WO2022141247A1 - 超声成像设备和弹性参数的显示方法 - Google Patents

超声成像设备和弹性参数的显示方法 Download PDF

Info

Publication number
WO2022141247A1
WO2022141247A1 PCT/CN2020/141616 CN2020141616W WO2022141247A1 WO 2022141247 A1 WO2022141247 A1 WO 2022141247A1 CN 2020141616 W CN2020141616 W CN 2020141616W WO 2022141247 A1 WO2022141247 A1 WO 2022141247A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse wave
wave propagation
target parameter
cardiac cycle
systole
Prior art date
Application number
PCT/CN2020/141616
Other languages
English (en)
French (fr)
Inventor
郭跃新
李双双
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN202080102763.0A priority Critical patent/CN115802949A/zh
Priority to PCT/CN2020/141616 priority patent/WO2022141247A1/zh
Publication of WO2022141247A1 publication Critical patent/WO2022141247A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/04Measuring blood pressure

Definitions

  • the application relates to the field of medical devices, and in particular, to an ultrasonic imaging device and a method for displaying elastic parameters.
  • Cardiac cycle refers to the process experienced by the cardiovascular system from the beginning of one heartbeat to the beginning of the next heartbeat.
  • a cardiac cycle can be divided into eight phases.
  • the blood pressure, blood vessel diameter and blood vessel elasticity are different in different phases, showing a cyclical dynamic change, and the change trend is similar (Figure 1), and all three are rapidly changing. It peaks at the end of the ejection phase and then gradually declines.
  • Pulse wave imaging technology is an important means of clinical vascular sclerosis detection.
  • Pulse wave is a pulsed mechanical wave that pulses along the radial direction and propagates along the axial direction generated by the pumping of the heart on the blood vessel wall (as shown in Figure 2).
  • the pulse wave is specifically expressed as two vasodilations when the left ventricle starts to pump blood (rapid ejection phase) and when pumping ends (pre-diastole).
  • the two dilations are generally marked as the pulse wave in the early systole (Begin of systole, BS) and late systole (End of systole, ES), and the pulse wave propagates along the artery from the proximal end to the distal end.
  • the pulse wave velocity (PWV) has been shown to be positively correlated with the arterial wall stiffness at this moment. The velocities of the two pulse waves are recorded and provided to the clinician to determine the degree of arterial stiffness.
  • the current vascular pulse wave imaging technology displays the pulse wave propagation process, it adopts a spatio-temporal diagram independent of the traditional ultrasound B-map ( Figure 3): the X-axis represents time, the Y-axis represents the horizontal position of the blood vessel, and the color represents pulsatile information of the vessel wall. At the same time, the magnitude of the pulse wave velocity is expressed in the form of numbers.
  • the defects of this display method are: the spatiotemporal map lacks intuition in expressing time information, and cannot well show the correlation between the pulse wave occurrence period and the corresponding time phase.
  • the present application mainly provides an ultrasonic imaging device and a method for displaying elastic parameters, aiming at enhancing the correlation between the elastic parameters and the cardiac cycle.
  • a first aspect of the present application provides a method for displaying elasticity parameters, including:
  • the target parameter trend graph, the pulse wave propagation velocity corresponding to the start of systole and the pulse wave propagation velocity corresponding to the end of systole are displayed on the display interface, and marked on the corresponding positions of the target parameter trend graph respectively.
  • a second aspect of the present application provides a method for displaying elasticity parameters, including:
  • a third aspect of the present application provides an ultrasonic imaging device, including:
  • a transmitting circuit used to excite the ultrasonic probe to transmit ultrasonic waves to the target blood vessel
  • a receiving circuit used for controlling the ultrasonic probe to receive the echo of the ultrasonic wave returned from the detected blood vessel to obtain the echo signal
  • Human-computer interaction device for visual output and obtaining user input
  • a processor configured to acquire ultrasound echo data of at least one cardiac cycle of the target blood vessel; generate a trend graph of target parameters for reflecting the at least one cardiac cycle according to the ultrasound echo data, or acquire from an external device for A trend graph reflecting the target parameter of the at least one cardiac cycle; obtaining the pulse wave propagation velocity corresponding to the systolic start time in the at least one cardiac cycle and the contraction in the at least one cardiac cycle according to the ultrasonic echo data
  • the pulse wave propagation velocity corresponding to the end of the systolic period is controlled by the human-computer interaction device to display the trend graph of the target parameter, the pulse wave propagation velocity corresponding to the beginning of the systolic period and the pulse wave propagation velocity corresponding to the end of the systolic period on the display interface. , and respectively mark the systolic period start time and the systolic period end time corresponding to the pulse wave propagation velocity on the corresponding positions of the target parameter trend graph.
  • a fourth aspect of the present application provides an ultrasonic imaging device, including:
  • a transmitting circuit used to excite the ultrasonic probe to transmit ultrasonic waves to the target blood vessel
  • a receiving circuit used for controlling the ultrasonic probe to receive the echo of the ultrasonic wave returned from the detected blood vessel to obtain the echo signal
  • Human-computer interaction device for visual output and obtaining user input
  • a processor configured to acquire ultrasound echo data of at least one cardiac cycle of the target blood vessel; generate a trend graph of target parameters for reflecting the at least one cardiac cycle according to the ultrasound echo data, or acquire from an external device for Reflecting the trend graph of the target parameter of the at least one cardiac cycle; obtaining the elastic parameter corresponding to the start time of the systole in the at least one cardiac cycle and the end of the systole in the at least one cardiac cycle according to the ultrasonic echo data
  • the elastic parameter corresponding to the time control the human-computer interaction device to display the target parameter trend graph, the elastic parameter corresponding to the systolic start time and the elastic parameter corresponding to the systolic end time on the display interface, and display the target parameter trend graph on the display interface.
  • the corresponding position of the systolic period corresponding to the elastic parameter is marked with the systolic period start time and the systolic period end time.
  • a fifth aspect of the present application provides an ultrasonic imaging device, including:
  • a processor for executing the program to implement the method as described above.
  • the ultrasonic echo data of at least one cardiac cycle of the target blood vessel and the trend graph of the target parameter used to represent the at least one cardiac cycle are obtained;
  • display the target parameter trend graph, systolic phase on the display interface The pulse wave propagation velocity corresponding to the start time and the pulse wave propagation speed corresponding to the systolic end time, and the systolic start time and systolic period corresponding to the above pulse wave propagation speed are marked on the corresponding positions of the target parameter trend graph respectively.
  • the change trend of the target parameter in the target parameter trend graph reflects the cardiac cycle, combined with the systolic start time and systolic end time corresponding to the pulse wave propagation velocity marked in the target parameter trend graph, and the corresponding pulse wave propagation
  • the velocity can intuitively reflect the correlation between the pulse wave propagation velocity and the cardiac cycle corresponding to the two moments.
  • Figure 1 is a graph of changes in tube diameter and blood pressure in a single cardiac cycle
  • Fig. 2 is a schematic diagram of pulse wave propagation
  • FIG. 3 is a spatiotemporal diagram displayed by an existing ultrasound imaging device
  • FIG. 4 is a structural block diagram of an embodiment of an ultrasonic imaging device provided by the present invention.
  • FIG. 5 is a flowchart of an embodiment of a method for displaying elasticity parameters provided by the present invention.
  • FIG. 6 is a flowchart of an embodiment of a method for displaying elasticity parameters provided by the present invention.
  • FIG. 7 is a trend diagram of target parameters in an embodiment of the ultrasonic imaging device provided by the present invention.
  • connection and “connection” mentioned in this application, unless otherwise specified, include both direct and indirect connections (connections).
  • the ultrasonic imaging device and the elastic parameter display method provided by the present application can be applied to the human body, and can also be applied to various animals.
  • the present application proposes a new elastic parameter display scheme.
  • the correlation between the elastic parameters and the cardiac cycle is enhanced through the target parameter trend graph that can reflect the cardiac cycle; Vascular elasticity at the target moment can also be assessed.
  • the following is a detailed description through some embodiments.
  • the ultrasonic imaging device includes an ultrasonic probe 30, a transmitting/receiving circuit 40 (ie, a transmitting circuit 410 and a receiving circuit 420), a beam forming module 50, an IQ demodulation module 60, a processor 20, Human-computer interaction device 70 and memory 80 .
  • the ultrasonic probe 30 includes a transducer (not shown in the figure) composed of a plurality of array elements arranged in an array.
  • the array elements can also form a convex array.
  • the array element is used to transmit ultrasonic waves according to the excitation electrical signal, or convert the received ultrasonic waves into electrical signals. Therefore, each array element can be used to realize mutual conversion between electrical pulse signals and ultrasonic waves, so as to transmit ultrasonic waves to the object to be imaged (eg, arterial blood vessels in this embodiment), and can also be used to receive echoes of ultrasonic waves reflected by tissues.
  • the transmitting circuit 410 and the receiving circuit 420 can control which array elements are used for transmitting ultrasonic waves and which array elements are used for receiving ultrasonic waves, or control the array elements for transmitting ultrasonic waves or receiving ultrasonic echoes in time slots.
  • the array elements participating in ultrasonic emission can be excited by electrical signals at the same time, thereby transmitting ultrasonic waves at the same time; or the array elements participating in ultrasonic emission can also be excited by several electrical signals with a certain time interval, so as to continuously emit ultrasonic waves with a certain time interval.
  • the array element uses piezoelectric crystals, for example, to convert electrical signals into ultrasonic signals according to the transmission sequence transmitted by the transmitting circuit 410.
  • the ultrasonic signals may include one or more scan pulses, one or more reference pulses, one or more push pulses. pulses and/or one or more Doppler pulses.
  • Ultrasound signals include focused waves, plane waves, and diverging waves, depending on the wave shape.
  • the user selects an appropriate position and angle by moving the ultrasonic probe 30 to transmit ultrasonic waves to the object to be imaged 10 and receive the echoes of the ultrasonic waves returned by the object to be imaged 10 to output ultrasonic echo signals.
  • the channel formed by the channel simulates an electrical signal, which carries amplitude information, frequency information and time information.
  • the transmitting circuit 410 is used to generate a transmitting sequence according to the control of the processor 20, and the transmitting sequence is used to control some or all of the multiple array elements to transmit ultrasonic waves to the object to be imaged. and ultrasonic beam launch parameters (such as amplitude, frequency, number of shots, shot interval, shot angle, wave pattern, focus position, etc.). In some cases, the transmitting circuit 410 is also used to delay the phase of the transmitted beam, so that different transmitting array elements transmit ultrasonic waves at different times, so that each transmitted ultrasonic beam can be focused in a predetermined area of interest. Different working modes, such as B image mode, C image mode and D image mode (Doppler mode), may have different transmission sequence parameters.
  • the echo signal is received by the receiving circuit 420 and processed by subsequent modules and corresponding algorithms, it can be A B image reflecting tissue anatomy, a C image reflecting blood flow information, and a D image reflecting Doppler spectrum image are generated.
  • the receiving circuit 420 is used for receiving ultrasonic echo signals from the ultrasonic probe 30 and processing the ultrasonic echo signals.
  • Receive circuit 420 may include one or more amplifiers, analog-to-digital converters (ADCs), and the like.
  • the amplifier is used to amplify the received echo signal after proper gain compensation, and the amplifier is used to sample the analog echo signal at a predetermined time interval, thereby converting it into a digitized echo signal, and the digitized echo signal is still retained There is amplitude information, frequency information and phase information.
  • the data output by the receiving circuit 420 may be output to the beam forming module 50 for processing, or output to the memory 80 for storage.
  • the beamforming module 50 is connected to the receiving circuit 420 signals, and is used to perform beamforming processing such as corresponding delay and weighted summation on the echo signals. Because the distances from the ultrasonic receiving points in the tested tissue to the receiving array elements are different, therefore, The channel data of the same receiving point output by different receiving array elements has delay differences, so it is necessary to perform delay processing, align the phases, and perform weighted summation of the different channel data of the same receiving point to obtain the ultrasonic image data after beam synthesis.
  • the ultrasound image data output by the beamforming module 50 is also referred to as radio frequency data (RF data).
  • the beam forming module 50 outputs the radio frequency data to the IQ demodulation module 60 . In some embodiments, the beam forming module 50 may also output the radio frequency data to the memory 80 for buffering or saving, or directly output the radio frequency data to the processor 20 for image processing.
  • the beamforming module 50 may implement the above functions in hardware, firmware or software.
  • the beamforming module 50 may include a central controller circuit (CPU) capable of processing input data according to specific logic instructions, one or more microprocessor chips or Any other electronic components, when the beamforming module 50 is implemented in software, that can execute instructions stored on a tangible and non-transitory computer readable medium (eg, memory) to perform beamforming calculations using any suitable beamforming method .
  • the beam forming module 50 may be integrated in the processor 20, or may be set independently, which is not limited in the present invention.
  • the IQ demodulation module 60 removes the signal carrier through IQ demodulation, extracts the tissue structure information contained in the signal, and performs filtering to remove noise.
  • the signal obtained at this time is called a baseband signal (IQ data pair).
  • the IQ demodulation module 60 outputs the IQ data pairs to the processor 20 for image processing.
  • the IQ demodulation module 60 also outputs the IQ data pair to the memory 80 for buffering or saving, so that the processor 20 reads the data from the memory 80 for subsequent image processing.
  • the IQ demodulation module 60 may also use hardware, firmware or software to perform the above functions. In some embodiments, the IQ demodulation module 60 may also be integrated with the beamforming module 50 in one chip.
  • the processor 20 is for a central controller circuit (CPU), one or more microprocessors, a graphics controller circuit (GPU), or any other electronic component configured to be able to process input data according to specific logic instructions, which may Instructions or predetermined instructions perform control on peripheral electronic components, or perform data reading and/or saving on the memory 80, and input data can also be processed by executing programs in the memory 80, such as collecting data according to one or more operating modes.
  • CPU central controller circuit
  • microprocessors e.g., a graphics controller circuit (GPU), or any other electronic component configured to be able to process input data according to specific logic instructions, which may Instructions or predetermined instructions perform control on peripheral electronic components, or perform data reading and/or saving on the memory 80, and input data can also be processed by executing programs in the memory 80, such as collecting data according to one or more operating modes.
  • GPU graphics controller circuit
  • One or more processing operations are performed on the ultrasound data obtained, including but not limited to adjusting or limiting the form of ultrasound waves emitted by the ultrasound probe 30, generating various image frames for subsequent display on the display of the human-computer interaction device 70, or adjusting or Define the content and form displayed on the display, or adjust one or more image display settings displayed on the display (eg, ultrasound images, interface components, locating regions of interest).
  • the acquired ultrasound data may be processed by the processor 20 in real-time during the scan as the echo signals are received, or may be temporarily stored on the memory 80 and processed in quasi-real-time in on-line or off-line operation.
  • the processor 20 controls the operation of the transmitting circuit 410 and the receiving circuit 420, for example, controls the transmitting circuit 410 and the receiving circuit 420 to work alternately or simultaneously.
  • the processor 20 can also determine the appropriate working mode according to the user's selection or the setting of the program, form a transmission sequence corresponding to the current working mode, and send the transmission sequence to the transmission circuit 410, so that the transmission circuit 410 can use the appropriate transmission sequence to control
  • the ultrasonic probe 30 emits ultrasonic waves.
  • the processor 20 is further configured to process the ultrasonic echo signals to generate a grayscale image with varying signal intensity within the scanning range, where the grayscale image reflects the internal anatomical structure of the tissue, which is called a B image.
  • the processor 20 can output the B image to the display of the human-computer interaction device 70 for display.
  • the human-computer interaction device 70 is used for human-computer interaction, that is, receiving user input and outputting visual information; it can receive user input by using a keyboard, operation buttons, mouse, trackball, touchpad, etc., or it can be integrated with a display. A touch screen together; its output visual information can use a display.
  • the display method of its elasticity parameters is shown in FIG. 5 , including the following steps:
  • Step 1 Obtain ultrasound echo data of at least one cardiac cycle of the target blood vessel.
  • the processor 20 controls the transmitting circuit 410 to excite the ultrasonic probe 30 to transmit ultrasonic waves to the target blood vessel 10 .
  • the ultrasonic probe 30 emits ultrasonic waves to the blood vessel 10 to be detected.
  • the receiving circuit 420 controls the ultrasonic probe 30 to receive the echoes of the ultrasonic waves returned from the blood vessels to be detected to obtain echo signals.
  • the echo signal is obtained from the ultrasound probe 30 through the receiving circuit 420, and the ultrasound echo data including at least one cardiac cycle is obtained through certain processing (eg, analog-to-digital conversion, beamforming, etc.).
  • the processor 20 may also directly acquire the ultrasonic echo data from the memory 80, which will not be repeated here.
  • the ultrasonic echo data is the data obtained by beam-synthesizing the ultrasonic echo obtained by taking the blood vessel of the target object as the detection object.
  • Step 2 Generate a target parameter trend graph for representing at least one cardiac cycle according to the ultrasound echo data, or acquire a target parameter trend graph for representing at least one cardiac cycle from an external device.
  • the processor 20 may generate a target parameter trend graph for representing the cardiac cycle according to the ultrasound echo data.
  • the target parameter can be a pulsation parameter reflecting the pulsation of the blood vessel wall (for example, in the radial direction), the velocity of blood flow in the blood vessel, or the blood pressure, all of which can be obtained from ultrasonic echo data, And these parameters are related to the heart beat, and their values change periodically with time, and the change period is the cardiac cycle.
  • the ultrasound imaging device may also include a communication interface (not shown in the figure) for communicating with external devices.
  • the processor 20 may also directly acquire the target parameter trend graph for representing the cardiac cycle from the external device through the communication interface.
  • the trend graph of the target parameter obtained from the external device can be blood pressure or the trend graph of ECG parameters (ECG signal). Even wearable devices are obtained, and these parameters are related to the heart beat, and their values change periodically with time, and the change period is the cardiac cycle.
  • Step 3 Obtain the elastic parameters corresponding to the systolic start time (also called early systolic BS) in at least one cardiac cycle and the systolic end time (also called late systolic ES) in at least one cardiac cycle according to the ultrasonic echo data. ) corresponding elastic parameters.
  • the processor 20 may obtain the elasticity parameter corresponding to the systolic start time in the at least one cardiac cycle and the elasticity parameter corresponding to the systolic end time in the at least one cardiac cycle according to the ultrasonic echo data.
  • the elasticity parameter is a parameter reflecting the elasticity of the blood vessel, and may be, for example, pulse wave propagation velocity, Young's modulus, or compliance.
  • Step 4 Display the target parameter trend graph, the elastic parameter corresponding to the start of systolic period and the elastic parameter corresponding to the end of systolic period on the display interface, and mark the contraction corresponding to the elastic parameter on the corresponding position of the target parameter trend graph. the beginning of the period and the end of the systolic period.
  • the processor 20 controls the human-computer interaction device 70 to display the target parameter trend graph, the elasticity parameter corresponding to the start of systole and the elasticity parameter corresponding to the end of systole on the display interface, and display the target parameter trend graph at the corresponding position of the target parameter trend graph.
  • the systolic start time and systolic end time corresponding to the elastic parameters are marked respectively. Since the change trend of the target parameter in the target parameter trend graph reflects the cardiac cycle, combined with the systolic start time and systolic end time corresponding to the elastic parameter marked in the target parameter trend graph, and the corresponding elastic parameter displayed, It can very intuitively reflect the correlation between the elastic parameters corresponding to the two moments and the cardiac cycle.
  • the ultrasound echo data of the target blood vessel can be acquired for a certain period of time, and the certain period of time can be greater than or equal to one cardiac cycle, which can be set by default by the system or freely adjusted by the user.
  • the ultrasound echo data of a certain period of time the ultrasound echo data of at least one cardiac cycle may be continuously acquired in one cardiac cycle as a unit, or the ultrasound echo data of multiple cardiac cycles may be acquired in segments.
  • the ultrasonic imaging device acquires ultrasonic echo data in real time according to the echo signals obtained by the ultrasonic probe, and the real-time acquisition time is one or more cardiac cycles.
  • the elastic parameter can be pulse wave propagation velocity, Young's modulus or compliance.
  • the following is an example of the elastic parameter being pulse wave propagation velocity.
  • the display method of pulse wave propagation velocity includes the following steps:
  • Step 1' Obtain ultrasound echo data of at least one cardiac cycle of the target blood vessel.
  • the receiving circuit 420 obtains the echo signal from the ultrasound probe 30 and obtains ultrasound echo data including at least one cardiac cycle after certain processing, and the processor 20 obtains the ultrasound echo data of the target blood vessel for at least one cardiac cycle.
  • the processor 20 obtains the ultrasound echo data from the memory. For details, refer to step 1 of the foregoing embodiment, which will not be repeated here.
  • Step 2' Generate a target parameter trend diagram for representing at least one cardiac cycle according to the ultrasound echo data, or acquire a target parameter trend diagram for representing at least one cardiac cycle from an external device.
  • the target parameter is taken as an example to reflect the pulsation parameter of the vascular wall of the blood vessel (for example, in the radial direction).
  • the blood vessel wall mainly beats along the radial direction of the blood vessel.
  • the processor 20 obtains the beat parameters at each moment in the at least one cardiac cycle according to the ultrasonic echo data, and then generates a beat parameter trend graph.
  • the processor 20 obtains the displacement information of the upper vessel wall and/or the lower vessel wall of the blood vessel according to the ultrasonic echo data, and generates the target parameter trend graph according to the displacement information of the upper vessel wall and/or the lower vessel wall of the vessel.
  • the processor 20 detects the position of the blood vessel wall (upper vessel wall and the lower vessel wall) in different frames in at least one cardiac cycle according to the ultrasonic echo data; The radial displacement of each detection point arranged in different time points; according to the radial displacement of each detection point on the blood vessel wall, the beating parameters of each detection point at different time points are obtained.
  • the pulsation parameter may be the vessel diameter, the change speed of the vessel diameter, the change acceleration of the vessel diameter, the displacement of the unilateral vessel wall, the radial motion velocity of the unilateral vessel wall, or the radial motion acceleration of the unilateral vessel wall, and the like.
  • the radial displacement of the detection point of the upper tube wall is subtracted from the radial displacement of the corresponding detection point of the lower tube wall to obtain the diameter change of the blood vessel at the detection point.
  • the radial velocity, the radial acceleration and the change speed and acceleration of the blood vessel diameter can be obtained by calculating the first and second derivatives of the radial displacement and the change of the blood vessel diameter respectively in the time dimension. That is, each parameter in the pulsation parameters can be obtained from the diameter of the blood vessel at different times, so this embodiment takes the diameter of the blood vessel as an example for description.
  • the target parameter trend graph mainly reflects each phase of the cardiac cycle
  • the target parameter trend graph can be generated according to the blood vessel diameter corresponding to one of the detection points (taking the target parameter as the blood vessel diameter as an example, it is the change in the blood vessel diameter). trend graph, as shown in Figure 7).
  • the processor 20 may also acquire the target parameter trend graph for representing the at least one cardiac cycle from an external device.
  • the target parameters obtained from the external device may be the same in time as the above-mentioned ultrasonic echo data, and the target parameter trend graph and the ultrasonic echo data may be collected in the same time period, so that the two can be corresponded in time later.
  • the target parameter trend graph obtained from the external device may be a blood pressure trend graph, an electrocardiogram, or the like.
  • Step 3' Obtain the pulse wave propagation velocity corresponding to the systolic start time in at least one cardiac cycle and the pulse wave propagation speed corresponding to the systolic end time in at least one cardiac cycle according to the ultrasonic echo data.
  • the pulsation parameters of each detection point (at least two points) on the blood vessel wall at different time points can be obtained, and the processor 20 obtains the pulse wave on the blood vessel wall according to the pulsation parameters of each detection point Propagation velocity along the axial direction.
  • the processor 20 detects the first time when the beat parameter of each detection point reaches the first predetermined threshold.
  • the first predetermined threshold can be set according to user needs.
  • the pulsation parameter can be selected as radial displacement
  • the first predetermined threshold can be the smallest of the empirical values of the maximum radial displacement (corresponding to the wave crest). It can also be 50% or more of the empirical value of the maximum radial displacement, etc.
  • the pulse wave in the late systole detect the first time when the pulse parameter of each detection point is in the first predetermined threshold interval and is a maximum value, by setting the maximum value of the first predetermined threshold interval, the peak of the early systolic wave can be excluded, and by Setting the minimum value of the first predetermined threshold interval can cover the maximum value of the late systolic (lower peak in the cardiac cycle), and by judging the maximum value (conventional mathematical method), the pulse wave reflecting the late systolic can be obtained.
  • the pulse wave in the early stage of contraction is used as an example for description.
  • the processor 20 obtains the propagation speed of the pulse wave on the blood vessel wall in the ultrasound image according to the position of each detection point on the blood vessel axis and the first time corresponding to each detection point.
  • the propagation velocity of the pulse wave at each detection point is obtained according to the difference between the positions of the two adjacent detection points in the blood vessel axis and the corresponding first time of the two adjacent detection points.
  • multiple detection points are selected, the more the better within the range of processing capacity, the corresponding relationship between time and space of each detection point is obtained, and a slash is obtained by linear fitting of each point.
  • the slope is the average propagation velocity of the pulse wave in the current cardiac cycle.
  • the propagation velocity of the pulse wave at the beginning of the systolic period (BS) and the end of the systolic period (ES) of the anterior arterial wall, and the propagation velocity of any detection point on the vessel wall , the average propagation velocity of any segment, etc. can be calculated by the above method.
  • the pulse wave propagation velocity in this embodiment may be the pulse wave propagation velocity corresponding to the detection point, or the average pulse wave propagation velocity of the entire blood vessel, as long as it can reflect the elasticity of the blood vessel.
  • the processor 20 may also generate corresponding ultrasound images according to the ultrasound echo data.
  • B imaging two-dimensional or three-dimensional tissue grayscale imaging
  • M imaging and Doppler imaging can also be performed on the blood vessels of the target object.
  • Doppler imaging may include tissue Doppler imaging. (Tissue doppler imaging, TDI) and tissue velocity imaging (Tissue velocity imaging, TVI).
  • Step 4' on the display interface, display the target parameter trend graph, the pulse wave propagation velocity corresponding to the beginning of the systolic period and the pulse wave propagation velocity corresponding to the end of the systolic period, and mark the corresponding positions of the target parameter trend graph respectively.
  • the pulse wave propagation velocity corresponds to the systolic start time and the systolic end time.
  • the trend graph includes one of a curve graph, a line graph, a scatter graph, a histogram, a bar graph, and a boxplot, which can reflect the changing trend of the target parameter over time. This embodiment is described by taking a graph as an example. As shown in FIG.
  • the blood vessel diameter trend graph includes the change curve a of the diameter over time, where the X axis is time, and the Y axis is the diameter.
  • Eight phases of the cardiac cycle (not shown in the figure) can also be marked on the target parameter trend graph, so that the doctor can better grasp the change trend of the target parameter.
  • the systolic start time and the systolic end time can be marked on the coordinate axis, or can be marked on the change curve a as shown in FIG. 7 .
  • the markings of the systolic start time and the systolic end time can be the same or different as shown in Figure 7.
  • the specific marking method is not limited, and the two moments can be marked. Of course, the two can be marked.
  • the pulse wave propagation velocity corresponding to the systolic start time and the systolic end time can be displayed outside the target parameter trend graph and displayed on the same display interface as the target parameter trend graph;
  • the pulse wave propagation velocity PWV BS corresponding to the systolic start time is displayed at the adjacent position of the start time.
  • the systolic end time is marked on the target parameter trend graph, and the systolic end time is displayed at the adjacent position of the systolic end time.
  • the corresponding pulse wave propagation velocity PWV ES It can be seen that compared with the current spatiotemporal diagram (Fig. 3), the tube diameter change curve a better represents each phase in a cardiac cycle, and the pulse wave propagation velocity is marked on the curve, which can intuitively show the relationship between the pulse wave and the pulse wave. Correlation of the corresponding phases of the cardiac cycle.
  • the processor 20 can also display an ultrasound image obtained based on the ultrasound echo data on the display interface through the human-computer interaction device 70, so that the doctor can understand the state of the blood vessel through the ultrasound image while viewing the trend graph of the target parameter.
  • the diameter, blood pressure and vascular elasticity will all change dynamically, and the change trends are similar, that is, during systole, blood pressure increases, diameter increases, and vascular elasticity increases; during diastole Blood pressure decreases, tube diameter decreases, and blood vessel elasticity decreases.
  • the pulse wave occurs only twice in a cardiac cycle, and can only reflect the elasticity of the blood vessels at the moment of occurrence. It can be combined with blood pressure, pulse wave or tube diameter and pulse wave to estimate the elasticity of blood vessels at any time in a cardiac cycle.
  • the tube diameter and the pulse wave are used as examples for description.
  • the target parameter D t at any moment in the above at least one cardiac cycle, the target parameter D BS at the start of the systolic period, and the target parameter DES at the end of the systolic period can be obtained. Furthermore, the processor 20 determines the target parameter D t at any time, the target parameter D BS at the start of systole, the pulse wave propagation velocity PWV BS corresponding to the start of systole, the target parameter DES at the end of systole , The pulse wave propagation velocity PWV ES corresponding to the end of the systolic period is calculated to obtain the pulse wave propagation velocity PWV t corresponding to any moment in the above at least one cardiac cycle, and the display interface of the human-computer interaction device 70 displays the corresponding pulse wave at any moment.
  • Pulse wave propagation velocity PWV t Pulse wave propagation velocity PWV t . It can be seen that the present application can also estimate the elasticity of blood vessels at any time in the cardiac cycle, which is helpful for doctors to evaluate the elasticity of blood vessels everywhere.
  • the target parameter D t at any moment in the above at least one cardiac cycle may be selected by the user based on the target parameter trend graph, or may be input by the user at a corresponding moment, and the processor 20 may select it based on the ultrasonic echo.
  • the target parameter D t at any time in the data output can also be a characteristic time automatically determined by the system (for example, the peak time or trough time of the target parameter in the cardiac cycle, etc.).
  • the pulse wave propagation velocity PWV t corresponding to any moment can also be displayed on the target parameter trend graph, that is, mark any moment on the target parameter trend graph, and display any moment adjacent to the marked moment.
  • the pulse wave propagation velocity PWV t corresponding to a moment Easy for doctors to see.
  • the arbitrary time includes at least one of a time determined according to a user's operation, a time corresponding to the maximum value of the target parameter in the cardiac cycle, and a time corresponding to the minimum value of the target parameter in the cardiac cycle.
  • the arbitrary time includes: the time corresponding to the maximum value of the target parameter in the cardiac cycle and the time corresponding to the minimum value of the target parameter in the cardiac cycle.
  • the time corresponding to the maximum value of the target parameter in the cardiac cycle and the time corresponding to the minimum value of the target parameter in the cardiac cycle can be obtained from the trend curve in the target parameter trend graph, and of course, can also be determined by the user, for example, the processor 20
  • a point selected by the user on the trend curve is received by the human-computer interaction device 70 as the maximum value of the target parameter, and another point selected by the user on the trend curve is received as the minimum value of the target parameter. It can be seen that through the target parameter trend graph, the doctor can not only see the positions of BS and ES in the cardiac cycle, and the corresponding pulse wave propagation speed, but also can see the time corresponding to the extreme value of the target parameter and the pulse wave propagation speed. , provides sufficient information for physicians to assess vascular elasticity and the associated timing.
  • the pulse wave propagation velocity PWV t at the target time is calculated by the following formula:
  • D t is the target parameter at any time
  • DB BS is the target parameter at the start of systole
  • PWV BS is the pulse wave propagation velocity corresponding to the start of systole
  • D ES is the target parameter at the end of systole
  • PWV ES is the pulse wave propagation velocity corresponding to the end of systole.
  • PWV MAX is the pulse wave propagation velocity corresponding to the time corresponding to the maximum value of the target parameter in the cardiac cycle
  • D MAX is the maximum value of the target parameter in the cardiac cycle
  • PWV MIN is the pulse wave propagation velocity corresponding to the time corresponding to the minimum value of the target parameter in the cardiac cycle
  • D MIN is the minimum value of the target parameter in the cardiac cycle.
  • the points on the trend curve in the target parameter trend graph are optional. If the user wants to know the pulse wave propagation speed at which time, click on the target parameter trend graph displayed on the display interface through the human-computer interaction device.
  • the computer interaction device receives the user's selected command, and can obtain any selected moment from the point corresponding to the command, and can obtain the target parameter corresponding to any selected moment according to the selected moment and the trend curve,
  • the pulse wave propagation velocity PWV t corresponding to any selected moment is obtained according to formula 1, and displayed in the target parameter trend graph.
  • the target parameter trend graph can be obtained from ultrasonic echo data, such as the change trend graph of blood vessel diameter and the velocity change trend graph of blood flow, etc.
  • the target parameter trend graph can also be obtained directly from external devices, such as blood pressure change.
  • Young's modulus and compliance can be calculated from the pulse wave propagation velocity and the change in tube diameter, or by the pulse wave propagation velocity and the blood pressure change, in the embodiment where the elastic parameter is Young's modulus or compliance. It is only necessary to add a step of calculating the Young's modulus or compliance according to the pulse wave propagation velocity and the variation of the pipe diameter, or the pulse wave propagation velocity and the blood pressure variation. The propagation velocity is replaced by Young's modulus or compliance, and other contents remain unchanged, which are the same as the above-mentioned embodiments, and are not repeated here.
  • the program can also be stored in a server, another computer, a magnetic disk, an optical disk, a flash disk or a mobile hard disk and other storage media, and saved by downloading or copying
  • the program in the memory is executed by the processor, all or part of the functions in the above embodiments can be implemented.
  • any tangible, non-transitory computer-readable storage medium may be used, including magnetic storage devices (hard disks, floppy disks, etc.), optical storage devices (CD-ROMs, DVDs, Blu Ray disks, etc.), flash memory, and/or the like .
  • These computer program instructions may be loaded on a general purpose computer, special purpose computer or other programmable data processing apparatus to form a machine such that execution of the instructions on the computer or other programmable data processing apparatus may generate means for implementing the specified functions.
  • Computer program instructions may also be stored in a computer-readable memory that instructs a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer-readable memory form a piece of Articles of manufacture, including implementing means for implementing specified functions.
  • Computer program instructions may also be loaded on a computer or other programmable data processing device to perform a series of operational steps on the computer or other programmable device to produce a computer-implemented process such that a process executed on the computer or other programmable device Instructions may provide steps for implementing specified functions.
  • the term “comprising” and any other variations thereof are non-exclusive inclusion, such that a process, method, article or device including a list of elements includes not only those elements, but also not expressly listed or included in the process , method, system, article or other elements of a device.
  • the term “coupled” and any other variations thereof refer to physical connections, electrical connections, magnetic connections, optical connections, communication connections, functional connections, and/or any other connection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声成像设备和弹性参数的显示方法,包括:获取目标血管的心动周期的超声回波数据(1')以及获取用于体现心动周期的目标参数趋势图(2');根据超声回波数据得到心动周期内的收缩期起始时刻和收缩期结束时刻对应的脉搏波传播速度(3');显示目标参数趋势图、收缩期起始时刻和收缩期结束时刻对应的脉搏波传播速度,并在目标参数趋势图的相应位置上分别标记出脉搏波传播速度对应的收缩期起始时刻和收缩期结束时刻(4')。由于目标参数趋势图中目标参数的变化趋势体现了心动周期,结合目标参数趋势图中标记的与脉搏波传播速度对应的收缩期起始时刻和收缩期结束时刻,显示脉搏波传播速度,能直观的体现两个时刻的脉搏波传播速度与心动周期的关联性。

Description

超声成像设备和弹性参数的显示方法 技术领域
本申请涉及医疗器械领域,具体涉及一种超声成像设备和弹性参数的显示方法。
背景技术
心动周期是指从一次心跳起始到下一次心跳起始,心血管系统所经历的过程。一次心动周期可分为八个时相,不同时相下的血压、血管直径和血管弹性均不相同,呈现一个周期式的动态变化,且变化趋势相仿(如图1),三者均在快速射血期的末端达到峰值,之后逐渐下降。
血管脉搏波成像技术是临床血管硬化检测的重要手段。脉搏波是血管壁上由心脏泵血产生的沿径向搏动、沿轴向传播的脉冲式机械波(如图2)。脉搏波具体表现为当左心室开始泵血(快速射血期)、以及泵血结束时(舒张前期)分别产生的两次血管膨胀。两次膨胀一般被标记为收缩早期(Begin of systole,BS)和收缩晚期(End of systole,ES)的脉搏波,脉搏波会沿动脉从近心端向远心端传播。而脉搏波传播速度(PWV)已被证明与该时刻的动脉壁硬度正相关。两次脉搏波的速度会被记录并提供给临床人员用于判断动脉的硬化程度。
当前的血管脉搏波成像技术在显示脉搏波传播过程时,采用的是以独立于传统超声B图的时空图方式(图3):以X轴表示时间,Y轴表示血管的水平位置,颜色表示血管壁的搏动信息。同时以数字的形式表现脉搏波速度的大小。这种显示方式的缺陷有:时空图在表达时间信息上缺乏直观性,不能很好地展现脉搏波发生时期与对应时相的关联性。
发明内容
本申请主要提供一种超声成像设备和弹性参数的显示方法,旨在增强弹性参数与心动周期的关联性。
本申请第一方面提供了一种弹性参数的显示方法,包括:
获取目标血管的至少一个心动周期的超声回波数据;
根据所述超声回波数据生成用于体现所述至少一个心动周期的目标 参数趋势图,或者,从外部设备获取用于体现所述至少一个心动周期的目标参数趋势图;
根据所述超声回波数据得到所述至少一个心动周期内的收缩期起始时刻对应的脉搏波传播速度和所述至少一个心动周期内的收缩期结束时刻对应的脉搏波传播速度;
在显示界面上显示所述目标参数趋势图、收缩期起始时刻对应的脉搏波传播速度和收缩期结束时刻对应的脉搏波传播速度,并在所述目标参数趋势图的相应位置上分别标记出所述脉搏波传播速度对应的所述收缩期起始时刻和所述收缩期结束时刻。
本申请第二方面提供了一种弹性参数的显示方法,包括:
获取目标血管的至少一个心动周期的超声回波数据;
根据所述超声回波数据生成用于体现所述至少一个心动周期的目标参数趋势图,或者,从外部设备获取用于体现所述至少一个心动周期的目标参数趋势图;
根据所述超声回波数据得到所述至少一个心动周期内的收缩期起始时刻对应的弹性参数和所述至少一个心动周期内的收缩期结束时刻对应的弹性参数;
在显示界面上显示所述目标参数趋势图、收缩期起始时刻对应的弹性参数和收缩期结束时刻对应的弹性参数,并在所述目标参数趋势图的相应位置上分别标记出所述弹性参数对应的所述收缩期起始时刻和所述收缩期结束时刻。
本申请第三方面提供了一种超声成像设备,包括:
超声探头;
发射电路,用于激励所述超声探头向目标血管发射超声波;
接收电路,用于控制所述超声探头接收自被检测血管返回的超声波的回波,获得回波信号;
人机交互装置,用于进行可视化输出,以及获取用户的输入;
处理器,用于获取目标血管的至少一个心动周期的超声回波数据;根据所述超声回波数据生成用于体现所述至少一个心动周期的目标参数趋势图,或者,从外部设备获取用于体现所述至少一个心动周期的目标参数趋势图;根据所述超声回波数据得到所述至少一个心动周期内的收缩期起始时刻对应的脉搏波传播速度和所述至少一个心动周期内的收缩 期结束时刻对应的脉搏波传播速度;控在人机交互装置在显示界面上显示所述目标参数趋势图、收缩期起始时刻对应的脉搏波传播速度和收缩期结束时刻对应的脉搏波传播速度,并在所述目标参数趋势图的相应位置上分别标记出所述脉搏波传播速度对应的所述收缩期起始时刻和所述收缩期结束时刻。
本申请第四方面提供了一种超声成像设备,包括:
超声探头;
发射电路,用于激励所述超声探头向目标血管发射超声波;
接收电路,用于控制所述超声探头接收自被检测血管返回的超声波的回波,获得回波信号;
人机交互装置,用于进行可视化输出,以及获取用户的输入;
处理器,用于获取目标血管的至少一个心动周期的超声回波数据;根据所述超声回波数据生成用于体现所述至少一个心动周期的目标参数趋势图,或者,从外部设备获取用于体现所述至少一个心动周期的目标参数趋势图;根据所述超声回波数据得到所述至少一个心动周期内的收缩期起始时刻对应的弹性参数和所述至少一个心动周期内的收缩期结束时刻对应的弹性参数;控制人机交互装置在显示界面上显示所述目标参数趋势图、收缩期起始时刻对应的弹性参数和收缩期结束时刻对应的弹性参数,并在所述目标参数趋势图的相应位置上分别标记出所述弹性参数对应的所述收缩期起始时刻和所述收缩期结束时刻。
本申请第五方面提供了一种超声成像设备,包括:
存储器,用于存储程序;
处理器,用于执行所述程序以实现如上所述的方法。
依据上述实施例的超声成像设备和弹性参数的显示方法,获取目标血管的至少一个心动周期的超声回波数据以及用于体现该至少一个心动周期的目标参数趋势图;根据该超声回波数据得到该至少一个心动周期内的收缩期起始时刻对应的脉搏波传播速度和该至少一个心动周期内的收缩期结束时刻对应的脉搏波传播速度;在显示界面上显示该目标参数趋势图、收缩期起始时刻对应的脉搏波传播速度和收缩期结束时刻对应的脉搏波传播速度,并在该目标参数趋势图的相应位置上分别标记出上述脉搏波传播速度对应的收缩期起始时刻和收缩期结束时刻。由于目标参数趋势图中目标参数的变化趋势体现了心动周期,结合目标参数趋势 图中标记的与脉搏波传播速度对应的收缩期起始时刻和收缩期结束时刻,还有显示的对应脉搏波传播速度,能非常直观的体现两个时刻对应的脉搏波传播速度与心动周期的关联性。
附图说明
图1为单个心动周期内的管径、血压变化图;
图2为脉搏波传播示意图;
图3为现有的超声成像设备显示的时空图;
图4为本发明提供的超声成像设备一种实施例的结构框图;
图5为本发明提供的弹性参数的显示方法一种实施例的流程图;
图6为本发明提供的弹性参数的显示方法一种实施例的流程图;
图7为本发明提供的超声成像设备中,一种实施例的目标参数趋势图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
本申请提供的超声成像设备和弹性参数的显示方法可以应用于人体,也可以应用于各种动物。
本申请针对当前脉搏波成像显示模式的缺陷,提出了一种新的弹性参数显示方案,一方面通过能体现心动周期的目标参数趋势图,来增强弹性参数与心动周期的关联性;另一方面还可以评估目标时刻的血管弹性。下面通过一些实施例详细说明。
如图4所示,本发明提供的超声成像设备,包括超声探头30、发射/接收电路40(即发射电路410和接收电路420)、波束合成模块50、IQ解调模块60、处理器20、人机交互装置70和存储器80。
超声探头30包括由阵列式排布的多个阵元组成的换能器(图中未示出),多个阵元排列成一排构成线阵,或排布成二维矩阵构成面阵,多个阵元也可以构成凸阵列。阵元用于根据激励电信号发射超声波,或将接收的超声波变换为电信号。因此每个阵元可用于实现电脉冲信号和超声波的相互转换,从而实现向待成像对象(例如本实施例中动脉血管)发射超声波、也可用于接收经组织反射回的超声波的回波。在进行超声检测时,可通过发射电路410和接收电路420控制哪些阵元用于发射超声波,哪些阵元用于接收超声波,或者控制阵元分时隙用于发射超声波或接收超声波的回波。参与超声波发射的阵元可以同时被电信号激励,从而同时发射超声波;或者参与超声波发射的阵元也可以被具有一定时间间隔的若干电信号激励,从而持续发射具有一定时间间隔的超声波。
阵元例如采用压电晶体,按照发射电路410传输的发射序列将电信号转换成超声信号,根据用途,超声信号可以包括一个或多个扫描脉冲、一个或多个参考脉冲、一个或多个推动脉冲和/或一个或多个多普勒脉冲。根据波的形态,超声信号包括聚焦波、平面波和发散波等。
用户通过移动超声探头30选择合适的位置和角度向待成像对象10发射超声波并接收由待成像对象10返回的超声波的回波,输出超声回波信号,超声回波信号是按以接收阵元为通道所形成的通道模拟电信号,其携带有幅度信息、频率信息和时间信息。
发射电路410用于根据处理器20的控制产生发射序列,发射序列用于控制多个阵元中的部分或者全部向待成像对象发射超声波,发射序列参数包括发射用的阵元位置、阵元数量和超声波束发射参数(例如幅度、频率、发射次数、发射间隔、发射角度、波型、聚焦位置等)。某些情况 下,发射电路410还用于对发射的波束进行相位延迟,使不同的发射阵元按照不同的时间发射超声波,以便各发射超声波束能够在预定的感兴趣区域聚焦。不同的工作模式,例如B图像模式、C图像模式和D图像模式(多普勒模式),发射序列参数可能不同,回波信号经接收电路420接收并经后续的模块和相应算法处理后,可生成反映组织解剖结构的B图像、反映血流信息的C图像以及反映多普勒频谱图像的D图像。
接收电路420用于从超声探头30接收超声回波信号,并对超声回波信号进行处理。接收电路420可以包括一个或多个放大器、模数转换器(ADC)等。放大器用于在适当增益补偿之后放大所接收到的回波信号,放大器用于对模拟回波信号按预定的时间间隔进行采样,从而转换成数字化的回波信号,数字化后的回波信号依然保留有幅度信息、频率信息和相位信息。接收电路420输出的数据可输出给波束合成模块50进行处理,或输出给存储器80进行存储。
波束合成模块50和接收电路420信号相连,用于对回波信号进行相应的延时和加权求和等波束合成处理,由于被测组织中的超声波接收点到接收阵元的距离不同,因此,不同接收阵元输出的同一接收点的通道数据具有延时差异,需要进行延时处理,将相位对齐,并将同一接收点的不同通道数据进行加权求和,得到波束合成后的超声图像数据,波束合成模块50输出的超声图像数据也称为射频数据(RF数据)。波束合成模块50将射频数据输出至IQ解调模块60。在有的实施例中,波束合成模块50也可以将射频数据输出至存储器80进行缓存或保存,或将射频数据直接输出至处理器20进行图像处理。
波束合成模块50可以采用硬件、固件或软件的方式执行上述功能,例如,波束合成模块50可以包括能够根据特定逻辑指令处理输入数据的中央控制器电路(CPU)、一个或多个微处理芯片或其他任何电子部件,当波束合成模块50采用软件方式实现时,其可以执行存储在有形和非暂态计算机可读介质(例如,存储器)上的指令,以使用任何适当波束合成方法进行波束合成计算。波束合成模块50可以集成在处理器20中,也可以单独设置,本发明不做限定。
IQ解调模块60通过IQ解调去除信号载波,提取信号中包含的组织结构信息,并进行滤波去除噪声,此时获取的信号称为基带信号(IQ数据对)。IQ解调模块60将IQ数据对输出至处理器20进行图像处理。
在有的实施例中,IQ解调模块60还将IQ数据对输出至存储器80进行缓存或保存,以便处理器20从存储器80中读出数据进行后续的图像处理。
IQ解调模块60也可以采用硬件、固件或软件的方式执行上述功能,在有的实施例中,IQ解调模块60还可以和波束合成模块50集成在一个芯片中。
处理器20用于配置成能够根据特定逻辑指令处理输入数据的中央控制器电路(CPU)、一个或多个微处理器、图形控制器电路(GPU)或其他任何电子部件,其可以根据输入的指令或预定的指令对外围电子部件执行控制,或对存储器80执行数据读取和/或保存,也可以通过执行存储器80中的程序对输入数据进行处理,例如根据一个或多个工作模式对采集的超声数据执行一个或多个处理操作,处理操作包括但不限于调整或限定超声探头30发出的超声波的形式,生成各种图像帧以供后续人机交互装置70的显示器进行显示,或者调整或限定在显示器上显示的内容和形式,或者调整在显示器上显示的一个或多个图像显示设置(例如超声图像、界面组件、定位感兴趣区域)。
接收到回波信号时,所采集的超声数据可由处理器20在扫描期间实时地处理,也可以临时存储在存储器80上,并且在联机或离线操作中以准实时的方式进行处理。
本实施例中,处理器20控制发射电路410和接收电路420的工作,例如控制发射电路410和接收电路420交替工作或同时工作。处理器20还可根据用户的选择或程序的设定确定合适的工作模式,形成与当前工作模式对应的发射序列,并将发射序列发送给发射电路410,以便发射电路410采用合适的发射序列控制超声探头30发射超声波。
处理器20还用于对超声回波信号进行处理,以生成扫描范围内的信号强弱变化的灰度图像,该灰度图像反映组织内部的解剖结构,称为B图像。处理器20可以将B图像输出至人机交互装置70的显示器进行显示。
人机交互装置70用于进行人机交互,即接收用户的输入以及输出可视化信息;其接收用户的输入可采用键盘、操作按钮、鼠标、轨迹球、触摸板等,也可以采用与显示器集成在一起的触控屏;其输出可视化信息可以采用显示器。
基于图4所示的超声成像设备,其弹性参数的显示方法如图5所示,包括如下步骤:
步骤1、获取目标血管的至少一个心动周期的超声回波数据。例如,处理器20控制发射电路410激励超声探头30向目标血管10发射超声波。超声探头30向被检测血管10发射超声波。接收电路420控制超声探头30接收自被检测血管返回的超声波的回波,获得回波信号。通过接收电路420从超声探头30获取回波信号,并经一定处理(如模数转换、波束合成等)得到包含至少一个心动周期的超声回波数据。当然,在一可选的实施例中,处理器20还可以直接从存储器80中获取超声回波数据,在此不做赘述。本实施例中,超声回波数据是以目标对象的血管为检测对象所得到的超声回波经波束合成之后的数据。
步骤2、根据超声回波数据生成用于体现至少一个心动周期的目标参数趋势图,或者,从外部设备获取用于体现至少一个心动周期的目标参数趋势图。处理器20可以根据该超声回波数据生成用于体现心动周期的目标参数趋势图。该目标参数可以是反映该血管的血管壁搏动(例如在径向方向上)的搏动参数,也可以是血管中血流的速度,还可以是血压,这些参数都可以通过超声回波数据得到,并且这些参数都与心脏搏动有关,其数值随时间呈周期性变化,变化周期为心动周期。超声成像设备还可以包括用于与外部设备通信的通信接口(图中未示出)。处理器20也可以通过通信接口从外部设备直接获取用于体现心动周期的目标参数趋势图。从外部设备获取的目标参数趋势图可以是血压,也可以是心电参数(心电信号)的趋势图,这些参数的趋势图都可以通过常规的医疗设备(如监护仪、血压测量仪等)甚至穿戴式设备得到,并且这些参数都与心脏搏动有关,其数值随时间呈周期性变化,变化周期为心动周期。
步骤3、根据超声回波数据得到至少一个心动周期内的收缩期起始时刻(也可以叫收缩早期BS)对应的弹性参数和至少一个心动周期内的收缩期结束时刻(也可以叫收缩晚期ES)对应的弹性参数。例如,处理器20可以根据该超声回波数据得到该至少一个心动周期内的收缩期起始时刻对应的弹性参数和该至少一个心动周期内的收缩期结束时刻对应的弹性参数。弹性参数为反映血管弹性的参数,例如可以是脉搏波传播速度、杨氏模量或顺应性。
步骤4、在显示界面上显示目标参数趋势图、收缩期起始时刻对应的弹性参数和收缩期结束时刻对应的弹性参数,并在目标参数趋势图的相应位置上分别标记出弹性参数对应的收缩期起始时刻和收缩期结束时刻。例如,处理器20控制人机交互装置70在显示界面上显示目标参数趋势图、收缩期起始时刻对应的弹性参数和收缩期结束时刻对应的弹性参数,并在目标参数趋势图的相应位置上分别标记出弹性参数对应的收缩期起始时刻和收缩期结束时刻。由于目标参数趋势图中目标参数的变化趋势体现了心动周期,结合目标参数趋势图中标记的与该弹性参数对应的收缩期起始时刻和收缩期结束时刻,还有显示的对应的弹性参数,能非常直观的体现两个时刻对应的弹性参数与心动周期的关联性。
上述步骤1可以获取目标血管在一定时间段的超声回波数据,该一定时间段可以大于或等于一个心动周期,可以是由系统默认设置,也可以由用户自由调节设定。获取一定时间段的超声回波数据时,可以是以一个心动周期为单位连续的获取至少一个心动周期的超声回波数据,也可以是分段获取多个心动周期的超声回波数据。例如,实时采集的情况下,超声成像设备根据超声探头得到的回波信号实时获取超声回波数据,实时采集的时间即为一个或多个心动周期。
当然,本发明并不满足于此,下面提供一更为详细的实施例。弹性参数可以是脉搏波传播速度、杨氏模量或顺应性,以下以弹性参数为脉搏波传播速度为例进行说明,如图6所示,脉搏波传播速度的显示方法包括以下步骤:
步骤1’、获取目标血管的至少一个心动周期的超声回波数据。例如通过接收电路420从超声探头30获取回波信号,并经一定处理得到包含至少一个心动周期的超声回波数据,处理器20获取该目标血管的至少一个心动周期的超声回波数据。又例如处理器20从存储器中获取超声回波数据。具体见上述实施例的步骤1,在此不做赘述。
步骤2’、根据超声回波数据生成用于体现至少一个心动周期的目标参数趋势图,或者,从外部设备获取用于体现至少一个心动周期的目标参数趋势图。本实施例中,以目标参数为反映血管的血管壁搏动(例如在径向方向上)的搏动参数为例进行说明。受心脏搏动的作用,血管壁主要沿血管径向搏动。处理器20根据超声回波数据得到该至少一个心动周期内各个时刻的搏动参数,进而生成搏动参数趋势图。例如处理器20 根据超声回波数据得到血管的上管壁和/或下管壁的位移信息,根据血管的上管壁和/或下管壁的位移信息生成目标参数趋势图。
具体的,处理器20根据超声回波数据检测至少一个心动周期内不同帧中的血管壁(上管壁和下管壁)的位置;根据不同帧中血管壁的位置计算血管壁上沿血管轴向排布的各检测点在不同时间点的径向位移;根据血管壁上各检测点的径向位移得到各检测点在不同时间点的搏动参数。搏动参数可以是血管管径、血管管径的变化速度、血管管径的变化加速度、单侧血管壁的位移、单侧血管壁的径向运动速度或单侧血管壁的径向运动加速度等。将上管壁检测点径向位移减去对应的下管壁检测点径向位移,得到血管在该检测点的管径变化量。对径向位移和血管管径的变化量在时间维度上分别求一阶和二阶导数,即可获得径向速度、径向加速度和血管直径的变化速度及变化加速度等。即,搏动参数中各个参数都能通过不同时刻的血管管径得到,故本实施例以血管管径为例进行说明。由于目标参数趋势图主要是体现心动周期的各个时相,故可以根据其中一个检测点对应的血管管径,生成目标参数趋势图(以目标参数为血管管径为例,则是血管管径变化趋势图,如图7所示)。
如上一实施例所述,有些实施例中,处理器20也可以从外部设备获取用于体现所述至少一个心动周期的目标参数趋势图。从外部设备获取的目标参数在时间上与上述超声回波数据相同即可,目标参数趋势图和超声回波数据可以在同一时间段采集,便于后续将两者在时间上对应。从外部设备获取的目标参数趋势图可以是血压趋势图、心电图等。
步骤3’、根据超声回波数据得到至少一个心动周期内的收缩期起始时刻对应的脉搏波传播速度和至少一个心动周期内的收缩期结束时刻对应的脉搏波传播速度。具体的,通过步骤2’中的方法,可以得到血管壁上各检测点(至少两个点)在不同时间点的搏动参数,处理器20根据各检测点的搏动参数得到脉搏波在血管壁上沿轴向传播的传播速度。例如,处理器20检测各检测点的搏动参数达到第一预定阈值的第一时间。第一预定阈值可以根据用户需求进行设置,例如,对于收缩早期的脉搏波,搏动参数可选择为径向位移,第一预定阈值可以是最大径向位移(对应的是波峰)经验值中的最小值,也可以是最大径向位移经验值的50%或以上等。对于收缩晚期的脉搏波,检测各检测点的搏动参数处于第一预定阈值区间、且为极大值的第一时间,通过设置第一预定阈值区间的最 大值可将收缩早期的波峰排除,通过设置第一预定阈值区间的最小值可将收缩晚期的极大值(心动周期中较低的波峰)涵盖在内,通过极大值的判断(常规数学方法)可得到反映收缩晚期的脉搏波的波峰到来时的第一时间。本实施例以收缩早期的脉搏波为例进行说明。处理器20根据各检测点在血管轴向上的位置和各检测点对应的第一时间得到脉搏波在超声图像中的血管壁上的传播速度。根据相邻两检测点在血管轴向上的位置和相邻两检测点对应第一时间的差值得到脉搏波在各检测点的传播速度。为了提高准确性,选取的检测点为多个,在处理能力范围内越多越好,得到各个检测点时间和空间的对应关系,对各个点进行线性拟合得到一斜线,该斜线的斜率即为脉搏波在当前心动周期中的平均传播速度。
由于各检测点的位置和对应的第一时间均已知,故动脉前壁收缩期起始时(BS)以及收缩期结束时(ES)脉搏波传播速度、血管壁上任意检测点的传播速度、任意段的平均传播速度等均可通过上述方法计算得到。本实施例的脉搏波传播速度,可以是检测点对应的脉搏波传播速度,也可以是整个血管的平均脉搏波传播速度,能反映血管弹性即可。
处理器20还可以根据超声回波数据生成对应的超声图像。例如,可以对目标对象的血管进行B成像(二维或三维组织灰度成像),也可以对目标对象的血管进行M成像和多普勒成像,多普勒成像例如可包括组织多普勒成像(Tissue doppler imaging,TDI)和组织速度成像(Tissue velocity imaging,TVI)。
步骤4’、在显示界面上显示目标参数趋势图、收缩期起始时刻对应的脉搏波传播速度和收缩期结束时刻对应的脉搏波传播速度,并在目标参数趋势图的相应位置上分别标记出脉搏波传播速度对应的收缩期起始时刻和收缩期结束时刻。其中,趋势图包括曲线图、折线图、散点图、直方图、条形图、箱线图中的一个,能反映目标参数随时间的变化趋势即可。本实施例以曲线图为例进行说明,如图7所示,血管管径趋势图中,包括管径随时间的变化曲线a,X轴为时间,Y轴为管径。还可以在目标参数趋势图上标记心动周期的八个时相(图中未示出),便于医生更好的掌握目标参数的变化趋势。收缩期起始时刻和收缩期结束时刻可以标记在坐标轴上,也可以如图7所示,标记在变化曲线a上。收缩期起始时刻和收缩期结束时刻的标记可以相同,也可以如图7所示的不同, 具体的标记方式不限,能将这两个时刻标记出来即可,当然,能将这两个时刻凸显更佳。收缩期起始时刻和收缩期结束时刻对应的脉搏波传播速度,可以显示在目标参数趋势图外,与目标参数趋势图在同一显示界面显示;也可以如图7所示,在标记收缩期起始时刻的相邻位置显示收缩期起始时刻对应的脉搏波传播速度PWV BS,在目标参数趋势图上标记所述收缩期结束时刻,在标记收缩期结束时刻的相邻位置显示收缩期结束时刻对应的脉搏波传播速度PWV ES。可见,与当前的时空图(图3)相比,管径变化曲线a更好的表现了一个心动周期内的各个时相,将脉搏波传播速度标记在曲线上,可以直观的展现脉搏波与心动周期对应时相的关联性。
处理器20还可以通过人机交互装置70在显示界面显示有基于超声回波数据得到的超声图像,便于医生在查看目标参数趋势图的同时,通过超声图像了解血管的状态。
需要说明的是,在一个心动周期内的管径、血压及血管弹性均会发生动态变化,且变化趋势相仿,即在收缩期间血压升高、管径增大、血管弹性升高;在舒张期间血压降低、管径减小、血管弹性降低。脉搏波在一个心动周期内仅发生两次,且只能反映发生时刻的血管弹性。可结合血压、脉搏波或管径、脉搏波,可预估一个心动周期内任意时刻的血管弹性。本实施例以管径、脉搏波为例进行说明。可以获取上述至少一个心动周期内任一时刻的目标参数D t、收缩期起始时刻的目标参数D BS、以及收缩期结束时刻的目标参数D ES。进而,处理器20根据任一时刻的目标参数D t、收缩期起始时刻的目标参数D BS、收缩期起始时刻对应的脉搏波传播速度PWV BS、收缩期结束时刻的目标参数D ES、收缩期结束时刻对应的脉搏波传播速度PWV ES,计算得到上述至少一个心动周期内任一时刻对应的脉搏波传播速度PWV t,在人机交互装置70的显示界面上显示该任一时刻对应的脉搏波传播速度PWV t。可见,本申请还可以估算心动周期内任意时刻的血管弹性,有利于医生评估血管各处的弹性。需要说明的是,上述至少一个心动周期内任一时刻的目标参数D t可以是由用户基于目标参数趋势图进行选定,也可以是由用户输入相应的时刻,由处理器20基于超声回波数据输出该任一时刻的目标参数D t,也可以是系统自动确定的一个特征时刻(例如心动周期内目标参数的峰值时刻或谷值时刻等)。
同样的,该任一时刻对应的脉搏波传播速度PWV t也可以显示在目标参数趋势图上,即,在目标参数趋势图上标记任一时刻,并在标记任一时刻的相邻位置显示任一时刻对应的脉搏波传播速度PWV t。便于医生查看。
该任一时刻包括:根据用户的操作确定的时刻、心动周期内目标参数最大值对应的时刻、和心动周期内目标参数最小值对应的时刻中的至少一种。本实施例中,该任一时刻包括:心动周期内目标参数最大值对应的时刻和心动周期内目标参数最小值对应的时刻。其中,心动周期内目标参数最大值对应的时刻、和心动周期内目标参数最小值对应的时刻,通过目标参数趋势图中的趋势曲线即可得到,当然,也可以由用户确定,例如处理器20通过人机交互装置70接收用户在趋势曲线上选定的一点,将其作为目标参数最大值,接收用户在趋势曲线上选定的另一点,将其作为目标参数最小值。可见,医生通过目标参数趋势图既能看到BS、ES两个时刻处于心动周期中的位置,以及对应的脉搏波传播速度,又能看到目标参数极值对应的时刻、以及脉搏波传播速度,为医生评估血管弹性以及关联的时间提供了充足的信息。
本实施例中,通过如下公式计算得到目标时刻的脉搏波传播速度PWV t
Figure PCTCN2020141616-appb-000001
D t为任一时刻的目标参数,D BS为收缩期起始时刻的目标参数,PWV BS为收缩期起始时刻对应的脉搏波传播速度,D ES为收缩期结束时刻的目标参数,PWV ES为收缩期结束时刻对应的脉搏波传播速度。
对于这两个时刻:心动周期内目标参数最大值对应的时刻和心动周期内目标参数最小值对应的时刻,参考上述公式1,其对应的脉搏波传播速度PWV MAX、PWV MIN的计算公式如下:
Figure PCTCN2020141616-appb-000002
Figure PCTCN2020141616-appb-000003
PWV MAX为心动周期内目标参数最大值对应时刻对应的脉搏波传播速度,D MAX为心动周期内目标参数最大值。PWV MIN为心动周期内目标参数最小值对应时刻对应的脉搏波传播速度,D MIN为心动周期内目标参数最小值。
目标参数趋势图中的趋势曲线上的点可选,用户想知道哪个时刻的脉搏波传播速度,通过人机交互装置在显示界面上显示的目标参数趋势图点选即可,处理器20通过人机交互装置接收用户的选定指令,从该指令对应的点即可得到选定的任一时刻,根据选定的任一时刻以及趋势曲线即可得到选定的任一时刻对应的目标参数,从而根据公式1得到选定的任一时刻对应的脉搏波传播速度PWV t,并显示在目标参数趋势图中。可见,上述方法可以评估整个心动周期内任意时刻的血管弹性,便于医生掌握血管的弹性信息。
需要说明的是,目标参数趋势图可以根据超声回波数据得到的,例如血管管径变化趋势图、血流的速度变化趋势图等;目标参数趋势图也可以直接从外部设备获取,例如血压变化趋势图、ECG变化趋势图等,相关说明同前述实施例,在此不做赘述。
由于杨氏模量和顺应性可以通过脉搏波传播速度和管径变化量,或通过脉搏波传播速度和血压变化量计算得到,故在弹性参数为杨氏模量或顺应性的实施例中,只需增加一个根据脉搏波传播速度和管径变化量,或脉搏波传播速度和血压变化量计算得到杨氏模量或顺应性的步骤,换而言之,可以将上述实施例中的脉搏波传播速度替换成杨氏模量或顺应性,其他内容不变,同上述实施例,在此不做赘述。
本领域技术人员可以理解,上述实施方式中各种方法的全部或部分功能可以通过硬件的方式实现,也可以通过计算机程序的方式实现。当上述实施方式中全部或部分功能通过计算机程序的方式实现时,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器、随机存储器、磁盘、光盘、硬盘等,通过计算机执行该程序以实现上述功能。例如,将程序存储在设备的存储器中,当通过处理器执行存储器中程序,即可实现上述全部或部分功能。另外,当上述实施方式中全部或部分功能通过计算机程序的方式实现时,该程序也可以存储在服务器、另一计算机、磁盘、光盘、闪存盘或移动硬盘等存储介质中,通过下载或复制保存到本地设备的存储器中,或对本地设备的系统进行版本更新, 当通过处理器执行存储器中的程序时,即可实现上述实施方式中全部或部分功能。
本文参照了各种示范实施例进行说明。然而,本领域的技术人员将认识到,在不脱离本文范围的情况下,可以对示范性实施例做出改变和修正。例如,各种操作步骤以及用于执行操作步骤的组件,可以根据特定的应用或考虑与系统的操作相关联的任何数量的成本函数以不同的方式实现(例如一个或多个步骤可以被删除、修改或结合到其他步骤中)。
另外,如本领域技术人员所理解的,本文的原理可以反映在计算机可读存储介质上的计算机程序产品中,该可读存储介质预装有计算机可读程序代码。任何有形的、非暂时性的计算机可读存储介质皆可被使用,包括磁存储设备(硬盘、软盘等)、光学存储设备(CD-ROM、DVD、Blu Ray盘等)、闪存和/或诸如此类。这些计算机程序指令可被加载到通用计算机、专用计算机或其他可编程数据处理设备上以形成机器,使得这些在计算机上或其他可编程数据处理装置上执行的指令可以生成实现指定的功能的装置。这些计算机程序指令也可以存储在计算机可读存储器中,该计算机可读存储器可以指示计算机或其他可编程数据处理设备以特定的方式运行,这样存储在计算机可读存储器中的指令就可以形成一件制造品,包括实现指定功能的实现装置。计算机程序指令也可以加载到计算机或其他可编程数据处理设备上,从而在计算机或其他可编程设备上执行一系列操作步骤以产生一个计算机实现的进程,使得在计算机或其他可编程设备上执行的指令可以提供用于实现指定功能的步骤。
虽然在各种实施例中已经示出了本文的原理,但是许多特别适用于特定环境和操作要求的结构、布置、比例、元件、材料和部件的修改可以在不脱离本披露的原则和范围内使用。以上修改和其他改变或修正将被包含在本文的范围之内。
前述具体说明已参照各种实施例进行了描述。然而,本领域技术人员将认识到,可以在不脱离本披露的范围的情况下进行各种修正和改变。因此,对于本披露的考虑将是说明性的而非限制性的意义上的,并且所有这些修改都将被包含在其范围内。同样,有关于各种实施例的优点、其他优点和问题的解决方案已如上所述。然而,益处、优点、问题的解决方案以及任何能产生这些的要素,或使其变得更明确的解决方案都不应被解释为关键的、必需的或必要的。本文中所用的术语“包括”和其 任何其他变体,皆属于非排他性包含,这样包括要素列表的过程、方法、文章或设备不仅包括这些要素,还包括未明确列出的或不属于该过程、方法、系统、文章或设备的其他要素。此外,本文中所使用的术语“耦合”和其任何其他变体都是指物理连接、电连接、磁连接、光连接、通信连接、功能连接和/或任何其他连接。
具有本领域技术的人将认识到,在不脱离本发明的基本原理的情况下,可以对上述实施例的细节进行许多改变。因此,本发明的范围应根据以下权利要求确定。

Claims (25)

  1. 一种弹性参数的显示方法,其特征在于,包括:
    获取目标血管的至少一个心动周期的超声回波数据;
    根据所述超声回波数据生成用于体现所述至少一个心动周期的目标参数趋势图,或者,从外部设备获取用于体现所述至少一个心动周期的目标参数趋势图;
    根据所述超声回波数据得到所述至少一个心动周期内的收缩期起始时刻对应的脉搏波传播速度和所述至少一个心动周期内的收缩期结束时刻对应的脉搏波传播速度;
    在显示界面上显示所述目标参数趋势图、收缩期起始时刻对应的脉搏波传播速度和收缩期结束时刻对应的脉搏波传播速度,并在所述目标参数趋势图的相应位置上分别标记出所述脉搏波传播速度对应的所述收缩期起始时刻和所述收缩期结束时刻。
  2. 如权利要求1所述的方法,其特征在于,所述根据所述超声回波数据生成用于体现所述至少一个心动周期的目标参数趋势图包括:
    根据所述超声回波数据得到血管的上管壁和/或下管壁的位移信息,根据血管的上管壁和/或下管壁的位移信息生成用于体现所述至少一个心动周期的目标参数趋势图。
  3. 如权利要求1或2所述的方法,其特征在于,所述在显示界面上显示收缩期起始时刻对应的脉搏波传播速度和收缩期结束时刻对应的脉搏波传播速度,并在所述目标参数趋势图的相应位置上分别标记出所述脉搏波传播速度对应的所述收缩期起始时刻和所述收缩期结束时刻,包括:
    在所述目标参数趋势图上标记所述收缩期起始时刻,并在标记的相邻位置显示所述收缩期起始时刻对应的脉搏波传播速度,在所述目标参数趋势图上标记所述收缩期结束时刻,并在标记的相邻位置显示所述收缩期结束时刻对应的脉搏波传播速度。
  4. 如权利要求1或2所述的方法,其特征在于,还包括:
    确定所述至少一个心动周期内任一时刻的目标参数D t、收缩期起始时刻的目标参数D BS、以及收缩期结束时刻的目标参数D ES
    根据所述任一时刻的目标参数D t、收缩期起始时刻的目标参数D BS、收缩期起始时刻对应的脉搏波传播速度PWV BS、收缩期结束时刻的目标参 数D ES以及收缩期结束时刻对应的脉搏波传播速度PWV ES,确定所述任一时刻对应的脉搏波传播速度PWV t,显示所述任一时刻对应的脉搏波传播速度PWV t
  5. 如权利要求4所述的方法,其特征在于,所述任一时刻包括:根据用户的操作确定的时刻、所述至少一个心动周期内目标参数最大值对应的时刻、和所述至少一个心动周期内目标参数最小值对应的时刻中的至少一种。
  6. 如权利要求4所述的方法,其特征在于,所述根据所述任一时刻的目标参数D t、收缩期起始时刻的目标参数D BS、收缩期起始时刻对应的脉搏波传播速度PWV BS、收缩期结束时刻的目标参数D ES以及收缩期结束时刻对应的脉搏波传播速度PWV ES,确定所述任一时刻对应的脉搏波传播速度PWV t,包括:
    根据如下公式计算得到所述任一时刻对应的脉搏波传播速度PWV t
    Figure PCTCN2020141616-appb-100001
  7. 如权利要求4所述的方法,其特征在于,所述显示所述任一时刻对应的脉搏波传播速度PWV t,包括:
    在所述目标参数趋势图上标记所述任一时刻,并在标记所述任一时刻的相邻位置显示所述任一时刻对应的脉搏波传播速度PWV t
  8. 如权利要求1至7中任一项所述的方法,其特征在于,所述趋势图包括:曲线图、折线图、散点图、直方图、条形图或箱线图。
  9. 如权利要求1至7中任一项所述的方法,其特征在于,所述目标参数包括:反映所述血管的血管壁搏动的搏动参数、血管中血流的速度、血压或心电参数。
  10. 如权利要求9所述的方法,其特征在于,所述搏动参数包括:血管管径、血管管径的变化速度、血管管径的变化加速度、单侧血管壁的位移、单侧血管壁的径向运动速度或单侧血管壁的径向运动加速度。
  11. 一种弹性参数的显示方法,其特征在于,包括:
    获取目标血管的至少一个心动周期的超声回波数据;
    根据所述超声回波数据生成用于体现所述至少一个心动周期的目标参数趋势图,或者,从外部设备获取用于体现所述至少一个心动周期的 目标参数趋势图;
    根据所述超声回波数据得到所述至少一个心动周期内的收缩期起始时刻对应的弹性参数和所述至少一个心动周期内的收缩期结束时刻对应的弹性参数;
    在显示界面上显示所述目标参数趋势图、收缩期起始时刻对应的弹性参数和收缩期结束时刻对应的弹性参数,并在所述目标参数趋势图的相应位置上分别标记出所述弹性参数对应的所述收缩期起始时刻和所述收缩期结束时刻。
  12. 如权利要求11所述的方法,其特征在于,所述弹性参数包括:脉搏波传播速度、杨氏模量或顺应性。
  13. 一种超声成像设备,其特征在于,包括:
    超声探头;
    发射电路,用于激励所述超声探头向目标血管发射超声波;
    接收电路,用于控制所述超声探头接收返回的超声波的回波,获得回波信号;
    人机交互装置,用于进行可视化输出,以及获取用户的输入;
    处理器,用于获取目标血管的至少一个心动周期的超声回波数据;根据所述超声回波数据生成用于体现所述至少一个心动周期的目标参数趋势图,或者,从外部设备获取用于体现所述至少一个心动周期的目标参数趋势图;根据所述超声回波数据得到所述至少一个心动周期内的收缩期起始时刻对应的脉搏波传播速度和所述至少一个心动周期内的收缩期结束时刻对应的脉搏波传播速度;控制人机交互装置在显示界面上显示所述目标参数趋势图、收缩期起始时刻对应的脉搏波传播速度和收缩期结束时刻对应的脉搏波传播速度,并在所述目标参数趋势图的相应位置上分别标记出所述脉搏波传播速度对应的所述收缩期起始时刻和所述收缩期结束时刻。
  14. 如权利要求13所述的超声成像设备,其特征在于,所述处理器根据所述超声回波数据生成用于体现所述至少一个心动周期的目标参数趋势图包括:
    根据所述超声回波数据得到血管的上管壁和/或下管壁的位移信息,根据血管的上管壁和/或下管壁的位移信息生成用于体现所述至少一个心动周期的目标参数趋势图。
  15. 如权利要求13或14所述的超声成像设备,其特征在于,所述处理器在人机交互装置的显示界面上显示收缩期起始时刻对应的脉搏波传播速度和收缩期结束时刻对应的脉搏波传播速度,并在所述目标参数趋势图的相应位置上分别标记出所述脉搏波传播速度对应的所述收缩期起始时刻和所述收缩期结束时刻,包括:
    在所述目标参数趋势图上标记所述收缩期起始时刻,并在标记的相邻位置显示所述收缩期起始时刻对应的脉搏波传播速度,在所述目标参数趋势图上标记所述收缩期结束时刻,并在标记的相邻位置显示所述收缩期结束时刻对应的脉搏波传播速度。
  16. 如权利要求13或14所述的超声成像设备,其特征在于,所述处理器还用于:
    获取所述至少一个心动周期内任一时刻的目标参数D t、收缩期起始时刻的目标参数D BS、以及收缩期结束时刻的目标参数D ES
    根据所述任一时刻的目标参数D t、收缩期起始时刻的目标参数D BS、收缩期起始时刻对应的脉搏波传播速度PWV BS、收缩期结束时刻的目标参数D ES以及收缩期结束时刻对应的脉搏波传播速度PWV ES,确定所述任一时刻对应的脉搏波传播速度PWV t,控制人机交互装置在显示界面上显示所述任一时刻对应的脉搏波传播速度PWV t
  17. 如权利要求16所述的超声成像设备,其特征在于,所述任一时刻包括:根据用户的操作确定的时刻、所述至少一个心动周期内目标参数最大值对应的时刻、和所述至少一个心动周期内目标参数最小值对应的时刻中的至少一种。
  18. 如权利要求16所述的超声成像设备,其特征在于,所述处理器根据所述任一时刻的目标参数D t、收缩期起始时刻的目标参数D BS、收缩期起始时刻对应的脉搏波传播速度PWV BS、收缩期结束时刻的目标参数D ES以及收缩期结束时刻对应的脉搏波传播速度PWV ES,确定所述任一时刻对应的脉搏波传播速度PWV t,包括:
    根据如下公式计算得到所述任一时刻的脉搏波传播速度PWV t
    Figure PCTCN2020141616-appb-100002
  19. 如权利要求16所述的超声成像设备,其特征在于,所述处理器 控制人机交互装置在显示界面上显示所述目标时刻对应的脉搏波传播速度PWV t,包括:
    在所述目标参数趋势图上标记所述任一时刻,并在标记所述任一时刻的相邻位置显示所述任一时刻对应的脉搏波传播速度PWV t
  20. 如权利要求13至19中任一项所述的超声成像设备,其特征在于,所述趋势图包括:曲线图、折线图、散点图、直方图、条形图或箱线图。
  21. 如权利要求13至19中任一项所述的超声成像设备,其特征在于,所述目标参数包括:反映所述血管的血管壁搏动的搏动参数、血管中血流的速度、血压或心电参数。
  22. 如权利要求21所述的超声成像设备,其特征在于,所述搏动参数包括:血管管径、血管管径的变化速度、血管管径的变化加速度、单侧血管壁的位移、单侧血管壁的径向运动速度或单侧血管壁的径向运动加速度。
  23. 一种超声成像设备,其特征在于,包括:
    超声探头;
    发射电路,用于激励所述超声探头向目标血管发射超声波;
    接收电路,用于控制所述超声探头接收返回的超声波的回波,获得回波信号;
    人机交互装置,用于进行可视化输出,以及获取用户的输入;
    处理器,用于获取目标血管的至少一个心动周期的超声回波数据;根据所述超声回波数据生成用于体现所述至少一个心动周期的目标参数趋势图,或者,从外部设备获取用于体现所述至少一个心动周期的目标参数趋势图;根据所述超声回波数据得到所述至少一个心动周期内的收缩期起始时刻对应的弹性参数和所述至少一个心动周期内的收缩期结束时刻对应的弹性参数;控制人机交互装置在显示界面上显示所述目标参数趋势图、收缩期起始时刻对应的弹性参数和收缩期结束时刻对应的弹性参数,并在所述目标参数趋势图的相应位置上分别标记出所述弹性参数对应的所述收缩期起始时刻和所述收缩期结束时刻。
  24. 如权利要求23所述的超声成像设备,其特征在于,所述弹性参数包括:脉搏波传播速度、杨氏模量或顺应性。
  25. 一种超声成像设备,其特征在于,包括:
    存储器,用于存储程序;
    处理器,用于执行所述程序以实现如权利要求1-12中任一项所述的方法。
PCT/CN2020/141616 2020-12-30 2020-12-30 超声成像设备和弹性参数的显示方法 WO2022141247A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080102763.0A CN115802949A (zh) 2020-12-30 2020-12-30 超声成像设备和弹性参数的显示方法
PCT/CN2020/141616 WO2022141247A1 (zh) 2020-12-30 2020-12-30 超声成像设备和弹性参数的显示方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/141616 WO2022141247A1 (zh) 2020-12-30 2020-12-30 超声成像设备和弹性参数的显示方法

Publications (1)

Publication Number Publication Date
WO2022141247A1 true WO2022141247A1 (zh) 2022-07-07

Family

ID=82259950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141616 WO2022141247A1 (zh) 2020-12-30 2020-12-30 超声成像设备和弹性参数的显示方法

Country Status (2)

Country Link
CN (1) CN115802949A (zh)
WO (1) WO2022141247A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101495033A (zh) * 2006-07-31 2009-07-29 志成资讯有限公司 血管粘弹性的指标测量装置
CN108733857A (zh) * 2017-04-21 2018-11-02 深圳迈瑞生物医疗电子股份有限公司 超声弹性成像装置及弹性成像结果评价方法
CN109152541A (zh) * 2016-05-20 2019-01-04 皇家飞利浦有限公司 使用脉管内压力测量和外部超声成像来确定脉搏波速度以及相关联的设备、系统和方法
CN110403579A (zh) * 2018-04-28 2019-11-05 深圳市大耳马科技有限公司 一种脉搏波传导参数测量系统和方法
CN111110275A (zh) * 2020-01-10 2020-05-08 深圳大学 血管力学性能的测量方法、装置、系统及存储介质
KR20200101021A (ko) * 2019-02-19 2020-08-27 서강대학교산학협력단 국부 맥파속도를 측정하는 초음파 영상화 방법 및 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101495033A (zh) * 2006-07-31 2009-07-29 志成资讯有限公司 血管粘弹性的指标测量装置
CN109152541A (zh) * 2016-05-20 2019-01-04 皇家飞利浦有限公司 使用脉管内压力测量和外部超声成像来确定脉搏波速度以及相关联的设备、系统和方法
CN108733857A (zh) * 2017-04-21 2018-11-02 深圳迈瑞生物医疗电子股份有限公司 超声弹性成像装置及弹性成像结果评价方法
CN110403579A (zh) * 2018-04-28 2019-11-05 深圳市大耳马科技有限公司 一种脉搏波传导参数测量系统和方法
KR20200101021A (ko) * 2019-02-19 2020-08-27 서강대학교산학협력단 국부 맥파속도를 측정하는 초음파 영상화 방법 및 장치
CN111110275A (zh) * 2020-01-10 2020-05-08 深圳大学 血管力学性能的测量方法、装置、系统及存储介质

Also Published As

Publication number Publication date
CN115802949A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
JP5689662B2 (ja) 超音波診断装置、超音波画像処理装置、超音波画像処理プログラム、医用画像診断装置、医用画像処理装置及び医用画像処理プログラム
JP5240994B2 (ja) 超音波診断装置、超音波画像処理装置、及び超音波画像処理プログラム
US20100195887A1 (en) Medical imaging apparatus, medical image processing apparatus, ultrasonic imaging apparatus, ultrasonic image processing apparatus and method of processing medical images
JP2005342006A (ja) 超音波診断装置、超音波画像処理装置、及び超音波信号処理プログラム
JP2005080791A (ja) 超音波診断装置及び画像処理装置
US11259780B2 (en) Ultrasound medical detection devices and imaging method, imaging system and display terminal
WO2021042298A1 (zh) 一种vti测量装置及方法
US10624608B2 (en) Ultrasonic diagnostic apparatus
US11039777B2 (en) Ultrasonic diagnostic apparatus and control method
CN112932540A (zh) 一种超声成像设备和脉搏波成像方法
JP2010269018A (ja) 超音波診断装置
JP5300171B2 (ja) 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム
CN112932537A (zh) 一种超声成像设备、脉搏波成像方法
US11712219B2 (en) Ultrasonic wave diagnostic apparatus, medical information processing apparatus, and computer program product
JP2009039277A (ja) 超音波診断装置
CN112168210B (zh) 医学图像处理终端、超声诊断设备和胎儿图像的处理方法
WO2022141247A1 (zh) 超声成像设备和弹性参数的显示方法
JP2017143969A (ja) 超音波画像処理装置
JP6598539B2 (ja) 医用画像診断装置、医用画像処理装置及びプログラム
JP2022158712A (ja) 超音波診断装置、画像処理装置、及び画像処理プログラム
JP7194501B2 (ja) 心電波形のタイミング検出装置及び医用画像診断装置
JP2012016508A (ja) 超音波診断装置及び信号解析プログラム
JP4745455B2 (ja) 超音波診断装置、超音波画像処理装置、及び超音波信号処理プログラム
WO2021087765A1 (zh) 一种超声成像设备和子宫内膜蠕动的检测方法
CN112932538A (zh) 一种超声成像设备、脉搏波的呈现方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967588

Country of ref document: EP

Kind code of ref document: A1