WO2022141203A1 - 用于带状线和微带线连接的信号传输结构及天线装置 - Google Patents

用于带状线和微带线连接的信号传输结构及天线装置 Download PDF

Info

Publication number
WO2022141203A1
WO2022141203A1 PCT/CN2020/141420 CN2020141420W WO2022141203A1 WO 2022141203 A1 WO2022141203 A1 WO 2022141203A1 CN 2020141420 W CN2020141420 W CN 2020141420W WO 2022141203 A1 WO2022141203 A1 WO 2022141203A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstrip
elastic
strip
line
stripline
Prior art date
Application number
PCT/CN2020/141420
Other languages
English (en)
French (fr)
Inventor
彭中卫
杨志明
谢崇稳
黄志国
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080106011.1A priority Critical patent/CN116325347A/zh
Priority to PCT/CN2020/141420 priority patent/WO2022141203A1/zh
Publication of WO2022141203A1 publication Critical patent/WO2022141203A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices

Definitions

  • the present application relates to the technical field of radio frequency signal transmission, and in particular, to a signal transmission structure and an antenna device for connecting striplines and microstrip lines.
  • An antenna is a type of converter that converts a signal propagating on a transmission line into an electromagnetic wave propagating in an unbounded medium (usually free space), or vice versa.
  • radio communications broadcasting, television, radar, navigation, electronic countermeasures, remote sensing, radio astronomy, etc.
  • the radio frequency signal needs to be transmitted from the radio frequency components such as connectors, filters, combiners, power division networks, phase shifters, etc. to the antenna transmitting unit and finally radiated into the air.
  • the forms of RF transmission lines commonly used in the field of antennas include microstrip lines, strip lines, coaxial lines, waveguides, parallel double lines, etc.
  • microstrip lines are the most widely used due to their ease of integration with other components, but in related technologies, microstrip lines and The stripline has high loss, and the conversion setting of the stripline and the microstrip line occupies a lot of height space, which is a technical problem to be solved urgently.
  • an embodiment of the present application provides a signal transmission structure for connecting a stripline and a microstrip line, including:
  • a grounding member disposed under at least one of the stripline and the microstrip line, used as the grounding of the microstrip line and the stripline, and variably adjusting the stripline and the microstrip
  • the height between the lines is such that one end of the strip wire of the strip line and one end of the microstrip wire of the microstrip line are in contact and connected together.
  • the grounding member includes an elastic support member.
  • the elastic support is located below the strip line or the microstrip line.
  • the elastic support member is close to the connection position of the stripline and the microstrip line, and the height of the supported stripline or the microstrip line is adjusted by elastic deformation.
  • the elastic support member in combination with the first possible implementation manner, in a second possible implementation manner of the signal transmission structure, includes a first body and at least one first elastic member.
  • the first elastic member is located on the first surface and/or the second surface of the first body, and the first elastic member is at least partially in contact with the supported stripline or the microstripline.
  • the elastic support can be used to adjust the height of the stripline or the microstrip line by means of elastic deformation, so as to avoid the error of the stripline and the microstrip line due to the errors generated in the process of processing and assembling.
  • the microstrip wire and the ribbon wire are always in contact and connected together on the same or the same plane.
  • the first body and the at least one first elastic member are integral structures.
  • the processing process of the elastic support can be simplified, and the structural stability and deformable balance of the elastic support can be improved, so that the height of the microstrip line or stripline supported by the elastic support is more stable. .
  • the first elastic component includes at least one of the following:
  • a first elastic protrusion disposed on the first surface and/or the second surface of the first main body
  • the first fixed part and the first elastic moving part are connected together, the first fixed part is connected with the first main body, and the first elastic moving part is suspended on the first surface or the second surface of the first main body above the face.
  • the grounding member further includes a grounding adapter, and the microstrip line also including a microstrip conductor ground, a microstrip dielectric layer located between the microstrip conductor ground and the microstrip wire,
  • the grounding adapter is provided with a first bearing surface and a second bearing surface, and the first bearing surface and the second bearing surface are respectively parallel to the bottom surface of the grounding adapter,
  • the microstrip line is arranged on the first bearing surface, and the microstrip conductor is in contact with the first bearing surface;
  • the strip wire is arranged on the second bearing surface, so that the strip wire is located above the microstrip wire, and one end of the strip wire is in contact with and connected to one end of the microstrip wire ;
  • the elastic support member is located on the first bearing surface or the second bearing surface, and is close to the position of the connection between the first bearing surface and the second bearing surface.
  • different height planes are provided for the microstrip line and the stripline by setting the grounding adapter, and combined with the height-adjustable performance of the elastic support, so that the microstrip wire and the stripline are always in the Similar or the same planes are connected together, and the transfer of microstrip line and strip line is realized in the same height space.
  • the grounding member includes an elastic adapter, which is located between the connection surfaces of the strip line and the microstrip line, and The first surface of the elastic adapter is in contact with the strip line, the second surface of the elastic adapter is in contact with the microstrip line, and the strip line and the microstrip line are adjusted by elastic deformation. The distance between the connecting surfaces of the microstrip line.
  • the arrangement of the elastic adapter can compensate for the errors generated in the process of processing and assembling the microstrip line and the stripline, so as to ensure that the first surface of the elastic adapter is connected to the stripline.
  • the second surface of the elastic adapter is in contact with the microstrip line, so as to ensure the reliability and stability of the strip conductor and the microstrip conductor in the connected state.
  • the elastic adapter has a certain elasticity, after the connection between the microstrip line and the stripline is completed, elastic deformation will occur under the condition of force, and the connection between the stripline and the connection surface of the microstrip line is adjusted. The distance between them ensures the stability of the distance between the connecting surfaces of the strip line and the microstrip line.
  • the elastic adapter includes an annular second body and a plurality of second elastic parts, the second elastic The member is located on the first and/or second face of the protrusion of the second body, and the second elastic member is at least partially in contact with the microstrip or stripline.
  • the second elastic component includes at least one of the following:
  • a second elastic protrusion disposed on the first surface and/or the second surface of the protruding portion of the second body
  • the second fixed part and the second elastic moving part are connected together, the second fixed part is connected with the protruding part of the second main body, and the second elastic moving part is suspended on the protruding part of the second main body above the first or second side.
  • the second body and the plurality of second elastic members are integral structures.
  • the stability of the structure of the elastic adapter itself and the equilibrium degree of deformation can be improved, so that the distance between the connecting surfaces of the strip line and the microstrip line is more stable.
  • the method of welding, fastener connection or coupling connection is used to realize the The direct connection of the strip conductors to the microstrip conductors.
  • embodiments of the present application provide an antenna device, including: the first aspect or a signal transmission structure in any of several possible manners of the first aspect, for implementing stripline and microstrip connections between lines.
  • the strip line and/or the microstrip line are arranged in one or more of a power divider, a combiner, a phase shifter, a radiation unit, and a filter in the antenna device.
  • FIG. 2A shows a cross-sectional view of a stripline according to an embodiment of the present application.
  • FIG. 3 shows a schematic diagram of connection usage of a signal transmission structure used for connection of a stripline and a microstrip line according to an embodiment of the present application.
  • FIGS. 4A-4B illustrate a cross-sectional view and a perspective view of a first elastic support member according to an embodiment of the present application.
  • FIG. 4C shows a cross-sectional view of a second elastic support member according to an embodiment of the present application.
  • 4D-4E illustrate a top view and a cross-sectional view of a third elastic support member according to an embodiment of the present application.
  • 4F-4G illustrate a top view and a cross-sectional view of a fourth elastic support member according to an embodiment of the present application.
  • 4H-4I show a top view and a cross-sectional view of a fifth elastic support member according to an embodiment of the present application.
  • 4J shows a cross-sectional view of a sixth elastic support member according to an embodiment of the present application.
  • 4K-4L show a top view and a cross-sectional view of a seventh elastic support member according to an embodiment of the present application.
  • 5A and 5B show schematic diagrams of connection usage of a signal transmission structure used for connection of a stripline and a microstrip line according to an embodiment of the present application.
  • FIG. 5C shows a schematic perspective view of a grounding adapter according to an embodiment of the present application.
  • 6A-6D are schematic perspective views illustrating a signal transmission structure based on a stripline and a microstrip line according to an embodiment of the present application.
  • 6E-6F show a front view and a perspective view of a first elastic adapter according to an embodiment of the present application.
  • 6G-6H show a top view and a cross-sectional view of a second elastic adapter according to an embodiment of the present application.
  • 6I-6J illustrate a top view and a cross-sectional view of a third elastic adapter according to an embodiment of the present application.
  • FIG. 6K shows a schematic three-dimensional structure diagram of a strip line according to an embodiment of the present application.
  • 7A-7D are schematic perspective views illustrating the connection of a stripline and a microstrip line according to an embodiment of the present application.
  • 8A , 8B and 8C illustrate schematic diagrams of stripline and microstrip line connections according to an embodiment of the present application.
  • the present application provides a signal transmission structure for connecting a stripline and a microstrip line.
  • the signal transmission structure of the embodiment of the present application can realize the connection conversion between the stripline and the microstrip line.
  • the occupied height space is small, and the signal loss of the strip line and the microstrip line is low, which can be applied to the device that needs to use the strip line and the microstrip line in the antenna device, so as to realize the transmission and reception of signals.
  • FIG. 1A shows a schematic structural diagram of an antenna apparatus according to an embodiment of the present application
  • FIG. 1B shows a schematic structural diagram of a circuit of an antenna apparatus according to an embodiment of the present application
  • the antenna device may include a pole 01 , an antenna adjustment bracket 02 , an antenna 03 , a feeder 04 , a grounding device 05 and a joint seal 06
  • the antenna 03 is fixed on the pole 01 through the antenna adjustment bracket 02, and the antenna adjustment bracket 02 can adjust the position of the antenna 03 on the pole 01 and the angle between the pole 01 and the like.
  • Antenna 03 is connected to ground 05 via feeder 04 .
  • Joint seals 06 are provided at the connection between the feeder 04 and the antenna 03 and at the connection between the feeder 04 and the grounding device 05 , and the joint seal 06 may include insulating sealing tape or the like.
  • the antenna 03 may include a radiating element 031, a phase shifter 032, a combiner (or filter) 033, a transmission or calibration network 034 (which may include transmission components and/or calibration networks), an antenna connector 035, Antenna housing 036 and reflector (not shown).
  • the antenna cover 036 serves as a cover (ie, a casing) of the antenna 03, and is used to cover the components of the antenna 03 except the antenna connector 035 therein, so as to protect the antenna.
  • the radiation unit 031 may also be referred to as an antenna element, an element, etc., and is a basic component unit constituting an antenna, and is used for receiving and/or transmitting wireless signals.
  • the reflector also known as the bottom plate, the antenna panel, the metal reflector, the metal reflector, etc., is used to improve the sensitivity of the antenna to wireless signal reception, and can reflect the antenna signal at the receiving point. While enhancing the receiving/transmitting capability of the antenna, it also blocks and shields the interference of other wireless signals from the back (reverse direction) to the received signal.
  • Antenna connector 035 is used to connect to ground through the feeder.
  • the antenna 03 includes at least one independent array and a feed network corresponding to each array, and each array includes a radiating element 031 and a reflector, wherein the frequencies of the radiating elements 031 in different independent arrays may be the same or different. 031 is usually placed above the reflector. Each array receives or transmits wireless signals through its respective feed network.
  • the feeding network is composed of controlled impedance transmission lines, which are used to feed the transmitted signal to the radiation unit 031 according to the specified amplitude and phase, and send the received signal received by the radiation unit 031 to the base station where the antenna is located according to the specified amplitude and phase. signal processing unit.
  • the feed network includes at least a phase shifter 032 , and may also include a combiner 033 , a filter, a drive or a calibration network 034 .
  • the feeding network can realize the direction adjustment of different radiation beams (adjust the receiving direction of the received wireless signal and/or the beam direction of the transmitted wireless signal) through the transmission component, and can also obtain the calibration signal required by the antenna 03 through the calibration network.
  • the microstrip line and/or the stripline may be arranged inside the above-mentioned power divider, combiner, phase shifter, radiation unit, and filter to perform signal transmission within the device and/or between the devices,
  • the signal transmission structure can be used to realize the connection between the stripline and the microstrip line.
  • FIGS. 2A and 2B show schematic structural diagrams of the strip line according to an embodiment of the present application.
  • the strip line includes a first conductor ground 11 , a second conductor ground 12 , a strip wire 13 and a first fixing member 14 .
  • the first conductor ground 11 , the second conductor ground 12 and the strip conductor 13 are parallel to each other.
  • the strip conductor 13 is located in the middle position between the first conductor ground 11 and the second conductor ground 12, that is, the distance between the strip conductor 13 and the first conductor ground 11, and the distance between the strip conductor 13 and the second conductor ground 12. the same distance.
  • first fixing pieces 14 There may be one or more first fixing pieces 14 (as shown in FIG. 2A ), so as to fix the strip wire 13 in the middle position between the first conductor ground 11 and the second conductor ground 12 , the first fixing piece 14
  • the number can be set according to the length of the ribbon conductor, etc.
  • the material used for the first fixing member is a material with a small dielectric loss tangent (that is, a small dielectric loss angle), a low dielectric constant, and a good temperature resistance.
  • the first fixing member can choose the tangent value of the dielectric loss angle.
  • first fixing member 14 may be fixed on the first conductor ground 11 or the second conductor ground 12 (as shown in FIG. 2A ), and the other end may be fixedly connected with the strip conductor 13 .
  • both ends of the first fixing member 12 can also be fixed on the first conductor ground 11 and the second conductor ground 12 respectively, and a limiting hole is provided in the middle position of the first fixing member 12 (so that the strip conductor 13 passes through the The limiting hole is fixed), or a fixing protrusion is provided (to fix the ribbon wire 13 on the fixing protrusion), etc.
  • a limiting hole is provided in the middle position of the first fixing member 12 (so that the strip conductor 13 passes through the The limiting hole is fixed), or a fixing protrusion is provided (to fix the ribbon wire 13 on the fixing protrusion), etc.
  • the strip line may further include a third conductor ground 15 .
  • the third conductor ground 15 is perpendicular to and connected to the first conductor ground 11 and the second conductor ground 12 respectively, and the first conductor ground 11 , the second conductor ground 12 , and the third conductor ground 15 are connected one structure. That is, the first conductor ground 11 and the second conductor ground 12 are located above and below the strip conductor 13 , respectively, and the third conductor ground 15 is located on the left or right side of the strip conductor 13 .
  • the third conductor ground and/or the fourth conductor ground can be added or decreased to achieve the effect of enhanced isolation .
  • a stripline using air as a medium is provided, which can reduce the loss of signals in the stripline.
  • air is used as the medium of the strip line, since in the process of realizing the connection between the strip line and the microstrip line, there is no need to perform operations such as making metallized holes required for the connection of the medium of the strip line, which simplifies the realization of the strip line. Manufacturing process of wire to microstrip wire connection.
  • the embodiment of the present application further provides another stripline, which is different from the stripline shown in FIGS. 2A to 2D in that the stripline may also be grounded on the first conductor.
  • a strip line dielectric layer is arranged between the ground and the second conductor, and the strip wire is arranged in the strip line dielectric layer.
  • the strip line dielectric layer can fix the strip wire to be located in the middle position between the first conductor ground and the second conductor ground, it does not include the above-mentioned first fixing member.
  • An embodiment of the present application further provides a microstrip line, as shown in FIGS. 8A-8C , the microstrip line includes a microstrip wire 21 , a second fixing member 24 and a microstrip conductor ground 23 , the second fixing member 24 It is used to fix the microstrip conductor 21 above the microstrip conductor ground 21 .
  • the second fixing member 24 is similar to the above-mentioned first fixing member 14 , and the relevant description of the first fixing member can be referred to dispose the second fixing member 24 , which will not be repeated here.
  • An embodiment of the present application provides a signal transmission structure for connecting a stripline and a microstrip line.
  • the signal transmission structure includes: a grounding member, which is arranged under at least one of the stripline and the microstrip line, and is used as a grounding member.
  • the grounding of the microstrip line and the stripline and variably adjusting the height between the stripline and the microstrip line, so that one end of the stripline of the stripline and all One ends of the microstrip wires of the microstrip line are contacted and connected together.
  • the grounding member can be connected to the backside of the substrate where the microstrip line and the stripline are located, so that it can be used as the grounding of the microstrip line and the stripline.
  • the strip wire of the strip line can be directly connected to the microstrip wire of the microstrip line by means of the grounding member, which can reduce the occupation of the height space of the signal transmission structure and realize the Microstrip line transfer.
  • one end of the strip wire is directly connected to the microstrip wire, including connection methods such as welding, connection through fasteners, coupling connection, etc.
  • connection methods such as welding, connection through fasteners, coupling connection, etc.
  • FIG. 3 shows a schematic diagram of connection usage of a signal transmission structure used for connection of a stripline and a microstrip line according to an embodiment of the present application.
  • the grounding member may include an elastic support member 32 .
  • the elastic support 32 is located below the stripline or the microstrip line (as shown in FIG. 3 ), and is close to the connection position A between the stripline and the microstrip line, and utilizes elastic deformation. Adjust the height of the supported stripline or the microstrip line.
  • the elastic support 32 when the first distance from the microstrip wire 21 to the bottom surface of the microstrip conductor ground 23 is smaller than the second distance between the strip wire 13 and the second conductor ground 12, the elastic support 32 can be disposed on the microstrip wire below. When the first distance is greater than the second distance, the elastic support member 32 may be disposed below the strip line. Also, the size of the elastic support member may be set according to the difference between the first distance and the second distance. In this way, regardless of the size relationship between the first distance and the second distance, the elastic support can be used to make the microstrip wire 21 and the strip wire 13 be in the same or similar plane, so that the microstrip wire 21 and the strip wire can be in the same or similar plane. Connection of wire 13. One end of the strip wire 13 is directly connected to the microstrip wire 21 by means of welding, connection through fasteners, coupling connection and other connection methods. Those skilled in the art can set the connection method according to actual needs. No restrictions apply.
  • the strip line, the microstrip line, and the elastic support member can be mounted on the substrate as a whole.
  • the elastic support 32 is located under the stripline, one end of the second conductor ground 12 is in contact with the substrate, the microstrip conductor ground 23 is fixed on the substrate, and the elastic support 32 is fixed on the substrate; when the elastic support 32 is located on the microstrip When the line is below, one end of the microstrip conductor ground 23 is in contact with the substrate, the second conductor ground 12 is fixed on the substrate, and the elastic support 32 is fixed on the substrate.
  • the elastic support since the elastic support is in contact with the microstrip line or strip line and the substrate it supports, the force exerted by the microstrip line or the strip line on the elastic support and the force exerted by the substrate on the elastic support
  • the elastic support will be elastically deformed by the force exerted by the microstrip or stripline it supports, and the force exerted by the substrate, so as to maintain the stability of the relative positional relationship between the microstrip line and the stripline.
  • one end of the strip wire and one end of the microstrip wire can be stably contacted and connected together.
  • the elastic support member 32 may include a first body and at least one first elastic member.
  • the first elastic member is located on the first surface and/or the second surface of the first body, and the first elastic member is at least partially in contact with the supported stripline or the microstripline.
  • the first body When the first elastic member is located on the first surface or the second surface of the first body, the first body can be attached to the substrate carrying the microstrip line and the stripline by means of adhesive fixing, fastener fixing, welding or the like.
  • the height of the stripline or the microstrip line can be adjusted by elastic deformation, so as to avoid the adverse effects on the relative spatial position of the stripline and the microstrip line caused by the errors in the process of processing and assembling. , to ensure that the microstrip conductors and the ribbon conductors are always in contact and connected together on the same or the same plane.
  • 4A-4L illustrate schematic structural diagrams of an elastic support member according to an embodiment of the present application.
  • 4A-4B, 4C, 4D-4E, 4F-4G, 4H-4I, 4J, and 4K-4L provide seven exemplary elastic supports according to the embodiments of the present application Schematic diagram of the structure of the component 32.
  • the first elastic member may include at least one of the following: as shown in FIG. 4A-FIG. 4G , the first fixing part 322 and the first elastic moving part 323 are connected together, the first The fixing portion 322 is connected to the first body 321 , and the first elastic moving portion 323 is suspended above the first surface or the second surface of the first body 321 . As shown in FIGS. 4H-4L , the first elastic protrusions 324 are disposed on the first surface and/or the second surface of the first body 321 .
  • the first elastic member may include a first fixing portion 322 and a first elastic moving portion 323 .
  • the shape of the first fixing portion 322 may be an arc shape as shown in FIGS. 4A-4G , or an elliptical arc, etc., which can support the first elastic moving portion 323 to float on the first surface and/or the second surface of the first body 321 .
  • the first elastic moving part 323 includes the top part in contact with the microstrip line or the strip line (the top part B1 and the top part B2 shown in FIG. 4A and FIG. 4C , and two elastic support members shown in FIG.
  • the difference is that the top is different), the shape of the top includes an arc such as B1, and a chamfered shape such as B2.
  • the convex shape and the like can ensure the contact between the top and the microstrip line or the stripline without causing damage to the microstrip line or the stripline.
  • the first elastic moving part 323 further includes a connecting part connected to the first fixing part 322 and the top part, and a moving support part connected to the top part, and there is a distance between the moving support part and the first main body 321 .
  • the top part will approach the direction of the first main body 321
  • the moving support portion is in contact with the first body 321
  • the downward movement of the top portion will stop or slow down under the support of the moving support portion, so as to ensure that the first elastic member is not subjected to excessive force and plastic deformation occurs.
  • the force on the top of the first elastic moving part 323 decreases, the top part will move away from the first main body 321, and the moving support part will also continue to move.
  • the elastic support 32 will return to its original shape.
  • the elastic support member can offset the change in the force on the top of the first elastic moving portion 323 through deformation, so that the height of the microstrip line or the stripline supported by the elastic support member can be stabilized.
  • the first elastic moving part 323 may be located in part or all of the area above the first main body 321 , for example, as shown in FIGS. 4A-4C , the first elastic moving part 323 may be located in the entire area above the first main body 321 . . As shown in FIGS. 4D-4G , the first elastic moving part 323 may be located in a partial area above the first body 321, and the partial area may be one side of the long side or the short side of the first body 321 (as shown in FIG. 4D- 4G ) of the first main body), can also be both sides of the long side or the short side of the first main body 321 , or can also be a designated area on the first main body 321 such as a central area.
  • the end of the first main body with the first elastic moving part above the elastic support can be placed close to the strip line and the microstrip line.
  • the other end is placed at a position away from A.
  • the plurality of first elastic parts in the elastic support member may be a structure connected together by moving the support part as shown in FIG. 4A-FIG. 4C, or may be independent of each other as shown in FIG. 4D-FIG. 4G Structure.
  • the shape of the first elastic protrusion 324 may be hemispherical (as shown in FIG. 4H-FIG. 4L), semi-ellipsoidal, or conical (the cone end of the cone may be arc-shaped to To avoid damage to the microstrip or stripline), truncated, truncated, pyramidal (the cone end of the pyramid can be arc-shaped to avoid damage to the microstrip or stripline), etc. so that it can elastically deform under force while supporting the microstrip line or stripline.
  • the first elastic protrusion 324 may be a structure protruding relative to the plane of the first body 321 as shown in FIGS.
  • the first elastic protrusion 324 may also be a structure mounted on the first main body 321 as shown in FIG. 4J , and form a cavity structure 3241 with the first main body 321 ; in order to ensure that the first elastic protrusion 324 can be elastically deformed normally, A plurality of through holes 3242 may also be provided on the casing constituting the cavity structure 3241 (ie, the first elastic protrusion 324 and the first main body 321 at the corresponding position).
  • the first body and the at least one first elastic member are integrally formed.
  • the processing process of the elastic support can be simplified, and the structural stability and deformable balance of the elastic support can be improved, so that the height of the microstrip or stripline supported by the elastic support is more stable.
  • the first elastic member when the first elastic member is the first elastic protrusion as shown in FIG. 4H, FIG. 4I, FIG. 4K, and FIG. 4L, the first elastic protrusion can be directly punched at the corresponding position on the first main body to form the first elastic protrusion .
  • the first elastic components are the first fixing part 322 and the first elastic moving part 323 as shown in FIGS. 4A to 4G , a layered substrate of a certain size can be selected, and one side of it can be bent and/or cut. The "first fixing part 322 and the first elastic moving part 323" are then formed.
  • microstrip wire 21 and the strip wire 13 may be parallel to each other (as shown in FIG. 4A ), or may be perpendicular to each other or have any angle with each other. It is only necessary to adjust the two lines according to the relative angular relationship between the microstrip wire 21 and the strip wire 13 .
  • FIG. 5A and 5B show schematic diagrams of connection usage of a signal transmission structure used for connection of a stripline and a microstrip line according to an embodiment of the present application.
  • FIG. 5C shows a schematic perspective view of a grounding adapter according to an embodiment of the present application.
  • the grounding member may further include a grounding adapter 31
  • the microstrip line further includes a microstrip conductor ground 23 , located on the microstrip conductor ground 23 and the microstrip conductor ground 23 .
  • the microstrip dielectric layer 22 between the microstrip wires 21 As shown in FIG.
  • the grounding adapter 31 is provided with a first bearing surface 311 and a second bearing surface 312 , and the first bearing surface 311 and the second bearing surface 312 are respectively parallel to the grounding adapter the bottom of the piece 31.
  • the heights of the first bearing surface 311 and the second bearing surface 312 corresponding to the bottom surface are different, and the height of the first bearing surface 311 may be higher than that of the second bearing surface 312 (as shown in FIGS. is lower than the second bearing surface 312 .
  • the microstrip line is disposed on the first carrying surface 311 , and the microstrip conductor ground 23 is in contact with the first carrying surface 311 .
  • the strip wire is disposed on the second bearing surface 312 , so that the strip wire 13 is located above the microstrip wire 21 , and one end of the strip wire 13 is connected to one end of the microstrip wire 21 . touch and connect directly together.
  • the elastic support member 32 is located under the strip line or microstrip line, on the first bearing surface 311 (not shown in the figure) or on the second bearing surface 312, and is close to the first bearing surface The position of the connection between the surface 311 and the second bearing surface 312 .
  • the connection between the microstrip line and the stripline can also be realized by only using a grounding adapter.
  • the microstrip line is disposed on the first bearing surface 311 and the microstrip line
  • the ground 23 with conductors is in contact with the first bearing surface 311 .
  • the strip wire is disposed on the second bearing surface 312 , so that the strip wire 13 is located above the microstrip wire 21 , and one end of the strip wire 13 is connected to one end of the microstrip wire 21 . touch and connect directly together.
  • grounding adapter By setting the grounding adapter, different height planes are provided for the microstrip line and the strip line, so that the microstrip line and the strip line are always connected together in the same plane or at the same height, and the microstrip line is realized in the same height space. and stripline switching.
  • the planes on which the microstrip wires 21 and the strip wires 13 are located may be parallel to each other (as shown in FIG. 5A ), and the microstrip wires 21 and the strip wires 13 may be perpendicular to each other or mutually with any angle.
  • the three-dimensional shape of the grounding adapter 31 needs to be adjusted so that the microstrip wire is arranged on the first bearing surface and the strip wire is arranged on the second bearing surface
  • the microstrip wire and the ribbon wire can be contacted and connected at the ends of the two wires.
  • connection surface of the strip line is the surface where the strip line contacts the first surface of the elastic adapter.
  • connection surface of the strip line is the third conductor ground 15 and the elastic switch. The face that the first face of the connector contacts.
  • the connecting surface of the strip line is the surface where the ends of the first conductor ground 11 and the second conductor ground 12 are in contact with the first surface of the elastic adapter.
  • the connection surface of the microstrip line is the surface that is in contact with the second surface of the elastic adapter.
  • the connection surface of the microstrip line is the microstrip conductor ground 23 and the second surface of the elastic adapter. face-to-face contact.
  • the arrangement of the elastic adapter can compensate the errors generated in the process of processing and assembling the microstrip line and the strip line, so as to ensure that the first surface of the elastic adapter is in contact with the strip line, and the second surface of the elastic adapter is in contact with the strip line.
  • the surface is in contact with the microstrip wire to ensure the reliability and stability of the strip wire and the microstrip wire in the connected state.
  • the elastic adapter has a certain elasticity, after the connection between the microstrip line and the stripline is completed, elastic deformation will occur under the condition of force, and the connection between the stripline and the connection surface of the microstrip line is adjusted. The distance between them ensures the stability of the distance between the connecting surfaces of the strip line and the microstrip line.
  • the elastic adapter 41 may include an annular second body 411 (as shown in FIG. 6E , FIG. 6I , and FIG. 6G ) and a plurality of second elastic parts, the second The elastic member is located on the first surface and/or the second surface of the protruding portion 412 of the second body 411 , and the second elastic member is at least partially in contact with the microstrip line or the stripline.
  • the annular second body 411 may be provided with a plurality of protruding parts 412, and the protruding parts 412 may not be in contact with each other and spaced apart, so as to ensure that each second elastic member is When it is under force, it can deform without affecting other second elastic parts.
  • the protruding portion protrudes from the annular structure of the second main body, and the shape of the protruding portion may be a shape capable of carrying or setting the second elastic member, such as a square, a semi-circle, a semi-ellipse, or the like.
  • the protruding portion 412 can be protruded relative to the outer ring of the annular second body (as shown in FIG. 6F , FIG.
  • the second body 411 is configured as a ring structure to ensure that one end of the microstrip wire 21 or the ribbon wire 13 can pass through the elastic adapter 41 to finally realize the connection between the microstrip wire 21 and the ribbon wire 13 .
  • the inner and outer rings of the second body 411 may be the same or different shapes, such as circle, ellipse, polygon, and the like.
  • the size and shape of the inner ring and the outer ring of the annular second body can be set according to the size of the strip conductor and the setting requirements for impedance.
  • FIG. 6K shows a schematic three-dimensional structure diagram of a strip line according to an embodiment of the present application.
  • the first conductor ground 11 all the A first through hole 52 is provided on the second conductor ground 12 , the third conductor ground 15 or the fourth conductor ground 16 .
  • One end of the strip conductor 13 is connected to the microstrip conductor 21 through the first through hole 52 and through the annular second body 411 of the elastic adapter 41 .
  • the first through hole may be disposed on one conductor ground contacting the elastic adapter 41 among the first conductor ground, the second conductor ground, the third conductor ground, and the fourth conductor ground,
  • the size and shape of the first through hole can be set according to the size of the strip conductor and the setting requirements for impedance.
  • the second elastic member may include a second elastic protrusion 413 , which is provided on the first surface of the protruding portion 412 of the second body 411 and / or second side.
  • the second elastic protrusions 413 shown in FIGS. 6E and 6F are located on the first surface and the second surface of the protruding portion 412 , and may also be located only on the first surface or the second surface.
  • the shape of the second elastic protrusion may be a hemispherical shape (as shown in FIG. 6E-FIG. 6F ), etc., which is similar to or the same as the shape of the first elastic protrusion, so that it is in the same shape as the first elastic protrusion. While the microstrip line and/or the stripline are in contact, elastic deformation can occur under force.
  • This application only exemplarily describes the structure of the second elastic protrusion, and those skilled in the art can set the structure of the second elastic protrusion as required, which is not limited in this application.
  • 6G and 6H show a top view and a cross-sectional view of a second elastic adapter according to an embodiment of the present application, and the cross-section of FIG. 6H is a cross-section along the dotted line of FIG. 6G .
  • 6I and 6J show a top view and a cross-sectional view of a third elastic adapter according to an embodiment of the present application, and the cross-section of FIG. 6J is a cross-section along the dotted line of FIG. 6I .
  • the second elastic member may include a second fixing portion 415 and a second elastic moving portion 414 that are connected together, the second fixing portion 415 protruding from the second body 411 The parts 412 are connected, and the second elastic moving part 414 is suspended above the first surface or the second surface of the protruding part 412 of the second body 411 .
  • the multiple second elastic moving parts 414 may be suspended on the first surface of the protruding part 412 respectively, or the multiple second elastic moving parts 414 may be respectively Suspended on the second surface of the protruding part 412; as shown in FIG. 6I and FIG.
  • a plurality of second elastic moving parts 414 can also be arranged to be suspended on the first surface and the second surface of the protruding part 412, and the adjacent ones The second elastic moving parts 414 on the two protruding parts 412 are suspended on the first surface and the second surface respectively.
  • the second elastic member since it has a certain elasticity, it can be elastically deformed, so that the height of the second elastic member can change due to different forces in the use state, and the connection between the strip line and the microstrip line can be adjusted.
  • the distance between the surfaces ensures the stability of the distance between the connecting surfaces of the stripline and the microstrip line.
  • the second body and the plurality of second elastic members may be an integral structure.
  • the structural stability of the elastic adapter itself and the degree of equilibrium of deformation can be improved, so that the distance between the connecting surfaces of the strip line and the microstrip line is more stable.
  • one end of the strip wire 13 passes through the first through hole 52 , the annular second body 411 of the elastic adapter 41 , and the second through hole 25 in sequence.
  • the conductive metal in the hole 25 is connected to the microstrip wire 21 .
  • one end of the strip conductor 13 passes through the annular second body 411 of the elastic adapter 41 in sequence, and the second through hole 25 is directly connected to the microstrip conductor 21 .
  • One end of the microstrip wire 21 is directly connected to the strip wire 13 through the second through hole 25 and the annular second body 411 of the elastic adapter 41 in turn; the strip wire One end of 13 passes through the annular second body 411 of the elastic adapter 41 and is connected to the microstrip wire 21 through the conductive metal in the second through hole 25 .
  • FIG. 6C can be parallel to each other (as shown in FIG. 6B ) , may also have a certain angle, such as a right angle (as shown in FIG. 6A , FIG. 6C , and FIG. 6D ) or any other angle, which is not limited in this application.
  • the microstrip line and the strip line can be connected in the vertical direction (that is, the plane where the microstrip conductor is located and the plane where the strip conductor is located are perpendicular to each other), and can be caused by errors in the process of processing, assembly, etc. Detrimental effects on microstrip and stripline connections to ensure that microstrip and striplines can be connected vertically together.
  • FIG. 7A-7D are schematic perspective views illustrating the connection of a stripline and a microstrip line according to an embodiment of the present application.
  • the microstrip line and the stripline can be directly connected together.
  • the microstrip line includes a microstrip conductor ground 23, a microstrip wire 21, a microstrip dielectric layer 22 between the microstrip conductor ground 23 and the microstrip wire 21, a microstrip conductor ground 23 and a microstrip wire 21.
  • the second through hole 25 of the microstrip dielectric layer The plane where the microstrip conductor 21 is located and the plane where the strip conductor 13 is located are perpendicular to each other, and the microstrip conductor 21 and the strip conductor 13 are connected together.
  • the manner in which the strip conductor 13 is connected to the microstrip conductor 21 include any of the following:
  • microstrip wire 21 is directly connected to the strip wire 13 through the second through hole 25;
  • the strip wire 13 is connected to the microstrip wire 21 through the conductive metal in the second through hole 25 .
  • the manner in which the strip wire 13 is connected to the microstrip wire 21 includes any one of the following:
  • One end of the strip conductor 13 is directly connected to the microstrip conductor 21 through the first through hole 52 and the second through hole 25 in sequence;
  • microstrip wire 21 is sequentially connected to the strip wire 13 through the second through hole 25 and the first through hole 52;
  • the strip wire 13 passes through the first through hole 52 and is connected to the microstrip wire 21 through the conductive metal in the second through hole 25 .
  • the relative positional relationship between the microstrip wires and the strip wires is only to show that the plane where the microstrip wires are located and the plane where the strip wires are located are perpendicular to each other.
  • the extension direction of the microstrip conductor also called the length direction, as shown in Fig. 7A, Fig.
  • the vertical direction in which the microstrip conductor 21 is located in 7B) and the extension direction of the strip conductor can be parallel to each other ( As shown in FIG. 7D ), it may also have a certain angle, such as a right angle (as shown in FIGS. 7A-7C ) or any other angle, which is not limited in this application.
  • the microstrip line and the stripline are directly connected together, which simplifies the transfer between the microstrip line and the stripline, and can realize the realization of the stripline to the microstrip while reducing the height occupied by the signal transmission structure. line transfer.
  • the microstrip line may include The microstrip conductor 21, the microstrip conductor ground 23 and the second fixing member 24, the microstrip conductor ground 23 and the second conductor ground 12 are in the same plane and connected together, the second fixing member 24 connects the The microstrip conductor 21 is fixed above the microstrip conductor ground 23 .
  • the One end of the strip conductor 13 is bent and directly connected to the microstrip conductor 24 .
  • one end of the microstrip wire 21 may be bent and directly connected to the strip wire 13 .
  • One end of the strip wire 13 is directly connected to the microstrip wire 21 after being bent, including connection methods such as welding, connection through fasteners, coupling connection, etc. Those skilled in the art can set the connection methods according to actual needs. There are no restrictions on the application.
  • connection method of the wire connector 51 to the strip wire 13 and the microstrip wire 21 may include connection methods such as welding, connection through fasteners, coupling connection, etc. Those skilled in the art can set the connection methods according to actual needs. This is not limited.
  • microstrip conductor ground 23 and the second conductor ground 12 being on the same plane may include any one of the following implementation manners:
  • the microstrip conductor ground 23 and the second conductor ground 12 may be an integral structure (as shown in FIGS. 8A-8C ), which facilitates the processing and manufacture of the signal transmission structure and simplifies the manufacturing process.
  • the microstrip conductor ground 23 and the second conductor ground 12 are integral structures, the size of the microstrip conductor ground 23 meets the size requirements of the microstrip line, and the size of the second conductor ground 12 meets the size of the stripline. Require.
  • the microstrip conductor ground 23 and the second conductor ground 12 may have different structures, but in the area where the strip conductor 13 and the microstrip conductor 21 are connected, the microstrip conductor ground 23 and the second conductor ground 12 fixed together.
  • the microstrip line and the stripline using air as the medium are provided, and the loss of the signal in the microstrip line and the stripline can be reduced.
  • air is used as the medium of the microstrip line, since in the process of realizing the connection between the strip line and the microstrip line, there is no need to perform operations such as manufacturing metallized holes required for the connection of the medium of the strip line, which simplifies the realization of the strip line. Manufacturing process of wire to microstrip wire connection.
  • the conductor grounds of the strip line and the microstrip line are made to be on the same plane and connected together, the strip line and the microstrip line are adjusted to the same or similar plane, which simplifies the transition between the microstrip line and the strip line. It is easy to integrate the microstrip line and the strip line together, and saves the height space occupied by the integration.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more functions for implementing the specified logical function(s) executable instructions.
  • the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.

Landscapes

  • Waveguide Connection Structure (AREA)

Abstract

本申请涉及用于带状线和微带线连接的信号传输结构及天线装置,该信号传输结构包括:接地件,设置于带状线和微带线中至少一个的下方,用于作为所述微带线和所述带状线的接地,以及可变地调整所述带状线与所述微带线之间的高度,以使所述带状线的带状导线的一端和所述微带线的微带导线的一端接触并连接在一起。本申请实施例所提供的用于带状线和微带线连接的信号传输结构及天线装置,借助接地件将带状线的带状导线与微带线的微带导线直接连接,可以在降低信号传输结构对高度空间的占用的同时,实现带状线到微带线的转接。

Description

用于带状线和微带线连接的信号传输结构及天线装置 技术领域
本申请涉及射频信号传输技术领域,尤其涉及一种用于带状线和微带线连接的信号传输结构及天线装置。
背景技术
天线是一种变换器,它把传输线上传播的信号,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。广泛应用于无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等。在天线中,需要将射频信号从连接器、滤波器、合路器、功分网络、移相器等射频部件传输到天线发射单元最后辐射到空中,在传输过程中存在不同形式的传输线,而部分形式的传输线所造成的信号损耗较大,也有部分形式的传输线损所造成的信号耗较小。但由于天线内部空间尺寸限制或者其他设计约束下往往难以统一成同一种形式的传输线,因此需要设计不同传输线之间的转换结构,特别是需要从高损耗传输线形式转换到低损耗传输线形式,以较低的损耗传输信号。在天线领域通常使用的射频传输线形式有微带线、带状线、同轴线、波导、平行双线等,其中微带线由于易于集成其他元件应用最为广泛,但相关技术中微带线和带状线均有较高的损耗,且带状线与微带线的转换设置所占用的高度空间较多,是亟待解决的技术问题。
发明内容
有鉴于此,提出了一种用于带状线和微带线连接的信号传输结构及天线装置。
第一方面,本申请的实施例提供了一种用于带状线和微带线连接的信号传输结构,包括:
接地件,设置于带状线和微带线中至少一个的下方,用于作为所述微带线和所述带状线的接地,以及可变地调整所述带状线与所述微带线之间的高度,以使所述带状线的带状导线的一端和所述微带线的微带导线的一端接触并连接在一起。
通过第一方面,借助接地件将带状线的带状导线与微带线的微带导线直接连接,可以在降低信号传输结构对高度空间的占用的同时,实现带状线到微带线的转接。
结合第一方面,在所述信号传输结构的第一种可能的实现方式中,所述接地件包括弹性支撑件。
所述弹性支撑件位于所述带状线或所述微带线的下方。可选的,所述弹性支撑件靠近所述带状线与所述微带线的连接位置处,利用弹性形变调整所支撑的所述带状线或所述微带线的高度。
结合第一种可能的实现方式,在所述信号传输结构的第二种可能的实现方式中,所述弹性支撑件包括第一主体和至少一个第一弹性部件。所述第一弹性部件位于所述第一主体的第一面和/或第二面上,且所述第一弹性部件至少部分与所支撑的所述带状线或所述微带线接触。
通过第二种可能的实现方式,通过弹性支撑件的设置,可以利用弹性形变调整带状线或微带线的高度,避免由于加工、装配等过程中产生的误差对带状线和微带线的空间相对位置带来的不利影响,以保证微带导线和带状导线始终在相近或相同的平面接触并连接在一起。
结合第二种可能的实现方式,在所述信号传输结构的第三种可能的实现方式中,所述第一主体和所述至少一个第一弹性部件为一体结构。
通过第三种可能的实现方式可以简化弹性支撑件的加工过程,提高弹性支撑件的结构稳定性、可变形的均衡性,以使得其所支持的微带线或带状线的高度更为稳定。
结合第二种可能的实现方式,在所述信号传输结构的第四种可能的实现方式中,所述第一弹性部件包括以下至少一种:
第一弹性凸起,设置于所述第一主体的第一面和/或第二面,
连接在一起的第一固定部和第一弹性移动部,所述第一固定部与所述第一主体连接,所述第一弹性移动部悬浮于所述第一主体的第一面或第二面上方。
结合第二种、第三种、第四种可能的实现方式,在所述信号传输结构的第五种可能的实现方式中,所述接地件还包括接地转接件,所述微带线还包括微带导体地、位于所述微带导体地和所述微带导线之间的微带介质层,
所述接地转接件设置有第一承载面和第二承载面,所述第一承载面和所述第二承载面分别平行于所述接地转接件的底面,
所述微带线设置于所述第一承载面上、且所述微带导体地与所述第一承载面接触;
所述带状线设置于所述第二承载面上,使所述带状导线位于所述微带导线上方、且所述带状导线的一端与所述微带导线的一端接触并连接在一起;
所述弹性支撑件,位于所述第一承载面或所述第二承载面上,且靠近所述第一承载面和所述第二承载面的连接处的位置。
根据第五种可能的实现方式,通过设置接地转接件为微带线和带状线提供不同的高度平面,并结合弹性支撑件的高度可调节性能,使得微带导线和带状导线始终在相近或相同的平面连接在一起,在同一高度空间内实现了微带线和带状线的转接。
结合第一方面,在所述信号传输结构的第六种可能的实现方式中,所述接地件包括弹性转接件,位于所述带状线和所述微带线的连接面之间,且所述弹性转接件的第一面与所述带状线接触,所述弹性转接件的第二面与所述微带线接触,利用弹性形变调整所述所述带状线和所述微带线的连接面之间的距离。
根据第六种可能的实现方式,通过弹性转接件的设置可以补偿微带线和带状线加工、装配等过程中产生的误差,保证弹性转接件的第一面与所述带状线接触,弹性转接件的第二面与所述微带线接触,保证带状导线与所述微带导线在连接状态下的可靠性和稳定性。同时,由于弹性转接件具有一定弹性,在完成微带线与带状线的连接后,在受力情况下会发生弹性形变,调整所述带状线和所述微带线的连接面之间的距离,保证所述带状线和所述微带线的连接面之间的距离的稳定。
结合第六种可能的实现方式,在所述信号传输结构的第七种可能的实现方式中所述弹性转接件包括环状的第二主体和多个第二弹性部件,所述第二弹性部件位于所述第二主体的突出部的第一面和/或第二面上,且所述第二弹性部件至少部分与所述微带线或带状线接触。
结合第七种可能的实现方式,在所述信号传输结构的第八种可能的实现方式中,所述第二弹性部件包括以下至少一种:
第二弹性凸起,设置于所述第二主体的突出部的第一面和/或第二面;
连接在一起的第二固定部和第二弹性移动部,所述第二固定部与所述第二主体的突出部 连接,且所述第二弹性移动部悬浮于所述第二主体的突出部的第一面或第二面上方。
结合第七种可能的实现方式,在所述信号传输结构的第九种可能的实现方式中,所述第二主体和所述多个第二弹性部件为一体结构。可以提高弹性转接件自身结构的稳定性、发生形变的均衡程度,以使得带状线和微带线的连接面之间的距离更为稳定。
结合第一方面、第一方面的几种可能方式中的任一种,在所述信号传输结构的第十种可能的实现方式中,通过焊接、紧固件连接或耦合连接的方式实现所述带状导线与所述微带导线的直接连接。
第二方面,本申请的实施例提供了一种天线装置,包括:上述第一方面或者第一方面的几种可能方式中的任一种的信号传输结构,用于实现带状线与微带线之间的连接。
其中,所述带状线和/或所述微带线,设置于所述天线装置中的功率分配器、合路器、移相器、辐射单元、滤波器中的一个或多个中。
根据下面参考附图对示例性实施例的详细说明,本申请的其它特征及方面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本申请的示例性实施例、特征和方面,并且用于解释本申请的原理。
图1A示出根据本申请一实施例的天线装置的结构示意图。
图1B示出根据本申请一实施例的天线装置的电路结构示意图。
图2A示出根据本申请一实施例的带状线的截面图。
图2B-图2D示出根据本申请一实施例的带状线的结构示意图。
图3示出根据本申请一实施例的用于带状线和微带线连接的信号传输结构的连接使用示意图。
图4A-图4B示出根据本申请一实施例的第一种弹性支撑件的截面图和立体图。
图4C示出根据本申请一实施例的第二种弹性支撑件的截面图。
图4D-图4E示出根据本申请一实施例的第三种弹性支撑件的俯视图和截面图。
图4F-图4G示出根据本申请一实施例的第四种弹性支撑件的俯视图和截面图。
图4H-图4I示出根据本申请一实施例的第五种弹性支撑件的俯视图和截面图。
图4J示出根据本申请一实施例的第六种弹性支撑件的截面图。
图4K-图4L示出根据本申请一实施例的第七种弹性支撑件的俯视图和截面图。
图5A、图5B示出根据本申请一实施例的用于带状线和微带线连接的信号传输结构的连接使用示意图。
图5C示出根据本申请一实施例的接地转接件的立体示意图。
图6A-图6D示出根据本申请一实施例的基于带状线和微带线的信号传输结构的立体示意图。
图6E-图6F示出根据本申请一实施例的第一种弹性转接件的主视图和立体图。
图6G-图6H示出根据本申请一实施例的第二种弹性转接件的俯视图和截面图。
图6I-图6J示出根据本申请一实施例的第三种弹性转接件的俯视图和截面图。
图6K示出根据本申请一实施例的带状线的立体结构示意图。
图7A-图7D示出根据本申请一实施例的带状线和微带线连接的立体示意图。
图8A、图8B、图8C示出根据本申请一实施例的带状线和微带线连接的示意图。
具体实施方式
以下将参考附图详细说明本申请的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本申请,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本申请同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本申请的主旨。
为了解决上述技术问题,本申请提供了一种用于带状线和微带线连接的信号传输结构,本申请实施例的信号传输结构能够实现带状线和微带线之间的连接转换,且所占用的高度空间小,带状线和微带线对信号的损耗低,可以应用于天线装置中需要使用带状线和微带线的器件中,从而实现信号的收发。
图1A示出根据本申请一实施例的天线装置的结构示意图、图1B示出根据本申请一实施例的天线装置的电路结构示意图。如图1A所示,天线装置可以包括抱杆01、天线调整支架02、天线03、馈线04、接地装置05和接头密封件06。其中,天线03通过天线调整支架02固定在抱杆01上,天线调整支架02可以调整天线03在抱杆01上的位置、与抱杆01之间的角度等。天线03通过馈线04连接到接地装置05。馈线04与天线03的连接处、馈线04与接地装置05的连接处均设置有接头密封件06,接头密封件06可以包括绝缘密封胶带等。
如图1B所示,天线03可以包括辐射单元031、移相器032、合路器(或者滤波器)033、传动或校准网络034(可以包括传动部件和/或校准网络)、天线接头035、天线外罩036和反射板(图中未示出)。天线外罩036作为天线03的外罩(也即壳体),用于将天线03中除天线接头035之外的部件罩于其中,以保护天线。辐射单元031也可称为天线振子、振子等,是构成天线的基本组成单元,用于接收和/或发射无线信号。反射板,也称底板、天线面板、金属反射面、金属反射板等,用于提高天线对无线信号接收的灵敏度,可以把天线信号反射聚集在接收点上。在增强天线的接收/发射能力的同时,还起到阻挡、屏蔽来自后背(反方向)的其它无线信号对接收信号的干扰作用。天线接头035用于通过馈线连接到接地装置。
其中,天线03包括至少一个独立的阵列和与每个阵列对应的馈电网络,每个阵列包括辐射单元031和反射板,其中不同独立阵列中的辐射单元031的频率可以相同或者不同,辐射单元031通常放置于反射板上方。每个阵列通过各自的馈电网络接收或发射无线信号。馈电网络由受控的阻抗传输线构成,用于把发射信号按照指定的幅度、相位馈送到辐射单元031,以及将辐射单元031接收到的接收信号按照指定的幅度、相位发送至天线所在基站的信号处理单元。馈电网络至少包括移相器032,还可以包括合路器033、滤波器、传动或校准网络034。馈电网络可以通过传动部件实现不同辐射波束的指向调整(调整接收无线信号的接收方向和/或发射无线信号的波束方向),也可以通过校准网络以获取天线03所需的校准信号。
本申请实施例中微带线和/或带状线可以设置于上述功率分配器、合路器、移相器、辐射单元、滤波器内部,进行器件内部和/或器件之间的信号传输,而信号传输结构可以用于实现 带状线与微带线之间的连接。
为进一步描述信号传输结构实现带状线和微带线连接的方式,通过下述示例描述信号传输结构、以及借助信号传输结构实现连接的带状线和微带线如下:
图2A示出根据本申请一实施例的带状线的截面图,图2B-图2D示出根据本申请一实施例的带状线的结构示意图。如图2A和图2B所示,带状线包括第一导体地11、第二导体地12、带状导线13和第一固定件14。其中,第一导体地11、第二导体地12、带状导线13之间两两相互平行。带状导线13位于第一导体地11和第二导体地12之间的中间位置,也即带状导线13与第一导体地11之间的距离、带状导线13与第二导体地12之间的距离相同。
第一固定件14可以为一个或多个(如图2A所示),以将带状导线13固定在第一导体地11和第二导体地12之间的中间位置,第一固定件14的个数可以根据带状导线的长度等进行设置。第一固定件所使用的材料为介电损耗正切小(也即介电损耗角小)、介电常数低、耐温性能好的材料,如第一固定件可以选择介电损耗角的正切值小于0.005、介电常数小于4C 2/(N·M 2)、耐温范围为-40℃-55℃的塑料材料。第一固定件14可以一端固定在第一导体地11或第二导体地12(如图2A所示)上、另外一端与带状导线13固定连接。或者,第一固定件12也可以两端分别固定在第一导体地11和第二导体地12上,并在第一固定件12的中间位置设置限位孔(使得带状导线13穿过该限位孔被固定)、或者设置固定突出部(以将带状导线13固定在固定突出部上)等。本领域技术人员可以根据实际需要对将第一固定件的实现方式进行设置,本申请对此不作限制。
在一种可能的实现方式中,如图2C所示,带状线还可以包括第三导体地15。第三导体地15与所述第一导体地11和所述第二导体地12分别垂直并连接,所述第一导体地11、所述第二导体地12、所述第三导体地15连接为一体结构。也即,第一导体地11和所述第二导体地12分别位于带状导线13的上方和下方,第三导体地15位于带状导线13的左侧或右侧。
在一种可能的实现方式中,如图2D所示,所述带状线还可以包括相互平行的第三导体地15和第四导体地16,所述第三导体地15与所述第一导体地11和所述第二导体地12分别垂直并连接,所述第四导体地16与所述第一导体地11和所述第二导体地13分别垂直并连接,以使所述第一导体地11、所述第二导体地12、所述第三导体地15、所述第四导体地16连接为一体结构。也即,第一导体地11和所述第二导体地12分别位于带状导线13的上方和下方,第三导体地15和第四导体地16分别位于带状导线13的左、右两侧。
其中,在带状线的一侧或两侧空间受限或者带状线需要与其他部件或者系统进行隔离时,可以增减第三导体地和/或第四导体地,以达到增强隔离的作用。
通过上述方式,提供了以空气为介质的带状线,可以降低信号在带状线中的损耗。并且,以空气为带状线的介质,由于在实现带状导线与微带导线连接的过程中无需对带状线的介质进行为连接所需的制造金属化孔等操作,简化了实现带状导线与微带导线连接的制造过程。
在一种可能的实现方式中,本申请实施例还提供另一种带状线,其与图2A-图2D所示的带状线的区别在于,带状线中还可以在第一导体地和第二导体地之间设置带状线介质层,带状导线设置于带状线介质层中。而由于带状线介质层能够固定带状导线使其位于第一导体地和第二导体地之间的中间位置,因此其不包括上述第一固定件。
本申请实施例还提供一种微带线,如图8A-图8C所示,该微带线包括微带导线21、第二固定件24和微带导体地23,所述第二固定件24用于将微带导线21固定在所述微带导体 地21的上方。第二固定件24与上述第一固定件14相似,可参考第一固定件的相关描述以设置第二固定件24,此处不予赘述。
本申请实施例还提供另一种微带线,如图3、图5A、图5B、图6A-图6D、图7A-图7D所示,该微带线包括微带导线21、微带导体地23和位于微带导线21和微带导体地23之间的微带介质层22。
本申请的实施例提供了一种用于带状线和微带线连接的信号传输结构,信号传输结构包括:接地件,设置于带状线和微带线中至少一个的下方,用于作为所述微带线和所述带状线的接地,以及可变地调整所述带状线与所述微带线之间的高度,以使所述带状线的带状导线的一端和所述微带线的微带导线的一端接触并连接在一起。
其中,接地件可以与微带线和带状线所在的基板的背面连接,以使其可以作为所述微带线和所述带状线的接地。
通过上述提供的信号传输结构,可以借助接地件将带状线的带状导线与微带线的微带导线直接连接,可以在降低信号传输结构对高度空间的占用的同时,实现带状线到微带线的转接。
在一种可能的实现方式中,带状导线的一端直接与所述微带导线连接的方式包括焊接、通过紧固件连接、耦合连接等连接方式,本领域技术人员可以根据实际需要对连接方式进行设置,本申请对此不作限制。
在本实施例中,利用接地件实现带状线到微带线的转接可以包括以下实现方式,本领域技术人员可以参考下述实现方式对信号传输结构进行设置,需要说明的是本申请附图中所示出的信号传输结构仅是为了示例性的描述信号传输结构实现微带线、带状线进行连接的实现方式,其中示出的微带线、带状线、接地件等的尺寸和比例关系仅是为了说明,实际使用中,本领域技术人员可以根据实际需要进行设置,本申请对此不作限制。
图3示出根据本申请一实施例的用于带状线和微带线连接的信号传输结构的连接使用示意图。在一种可能的实现方式中,如图3所示,所述接地件可以包括弹性支撑件32。
所述弹性支撑件32位于所述带状线或所述微带线(如图3所示)的下方、且靠近所述带状线与所述微带线的连接位置A处,利用弹性形变调整所支撑的所述带状线或所述微带线的高度。
其中,在微带导线21到微带导体地23的底面的第一距离小于所述带状导线13到第二导体地12之间的第二距离时,弹性支撑件32可以设置于微带线下方。在第一距离大于第二距离时,弹性支撑件32可以设置于带状线下方。并且,可以根据第一距离与第二距离之间的差值设置弹性支撑件的尺寸。这样,无论第一距离与第二距离之间的大小关系为何,都可以借助弹支撑件使得微带导线21与带状导线13可以处于相同或相近的平面内,实现微带导线21与带状导线13的连接。带状导线13的一端直接与所述微带导线21连接的方式包括焊接、通过紧固件连接、耦合连接等连接方式,本领域技术人员可以根据实际需要对连接方式进行设置,本申请对此不作限制。
其中,可以将带状线、微带线、弹性支撑件作为一个整体安装于基板上。在弹性支撑件32位于带状线下方时,第二导体地12的一端与基板接触、微带导体地23固定于基板上、弹性支撑件32固定于基板上;在弹性支撑件32位于微带线下方时,微带导体地23的一端与基 板接触、第二导体地12固定于基板上、弹性支撑件32固定于基板上。且在完成安装之后,由于弹性支撑件与其支撑的微带线或带状线、基板接触,在微带线或带状线对弹性支撑件所施加的力、基板对弹性支撑件所施加的力发生变化时,弹性支撑件会因其支撑的微带线或带状线所施加的力、基板所施加的力发生弹性形变,维持微带线和带状线之间的相对位置关系的稳定,以保证带状导线的一端和微带导线的一端可以稳定地接触并连接在一起。
在一种可能的实现方式中,弹性支撑件32可以包括第一主体和至少一个第一弹性件。所述第一弹性部件位于所述第一主体的第一面和/或第二面上,且所述第一弹性部件至少部分与所支撑的所述带状线或所述微带线接触。
在第一弹性部件位于第一主体的第一面或第二面时,可以通过粘合固定、紧固件固定、焊接等方式将第一主体与承载微带线和带状线的基板上。通过弹性支撑件的设置,可以利用弹性形变调整带状线或微带线的高度,避免由于加工、装配等过程中产生的误差对带状线和微带线的空间相对位置带来的不利影响,以保证微带导线和带状导线始终在相近或相同的平面接触并连接在一起。
图4A-图4L示出根据本申请一实施例的弹性支撑件的结构示意图。其中,图4A-图4B,图4C,图4D-图4E,图4F-图4G,图4H-图4I,图4J,图4K-图4L为本申请实施例提供的7种示例性弹性支撑件32的结构示意图。
在一种可能的实现方式中,所述第一弹性部件可以包括以下至少一种:如图4A-图4G,连接在一起的第一固定部322和第一弹性移动部323,所述第一固定部322与所述第一主体321连接,所述第一弹性移动部323悬浮于所述第一主体321的第一面或第二面上方。如图4H-图4L所示,第一弹性凸起324,设置于所述第一主体321的第一面和/或第二面。
其中,图4A-图4G所示,第一弹性部件可以包括第一固定部322和第一弹性移动部323。第一固定部322的形状可以是如图4A-图4G所示的圆弧状,也可以是椭圆弧等能够支撑第一弹性移动部323悬浮在第一主体321的第一面和/或第二面上方的形状结构。第一弹性移动部323包括与微带线或带状线接触的顶部(如图4A、图4C所示的顶部B1、顶部B2,图4A-图4B与图4C示出的两个弹性支撑件的区别在于顶部不同),该顶部的形状包括如B1的弧状、如B2的具有倒角的形如
Figure PCTCN2020141420-appb-000001
凸起状等既能保证顶部与微带线或带状线的接触、又不会对微带线或带状线产生损害的形状。第一弹性移动部323还包括与第一固定部322和顶部连接的连接部、连接于顶部的移动支撑部,移动支撑部与第一主体321之间具有间隔距离。这样,在安装弹性支撑件的过程中,第一弹性移动部323的顶部在受力(来自于其所支撑的微带线或带状线)增加时,顶部会向靠近第一主体321的方向移动,而当移动支撑部与第一主体321接触后,顶部的下移会在移动支撑部的支撑下停止或减缓,以确保第一弹性部件不会受力过大发生塑性变形。反之,在第一弹性移动部323的顶部在受力(来自于其所支撑的微带线或带状线)减小时,顶部会向远离第一主体321的方向移动,移动支撑部也会不断远离第一主体321,且在受力为零时,弹性支撑件32会恢复到原始形状。而在使用过程中,弹性支撑件会通过形变抵消第一弹性移动部323的顶部受力的变化,使得弹性支撑件所支撑的微带线或带状线的高度能够稳定。
其中,第一弹性移动部323可以位于第一主体321的上方的部分或全部区域,例如,如图4A-图4C所示,第一弹性移动部323可以位于第一主体321的上方的全部区域。如图4D-图4G所示,第一弹性移动部323可以位于第一主体321的上方的部分区域,该部分区域可 以是第一主体321的长边或短边的一侧(如图4D-图4G所示的第一主体的长边的一侧),也可以是第一主体321的长边或短边的两侧,或者还可以是第一主体321上的如中心区域等指定区域。并且,在第一弹性移动部323位于第一主体321的上方的部分区域时,可以将弹性支撑件上方有第一弹性移动部的第一主体的一端放置于靠近带状线与微带线的连接位置A处,另一端(上方没有第一弹性移动部的)放置于远离A的位置。
其中,弹性支撑件中的多个第一弹性部件可以是如图4A-图4C所示的通过移动支撑部等连接在一起的结构,也可以是如图4D-图4G所示的相互独立设置的结构。
需要说明的是,本领域技术人员可以根据实际需要对第一固定部322和第一弹性移动部323的形状、与第一主体之间的相对位置、尺寸、数量、第一弹性移动部之间是否连接等进行设置,本申请对此不作限制。
在一种可能的实现方式中,第一弹性凸起324的形状可以是半球状(如图4H-图4L所示)、半椭球状、圆锥状(其圆锥的锥端可以为圆弧状以避免对微带线或带状线造成损害)、圆台状、棱台状、棱锥状(其棱锥的锥端可以为圆弧状以避免对微带线或带状线造成损害)等形状的凸起,以使其在支撑微带线或带状线的同时,受力能够发生弹性形变。第一弹性凸起324可以是如图4I、图4L所示的相对于第一主体321所在平面而突出的结构,其与第一主体321之间并未形成腔体结构。第一弹性凸起324还可以是如图4J所示安装于第一主体321上的结构,且与第一主体321形成腔体结构3241;为保证第一弹性凸起324可以正常发生弹性形变,还可以在构成腔体结构3241的外壳(也即第一弹性凸起324和对应位置的第一主体321)上设置多个通孔3242。
其中,第一弹性凸起可以在第一主体上呈直线(如图4H-图4L)分布、也可以呈环状、曲线、阵列状态分布。
需要说明的是,本领域技术人员可以根据实际需要对第一弹性凸起的形状、与第一主体之间的相对位置、尺寸、数量等进行设置,本申请对此不作限制。
在一种可能的实现方式中,如图4A-图4I、图4K、图4L所示,所述第一主体和所述至少一个第一弹性部件为一体结构。这样,可以简化弹性支撑件的加工过程,提高弹性支撑件的结构稳定性、可变形的均衡性,以使得其所支持的微带线或带状线的高度更为稳定。
其中,在第一弹性部件为如图4H、图4I、图4K、图4L所示的第一弹性凸起时,可以采用直接在第一主体上对应位置进行冲压,以形成第一弹性凸起。在第一弹性部件为如图4A-图4G所示的第一固定部322和第一弹性移动部323,可以选取一定尺寸的层片状基板,对其一个侧边进行弯折和/或切割后形成“第一固定部322和第一弹性移动部323”。
其中,微带导线21和带状导线13可以是相互平行的(如图4A所示),也可以是相互垂直或者相互之间具有任意角度的。只需要根据微带导线21和带状导线13之间的相对角度关系,对两线进行调整即可。
图5A、图5B示出根据本申请一实施例的用于带状线和微带线连接的信号传输结构的连接使用示意图。图5C示出根据本申请一实施例的接地转接件的立体示意图。在一种可能的实现方式中,如图5A所示,所述接地件还可以包括接地转接件31,所述微带线还包括微带导体地23、位于所述微带导体地23和所述微带导线21之间的微带介质层22。如图5C所示,所述接地转接件31设置有第一承载面311和第二承载面312,所述第一承载面311和所述第二承载面312分别平行于所述接地转接件31的底面。第一承载面311和第二承载面312相对 应于底面的高度不同,可以第一承载面311的高度高于第二承载面312(如图5A-图5C),也可以第一承载面311的高度低于第二承载面312。
如图5A所示,所述微带线设置于所述第一承载面311上、且所述微带导体地23与所述第一承载面311接触。所述带状线设置于所述第二承载面312上,使所述带状导线13位于所述微带导线21上方、且所述带状导线13的一端与所述微带导线21的一端接触并直接连接在一起。所述弹性支撑件32,位于所述带状线或微带线下方、所述第一承载面311(图中未示出)或所述第二承载面312上,且靠近所述第一承载面311和所述第二承载面312的连接处的位置。
通过设置接地转接件,为微带线和带状线提供不同的高度平面,并结合弹性支撑件的高度可调节性能,使得微带导线和带状导线始终在相近或相同的平面连接在一起,在同一高度空间内实现了微带线和带状线的转接。
如图5B所示,还可以仅利用接地转接件实现微带线和带状线之间的连接,此时,所述微带线设置于所述第一承载面311上、且所述微带导体地23与所述第一承载面311接触。所述带状线设置于所述第二承载面312上,使所述带状导线13位于所述微带导线21上方、且所述带状导线13的一端与所述微带导线21的一端接触并直接连接在一起。通过设置接地转接件,为微带线和带状线提供不同的高度平面,使得微带导线和带状导线始终在相近或相同的平面连接在一起,在同一高度空间内实现了微带线和带状线的转接。
在该实现方式中,微带导线21和带状导线13所在的平面可以是相互平行的(如图5A所示),微带导线21和带状导线13之间可以是相互垂直或者相互之间具有任意角度的。其中,在微带导线21和带状导线13之间具有一定角度时,需要调整接地转接件31的立体形状,使得微带线设置于第一承载面、带状线设置于第二承载面的同时,微带导线和带状导线可以在两线的端部接触并连接。
可以理解的是,本申请实施例仅示例性的描述了几种弹性支撑件32的结构,本领域技术人员可以根据实际需要对弹性支撑件32的结构进行设置,本申请对此不作限制。
图6A-图6D示出根据本申请一实施例的基于带状线和微带线的信号传输结构的立体示意图,在一种可能的实现方式中,如图6A-图6D所示,所述接地件可以为弹性转接件41,位于带状线和微带线的连接面之间,微带导线21所在的平面与带状导线13所在的平面之间相互垂直。且所述弹性转接件41的第一面与所述带状线接触,所述弹性转接件的第二面与所述微带线接触,利用弹性形变调整所述所述带状线和所述微带线的连接面之间的距离。其中,带状线的连接面即为带状线与弹性转接件的第一面接触的面,如图6A-图6B中,带状线的连接面即为第三导体地15与弹性转接件的第一面接触的面。如图6A-图6B中,带状线的连接面即为第一导体地11、第二导体地12的端部与弹性转接件的第一面接触的面。微带线的连接面即为与与弹性转接件的第二面接触的面,如图6A-图6D中微带线的连接面即为微带导体地23与弹性转接件的第二面接触的面。
通过弹性转接件的设置可以补偿微带线和带状线加工、装配等过程中产生的误差,保证弹性转接件的第一面与所述带状线接触,弹性转接件的第二面与所述微带线接触,保证带状导线与所述微带导线在连接状态下的可靠性和稳定性。同时,由于弹性转接件具有一定弹性,在完成微带线与带状线的连接后,在受力情况下会发生弹性形变,调整所述带状线和所述微 带线的连接面之间的距离,保证所述带状线和所述微带线的连接面之间的距离的稳定。
图6E-图6J示出根据本申请一实施例的弹性转接件的结构示意图。在一种可能的实现方式中,所述弹性转接件41可以包括环状的第二主体411(如图6E、图6I、图6G所示)和多个第二弹性部件,所述第二弹性部件位于所述第二主体411的突出部412的第一面和/或第二面上,且所述第二弹性部件至少部分与所述微带线或带状线接触。
在该实现方式中,环状的第二主体411上可以设置有多个突出部412,多个突出部412之间可以是互不接触、存在间隔的,这样能够保证每个第二弹性部件在自身受力时可以发生形变,而不会影响其他第二弹性部件。突出部相对于第二主体的环状结构突出设置,突出部的形状可以是正方形、半圆形、半椭圆形等能够承载或设置第二弹性部件的形状。突出部412可以相对于环状的第二主体的外环突出设置(如图6F、图6G、图6I),也可以相对应于环状的第二主体的内环突出设置,或者可以相对应于环状的第二主体的内环和外环突出设置,本申请对此不作限制。
在该实现方式中,第二主体411设置为环状结构是为了保证微带导线21或带状导线13的一端可以穿过弹性转接件41最终实现微带导线21与带状导线13的连接。第二主体411的内环和外环可以为相同或不同形状,如圆形、椭圆形、多边形等。可以根据带状导线的尺寸以及对阻抗的设置要求对环状的第二主体的内环、外环的尺寸、形状进行设置。
图6K示出根据本申请一实施例的带状线的立体结构示意图,在一种可能的实现方式中,如图图6A、图6B、图6G所示,所述第一导体地11、所述第二导体地12、所述第三导体地15或所述第四导体地16上设置有第一通孔52。所述带状导线13的一端穿过所述第一通孔52、穿过所述弹性转接件41的环状的第二主体411连接到所述微带导线21。
在该实现方式中,第一通孔可以设置在第一导体地、所述第二导体地、所述第三导体地所述第四导体地中与弹性转接件41接触的一个导体地上,可以根据带状导线的尺寸以及对阻抗的设置要求对第一通孔的尺寸、形状进行设置。
图6E、图6F示出根据本申请一实施例的第一种弹性转接件的主视图和立体图。在一种可能的实现方式中,如图6E、图6F所示,所述第二弹性部件可以包括第二弹性凸起413,设置于所述第二主体411的突出部412的第一面和/或第二面。图6E、图6F所示出的第二弹性凸起413位于突出部412的第一面和第二面,也可以仅位于第一面或者第二面。
在该实现方式中,第二弹性凸起的形状可以是半球状(如图6E-图6F所示)等与上述第一弹性凸起的形状相近或相同的凸起形状,以使其在与微带线和/或或带状线接触的同时,受力能够发生弹性形变。本申请仅示例性的描述了第二弹性凸起的结构,本领域技术人员可以根据继续需要对第二弹性凸起的结构进行设置,本申请对此不作限制。
图6G、图6H示出根据本申请一实施例的第二种弹性转接件的俯视图和截面图,图6H的截面是沿图6G的虚线所在位置的截面。图6I、图6J示出根据本申请一实施例的第三种弹性转接件的俯视图和截面图,图6J的截面是沿图6I的虚线所在位置的截面。在一种可能的实现方式中,所述第二弹性部件可以包括连接在一起的第二固定部415和第二弹性移动部414,所述第二固定部415与所述第二主体411的突出部412连接,且所述第二弹性移动部414悬浮于所述第二主体411的突出部412的第一面或第二面上方。在第二弹性部件为多个时,如图6G、图6H所示,多个第二弹性移动部414可以分别悬浮于突出部412的第一面,或者多个第二弹性移动部414可以分别悬浮于突出部412的第二面;如图6I、图6J所示,也可以设 置多个第二弹性移动部414可以分别悬浮于突出部412的第一面和第二面,且相邻的两个突出部412上的第二弹性移动部414分别悬浮于第一面和第二面。
在该实现方式中,第二固定部415和第二弹性移动部414的形状、尺寸、数量、第二弹性移动部与突出部之间的相对位置等的设置可以参考上文第一固定部和第一弹性移动部的相关设置,此处不与赘述。
通过第二弹性部件的设置,由于其具有一定弹性能够发生弹性形变,使得第二弹性部件在使用状态下因受力不同可以发生高度变化,调整所述带状线和所述微带线的连接面之间的距离,保证所述带状线和所述微带线的连接面之间的距离的稳定。
在一种可能的实现方式中,如图6E-图6J,所述第二主体和所述多个第二弹性部件可以为一体结构。这样,可以提高弹性转接件自身结构的稳定性、发生形变的均衡程度,以使得带状线和微带线的连接面之间的距离更为稳定。
在一种可能的实现方式中,如图6A-图6D所示,所述微带线还包括贯穿所述微带导体地23和所述微带介质层22的第二通孔25,所述带状导线13通过所述弹性转接件41连接到所述微带导线21的方式可以包括以下任意一种:
如图6A、图6B所示,所述带状导线13的一端依次穿过所述第一通孔52、弹性转接件41的环状的第二主体411、所述第二通孔25直接连接到所述微带导线21;所述微带导线21的一端依次穿过所述所述第二通孔25、弹性转接件41的环状的第二主体411、所述第一通孔52直接连接到所述带状导线13;所述带状导线13的一端依次穿过所述第一通孔52、弹性转接件41的环状的第二主体411并通过所述第二通孔25中的导电金属与所述微带导线21连接。
如图6C、图6D所示,所述带状导线13的一端依次穿过弹性转接件41的环状的第二主体411、所述第二通孔25直接连接到所述微带导线21;所述微带导线21的一端依次穿过所述所述第二通孔25、弹性转接件41的环状的第二主体411直接连接到所述带状导线13;所述带状导线13的一端穿过弹性转接件41的环状的第二主体411并通过所述第二通孔25中的导电金属与所述微带导线21连接。
如图6A-图6D所给出的示例中,仅是为了示出微带导线和带状导线的相对位置关系为微带导线所在的平面和带状导线所在的平面是相互垂直的。实际上带状导线与微带导线在“微带导线所在的平面和带状导线所在的平面相互垂直”的基础上,微带导线的延伸方向(也可称为长度方向,如图6A中微带导线21所在的竖直方向)和带状导线延伸方向(也可以称为长度方向,如图6C中带状导线13所在的水平方向)之间可以是相互平行的(如图6B所示),也可以是具有一定角度,如直角(如图6A、图6C、图6D)或是其他任意角度,本申请对此不作限制。
通过弹性转接件可以实现微带线和带状线在垂直方向上进行连接(也即微带导线所在平面与带状导线所在平面相互垂直),且可以由于加工、装配等过程中产生的误差对微带线和带状线连接带来的不利影响,以保证微带导线和带状导线可以垂直连接在一起。
图7A-图7D示出根据本申请一实施例的带状线和微带线连接的立体示意图。在一种可能的实现方式中,如图7A、图7B所示,微带线和带状线之间可以直接连接在一起。所述微带线包括微带导体地23、微带导线21、位于所述微带导体地23和所述微带导线21之间的微带介质层22、贯穿所述微带导体地23和所述微带介质层的第二通孔25。微带导线21所在平面与带状导线13所在平面之间是相互垂直的,且微带导线21与带状导线13连接在一起。
其中,在如图7A、7B所示,在第一导体地11和第二导体地12的一端与微带导体地23接触时,所述带状导线13连接到所述微带导线21的方式包括以下任意一种:
所述带状导线13的一端穿过所述第二通孔25直接连接到所述微带导线21;
所述微带导线21的一端穿过所述所述第二通孔25直接连接到所述带状导线13;
所述带状导线13通过所述第二通孔25中的导电金属与所述微带导线21连接。
在一种可能的实现方式中,如图7C、图7D所示,在第一导体地11、第二导体地12、第三导体地15或第四导体地16的一面与微带导体地23接触时,与微带导体地23接触的所述第一导体地11、所述第二导体地12、所述第三导体地15或所述第四导体地16上设置有第一通孔52(参见图6K),所述带状导线13连接到所述微带导线21的方式包括以下任意一种:
所述带状导线13的一端依次穿过所述第一通孔52、所述第二通孔25直接连接到所述微带导线21;
所述微带导线21的一端依次穿过所述所述第二通孔25、所述第一通孔52直接连接到所述带状导线13;
所述带状导线13穿过所述第一通孔52并通过所述第二通孔25中的导电金属与所述微带导线21连接。
如图7A-图7D所给出的示例中,仅是为了示出微带导线和带状导线的相对位置关系为微带导线所在的平面和带状导线所在的平面是相互垂直的。实际上带状导线与微带导线在“微带导线所在的平面和带状导线所在的平面相互垂直”的基础上,微带导线的延伸方向(也可称为长度方向,如图7A、图7B中微带导线21所在的竖直方向)和带状导线延伸方向(也可以称为长度方向,如图7A、图7B中带状导线13所在的水平方向)之间可以是相互平行的(如图7D所示),也可以是具有一定角度,如直角(如图7A-图7C)或是其他任意角度,本申请对此不作限制。
通过上述方式,将微带线与带状线直接连接在一起,简化了微带线与带状线的转接,可以在降低信号传输结构对高度的占用的同时,实现带状线到微带线的转接。
图8A、图8B、图8C示出根据本申请一实施例的带状线和微带线连接的示意图,在一种可能的实现方式中,如图8A所示,所述微带线可以包括微带导线21、微带导体地23和第二固定件24,所述微带导体地23与所述第二导体地12处于同一平面且连接在一起,所述第二固定件24将所述微带导线21固定在所述微带导体地23上方。
如图8A所示,在所述微带导线21与所述微带导体地23之间的距离,与所述带状导线13与所述第二导体地12之间的距离相同时,所述带状导线13的一端直接与所述微带导线21连接在一起。带状导线13的一端直接与所述微带导线21连接的方式包括焊接、通过紧固件连接、耦合连接等连接方式,本领域技术人员可以根据实际需要对连接方式进行设置,本申请对此不作限制。
如图8B所示,在所述微带导线21与所述微带导体地24之间的距离,与所述带状导线13与所述第二导体地12之间的距离不同时,所述带状导线13的一端弯折后直接连接到所述微带导线24。或者,也可以将所述微带导线21的一端弯折后直接连接到所述带状导线13。带状导线13的一端弯折后直接与所述微带导线21连接的方式包括焊接、通过紧固件连接、耦合连接等连接方式,本领域技术人员可以根据实际需要对连接方式进行设置,本申请对此不作限制。
如图8C所示,在所述微带导线21与所述微带导体地24之间的距离,与所述带状导线13与所述第二导体地12之间的距离不同时,所述带状导线13和所述微带导线21通过导线连接件51连接在一起,且所述第二导体地12和/或所述微带导体地23上设置有用于支撑固定所述导线连接件51的第三固定件(图中未示出)。导线连接件51与带状导线13、微带导线21连接的方式可以包括焊接、通过紧固件连接、耦合连接等连接方式,本领域技术人员可以根据实际需要对连接方式进行设置,本申请对此不作限制。
在一种可能的实现方式中,所述微带导体地23与所述第二导体地12处于同一平面可以包括以下任意一种实现方式:
所述微带导体地23与所述第二导体地12可以为一体结构(如图8A-图8C所示),这样,便于信号传输结构的加工制造,简化了制造过程。并且,在微带导体地23与所述第二导体地12为一体结构的同时,微带导体地23的尺寸满足微带线的尺寸要求、第二导体地12的尺寸满足带状线的尺寸要求。
所述微带导体地23与所述第二导体地12可以不同的结构,但在带状导线13与微带导线21连接的区域,所述微带导体地23与所述第二导体地12固定连接在一起。
其中,第二固定件和第三固定件的材料选择和尺寸设置可以参考上述第一固定件的设置,在此不予赘述。
通过上述方式,提供了以空气为介质的微带线和带状线,可以降低信号在微带线和带状线中的损耗。并且,以空气为微带线的介质,由于在实现带状导线与微带导线连接的过程中无需对带状线的介质进行为连接所需的制造金属化孔等操作,简化了实现带状导线与微带导线连接的制造过程。并且,由于使带状线和微带线的导体地同平面且连接在一起,将带状导线与微带导线调整到相同或相近的平面上,简化了微带线与带状线转接的转接,便于将微带线与带状线集成在一起,且节省了集成后所占用的高度空间。
附图中的流程图和框图显示了根据本申请的多个实施例的装置、系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。
也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行相应的功能或动作的硬件(例如电路或ASIC(Application Specific Integrated Circuit,专用集成电路))来实现,或者可以用硬件和软件的组合,如固件等来实现。
尽管在此结合各实施例对本发明进行了描述,然而,在实施所要求保护的本发明过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其它变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其它单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
以上已经描述了本申请的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域 的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (12)

  1. 一种用于微带线与带状线连接的信号传输结构,其特征在于,包括:
    接地件,设置于带状线和微带线中至少一个的下方,用于作为所述微带线和所述带状线的接地,以及可变地调整所述带状线与所述微带线之间的高度,以使所述带状线的带状导线的一端和所述微带线的微带导线的一端接触并连接在一起。
  2. 根据权利要求1所述的信号传输结构,其特征在于,所述接地件包括弹性支撑件,
    所述弹性支撑件,利用弹性形变调整所支撑的所述带状线或所述微带线的高度。
  3. 根据权利要求2所述的信号传输结构,其特征在于,所述弹性支撑件包括第一主体和至少一个第一弹性部件,
    所述第一弹性部件位于所述第一主体的第一面和/或第二面上,且所述第一弹性部件至少部分与所支撑的所述带状线或所述微带线接触。
  4. 根据权利要求3所述的信号传输结构,其特征在于,所述第一主体和所述至少一个第一弹性部件为一体结构。
  5. 根据权利要求3所述的信号传输结构,其特征在于,所述第一弹性部件包括以下至少一种:
    第一弹性凸起,设置于所述第一主体的第一面和/或第二面,
    连接在一起的第一固定部和第一弹性移动部,所述第一固定部与所述第一主体连接,所述第一弹性移动部悬浮于所述第一主体的第一面或第二面上方。
  6. 根据权利要求3至5任意一项所述的信号传输结构,其特征在于,所述接地件还包括接地转接件,所述微带线还包括微带导体地、位于所述微带导体地和所述微带导线之间的微带介质层,
    所述接地转接件设置有第一承载面和第二承载面,所述第一承载面和所述第二承载面分别平行于所述接地转接件的底面,
    所述微带线设置于所述第一承载面上、且所述微带导体地与所述第一承载面接触;
    所述带状线设置于所述第二承载面上,使所述带状导线位于所述微带导线上方、且所述带状导线的一端与所述微带导线的一端接触并连接在一起;
    所述弹性支撑件,位于所述第一承载面或所述第二承载面上,且靠近所述第一承载面和所述第二承载面的连接处的位置。
  7. 根据权利要求1所述的信号传输结构,其特征在于,所述接地件为弹性转接件,位于所述带状线和所述微带线的连接面之间,且所述弹性转接件的第一面与所述带状线接触,所述弹性转接件的第二面与所述微带线接触,利用弹性形变调整所述所述带状线和所述微带线的连接面之间的距离。
  8. 根据权利要求7所述的信号传输结构,其特征在于,所述弹性转接件包括环状的第二主体和多个第二弹性部件,所述第二弹性部件位于所述第二主体的突出部的第一面和/或第二面上,且所述第二弹性部件至少部分与所述微带线或带状线接触。
  9. 根据权利要求8所述的信号传输结构,其特征在于,所述第二弹性部件包括以下至少一种:
    第二弹性凸起,设置于所述第二主体的突出部的第一面和/或第二面;
    连接在一起的第二固定部和第二弹性移动部,所述第二固定部与所述第二主体的突出部 连接,且所述第二弹性移动部悬浮于所述第二主体的突出部的第一面或第二面上方。
  10. 根据权利要求8所述的信号传输结构,其特征在于,所述第二主体和所述多个第二弹性部件为一体结构。
  11. 根据权利要求1至10任意一项所述的信号传输结构,其特征在于,通过焊接、紧固件连接或耦合连接的方式实现所述带状导线的一端与所述微带导线的一端的连接。
  12. 一种天线装置,其特征在于,包括权利要求1至11任意一项所述的信号传输结构,用于实现带状线与微带线之间的连接,
    其中,所述带状线和/或所述微带线,设置于所述天线装置中的功率分配器、合路器、移相器、辐射单元、滤波器中的一个或多个中。
PCT/CN2020/141420 2020-12-30 2020-12-30 用于带状线和微带线连接的信号传输结构及天线装置 WO2022141203A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080106011.1A CN116325347A (zh) 2020-12-30 2020-12-30 用于带状线和微带线连接的信号传输结构及天线装置
PCT/CN2020/141420 WO2022141203A1 (zh) 2020-12-30 2020-12-30 用于带状线和微带线连接的信号传输结构及天线装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/141420 WO2022141203A1 (zh) 2020-12-30 2020-12-30 用于带状线和微带线连接的信号传输结构及天线装置

Publications (1)

Publication Number Publication Date
WO2022141203A1 true WO2022141203A1 (zh) 2022-07-07

Family

ID=82258798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141420 WO2022141203A1 (zh) 2020-12-30 2020-12-30 用于带状线和微带线连接的信号传输结构及天线装置

Country Status (2)

Country Link
CN (1) CN116325347A (zh)
WO (1) WO2022141203A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844450A (en) * 1996-03-05 1998-12-01 Motorola, Inc. Integrated microstrip to suspend stripline transition structure and method of fabrication
CN102738550A (zh) * 2011-04-06 2012-10-17 安德鲁公司 带状线至微带线的电容耦合转换结构及包含该结构的天线
CN106159404A (zh) * 2016-09-29 2016-11-23 上海航天测控通信研究所 一种非均匀微带线至带状线过渡结构
CN109417238A (zh) * 2018-09-30 2019-03-01 北京比特大陆科技有限公司 接地件及主机
WO2019220530A1 (ja) * 2018-05-15 2019-11-21 三菱電機株式会社 信号伝送構造、信号伝送構造の製造方法、および、高周波信号送受信装置
CN210926267U (zh) * 2019-11-20 2020-07-03 西安电子工程研究所 一种新型带状线到同轴垂直转换结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844450A (en) * 1996-03-05 1998-12-01 Motorola, Inc. Integrated microstrip to suspend stripline transition structure and method of fabrication
CN102738550A (zh) * 2011-04-06 2012-10-17 安德鲁公司 带状线至微带线的电容耦合转换结构及包含该结构的天线
CN106159404A (zh) * 2016-09-29 2016-11-23 上海航天测控通信研究所 一种非均匀微带线至带状线过渡结构
WO2019220530A1 (ja) * 2018-05-15 2019-11-21 三菱電機株式会社 信号伝送構造、信号伝送構造の製造方法、および、高周波信号送受信装置
CN109417238A (zh) * 2018-09-30 2019-03-01 北京比特大陆科技有限公司 接地件及主机
CN210926267U (zh) * 2019-11-20 2020-07-03 西安电子工程研究所 一种新型带状线到同轴垂直转换结构

Also Published As

Publication number Publication date
CN116325347A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
US10403954B2 (en) Printed circuit board with substrate-integrated waveguide transition
RU2586023C2 (ru) Антенное устройство с электронным сканированием луча
EP2068394B1 (en) Data processing device with beam steering and/or forming antennas
TWI509880B (zh) 行動裝置
JP4844554B2 (ja) アンテナ装置
WO2022002074A1 (zh) 一种天线及移动终端
US11258171B2 (en) Antenna
KR20170083949A (ko) 누설파 위상 어레이 안테나를 포함하는 무선 통신 장치
JP2022531808A (ja) アンテナユニット及び端末機器
CN109818142A (zh) 一种滤波天线
CN112038758A (zh) 超宽频双极化辐射单元、天线及天线阵列
US20200412002A1 (en) Antenna Element and Array Antenna
CN109616766A (zh) 天线系统及通讯终端
US20140062824A1 (en) Circular polarization antenna and directional antenna array having the same
WO2022141203A1 (zh) 用于带状线和微带线连接的信号传输结构及天线装置
JP2005252526A (ja) アンテナ装置およびそれを用いた電子機器ならびに無線通信カード
US20220216606A1 (en) Directional antenna and communication device
US6297779B1 (en) Antenna module for portable computer
CN114069233A (zh) 一种相控阵天线
KR102661906B1 (ko) 안테나-인-패키지 및 레이다 어셈블리 패키지
CN112768888A (zh) 天线阵元和阵列天线
US10381733B2 (en) Multi-band patch antenna module
RU2744994C1 (ru) Беспроводное межплатное соединение для высокоскоростной передачи данных
WO2024037128A1 (zh) 天线模组、天线阵列及电子设备
WO2024037124A1 (zh) 天线模组、天线阵列及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967544

Country of ref document: EP

Kind code of ref document: A1