常州工学院 一种盘式单元层叠无铁芯直流电机
CN108809022A (zh) * 2017-04-28 2018-11-13 南方科技大学 一种盘式发电机
CN110048567A (zh) * 2018-01-12 2019-07-23 开利公司 具有双转子和无绕线架定子的电动马达
CN211830523U (zh) * 2020-01-13 2020-10-30 浙江盘毂动力科技有限公司 一种混合磁通复合结构盘式电机
CN111786489A (zh) * 2020-08-04 2020-10-16 姜晓明 一种拼接式的绕线线圈

Also Published As

Publication number Publication date
AU2020483987A1 (en) 2023-01-19
DE112020007061T5 (de) 2023-01-26
AU2020483987B2 (en) 2024-06-06
CN113557648B (zh) 2024-02-02
CN113557648A (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
US8299676B2 (en) Axial gap type coreless rotating machine
CA2849231C (en) A stator of an electrical machine and an electrical machine
CN202940709U (zh) 印刷电路板无铁芯盘式电机
US20220045559A1 (en) Segmented stator for a permanent magnet electric machine having a fractional-slot concentrated winding
CN112688522B (zh) 一种高功率密度轴向磁场永磁电机结构
JP5708750B2 (ja) ダブルステータ型モータ
WO2020157501A1 (en) Axial flux electrical machine
CN103166395B (zh) 具有双笼障转子的定子自励磁同步电机及其控制方法
WO2022141363A1 (zh) 一种盘式电机定子及其绕线方法
CN203339911U (zh) 一种双笼障转子定子双绕组交流电机
EP3340439B1 (en) Voltage balanced winding pattern for an electric machine with a minimal number of connections and method for assembly of such winding
CN203261211U (zh) 一种双笼障转子定子自励磁同步电机
CN103166396B (zh) 具有双笼障转子的定子双绕组交流电机及其控制方法
US11909284B2 (en) Flat-type stator with multilayer coils for disc-type motor
CN102361379B (zh) 大容量双u型定子双盘式转子横向磁通永磁风力发电机
US20220069681A1 (en) Method for winding a heavy gauge toroidal coil of an electric machine
WO2021003589A1 (zh) 盘式电机同股多芯线圈平板式定子
CN112968539A (zh) 一种48槽三相集中绕组式永磁电机
CN203135667U (zh) 一种双定子四端口笼障拼装单转子交流电机
CN203135666U (zh) 一种双定子单笼障转子无刷电励磁同步电机
CN203135668U (zh) 一种笼障转子定子自励磁同步电机
CN103166405B (zh) 笼障拼装外转子定子双绕组交流电机及其控制方法
US20230208229A1 (en) Motor, flat-wire motor winding, coil winding assembly, and winding method
CN203135670U (zh) 一种笼障组合外转子定子双馈电交流电机
CN202309447U (zh) 大容量双c型定子双盘式转子横向磁通永磁风力发电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967702

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020483987

Country of ref document: AU

Date of ref document: 20201231

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20967702

Country of ref document: EP

Kind code of ref document: A1