WO2022141319A1 - 顺磁气体的测量装置和医疗通气系统 - Google Patents

顺磁气体的测量装置和医疗通气系统 Download PDF

Info

Publication number
WO2022141319A1
WO2022141319A1 PCT/CN2020/141845 CN2020141845W WO2022141319A1 WO 2022141319 A1 WO2022141319 A1 WO 2022141319A1 CN 2020141845 W CN2020141845 W CN 2020141845W WO 2022141319 A1 WO2022141319 A1 WO 2022141319A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
air gap
channel
sample gas
sensor
Prior art date
Application number
PCT/CN2020/141845
Other languages
English (en)
French (fr)
Inventor
周卫东
罗致远
袁秋
岑建
陈巍
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2020/141845 priority Critical patent/WO2022141319A1/zh
Priority to CN202080107364.3A priority patent/CN116710165A/zh
Publication of WO2022141319A1 publication Critical patent/WO2022141319A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/10Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using electron paramagnetic resonance

Definitions

  • the present application relates to the technical field of gas detection, and in particular, to a paramagnetic gas measurement device and a medical ventilation system.
  • the magneto-acoustic pressure method is relatively mature and commercial products are relatively successful. Methods.
  • the current measurement system of the magneto-acoustic pressure method needs to introduce the reference gas and the sample gas into the magnetic field air gap at the same time for measurement, and it is always required to continuously introduce a reference gas from the outside to complete the measurement function of the paramagnetic gas concentration.
  • the introduction will destroy the airtightness of the gas circuit system.
  • the introduction of external air will affect the balance of gas concentration in the system. Since the reference channel is always connected to the atmosphere, when the pressure in the system fluctuates, it will affect the sampling of the reference gas, resulting in inaccurate measurements. Can't even measure.
  • the present application provides a paramagnetic gas measurement device and a medical ventilation system, which can measure the paramagnetic gas concentration in a sample gas without introducing a reference gas.
  • an embodiment of the present application provides a paramagnetic gas measurement device, including:
  • a magnetic device having an air gap capable of providing a magnetic field
  • the sample gas channel can be connected to a sample gas source, and is used for circulating the sample gas into the air gap;
  • the first connection channel is connected with the air gap part and is not in communication, the first connection channel can transmit the gas pressure change of the sample gas in the air gap part;
  • a first sensor is provided, and the first sensor is used to collect a first gas pressure signal on the first connection channel, and the first gas pressure signal is used to determine the concentration of the paramagnetic gas in the sample gas.
  • an embodiment of the present application provides a paramagnetic gas measurement device, including:
  • a magnetic device having an air gap capable of providing a magnetic field
  • the sample gas channel can be connected to a sample gas source, and is used for circulating the sample gas into the air gap;
  • the first connection channel is connected and not communicated with the sample gas channel, the first connection channel can transmit the gas pressure change of the sample gas in the air gap, and the first connection channel is on the A first sensor is also provided, and the first sensor is used to collect the first gas pressure signal on the first connection channel;
  • a processor connected to the first sensor, for determining the concentration of the paramagnetic gas in the sample gas according to the first gas pressure signal.
  • an embodiment of the present application provides a medical ventilation system, the ventilation system includes at least one air source interface, at least one gas supply branch and a breathing circuit respectively connected to the at least one air source interface;
  • the at least one gas supply branch is capable of outputting gas to the breathing circuit, and the breathing circuit is connected to the aforementioned measuring device.
  • Embodiments of the present application provide a paramagnetic gas measurement device and a medical ventilation system, including a magnetic device for providing a magnetic field, a sample gas channel for circulating a sample gas to an air gap portion of the magnetic device, and a connection with the air gap.
  • the first connection channel is connected and disconnected from the first connection channel, and the first connection channel can transmit the gas pressure change of the sample gas in the air gap part; the first gas on the first connection channel is collected by the first sensor arranged on the first connection channel
  • the pressure signal can be used to determine the concentration of paramagnetic gas in the sample gas.
  • FIG. 1 is a schematic structural diagram of a paramagnetic gas measurement device provided in an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a medical ventilation system provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a measuring device in an embodiment
  • FIG. 4 is a schematic structural diagram of a measuring device in another embodiment
  • FIG. 5 is a schematic structural diagram of a measuring device in another embodiment.
  • FIG. 1 is a schematic structural diagram of a paramagnetic gas measurement device 100 provided by an embodiment of the present application.
  • the measurement device 100 may be used in a medical ventilation system, such as an anesthesia machine or a ventilator, for measuring oxygen concentration.
  • a medical ventilation system such as an anesthesia machine or a ventilator, for measuring oxygen concentration.
  • FIG. 2 is a schematic structural diagram of a medical ventilation system in an embodiment.
  • the medical ventilation system includes at least one gas source interface 210, at least one gas supply branch 220 respectively connected to the at least one gas source interface 210, and a breathing circuit 230.
  • At least one gas supply branch 220 can output gas to the breathing circuit 230 .
  • the oxygen concentration of the gas in the breathing circuit 230 can be adjusted by controlling at least one gas supply branch 220 to output gas to the breathing circuit 230 .
  • the breathing circuit 230 is connected to the measurement device 100 of the embodiment of the present application.
  • the breathing circuit 230 is connected to the measurement device 100 through a sampling tube, and outputs sample gas to the measurement device 100 .
  • the breathing circuit 230 is connected to a gas channel of the measurement device 100 for transporting the sample gas.
  • breathing circuit 230 includes an inspiratory branch 231 , an expiratory branch 232 and a main ventilation circuit 233 . At least one of the inspiratory branch 231 , the expiratory branch 232 and the main ventilation air circuit 233 is connected to the measuring device 100 , and the measuring device 100 detects the oxygen concentration of the gas at the corresponding position in the breathing circuit 230 .
  • the main ventilation gas path 233 is connected to the measurement device 100 through a sampling tube, and part of the gas in the ventilation main gas path 233 is input to the measurement device 100 as sample gas, and the measurement device 100 measures the oxygen concentration.
  • the medical ventilation system further includes a gas control device 240, and the gas control device 240 and the breathing circuit 230 are respectively connected to at least one gas supply branch 220; the gas control device 240 controls the at least one gas supply branch 220 to output to the breathing circuit 230. gas.
  • air can be output to the breathing circuit 230 through one of the air source interfaces 210 through its gas supply branch 220 ; pure oxygen can be output to the breathing circuit 230 through the other air source interface 210 through its gas supply branch 220 .
  • the gas control device 240 can control the opening of the at least one gas supply branch 220 to adjust the oxygen concentration of the gas output to the breathing circuit 230 .
  • the medical ventilation system further includes a processor 201 , and the processor 201 may be disposed in the gas control device 240 , for example, or may also be disposed on a control board outside the gas control device 240 .
  • the processor 201 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU), or a digital signal processor (Digital Signal Processor, DSP) or the like.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the measurement device 100 is electrically connected to the gas control device 240 and/or the processor 201 and is capable of transmitting oxygen concentration data of the breathing circuit 230 to the gas control device 240 and/or the processor 201 so that the gas control device 240 and/or the processor 201 Or processor 201 adjusts the oxygen concentration of the gas output to breathing circuit 230 .
  • the measurement device 100 of the embodiment of the present application includes a magnetic device 110 , a sample gas channel 120 , a first connection channel 130 , and a first sensor 140 disposed on the first connection channel 130 .
  • the magnetic device 110 has an air gap 111 capable of providing a magnetic field.
  • the magnetic device 110 includes a permanent magnet or an electromagnet with an air gap 111 capable of providing a constant magnetic field or an alternating magnetic field.
  • the sample gas channel 120 can be connected to a sample gas source for allowing the sample gas to flow into the air gap portion 111 .
  • the sample gas channel 120 is opened at a position close to the air gap portion 111 , so that the sample gas flows into the air gap portion 111 .
  • the magnetic field of the magnetic device 110 can act on the sample gas without passing through the side wall of the sample gas channel 120, and the magneto-acoustic pressure effect is stronger.
  • a cavity with several openings can be constructed in the air gap portion 111 , for example, a cavity surrounding the magnetic field air gap can be constructed through the combination of a sealing member and the magnetic device 110 , and one of the openings is used to connect the sample gas channel 120 .
  • the air inlet channel is used so that the sample gas channel 120 transmits the sample gas into the air gap portion 111 .
  • the cavity also has an opening for connecting with the gas outlet channel of the sample gas channel 120, so that the sample gas in the air gap 111 is discharged through the gas outlet channel.
  • the sample gas channel 120 may not have an opening, and at least a part of the sample gas channel 120 is disposed in the air gap portion 111 .
  • the middle portion of the sample gas channel 120 is arranged in the air gap portion 111 , or the gas outlet end of the sample gas channel 120 is arranged in the air gap portion 111 .
  • the sample gas channel 120 is used to guide the sample gas to the air gap portion 111 .
  • the sample gas is the gas with the concentration to be measured.
  • the air inlet end of the sample gas channel 120 is connected to a gas source of the sample gas, and the gas source includes at least one of an air tank, an air pump, and an air valve.
  • the oxygen molecules when the sample gas is passed into the air gap portion 111, under the action of the magnetic field, the oxygen molecules will generate a pressure difference relative to the outside of the air gap portion 111 in the magnetic field, and the magnitude of the pressure difference is related to the concentration of oxygen. Correlation.
  • a change in sound pressure is generated under the action of a magnetic field, which can be referred to as magneto-induced sound pressure.
  • the magneto-acoustic pressure caused by different concentrations of gas is different, so the concentration of paramagnetic gas in the gas can be determined according to the detected magneto-acoustic pressure.
  • the concentration of the paramagnetic gas in the sample gas can be determined according to the magneto-acoustic pressure corresponding to the sample gas.
  • the first connection channel 130 is connected to and disconnected from the air gap 111 , and the first connection channel 130 can transmit the gas pressure change of the sample gas in the air gap 111 .
  • a cavity with several openings is constructed in the air gap 111 , one of which is connected to the first connection channel 130 , so as to transmit the gas pressure change of the sample gas in the air gap 111 through the first connection channel 130 .
  • the first connection channel 130 is provided with a first sensor 140 .
  • the first sensor 140 may be disposed inside the first connection channel 130 , in the sidewall of the first connection channel 130 , or on the inner sidewall or the outer sidewall of the first connection channel 130 .
  • the first connection channel 130 can conduct the magneto-acoustic pressure of the air gap portion 111 to the first sensor 140 .
  • the first sensor 140 is used to collect the first gas pressure signal (or may be called as magneto-acoustic pressure) on the first connection channel 130, and the first gas pressure signal is used to determine the concentration of the paramagnetic gas in the sample gas.
  • the first sensor 140 includes a sound pressure sensor and/or a microphone.
  • the first sensor 140 can generate an electrical signal according to the sound pressure of the first connection channel 130 , for example, a gas pressure signal according to a voltage caused by the sound pressure, a capacitance signal, a magnetoelectric effect, and the like.
  • the first sensor 140 includes a microphone and the magnetic device 110 includes an electromagnet.
  • the magnetic device 110 includes an electromagnet
  • the air gap 111 provides an alternating magnetic field
  • the microphone can output an audio signal as a gas pressure signal.
  • the side of the first connecting channel 130 connected to the air gap 111 can transmit the change of the magneto-acoustic pressure, but since the first connecting channel 130 is not connected to the air gap 111, the sample gas in the air gap 111 will not conduct to the first connecting channel 130 and the air gap 111.
  • a connecting channel 130 by detecting the change of the magneto-acoustic pressure in the first connecting channel 130, the concentration of the paramagnetic gas in the sample gas can be determined, and it is not necessary to introduce the reference gas into the air gap 111. It is better, and can avoid the problem that the reference gas and the sample gas are conducted in the air gap portion 111 to contaminate the concentration.
  • the first connection channel 130 is provided with an isolation on the side close to the air gap 111 for making the first connection channel 130 not communicate with the air gap 111 .
  • the first connection channel 130 can transmit the gas pressure change of the sample gas in the air gap portion 111 through the isolation member 131 .
  • one end of the first connection channel 130 extending into the air gap 111 is provided with a spacer 131 to isolate the gas in the first connection channel 130 from the gas in the air gap 111 .
  • the spacer 131 may include a diaphragm 1311, a diaphragm, etc., may be a metallic material or a non-metallic material, etc., or may be a multi-layer composite material. Exemplarily, the spacer 131 may be fixed on the inner sidewall of the first connecting channel 130 , or on the outer sidewall of the first connecting channel 130 , or on the end of the first connecting channel 130 .
  • the end of the first connection channel 130 connected to the air gap 111 is provided with a diaphragm 1311, the diaphragm 1311 isolates the sample gas from the first connection channel 130, and converts the gas pressure change of the sample gas in the air gap 111 into the first connection channel 130.
  • the gas pressure of the sample gas in a connecting channel 130 changes, so that the first sensor 140 collects a gas pressure signal through the first connecting channel 130 .
  • the first sensor 140 is disposed on a side of the first connection channel 130 away from the air gap 111 . Specifically, the pressure signal in the magnetic field of the air gap portion 111 is extracted to the first sensor 140 through the first connection channel 130 for measurement.
  • the first connection channel 130 can conduct the vibration of the isolation member 131 caused by the magneto-acoustic pressure at the air gap portion 111 to the first sensor 140 , so that the first sensor 140 outputs a first gas pressure signal.
  • the first connection channel 130 is a closed gas channel, and the first connection channel 130 accommodates a predetermined concentration of gas.
  • the preset concentration is the known concentration of the paramagnetic gas, which can be 0 to 100%, such as 21%.
  • the gas contained in the first connection channel 130 is air or nitrogen, etc., of course, it can also be any other gas with known oxygen concentration.
  • the first connecting channel 130 is provided with a through hole for communicating with the atmosphere and/or a channel 132 communicating with the atmosphere. Therefore, the first connecting channel 130 can accommodate the gas of the same concentration as that of the atmosphere. By keeping the concentration of the paramagnetic gas in the first connection channel 130 unchanged, the accuracy of concentration detection can be improved, and the pressure of the gas in the first connection channel 130 is equal to the atmospheric pressure and kept stable, and the accuracy of concentration detection can also be improved. sex.
  • the first sensor 140 is also connected to a sample gas source, and the first gas pressure signal collected by the first sensor 140 is used to indicate that the sample gas provided by the sample gas source is on the first connection channel 130 .
  • the pressure difference between gases the magnitude of which is related to the concentration of oxygen.
  • the first sensor 140 is further connected to the sample gas source through a second connection channel 150 .
  • the first sensor 140 includes a differential pressure sensor, and the differential pressure sensor includes two input ports, one of the two input ports is communicated with the first connection channel 130 , and the other is connected with the sample gas channel 120 away from the air gap 111 . Partially connected. Therefore, the first gas pressure signal collected by the first sensor 140 can determine the pressure difference between the sample gas at the air gap 111 and the sample gas outside the air gap 111 , and the pressure difference is correlated with the oxygen concentration.
  • the portion of the sample gas channel 120 away from the air gap portion 111 includes a portion of the sample gas channel 120 that is closer to the sample gas source than the air gap portion 111 .
  • the first sensor 140 is connected to the part of the sample gas channel 120 away from the air gap 111 through the second connection channel 150 , and the first gas pressure signal collected by the first sensor 140 is used to indicate the gas on the sample gas channel 120 and the first gas The pressure difference between the gases on the connecting channel 130. Therefore, it is only necessary to connect the sample gas source through the inlet end of the sample gas channel 120 .
  • the second connection channel 150 and the sample gas channel 120 may also be respectively connected to the sample gas source.
  • the measurement device 100 further includes a third connection channel 160 .
  • One end of the third connection channel 160 is connected to the part of the sample gas channel 120 away from the air gap 111 , and the other end is provided with a second sensor 170 .
  • the second sensor 170 is used to collect the second gas pressure signal on the third connection channel 160 .
  • the second gas pressure signal is used to determine the concentration of the paramagnetic gas in the sample gas in combination with the first gas pressure signal.
  • the pressure difference between the sample gas provided by the sample gas source and the gas on the first connection channel 130 may be determined according to the first gas pressure signal and the second gas pressure signal, for example, according to the first gas pressure signal, the second gas pressure signal, and the second gas pressure signal.
  • the difference in the pressure signals determines the pressure difference, the magnitude of which is related to the oxygen concentration.
  • the first connection channel 130 may also be provided with a through hole for communicating with the atmosphere and/or a channel 132 communicating with the atmosphere, so that the first connection channel 130 accommodates the atmosphere and the atmosphere. gases of the same concentration.
  • the measuring device 100 further includes a processor 10 , the processor 10 is connected to the first sensor 140 , or connected to the first sensor 140 and the second sensor 170 , using It is used to determine the concentration of paramagnetic gas in the sample gas according to the gas pressure signal of the sensor.
  • the measuring device 100 may also not include the processor 10 .
  • the first sensor 140 when the measuring device 100 is applied in a medical ventilation system, the first sensor 140 is connected to the processor 201 in the medical ventilation system, and the processor 201 in the medical ventilation system The gas pressure signal from sensor 140 determines the concentration of paramagnetic gas in the sample gas.
  • the paramagnetic gas concentration of the function corresponding to the currently detected gas pressure signal may be determined according to a pre-stored mapping table of gas pressure signal and paramagnetic gas concentration.
  • the paramagnetic gas measurement device includes a magnetic device for providing a magnetic field, a sample gas channel for circulating the sample gas to the air gap portion of the magnetic device, and a sample gas channel that is connected to and not communicated with the air gap portion.
  • a first connection channel the first connection channel can transmit the gas pressure change of the sample gas in the air gap; the first gas pressure signal on the first connection channel is collected by the first sensor arranged on the first connection channel, which can be used for Determine the concentration of paramagnetic gas in the sample gas.
  • the measurement device 100 includes:
  • the magnetic device 110 the magnetic device 110 has an air gap portion 111 capable of providing a magnetic field
  • sample gas channel 120 can be connected to a sample gas source, for allowing the sample gas to flow into the air gap portion 111;
  • the first connecting channel 130 is connected to the air gap 111 and is not connected to the first connecting channel 130 and can transmit the gas pressure change of the sample gas in the air gap 111.
  • the first connecting channel 130 is further provided with a first connecting channel 130.
  • a sensor 140 the first sensor 140 is used to collect the first gas pressure signal on the first connection channel 130;
  • the processor 10 is connected to the first sensor 140 for determining the concentration of the paramagnetic gas in the sample gas according to the first gas pressure signal.
  • the processor 10 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU), or a digital signal processor (Digital Signal Processor, DSP) or the like.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • FIG. 2 is a schematic structural diagram of a medical ventilation system provided by an embodiment of the present application.
  • the medical ventilation system includes at least one gas source interface 210 , at least one gas supply branch 220 respectively connected to the at least one gas source interface 210 , and a breathing circuit 230 .
  • At least one gas supply branch 220 can output gas to the breathing circuit 230 .
  • the oxygen concentration of the gas in the breathing circuit 230 can be adjusted by controlling at least one gas supply branch 220 to output gas to the breathing circuit 230 .
  • the breathing circuit 230 is connected to the measurement device 100 of the embodiment of the present application.
  • the breathing circuit 230 is connected to the measurement device 100 through a sampling tube, and outputs sample gas to the measurement device 100 .
  • the breathing circuit 230 is connected to a gas channel of the measurement device 100 for transporting the sample gas.
  • breathing circuit 230 includes an inspiratory branch 231 , an expiratory branch 232 and a main ventilation circuit 233 . At least one of the inspiratory branch 231 , the expiratory branch 232 and the main ventilation air circuit 233 is connected to the measuring device 100 , and the measuring device 100 detects the oxygen concentration of the gas at the corresponding position in the breathing circuit 230 .
  • the main ventilation gas path 233 is connected to the measurement device 100 through a sampling tube, and part of the gas in the ventilation main gas path 233 is input to the measurement device 100 as sample gas, and the measurement device 100 measures the oxygen concentration.
  • the medical ventilation system further includes a gas control device 240, and the gas control device 240 and the breathing circuit 230 are respectively connected to at least one gas supply branch 220; the gas control device 240 controls the at least one gas supply branch 220 to output to the breathing circuit 230. gas.
  • air can be output to the breathing circuit 230 through one of the air source interfaces 210 through its gas supply branch 220 ; pure oxygen can be output to the breathing circuit 230 through the other air source interface 210 through its gas supply branch 220 .
  • the gas control device 240 can control the opening of the at least one gas supply branch 220 to adjust the oxygen concentration of the gas output to the breathing circuit 230 .
  • the medical ventilation system further includes a processor 201 , and the processor 201 may be disposed in the gas control device 240 , for example, or may also be disposed on a control board outside the gas control device 240 .
  • the processor 201 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU), or a digital signal processor (Digital Signal Processor, DSP) or the like.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the measurement device 100 is electrically connected to the gas control device 240 and/or the processor 201 and is capable of transmitting oxygen concentration data of the breathing circuit 230 to the gas control device 240 and/or the processor 201 so that the gas control device 240 and/or the processor 201 Or processor 201 adjusts the oxygen concentration of the gas output to breathing circuit 230 .
  • the paramagnetic gas measurement device includes a magnetic device for providing a magnetic field, a sample gas channel for circulating the sample gas to the air gap portion of the magnetic device, and a sample gas channel connected to the air gap portion.
  • the first connection channel is not connected, and the first connection channel can transmit the gas pressure change of the sample gas in the air gap; the first gas pressure signal on the first connection channel is collected by the first sensor arranged on the first connection channel , which can be used to determine the concentration of paramagnetic gases in the sample gas.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Analytical Chemistry (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

顺磁气体的测量装置(100)和医疗通气系统,测量装置(100)包括:磁性装置(110)、样本气体通道(120)、第一连接通道(130);磁性装置(110)具有能够提供磁场的气隙部(111),样本气体通道(120)能够连接样本气源,用于供样本气体流通至气隙部(111)中;第一连接通道(130)与气隙部(111)连接且不连通,第一连接通道(130)能够传递气隙部(111)中样本气体的气体压力变化;第一连接通道(130)上设有第一传感器(140),第一传感器(140)用于采集第一连接通道(130)上的第一气体压力信号,第一气体压力信号用于确定样本气体中顺磁气体的浓度。不需要将参考气体引入磁场气隙,气路系统的封闭性更好,且可以避免参考气体和样本气体在磁场气隙中导通对浓度产生污染的问题。

Description

顺磁气体的测量装置和医疗通气系统 技术领域
本申请涉及气体检测技术领域,尤其涉及一种顺磁气体的测量装置和医疗通气系统。
背景技术
利用顺磁气体分子,如氧分子的顺磁特性对混合气体中的顺磁气体浓度进行测量是一种快速实时可靠的测量方法,其中磁致声压法是其中比较成熟,商业化产品比较成功的方法。但目前磁致声压法的测量系统需将参考气体和样本气体同时引入磁场气隙进行测量,始终要求从外部连续引入一路参考气体才能完成顺磁气体浓度的测量功能,连续的外部参考气体的引入会破坏气路系统的封闭性,外部空气的引入会影响系统中气体浓度的平衡,由于参考通道一直与大气连通,当系统中的压力波动时,会影响参考气体的采样,导致测量不准甚至无法测量。
发明内容
本申请提供了一种顺磁气体的测量装置和医疗通气系统,不需要引入参考气体即可实现对样本气体中顺磁气体浓度的测量。
第一方面,本申请实施例提供了一种顺磁气体的测量装置,包括:
磁性装置,所述磁性装置具有能够提供磁场的气隙部;
样本气体通道,所述样本气体通道能够连接样本气源,用于供样本气体流通至所述气隙部中;
第一连接通道,所述第一连接通道与所述气隙部连接且不连通,所述第一连接通道能够传递所述气隙部中样本气体的气体压力变化;所述第一连接通道上设有第一传感器,所述第一传感器用于采集所述第一连接通道上的第一气体 压力信号,所述第一气体压力信号用于确定样本气体中顺磁气体的浓度。
第二方面,本申请实施例提供了一种顺磁气体的测量装置,包括:
磁性装置,所述磁性装置具有能够提供磁场的气隙部;
样本气体通道,所述样本气体通道能够连接样本气源,用于供样本气体流通至所述气隙部中;
第一连接通道,所述第一连接通道与所述样本气体通道连接且不连通,所述第一连接通道能够传递所述气隙部中样本气体的气体压力变化,所述第一连接通道上还设有第一传感器,所述第一传感器用于采集所述第一连接通道上的第一气体压力信号;
处理器,所述处理器连接所述第一传感器,用于根据所述第一气体压力信号确定样本气体中顺磁气体的浓度。
第三方面,本申请实施例提供了一种医疗通气系统,所述通气系统包括至少一个气源接口、分别与所述至少一个气源接口连接的至少一个气体供应支路和呼吸回路;
其中,所述至少一个气体供应支路能够向所述呼吸回路输出气体,所述呼吸回路连接前述的测量装置。
本申请实施例提供了一种顺磁气体的测量装置和医疗通气系统,包括用于提供磁场的磁性装置,用于供样本气体流通至磁性装置气隙部的样本气体通道,还包括与气隙部连接且不连通的第一连接通道,第一连接通道能够传递气隙部中样本气体的气体压力变化;通过设置在第一连接通道上的第一传感器采集第一连接通道上的第一气体压力信号,可以用于确定样本气体中顺磁气体的浓度。不需要将参考气体引入磁场气隙,气路系统的封闭性更好,且可以避免参考气体和样本气体在磁场气隙中导通对浓度产生污染的问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请实施例的公开内容。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些 实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种顺磁气体的测量装置的结构示意图;
图2是本申请实施例提供的一种医疗通气系统的结构示意图;
图3一实施方式中测量装置的结构示意图;
图4另一实施方式中测量装置的结构示意图;
图5又一实施方式中测量装置的结构示意图。
附图标记说明:100、测量装置;110、磁性装置;111、气隙部;120、样本气体通道;130、第一连接通道;131、隔离件;1311、隔膜;;140、第一传感器;150、第二连接通道;160、第三连接通道;170、第二传感器;10、处理器;132、与大气连通的通道;210、气源接口;220、气体供应支路;230、呼吸回路;231、吸气支路;232、呼气支路;233、通气主气路;240、气体控制装置;201、处理器。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,图1是本申请实施例提供的一种顺磁气体的测量装置100的结构示意图。
在一些实施方式中,测量装置100可以用于医疗通气系统中,如麻醉机或呼吸机中,用于测量氧气浓度。
如图2所示为一实施方式中的医疗通气系统的结构示意图。该医疗通气系 统包括至少一个气源接口210、分别与至少一个气源接口210连接的至少一个气体供应支路220、以及呼吸回路230。
具体的,至少一个气体供应支路220能够向呼吸回路230输出气体。可以通过控制至少一个气体供应支路220向呼吸回路230输出气体,以调整呼吸回路230的气体的氧浓度。
其中,呼吸回路230连接本申请实施例的测量装置100。
示例性的,呼吸回路230通过一采样管连接测量装置100,向测量装置100输出样本气体。例如,呼吸回路230连接测量装置100的用于传输样本气体的气体通道。
在一些实施方式中,呼吸回路230包括吸气支路231、呼气支路232和通气主气路233。吸气支路231、呼气支路232和通气主气路233中的至少一个连接测量装置100,由测量装置100检测呼吸回路230中相应位置气体的氧浓度。
示例性的,如图2所示,通气主气路233通过一采样管连接测量装置100,通气主气路233中的部分气体作为样本气体输入测量装置100,由测量装置100测量氧浓度。
示例性的,医疗通气系统还包括气体控制装置240,气体控制装置240和呼吸回路230分别与至少一个气体供应支路220连接;气体控制装置240控制至少一个气体供应支路220输出到呼吸回路230的气体。
示例性的,空气可以通过其中一个气源接口210经其气体供应支路220输出到呼吸回路230;纯氧可以通过另一个气源接口210经其气体供应支路220输出到呼吸回路230。
示例性的,气体控制装置240能够控制至少一个气体供应支路220的开度,以调节输出到呼吸回路230的气体的氧浓度。
在一些实施方式中,医疗通气系统还包括处理器201,处理器201例如可以设置在气体控制装置240中,或者也可以设置在气体控制装置240之外的控制板上。
具体地,处理器201可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
示例性的,测量装置100与气体控制装置240和/或处理器201电连接,能 够将呼吸回路230的氧浓度数据传输给气体控制装置240和/或处理器201,以便气体控制装置240和/或处理器201调节输出到呼吸回路230的气体的氧浓度。
如图1所示,本申请实施例的测量装置100包括磁性装置110、样本气体通道120、第一连接通道130,以及设置在第一连接通道130上的第一传感器140。
其中,磁性装置110具有能够提供磁场的气隙部111。
示例性的,磁性装置110包括永磁体或者电磁铁,具有能够提供恒定磁场或交变磁场的气隙部111。
如图1所示,样本气体通道120能够连接样本气源,用于供样本气体流通至气隙部111中。
示例性的,样本气体通道120在靠近气隙部111的位置开口,以便样本气体流通至气隙部111中。磁性装置110的磁场可以不经样本气体通道120的侧壁作用于样本气体,磁致声压效应更强。
示例性的,可以在气隙部111构造具有若干开口的腔体,例如通过密封件与磁性装置110的组合,构造包绕磁场气隙的腔体,其中一个开口用于连接样本气体通道120的进气通道,以便样本气体通道120将样本气体传出至气隙部111中。示例性的,该腔体还有一个开口用于连接样本气体通道120的出气通道,以便气隙部111中的样本气体通过该出气通道排出。
示例性的,样本气体通道120上也可以不开口,将样本气体通道120的至少部分设置在气隙部111中。例如将样本气体通道120的中部设置在气隙部111中,或者将样本气体通道120的出气端设置在气隙部111中。
样本气体通道120用于将样本气体导向气隙部111。其中,样本气体为待测浓度的气体。具体的,样本气体通道120的进气端连接样本气体的气源,气源包括气罐、气泵、气阀中的至少一种。
示例性的,样本气体通入到气隙部111中时,氧分子在磁场的作用下,会在磁场中产生一个相对气隙部111外部的压力差,该压力差的大小与氧气的浓度存在相关性。在样本气体传输至气隙部111时,在磁场作用下产生声压的变化,可以称为磁致声压。在磁场保持一定时,不同浓度的气体引起的磁致声压不同,因此可以根据检测的磁致声压确定气体中顺磁气体的浓度。示例性的, 可以根据样本气体对应的磁致声压,确定样本气体中顺磁气体的浓度。
具体的,如图1、图2至图5所示,第一连接通道130与气隙部111连接且不连通,第一连接通道130能够传递气隙部111中样本气体的气体压力变化。
示例性的,在气隙部111构造具有若干开口的腔体,其中一个开口连接第一连接通道130,以通过第一连接通道130传递气隙部111中样本气体的气体压力变化。
具体的,第一连接通道130上设有第一传感器140。
示例性的,第一传感器140可以设置在第一连接通道130的内部、设置在第一连接通道130的侧壁中或者设置在第一连接通道130的内侧壁上或外侧壁上。
第一连接通道130能够将气隙部111的磁致声压传导给第一传感器140。第一传感器140用于采集第一连接通道130上的第一气体压力信号(或可称为磁致声压),第一气体压力信号用于确定样本气体中顺磁气体的浓度。
示例性的,第一传感器140包括声压传感器和/或麦克风。第一传感器140能够根据第一连接通道130的声压生成电信号,例如根据声压引起的电压、电容信号、磁电效应等生成气体压力信号。
在一些实施方式中,第一传感器140包括麦克风,磁性装置110包括电磁铁。磁性装置110包括电磁铁时,气隙部111提供交变磁场,麦克风可以输出音频信号作为气体压力信号。
第一连接通道130连接气隙部111的一侧可以传递磁致声压的变化,但是由于第一连接通道130和气隙部111不连通,气隙部111中的样本气体不会导通到第一连接通道130中,通过检测第一连接通道130中磁致声压的变化,可以确定样本气体中顺磁气体的浓度,可以不需要将参考气体引入气隙部111,气路系统的封闭性更好,且可以避免参考气体和样本气体在气隙部111中导通对浓度产生污染的问题。
在一些实施方式中,如图1、图2至图5所示,第一连接通道130在靠近气隙部111的一侧设有用于使第一连接通道130与气隙部111不连通的隔离件131,第一连接通道130能够通过隔离件131传递气隙部111中样本气体的气体压力变化。例如,第一连接通道130伸入气隙部111的一端设置有隔离件131,将第一连接通道130内的气体与气隙部111中的气体隔离开。
示例性的,隔离件131可以包括隔膜1311、振膜等,可以为金属材料或非金属材料等,或者可以为多层复合材料。示例性的,隔离件131可以固定在第一连接通道130的内侧壁,或者固定在第一连接通道130的外侧壁,或者固定在第一连接通道130的端部。
示例性的,第一连接通道130连接气隙部111的一端设有隔膜1311,隔膜1311将样本气体隔离于第一连接通道130,以及将气隙部111中样本气体的气体压力变化转化为第一连接通道130中样本气体的气体压力变化,以便第一传感器140通过第一连接通道130采集气体压力信号。
在一些实施方式中,第一传感器140设置在第一连接通道130远离气隙部111的一侧。具体的,通过第一连接通道130将气隙部111的磁场中的压力信号引出到第一传感器140进行测量。第一连接通道130能够将气隙部111处的磁致声压引起的隔离件131的振动传导给第一传感器140,以使第一传感器140输出第一气体压力信号。
在一些实施方式中,第一连接通道130为封闭的气体通道,且第一连接通道130中容纳预设浓度的气体。预设浓度为顺磁气体的已知浓度,可以为0至100%,例如为21%,举例而言,第一连接通道130中容纳的气体为空气或氮气等,当然也可以是任意其他已知氧浓度的气体。通过使第一连接通道130内的顺磁气体的浓度保持不变,可以提高浓度检测的准确性。第一连接通道130封闭时也可以维持第一连接通道130内气体的压力稳定,也可以提高浓度检测的准确性。
在一些实施方式中,如图3所示,第一连接通道130上设有用于连通大气的通孔和/或与大气连通的通道132。从而可以使得第一连接通道130中容纳和大气相通浓度的气体。通过使第一连接通道130内的顺磁气体的浓度保持不变,可以提高浓度检测的准确性而且第一连接通道130内气体的压力与大气压力相等而保持稳定,也可以提高浓度检测的准确性。
在一些实施方式中,如图4所示,第一传感器140还连接样本气源,第一传感器140采集的第一气体压力信号用于指示样本气源提供的样本气体和第一连接通道130上气体之间的压力差,该压力差的大小与氧气的浓度存在相关性。根据第一传感器140采集的第一气体压力信号确定样本气体的浓度时,可以消除或降低样本气体流速和/或压力变化的影响。
示例性的,如图4所示,第一传感器140还通过一第二连接通道150连接样本气源。
举例而言,第一传感器140包括差压传感器,差压传感器包括两个输入接口,两个输入接口中的一个与第一连接通道130连通,另一个与样本气体通道120远离气隙部111的部分连通。从而第一传感器140采集的第一气体压力信号可以确定气隙部111处样本气体相对气隙部111外部样本气体的压力差,该压力差的大小与氧气的浓度存在相关性。示例性的,样本气体通道120远离气隙部111的部分包括样本气体通道120相较于气隙部111更靠近样本气源的部分。
示例性的,第一传感器140通过第二连接通道150连接样本气体通道120远离气隙部111的部分,第一传感器140采集的第一气体压力信号用于指示样本气体通道120上气体和第一连接通道130上气体之间的压力差。因此只需要通过样本气体通道120的进气端连接样本气源。当然在其他实施方式中,也可以将第二连接通道150和样本气体通道120分别连接于样本气源。
在一些实施方式中,如图5所示,测量装置100还包括第三连接通道160。第三连接通道160的一端连接样本气体通道120远离气隙部111的部分,另一端设有第二传感器170,第二传感器170用于采集第三连接通道160上的第二气体压力信号,第二气体压力信号用于结合第一气体压力信号确定样本气体中顺磁气体的浓度。
示例性的,可以根据第一气体压力信号、第二气体压力信号确定样本气源提供的样本气体和第一连接通道130上气体之间的压力差,例如根据第一气体压力信号、第二气体压力信号的差值确定该压力差,该压力差的大小与氧气的浓度存在相关性。根据第一传感器140采集的第一气体压力信号确定样本气体的浓度时,可以消除或降低样本气体流速和/或压力变化的影响。
在一些实施方式中,参见图4或图5,也可以在第一连接通道130上设有用于连通大气的通孔和/或与大气连通的通道132,使得第一连接通道130中容纳和大气相通浓度的气体。
在一些实施方式中,如图1、图2至图5所示,测量装置100还包括处理器10,该处理器10连接第一传感器140,或者连接第一传感器140和第二传感器170,用于根据传感器的气体压力信号确定样本气体中顺磁气体的浓度。
当然,测量装置100也可以不包括处理器10。例如在另一些实施方式中,如图2所示,测量装置100应用于医疗通气系统中时,第一传感器140连接医疗通气系统中的处理器201,医疗通气系统中的处理器201根据第一传感器140的气体压力信号确定样本气体中顺磁气体的浓度。
示例性的,可以根据预先存储的气体压力信号与顺磁气体浓度的映射表,确定当前检测的气体压力信号对应功能的顺磁气体浓度,即当前样本气体中顺磁气体的浓度。
本申请实施例提供的顺磁气体的测量装置,包括用于提供磁场的磁性装置,用于供样本气体流通至磁性装置气隙部的样本气体通道,还包括与气隙部连接且不连通的第一连接通道,第一连接通道能够传递气隙部中样本气体的气体压力变化;通过设置在第一连接通道上的第一传感器采集第一连接通道上的第一气体压力信号,可以用于确定样本气体中顺磁气体的浓度。不需要将参考气体引入磁场气隙,气路系统的封闭性更好,且可以避免参考气体和样本气体在磁场气隙中导通对浓度产生污染的问题。
请结合上述实施例参阅图1、图2至图5,测量装置100包括:
磁性装置110,磁性装置110具有能够提供磁场的气隙部111;
样本气体通道120,样本气体通道120能够连接样本气源,用于供样本气体流通至气隙部111中;
第一连接通道130,第一连接通道130与气隙部111连接且不连通第一连接通道130能够传递气隙部111中样本气体的气体压力变化,第一连接通道130上还设有第一传感器140,第一传感器140用于采集第一连接通道130上的第一气体压力信号;
处理器10,处理器10连接第一传感器140,用于根据第一气体压力信号确定样本气体中顺磁气体的浓度。
具体地,处理器10可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
本申请实施例提供的测量装置的具体原理和实现方式均与前述实施例的测量装置类似,此处不再赘述。
请结合上述实施例参阅图2,图2是本申请一实施例提供的医疗通气系统 的结构示意图。
如图2所示,该医疗通气系统包括至少一个气源接口210、分别与至少一个气源接口210连接的至少一个气体供应支路220、以及呼吸回路230。
具体的,至少一个气体供应支路220能够向呼吸回路230输出气体。可以通过控制至少一个气体供应支路220向呼吸回路230输出气体,以调整呼吸回路230的气体的氧浓度。
其中,呼吸回路230连接本申请实施例的测量装置100。
示例性的,呼吸回路230通过一采样管连接测量装置100,向测量装置100输出样本气体。例如,呼吸回路230连接测量装置100的用于传输样本气体的气体通道。
在一些实施方式中,呼吸回路230包括吸气支路231、呼气支路232和通气主气路233。吸气支路231、呼气支路232和通气主气路233中的至少一个连接测量装置100,由测量装置100检测呼吸回路230中相应位置气体的氧浓度。
示例性的,如图2所示,通气主气路233通过一采样管连接测量装置100,通气主气路233中的部分气体作为样本气体输入测量装置100,由测量装置100测量氧浓度。
示例性的,医疗通气系统还包括气体控制装置240,气体控制装置240和呼吸回路230分别与至少一个气体供应支路220连接;气体控制装置240控制至少一个气体供应支路220输出到呼吸回路230的气体。
示例性的,空气可以通过其中一个气源接口210经其气体供应支路220输出到呼吸回路230;纯氧可以通过另一个气源接口210经其气体供应支路220输出到呼吸回路230。
示例性的,气体控制装置240能够控制至少一个气体供应支路220的开度,以调节输出到呼吸回路230的气体的氧浓度。
在一些实施方式中,医疗通气系统还包括处理器201,处理器201例如可以设置在气体控制装置240中,或者也可以设置在气体控制装置240之外的控制板上。
具体地,处理器201可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
示例性的,测量装置100与气体控制装置240和/或处理器201电连接,能够将呼吸回路230的氧浓度数据传输给气体控制装置240和/或处理器201,以便气体控制装置240和/或处理器201调节输出到呼吸回路230的气体的氧浓度。
本申请实施例提供的医疗通气系统的具体原理和实现方式均与前述实施例的测量装置类似,此处不再赘述。
本申请实施例提供的医疗通气系统,其顺磁气体的测量装置包括用于提供磁场的磁性装置,用于供样本气体流通至磁性装置气隙部的样本气体通道,还包括与气隙部连接且不连通的第一连接通道,第一连接通道能够传递气隙部中样本气体的气体压力变化;通过设置在第一连接通道上的第一传感器采集第一连接通道上的第一气体压力信号,可以用于确定样本气体中顺磁气体的浓度。不需要将参考气体引入磁场气隙,气路系统的封闭性更好,且可以避免参考气体和样本气体在磁场气隙中导通对浓度产生污染的问题,从而可以提高医疗通气系统的安全性、可靠性。
应当理解,在此本申请中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。
还应当理解,在本申请和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种顺磁气体的测量装置,其特征在于,包括:
    磁性装置,所述磁性装置具有能够提供磁场的气隙部;
    样本气体通道,所述样本气体通道能够连接样本气源,用于供样本气体流通至所述气隙部中;
    第一连接通道,所述第一连接通道与所述气隙部连接且不连通,所述第一连接通道能够传递所述气隙部中样本气体的气体压力变化;所述第一连接通道上设有第一传感器,所述第一传感器用于采集所述第一连接通道上的第一气体压力信号,所述第一气体压力信号用于确定样本气体中顺磁气体的浓度。
  2. 根据权利要求1所述的测量装置,其特征在于,所述第一连接通道在靠近所述气隙部的一侧设有用于使所述第一连接通道与所述气隙部不连通的隔离件,所述第一连接通道能够通过所述隔离件传递所述气隙部中样本气体的气体压力变化。
  3. 根据权利要求2所述的测量装置,其特征在于,所述隔离件包括隔膜,所述隔膜位于所述第一连接通道连接所述气隙部的一端,所述隔膜将所述样本气体隔离于所述第一连接通道,以及将所述气隙部中样本气体的气体压力变化转化为所述第一连接通道中样本气体的气体压力变化。
  4. 根据权利要求1所述的测量装置,其特征在于,所述第一传感器设置在所述第一连接通道远离所述气隙部的一侧。
  5. 根据权利要求1所述的测量装置,其特征在于,所述第一连接通道为封闭的气体通道,且所述第一连接通道中容纳预设浓度的气体。
  6. 根据权利要求1所述的测量装置,其特征在于,所述第一连接通道上设有用于连通大气的通孔和/或与大气连通的通道。
  7. 根据权利要求1-6中任一项所述的测量装置,其特征在于,所述第一传感器还连接所述样本气源,所述第一传感器采集的第一气体压力信号用于指示所述样本气源提供的样本气体和所述第一连接通道上气体之间的压力差。
  8. 根据权利要求7所述的测量装置,其特征在于,所述第一传感器还通过一第二连接通道连接所述样本气源。
  9. 根据权利要求8所述的测量装置,其特征在于,所述第一传感器通过所述第二连接通道连接所述样本气体通道远离所述气隙部的部分,所述第一传感器采集的第一气体压力信号用于指示所述样本气体通道上气体和所述第一连接通道上气体之间的压力差。
  10. 根据权利要求7所述的测量装置,其特征在于,所述第一传感器包括差压传感器,所述差压传感器包括两个输入接口,所述两个输入接口中的一个与所述第一连接通道连通,另一个与所述样本气体通道远离所述气隙部的部分连通。
  11. 根据权利要求1-6中任一项所述的测量装置,其特征在于,还包括:
    第三连接通道,所述第三连接通道的一端连接所述样本气体通道远离所述气隙部的部分,另一端设有第二传感器,所述第二传感器用于采集所述第三连接通道上的第二气体压力信号,所述第二气体压力信号用于结合所述第一气体压力信号确定样本气体中顺磁气体的浓度。
  12. 根据权利要求1-6中任一项所述的测量装置,其特征在于,所述第一传感器包括声压传感器和/或麦克风。
  13. 根据权利要求12所述的测量装置,其特征在于,所述磁性装置包括永磁体或者电磁铁。
  14. 根据权利要求13所述的测量装置,其特征在于,所述第一传感器包括麦克风,所述磁性装置包括电磁铁。
  15. 一种顺磁气体的测量装置,其特征在于,包括:
    磁性装置,所述磁性装置具有能够提供磁场的气隙部;
    样本气体通道,所述样本气体通道能够连接样本气源,用于供样本气体流通至所述气隙部中;
    第一连接通道,所述第一连接通道与所述气隙部连接且不连通,所述第一连接通道能够传递所述气隙部中样本气体的气体压力变化,所述第一连接通道上还设有第一传感器,所述第一传感器用于采集所述第一连接通道上的第一气体压力信号;
    处理器,所述处理器连接所述第一传感器,用于根据所述第一气体压力信号确定样本气体中顺磁气体的浓度。
  16. 一种医疗通气系统,其特征在于,所述通气系统包括至少一个气源接口、 分别与所述至少一个气源接口连接的至少一个气体供应支路和呼吸回路;
    其中,所述至少一个气体供应支路能够向所述呼吸回路输出气体,所述呼吸回路连接如权利要求1-14中任一项所述的测量装置。
PCT/CN2020/141845 2020-12-30 2020-12-30 顺磁气体的测量装置和医疗通气系统 WO2022141319A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/141845 WO2022141319A1 (zh) 2020-12-30 2020-12-30 顺磁气体的测量装置和医疗通气系统
CN202080107364.3A CN116710165A (zh) 2020-12-30 2020-12-30 顺磁气体的测量装置和医疗通气系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/141845 WO2022141319A1 (zh) 2020-12-30 2020-12-30 顺磁气体的测量装置和医疗通气系统

Publications (1)

Publication Number Publication Date
WO2022141319A1 true WO2022141319A1 (zh) 2022-07-07

Family

ID=82260036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141845 WO2022141319A1 (zh) 2020-12-30 2020-12-30 顺磁气体的测量装置和医疗通气系统

Country Status (2)

Country Link
CN (1) CN116710165A (zh)
WO (1) WO2022141319A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2531849A1 (de) * 1975-07-16 1977-01-20 Siemens Ag Einrichtung zur bestimmung des sauerstoffanteils eines gasgemisches
EP0172461A2 (en) * 1984-08-21 1986-02-26 Hewlett-Packard Company Apparatus and method for measuring the concentration of a paramagnetic gas
US20040045340A1 (en) * 2002-09-06 2004-03-11 Gunter Steinert Measuring head for a device for measuring the concentration of a paramagnetic gas
CN104069558A (zh) * 2013-03-26 2014-10-01 旭化成医疗株式会社 压力腔室
CN108348715A (zh) * 2015-11-13 2018-07-31 欧根·卡根 呼吸机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2531849A1 (de) * 1975-07-16 1977-01-20 Siemens Ag Einrichtung zur bestimmung des sauerstoffanteils eines gasgemisches
EP0172461A2 (en) * 1984-08-21 1986-02-26 Hewlett-Packard Company Apparatus and method for measuring the concentration of a paramagnetic gas
US20040045340A1 (en) * 2002-09-06 2004-03-11 Gunter Steinert Measuring head for a device for measuring the concentration of a paramagnetic gas
CN104069558A (zh) * 2013-03-26 2014-10-01 旭化成医疗株式会社 压力腔室
CN108348715A (zh) * 2015-11-13 2018-07-31 欧根·卡根 呼吸机

Also Published As

Publication number Publication date
CN116710165A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
US7235054B2 (en) Measuring head for a gas analyser
US4581942A (en) Measuring conduit for flow rate and concentration of fluid
JP2022071173A (ja) フロー療法装置用の流路検知
US5072737A (en) Method and apparatus for metabolic monitoring
US5676132A (en) Pulmonary interface system
US5739412A (en) Gas sampling system having a mouthpiece
US20080119753A1 (en) Premature infant side-stream respiratory gas monitoring sensor
US11650199B2 (en) System and method for controlling a flow through a pneumatic system
CN104970795A (zh) 用于测量和分析多次呼吸氮气洗出过程的装置
WO2022141319A1 (zh) 顺磁气体的测量装置和医疗通气系统
KR20130107738A (ko) 다중 분석 음주측정기
WO2021129840A1 (zh) 一种超声波气体传感器
WO2022141320A1 (zh) 顺磁气体的测量装置和医疗通气系统
US7127936B2 (en) Acoustic analysis of gas mixtures
WO2022141318A1 (zh) 气体测量仪、气体测量板及医疗通气系统
WO2016063148A1 (en) Device for preliminary screening of adenoma of the colon-rectum
EP3570027B1 (en) Sulfide gas concentration measurement device and sulfide gas concentration measurement method
US8220311B2 (en) System and method for measuring concentration of a paramagnetic gas
CN217442622U (zh) 一种微流量传感器
JPH05329132A (ja) ブレスバイブレス代謝測定装置
KR102030278B1 (ko) 저농도용 음주측정기
US20210338954A1 (en) Ventilation control unit and ventilation control system
JPS60244834A (ja) テストガスを吸引する手段を備えたガス分析器
WO2023240832A1 (zh) 一种呼气末采集装置
JP2005062056A (ja) 排ガス流量計測装置およびこれを用いた排ガス計測システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967658

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107364.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967658

Country of ref document: EP

Kind code of ref document: A1