WO2023240832A1 - 一种呼气末采集装置 - Google Patents

一种呼气末采集装置 Download PDF

Info

Publication number
WO2023240832A1
WO2023240832A1 PCT/CN2022/121330 CN2022121330W WO2023240832A1 WO 2023240832 A1 WO2023240832 A1 WO 2023240832A1 CN 2022121330 W CN2022121330 W CN 2022121330W WO 2023240832 A1 WO2023240832 A1 WO 2023240832A1
Authority
WO
WIPO (PCT)
Prior art keywords
solenoid valve
gas sensor
tidal
gas
air
Prior art date
Application number
PCT/CN2022/121330
Other languages
English (en)
French (fr)
Inventor
杨雷
张权锋
黄锦波
罗邦雄
罗景庭
Original Assignee
惠雨恩科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠雨恩科技(深圳)有限公司 filed Critical 惠雨恩科技(深圳)有限公司
Publication of WO2023240832A1 publication Critical patent/WO2023240832A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00

Definitions

  • the present application relates to the technical field of exhalation collection, and specifically relates to an end-tidal collection device.
  • end-tidal gas is a technical difficulty in the application of exhaled molecular diagnostic instruments in infants and frail patients. Its accuracy has important applications in human health, such as end-tidal carbon monoxide being used to identify neonatal hemolytic hyperbilirubinemia.
  • the patent of Vreman et al. (US4831024) uses monitoring the rise and fall of the newborn's chest to determine the expiration stage, thereby collecting the end-tidal gas of the newborn.
  • this method requires simultaneous observation of the newborn's nostrils and chest rise and fall, which places higher requirements on the operator.
  • end-tidal gas collection devices using other sensors such as temperature sensors (201610147517.2) as sensitive components also appeared. Because the response speed of the temperature sensor is too slow, the immediacy is poor. Therefore, carbon dioxide sensors are currently the mainstream solution as expiratory phase monitoring sensors.
  • the end-tidal CO concentration value is obtained by measuring the average CO and carbon dioxide in all segments of exhaled gas across several breaths, and then using a transfer function.
  • This technique has several limitations, such as the low CO concentration collected, the high requirements on the CO sensor, and potential inaccuracies due to the inability of the transfer function to adapt to the wide variety of clinical situations that may be encountered.
  • the solenoid valve is placed in front and the pump is placed in the rear.
  • the delay problem of the carbon dioxide sensor is not taken into account. Especially under large gas flow rates, the phase mismatch caused by the delay problem becomes more serious.
  • the embodiment of the present application provides an end-tidal gas collection device, which can reduce the difficulty of collecting end-tidal gas.
  • the embodiment of the present application provides an end-tidal collection device, including:
  • the second solenoid valve is connected to the intake pipe
  • An air pump the air pump is arranged behind the air inlet pipe, and the air pump is used to provide the gas flow rate in the pipeline and extract exhaled breath;
  • a first gas sensor the first gas sensor is arranged between the air inlet pipe and the second solenoid valve, the first gas sensor is used to detect the exhalation phase of the human body in real time;
  • the gas path delay unit is disposed between the first gas sensor and the second solenoid valve, the gas path delay unit is used to offset the response delay time of the first gas sensor, The expiration phase of the second solenoid valve is synchronized with the expiration phase output by the first gas sensor.
  • the end-tidal collection device further includes a first solenoid valve, a third solenoid valve, a second gas sensor, a fourth solenoid valve and a gas storage unit, and the third solenoid valve
  • a solenoid valve is disposed between the air intake pipe and the air pump
  • the second gas sensor is disposed on a side of the second solenoid valve away from the gas path delay unit
  • the third solenoid valve is disposed on
  • the first solenoid valve and the second solenoid valve are respectively connected to the fourth solenoid valve
  • the gas storage unit is connected to the second solenoid valve. between the solenoid valve and the fourth solenoid valve.
  • a flow limiting unit is connected between the first solenoid valve and the fourth solenoid valve.
  • the first gas sensor is a carbon dioxide sensor.
  • the second gas sensor is a carbon monoxide sensor.
  • the third solenoid valve is a three-way valve, and one of the valves of the third solenoid valve is externally connected to air.
  • the fourth solenoid valve is a three-way valve, and one of the valves of the fourth solenoid valve is externally connected to air.
  • the end-tidal collection device further includes an exhalation collection unit, and the exhalation collection unit is connected to the air inlet pipe.
  • the exhalation collection unit is a nasal cannula or an exhalation mask.
  • the flow-limiting unit is a flow-limiting valve or a capillary tube.
  • the end-tidal collection device provided by the embodiment of the present application includes an air inlet pipe, a second solenoid valve, an air pump, a first gas sensor and a gas path delay unit.
  • the second solenoid valve is connected to the air inlet pipe;
  • the air pump is arranged behind the air inlet pipe, and the air pump is used to provide the gas flow rate in the pipeline and extract exhaled breath;
  • the first gas sensor is provided Between the air intake pipe and the second solenoid valve, the first gas sensor is used to detect the exhalation phase of the human body in real time;
  • the gas path delay unit is provided between the first gas sensor and the second solenoid valve.
  • the gas path delay unit is used to offset the response delay time of the first gas sensor, so that the expiration phase of the second solenoid valve is synchronized with the expiration phase output by the first gas sensor.
  • Figure 1 is a schematic structural diagram of an end-tidal collection device provided by an embodiment of the present application.
  • Figure 2 is another structural schematic diagram of an end-tidal collection device provided by an embodiment of the present application.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary; it can also be an internal connection between two components; it can be a wireless connection or a wired connection connect.
  • connection or integral connection
  • connection or integral connection
  • connection can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediary
  • it can also be an internal connection between two components
  • it can be a wireless connection or a wired connection connect.
  • An embodiment of the present application provides an end-tidal gas collection device, which will be described in detail below.
  • FIG. 1 is a schematic structural diagram of an end-tidal collection device provided by an embodiment of the present application.
  • the end-tidal collection device 100 may include an air inlet pipe 1, a second solenoid valve 5, an air pump 3, a first gas sensor 4 and a gas path delay unit 11.
  • the second solenoid valve 5 is connected to the air intake pipe 1; the air pump 3 is installed behind the air intake pipe 1, and the air pump 3 is used to provide the gas flow rate in the pipe and extract exhaled breath; the first gas sensor 4 is installed between the air intake pipe 1 and the third air intake pipe 1. Between the two solenoid valves 5, the first gas sensor 4 is used to detect the exhalation phase of the human body in real time; the gas path delay unit 11 is disposed between the first gas sensor 4 and the second solenoid valve 5, and the gas path delay unit 11 is used for In order to offset the response delay time of the first gas sensor 4, the expiration phase of the second solenoid valve 5 is synchronized with the expiration phase output by the first gas sensor 4.
  • the end-tidal collection device 100 may also include a first solenoid valve 2, a third solenoid valve 6, a second gas sensor 7, a fourth solenoid valve 9 and Gas storage unit 8.
  • the first solenoid valve 2 is arranged between the air intake pipe 1 and the air pump 3 .
  • the second gas sensor 7 is disposed on the side of the second solenoid valve 5 away from the gas path delay unit 11 .
  • the third solenoid valve 6 is provided between the second solenoid valve 5 and the second gas sensor 7 .
  • the first solenoid valve 2 and the second solenoid valve 5 are respectively connected to the fourth solenoid valve 9 .
  • the gas storage unit 8 is connected between the second solenoid valve 5 and the fourth solenoid valve 9 .
  • the end-tidal collection device may further include a control unit (not shown in the figure).
  • the control unit is electrically connected to the second solenoid valve 5, the air pump 3, the first gas sensor 4, the first solenoid valve 2, the third solenoid valve 6, the second gas sensor 7 and the fourth solenoid valve 9 respectively, for The second solenoid valve 5, the air pump 3, the first gas sensor 4, the first solenoid valve 2, the third solenoid valve 6, the second gas sensor 7, and the fourth solenoid valve 9 are controlled.
  • this embodiment can compensate for the response delay time of the first gas sensor 4, the response time of the control unit and the response time of the solenoid valve by adding the gas path delay unit 11, so that it can accurately collect high carbon dioxide concentration. exhale.
  • a carbon dioxide sensor is used to detect the carbon dioxide concentration and correct the target gas concentration to compensate for the error caused by non-end-tidal gas collection that may occur during gas collection.
  • the response delay time of the first gas sensor 4 is a broad concept, and it should also include the response time of the microprocessor and the response time of the second solenoid valve.
  • the first gas sensor 4 is a carbon dioxide sensor.
  • the second gas sensor 7 is a carbon monoxide sensor.
  • the third solenoid valve 6 is a three-way valve, and one of the valves of the third solenoid valve 6 is externally connected to air.
  • the fourth solenoid valve 9 is a three-way valve, and one of the valves of the fourth solenoid valve 9 is externally connected to the air.
  • a flow limiting unit 10 is connected between the first solenoid valve 2 and the fourth solenoid valve 9 .
  • the flow rate of the gas during measurement is controlled by the flow limiting unit 10 .
  • a large flow rate can be used to shorten the gas collection time when collecting gas, and the flow rate of the gas can be controlled by the flow limiting unit 10 during measurement, thereby improving the measurement accuracy of the second gas sensor 7 .
  • the flow limiting unit 10 may be a flow limiting valve or a capillary tube.
  • the end-tidal collection device 100 may further include an exhalation collection unit.
  • the exhalation collection unit is connected with the air inlet pipe 1 .
  • the exhalation collection unit may be a nasal cannula or an exhalation mask.
  • the end-tidal collection device 100 can be implemented in the following three stages:
  • the first solenoid valve 2 when inhaling or exhaling air from the cavity, the first solenoid valve 2 is powered on, the second solenoid valve 5 is powered off, the fourth solenoid valve 9 is powered off, the third solenoid valve 6 is powered on, and the air pump 3 is powered on.
  • the exhaled gas flows through the air intake pipe 1, the first solenoid valve 2, the air pump 3, the first gas sensor 4, the thick air pipe, the second solenoid valve 5 and the third solenoid valve 6 in sequence, and finally passes through the third solenoid valve 6.
  • a valve vents to the air.
  • the first solenoid valve 2 when exhaling alveolar air, the first solenoid valve 2 is powered on, the second solenoid valve 5 is powered on, the fourth solenoid valve 9 is powered off, the third solenoid valve 6 is powered on, and the air pump 3 is powered on.
  • the exhaled gas sequentially flows through the exhalation collection unit, the first solenoid valve 2 , the air pump 3 , the first gas sensor 4 , the rough air pipe and the second solenoid valve 5 , and finally flows into the gas storage unit 8 through the second solenoid valve 5 .
  • the first solenoid valve 2 when measuring air, the first solenoid valve 2 is powered off, the second solenoid valve 5 is powered off, the fourth solenoid valve 9 is powered off, the third solenoid valve 6 is powered off, and the air pump 3 is powered on.
  • the gas in the air flows through the fourth solenoid valve 9, the first solenoid valve 2, the air pump 3, the first gas sensor 4, the thick air pipe, the second solenoid valve 5, and the third solenoid valve 6 in sequence, and finally reaches the second gas sensor 7.
  • the first solenoid valve 2 when measuring alveolar air, the first solenoid valve 2 is powered off, the second solenoid valve 5 is powered off, the fourth solenoid valve 9 is powered on, the third solenoid valve 6 is powered off, and the air pump 3 is powered on.
  • the gas in the gas storage unit 8 flows through the fourth solenoid valve 9, the first solenoid valve 2, the air pump 3, the first gas sensor 4, the thick air pipe, the second solenoid valve 5 and the third solenoid valve 6, and finally reaches the second Gas sensor 7.
  • energizing the first solenoid valve 2 means connecting the intake pipe 1 and the air pump 3
  • de-energizing means connecting the intake pipe 1 and the fourth solenoid valve 9 .
  • the second solenoid valve 5 When the second solenoid valve 5 is powered on, it connects the first gas sensor 4 and the gas storage unit 8 , and when it is powered off, it connects the first gas sensor 4 and the third solenoid valve 6 .
  • the third solenoid valve 6 When the third solenoid valve 6 is powered on, it connects the second solenoid valve 5 and the air; when it is powered off, it connects the second solenoid valve 5 and the second gas sensor 7 .
  • the fourth solenoid valve 9 When the fourth solenoid valve 9 is powered off, it connects the air to the first solenoid valve 2 , and when it is powered on, it connects the gas storage unit 8 and the first solenoid valve 2 .
  • the end-tidal collection device 100 does not require the patient to actively inflate when collecting end-tidal gas.
  • the air pump is always pumping air. As long as the exhalation collection unit is placed at the patient's mouth and nose, the patient's exhaled gas can be continuously extracted, and then high-concentration CO2 gas is collected through the back air path, and a carbon dioxide sensor is used for measurement. Calibration is performed to obtain the CO2 concentration of end-tidal gas.
  • the embodiment of the present application takes the collection of high-concentration CO 2 as an example for illustration.
  • the end-tidal collection device 100 provided by the embodiment of the present application includes, but is not limited to, collection of high-concentration CO 2 .
  • the end-tidal collection device 100 can also be used to collect CO, N 2 , O 2 , etc. in the end-tidal gas.
  • the end-tidal collection device 100 includes an air inlet pipe 1, a second solenoid valve 5, an air pump 3, a first gas sensor 4 and an air path delay unit 11.
  • the second solenoid valve 5 is connected to the air intake pipe 1;
  • the air pump 3 is installed behind the air intake pipe 1, and the air pump 3 is used to provide the gas flow rate in the pipe and extract exhaled breath;
  • the first gas sensor 4 is installed between the air intake pipe 1 and the Between the two solenoid valves 4, the first gas sensor 4 is used to detect the exhalation stage of the human body in real time;
  • the gas path delay unit 11 is disposed between the first gas sensor 4 and the second solenoid valve 5, and the gas path delay unit 11 is used for In order to offset the response delay time of the first gas sensor 4, the expiration phase of the second solenoid valve 5 is synchronized with the expiration phase output by the first gas sensor 4.
  • This solution can determine the current exhalation stage by judging the current carbon dioxide concentration through the carbon dioxide sensor, thereby controlling the first solenoid valve 2, the second solenoid valve 5, the third solenoid valve 6 and the fourth solenoid valve 9 to switch valves. , to achieve the purpose of automatically collecting end-tidal gas without human control, thereby reducing the difficulty of collecting end-tidal gas.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Physiology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种呼气末采集装置(100),包括进气管(1)、第二电磁阀(5)、气泵(3)、第一气体传感器(4)和气路延时单元(11)。其中,第二电磁阀(5)与进气管(1)连通;气泵(3)设置于进气管(1)之后,气泵(3)用于提供管路中的气体流速,抽取呼气;第一气体传感器(4)设置于进气管(1)与第二电磁阀(5)之间,第一气体传感器(4)用于实时检测人体呼气阶段;气路延时单元(11)设置于第一气体传感器(4)与第二电磁阀(5)之间,气路延时单元(11)用于抵消第一气体传感器(4)的响应延迟时间,使得第二电磁阀(5)的呼气相位与第一气体传感器(4)输出的呼气相位同步,可以增加呼气末气体的采集的精准度。

Description

一种呼气末采集装置 技术领域
本申请涉及呼气采集技术领域,具体涉及一种呼气末采集装置。
背景技术
呼气末气体的自动采集技术是呼气分子诊断仪器在婴儿和身体虚弱病人上应用的技术难点。它的准确性对人类健康有重要应用,例如呼气末一氧化碳可以用来鉴别新生儿溶血性的高胆红素血症。Vreman等人专利(US4831024)采用监测新生儿的胸部起伏判断呼气阶段,从而采集新生儿的呼气末气体,但该方法需同时观察新生儿的鼻孔和胸部起伏,对操作人员的要求较高。后面也出现了利用温度传感器(201610147517.2)等其它传感器作为敏感原件的呼气末气体采集装置。由于温度传感器的响应速度过慢,即时性较差。因此,二氧化碳传感器作为呼气相监测传感器是当前的主流方案。
美国纳图斯(Natus)(美国专利6544190)描述的技术中,通过测量跨数个呼吸的呼出气体的所有区段的平均CO和二氧化碳,接着通过转移函数获得呼气末CO浓度值。此技术有数个限制,例如采集到的CO浓度较低,对CO传感器的要求较高,其次由于转移函数不能够适应将可能遇到的各种各样的临床情形而造成的潜在不准确性。美国卡普尼亚公司的新生儿呼气末一氧化碳检测仪(CoSense)描述的技术(美国专利61/872415,PCT/US 2012/071085)中,采用电磁阀前置、泵后置的方式,抽取呼气末气体进入气管或气室。深圳市先亚生物科技有限公司专利(202010011846.0)提出通过二氧化碳传感器和可调速真空泵,针对不同年龄人群设置不同的流速,采集呼气末气体。
技术问题
目前技术中,没有考虑到二氧化碳传感器的延时问题,尤其是大气体流量下,延时问题导致的相位失配越严重。
技术解决方案
本申请实施例提供了一种呼气末采集装置,可以降低呼气末气体的采集难度。
本申请实施例提供了一种呼气末采集装置,包括:
进气管;
第二电磁阀,所述第二电磁阀与所述进气管连通;
气泵,所述气泵设置于所述进气管之后,所述气泵用于提供管路中的气体流速,抽取呼气;
第一气体传感器,所述第一气体传感器设置于所述进气管与第二电磁阀之间,所述第一气体传感器用于实时检测人体呼气阶段;
气路延时单元,所述气路延时单元设置于所述第一气体传感器与第二电磁阀之间,所述气路延时单元用于抵消所述第一气体传感器的响应延迟时间,使得所述第二电磁阀的呼气相位与所述第一气体传感器输出的呼气相位同步。
在本申请实施例提供的呼气末采集装置中,所述呼气末采集装置还包括第一电磁阀、第三电磁阀、第二气体传感器、第四电磁阀和气体存储单元,所述第一电磁阀设置于所述进气管和所述气泵之间,所述第二气体传感器设置于所述第二电磁阀远离所述气路延时单元的一侧,所述第三电磁阀设置于所述第二电磁阀与所述第二气体传感器之间,所述第一电磁阀和所述第二电磁阀分别与所述第四电磁阀连接,所述气体存储单元连接于所述第二电磁阀和所述第四电磁阀之间。
在本申请实施例提供的呼气末采集装置中,所述第一电磁阀与所述第四电磁阀之间连接有一限流单元。
在本申请实施例提供的呼气末采集装置中,所述第一气体传感器为二氧化碳传感器。
在本申请实施例提供的呼气末采集装置中,所述第二气体传感器为一氧化碳传感器。
在本申请实施例提供的呼气末采集装置中,所述第三电磁阀为三 通阀,所述第三电磁阀的其中一个阀门外接空气。
在本申请实施例提供的呼气末采集装置中,所述第四电磁阀为三通阀,所述第四电磁阀的其中一个阀门外接空气。
在本申请实施例提供的呼气末采集装置中,所述呼气末采集装置还包括呼气采集单元,所述呼气采集单元与所述进气管连接。
在本申请实施例提供的呼气末采集装置中,所述呼气采集单元为鼻导管或呼气面罩。
在本申请实施例提供的呼气末采集装置中,所述限流单元为限流阀或毛细管。
有益效果
本实用新型的有益效果是:本申请实施例提供的呼气末采集装置包括进气管、第二电磁阀、气泵、第一气体传感器和气路延时单元。其中,所述第二电磁阀与所述进气管连通;所述气泵设置于所述进气管之后,所述气泵用于提供管路中的气体流速,抽取呼气;所述第一气体传感器设置于所述进气管与第二电磁阀之间,所述第一气体传感器用于实时检测人体呼气阶段;所述气路延时单元设置于所述第一气体传感器与第二电磁阀之间,所述气路延时单元用于抵消所述第一气体传感器的响应延迟时间,使得所述第二电磁阀的呼气相位与所述第一气体传感器输出的呼气相位同步。本方案可以降低呼气末气体的采集难度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的呼气末采集装置的结构示意图。
图2是本申请实施例提供的呼气末采集装置的另一结构示意图。
本实用新型的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通,可以是无线连接,也可以是有线连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,上面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
本申请实施例提供了一种呼气末气体采集装置,以下将分别进行详细说明。
请参阅图1,图1是本申请实施例提供的呼气末采集装置的结构示意图。该呼气末采集装置100可以包括进气管1、第二电磁阀5、气泵3、第一气体传感器4和气路延时单元11。
其中,第二电磁阀5与进气管1连通;气泵3设置于进气管1之后, 气泵3用于提供管路中的气体流速,抽取呼气;第一气体传感器4设置于进气管1与第二电磁阀5之间,第一气体传感器4用于实时检测人体呼气阶段;气路延时单元11设置于第一气体传感器4与第二电磁阀5之间,气路延时单元11用于抵消第一气体传感器4的响应延迟时间,使得第二电磁阀5的呼气相位与第一气体传感器4输出的呼气相位同步。
可以理解的是,上述装置仅可以用于采集呼气末气体。在一些实施例中,为了实现对呼气末气体的检测,该呼气末采集装置100还可以包括第一电磁阀2、第三电磁阀6、第二气体传感器7、第四电磁阀9和气体存储单元8。其中,第一电磁阀2设置于进气管1和气泵3之间。第二气体传感器7设置于第二电磁阀5远离气路延时单元11的一侧。第三电磁阀6设置于第二电磁阀5与第二气体传感器7之间。第一电磁阀2和第二电磁阀5分别与第四电磁阀9连接。气体存储单元8连接于第二电磁阀5和第四电磁阀9之间。
在一些实施例中,该呼气末采集装置还可以包括控制单元(图中未示出)。其中,该控制单元分别与第二电磁阀5、气泵3、第一气体传感器4、第一电磁阀2、第三电磁阀6、第二气体传感器7、第四电磁阀9电连接,用于对第二电磁阀5、气泵3、第一气体传感器4、第一电磁阀2、第三电磁阀6、第二气体传感器7、第四电磁阀9进行控制。
需要说明的是,本实施例通过增加气路延时单元11的方式可以弥补第一气体传感器4的响应延迟时间、控制单元的响应时间和电磁阀的响应时间,使其准确采集到高二氧化碳浓度的呼出气。在测量肺泡气浓度时,再使用二氧化碳传感器检测二氧化碳浓度,对目标气体浓度进行修正,弥补采气时可能采集到非呼气末气体产生的误差。
比如,泵提供的流速为k=400mL/min时,呼气末的气体流经第一气体传感器4时,由于第一气体传感器4存在响应延时时间T 1(以二氧化碳传感器为例,t 1≈200ms),此时,设置气路延时单元的容积为V=1.33mL,气路延时时间t 2=V/k=200ms,与第一气体传感器延时时间 相当,从而当根据第一气体传感器信号让第二电磁阀5切阀时,时间相位差尽量为零。可以理解的是,第一气体传感器4的响应延时时间是一种广义的概念,它还应包括微处理的响应时间、第二电磁阀的响应时间。为了减少不同呼气相气体在气路延时单元内的混合,一般来说,气路延时单元的流量截面积应尽量小。以圆截面的管为例,直径为4mm的管子作为气路延时单元时,V=1.33mL对应的管长度为10.6cm。若采用直径更小的管子作为气路延时单元时,管的长度将更长。在工程实现时,需要兼顾物理空间和气路阻力因素,做出权衡。
在本实施例中,第一气体传感器4为二氧化碳传感器。第二气体传感器7为一氧化碳传感器。第三电磁阀6为三通阀,第三电磁阀6的其中一个阀门外接空气。第四电磁阀9为三通阀,第四电磁阀9的其中一个阀门外接空气。
可以理解的是,呼气末气体采集时的流速与测量时候的流速可能不一样,导致第二气体传感器7的测量不准确。
对此,如图2所示,本实施例在第一电磁阀2与第四电磁阀9之间连接了一限流单元10。通过该限流单元10控制测量时气体的流速。这样采气的时候可以采用大流速缩短采气时间,测量的时候通过限流单元10控制气体的流速,从而提高第二气体传感器7测量的准确性。
其中,该限流单元10可以为限流阀或毛细管。
在一些实施例中,该呼气末采集装置100还可以包括呼气采集单元。该呼气采集单元与进气管1连接。其中,该呼气采集单元可以为鼻导管或呼气面罩等。
在具体实施过程中,该呼气末采集装置100可以以下三个阶段:
第一、在吸气或者呼出来的是腔道气时,第一电磁阀2通电,第二电磁阀5断电,第四电磁阀9断电,第三电磁阀6通电,气泵3通电。呼出来的气体依次流经进气管1、第一电磁阀2、气泵3、第一气体传感器4、粗气管,第二电磁阀5和第三电磁阀6,最后通过第三电磁阀6的其中一个阀门排出到空气。
第二、在呼出肺泡气时,第一电磁阀2通电,第二电磁阀5通电,第四电磁阀9断电,第三电磁阀6通电,气泵3通电。呼出来的气体依次流经呼气采集单元、第一电磁阀2、气泵3、第一气体传感器4、粗气管和第二电磁阀5最后通过该第二电磁阀5流入气体存储单元8。
第三、测量空气时,第一电磁阀2断电,第二电磁阀5断电,第四电磁阀9断电,第三电磁阀6断电,气泵3通电。空气中的气体依次流经第四电磁阀9、第一电磁阀2、气泵3、第一气体传感器4、粗气管、第二电磁阀5、和第三电磁阀6,最后到达第二气体传感器7。
第四、测量肺泡气时,第一电磁阀2断电,第二电磁阀5断电,第四电磁阀9通电,第三电磁阀6断电,气泵3通电。气体存储单元8中的气体依次流经第四电磁阀9、第一电磁阀2、气泵3、第一气体传感器4、粗气管、第二电磁阀5和第三电磁阀6,最后到达第二气体传感器7。
需要说明的是,在本实施例中,第一电磁阀2通电即为导通进气管1和气泵3,断电即为导通进气管1和第四电磁阀9。第二电磁阀5通电即为导通第一气体传感器4和气体存储单元8,断电即为导通第一气体传感器4和第三电磁阀6。第三电磁阀6通电即为导通第二电磁阀5和空气,断电即为导通第二电磁阀第二电磁阀5和第二气体传感器7。第四电磁阀9断电即为导通空气与第一电磁阀2,通电即为导通气体存储单元8与第一电磁阀2。
本实施例提供的呼气末采集装置100在采集呼气末气体时不需要病人主动吹气。气泵一直在抽气,只要将呼气采集单元放到病人的口鼻处,就可以一直抽取病人呼出来的气体,再通过后面的气路采集高浓度的CO 2气体,测量时再使用二氧化碳传感器进行校准,即可得到呼气末气体的CO 2浓度。
需要说明的是,本申请实施例是通过采集高浓度CO 2为例进行举例说明。本申请实施例提供的呼气末采集装置100包括但不限于采集高浓度CO 2。比如,该呼气末采集装置100还可以用于采集呼气末气体中的CO、N 2、O 2等。
可以理解的是,在需要采集呼气末中除CO 2之外的其他气体时,可以通过更换对应的气体传感器和/或调整气体传感器的位置来实现。也即,通过本申请的核心思想进行简单替换或变换得到的其他方案也在本申请的保护范围之内,在此不再一一赘述。
综上,本申请实施例提供的呼气末采集装置100包括进气管1、第二电磁阀5、气泵3、第一气体传感器4和气路延时单元11。其中,第二电磁阀5与进气管1连通;气泵3设置于进气管1之后,气泵3用于提供管路中的气体流速,抽取呼气;第一气体传感器4设置于进气管1与第二电磁阀4之间,第一气体传感器4用于实时检测人体呼气阶段;气路延时单元11设置于第一气体传感器4与第二电磁阀5之间,气路延时单元11用于抵消第一气体传感器4的响应延迟时间,使得第二电磁阀5的呼气相位与第一气体传感器4输出的呼气相位同步。本方案可以通过二氧化碳传感器对当前二氧化碳浓度的浓度进行判断来确定当前的呼气阶段,从而控制控制第一电磁阀2、第二电磁阀5、第三电磁阀6和第四电磁阀9切阀,达到自动采集呼气末气体的目的,无需人为控制,从而降低了呼气末气体的采集难度。
以上对本申请实施例所提供的呼气末采集装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种呼气末采集装置,其特征在于,包括:
    进气管;
    第二电磁阀,所述第二电磁阀与所述进气管连通;
    气泵,所述气泵设置于所述进气管之后,所述气泵用于提供管路中的气体流速,抽取呼气;
    第一气体传感器,所述第一气体传感器设置于所述进气管与第二电磁阀之间,所述第一气体传感器用于实时检测人体呼气阶段;
    气路延时单元,所述气路延时单元设置于所述第一气体传感器与第二电磁阀之间,所述气路延时单元用于抵消所述第一气体传感器的响应延迟时间,使得所述第二电磁阀的呼气相位与所述第一气体传感器输出的呼气相位同步。
  2. 如权利要求1的所述的呼气末采集装置,其特征在于,所述呼气末采集装置还包括第一电磁阀、第三电磁阀、第二气体传感器、第四电磁阀和气体存储单元,所述第一电磁阀设置于所述进气管和所述气泵之间,所述第二气体传感器设置于所述第二电磁阀远离所述气路延时单元的一侧,所述第三电磁阀设置于所述第二电磁阀与所述第二气体传感器之间,所述第一电磁阀和所述第二电磁阀分别与所述第四电磁阀连接,所述气体存储单元连接于所述第二电磁阀和所述第四电磁阀之间。
  3. 如权利要求1所述的呼气末采集装置,其特征在于,所述第一电磁阀与所述第四电磁阀之间连接有一限流单元。
  4. 如权利要求1所述的呼气末采集装置,其特征在于,所述第一气体传感器为二氧化碳传感器。
  5. 如权利要求1所述的呼气末采集装置,其特征在于,所述第二气体传感器为一氧化碳传感器。
  6. 如权利要求1所述的呼气末采集装置,其特征在于,所述第三电磁阀为三通阀,所述第三电磁阀的其中一个阀门外接空气。
  7. 如权利要求1所述的呼气末采集装置,其特征在于,所述第四 电磁阀为三通阀,所述第四电磁阀的其中一个阀门外接空气。
  8. 如权利要求1所述的呼气末采集装置,其特征在于,所述呼气末采集装置还包括呼气采集单元,所述呼气采集单元与所述进气管连接。
  9. 如权利要求8所述的呼气末采集装置,其特征在于,所述呼气采集单元为鼻导管或呼气面罩。
  10. 如权利要求2所述的呼气末采集装置,其特征在于,所述限流单元为限流阀或毛细管。
PCT/CN2022/121330 2022-06-14 2022-09-26 一种呼气末采集装置 WO2023240832A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221488097.1 2022-06-14
CN202221488097.1U CN218035914U (zh) 2022-06-14 2022-06-14 一种呼气末采集装置

Publications (1)

Publication Number Publication Date
WO2023240832A1 true WO2023240832A1 (zh) 2023-12-21

Family

ID=84376631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121330 WO2023240832A1 (zh) 2022-06-14 2022-09-26 一种呼气末采集装置

Country Status (2)

Country Link
CN (1) CN218035914U (zh)
WO (1) WO2023240832A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070167853A1 (en) * 2002-01-22 2007-07-19 Melker Richard J System and method for monitoring health using exhaled breath
CN105101873A (zh) * 2013-02-12 2015-11-25 卡普尼亚公司 用于呼吸气体分析的采样和存储注册装置
CN106456053A (zh) * 2014-03-20 2017-02-22 卡普尼亚公司 用于气道疾病评估的呼出气的选择、分段及分析
CN113777243A (zh) * 2021-09-27 2021-12-10 惠雨恩科技(深圳)有限公司 肺泡气气体浓度检测装置及方法
CN113777244A (zh) * 2021-09-27 2021-12-10 惠雨恩科技(深圳)有限公司 分离气道的肺泡气浓度检测装置及方法
CN114469063A (zh) * 2013-08-30 2022-05-13 卡普尼亚公司 新生儿二氧化碳测量系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070167853A1 (en) * 2002-01-22 2007-07-19 Melker Richard J System and method for monitoring health using exhaled breath
CN105101873A (zh) * 2013-02-12 2015-11-25 卡普尼亚公司 用于呼吸气体分析的采样和存储注册装置
CN114469063A (zh) * 2013-08-30 2022-05-13 卡普尼亚公司 新生儿二氧化碳测量系统
CN106456053A (zh) * 2014-03-20 2017-02-22 卡普尼亚公司 用于气道疾病评估的呼出气的选择、分段及分析
CN113777243A (zh) * 2021-09-27 2021-12-10 惠雨恩科技(深圳)有限公司 肺泡气气体浓度检测装置及方法
CN113777244A (zh) * 2021-09-27 2021-12-10 惠雨恩科技(深圳)有限公司 分离气道的肺泡气浓度检测装置及方法

Also Published As

Publication number Publication date
CN218035914U (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
EP2383008B1 (en) Arrangement for maintaining volume of breathing gas in a desired level
US20190076053A1 (en) Method and device for measuring a component in exhaled breath
US5072737A (en) Method and apparatus for metabolic monitoring
US6599252B2 (en) Method and apparatus for anatomical deadspace measurement
US20150025407A1 (en) Devices and methods for generating an artificial exhalation profile
US20130218040A1 (en) Apparatus, arrangent and method for analyzing breathing gas flowing along a breathing tubing for subject breathing
WO2019094680A1 (en) Oxygen consumption and energy expenditure monitoring
CN114652298B (zh) 一种气体检测系统及其控制方法
JP7214196B2 (ja) 副流呼吸ガス監視システム
WO2023046170A1 (zh) 肺泡气气体浓度检测装置
CN218391088U (zh) 一种多呼吸道的气体检测系统
WO2023046169A1 (zh) 分离气道的肺泡气浓度检测装置及方法
CN111658918A (zh) 一种多呼吸指标同步测量系统及方法
WO2020103281A1 (zh) 呼出气体检测设备及检测方法
WO2016082088A1 (zh) 人类呼吸系统功能的测量装置及方法
WO2018041068A1 (zh) 用于肺功能检测的流量传感器、肺功能仪及检测方法和应用
WO2023240832A1 (zh) 一种呼气末采集装置
CN106289889B (zh) 一种对口与鼻呼气分子同时采样与分析装置
EP2606820B1 (en) Airway adapter and analyzer and method for analyzing at least one property of a respiratory gas
US20110067480A1 (en) Method and arrangement for determining sample flow volume
WO2023155612A1 (zh) 一种多呼吸道的气体检测系统及其控制方法
JP2005506136A (ja) 人工呼吸器デッドスペースの排除のための連続ガス漏出
CN215841050U (zh) 一种可行呼气末二氧化碳监测的鼻导管吸氧装置
CN203139311U (zh) 用于监测患者呼吸频率的吸氧管
CN207923877U (zh) 一种不需要控制呼气流量的呼出气一氧化氮测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946505

Country of ref document: EP

Kind code of ref document: A1