WO2024037128A1 - 天线模组、天线阵列及电子设备 - Google Patents

天线模组、天线阵列及电子设备 Download PDF

Info

Publication number
WO2024037128A1
WO2024037128A1 PCT/CN2023/098336 CN2023098336W WO2024037128A1 WO 2024037128 A1 WO2024037128 A1 WO 2024037128A1 CN 2023098336 W CN2023098336 W CN 2023098336W WO 2024037128 A1 WO2024037128 A1 WO 2024037128A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupling
feed
radiating
antenna
antenna module
Prior art date
Application number
PCT/CN2023/098336
Other languages
English (en)
French (fr)
Inventor
张帅
林志成
白婵
闫登辉
钟永卫
Original Assignee
西安电子科技大学
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安电子科技大学, Oppo广东移动通信有限公司 filed Critical 西安电子科技大学
Publication of WO2024037128A1 publication Critical patent/WO2024037128A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means

Definitions

  • This application relates to the field of communication technology, and specifically to an antenna module, an antenna array and an electronic device.
  • antenna modules and antenna arrays provided in electronic devices have poor performance when communicating with wireless devices. Therefore, how to improve the communication performance of the antenna module and antenna array has become a technical problem that needs to be solved.
  • This application provides an antenna module, an antenna array and electronic equipment with a simple feed structure and capable of improving radiation performance through phase shifting.
  • this application provides an antenna module, including:
  • a radiation unit including a pair of first radiating arms arranged along a first direction and a pair of second radiating arms arranged along a second direction, the first direction intersecting the second direction;
  • a feeding unit includes a first feeding part and a second feeding part arranged at intervals.
  • the first feeding part includes a transmission part, a first feeding part and a second feeding part connected in sequence.
  • the transmission part Used to electrically connect a radio frequency signal source, the radio frequency signal source is used to generate radio frequency current, the first feed part is arranged opposite and coupled to one of the first radiating arms, and the second feed part is connected to the other first radiating arm.
  • the first radiating arms are arranged oppositely and coupled
  • the second feeding part includes a third feeding part, a fourth feeding part and a balun feeding part
  • one end of the third feeding part is electrically connected to one of the a second radiating arm
  • one end of the fourth feeding part is electrically connected to the other second radiating arm
  • the balun feeding part includes a first feeding port, a second feeding port and a third feeding port
  • the first feeding port is used to electrically connect the radio frequency signal source
  • the second feeding port is electrically connected to the other end of the third feeding part
  • the third feeding port is electrically connected to the third feeding port.
  • the other end of the four feed parts, the balun feed part is used to transmit the radio frequency current and to make the radio frequency current of the third feed part and the radio frequency current of the fourth feed part have a phase. offset.
  • the present application also provides an antenna array, including a plurality of the antenna modules, the plurality of antenna modules are arranged in an array along the first direction, and two adjacent antenna modules The first radiating arms of the group are coupled; and/or the plurality of antenna modules are arranged in an array along the second direction, and the second radiating arms of two adjacent antenna modules are coupled.
  • the present application also provides an electronic device, including a device body, the antenna module or the antenna array, and the device body is used to carry the antenna module or the antenna array.
  • Figure 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of the electronic device shown in Figure 1 including a device body and an antenna module;
  • Figure 3 is a schematic structural diagram of the electronic device shown in Figure 1 including a device body and an antenna array;
  • FIG. 4 is a schematic structural diagram of an antenna module provided by an embodiment of the present application.
  • Figure 5 is an exploded structural diagram of the antenna module shown in Figure 4 including a pair of first radiating arms, a pair of second radiating arms, a first feeder and a second feeder;
  • Figure 6 is a schematic structural diagram of a pair of second radiating arms and a second feeder in the antenna module shown in Figure 4;
  • FIG 7 is a schematic structural diagram of the antenna module shown in Figure 4 also including a dielectric layer;
  • Figure 8 is a schematic structural diagram of a pair of first radiating arms, a first feeder and a conductive connection part in the antenna module shown in Figure 4;
  • Figure 9 is a schematic structural diagram of the antenna module shown in Figure 4 also including a grounding group;
  • FIG 10 is a schematic structural diagram of the balun feed portion of the second feed element in the antenna module shown in Figure 9, which is at least partially located between the first ground element and the second ground element of the ground group;
  • FIG 11 is a schematic structural diagram of the second feed element of the antenna module shown in Figure 9 including a third feed section, a fourth feed section and a balun feed section;
  • Figure 12 is a schematic structural diagram of the antenna module shown in Figure 4 also including a grounding piece;
  • FIG 13 is a schematic structural diagram of the balun feed portion of the second feed element in the antenna module shown in Figure 12, which is located on the side of the ground element facing away from the radiation unit;
  • Figure 14 is a schematic structural diagram of the second feed element of the antenna module shown in Figure 12 including a third feed section, a fourth feed section and a balun feed section;
  • Figure 15 shows that the antenna module shown in Figure 12 also includes a pair of first coupling patches, a pair of second coupling patches, a first coupling ground piece, a second coupling ground piece, a third coupling ground piece and a fourth coupling ground piece.
  • Structural diagram of the component
  • Figure 16 is a schematic diagram of the exploded structure of the antenna module shown in Figure 15;
  • Figure 17 is a schematic diagram of an antenna array provided by an embodiment of the present application.
  • Figure 18 is a partially enlarged schematic diagram of the antenna array shown in Figure 17;
  • Figure 19 is a schematic diagram of another antenna array provided by an embodiment of the present application.
  • Figure 20 is a partial enlarged schematic diagram of the antenna array shown in Figure 19;
  • Figure 21 is a schematic diagram of yet another antenna array provided by an embodiment of the present application.
  • Figure 22 is a schematic structural diagram of an antenna array provided by an embodiment of the present application that also includes a first coupling branch and a second coupling branch;
  • Figure 23 is a schematic diagram of the first polarization standing wave ratio simulation result of an antenna module provided by an embodiment of the present application.
  • Figure 24 is a schematic diagram of the second polarization standing wave ratio simulation results of an antenna module provided by an embodiment of the present application.
  • Figure 25 is the gain pattern of the E-plane and H-plane at the first polarization low frequency point of 28 GHz of an antenna module provided by an embodiment of the present application;
  • Figure 26 is the gain pattern of the E-plane and H-plane at the second polarization low frequency point of 28 GHz of an antenna module provided by an embodiment of the present application;
  • Figure 27 is the gain pattern of the E-plane and H-plane at the first polarization high frequency point of 40 GHz of an antenna module provided by an embodiment of the present application;
  • Figure 28 is the gain pattern of the E-plane and H-plane at the second polarization high frequency point 40GHz of an antenna module provided by an embodiment of the present application;
  • Figure 29 is a maximum radiation pattern of the first polarization that changes with frequency when the scanning angle of an antenna array is 0° provided by an embodiment of the present application;
  • Figure 30 is a maximum radiation pattern of the second polarization that changes with frequency when the scanning angle of an antenna array is 0° provided by an embodiment of the present application;
  • Figure 31 is the maximum radiation pattern of the first polarization as the angle changes when the scanning angle is 0° at the low frequency point of 28 GHz for an antenna array provided by an embodiment of the present application;
  • Figure 32 is the maximum radiation pattern of the second polarization as the angle changes when the scanning angle is 0° at the low frequency point of 28 GHz for an antenna array provided by an embodiment of the present application;
  • Figure 33 is a maximum radiation pattern of the first polarization as the angle changes when the scanning angle is 60° at the low frequency point of 28 GHz for an antenna array provided by an embodiment of the present application;
  • Figure 34 shows the maximum radiation pattern of the second polarization as the angle changes when the scanning angle is 60° at the low frequency point of 28 GHz for an antenna array provided by an embodiment of the present application;
  • Figure 35 is a maximum radiation pattern of the first polarization as the angle changes when the scanning angle is 0° at the high frequency point of 40 GHz for an antenna array provided by an embodiment of the present application;
  • Figure 36 shows the maximum radiation pattern of the second polarization as the angle changes when the scanning angle is 0° at the high frequency point of 40 GHz for an antenna array provided by an embodiment of the present application;
  • Figure 37 shows the maximum radiation pattern of the first polarization as the angle changes when the scanning angle is 60° at the high frequency point of 40 GHz for an antenna array provided by an embodiment of the present application;
  • Figure 38 shows the maximum radiation pattern of the second polarization as the angle changes when the scanning angle is 60° at the high frequency point of 40 GHz for an antenna array provided by an embodiment of the present application;
  • Figure 39 is a schematic diagram of the first polarization standing wave ratio simulation result of an antenna module provided by an embodiment of the present application.
  • Figure 40 is a schematic diagram of the second polarization standing wave ratio simulation results of another antenna module provided by the embodiment of the present application.
  • Figure 41 is the gain pattern of the E-plane and H-plane at the first polarization low frequency point of 28 GHz of another antenna module provided by the embodiment of the present application;
  • Figure 42 is the gain pattern of the E-plane and H-plane at the second polarization low frequency point of 28 GHz of another antenna module provided by the embodiment of the present application;
  • Figure 43 is the gain pattern of the E-plane and H-plane at the first polarization high frequency point of 40 GHz of another antenna module provided by the embodiment of the present application;
  • Figure 44 is the gain pattern of the E-plane and H-plane at the second polarization high frequency point 40GHz of another antenna module provided by the embodiment of the present application;
  • Figure 45 is the maximum radiation pattern of the first polarization that changes with frequency when the scanning angle of another antenna array is 0° provided by the embodiment of the present application;
  • Figure 46 is the maximum radiation pattern of the second polarization that changes with frequency when the scanning angle of another antenna array is 0° provided by the embodiment of the present application;
  • Figure 47 shows the maximum radiation pattern of the first polarization as the angle changes when the scanning angle is 0° at the low frequency point of 28 GHz for another antenna array provided by the embodiment of the present application;
  • Figure 48 shows the maximum radiation pattern of the second polarization as the angle changes when the scanning angle is 0° at the low frequency point of 28 GHz for another antenna array provided by the embodiment of the present application;
  • Figure 49 shows the maximum radiation pattern of the first polarization as the angle changes when the scanning angle is 60° at the low frequency point of 28 GHz for another antenna array provided by the embodiment of the present application;
  • Figure 50 shows the maximum radiation pattern of the second polarization as the angle changes when the scanning angle is 60° at the low frequency point of 28 GHz for another antenna array provided by the embodiment of the present application;
  • Figure 51 is the maximum radiation pattern of the first polarization as the angle changes when the scanning angle is 0° at the high frequency point of 40 GHz for another antenna array provided by the embodiment of the present application;
  • Figure 52 is the maximum radiation pattern of the second polarization as the angle changes when the scanning angle is 0° at the high frequency point of 40 GHz for another antenna array provided by the embodiment of the present application;
  • Figure 53 is the maximum radiation pattern of the first polarization as the angle changes when the scanning angle is 60° at the high frequency point of 40 GHz for another antenna array provided by the embodiment of the present application;
  • Figure 54 shows the maximum radiation pattern of the second polarization as the angle changes when the scanning angle is 60° at the high frequency point of 40 GHz for another antenna array provided by the embodiment of the present application.
  • This application provides an antenna module, including:
  • a radiation unit including a pair of first radiating arms arranged along a first direction and a pair of second radiating arms arranged along a second direction, the first direction intersecting the second direction;
  • a feeding unit includes a first feeding part and a second feeding part arranged at intervals.
  • the first feeding part includes a transmission part, a first feeding part and a second feeding part connected in sequence.
  • the transmission part Used to electrically connect a radio frequency signal source, the radio frequency signal source is used to generate radio frequency current, the first feed part is arranged opposite and coupled to one of the first radiating arms, and the second feed part is connected to the other first radiating arm.
  • the first radiating arms are arranged oppositely and coupled
  • the second feeding part includes a third feeding part, a fourth feeding part and a balun feeding part
  • one end of the third feeding part is electrically connected to one of the a second radiating arm
  • one end of the fourth feeding part is electrically connected to the other second radiating arm
  • the balun feeding part includes a first feeding port, a second feeding port and a third feeding port
  • the first feeding port is used to electrically connect the radio frequency signal source
  • the second feeding port is electrically connected to the other end of the third feeding part
  • the third feeding port is electrically connected to the third feeding port.
  • the other end of the four feed parts, the balun feed part is used to transmit the radio frequency current and to make the radio frequency current of the third feed part and the radio frequency current of the fourth feed part have a phase. offset.
  • the first power feeding part further includes a conductive connection part, one end of the conductive connection part is electrically connected to the first power feeding part, and the other end of the conductive connection part is electrically connected to the second power feeding part,
  • the conductive connection part is used to transmit the radio frequency current and to make the first power feeding part There is a phase offset between the radio frequency current and the radio frequency current of the second feeding part.
  • the first direction is orthogonal to the second direction.
  • the antenna module further includes a grounding group located at an end of the feed unit away from the radiating unit.
  • the grounding group includes a first grounding member and a second grounding member that are stacked and spaced apart.
  • the ground piece covers the pair of first radiating arms and the pair of second radiating arms, the second ground piece covers the pair of first radiating arms and the pair of second radiating arms, at least part of the
  • the balun feed portion is located between the first grounding member and the second grounding member and is spaced apart from the first grounding member and the second grounding member.
  • the second grounding piece is located on a side of the first grounding piece away from the radiating unit, and one end of the transmission part away from the first feeding part penetrates the first grounding piece and the second
  • the other end of the third power feeding part passes through the first grounding part
  • the other end of the fourth power feeding part passes through the first grounding part
  • the balun feeding part includes a connected third A sub-balun part and a second sub-balun part, the first sub-balun part is located between the first grounding member and the second grounding member and is connected with the first grounding member and the second grounding member.
  • the grounding members are arranged at intervals, and the two ends of the first sub-balun part form the second feed port and the third feed port respectively, and the second sub-balun part is far away from the first sub-balun part.
  • One end of the portion penetrates the second ground member and forms the first feed port.
  • the antenna module further includes a grounding piece provided at an end of the feed unit away from the radiating unit, and the grounding piece covers the pair of first radiating arms and the pair of second radiating arms, at least Part of the balun feed portion is located on a side of the ground piece away from the feed unit and is spaced apart from the ground piece.
  • the balun feeding part includes a connected third sub-balun. and a fourth sub-balun part, the two ends of the third sub-balun part respectively form the second feed port and the third feed port, and the fourth sub-balun part is far away from the third One end of the third sub-balun portion forms the first feeding port.
  • the conductive connection part, the first power feeding part and the second power feeding part are coplanar, and the first power feeding part and the second power feeding part are arranged oppositely along the first direction,
  • the conductive connection portion extends along the first direction.
  • the antenna module further includes a pair of first coupling patches and a pair of second coupling patches, the pair of first coupling patches are respectively arranged opposite and coupled to the pair of first radiating arms, so The pair of second coupling patches are respectively arranged opposite and coupled to the pair of second radiating arms.
  • the pair of first coupling patches is located on a side of the radiating unit facing the feed unit, and the antenna module further includes at least one first coupling ground piece and at least one second coupling ground piece, so One end of the at least one first coupling ground piece is electrically connected to one of the first coupling patches, the other end of the at least one first coupling ground piece is grounded, and one end of the at least one second coupling ground piece is electrically connected to another The other end of the first coupling patch and the at least one second coupling ground piece is grounded.
  • the antenna module further includes at least one third coupling ground piece and at least one fourth coupling ground piece, so One end of the at least one third coupling ground piece is electrically connected to one of the second coupling patches, the other end of the at least one third coupling ground piece is grounded, and one end of the at least one fourth coupling ground piece is electrically connected to another The other end of the second coupling patch and the at least one fourth coupling ground piece is grounded.
  • This application also provides an antenna array, including a plurality of the antenna modules, the plurality of antenna modules are arranged in an array along the first direction, and the first of two adjacent antenna modules The radiating arms are coupled; and/or the plurality of antenna modules are arranged in an array along the second direction, and the second radiating arms of two adjacent antenna modules are coupled.
  • the first radiating arms of two adjacent antenna modules exhibit an interdigital coupling; when the plurality of antenna modules are arranged along the When the antenna modules are arranged in an array in the second direction, the second radiating arms of two adjacent antenna modules exhibit interdigital coupling.
  • the edge of the first radiating arm of one of the two adjacent antenna modules forms one or more first radiating arms. Notches and one or more first extensions.
  • the edge of the first radiating arm of another antenna module forms one or more second notches and one or more second extensions.
  • the first extension at least partially extends into the second gap, and the second extension part at least partially extends into the first gap; when the plurality of antenna modules are arranged in an array along the second direction, adjacent
  • the edge of the second radiating arm of one of the two antenna modules forms one or more third notches and one or more third extensions, and the edge of the second radiating arm of the other antenna module forms a or multiple fourth notches and one or more fourth extension portions, the third extension portion at least partially extends into the fourth notch, and the fourth extension portion at least partially extends into the third notch Inside.
  • the antenna array further includes at least a pair of first coupling branches arranged along the first direction and at least a pair of second coupling branches arranged along the second direction, and the first coupling branches are connected to all edges of the edge.
  • the first radiating arm is coupled, and the second coupling branch is coupled with the second radiating arm at the edge.
  • first coupling branch and the first radiating arm of the edge are coupled to each other, and the second coupling branch and the second radiating arm of the edge are coupled to each other.
  • This application also provides an electronic device, including a device body, the antenna module or the antenna array, and the device body is used to carry the antenna module or the antenna array.
  • Figure 1 is a schematic structural diagram of an electronic device 100 provided by an embodiment of the present application.
  • the electronic device 100 may be a mobile phone, a tablet, a laptop, a computer, a watch, a drone, a robot, a base station, a radar, a Customer Premise Equipment (CPE), a vehicle-mounted device, a home appliance, or other devices with wireless communication functions. equipment.
  • the embodiment of this application takes a mobile phone as an example.
  • the electronic device 100 includes a device body 3 , an antenna module 1 or an antenna array 2 .
  • the device body 3 is used to carry the antenna module 1 or the antenna array 2 .
  • the frequency bands supported by the antenna array 2 and the antenna module 1 include but are not limited to the 5G millimeter wave frequency band.
  • the electronic device 100 includes a device body 3 and an antenna module 1 .
  • the antenna module 1 is used to send and receive electromagnetic wave signals (which may be 5G millimeter wave signals or electromagnetic wave signals in other frequency bands) to realize the communication function of the electronic device 100 .
  • This application does not specifically limit the position of the antenna module 1 in the electronic device 100.
  • FIG. 2 is only an example and should not be understood as limiting the position of the antenna module 1 in the electronic device 100.
  • the device body 3 is used to carry the antenna module 1 .
  • the device body 3 includes, but is not limited to, a display screen 31, a housing 32 (middle frame 320 and back cover 321), a circuit board 33, a camera module 34 and other components.
  • the display screen 31 and the housing 32 are connected to each other, and the circuit board 33 is located in the space between the display screen 31 and the housing 32 .
  • the antenna module 1 can be directly carried on one or more components of the device body 3 (for example, the circuit board 33 or the housing 32 ), or can be carried on one or more components of the device body 3 through other supporting structures. Among them, the antenna module 1 can be located in the device body 3 (that is, in the space between the display screen 31 and the shell 32 ), or can be partially integrated on the shell 32 of the device body 3 .
  • the electronic device 100 includes a device body 3 and an antenna array 2 .
  • the antenna array 2 is used to transmit and receive electromagnetic wave signals (which may be 5G millimeter wave signals or electromagnetic wave signals in other frequency bands) to implement the communication function of the electronic device 100 .
  • This application does not specifically limit the position of the antenna array 2 on the electronic device 100.
  • FIG. 3 is only an example and should not be understood as limiting the position of the antenna array 2 on the electronic device 100.
  • the device body 3 is used to carry the antenna array 2 .
  • the device body 3 includes, but is not limited to, a display screen 31, a housing 32 (middle frame 320 and back cover 321), a circuit board 33 and other components.
  • the display screen 31 and the housing 32 are connected to each other, and the circuit board 33 is located in the space between the display screen 31 and the housing 32 .
  • the antenna array 2 can be directly carried on one or more components of the device body 3 , or can also be carried on one or more components of the device body through other supporting structures.
  • the antenna array 2 may be located within the device body 3 (ie, in the space between the display screen 31 and the housing 32 ), or may be partially integrated on the housing 32 of the device body 3 .
  • the space left for the antenna module 1 and the antenna array 2 inside the electronic device 100 becomes increasingly limited. Therefore, the antenna module 1 and the antenna array 2 are miniaturized and compact. property, which is conducive to better applying the antenna module 1 and the antenna array 2 to the electronic device 100 with limited space, and realizing the communication function of the electronic device 100.
  • millimeter wave communication has become the key to today's 5G applications with its advantage of rich spectrum.
  • antennas with broadband performance are the focus of future research.
  • the 5G millimeter wave band covers 24.75GHz ⁇ 27.5GHz and 37GHz ⁇ 43.5GHz.
  • the size of the antenna decreases.
  • this application provides a small-volume, low-profile, broadband dual-polarized dipole antenna module 1 and a small-volume, low-profile, broadband tightly coupled dual-polarized dipole antenna array 2.
  • the following embodiments specifically describe the antenna module 1 and antenna array 2 provided by this application.
  • FIG 4 is a schematic structural diagram of an antenna module 1 provided by an embodiment of the present application.
  • the antenna module 1 includes a radiating unit 10 and a feeding unit 20 .
  • the radiation unit 10 includes a pair of first radiating arms 101 arranged along a first direction and a pair of second radiating arms 102 arranged along a second direction.
  • a pair of first radiating arms 101 are opposite and spaced apart along the first direction.
  • the pair of second radiating arms 102 are opposite and spaced apart along the second direction.
  • a pair of first radiating arms 101 forms a dipole.
  • a pair of second radiating arms 102 form a dipole.
  • the first direction intersects the second direction.
  • the intersection of the first direction and the second direction includes that the first direction and the second direction are two intersecting directions in the same plane, or the first direction and the second direction are two intersecting directions in space.
  • the pair of first radiating arms 101 and the pair of second radiating arms 102 may be arranged in the same plane or in different planes.
  • a pair of first radiating arms 101 and a pair of second radiating arms 102 are arranged coplanarly as an example unless otherwise specified.
  • the pair of first radiating arms 101 and the pair of second radiating arms 102 are arranged coplanarly, so that the thickness of the radiating unit 10 formed by the pair of first radiating arms 101 and the pair of second radiating arms 102 is reduced, which is beneficial to reducing the antenna mode.
  • the angle between the first direction and the second direction may be 30°, 35°, 55°, 60°, 70°, 85°, 90°, etc.
  • the first direction and the second direction are perpendicular to each other as an example.
  • the first direction may refer to the X-axis direction of FIG. 4
  • the second direction may refer to the Y-axis direction of FIG. 4 .
  • the first direction and the second direction may intersect but not be perpendicular.
  • the thickness direction of the radiating unit 10 and the cross-sectional direction of the antenna module 1 can refer to the Z-axis direction of FIG. 4.
  • the thickness direction of the radiating unit 10 and the cross-sectional direction of the antenna module 1 are both perpendicular to the first direction and perpendicular to the second direction. direction.
  • the thickness direction of the radiation unit 10 and the cross-sectional direction of the antenna module 1 are perpendicular to the XY plane.
  • the material of the first radiating arm 101 and the material of the second radiating arm 102 are both conductive materials.
  • the material of the first radiating arm 101 and the material of the second radiating arm 102 may be metal, alloy, etc.
  • This application does not specifically limit the shapes of the first radiating arm 101 and the second radiating arm 102.
  • the shapes of the first radiating arm 101 and the second radiating arm 102 in FIG. 4 are only used as an example.
  • the shape of the first radiating arm 101 and the shape of the second radiating arm 102 may be the same or different.
  • the feeding unit 20 and the radiation unit 10 are stacked. In other words, the feeding unit 20 and the radiating unit 10 are arranged along the thickness direction of the antenna module 1 (the Z-axis direction in FIG. 4 ).
  • the power feeding unit 20 includes a first power feeding part 201 and a second power feeding part arranged at intervals.
  • the second power feeding part includes a third power feeding part 202 , a fourth power feeding part 203 and a balun power feeding part 204 .
  • the balun feed part 204 includes a first feed port 240 , a second feed port 241 and a third feed port 242 .
  • the material of the first power feeding member 201 is a conductive material.
  • the material of the first power feeding member 201 may be metal, alloy, etc.
  • the first power feeding part 201 includes a transmission part 210, a first power feeding part 211 and a second power feeding part 212 which are connected in sequence. It should be noted that the transmission part 210, the first power feeding part 211 and the second power feeding part 212 are connected in sequence.
  • the transmission part 210, the first power feeding part 211 and the second power feeding part 212 may be integrally connected, or they may be a transmission part. 210.
  • the first power feeding part 211 and the second power feeding part 212 are directly connected (for example, welded) together.
  • the transmission part 210, the first feed part 211 and the second feed part 212 are connected in sequence to represent the radio frequency current of the transmission part 210, the first feed part
  • the radio frequency current of the part 211 and the radio frequency current of the second feeding part 212 can be transmitted to each other.
  • the transmission part 210 is used to electrically connect the radio frequency signal source.
  • the first feeding part 211 is arranged opposite to and coupled to a first radiating arm 101 .
  • the second feeding part 212 is disposed opposite and coupled to the other first radiating arm 101 .
  • the transmission part 210 may be directly electrically connected to the radio frequency signal source, or may be electrically connected to the radio frequency signal source through conductive wiring, conductive parts, etc.
  • the first feeding part 211 and a first radiating arm 101 are arranged opposite to each other along the thickness direction of the antenna module 1 and form a first coupling gap.
  • the second feeding part 212 is opposite to the other first radiating arm 101 along the thickness direction of the antenna module 1 and forms a second coupling gap.
  • the first coupling gap and the second coupling gap may be the same or different.
  • the spacing in the thickness direction may be the same or different. In the following embodiments, it is assumed that the first coupling gap and the second coupling gap are the same unless otherwise specified.
  • the transmission part 210 of the first feed member 201 may be a feed probe, a feed column, etc.
  • the first feed part 211 of the first feed member 201 may be a conductive elastic piece, a conductive wire, or a conductive via hole.
  • the second power feeding part 212 of the first power feeding component 201 can be a conductive spring piece, a conductive wire, a conductive via, a conductive pillar, etc.
  • the radio frequency signal source when the antenna module 1 is used to transmit wireless signals, the radio frequency signal source generates radio frequency current (high frequency current) and transmits it to the transmission part 210 of the first feeder 201.
  • the first feeder The transmission part 210 of 201 transmits the received radio frequency current to the first feeding part 211 of the first feeding part 201 and the second feeding part 212 of the first feeding part 201 respectively.
  • the first feeding part 211 of the first feeding part 201 transmits radio frequency current to a first radiating arm 101 through coupling with the first radiating arm 101.
  • the first radiating arm 101 converts the received radio frequency current into wireless
  • the signal is radiated toward the outside of the antenna module 1 .
  • the second feeding part 212 of the first feeding part 201 transmits radio frequency current to the first radiating arm 101 through coupling with another first radiating arm 101.
  • the first radiating arm 101 converts the received radio frequency current into The wireless signal is radiated toward the outside of the antenna module 1 .
  • a pair of first radiating arms 101 receives the wireless signals in the space and converts them into radio frequency currents and transmits them to the first power supply of the first feeder 201 respectively.
  • the feeding part 211 and the second feeding part 212 of the first feeding part 201, the first feeding part 211 of the first feeding part 201 and the second feeding part 212 of the first feeding part 201 will receive The radio frequency current is transmitted to the radio frequency signal source through the transmission part 210.
  • the material of the third power feeding part 202 is conductive material.
  • the material of the third power feeding part 202 may be metal, alloy, etc.
  • One end of the third feeding part 202 is electrically connected to a second radiating arm 102 , and the other end of the third feeding part 202 is electrically connected to the second feeding port 241 of the balun feeding part 204 .
  • the third feeding part 202 is used to transmit the radio frequency current between the second feeding port 241 of the balun feeding part 204 and the second radiating arm 102 .
  • One end of the third power feeding part 202 may be directly electrically connected to the second radiating arm 102 .
  • the other end of the third feeding part 202 may be directly electrically connected to the second feeding port 241 of the balun feeding part 204 .
  • the third feeding part 202 may be a feeding probe, a feeding elastic piece, a feeding column, or the like.
  • the third power feeding part 202 may be disposed in parallel with the transmission part 210 of the first power feeding part 201 .
  • the first feed port 240 of the balun feed part 204 is used to electrically connect the radio frequency signal source.
  • the radio frequency signal source when the antenna module 1 is used to transmit wireless signals, the radio frequency signal source generates radio frequency current (high frequency current) and transmits it to the first feeding port 240 of the balun feeding part 204.
  • the first The radio frequency current from the feeding port 240 is transmitted to the second feeding port 241, and then transmitted to the third feeding part 202 through the second feeding port 241.
  • the third feeding part 202 transmits the received radio frequency current to a second radiator. arm 102 , and is converted into a wireless signal through the second radiating arm 102 and radiated toward the outside of the antenna module 1 .
  • the second radiating arm 102 receives the wireless signals in the space and converts them into radio frequency currents for transmission to the third feeding part 202.
  • the third feeding part 202 transmits the received radio frequency current to the radio frequency signal source through the second feeding port 241 and the first feeding port 240 of the balun feeding part 204 in sequence.
  • the fourth power feeding part 203 is made of conductive material.
  • the material of the fourth power feeding part 203 may be metal, alloy, etc.
  • One end of the fourth feeding part 203 is electrically connected to the other second radiating arm 102 , and the other end of the fourth feeding part 203 is electrically connected to the third feeding port 242 of the balun feeding part 204 .
  • the fourth feeding part 203 is used to transmit radio frequency current between the third feeding port 242 of the balun feeding part 204 and the third feeding part 202 .
  • one end of the fourth feeding part 203 may be directly electrically connected to the second radiating arm 102 .
  • the other end of the fourth feeding part 203 may be directly electrically connected to the third feeding port 242 of the balun feeding part 204 .
  • the fourth feeding part 203 may be a feeding probe, a feeding elastic piece, a feeding column, or the like.
  • the fourth power feeding part 203 may be disposed in parallel with the transmission part 210 of the first power feeding part 201 .
  • the radio frequency signal source when the antenna module 1 is used to transmit wireless signals, the radio frequency signal source generates radio frequency current (high frequency current) and transmits it to the first feeding port 240 of the balun feeding part 204.
  • the first The radio frequency current from the feed port 240 is transmitted to the third feed port 242, and then to the fourth feed part 203 through the third feed port 242.
  • the fourth feed part 203 transmits the received radio frequency current to another second feed port 240.
  • the second radiating arm 102 converts the wireless signal into a wireless signal and radiates it toward the outside of the antenna module 1 .
  • the second radiating arm 102 receives the wireless signals in the space and converts them into radio frequency currents for transmission to the fourth feeding part 203.
  • the fourth feeding part 203 transmits the received radio frequency current to the radio frequency signal source through the third feeding port 242 and the first feeding port 240 of the balun feeding part 204 in sequence.
  • the balun feeding part 204 is used to transmit radio frequency current between the radio frequency signal source and the third feeding part 202 and the fourth feeding part 203 .
  • the first feeding port 240 of the balun feeding part 204 is used to electrically connect the radio frequency signal source and obtain radio frequency current.
  • the second feeding port and the third feeding port of the balun feeding part 204 are respectively electrically connected.
  • the balun feed part 204 can be used to transmit radio frequency current between the radio frequency signal source and the third feed part 202, and Used to transmit radio frequency current between the radio frequency signal source and the fourth feeding part 203.
  • one of the pair of second radiating arms 102 obtains radio frequency current through the third feed part 202 and the balun feed part 204, and the other second radiating arm 102 passes through the fourth feed part.
  • Part 203 and balun feed part 204 obtain the radio frequency current.
  • FIG. 5 is just an example of the balun feed part 204 and should not be understood as a structural limitation of the balun feed part 204.
  • the balun feed portion 204 can extend in a curve, or in a straight line or in a bend.
  • the material of the balun feed part 204 may be metal, alloy, etc.
  • the balun feeding part 204 is also used to realize the phase offset between the radio frequency current of the third feeding part 202 and the radio frequency current of the fourth feeding part 203 .
  • the balun feed part 204 can be used to adjust the phase between the radio frequency current of the third feed part 202 and the radio frequency current of the fourth feed part 203 Difference.
  • the balun feed part 204 is used to cause a phase delay in the radio frequency current of the fourth feed part 203 relative to the radio frequency current of the third feed part 202, so that the radio frequency between the pair of second radiating arms 102 The current generates a phase delay, so that the phase difference between the radio frequency currents between the pair of second radiating arms 102 meets the design requirements.
  • the balun feed part 204 can also be used to cause a phase delay in the radio frequency current of the third feed part 202 relative to the radio frequency current of the fourth feed part 203, so that a pair of second radiation
  • the radio frequency current between the arms 102 generates a phase delay, so that the phase difference between the radio frequency current between the pair of second radiating arms 102 meets the design requirements.
  • the balun feed part 204 is used to realize a phase shift between the radio frequency current of the third feed part 202 and the radio frequency current of the fourth feed part 203, so that the third feed part
  • the radio frequency current of the third feeding part 202 and the radio frequency current of the fourth feeding part 203 are equal in amplitude and opposite in phase or equal in amplitude and in phase, that is, the phase difference between the radio frequency current of the third feeding part 202 and the radio frequency current of the fourth feeding part 203 is n ⁇ (where n is greater than or equal to 1 and is an integer), so that the phase difference between the radio frequency currents between the pair of second radiating arms 102 is n ⁇ .
  • the balun feed part 204 is used to realize a phase shift between the radio frequency current of the third feed part 202 and the radio frequency current of the fourth feed part 203, so that the radio frequency current of the third feed part 202
  • the phase difference between the radio frequency current of the fourth feeding part 203 and the fourth feed part 203 is 180°, so that the radio frequency currents between the pair of second radiating arms 102 are equal in amplitude and in phase.
  • the balun feed part 204 can be used to achieve a phase shift between the radio frequency current of the third feed part 202 and the radio frequency current of the fourth feed part 203, so that the third feed part
  • the phase difference between the first part 202 and the fourth feed part 203 is 360°, so that the radio frequency currents between the pair of second radiating arms 102 have the same amplitude and phase.
  • the third feed part 202 and the fourth feed part 203 have opposite-phase or same-phase radio frequency currents, so that there are opposite-phase or same-phase radio frequency currents between the pair of second radiating arms 102.
  • the radio frequency current can realize the radiation characteristics of the pair of second radiating arms 102, so that linear polarization can be formed in the second direction, which is beneficial to the communication between the antenna module 1 and the wireless device, and improves the revenue and efficiency of the antenna module 1.
  • the antenna module 1 includes a pair of first radiating arms 101, a pair of second radiating arms 102, a first feeder 201, a third feeder 202, a fourth feeder 203 and a balun feeder. part 204, because the first feed part 201 is electrically connected to the radio frequency signal source and is coupled to a pair of first radiating arms 101, the third feed part 202 is electrically connected to a second radiating arm 102, and the fourth feed part 203 is electrically connected The other second radiating arm 102 and the three feeding ports of the balun feeding part 204 are electrically connected to the third feeding part 202, the fourth feeding part 203 and the radio frequency signal source respectively.
  • the feeding part 204, the third feeding part 202 and the fourth feeding part 203 form a feeding system of a pair of first radiating arms 101 and a pair of second radiating arms 102, which can be used for a pair of first radiating arms 101 and a pair of second radiating arms 102.
  • the feeding system formed by the pair of second radiating arms 102, the first feeding part 201, the balun feeding part 204, the third feeding part 202 and the fourth feeding part 203 has a simple structure and is conducive to production. .
  • the feeding unit (the first feeding part 201, the balun feeding part 204, the third feeding part 202, the fourth feeding part 203) and the radiation unit (a pair of first radiating arms 101, a pair of second The radiating arms 102) are stacked to form a vertical antenna module 1, thereby reducing the size of the antenna module 1.
  • the balun feeding part 204 is used to realize the phase offset between the radio frequency current of the third feeding part 202 and the radio frequency current of the fourth feeding part 203, and can control one of the radio frequency currents of the pair of second radiating arms 102.
  • the phase difference between them realizes the radiation characteristics of the pair of second radiating arms 102 and generates polarization in the second direction, which is beneficial to improving the communication performance when communicating with wireless devices.
  • FIG. 7 is a schematic structural diagram of the antenna module 1 shown in FIG. 4 also including a dielectric layer 40 .
  • This application does not specifically limit the number of dielectric layers 40 .
  • the pair of first radiation arms 101 may be carried on the surface of the dielectric layer 40 or inside the dielectric layer 40 .
  • the pair of second radiation arms 102 may be carried on the surface of the dielectric layer 40 or inside the dielectric layer 40 .
  • the first power feeding part 201 , the third power feeding part 202 , and the fourth power feeding part 203 may penetrate into the dielectric layer 40 .
  • the balun feed portion 204 can be carried on the surface of the dielectric layer 40 or inside the dielectric layer 40 .
  • the dielectric layer 40 is used to carry a pair of first radiating arms 101, a pair of second radiating arms 102, a first feeding part 201, a third feeding part 202, a fourth feeding part 203 and a balun feeding part 204, And for the electrical connection between a pair of first radiating arms 101, a pair of second radiating arms 102, the first feeding part 201, the third feeding part 202, the fourth feeding part 203 and the balun feeding part 204. isolation.
  • the antenna array 2 further includes a conductive connection part 50 .
  • One end of the conductive connection part 50 is electrically connected to the first power feeding part 211, and the other end of the conductive connection part 50 is electrically connected to the second power feeding part 212.
  • the conductive connection part 50 is used to transmit the first power feeding part 211 and the second power feeding part
  • the radio frequency current between 212 is used to realize the phase shift between the radio frequency current of the first feeding part 211 and the radio frequency current of the second feeding part 212.
  • one end of the conductive connection part 50 is directly electrically connected to the first power feeding part 211
  • the other end of the conductive connection part 50 is directly electrically connected to the second power feeding part 212 .
  • the conductive connection part 50 and the first power feeding part 211 and the second power feeding part 212 may be arranged in the same plane, or may be arranged in different planes.
  • the first power feeding part 211, the conductive connection part 50 and the second power feeding part 212 may be integrally formed. This application does not specifically limit the shape, size, etc. of the conductive connection part 50.
  • FIG. 8 is just an example of the conductive connection part 50 and should not be understood as a structural limitation of the conductive connection part 50.
  • the conductive connection portion 50 may be bent or extended.
  • the material of the conductive connection part 50 may be metal, alloy, etc.
  • the conductive connection part 50 is used to cause a phase delay in the radio frequency current of the second feed part 212 relative to the radio frequency current of the first feed part 211, so that the phase difference of the radio frequency current between the pair of first radiating arms 101 meets the design. Require.
  • the radio frequency current generated by the radio frequency signal source is transmitted to the first feed part 211 through the transmission part 210, and is coupled to a first radiating arm 101 through the first feed part 211, and also passes through the first feed part 211,
  • the conductive connection part 50 is transmitted to the second power feeding part 212 and coupled to another first radiating arm 101 through the second power feeding part 212 .
  • the conductive connection part 50 is used to realize a phase shift between the radio frequency currents of the first feed part 211 and the second feed part 212, so that the radio frequency current of the first feed part 211
  • the radio frequency current of the second feeding part 212 is equal in amplitude and opposite in phase or equal in amplitude and in phase, that is, the phase difference between the radio frequency current of the first feeding part 211 and the radio frequency current of the second feeding part 212 is n ⁇ (where n is greater than or equal to 1 and is an integer), since the first feeding part 211 is coupled to one first radiating arm 101 and the second feeding part 212 is coupled to another first radiating arm 101, therefore the first feeding part 211
  • the phase difference between the radio frequency current and the radio frequency current of the second feeding part 212 is n ⁇
  • the phase difference between the radio frequency currents between the pair of first radiating arms 101 is n ⁇ , that is, a pair of first radiating arms 101 is realized.
  • the radio frequency currents between them are equal in amplitude and in phase, or equal in amplitude and in phase.
  • the conductive connection part 50 is used to realize a phase shift between the radio frequency currents of the first feeding part 211 and the second feeding part 212, so that the radio frequency current of the first feeding part 211 is in line with the second feeding part.
  • the phase difference between the radio frequency currents of the second radiating arms 102 is 180°, so that the radio frequency currents between the pair of second radiating arms 102 are equal in amplitude and in phase.
  • the conductive connection part 50 can be used to achieve a phase shift between the radio frequency current of the first feed part 211 and the radio frequency current of the second feed part 212, so that the first feed part 211
  • the phase difference with the second feeding part 212 is 360°, so that the radio frequency currents between the pair of second radiating arms 102 have the same amplitude and phase.
  • the conductive connection part 50 By arranging the conductive connection part 50 so that there is an opposite-phase radio frequency current or a same-phase radio frequency current between the pair of first radiating arms 101, the radiation characteristics of the pair of first radiating arms 101 can be achieved, so that linear polarization can be formed in the first direction. This facilitates communication between the antenna module 1 and the wireless device and improves the revenue and efficiency of the antenna module 1 .
  • a pair of first radiating arms 101 forms linear polarization
  • a pair of second radiating arms 102 forms linear polarization
  • the antenna module 1 is a double cross-polarized dipole antenna module.
  • first direction and the second direction are orthogonal, and a pair of first radiating arms 101 and a pair of second radiating arms 102 may form horizontal and vertical dual polarization, or positive and negative 45° dual polarization.
  • Horizontal and vertical dual polarization can receive antenna signals in the horizontal polarization direction and antenna signals in the vertical polarization direction, thereby forming an orthogonal dual polarization dipole antenna module 1 to improve the performance of the antenna module 1 with horizontal polarization. and/or the performance of devices communicating with vertical polarization characteristics.
  • the positive and negative 45° dual polarization can receive antenna signals in any polarization direction, thereby forming an orthogonal dual polarization dipole antenna module 1 to improve the performance of the antenna module 1 in receiving wireless signals in all directions.
  • the transmission part 210 is bent and connected to the first power feeding part 211 .
  • the extending direction of the transmission part 210 is different from the extending direction of the first power feeding part 211 .
  • the transmission part 210 extends along the thickness direction (Z-axis direction) of the antenna module 1, and the first feed part 211 is located in the XY plane, that is, the first feed part 211 extends along the X-axis direction or Extend in the Y-axis direction.
  • the transmission part 210 and the first power feeding part 211 are bent and connected at approximately 90°, that is, the transmission part 210 and the first power feeding part 211 form an "L" shaped power feeding structure. Since the transmission part 210 is used to electrically connect the radio frequency signal source, and the transmission part 210 is bent and connected to the first feed part 211, the radio frequency current generated by the radio frequency signal source can be transmitted to the first feed part 211 through the transmission part 210, and then It is coupled to a first radiating arm 101 via a first power feeding part 211 .
  • the transmission part 210 and a first radiating arm 101 By bending the transmission part 210 to the first feed part 211, it is advantageous for the first feed part 211 and a first radiating arm 101 to be relatively arranged and coupled along the thickness direction of the antenna module 1, and the second feed part
  • the transmission part 210 and the first feed part 211 are also arranged along the thickness direction of the antenna module 1, forming a vertically arranged
  • the antenna module 1 and reducing the size of the antenna module 1 facilitate the miniaturization of the antenna module 1.
  • the conductive connection part 50 and the power feeding unit 20 may be arranged on the same layer.
  • the conductive connection portion 50 may be located between the side of the radiating unit 10 facing the feeding unit 20 and the side of the feeding unit 20 away from the radiating unit 10 .
  • the conductive connection part 50 is arranged on the same layer as the first power feeding part 201 , the third power feeding part 202 and the fourth power feeding part 203 .
  • the conductive connection part 50 may be carried on the same dielectric layer 40 as the first power feeding part 201 , the third power feeding part 202 and the fourth power feeding part 203 .
  • the conductive connection part 50, the first power feeding part 211 and the second power feeding part 212 are coplanar.
  • the conductive connection part 50 , the first power feeding part 211 and the second power feeding part 212 are coplanar, which facilitates the electrical connection of the conductive connection part 50 between the first power feeding part 211 and the second power feeding part 212 , without increasing the thickness of the antenna module 1, the phase difference of the radio frequency current between the pair of first radiating arms 101 can be adjusted to achieve the radiation characteristics of the pair of first radiating arms 101, and polarization can be generated while further To achieve the low profile of the antenna module 1.
  • the conductive connection part 50, the first power feeding part 211 and the second power feeding part 212 are coplanar, which is beneficial to forming the conductive connection part 50, the first power feeding part 211 and the second power feeding part 212 in the same plane.
  • the phase difference of the radio frequency current between the first feeding part 211 and the second feeding part 212 can be adjusted to achieve the radiation characteristics of the pair of first radiating arms 101, and polarization can be generated while reducing the distance between the conductive connection part 50 and the third feeding part 212.
  • the production difficulty of the feeder 201 improves the mass productivity and production efficiency of the antenna module 1.
  • the overall cross-section of the antenna module 1 can also be reduced.
  • the first power feeding part 211 and the second power feeding part 212 are arranged oppositely along the first direction, and the conductive connection part 50 extends along the first direction. It can be understood that the first power feeding part 211, the conductive connection part 50, and the second power feeding part 212 are arranged in a linear manner. By arranging the first power feeding part 211 and the second power feeding part 212 to be oppositely arranged along the first direction, and the conductive connection part 50 extending along the first direction, the radio frequency current of the first power feeding part 211 and the second power feeding part 212 can be realized.
  • the phase difference between the radio frequency currents is n ⁇ , and it is helpful to avoid interference between the conductive connection part 50 and the balun feed part 204, and improve the phase accuracy between the third feed part 202 and the fourth feed part 203.
  • the phase accuracy between the first feeding part 211 and the second feeding part 212 enables the pair of first radiating arms 101 and the pair of second radiating arms 102 to have higher phase accuracy.
  • the antenna module 1 further includes a ground group 60 located at an end of the feed unit 20 away from the radiating unit 10 .
  • the ground group 60 includes a first ground member 601 and a second ground member 602 that are stacked and spaced apart.
  • the material of the first grounding member 601 may be metal, alloy, etc.
  • the material of the second grounding member 602 may be metal, alloy, etc.
  • the first ground member 601 may be electrically connected to the middle frame 320 of the electronic device 100 (refer to FIG.
  • the first ground member 601 covers a pair of first radiating arms 101 and a pair of second radiating arms 102 .
  • the second ground member 602 covers the pair of first radiating arms 101 and the pair of second radiating arms 102 . It can be understood that the area of the first ground member 601 is greater than or equal to the sum of the areas of the pair of first radiating arms 101 and the pair of second radiating arms 102 . The area of the second ground member 602 is greater than or equal to the sum of the areas of the pair of first radiating arms 101 and the pair of second radiating arms 102 . At least part of the balun feed portion 204 is located between the first ground member 601 and the second ground member 602 and is spaced apart from the first ground member 601 and the second ground member 602 .
  • part of the balun feeding part 204 is located between the first grounding member 601 and the second grounding member 602 and is spaced apart from the first grounding member 601 and the second grounding member 602; or, all the balun feeding parts are 204 is located between the first grounding member 601 and the second grounding member 602 and is spaced apart from the first grounding member 601 and the second grounding member 602 .
  • a strip line balun is formed by the balun feed part 204, the first grounding member 601, and the second grounding member 602, so that the linear polarization formed by the antenna module 1 in the first direction has wide-band characteristics.
  • the antenna module 1 The linear polarization formed in the second direction has dual-band characteristics, so that the antenna module 1 can operate in the 5G millimeter wave frequency band.
  • the ground groups 60 of the multiple antenna modules 1 may form an integral ground group 60.
  • the second grounding member 602 is located on the side of the first grounding member 601 away from the radiating unit 10 , that is, the radiating unit 10 , the feeding unit 20 , the first grounding member 601 and the second grounding member 602 are stacked in sequence.
  • One end of the transmission part 210 away from the first power feeding part 211 penetrates the first ground member 601 and the second ground member 602 and is used to electrically connect the radio frequency signal source.
  • the other end of the third power feeding part 202 (that is, the end of the third power feeding part 202 away from the second radiating arm 102 ) penetrates the first ground member 601 .
  • the other end of the third power feeding part 202 can extend between the first grounding member 601 and the second grounding member 602 to electrically connect the second feeding port 241 of the balun feeding part 204 .
  • the other end of the fourth power feeding part 203 (that is, the end of the fourth power feeding part 203 away from the second radiating arm 102 ) penetrates the first ground member 601 .
  • the other end of the fourth feeding part 203 can extend between the first grounding member 601 and the second grounding member 602 to electrically connect the third feeding port 242 of the balun feeding part 204 .
  • the balun feed part 204 includes a first sub-balun part 243 and a second sub-balun part 244 that are connected.
  • the first sub-balun portion 243 is located between the first ground member 601 and the second ground member 602 and is spaced apart from the first ground member 601 and the second ground member 602 .
  • This application does not specifically limit the structure of the first sub-balun part 243.
  • the structure of the first sub-balun part 243 in FIG. 11 is only an example.
  • the first sub-balun part 243 may be in an arc shape, a straight line shape, a bent linear shape, etc. Both ends of the first sub-balun part 243 form a second feeding port 241 and a third feeding port 242 respectively.
  • the second feed port 241 and the third feed port 242 are located between the first ground member 601 and the second ground member 602 .
  • One end of the second sub-balun part 244 away from the first sub-balun part 243 penetrates the second ground member 602 and forms the first feeding port 240 .
  • the first feed port 240 is located in the second ground member 602 and faces the side of the second ground member 602 away from the first ground member 601 , or the first feed port 240 protrudes from the second ground member 602 Outside the side away from the first grounding member 601 .
  • This application does not specifically limit the structure of the second sub-balun part 244, and the structure of the second sub-balun part 244 in FIG. 11 is only an example.
  • the second sub-balun part 244 may be in an arc shape, a straight line shape, a bent shape, etc.
  • the third power feeding part 202 By having the other end of the third power feeding part 202 penetrate the first grounding member 601 and the other end of the fourth power feeding part 203 penetrating the first grounding member 601, it is convenient for the third power feeding part 202 and the fourth power feeding part 203 to be connected to each other.
  • the balun feed portion 204 located between the first ground member 601 and the second ground member 602 is electrically connected.
  • the end of the transmission part 210 away from the first power feeding part 211 penetrates the first grounding member 601 and the second grounding part 602, which can facilitate the electrical connection between the end of the transmission part 210 away from the first power feeding part 211 and an external radio frequency signal source.
  • the second sub-balun portion 244 of the balun feed portion 204 penetrates the second ground member 602 to facilitate the connection between the balun feed portion 204 located between the first ground member 601 and the second ground member 602 and the external radio frequency signal source. Make electrical connections.
  • the third feeding part 202 is realized by the third feeding part 202 penetrating the first grounding member 601 and the fourth feeding part 203 penetrating the first grounding part 601 .
  • the electrical connection between the fourth feeding part 203 and the balun feeding part 204 can reduce wiring, form a vertical antenna module 1, and reduce the cross-section of the antenna module 1.
  • balun feed part 204 and the conductive connection part 50 are far apart, interference between the balun feed part 204 and the conductive connection part 50 can be avoided, and the distance between the pair of first radiating arms 101 and the pair of second radiating arms 101 can be improved. Phase accuracy of the two radiating arms 102.
  • the balun feed portion 204 and the conductive connection portion 50 are far apart, there is no need to increase height or distance between them for isolation, which can further reduce the cross-section of the antenna module 1 .
  • the antenna module 1 further includes a grounding member 30 provided at an end of the feeding unit 20 away from the radiating unit 10 .
  • the material of the grounding piece 30 can be metal, alloy, etc.
  • the grounding member 30 may be electrically connected to the middle frame 320 of the electronic device 100 (see FIG. 2 ), or the grounding member 30 may be electrically connected to the reference ground of the circuit board 33 of the electronic device 100 , or the grounding member 30 may also be electrically connected to the electronic device 100 .
  • the reference ground of the circuit board 33 of the device 100 is integrated.
  • the ground member 30 covers a pair of first radiating arms 101 and a pair of second radiating arms 102 . It can be understood that the area of the ground member 30 is greater than or equal to the sum of the areas of the pair of first radiating arms 101 and the pair of second radiating arms 102 .
  • At least part of the balun power feeding portion 204 is located on the grounding member 30 and a side away from the power feeding unit 20 and is spaced apart from the grounding member 30 . It can be understood that along the thickness direction of the antenna module 1, the radiating unit 10, the feeding unit 20, the grounding member 30 and the balun feeding part 204 are arranged in sequence.
  • part of the balun feed part 204 is located on the side of the grounding member 30 and away from the feed unit 20 and is spaced apart from the grounding member 30; One side of the electrical unit 20 is spaced apart from the grounding member 30 .
  • a microstrip can be formed through the balun feeding part 204 and the grounding member 30 Line balun, so that the linear polarization formed by the antenna module 1 in the first direction has wide-band characteristics, and the linear polarization formed by the antenna module 1 in the second direction has wide-band characteristics, so that the antenna module 1 can work in the 5G millimeter wave frequency band.
  • the grounding member 30 by providing the grounding member 30, the radiation signals of the pair of first radiating arms 101 and the pair of second radiating arms 102 can be reflected, thereby extending the transmission distance of the antenna module 1 and improving the communication performance of the antenna module 1.
  • the grounding members 30 of the multiple antenna modules 1 may form an integral grounding member 30.
  • one end of the transmission part 210 away from the first power feeding part 211 penetrates the grounding member 30 and is used to electrically connect the radio frequency signal source.
  • the other end of the third power feeding part 202 (that is, the end of the third power feeding part 202 away from the second radiating arm 102 ) penetrates the grounding member 30 .
  • the other end of the third feed portion 202 can extend from a side of the grounding member 30 away from the feed unit 20 to electrically connect to the second feed port 241 of the balun feed portion 204 .
  • the other end of the fourth power feeding part 203 (that is, the end of the fourth power feeding part 203 away from the second radiating arm 102 ) penetrates the grounding member 30 .
  • the other end of the fourth feeding part 203 may extend from the side of the grounding member 30 away from the feeding unit 20 to electrically connect to the third feeding port 242 of the balun feeding part 204 .
  • the balun feed part 204 includes a connected third sub-balun part 245 and a fourth sub-balun part 246 .
  • the third sub-balun portion 245 is located on a side of the grounding member 30 away from the power feeding unit 20 and is spaced apart from the grounding member 30 .
  • the fourth sub-balun portion 246 is located on a side of the grounding member 30 away from the power feeding unit 20 and is spaced apart from the grounding member 30 .
  • This application does not specifically limit the structure of the third sub-balun part 245, and the structure of the third sub-balun part 245 in Figure 13 is only an example.
  • the third sub-balun part 245 may be in an arc shape, a straight line shape, a bent linear shape, etc.
  • Both ends of the third sub-balun part 245 form a second feed port 241 and a third feed port 242 respectively. It can be understood that the second feeding port 241 and the third feeding port 242 are located on a side of the grounding member 30 away from the feeding unit 20 .
  • An end of the fourth sub-balun part 246 away from the third sub-balun part 245 forms a first feeding port 240 . It can be understood that the first feeding port 240 is located on a side away from the feeding unit 20 .
  • This application does not specifically limit the structure of the fourth sub-balun part 246.
  • the structure of the fourth sub-balun part 246 in Figure 13 Just as an example.
  • the fourth sub-balun part 246 may be in an arc shape, a straight line shape, a bent shape, etc.
  • the third power feeding part 202 By having the other end of the third power feeding part 202 penetrate the grounding member 30 and the other end of the fourth power feeding part 203 penetrating the grounding member 30 , it is convenient for the third power feeding part 202 and the fourth power feeding part 203 to be connected to the grounding member 30
  • the balun power feeding part 204 on the side facing away from the power feeding unit 20 is electrically connected.
  • the fourth sub-balun part 246 is located on the side of the grounding member 30 away from the power feeding unit 20 to facilitate the electrical connection between the balun power feeding part 204 and an external radio frequency signal source.
  • the third feeding part 202 and the fourth feeding part 202 are realized by penetrating the grounding part 30 and the fourth feeding part 203 penetrating the grounding part 30 .
  • the electrical connection between the electrical part 203 and the balun feed part 204 can reduce wiring, form a vertical antenna module 1, and reduce the cross-section of the antenna module 1.
  • balun feed part 204 and the conductive connection part 50 are far apart, interference between the balun feed part 204 and the conductive connection part 50 can be avoided, and the distance between the pair of first radiating arms 101 and the pair of second radiating arms 101 can be improved. Phase accuracy of the two radiating arms 102.
  • the balun feed portion 204 and the conductive connection portion 50 are far apart, there is no need to increase height or distance between them for isolation, which can further reduce the cross-section of the antenna module 1 .
  • the antenna module 1 also includes a pair of first coupling patches 70 and a pair of second coupling patches 80 .
  • the pair of first coupling patches 70 are respectively arranged opposite to and coupled to the pair of first radiating arms 101 .
  • a pair of second coupling patches 80 are respectively disposed opposite to and coupled to a pair of second radiating arms 102 .
  • a pair of first coupling patches 70 are arranged opposite each other along the first direction, and one of the first coupling patches 70 is arranged opposite and coupled to one first radiating arm 101 , and the other first coupling patch 70 is arranged opposite to the other first radiating arm 101 .
  • a first radiating arm 101 is arranged oppositely and coupled.
  • a pair of second coupling patches 80 are arranged opposite each other along the second direction, and one of the second coupling patches 80 is arranged opposite and coupled to one second radiating arm 102 , and the other second coupling patch 80 is arranged opposite to the other second radiating arm 102 .
  • the arms 102 are oppositely positioned and coupled.
  • This application does not specifically limit the shape, size, material, etc. of the first coupling patch 70 and the second coupling patch 80 .
  • the shape of the first coupling patch 70 may be a circle, a square, a rectangle, a triangle, an ellipse, other polygons, various special shapes, etc.
  • the shape of the second coupling patch 80 may be a circle, a square, a rectangle, a triangle, an ellipse, other polygons, various special shapes, etc.
  • the size of the first coupling patch 70 along the first direction may be less than, equal to, or greater than the size of the first radiating arm 101 along the first direction; the size of the first coupling patch 70 along the second direction may be less than, equal to, or greater than the first direction.
  • the size of the second coupling patch 80 along the first direction may be less than, equal to, or greater than the size of the second radiating arm 102 along the first direction; the size of the second coupling patch 80 along the second direction may be less than, equal to, or greater than the second direction.
  • the material of the first coupling patch 70 may be metal, alloy, etc.
  • the material of the second coupling patch 80 may be metal, alloy, etc.
  • the coupling between the first coupling patch 70 and the first radiating arm 101 can be understood as forming a third coupling gap between the first coupling patch 70 and the first radiating arm 101 .
  • the coupling between the second coupling patch 80 and the second radiating arm 102 can be understood as forming a fourth coupling gap between the second coupling patch 80 and the second radiating arm 102 .
  • the third coupling gap and the fourth coupling gap may be the same or different.
  • the pair of first coupling patches 70 can respectively serve as matching circuits for a pair of first radiating arms 101 , thereby facilitating the design of a pair of first radiating arms 101 .
  • the structure and position of the first coupling patch 70 are adjusted to adjust the current distribution of the pair of first radiating arms 101 to achieve the radiation effect of the pair of first radiating arms 101 and improve the broadband and ultra-wideband characteristics of the antenna module 1 .
  • the pair of first coupling patches 70 can also serve as coupling branches of a pair of first radiating arms 101 to participate in radiation to improve the communication performance of the antenna module 1 .
  • the pair of second coupling patches 80 can respectively serve as matching circuits for a pair of second radiating arms 102 , thereby facilitating the design of a pair of second radiating arms 102 .
  • the structure and position of the second coupling patch 80 are adjusted to adjust the current distribution of the pair of second radiating arms 102 to achieve the radiation effect of the pair of second radiating arms 102 and improve the broadband and ultra-wideband characteristics of the antenna module 1 .
  • a pair of second coupling patches 80 can also serve as coupling branches of a pair of second radiating arms 102 to participate in radiation to improve the communication performance of the antenna module 1 .
  • a pair of first coupling patches 70 is located on a side of the radiating unit 10 facing the feeding unit 20 .
  • the antenna module 1 includes the ground group 60
  • a pair of first coupling patches 70 is located between the radiating unit 10 and the ground group 60 .
  • the first radiating arm 101 , the first coupling patch 70 and the ground group 60 are arranged in sequence along the thickness direction of the antenna module 1 .
  • the antenna module 1 includes the ground member 30
  • a pair of first coupling patches 70 is located between the radiating unit 10 and the ground member 30 . It can be understood that the first radiating arm 101 , the first coupling patch 70 and the grounding piece 30 are arranged in sequence along the thickness direction of the antenna module 1 .
  • the antenna module 1 also includes at least one first coupling ground piece 701 and at least one second coupling ground piece 702 .
  • One end of the at least one first coupling ground member 701 is electrically connected to a first coupling patch 70 , and the other end of the at least one first coupling ground member 701 is grounded.
  • One end of the at least one second coupling ground member 702 is electrically connected to the other first coupling patch 70 , and the other end of the at least one second coupling ground member 702 is grounded.
  • at least one first coupling ground component 701 is electrically connected between a first coupling patch 70 and the ground component 30
  • at least one second coupling ground component 702 is electrically connected between another first coupling patch 70 and the ground component 30 . between grounding pieces 30.
  • first coupling ground members 701 and the number of second coupling ground members 702 may be the same or different.
  • the number of the first coupling ground members 701 is two, and the two first coupling ground members 701 are electrically connected between a first coupling patch 70 and the ground member 30; the second coupling ground member 701 is electrically connected between the first coupling patch 70 and the ground member 30;
  • the number of components 702 is two, and the two second coupling ground components 702 are electrically connected between another first coupling patch 70 and the ground component 30 .
  • the other end of the first coupling ground member 701 can be electrically connected to the first ground member 601 or the second ground member 602 of the ground group 60; the other end of the second coupling ground member 702 can be electrically connected to the ground group.
  • the antenna module 1 By locating the pair of first coupling patches 70 between the radiating unit 10 and the ground group 60 , the antenna module 1 can have a lower profile. And a first coupling patch 70 is grounded through the first coupling grounding piece 701, so that the first coupling grounding piece 701 and the first radiating arm 101 can also form coupling, thereby increasing the adjustment diversity of the current distribution of the first radiating arm 101. The bandwidth diversity of the antenna module 1 is achieved, and the first coupling ground piece 701 is involved in radiation, thereby improving the communication performance of the antenna module 1 .
  • the other first coupling patch 70 is grounded through the second coupling ground piece 702 , so that the second coupling ground piece 702 can also form coupling with the other first radiating arm 101 , thereby increasing the current distribution of the other first radiating arm 101 .
  • a pair of second coupling patches 80 is located on a side of the radiating unit 10 facing the feeding unit 20 .
  • a pair of second coupling patches 80 is located between the radiating unit 10 and the ground group 60 .
  • the first radiating arm 101 , the second coupling patch 80 and the ground group 60 are arranged in sequence along the thickness direction of the antenna module 1 .
  • the antenna module 1 includes the ground member 30
  • a pair of second coupling patches 80 is located between the radiating unit 10 and the ground member 30 . It can be understood that the first radiating arm 101 , the second coupling patch 80 and the grounding piece 30 are arranged in sequence along the thickness direction of the antenna module 1 .
  • the antenna module 1 also includes at least one third coupling ground piece 801 and at least one fourth coupling ground piece 802 .
  • One end of the at least one third coupling ground member 801 is electrically connected to a second coupling patch 80, and the other end of the at least one third coupling ground member 801 is grounded.
  • One end of the at least one fourth coupling ground member 802 is electrically connected to the other second coupling patch 80 , and the other end of the at least one fourth coupling ground member 802 is grounded.
  • at least one third coupling ground component 801 is electrically connected between a second coupling patch 80 and the ground component 30
  • at least one fourth coupling ground component 802 is electrically connected between another second coupling patch 80 and the ground component 30 . between grounding pieces 30.
  • This application does not specifically limit the number of the third coupling ground members 801 and the number of the fourth coupling ground members 802.
  • the number of the third coupling ground members 801 and the number of the fourth coupling ground members 802 may be the same or different.
  • the number of the third coupling grounding members 801 is two, and the two third coupling grounding members 801 are electrically connected between a second coupling patch 80 and the first grounding member 601 of the grounding group 60
  • the number of the fourth coupling ground members 802 is two, and the two fourth coupling ground members 802 are electrically connected between another second coupling patch 80 and the first ground member 601 of the ground group 60 .
  • the other end of the third coupling ground member 801 can be electrically connected to the first ground member 601 or the second ground member 602 of the ground group 60; the other end of the fourth coupling ground member 802 can be electrically connected to the ground group.
  • the antenna module 1 By disposing the pair of second coupling patches 80 between the radiating unit 10 and the ground group 60 , the antenna module 1 can have a lower profile. And a second coupling patch 80 is grounded through the third coupling grounding piece 801, so that the third coupling grounding piece 801 and the second radiating arm 102 can also form coupling, thereby increasing the adjustment diversity of the current distribution of the second radiating arm 102. The bandwidth diversity of the antenna module 1 is achieved, and the third coupling ground piece 801 is involved in radiation, thereby improving the communication performance of the antenna module 1 .
  • the other second coupling patch 80 is grounded through the fourth coupling ground piece 802 , so that the fourth coupling ground piece 802 can also form coupling with the other first radiating arm 101 , thereby increasing the current distribution of the other second radiating arm 102 Adjust the diversity to achieve bandwidth diversity of the antenna module 1, and allow the fourth coupling ground piece 802 to participate in radiation, thereby improving the communication performance of the antenna module 1.
  • the antenna module 1 provided in this application can form a crossed or orthogonal dual-polarized dipole antenna module by designing the balun feed portion 204 and the conductive connection portion 50 .
  • the structure of the balun feeder 204 and its arrangement with the first feeder 201, the third feeder 202 and the fourth feeder 203 can realize the third feeder 202 and the fourth feeder.
  • the phase difference of the radio frequency current between 203 is designed to achieve the radiation characteristics of the pair of second radiating arms 102, generate polarization in the second direction, and at the same time improve the compactness of the antenna module 1 and reduce the profile of the antenna module 1.
  • the structure of the conductive connection part 50 and its arrangement between the first feed part 211 and the second feed part 212 can realize the phase difference of the radio frequency current between the first feed part 211 and the second feed part 212 Designed to achieve the radiation characteristics of the pair of first radiating arms 101 and generate polarization in the first direction, it is also beneficial to increase the isolation between the conductive connection part 50 and the balun feed part 204, and avoid the conductive connection part 50 and the balun feed part 204.
  • the balun feed portions 204 interfere with each other to improve the phase accuracy of the pair of first radiating arms 101 and the pair of second radiating arms 102 .
  • the design of the first coupling patch 70 and the second coupling patch 80 can improve the radiation effect and matching effect of the antenna module 1 while ensuring a low profile of the antenna module 1, so that the antenna module 1 has better radiation performance. , broaden the bandwidth of antenna module 1.
  • Figure 17 is a schematic diagram of an antenna array 2 provided by an embodiment of the present application.
  • Figure 19 is a schematic diagram of another antenna array 2 provided by an embodiment of the present application.
  • Figure 21 is a schematic diagram of an antenna array 2 provided by an embodiment of the present application.
  • the embodiment provides a schematic diagram of yet another antenna array 2.
  • the antenna array 2 includes a plurality of antenna modules 1 . Multiple antenna modules 1 are arranged in an array. Specifically, multiple antenna modules 1 are arranged in an array along the first direction, and the first radiating arms 101 of two adjacent antenna modules 1 are coupled; and/or multiple antenna modules 1 are arranged along the second direction. The directions are arranged in an array, and the second radiating arms 102 of two adjacent antenna modules 1 are coupled.
  • multiple antenna modules 1 can be arranged in a linear array (one row and multiple columns, or multiple rows and one column), or multiple antenna modules 1 can be arranged in a matrix array (multiple rows and multiple columns, and the number of rows and columns (different numbers), or multiple antenna modules 1 can be arranged in a square array (multiple rows and multiple columns, and the number of rows and columns are the same), etc.
  • the antenna array 2 includes four antenna modules 1 .
  • the four antenna modules 1 are arranged in a linear array along the first direction, and the first radiating arms 101 of two adjacent antenna modules 1 are coupled.
  • the first direction may refer to the X-axis direction in Figure 17.
  • the four antenna modules 1 include four pairs of first radiating arms 101, and the four antenna modules 1 have three adjacent groups of first radiating arms 101. coupling.
  • the first direction is also the arrangement direction of the first radiating arms 101 of the four antenna modules 1 . It can be understood that the first radiating arms 101 of multiple antenna modules 1 are arranged along the first direction, and the first radiating arms 101 of two adjacent antenna modules 1 are oppositely arranged along the first direction and form a coupling gap.
  • the first radiating arms 101 of two adjacent antenna modules 1 exhibit an interdigital coupling. Specifically, the edge of the first radiating arm 101 of one of the two adjacent antenna modules 1 forms one or more first notches 101a and one or more first extensions 101b, and the other antenna The edge of the first radiating arm 101 of the module 1 forms one or more second notches 101c and one or more second extension parts 101d.
  • the first extension part 101b at least partially extends into the second notch 101c.
  • the extension portion 101d at least partially extends into the first notch 101a, and the edges of the first radiating arms 101 of two adjacent antenna modules 1 intersect but do not contact, so as to form an interdigital coupling.
  • the edge of the first radiating arm 101 of one antenna module 1 includes three first notches 101a and two first extension portions 101b.
  • An extension part 101b is spaced between three first notches 101a, that is, a first extension part 101b is provided between two adjacent first notches 101a; the first radiating arm 101 of another antenna module 1
  • the edge includes two second notches 101c and three second extension parts 101d.
  • the two second notches 101c are spaced between the three second extension parts 101d, that is, there is a gap between two adjacent second notches 101c.
  • a second extension 101d The three second extension parts 101d respectively extend into the three first notches 101a, and the two first extension parts 101b respectively extend into the two second notches 101c.
  • the first notch 101a may be a rectangle, a circle, an ellipse, a square, a triangle, a trapezoid, other polygons, various special shapes, etc.
  • the second notch 101c may be a rectangle, a circle, an ellipse, a square, a triangle, a trapezoid, other polygons, various special shapes, etc.
  • the first extension part 101b may be a rectangle, a circle, an ellipse, a square, a triangle, a trapezoid, other polygons, various special shapes, etc.
  • the second extension part 101d may be rectangular, circular, oval, Square, triangle, trapezoid, other polygons and various special shapes, etc.
  • the first extension part 101b and the second extension part 101d are generally T-shaped; the first notch 101a and the second notch 101c are generally rectangular.
  • a closely coupled array antenna can be formed, thereby reducing the size of the antenna array 2 and improving the compactness of the antenna array 2.
  • the mutual coupling effect of two adjacent antenna modules 1 can also be used to achieve the broadband and ultra-wideband characteristics of the antenna array 2.
  • the antenna array 2 includes eight antenna modules 1 .
  • the eight antenna modules 1 are arranged in an array along the second direction, and the second radiating arms 102 of two adjacent antenna modules 1 are coupled.
  • the second direction may refer to the Y-axis direction in FIG. 19.
  • the eight antenna modules 1 include eight pairs of second radiating arms 102, and the eight antenna modules 1 have a total of seven groups of adjacent second radiating arms 102. coupling.
  • the second direction is also the arrangement direction of the second radiating arms 102 of the eight antenna modules 1 . It can be understood that the second radiating arms 102 of multiple antenna modules 1 are arranged along the second direction, and the second radiating arms 102 of two adjacent antenna modules 1 are oppositely arranged along the second direction and form a coupling gap.
  • the second radiating arms 102 of two adjacent antenna modules 1 exhibit an interdigital coupling.
  • the edge of the second radiating arm 102 of one of the two adjacent antenna modules 1 forms one or more third notches 102a and one or more third extensions 102b, and the other antenna
  • the edge of the second radiating arm 102 of the module 1 forms one or more fourth notches 102c and one or more fourth extension parts 102d.
  • the third extension part 102b at least partially extends into the fourth notch 102c.
  • the extension portion 102d at least partially extends into the third notch 102a, and the edges of the second radiating arms 102 of two adjacent antenna modules 1 intersect but do not contact, so as to form an interdigital coupling.
  • the edge of the second radiating arm 102 of one antenna module 1 includes a third notch 102a and two third extension portions 102b.
  • the extension portions 102b are respectively spaced on opposite sides of the third notch 102a, that is, the third notch 102a is located between the two third extension portions 102b and is spaced apart from the two third extension portions 102b; another antenna module 1
  • the edge of the second radiating arm 102 includes two fourth notches 102c and a fourth extension part 102d.
  • the two fourth notches 102c are respectively spaced on opposite sides of the fourth extension part 102d, that is, the fourth extension part 102d is located Between the two fourth notches 102c and spaced apart from the two fourth notches 102c.
  • the fourth extension part 102d extends into the third notch 102a, and the two third extension parts 102b extend into the two fourth notches 102c respectively.
  • the third notch 102a may be a rectangle, a circle, an ellipse, a square, a triangle, a trapezoid, other polygons, various special shapes, etc.
  • the fourth gap 102c can be a rectangle, a circle, an ellipse, a square, a triangle, a trapezoid, other polygons, various special shapes, etc.
  • the third extension part 102b may be a rectangle, a circle, an ellipse, a square, a triangle, a trapezoid, other polygons, various special shapes, etc.
  • the fourth extension part 102d may be a rectangle, a circle, an ellipse, a square, a triangle, a trapezoid, other polygons, various special shapes, etc.
  • the third extension part 102b and the fourth extension part 102d are generally T-shaped; the third notch 102a and the fourth notch 102c are generally rectangular.
  • a closely coupled array antenna can be formed, thereby reducing the size of the antenna array 2 and improving the compactness of the antenna array 2.
  • the mutual coupling effect of two adjacent antenna modules 1 can also be used to achieve the broadband and ultra-wideband characteristics of the antenna array 2.
  • the antenna array 2 includes four antenna modules 1 .
  • the four antenna modules 1 include four pairs of first radiating arms 101 and four pairs of second radiating arms 102 . Two or two antenna modules 1 are arranged in an array along the first direction, and the first radiating arms 101 of two adjacent antenna modules 1 are coupled; two or two antenna modules 1 are arranged in an array along the second direction, and The second radiating arms 102 of two adjacent antenna modules 1 are coupled.
  • the first direction may refer to the X-axis direction in FIG. 21
  • the second direction may refer to the Y-axis direction in FIG. 21 .
  • the first direction is perpendicular to the second direction.
  • first direction and the second direction may intersect but not be perpendicular.
  • the first radiating arms 101 of two antenna modules 1 arranged in an array along the first direction are respectively arranged along the first direction, and the first radiating arms 101 of two adjacent antenna modules 1 are opposite to each other along the first direction.
  • the second radiating arms 102 of two antenna modules 1 arranged in an array along the second direction are respectively arranged along the second direction, and the second radiating arms 102 of two adjacent antenna modules 1 are arranged oppositely along the second direction. and form a coupling gap.
  • the first radiating arms 101 of two adjacent antenna modules 1 are coupled to each other, and the second radiating arms 102 of the two adjacent antenna modules 1 are coupled to each other.
  • the edge of the first radiating arm 101 of one of the two antenna modules 1 arranged in an array along the first direction forms one or more fifth notches 101e and one or more fifth extensions. part 101f.
  • the edge of the first radiating arm 101 of another antenna module 1 forms one or more sixth notches 101g and one or more sixth extension parts 101h.
  • the fifth extension part 101f at least partially extends into the sixth In the notch 101g
  • the sixth extension portion 101h at least partially extends into the fifth notch 101e
  • the edges of the first radiating arms 101 of two adjacent antenna modules 1 intersect but do not contact, so as to form a cochin coupling.
  • One or more seventh notches 102e and one or more seventh extensions 102f are formed on the edge of the second radiating arm 102 of one of the two antenna modules 1 arranged in an array along the second direction.
  • the edge of the second radiating arm 102 of another antenna module 1 forms one or more eighth notches 102g and one or more eighth extension portions 102h.
  • the seventh extension portion 102f at least partially extends into the eighth notch 102g.
  • the eighth extension portion 102h at least partially extends into the seventh notch 102e, and the edges of the second radiating arms 102 of two adjacent antenna modules 1 intersect but do not contact, so as to form an interdigital coupling.
  • a tightly coupled array antenna can be formed, thereby reducing the size of the antenna array 2
  • the size improves the compactness of the antenna array 2.
  • the mutual coupling effect of two adjacent antenna modules 1 can also be used to achieve broadband and ultra-wideband characteristics.
  • the antenna array 2 may also include at least a pair of first coupling branches 103 and at least a pair of second coupling branches 104 .
  • At least one pair of first coupling branches 103 are arranged along the first direction and coupled with the first radiating arms 101 at the edge.
  • At least one pair of second coupling branches 104 are arranged along the second direction and coupled with the second radiating arms 102 at the edge.
  • the antenna array 2 includes two antenna modules 1, and the two antenna modules 1 are arranged in an array along the first direction.
  • the antenna array 2 includes two pairs of first coupling branches 103 and a pair of second coupling branches 103 Coupling branches104.
  • first coupling branches 103 Two pairs of first coupling branches 103 are arranged along the first direction and are respectively coupled to the first radiating arms 101 at the edges of the antenna array 2 along the first direction.
  • a pair of second coupling branches 104 are arranged along the second direction and are respectively coupled to the second radiating arms 102 at the edges of the antenna array 2 along the second direction.
  • the radiation effect of the second radiating arm 102 at the edge of the antenna array 2 along the second direction can be adjusted, so that the second radiating arm 102 at the edge has the same effect as the second radiating arm 102 that exhibits interdigital coupling. or similar radiation effects, so that the second radiation arm 102 at the edge also has the same or similar operating bandwidth, gain, efficiency, etc.
  • the first coupling branch 103 is coupled to the first radiating arm 101 at the edge of the antenna array 2 along the first direction.
  • the second coupling branch 104 is coupled to the second radiating arm 102 at the edge of the antenna array 2 along the second direction.
  • the first coupling branch 103 is coupled to the first radiating arm 101 at the edge of the antenna array 2 along the first direction
  • the second coupling branch 104 is coupled with the second radiating arm 102 at the edge of the antenna array 2 along the second direction.
  • the first radiating arms 101 of the two adjacent antenna modules 1 in the above embodiment are coupled to each other in the interdigital type, and the second radiating arms 102 of the two adjacent antenna modules 1 are coupled in the interdigital type. Phase coupling has the same technical effect and will not be described again here.
  • the antenna module 1 is a tightly coupled dual-polarized dipole antenna module that supports a frequency range of 20 to 45 GHz, and its central operating frequency is 30 GHz.
  • the total thickness of the antenna module 1 is 0.186 times the wavelength corresponding to the highest operating frequency.
  • Figure 23 is a schematic diagram of the simulation results of the standing wave ratio of the first polarization (first direction linear polarization) of the above-mentioned antenna module 1.
  • the horizontal axis represents frequency, in GHz; the vertical axis represents the voltage standing wave ratio (VSWR) of antenna module 1, also known as standing wave ratio, or standing wave coefficient.
  • VSWR voltage standing wave ratio
  • the frequency range in which the standing wave ratio of the first polarization of the antenna module 1 is less than 3 includes 24.03GHz ⁇ 45.45GHz.
  • the antenna module 1 covers the 5G millimeter wave operating frequency band 24.25GHz ⁇ 29.5GHz, 37GHz ⁇ 42.5GHz.
  • the standing wave ratio is an important indicator to measure the feeding efficiency of the antenna module 1; the smaller the standing wave ratio, the less reflection, and the better the matching.
  • the smaller standard is the standing wave ratio less than 3.
  • the standing wave ratio of the antenna module 1 provided by the embodiment of the present application is controlled at a low value, and the feeding effect of the pair of first radiating arms 101 is better.
  • Figure 24 is a schematic diagram of the simulation results of the second polarization (second direction linear polarization) standing wave ratio of the above-mentioned antenna module 1.
  • the horizontal axis represents frequency in GHz; the vertical axis represents the standing wave ratio of antenna module 1.
  • the frequency range of the second polarization standing wave ratio of the antenna module 1 is less than 3, including 19.68GHz ⁇ 33.34GHz, 34.86GHz ⁇ 51.67GHz.
  • the antenna module 1 covers the 5G millimeter wave operating frequency band 24.25GHz ⁇ 29.5GHz, 37GHz ⁇ 42.5GHz.
  • the standing wave ratio of the antenna module 1 is controlled at a low value, and the feeding effect of the pair of second radiating arms 102 is better.
  • Figure 25 is the gain pattern of the E-plane and H-plane of the antenna module 1 at the first polarization low frequency point of 28 GHz. It can be seen from the figure that the gain pattern of the E-plane of the antenna module 1 and the gain pattern of the H-plane have good consistency, and there is no distortion in the gain pattern.
  • the antenna module 1 operates at a wide frequency of the first polarization. It has stable wide radiation beam characteristics within the band.
  • Figure 26 is the gain pattern of the E-plane and H-plane of the antenna module 1 at the second polarization low frequency point of 28 GHz. It can be seen from the figure that the gain pattern of the E-plane of the antenna module 1 and the gain pattern of the H-plane have good consistency, and there is no distortion in the gain pattern.
  • the antenna module 1 operates at a wide frequency of the second polarization. It has stable wide radiation beam characteristics within the band.
  • Figure 27 is the gain pattern of the E-plane and H-plane of the antenna module 1 at the first polarization high frequency point of 40GHz. It can be seen from the figure that the gain pattern of the E-plane of the antenna module 1 and the gain pattern of the H-plane have good consistency, and there is no distortion in the gain pattern.
  • the antenna module 1 operates at a wide frequency of the first polarization. It has stable wide radiation beam characteristics within the band.
  • Figure 28 is the gain pattern of the E-plane and H-plane of the antenna module 1 at the second polarization high frequency point of 40GHz. It can be seen from the figure that the gain pattern of the E-plane of the antenna module 1 and the gain pattern of the H-plane have good consistency, and there is no distortion in the gain pattern.
  • the antenna module 1 operates at a wide frequency of the second polarization. It has stable wide radiation beam characteristics within the band.
  • Figure 29 shows the maximum radiation pattern of the first polarization as a function of frequency when the scanning angle of the antenna array 2 is 0°.
  • the horizontal axis is frequency in GHz
  • the vertical axis is gain value in dB. It can be seen from the figure that the antenna array 2 can achieve a gain greater than 9.40dB in the 5G millimeter wave operating frequency band, which indicates that the antenna array is in good working condition in the first polarization.
  • Figure 30 shows the maximum radiation pattern of the second polarization as a function of frequency when the scanning angle of the antenna array 2 is 0°.
  • the horizontal axis is frequency in GHz
  • the vertical axis is gain value in dB. It can be seen from the figure that the antenna array 2 can achieve a gain greater than 7.82dB in the 5G millimeter wave operating frequency band, which indicates that the antenna array is in good working condition in the second polarization.
  • Figure 31 shows the maximum radiation pattern of the first polarization as the angle changes when the scanning angle of the antenna array 2 is 0° at the low frequency point of 28 GHz.
  • the abscissa is the azimuth angle; the ordinate is the gain value in dB. It can be seen from the figure that the achievable gain when the azimuth angle is 0° is 11.07dB, and the antenna array 2 has stable broadband radiation beam characteristics in a wide frequency band.
  • Figure 32 shows the maximum radiation pattern of the second polarization as the angle changes when the scanning angle of the antenna array 2 is 0° at the low frequency point of 28 GHz.
  • the abscissa is the azimuth angle; the ordinate is the gain value in dB. It can be seen from the figure that the achievable gain when the azimuth angle is 0° is 9.69dB, and the antenna array 2 has stable broadband radiation beam characteristics in a wide frequency band.
  • Figure 33 shows the maximum radiation pattern of the first polarization as the angle changes when the scanning angle of the antenna array 2 is 60° at the low frequency point of 28 GHz.
  • the abscissa is the azimuth angle; the ordinate is the gain value in dB. It can be seen from the figure that the achievable gain when the azimuth angle is 0° is 9.27dB, and the antenna array 2 has stable broadband radiation beam characteristics in a wide frequency band.
  • Figure 34 shows the maximum radiation pattern of the second polarization as the angle changes when the scanning angle of the antenna array 2 is 60° at the low frequency point of 28 GHz.
  • the abscissa is the azimuth angle; the ordinate is the gain value in dB. It can be seen from the figure that the achievable gain when the azimuth angle is 0° is 9.00dB, and the antenna array 2 has stable broadband radiation beam characteristics in a wide frequency band.
  • Figure 35 shows the maximum radiation pattern of the first polarization as the angle changes when the scanning angle of the antenna array 2 is 0° at the high frequency point of 40 GHz.
  • the abscissa is the azimuth angle; the ordinate is the gain value in dB. It can be seen from the figure that the achievable gain when the azimuth angle is 0° is 10.92dB, and the antenna array 2 has stable broadband radiation beam characteristics in a wide frequency band.
  • Figure 36 shows the maximum radiation pattern of the second polarization as the angle changes when the scanning angle of the antenna array 2 is 0° at the high frequency point of 40 GHz.
  • the abscissa is the azimuth angle; the ordinate is the gain value in dB. It can be seen from the figure that the achievable gain when the azimuth angle is 0° is 12.83dB, and the antenna array 2 has stable broadband radiation beam characteristics in a wide frequency band.
  • Figure 37 shows the maximum radiation pattern of the first polarization as the angle changes when the scanning angle of the antenna array 2 is 60° at the high frequency point of 40 GHz.
  • the abscissa is the azimuth angle; the ordinate is the gain value in dB. It can be seen from the figure that the achievable gain when the azimuth angle is 0° is 9.63dB, and the antenna array 2 has stable broadband radiation beam characteristics in a wide frequency band.
  • Figure 38 shows the maximum radiation pattern of the second polarization as the angle changes when the scanning angle of the antenna array 2 is 60° at the high frequency point of 40 GHz.
  • the abscissa is the azimuth angle; the ordinate is the gain value in dB. It can be seen from the figure that the achievable gain when the azimuth angle is 0° is 10.31dB, and the antenna array 2 has stable broadband radiation beam characteristics in a wide frequency band.
  • the antenna module 1 is a tightly coupled dual-polarized dipole antenna module that supports a frequency range of 20 to 45 GHz, and its central operating frequency is 30 GHz.
  • the total thickness of the antenna module 1 is 0.164 times the wavelength corresponding to the highest operating frequency.
  • Figure 39 is a schematic diagram of the simulation results of the standing wave ratio of the first polarization (first direction linear polarization) of the above-mentioned antenna module 1.
  • the horizontal axis represents frequency, in GHz; the vertical axis represents the voltage standing wave ratio (VSWR) of antenna module 1, also known as standing wave ratio, or standing wave coefficient.
  • VSWR voltage standing wave ratio
  • the frequency range in which the standing wave ratio of the first polarization of the antenna module 1 is less than 3 includes 20.43GHz ⁇ 53GHz.
  • the antenna module 1 covers the 5G millimeter wave operating frequency band 24.25GHz ⁇ 29.5GHz and 37GHz ⁇ 42.5GHz.
  • the standing wave ratio is an important indicator to measure the feeding efficiency of the antenna module 1; the smaller the standing wave ratio, the less reflection, and the better the matching.
  • the smaller standard is the standing wave ratio less than 3.
  • the standing wave ratio of the antenna module 1 provided by the embodiment of the present application is controlled at a low value, and the feeding effect of the pair of first radiating arms 101 is better.
  • Figure 40 is a schematic diagram of the simulation results of the second polarization (second direction linear polarization) standing wave ratio of the above-mentioned antenna module 1.
  • the horizontal axis represents frequency in GHz; the vertical axis represents the standing wave ratio of antenna module 1.
  • the frequency range in which the standing wave ratio of the second polarization of the antenna module 1 is less than 3 includes 23.99GHz ⁇ 44.84GHz.
  • the antenna module 1 covers the 5G millimeter wave operating frequency band 24.25GHz ⁇ 29.5GHz, 37GHz ⁇ 42.5GHz.
  • the standing wave ratio of the antenna module 1 is controlled at a low value, and the feeding effect of the pair of second radiating arms 102 is better.
  • Figure 41 is the gain pattern of the E-plane and H-plane of the antenna module 1 at the first polarization low frequency point of 28 GHz. It can be seen from the figure that the gain pattern of the E-plane of the antenna module 1 and the gain pattern of the H-plane have good consistency, and there is no distortion in the gain pattern.
  • the antenna module 1 operates at a wide frequency of the first polarization. It has stable wide radiation beam characteristics within the band.
  • Figure 42 is the gain pattern of the E-plane and H-plane of the antenna module 1 at the second polarization low frequency point of 28 GHz. It can be seen from the figure that the gain pattern of the E-plane of the antenna module 1 and the gain pattern of the H-plane have good consistency, and there is no distortion in the gain pattern.
  • the antenna module 1 operates at a wide frequency of the second polarization. It has stable wide radiation beam characteristics within the band.
  • Figure 43 is the gain pattern of the E-plane and H-plane of the antenna module 1 at the first polarization high frequency point of 40 GHz. It can be seen from the figure that the gain pattern of the E-plane of the antenna module 1 and the gain pattern of the H-plane have good consistency, and there is no distortion in the gain pattern.
  • the antenna module 1 operates at a wide frequency of the first polarization. It has stable wide radiation beam characteristics within the band.
  • Figure 44 is the gain pattern of the E-plane and H-plane of the antenna module 1 at the second polarization high frequency point of 40GHz. It can be seen from the figure that the gain pattern of the E-plane of the antenna module 1 and the gain pattern of the H-plane have good consistency, and there is no distortion in the gain pattern.
  • the antenna module 1 operates at a wide frequency of the second polarization. It has stable wide radiation beam characteristics within the band.
  • Figure 45 shows the maximum radiation pattern of the first polarization as a function of frequency when the scanning angle of the antenna array 2 is 0°.
  • the horizontal axis is frequency in GHz
  • the vertical axis is gain value in dB. It can be seen from the figure that the antenna array 2 can achieve a gain greater than 9.06dB in the 5G millimeter wave operating frequency band, which indicates that the antenna array is in good working condition in the first polarization.
  • Figure 46 shows the maximum radiation pattern of the second polarization as a function of frequency when the scanning angle of the antenna array 2 is 0°.
  • the horizontal axis is frequency in GHz
  • the vertical axis is gain value in dB. It can be seen from the figure that the antenna array 2 can achieve a gain greater than 5.75dB in the 5G millimeter wave operating frequency band, which indicates that the antenna array is in good working condition in the second polarization.
  • Figure 47 shows the maximum radiation pattern of the first polarization as the angle changes when the scanning angle of the antenna array 2 is 0° at the low frequency point of 28 GHz.
  • the abscissa is the azimuth angle; the ordinate is the gain value in dB. It can be seen from the figure that the achievable gain when the azimuth angle is 0° is 10.69dB, and the antenna array 2 has stable broadband radiation beam characteristics in a wide frequency band.
  • Figure 48 shows the maximum radiation pattern of the second polarization as the angle changes when the scanning angle of the antenna array 2 is 0° at the low frequency point of 28 GHz.
  • the abscissa is the azimuth angle; the ordinate is the gain value in dB. It can be seen from the figure that the achievable gain when the azimuth angle is 0° is 10.73dB, and the antenna array 2 has stable broadband radiation beam characteristics in a wide frequency band.
  • Figure 49 shows the maximum radiation pattern of the first polarization as the angle changes when the scanning angle of the antenna array 2 is 60° at the low frequency point of 28 GHz.
  • the abscissa is the azimuth angle; the ordinate is the gain value in dB. It can be seen from the figure that the achievable gain when the azimuth angle is 0° is 7.88dB, and the antenna array 2 has stable broadband radiation beam characteristics in a wide frequency band.
  • Figure 50 shows the maximum radiation pattern of the second polarization as the angle changes when the scanning angle of the antenna array 2 is 60° at the low frequency point of 28 GHz.
  • the abscissa is the azimuth angle; the ordinate is the gain value in dB. It can be seen from the figure that the achievable gain when the azimuth angle is 0° is 9.02dB, and the antenna array 2 has stable broadband radiation beam characteristics in a wide frequency band.
  • Figure 51 shows the maximum radiation pattern of the first polarization as the angle changes when the scanning angle of the antenna array 2 is 0° at the high frequency point of 40 GHz.
  • the abscissa is the azimuth angle; the ordinate is the gain value in dB. It can be seen from the figure that the achievable gain when the azimuth angle is 0° is 13.04dB, and the antenna array 2 has stable broadband radiation beam characteristics in a wide frequency band.
  • Figure 52 shows the maximum radiation pattern of the second polarization as the angle changes when the scanning angle of the antenna array 2 is 0° at the high frequency point of 40 GHz.
  • the abscissa is the azimuth angle; the ordinate is the gain value in dB. It can be seen from the figure that the achievable gain when the azimuth angle is 0° is 10.92dB, and the antenna array 2 has stable broadband radiation beam characteristics in a wide frequency band.
  • Figure 53 shows the maximum radiation pattern of the first polarization as the angle changes when the scanning angle of the antenna array 2 is 60° at the high frequency point of 40 GHz.
  • the abscissa is the azimuth angle; the ordinate is the gain value in dB. It can be seen from the figure that the achievable gain when the azimuth angle is 0° is 10.63dB, and the antenna array 2 has stable broadband radiation beam characteristics in a wide frequency band.
  • Figure 54 shows the maximum radiation pattern of the second polarization as the angle changes when the scanning angle of the antenna array 2 is 60° at the high frequency point of 40 GHz.
  • the abscissa is the azimuth angle; the ordinate is the gain value in dB. It can be seen from the figure that the achievable gain when the azimuth angle is 0° is 10.69dB, and the antenna array 2 has stable broadband radiation beam characteristics in a wide frequency band.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供一种馈电结构简单且能够通过相移提高辐射性能的天线模组、天线阵列及电子设备。天线模组包括辐射单元及馈电单元。辐射单元包括一对第一辐射臂和一对第二辐射臂。馈电单元包括第一馈电件和第二馈电件。第一馈电件电连接射频信号源,且耦合连接一对第一辐射臂。第二馈电件的第三馈电部电连接一个第二辐射臂,第二馈电件的第四馈电部电连接另一个第二辐射臂,第二馈电件的巴伦馈电部包括第一馈电端口、第二馈电端口和第三馈电端口,第一馈电端口电连接射频信号源,第二馈电端口电连接第三馈电部,第三馈电端口电连接第四馈电部。天线阵列包括多个呈阵列排布的天线模组。电子设备包括设备本体、天线模组或天线阵列。

Description

天线模组、天线阵列及电子设备
本申请要求于2022年08月17日提交至中国专利局,申请号为202210988916.7,申请名称为“天线模组、天线阵列及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体涉及一种天线模组、天线阵列及电子设备。
背景技术
随着通信技术的发展,具有天线模组、天线阵列以实现通信功能的电子设备的应用越来越广泛。然而,相关技术中,设置在电子设备中的天线模组、天线阵列与无线设备进行通信时,性能较差。因此,如何提升该天线模组、天线阵列的通信性能,成为需要解决的技术问题。
发明内容
本申请提供了一种馈电结构简单且能够通过相移提高辐射性能的天线模组、天线阵列及电子设备。
一方面,本申请提供了一种天线模组,包括:
辐射单元,包括沿第一方向设置的一对第一辐射臂和沿第二方向设置的一对第二辐射臂,所述第一方向与所述第二方向相交;及
馈电单元,包括间隔设置的第一馈电件和第二馈电件,所述第一馈电件包括依次相连的传输部、第一馈电部和第二馈电部,所述传输部用于电连接射频信号源,所述射频信号源用于产生射频电流,所述第一馈电部与一个所述第一辐射臂相对设置并耦合,所述第二馈电部与另一个所述第一辐射臂相对设置并耦合,所述第二馈电件包括第三馈电部、第四馈电部和巴伦馈电部,所述第三馈电部的一端电连接一个所述第二辐射臂,所述第四馈电部的一端电连接另一个所述第二辐射臂,所述巴伦馈电部包括第一馈电端口、第二馈电端口和第三馈电端口,所述第一馈电端口用于电连接所述射频信号源,所述第二馈电端口电连接所述第三馈电部的另一端,所述第三馈电端口电连接所述第四馈电部的另一端,所述巴伦馈电部用于传输所述射频电流并用于使所述第三馈电部的射频电流与所述第四馈电部的射频电流之间存在相位偏移。
另一方面,本申请还提供了一种天线阵列,包括多个所述的天线模组,所述多个天线模组沿所述第一方向呈阵列排布,且相邻的两个天线模组的第一辐射臂相耦合;和/或,所述多个天线模组沿所述第二方向呈阵列排布,且相邻的两个天线模组的第二辐射臂相耦合。
再一方面,本申请还提供了一种电子设备,包括设备本体、所述的天线模组或者所述的天线阵列,所述设备本体用于承载所述天线模组或所述天线阵列。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1为本申请实施例提供的一种电子设备的结构示意图;
图2为图1所示电子设备包括设备本体和天线模组的结构示意图;
图3为图1所示电子设备包括设备本体和天线阵列的结构示意图;
图4为本申请实施例提供的一种天线模组的结构示意图;
图5为图4所示天线模组包括一对第一辐射臂、一对第二辐射臂、第一馈电件及第二馈电件的分解结构示意图;
图6为图4所示天线模组中一对第二辐射臂、第二馈电件的结构示意图;
图7为图4所示天线模组还包括介质层的结构示意图;
图8为图4所示天线模组中一对第一辐射臂、第一馈电件及导电连接部的结构示意图;
图9为图4所示天线模组还包括接地组的结构示意图;
图10为图9所示天线模组中第二馈电件的巴伦馈电部至少部分位于接地组的第一接地件与第二接地件之间的结构示意图;
图11为图9所示天线模组的第二馈电件包括第三馈电部、第四馈电部及巴伦馈电部的结构示意图;
图12为图4所示天线模组还包括接地件的结构示意图;
图13为图12所示天线模组中第二馈电件的巴伦馈电部位于接地件背离辐射单元的一侧的结构示意图;
图14为图12所示天线模组的第二馈电件包括第三馈电部、第四馈电部及巴伦馈电部的结构示意图;
图15为图12所示天线模组还包括一对第一耦合贴片、一对第二耦合贴片、第一耦合接地件、第二耦合接地件、第三耦合接地件及第四耦合接地件的结构示意图;
图16为图15所示天线模组的分解结构示意图;
图17为本申请实施例提供的一种天线阵列的示意图;
图18为图17所示天线阵列的局部放大示意图;
图19为本申请实施例提供的另一种天线阵列的示意图;
图20为图19所示天线阵列的局部放大示意图;
图21为本申请实施例提供的再一种天线阵列的示意图;
图22为本申请实施例提供的天线阵列还包括第一耦合枝节和第二耦合枝节的结构示意图;
图23为本申请实施例提供的一种天线模组的第一极化驻波比仿真结果示意图;
图24为本申请实施例提供的一种天线模组的第二极化驻波比仿真结果示意图;
图25为本申请实施例提供的一种天线模组在第一极化低频点28GHz处E面和H面的增益方向图;
图26为本申请实施例提供的一种天线模组在第二极化低频点28GHz处E面和H面的增益方向图;
图27为本申请实施例提供的一种天线模组在第一极化高频点40GHz处E面和H面的增益方向图;
图28为本申请实施例提供的一种天线模组在第二极化高频点40GHz处E面和H面的增益方向图;
图29为本申请实施例提供的一种天线阵列扫描角0°时随频率变化的第一极化的最大辐射方向图;
图30为本申请实施例提供的一种天线阵列扫描角0°时随频率变化的第二极化的最大辐射方向图;
图31为本申请实施例提供的一种天线阵列在低频点28GHz处扫描角为0°时随角度变化的第一极化的最大辐射方向图;
图32为本申请实施例提供的一种天线阵列在低频点28GHz处扫描角为0°时随角度变化的第二极化的最大辐射方向图;
图33为本申请实施例提供的一种天线阵列在低频点28GHz处扫描角为60°时随角度变化的第一极化的最大辐射方向图;
图34为本申请实施例提供的一种天线阵列在低频点28GHz处扫描角为60°时随角度变化的第二极化的最大辐射方向图;
图35为本申请实施例提供的一种天线阵列在高频点40GHz处扫描角为0°时随角度变化的第一极化的最大辐射方向图;
图36为本申请实施例提供的一种天线阵列在高频点40GHz处扫描角为0°时随角度变化的第二极化的最大辐射方向图;
图37为本申请实施例提供的一种天线阵列在高频点40GHz处扫描角为60°时随角度变化的第一极化的最大辐射方向图;
图38为本申请实施例提供的一种天线阵列在高频点40GHz处扫描角为60°时随角度变化的第二极化的最大辐射方向图;
图39为本申请实施例提供的一种天线模组的第一极化驻波比仿真结果示意图;
图40为本申请实施例提供的另一种天线模组的第二极化驻波比仿真结果示意图;
图41为本申请实施例提供的另一种天线模组在第一极化低频点28GHz处E面和H面的增益方向图;
图42为本申请实施例提供的另一种天线模组在第二极化低频点28GHz处E面和H面的增益方向图;
图43为本申请实施例提供的另一种天线模组在第一极化高频点40GHz处E面和H面的增益方向图;
图44为本申请实施例提供的另一种天线模组在第二极化高频点40GHz处E面和H面的增益方向图;
图45为本申请实施例提供的另一种天线阵列扫描角0°时随频率变化的第一极化的最大辐射方向图;
图46为本申请实施例提供的另一种天线阵列扫描角0°时随频率变化的第二极化的最大辐射方向图;
图47为本申请实施例提供的另一种天线阵列在低频点28GHz处扫描角为0°时随角度变化的第一极化的最大辐射方向图;
图48为本申请实施例提供的另一种天线阵列在低频点28GHz处扫描角为0°时随角度变化的第二极化的最大辐射方向图;
图49为本申请实施例提供的另一种天线阵列在低频点28GHz处扫描角为60°时随角度变化的第一极化的最大辐射方向图;
图50为本申请实施例提供的另一种天线阵列在低频点28GHz处扫描角为60°时随角度变化的第二极化的最大辐射方向图;
图51为本申请实施例提供的另一种天线阵列在高频点40GHz处扫描角为0°时随角度变化的第一极化的最大辐射方向图;
图52为本申请实施例提供的另一种天线阵列在高频点40GHz处扫描角为0°时随角度变化的第二极化的最大辐射方向图;
图53为本申请实施例提供的另一种天线阵列在高频点40GHz处扫描角为60°时随角度变化的第一极化的最大辐射方向图;
图54为本申请实施例提供的另一种天线阵列在高频点40GHz处扫描角为60°时随角度变化的第二极化的最大辐射方向图。
具体实施方式
本申请提供了一种天线模组,包括:
辐射单元,包括沿第一方向设置的一对第一辐射臂和沿第二方向设置的一对第二辐射臂,所述第一方向与所述第二方向相交;及
馈电单元,包括间隔设置的第一馈电件和第二馈电件,所述第一馈电件包括依次相连的传输部、第一馈电部和第二馈电部,所述传输部用于电连接射频信号源,所述射频信号源用于产生射频电流,所述第一馈电部与一个所述第一辐射臂相对设置并耦合,所述第二馈电部与另一个所述第一辐射臂相对设置并耦合,所述第二馈电件包括第三馈电部、第四馈电部和巴伦馈电部,所述第三馈电部的一端电连接一个所述第二辐射臂,所述第四馈电部的一端电连接另一个所述第二辐射臂,所述巴伦馈电部包括第一馈电端口、第二馈电端口和第三馈电端口,所述第一馈电端口用于电连接所述射频信号源,所述第二馈电端口电连接所述第三馈电部的另一端,所述第三馈电端口电连接所述第四馈电部的另一端,所述巴伦馈电部用于传输所述射频电流并用于使所述第三馈电部的射频电流与所述第四馈电部的射频电流之间存在相位偏移。
其中,所述第一馈电件还包括导电连接部,所述导电连接部的一端电连接所述第一馈电部,所述导电连接部的另一端电连接所述第二馈电部,所述导电连接部用于传输所述射频电流并用于使所述第一馈电部 的射频电流与所述第二馈电部的射频电流之间存在相位偏移。
其中,所述第一方向与所述第二方向正交。
其中,所述天线模组还包括设于所述馈电单元远离所述辐射单元一端的接地组,所述接地组包括层叠并间隔设置的第一接地件和第二接地件,所述第一接地件覆盖所述一对第一辐射臂和所述一对第二辐射臂,所述第二接地件覆盖所述一对第一辐射臂和所述一对第二辐射臂,至少部分所述巴伦馈电部位于所述第一接地件与第二接地件之间并与所述第一接地件、所述第二接地件间隔设置。
其中,所述第二接地件位于所述第一接地件背离所述辐射单元的一侧,所述传输部远离所述第一馈电部的一端贯穿所述第一接地件和所述第二接地件,所述第三馈电部的另一端贯穿所述第一接地件,所述第四馈电部的另一端贯穿所述第一接地件,所述巴伦馈电部包括相连的第一子巴伦部和第二子巴伦部,所述第一子巴伦部位于所述第一接地件与所述第二接地件之间并与所述第一接地件、所述第二接地件间隔设置,所述第一子巴伦部的两端分别形成所述第二馈电端口和所述第三馈电端口,所述第二子巴伦部远离所述第一子巴伦部的一端贯穿所述第二接地件并形成所述第一馈电端口。
其中,所述天线模组还包括设于所述馈电单元远离所述辐射单元一端的接地件,所述接地件覆盖所述一对第一辐射臂和所述一对第二辐射臂,至少部分所述巴伦馈电部位于所述接地件背离所述馈电单元的一侧并与所述接地件间隔设置。
其中,所述传输部远离所述第一馈电部的一端贯穿所述接地件,所述第三馈电部的另一端贯穿所述接地件,所述第四馈电部的另一端贯穿所述接地件,所述巴伦馈电部位于所述接地件背离所述馈电单元的一侧且皆与所述接地件间隔设置,所述巴伦馈电部包括相连的第三子巴伦部和第四子巴伦部,所述第三子巴伦部的两端分别形成所述第二馈电端口和所述第三馈电端口,所述第四子巴伦部远离所述第三子巴伦部的一端形成所述第一馈电端口。
其中,所述导电连接部、所述第一馈电部及所述第二馈电部共面,所述第一馈电部与所述第二馈电部沿所述第一方向相对设置,所述导电连接部沿所述第一方向延伸。
其中,所述天线模组还包括一对第一耦合贴片和一对第二耦合贴片,所述一对第一耦合贴片分别与所述一对第一辐射臂相对设置并耦合,所述一对第二耦合贴片分别与所述一对第二辐射臂相对设置并耦合。
其中,所述一对第一耦合贴片位于所述辐射单元朝向所述馈电单元的一侧,所述天线模组还包括至少一个第一耦合接地件和至少一个第二耦合接地件,所述至少一个第一耦合接地件的一端电连接一个所述第一耦合贴片,所述至少一个第一耦合接地件的另一端接地,所述至少一个第二耦合接地件的一端电连接另一个所述第一耦合贴片,所述至少一个第二耦合接地件的另一端接地。
其中,所述一对第二耦合贴片位于所述辐射单元朝向所述馈电单元的一侧,所述天线模组还包括至少一个第三耦合接地件和至少一个第四耦合接地件,所述至少一个第三耦合接地件的一端电连接一个所述第二耦合贴片,所述至少一个第三耦合接地件的另一端接地,所述至少一个第四耦合接地件的一端电连接另一个所述第二耦合贴片,所述至少一个第四耦合接地件的另一端接地。
本申请还提供了一种天线阵列,包括多个所述的天线模组,所述多个天线模组沿所述第一方向呈阵列排布,且相邻的两个天线模组的第一辐射臂相耦合;和/或,所述多个天线模组沿所述第二方向呈阵列排布,且相邻的两个天线模组的第二辐射臂相耦合。
其中,当所述多个天线模组沿所述第一方向呈阵列排布时,相邻的两个天线模组的第一辐射臂呈交趾型耦合;当所述多个天线模组沿所述第二方向呈阵列排布时,相邻的两个天线模组的第二辐射臂呈交趾型耦合。
其中,当所述多个天线模组沿所述第一方向呈阵列排布时,相邻的两个天线模组中的一个天线模组的第一辐射臂的边缘形成一个或多个第一缺口以及一个或多个第一延伸部,另一个天线模组的第一辐射臂的边缘形成一个或多个第二缺口以及一个或多个第二延伸部,所述第一延伸部至少部分伸入于所述第二缺口内,所述第二延伸部至少部分伸入于所述第一缺口内;当所述多个天线模组沿所述第二方向呈阵列排布时,相邻的两个天线模组中的一个天线模组的第二辐射臂的边缘形成一个或多个第三缺口以及一个或多个第三延伸部,另一个天线模组的第二辐射臂的边缘形成一个或多个第四缺口以及一个或多个第四延伸部,所述第三延伸部至少部分伸入于所述第四缺口内,所述第四延伸部至少部分伸入于所述第三缺口内。
其中,所述天线阵列还包括沿所述第一方向设置的至少一对第一耦合枝节和沿所述第二方向设置的至少一对第二耦合枝节,所述第一耦合枝节与边缘的所述第一辐射臂耦合,所述第二耦合枝节与边缘的所述第二辐射臂耦合。
其中,所述第一耦合枝节与边缘的所述第一辐射臂之间呈交趾型耦合,所述第二耦合枝节与边缘的所述第二辐射臂之间呈交趾型耦合。
本申请还提供了一种电子设备,包括设备本体、所述的天线模组或者所述的天线阵列,所述设备本体用于承载所述天线模组或所述天线阵列。
下面将结合附图,对本申请的技术方案进行清楚、完整地描述。显然,本申请所描述的实施例仅仅是一部分实施例,而不是全部的实施例。基于本申请提供的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本申请的保护范围。
在本申请中提及“实施例”或“实施方式”意味着,结合实施例或实施方式所描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的、独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
如图1所示,图1为本申请实施例提供的一种电子设备100的结构示意图。电子设备100可以是手机、平板电脑、笔记本电脑、计算机、手表、无人机、机器人、基站、雷达、客户前置设备(Customer Premise Equipment,CPE)、车载设备、家电设备等具有无线通信功能的设备。本申请实施例以手机为例。
请参照图1至图3,电子设备100包括设备本体3,天线模组1或天线阵列2。其中,设备本体3用于承载所述天线模组1或所述天线阵列2。天线阵列2、天线模组1所支持的频段包括但不限于5G毫米波频段。
一实施例中,请参照图1和图2,电子设备100包括设备本体3和天线模组1。天线模组1用于收发电磁波信号(可以是5G毫米波信号,也可以是其他频段的电磁波信号),以实现电子设备100的通信功能。本申请对于天线模组1在电子设备100的位置不做具体的限定,图2只是一种示例,不应当理解为对天线模组1在电子设备100中的位置的限定。设备本体3用于承载天线模组1。具体的,设备本体3包括但不限于包括显示屏31、外壳32(中框320和后盖321)、电路板33、摄像头模组34等部件。显示屏31与外壳32相互连接,电路板33位于显示屏31与外壳32之间的空间内。天线模组1可直接承载于设备本体3的一个或多个部件(例如:电路板33或外壳32)上,也可通过其他支撑结构承载于设备本体3的一个或多个部件上。其中,天线模组1可以位于设备本体3内(即显示屏31与外壳32之间的空间内),也可部分集成于设备本体3的外壳32上。
另一实施例中,请参照图1和图3,电子设备100包括设备本体3和天线阵列2。天线阵列2用于收发电磁波信号(可以是5G毫米波信号,也可以是其他频段的电磁波信号),以实现电子设备100的通信功能。本申请对于天线阵列2在电子设备100上的位置不做具体的限定,图3只是一种示例,不应当理解为对天线阵列2在电子设备100中的位置的限定。设备本体3用于承载天线阵列2。具体的,设备本体3包括但不限于包括显示屏31、外壳32(中框320和后盖321)、电路板33等部件。显示屏31与外壳32相互连接,电路板33位于显示屏31与外壳32之间的空间。天线阵列2可直接承载于设备本体3的一个或多个部件上,也可通过其他支撑结构承载于设备的本体的一个或多个部件上。其中,天线阵列2可以位于设备本体3内(即显示屏31与外壳32之间的空间内),也可部分集成于设备本体3的外壳32上。
随着电子设备100的轻薄化、小型化发展,电子设备100内部留给天线模组1、天线阵列2的空间越来越有限,因此,实现天线模组1、天线阵列2的小型化和紧凑性,有利于将天线模组1、天线阵列2更好地应用于空间有限的电子设备100,实现电子设备100的通信功能。
此外,毫米波通信凭借其频谱丰富的优势成为如今5G应用的关键。在毫米波通信时代,具备宽带性能的天线是未来的研究重点。5G毫米波频段覆盖24.75GHz~27.5GHz和37GHz~43.5GHz,随着工作频率的增大,天线的尺寸减小,而要实现5G毫米波段的紧耦合天线设计,规避宽带大角度扫描过程中的方向图栅瓣,则需要进一步地缩减天线的体积,降低天线的剖面。
为此,本申请提供了一种体积小、低剖面、宽带的双极化偶极子天线模组1和一种体积小、低剖面、宽带的紧耦合双极化偶极子天线阵列2。以下实施例对本申请提供的天线模组1和天线阵列2进行具体的描述。
如图4所示,图4为本申请实施例提供的一种天线模组1的结构示意图。天线模组1包括辐射单元10和馈电单元20。
请参照图4至图6,辐射单元10包括沿第一方向设置的一对第一辐射臂101和沿第二方向设置的一对第二辐射臂102。具体的,一对第一辐射臂101沿第一方向相对并间隔设置。一对第二辐射臂102沿第二方向相对并间隔设置。一对第一辐射臂101形成偶极子。一对第二辐射臂102形成偶极子。第一方向与第二方向相交。其中,第一方向与第二方向相交包括第一方向与第二方向为同一平面内的两个相交的方向,或者第一方向与第二方向为空间内两个交错的方向。换言之,一对第一辐射臂101与一对第二辐射臂102可以共面设置也可以异面设置。以下实施例中在未特别说明的情况下以一对第一辐射臂101与一对第二辐射臂102共面设置为例。一对第一辐射臂101与一对第二辐射臂102共面设置,使得一对第一辐射臂101与一对第二辐射臂102所形成的辐射单元10的厚度减少,有利于降低天线模组1剖面。第一方向与第二方向之间的夹角可以为30°、35°、55°、60°、70°、85°、90°等。本申请实施方式中以第一方向与第二方向垂直为例,第一方向可参照附图4的X轴方向,第二方向可参照附图4的Y轴方向。当然,在其他实施方式中,第一方向与第二方向可以相交但不垂直。辐射单元10的厚度方向以及天线模组1的剖面方向可参照附图4的Z轴方向,辐射单元10的厚度方向以及天线模组1的剖面方向既垂直于第一方向,又垂直于第二方向。换言之,辐射单元10的厚度方向以及天线模组1的剖面方向垂直于XY平面。其中,第一辐射臂101的材质、第二辐射臂102的材质皆为导电材质。举例而言,第一辐射臂101的材质、第二辐射臂102的材质可以为金属、合金等。本申请对于第一辐射臂101的形状、第二辐射臂102的形状不作具体的限定,附图4中第一辐射臂101的形状、第二辐射臂102的形状仅作为一种示例。第一辐射臂101的形状与第二辐射臂102的形状可以相同,也可以不同。
馈电单元20与辐射单元10层叠设置。换言之,馈电单元20与辐射单元10沿天线模组1的厚度方向(附图4的Z轴方向)设置。馈电单元20包括间隔设置的第一馈电件201和第二馈电件。第二馈电件包括第三馈电部202、第四馈电部203和巴伦馈电部204。巴伦馈电部204包括第一馈电端口240、第二馈电端口241和第三馈电端口242。
具体的,第一馈电件201的材质为导电材质。举例而言,第一馈电件201的材质可以为金属、合金等。第一馈电件201包括依次相连的传输部210、第一馈电部211和第二馈电部212。需要说明的是传输部210、第一馈电部211和第二馈电部212依次相连可以是传输部210、第一馈电部211和第二馈电部212一体连接,也可以是传输部210、第一馈电部211和第二馈电部212直接连接(例如:焊接)在一起。可以理解的,传输部210、第一馈电部211和第二馈电部212依次相连用于表示传输部210的射频电流、第一馈电 部211的射频电流和第二馈电部212的射频电流可相互传输。传输部210用于电连接射频信号源。第一馈电部211与一个第一辐射臂101相对设置并耦合。第二馈电部212与另一个第一辐射臂101相对设置并耦合。其中,传输部210可以直接电连接射频信号源,也可以通过导电走线、导电件等电连接射频信号源。第一馈电部211与一个第一辐射臂101沿天线模组1的厚度方向相对设置并形成第一耦合间隙。第二馈电部212与另一个第一辐射臂101沿天线模组1的厚度方向相对设置并形成第二耦合间隙。第一耦合间隙与第二耦合间隙可以相同也可以不同。换言之,第一馈电部211与一个第一辐射臂101之间沿天线模组1的厚度方向的间距、第二馈电部212与另一个第一辐射臂101之间沿天线模组1的厚度方向的间距可以相同也可以不同。以下实施例中在未特别说明的情况下以第一耦合间隙与第二耦合间隙相同为例。本申请对于第一馈电件201的形状不作具体的限定。举例而言,第一馈电件201的传输部210可以为馈电探针、馈电柱等,第一馈电件201的第一馈电部211可以为导电弹片、导电线、导电过孔、导电柱等,第一馈电件201的第二馈电部212可以为导电弹片、导电线、导电过孔、导电柱等。
在一种应用场景中,当天线模组1用于发射无线信号时,射频信号源产生射频电流(高频电流),并传输至第一馈电件201的传输部210,第一馈电件201的传输部210将接收到的射频电流分别传输至第一馈电件201的第一馈电部211和第一馈电件201的第二馈电部212。第一馈电件201的第一馈电部211通过与一个第一辐射臂101的耦合将射频电流传输至该第一辐射臂101,该第一辐射臂101将接收到的射频电流转换为无线信号朝向天线模组1的外部辐射。第一馈电件201的第二馈电部212通过与另一个第一辐射臂101的耦合将射频电流传输至该第一辐射臂101,该第一辐射臂101将接收到的射频电流转换为无线信号朝向天线模组1的外部辐射。在另一种应用场景中,当天线模组1用于接收无线信号时,一对第一辐射臂101接收空间内的无线信号并转换为射频电流分别传输至第一馈电件201的第一馈电部211和第一馈电件201的第二馈电部212,第一馈电件201的第一馈电部211和第一馈电件201的第二馈电部212将接收到的射频电流经传输部210传输至射频信号源。
第三馈电部202的材质为导电材质。举例而言,第三馈电部202的材质可以为金属、合金等。第三馈电部202的一端电连接一个第二辐射臂102,第三馈电部202的另一端电连接巴伦馈电部204的第二馈电端口241。第三馈电部202用于传输该巴伦馈电部204的第二馈电端口241与第二辐射臂102之间的射频电流。其中,第三馈电部202的一端可以直接电连接第二辐射臂102。第三馈电部202的另一端可以直接电连接巴伦馈电部204的第二馈电端口241。本申请对于第三馈电部202的形状不作具体的限定。举例而言,第三馈电部202可以为馈电探针、馈电弹片、馈电柱等。第三馈电部202可以与第一馈电件201的传输部210平行设置。
巴伦馈电部204的第一馈电端口240用于电连接射频信号源。在一种应用场景中,当天线模组1用于发射无线信号时,射频信号源产生射频电流(高频电流),并传输至巴伦馈电部204的第一馈电端口240,第一馈电端口240的射频电流传输至第二馈电端口241,经第二馈电端口241传输至第三馈电部202,第三馈电部202将接收到的射频电流传输至一个第二辐射臂102,并通过该第二辐射臂102转换为无线信号朝向天线模组1的外部辐射。在另一种应用场景中,当天线模组1用于接收无线信号时,第二辐射臂102接收空间内的无线信号并转换为射频电流传输至第三馈电部202,第三馈电部202将接收到的射频电流依次通过巴伦馈电部204的第二馈电端口241、第一馈电端口240传输至射频信号源。
第四馈电部203的材质为导电材质。举例而言,第四馈电部203的材质可以为金属、合金等。第四馈电部203的一端电连接另一个第二辐射臂102,第四馈电部203的另一端电连接巴伦馈电部204的第三馈电端口242。第四馈电部203用于传输该巴伦馈电部204的第三馈电端口242与第三馈电部202之间的射频电流。其中,第四馈电部203的一端可以直接电连接第二辐射臂102。第四馈电部203的另一端可以直接电连接巴伦馈电部204的第三馈电端口242。本申请对于第四馈电部203的形状不作具体的限定。举例而言,第四馈电部203可以为馈电探针、馈电弹片、馈电柱等。第四馈电部203可以与第一馈电件201的传输部210平行设置。
在一种应用场景中,当天线模组1用于发射无线信号时,射频信号源产生射频电流(高频电流),并传输至巴伦馈电部204的第一馈电端口240,第一馈电端口240的射频电流传输至第三馈电端口242,经第三馈电端口242传输至第四馈电部203,第四馈电部203将接收到的射频电流传输至另一个第二辐射臂102,并通过该第二辐射臂102转换为无线信号朝向天线模组1的外部辐射。在另一种应用场景中,当天线模组1用于接收无线信号时,第二辐射臂102接收空间内的无线信号并转换为射频电流传输至第四馈电部203,第四馈电部203将接收到的射频电流依次通过巴伦馈电部204的第三馈电端口242、第一馈电端口240传输至射频信号源。
巴伦馈电部204用于传输射频信号源与第三馈电部202、第四馈电部203之间的射频电流。可以理解的,巴伦馈电部204的第一馈电端口240用于电连接射频信号源,可以获取射频电流,巴伦馈电部204的第二馈电端口和第三馈电端口分别电连接于第三馈电部202的另一端、第四馈电部203的另一端,因此巴伦馈电部204可以用于传输射频信号源与第三馈电部202之间的射频电流,以及用于传输射频信号源与第四馈电部203之间的射频电流。换言之,本申请中一对第二辐射臂102中的一个第二辐射臂102经过第三馈电部202、巴伦馈电部204获取射频电流,另一个第二辐射臂102通过第四馈电部203、巴伦馈电部204获取射频电流。
本申请对于巴伦馈电部204的形状、尺寸等不作具体的限定,图5只是一种巴伦馈电部204的示例,不应当理解为对巴伦馈电部204的结构限定。巴伦馈电部204可以弯曲延伸,也可以直线延伸或弯折延伸。巴伦馈电部204的材质可以为金属、合金等。
巴伦馈电部204还用于实现第三馈电部202的射频电流与第四馈电部203的射频电流之间的相位偏移。换言之,巴伦馈电部204可用于调节第三馈电部202的射频电流与第四馈电部203的射频电流之间的相位 差。可以理解的,巴伦馈电部204用于使第四馈电部203的射频电流相对于第三馈电部202的射频电流产生相位延迟,以使一对第二辐射臂102之间的射频电流产生相位延迟,从而使一对第二辐射臂102之间的射频电流之间的相位差满足设计要求。当然,在其他实施例中,巴伦馈电部204还可以用于使第三馈电部202的射频电流相对于第四馈电部203的射频电流产生相位延迟,以使一对第二辐射臂102之间的射频电流产生相位延迟,从而使一对第二辐射臂102之间的射频电流之间的相位差满足设计要求。
在一种可能的应用场景中,巴伦馈电部204用于实现第三馈电部202的射频电流与第四馈电部203的射频电流之间的相位偏移,以使第三馈电部202的射频电流与第四馈电部203的射频电流等幅反相或等幅同相,即第三馈电部202的射频电流与第四馈电部203的射频电流之间的相位差为nπ(其中,n大于或等于1,且为整数),从而使一对第二辐射臂102之间的射频电流之间的相位差为nπ。可选的,巴伦馈电部204用于实现第三馈电部202的射频电流与第四馈电部203的射频电流之间的相位偏移,以使第三馈电部202的射频电流与第四馈电部203的射频电流之间的相位差为180°,从而使一对第二辐射臂102之间的射频电流等幅反相。当然,在其他应用场景中,巴伦馈电部204可以用于实现第三馈电部202的射频电流与第四馈电部203的射频电流之间的相位偏移,以使第三馈电部202与第四馈电部203之间的相位差为360°,从而使一对第二辐射臂102之间的射频电流等幅同相。
通过设置巴伦馈电部204使第三馈电部202与第四馈电部203具有反相或同相的射频电流,从而使一对第二辐射臂102之间具有反相的射频电流或者同相的射频电流,可以实现一对第二辐射臂102的辐射特性,使第二方向可以形成线极化,从而有利于天线模组1与无线设备进行通信,提高天线模组1的收益和效率。
本申请提供的天线模组1包括一对第一辐射臂101、一对第二辐射臂102、第一馈电件201、第三馈电部202、第四馈电部203和巴伦馈电部204,由于第一馈电件201电连接射频信号源,且耦合连接一对第一辐射臂101,第三馈电部202电连接一个第二辐射臂102,第四馈电部203电连接另一个第二辐射臂102,巴伦馈电部204的三个馈电端口分别电连接第三馈电部202、第四馈电部203和射频信号源,因此第一馈电件201、巴伦馈电部204、第三馈电部202、第四馈电部203形成一对第一辐射臂101和一对第二辐射臂102的馈电系统,可用于一对第一辐射臂101和一对第二辐射臂102的馈电,第一馈电件201、巴伦馈电部204、第三馈电部202、第四馈电部203所形成的馈电系统的结构简单,利于生产。其中,馈电单元(第一馈电件201、巴伦馈电部204、第三馈电部202、第四馈电部203)与辐射单元(一对第一辐射臂101、一对第二辐射臂102)层叠设置,可形成立式的天线模组1,以便于缩减天线模组1的体积。此外,巴伦馈电部204用于实现第三馈电部202的射频电流与第四馈电部203的射频电流之间的相位偏移,可控制一对第二辐射臂102的射频电流之间的相位差,实现一对第二辐射臂102的辐射特性,产生第二方向的极化,进而有利于提高其与无线设备进行通信时的通信性能。
如图7所示,图7为图4所示天线模组1还包括介质层40的结构示意图。本申请对于介质层40的数量不做具体的限定。一对第一辐射臂101可以承载于介质层40的表面或介质层40的内部。一对第二辐射臂102可以承载于介质层40的表面或介质层40的内部。第一馈电件201、第三馈电部202、第四馈电部203可以贯穿于介质层40内。巴伦馈电部204可以承载于介质层40的表面或介质层40的内部。介质层40用于承载一对第一辐射臂101、一对第二辐射臂102、第一馈电件201、第三馈电部202、第四馈电部203以及巴伦馈电部204,以及用于一对第一辐射臂101、一对第二辐射臂102、第一馈电件201、第三馈电部202、第四馈电部203以及巴伦馈电部204之间的电隔离。
如图8所示,天线阵列2还包括导电连接部50。导电连接部50的一端电连接第一馈电部211,导电连接部50的另一端电连接第二馈电部212,导电连接部50用于传输第一馈电部211与第二馈电部212之间的射频电流并用于实现第一馈电部211的射频电流与第二馈电部212的射频电流之间的相位偏移。
具体的,导电连接部50的一端直接电连接第一馈电部211,导电连接部50的另一端直接电连接第二馈电部212。导电连接部50与第一馈电部211、第二馈电部212可共面设置,也可异面设置。在一种可能的实施例中,第一馈电部211、导电连接部50及第二馈电部212可一体成型。本申请对于导电连接部50的形状、尺寸等不作具体的限定,图8只是一种导电连接部50的示例,不应当理解为对导电连接部50的结构限定。举例而言,在其他实施例中,导电连接部50可以弯折延伸或弯曲延伸。其中,导电连接部50的材质可以为金属、合金等。导电连接部50用于使第二馈电部212的射频电流相对于第一馈电部211的射频电流产生相位延迟,以使一对第一辐射臂101之间的射频电流的相位差满足设计要求。
可以理解的,射频信号源产生的射频电流经传输部210传输至第一馈电部211,并通过第一馈电部211耦合至一个第一辐射臂101,还通过第一馈电部211、导电连接部50传输至第二馈电部212,并通过第二馈电部212耦合至另一个第一辐射臂101。
在一种可能的应用场景中,导电连接部50用于实现第一馈电部211与第二馈电部212的射频电流之间的相位偏移,以使第一馈电部211的射频电流与第二馈电部212的射频电流等幅反相或者等幅同相,即第一馈电部211的射频电流与第二馈电部212的射频电流之间的相位差为nπ(其中,n大于或等于1,且为整数),由于第一馈电部211与一个第一辐射臂101耦合,第二馈电部212与另一个第一辐射臂101耦合,因此第一馈电部211的射频电流与第二馈电部212的射频电流之间的相位差为nπ时,一对第一辐射臂101之间的射频电流之间的相位差为nπ,即实现一对第一辐射臂101之间的射频电流等幅反相或者等幅同相。可选的,导电连接部50用于实现第一馈电部211与第二馈电部212的射频电流之间的相位偏移,以使第一馈电部211的射频电流与第二馈电部212的射频电流之间的相位差为180°,从而使一对第二辐射臂102之间的射频电流等幅反相。当然,在其他应用场景中,导电连接部50可以用于实现第一馈电部211的射频电流与第二馈电部212的射频电流之间的相位偏移,以使第一馈电部211与第二馈电部212之间的相位差为360°,从而使一对第二辐射臂102之间的射频电流等幅同相。
通过设置导电连接部50使一对第一辐射臂101之间具有反相的射频电流或者同相的射频电流,可以实现一对第一辐射臂101辐射特性,使第一方向可以形成线极化,从而有利于天线模组1与无线设备进行通信,提高天线模组1的收益和效率。
可以理解的,本实施例中,一对第一辐射臂101形成线极化,一对第二辐射臂102形成线极化,即天线模组1为双交叉极化偶极子天线模组。
可选的,第一方向与第二方向正交,一对第一辐射臂101及一对第二辐射臂102可形成水平、垂直双极化,或者正负45°双极化。水平、垂直双极化可接收水平极化方向的天线信号以及垂直极化方向的天线信号,从而形成正交双极化偶极子天线模组1,以提高天线模组1与具有水平极化和/或垂直极化特性的设备通信时的性能。正负45°双极化可接收任意极化方向的天线信号,从而形成正交双极化偶极子天线模组1,以提高天线模组1接收各个方向的无线信号的性能。
如图8所示,传输部210与第一馈电部211弯折相连。换言之,传输部210的延伸方向与第一馈电部211的延伸方向不同。在一种可能的实施例中,传输部210沿天线模组1的厚度方向(Z轴方向)延伸,第一馈电部211位于XY平面内,即第一馈电部211沿X轴方向或Y轴方向延伸。可以理解的,本实施例中,传输部210与第一馈电部211近似呈90°弯折相连,即传输部210与第一馈电部211形成“L”型馈电结构。由于传输部210用于电连接射频信号源,而传输部210与第一馈电部211弯折相连,因此射频信号源产生的射频电流可经传输部210传输至第一馈电部211,再经第一馈电部211耦合至一个第一辐射臂101。
通过使传输部210与第一馈电部211弯折相连,有利于在第一馈电部211与一个第一辐射臂101沿天线模组1的厚度方向相对设置并耦合,第二馈电部212与另一个第二辐射臂102沿天线模组1的厚度方向相对设置并耦合时,使传输部210与第一馈电部211同样沿天线模组1的厚度方向设置,形成竖向设置的天线模组1,以及缩减天线模组1的尺寸,便于天线模组1的小型化。
其中,导电连接部50与馈电单元20可以同层设置。换言之,在沿天线模组1的厚度方向上,导电连接部50可以位于辐射单元10朝向馈电单元20的一侧与馈电单元20远离辐射单元10的一侧之间。可以理解的,导电连接部50与第一馈电件201、第三馈电部202以及第四馈电部203同层设置。在一种实施例中,导电连接部50可以与第一馈电件201、第三馈电部202以及第四馈电部203承载于同一介质层40。通过使导电连接部50与馈电单元20同层设置,未增加天线模组1的剖面,有利于天线模组1的低剖面和小型化。
可选的,导电连接部50、第一馈电部211及第二馈电部212共面。本实施例中,导电连接部50、第一馈电部211及第二馈电部212共面有利于实现导电连接部50电连接于第一馈电部211与第二馈电部212之间,且未增加天线模组1的厚度尺寸,可在调节一对第一辐射臂101之间的射频电流的相位差以实现一对第一辐射臂101的辐射特性、可以产生极化的同时进一步地实现天线模组1的低剖面性。此外,导电连接部50、第一馈电部211及第二馈电部212共面,有利于将导电连接部50、第一馈电部211及第二馈电部212成型于同一平面内,可在调节第一馈电部211与第二馈电部212之间的射频电流的相位差以实现一对第一辐射臂101的辐射特性、可以产生极化的同时降低导电连接部50与第一馈电件201的生产难度,提高天线模组1的量产性和生产效率。此外,天线模组1的总体剖面也可以降低。
一实施例中,第一馈电部211与第二馈电部212沿第一方向相对设置,导电连接部50沿第一方向延伸。可以理解的,第一馈电部211、导电连接部50、第二馈电部212呈直线型排布。通过使第一馈电部211与第二馈电部212沿第一方向相对设置,导电连接部50沿第一方向延伸,可以实现第一馈电部211的射频电流与第二馈电部212的射频电流之间的相位差为nπ,以及有利于避免导电连接部50与巴伦馈电部204的干涉,提高第三馈电部202与第四馈电部203之间的相位精度,第一馈电部211与第二馈电部212之间的相位精度,从而使一对第一辐射臂101、一对第二辐射臂102具有较高的相位精度。
请参照图9和图10,天线模组1还包括设于馈电单元20远离辐射单元10一端的接地组60。可以理解的,辐射单元10、馈电单元20及接地组60依次层叠设置。接地组60包括层叠并间隔设置的第一接地件601和第二接地件602。第一接地件601的材质可以为金属、合金等。第二接地件602的材质可以为金属、合金等。第一接地件601可以与电子设备100(参照图2)的中框320电连接,或者,第一接地件601可以与电子设备100的电路板33的参考地电连接,又或者,第一接地件601也可以与电子设备100的电路板33的参考地集成于一体。第二接地件602可以与电子设备100(参照图2)的中框320电连接,或者,第二接地件602可以与电子设备100的电路板33的参考地电连接,又或者,第二接地件602也可以与电子设备100的电路板33的参考地集成于一体。第一接地件601覆盖一对第一辐射臂101和一对第二辐射臂102。第二接地件602覆盖一对第一辐射臂101和一对第二辐射臂102。可以理解的,第一接地件601的面积大于或等于一对第一辐射臂101的面积、一对第二辐射臂102的面积之和。第二接地件602的面积大于或等于一对第一辐射臂101的面积、一对第二辐射臂102的面积之和。至少部分巴伦馈电部204位于第一接地件601与第二接地件602之间并与第一接地件601、第二接地件602间隔设置。可选的,部分巴伦馈电部204位于第一接地件601与第二接地件602之间并与第一接地件601、第二接地件602间隔设置;或者,全部的巴伦馈电部204位于第一接地件601与第二接地件602之间并与第一接地件601、第二接地件602间隔设置。
通过设置接地组60,使至少部分巴伦馈电部204位于接地组60的第一接地件601与第二接地件602之间并与第一接地件601、第二接地件602间隔设置,可通过巴伦馈电部204、第一接地件601、第二接地件602形成带状线巴伦,从而使得天线模组1在第一方向形成的线极化具有宽频带特性,天线模组1在第二方向形成的线极化具有双频带特性,以便于天线模组1能够工作于5G毫米波频段。
此外,通过设置接地组60能够反射一对第一辐射臂101、一对第二辐射臂102的辐射信号,从而延长 天线模组1的传输距离,提高天线模组1的通信性能。其中,当多个天线模组1形成天线阵列2时,多个天线模组1的接地组60可形成一个整体的接地组60。
一实施例中,第二接地件602位于第一接地件601背离辐射单元10的一侧,即辐射单元10、馈电单元20、第一接地件601以及第二接地件602依次层叠设置。传输部210远离第一馈电部211的一端贯穿第一接地件601和第二接地件602,并用于电连接射频信号源。第三馈电部202的另一端(即第三馈电部202远离第二辐射臂102的一端)贯穿第一接地件601。第三馈电部202另一端可以伸入于第一接地件601与第二接地件602之间,以电连接巴伦馈电部204的第二馈电端口241。第四馈电部203的另一端(即第四馈电部203远离第二辐射臂102的一端)贯穿第一接地件601。第四馈电部203另一端可以伸入于第一接地件601与第二接地件602之间,以电连接巴伦馈电部204的第三馈电端口242。
其中,请参照图9至图11,巴伦馈电部204包括相连的第一子巴伦部243和第二子巴伦部244。第一子巴伦部243位于第一接地件601与第二接地件602之间并与第一接地件601、第二接地件602间隔设置。本申请对于第一子巴伦部243的结构不作具体的限定,图11中第一子巴伦部243的结构仅作为一种示例。举例而言,第一子巴伦部243可以呈弧线形、直线形、弯折线形等。第一子巴伦部243的两端分别形成第二馈电端口241和第三馈电端口242。可以理解的,第二馈电端口241和第三馈电端口242位于第一接地件601与第二接地件602之间。第二子巴伦部244远离第一子巴伦部243的一端贯穿第二接地件602并形成第一馈电端口240。可以理解的,第一馈电端口240位于第二接地件602内并朝向第二接地件602背离第一接地件601的一侧,或者,第一馈电端口240伸出于第二接地件602背离第一接地件601的一侧之外。本申请对于第二子巴伦部244的结构不作具体的限定,图11中第二子巴伦部244的结构仅作为一种示例。举例而言,第二子巴伦部244可以呈弧线形、直线形、弯折形等。
通过使第三馈电部202的另一端贯穿第一接地件601,第四馈电部203的另一端贯穿第一接地件601,可便于第三馈电部202、第四馈电部203与位于第一接地件601与第二接地件602之间的巴伦馈电部204进行电连接。而使传输部210远离第一馈电部211的一端贯穿第一接地件601和第二接地件602,可便于传输部210远离第一馈电部211的一端与外部的射频信号源进行电连接;巴伦馈电部204的第二子巴伦部244贯穿第二接地件602可便于位于第一接地件601与第二接地件602之间的巴伦馈电部204与外部的射频信号源进行电连接。此外,由于接地组60与馈电单元20层叠设置,因此通过第三馈电部202贯穿第一接地件601,第四馈电部203贯穿第一接地件601的方式实现第三馈电部202、第四馈电部203与巴伦馈电部204的电连接,可减少布线,形成立式的天线模组1,以及降低天线模组1的剖面。
本实施例中,由于巴伦馈电部204与导电连接部50间隔较远,因此可以避免巴伦馈电部204与导电连接部50的干涉,提高一对第一辐射臂101与一对第二辐射臂102的相位精度。此外,巴伦馈电部204与导电连接部50间隔较远无需在两者之间增加高度、距离以进行隔离,可进一步地降低天线模组1的剖面。
另一实施例中,请参照图12和图13,天线模组1还包括设于馈电单元20远离辐射单元10一端的接地件30。可以理解的,辐射单元10、馈电单元20及接地件30依次层叠设置。接地件30的材质可以为金属、合金等。接地件30可以与电子设备100(参照图2)的中框320电连接,或者,接地件30可以与电子设备100的电路板33的参考地电连接,又或者,接地件30也可以与电子设备100的电路板33的参考地集成于一体。接地件30覆盖一对第一辐射臂101和一对第二辐射臂102。可以理解的,接地件30面积大于或等于一对第一辐射臂101的面积、一对第二辐射臂102的面积之和。至少部分巴伦馈电部204位于接地件30与背离馈电单元20的一侧并与接地件30间隔设置。可以理解的,在沿天线模组1的厚度方向上,辐射单元10、馈电单元20、接地件30及巴伦馈电部204依次排列。可选的,部分巴伦馈电部204位于接地件30与背离馈电单元20的一侧并与接地件30间隔设置;或者,全部的部分巴伦馈电部204位于接地件30与背离馈电单元20的一侧并与接地件30间隔设置。
通过设置接地件30,使至少部分巴伦馈电部204位于接地件30背离馈电单元20的一侧并与接地件30间隔设置,可通过巴伦馈电部204、接地件30形成微带线巴伦,从而使得天线模组1在第一方向形成的线极化具有宽频带特性,天线模组1在第二方向形成的线极化具有宽频带特性,以便于天线模组1能够工作于5G毫米波频段。
此外,通过设置接地件30能够反射一对第一辐射臂101、一对第二辐射臂102的辐射信号,从而延长天线模组1的传输距离,提高天线模组1的通信性能。其中,当多个天线模组1形成天线阵列2时,多个天线模组1的接地件30可形成一个整体的接地件30。
一实施例中,传输部210远离第一馈电部211的一端贯穿接地件30,并用于电连接射频信号源。第三馈电部202的另一端(即第三馈电部202远离第二辐射臂102的一端)贯穿接地件30。第三馈电部202另一端可以伸出于接地件30背离馈电单元20的一侧,以电连接巴伦馈电部204的第二馈电端口241。第四馈电部203的另一端(即第四馈电部203远离第二辐射臂102的一端)贯穿接地件30。第四馈电部203另一端可以伸出于接地件30背离馈电单元20的一侧,以电连接巴伦馈电部204的第三馈电端口242。
其中,请参照图12至图14,巴伦馈电部204包括相连的第三子巴伦部245和第四子巴伦部246。第三子巴伦部245位于接地件30背离馈电单元20的一侧并与接地件30间隔设置。第四子巴伦部246位于接地件30背离馈电单元20的一侧并与接地件30间隔设置。本申请对于第三子巴伦部245的结构不作具体的限定,图13中第三子巴伦部245的结构仅作为一种示例。举例而言,第三子巴伦部245可以呈弧线形、直线形、弯折线形等。第三子巴伦部245的两端分别形成第二馈电端口241和第三馈电端口242。可以理解的,第二馈电端口241和第三馈电端口242位于接地件30背离馈电单元20的一侧。第四子巴伦部246远离第三子巴伦部245的一端形成第一馈电端口240。可以理解的,第一馈电端口240位于背离馈电单元20的一侧。本申请对于第四子巴伦部246的结构不作具体的限定,图13中第四子巴伦部246的结构 仅作为一种示例。举例而言,第四子巴伦部246可以呈弧线形、直线形、弯折形等。
通过使第三馈电部202的另一端贯穿接地件30,第四馈电部203的另一端贯穿接地件30,可便于第三馈电部202、第四馈电部203与位于接地件30背离馈电单元20一侧的巴伦馈电部204进行电连接。而使传输部210远离第一馈电部211的一端贯穿接地件30,可便于传输部210远离第一馈电部211的一端与外部的射频信号源进行电连接;巴伦馈电部204的第四子巴伦部246位于接地件30背离馈电单元20一侧可便于巴伦馈电部204与外部的射频信号源进行电连接。此外,由于接地件30与馈电单元20层叠设置,因此通过第三馈电部202贯穿接地件30,第四馈电部203贯穿接地件30的方式实现第三馈电部202、第四馈电部203与巴伦馈电部204的电连接,可减少布线,形成立式的天线模组1,以及降低天线模组1的剖面。
本实施例中,由于巴伦馈电部204与导电连接部50间隔较远,因此可以避免巴伦馈电部204与导电连接部50的干涉,提高一对第一辐射臂101与一对第二辐射臂102的相位精度。此外,巴伦馈电部204与导电连接部50间隔较远无需在两者之间增加高度、距离以进行隔离,可进一步地降低天线模组1的剖面。
进一步地,请参照图15和图16,天线模组1还包括一对第一耦合贴片70和一对第二耦合贴片80。一对第一耦合贴片70分别与一对第一辐射臂101相对设置并耦合。一对第二耦合贴片80分别与一对第二辐射臂102相对设置并耦合。可以理解的,一对第一耦合贴片70沿第一方向相对设置,且其中一个第一耦合贴片70与一个第一辐射臂101相对设置并耦合,另一个第一耦合贴片70与另一个第一辐射臂101相对设置并耦合。一对第二耦合贴片80沿第二方向相对设置,且其中一个第二耦合贴片80与一个第二辐射臂102相对设置并耦合,另一个第二耦合贴片80与另一个第二辐射臂102相对设置并耦合。本申请对于第一耦合贴片70、第二耦合贴片80的形状、尺寸、材质等不作具体的限定。举例而言,第一耦合贴片70的形状可以为圆形、方形、矩形、三角形、椭圆形以及其他多边形、各种异形等。第二耦合贴片80的形状可以为圆形、方形、矩形、三角形、椭圆形以及其他多边形、各种异形等。第一耦合贴片70沿第一方向的尺寸可以小于、等于或大于第一辐射臂101沿第一方向的尺寸;第一耦合贴片70沿第二方向的尺寸可以小于、等于或大于第一辐射臂101沿第二方向的尺寸。第二耦合贴片80沿第一方向的尺寸可以小于、等于或大于第二辐射臂102沿第一方向的尺寸;第二耦合贴片80沿第二方向的尺寸可以小于、等于或大于第二辐射臂102沿第二方向的尺寸。第一耦合贴片70的材质可以为金属、合金等。第二耦合贴片80的材质可以为金属、合金等。其中,第一耦合贴片70与第一辐射臂101耦合可以理解为第一耦合贴片70与第一辐射臂101之间形成第三耦合间隙。第二耦合贴片80与第二辐射臂102耦合可以理解为第二耦合贴片80与第二辐射臂102之间形成第四耦合间隙。第三耦合间隙与第四耦合间隙可以相同也可以不同。
通过设置一对第一耦合贴片70分别与一对第一辐射臂101耦合,可使一对第一耦合贴片70分别作为一对第一辐射臂101的匹配电路,从而有利于通过设计一对第一耦合贴片70的结构、位置以调节一对第一辐射臂101的电流分布,实现一对第一辐射臂101的辐射效果,提高天线模组1的宽带、超宽带特性。当然,一对第一耦合贴片70还可以作为一对第一辐射臂101的耦合枝节,参与辐射,以提高天线模组1的通信性能。通过设置一对第二耦合贴片80分别与一对第二辐射臂102耦合,可使一对第二耦合贴片80分别作为一对第二辐射臂102的匹配电路,从而有利于通过设计一对第二耦合贴片80的结构、位置以调节一对第二辐射臂102的电流分布,实现一对第二辐射臂102的辐射效果,提高天线模组1的宽带、超宽带特性。当然,一对第二耦合贴片80还可以作为一对第二辐射臂102的耦合枝节,参与辐射,以提高天线模组1的通信性能。
一实施例中,一对第一耦合贴片70位于所述辐射单元10朝向馈电单元20的一侧。具体的,当天线模组1包括接地组60时,一对第一耦合贴片70位于辐射单元10与接地组60之间。可以理解的,第一辐射臂101、第一耦合贴片70及接地组60沿天线模组1的厚度方向依次排列。当天线模组1包括接地件30时,一对第一耦合贴片70位于辐射单元10与接地件30之间。可以理解的,第一辐射臂101、第一耦合贴片70及接地件30沿天线模组1的厚度方向依次排列。
天线模组1还包括至少一个第一耦合接地件701和至少一个第二耦合接地件702。至少一个第一耦合接地件701的一端电连接一个第一耦合贴片70,至少一个第一耦合接地件701的另一端接地。至少一个第二耦合接地件702的一端电连接另一个第一耦合贴片70,至少一个第二耦合接地件702的另一端接地。一实施例中,至少一个第一耦合接地件701电连接于一个第一耦合贴片70与接地件30之间,至少一个第二耦合接地件702电连接于另一个第一耦合贴片70与接地件30之间。本申请对于第一耦合接地件701的数量、第二耦合接地件702的数量不做具体的限定。第一耦合接地件701的数量与第二耦合接地件702的数量可以相同也可以不同。在一种可能的实施方式中,第一耦合接地件701的数量为两个,两个第一耦合接地件701电连接于一个第一耦合贴片70与接地件30之间;第二耦合接地件702的数量为两个,两个第二耦合接地件702电连接于另一个第一耦合贴片70与接地件30之间。当然,在其他实施例中,第一耦合接地件701的另一端可以电连接接地组60的第一接地件601或第二接地件602;第二耦合接地件702的另一端可以电连接接地组60的第一接地件601或第二接地件602。
通过使一对第一耦合贴片70位于辐射单元10与接地组60之间,可使得天线模组1具有较低的剖面。而一个第一耦合贴片70通过第一耦合接地件701接地,使得第一耦合接地件701与第一辐射臂101也可以形成耦合,从而增加第一辐射臂101的电流分布的调节多样性,实现天线模组1的带宽多样性,以及使第一耦合接地件701参与辐射,提高天线模组1的通信性能。另一个第一耦合贴片70通过第二耦合接地件702接地,使得第二耦合接地件702与另一个第一辐射臂101也可以形成耦合,从而增加另一个第一辐射臂101的电流分布的调节多样性,实现天线模组1的带宽多样性,以及使第二耦合接地件702参与辐射,提高天线模组1的通信性能。
一实施例中,一对第二耦合贴片80位于辐射单元10朝向馈电单元20的一侧。具体的,当天线模组1包括接地组60时,一对第二耦合贴片80位于辐射单元10与接地组60之间。可以理解的,第一辐射臂101、第二耦合贴片80及接地组60沿天线模组1的厚度方向依次排列。当天线模组1包括接地件30时,一对第二耦合贴片80位于辐射单元10与接地件30之间。可以理解的,第一辐射臂101、第二耦合贴片80及接地件30沿天线模组1的厚度方向依次排列。
天线模组1还包括至少一个第三耦合接地件801和至少一个第四耦合接地件802。至少一个第三耦合接地件801的一端电连接一个第二耦合贴片80,至少一个第三耦合接地件801的另一端接地。至少一个第四耦合接地件802的一端电连接另一个第二耦合贴片80,至少一个第四耦合接地件802的另一端接地。一实施例中,至少一个第三耦合接地件801电连接于一个第二耦合贴片80与接地件30之间,至少一个第四耦合接地件802电连接于另一个第二耦合贴片80与接地件30之间。本申请对于第三耦合接地件801的数量、第四耦合接地件802的数量不做具体的限定。第三耦合接地件801的数量与第四耦合接地件802的数量可以相同也可以不同。在一种可能的实施方式中,第三耦合接地件801的数量为两个,两个第三耦合接地件801电连接于一个第二耦合贴片80与接地组60的第一接地件601之间;第四耦合接地件802的数量为两个,两个第四耦合接地件802电连接于另一个第二耦合贴片80与接地组60的第一接地件601之间。当然,在其他实施例中,第三耦合接地件801的另一端可以电连接接地组60的第一接地件601或第二接地件602;第四耦合接地件802的另一端可以电连接接地组60的第一接地件601或第二接地件602。
通过使一对第二耦合贴片80位于辐射单元10与接地组60之间,可使得天线模组1具有较低的剖面。而一个第二耦合贴片80通过第三耦合接地件801接地,使得第三耦合接地件801与第二辐射臂102也可以形成耦合,从而增加第二辐射臂102的电流分布的调节多样性,实现天线模组1的带宽多样性,以及使第三耦合接地件801参与辐射,提高天线模组1的通信性能。另一个第二耦合贴片80通过第四耦合接地件802接地,使得第四耦合接地件802与另一个第一辐射臂101也可以形成耦合,从而增加另一个第二辐射臂102的电流分布的调节多样性,实现天线模组1的带宽多样性,以及使第四耦合接地件802参与辐射,提高天线模组1的通信性能。
本申请提供的天线模组1通过设计巴伦馈电部204、导电连接部50可形成交叉的或正交的双极化偶极子天线模组。巴伦馈电部204的结构以及其与第一馈电件201、第三馈电部202以及第四馈电部203之间的设置方式可以实现第三馈电部202与第四馈电部203之间的射频电流的相位差设计,从而实现一对第二辐射臂102的辐射特性,产生第二方向的极化,同时提高天线模组1的紧凑性,降低天线模组1的剖面。导电连接部50的结构以及其在第一馈电部211与第二馈电部212之间的设置方式可以实现第一馈电部211与第二馈电部212之间的射频电流的相位差设计,从而实现一对第一辐射臂101的辐射特性,产生第一方向的极化,同时有利于增加导电连接部50与巴伦馈电部204之间的隔离度,避免导电连接部50与巴伦馈电部204相互干涉,提高一对第一辐射臂101、一对第二辐射臂102的相位精度。第一耦合贴片70和第二耦合贴片80的设计可在保证天线模组1低剖面的同时提高天线模组1的辐射效果以及匹配效果,从而使得天线模组1具有较优的辐射性能,拓宽天线模组1的带宽。
请参照图17至图22,其中,图17为本申请实施例提供的一种天线阵列2的示意图,图19为本申请实施例提供的另一种天线阵列2的示意图,图21为本申请实施例提供的再一种天线阵列2的示意图。天线阵列2包括多个天线模组1。多个天线模组1呈阵列排布。具体的,多个天线模组1沿第一方向呈阵列排布,且相邻的两个天线模组1的第一辐射臂101相耦合;和/或,多个天线模组1沿第二方向呈阵列排布,且相邻的两个天线模组1的第二辐射臂102相耦合。本申请对于天线阵列2所包括的天线模组1的数量以及天线阵列2的阵列排布方式不做具体的限定。举例而言,多个天线模组1可以呈直线阵列(一行多列,或者,多行一列)排布,或者,多个天线模组1可以呈矩阵阵列(多行多列,且行数与列数不同)排布,又或者多个天线模组1可以呈方阵阵列(多行多列,且行数与列数相同)排布等。
一实施例中,如图17所示,天线阵列2包括四个天线模组1。四个天线模组1沿第一方向呈直线阵列排布,相邻的两个天线模组1的第一辐射臂101相耦合。其中,第一方向可参照附图17中的X轴方向,四个天线模组1包括四对第一辐射臂101,其中四个天线模组1共有三组相邻的第一辐射臂101相耦合。第一方向同时也是四个天线模组1的第一辐射臂101的排列方向。可以理解的,多个天线模组1的第一辐射臂101沿第一方向排列,且相邻的两个天线模组1的第一辐射臂101沿第一方向相对设置并形成耦合间隙。
可选的,请参照图17和图18,相邻的两个天线模组1的第一辐射臂101呈交趾型耦合。具体的,相邻的两个天线模组1中的一个天线模组1的第一辐射臂101的边缘形成一个或多个第一缺口101a以及一个或多个第一延伸部101b,另一个天线模组1的第一辐射臂101的边缘形成一个或多个第二缺口101c以及一个或多个第二延伸部101d,该第一延伸部101b至少部分伸入于第二缺口101c内,第二延伸部101d至少部分伸入于第一缺口101a内,相邻的两个天线模组1的第一辐射臂101的边缘交叉但未接触,以形成交趾型耦合。在一种实施方式中,相邻的两个天线模组1中,一个天线模组1的第一辐射臂101的边缘包括三个第一缺口101a和两个第一延伸部101b,两个第一延伸部101b间隔设于三个第一缺口101a之间,即相邻的两个第一缺口101a之间设有一个第一延伸部101b;另一个天线模组1的第一辐射臂101的边缘包括两个第二缺口101c和三个第二延伸部101d,两个第二缺口101c间隔设于三个第二延伸部101d之间,即相邻的两个第二缺口101c之间设有一个第二延伸部101d。三个第二延伸部101d分别伸入于三个第一缺口101a内,两个第一延伸部101b分别伸入于两个第二缺口101c内。其中,第一缺口101a可以是矩形、圆形、椭圆形、方形、三角形、梯形、其他多边形以及各种异形等。第二缺口101c可以是矩形、圆形、椭圆形、方形、三角形、梯形、其他多边形以及各种异形等。第一延伸部101b可以是矩形、圆形、椭圆形、方形、三角形、梯形、其他多边形以及各种异形等。第二延伸部101d可以是矩形、圆形、椭圆形、 方形、三角形、梯形、其他多边形以及各种异形等。本申请实施例中,第一延伸部101b、第二延伸部101d大致呈T形;第一缺口101a、第二缺口101c大致呈矩形。
通过使相邻的两个天线模组1的第一辐射臂101相耦合,可以形成紧耦合阵列天线,从而缩减天线阵列2的尺寸,提高天线阵列2的紧凑性。此外,还可以利用相邻的两个天线模组1的互耦效应实现天线阵列2的宽带、超宽带特性。通过使相邻的两个天线模组1的第一辐射臂101呈交趾型耦合可增加射频电流在天线阵列2中的传输路径,从而增加天线阵列2的有效电长度,提高天线阵列2的辐射性能。
另一实施例中,如图19所示,天线阵列2包括八个天线模组1。八个天线模组1沿第二方向呈阵列排布,且相邻的两个天线模组1的第二辐射臂102相耦合。其中,第二方向可参照附图19中的Y轴方向,八个天线模组1包括八对第二辐射臂102,其中八个天线模组1共有七组相邻的第二辐射臂102相耦合。第二方向同时也是八个天线模组1的第二辐射臂102的排列方向。可以理解的,多个天线模组1的第二辐射臂102沿第二方向排列,且相邻的两个天线模组1的第二辐射臂102沿第二方向相对设置并形成耦合间隙。
可选的,请参照图19和图20,相邻的两个天线模组1的第二辐射臂102呈交趾型耦合。具体的,相邻的两个天线模组1中的一个天线模组1的第二辐射臂102的边缘形成一个或多个第三缺口102a以及一个或多个第三延伸部102b,另一个天线模组1的第二辐射臂102的边缘形成一个或多个第四缺口102c以及一个或多个第四延伸部102d,该第三延伸部102b至少部分伸入于第四缺口102c内,第四延伸部102d至少部分伸入于第三缺口102a内,相邻的两个天线模组1的第二辐射臂102的边缘交叉但未接触,以形成交趾型耦合。在一种实施方式中,相邻的两个天线模组1中,一个天线模组1的第二辐射臂102的边缘包括一个第三缺口102a和两个第三延伸部102b,两个第三延伸部102b分别间隔设于第三缺口102a的相对两侧,即第三缺口102a位于两个第三延伸部102b之间,并与两个第三延伸部102b间隔设置;另一个天线模组1的第二辐射臂102的边缘包括两个第四缺口102c和一个第四延伸部102d,两个第四缺口102c分别间隔设于第四延伸部102d的相对两侧,即第四延伸部102d位于两个第四缺口102c之间,并与两个第四缺口102c间隔设置。第四延伸部102d伸入于第三缺口102a内,两个第三延伸部102b分别伸入于两个第四缺口102c内。其中,第三缺口102a可以是矩形、圆形、椭圆形、方形、三角形、梯形、其他多边形以及各种异形等。第四缺口102c可以是矩形、圆形、椭圆形、方形、三角形、梯形、其他多边形以及各种异形等。第三延伸部102b可以是矩形、圆形、椭圆形、方形、三角形、梯形、其他多边形以及各种异形等。第四延伸部102d可以是矩形、圆形、椭圆形、方形、三角形、梯形、其他多边形以及各种异形等。本申请实施例中,第三延伸部102b、第四延伸部102d大致呈T形;第三缺口102a、第四缺口102c大致呈矩形。
通过使相邻的两个天线模组1的第二辐射臂102相耦合,可以形成紧耦合阵列天线,从而缩减天线阵列2的尺寸,提高天线阵列2的紧凑性。此外,还可以利用相邻的两个天线模组1的互耦效应实现天线阵列2的宽带、超宽带特性。通过使相邻的两个天线模组1的第二辐射臂102呈交趾型耦合可增加射频电流在天线阵列2中的传输路径,从而增加天线阵列2的有效电长度,提高天线阵列2的辐射性能。
再一实施例中,如图21所示,天线阵列2包括四个天线模组1。四个天线模组1包括四对第一辐射臂101和四对第二辐射臂102。两两天线模组1沿第一方向呈阵列排布,且相邻的两个天线模组1的第一辐射臂101相耦合;两两天线模组1沿第二方向呈阵列排布,且相邻的两个天线模组1的第二辐射臂102相耦合。其中,第一方向可参照附图21中的X轴方向,第二方向可参照附图21中的Y轴方向。本实施例中,第一方向与第二方向垂直。当然,在其他实施例中,第一方向与第二方向可以相交但不垂直。沿第一方向呈阵列排布的两两天线模组1的第一辐射臂101分别沿第一方向排列,且相邻的两个天线模组1的第一辐射臂101沿第一方向相对并形成耦合间隙。沿第二方向呈阵列排布的两两天线模组1的第二辐射臂102分别沿第二方向排列,且相邻的两个天线模组1的第二辐射臂102沿第二方向相对设置并形成耦合间隙。
可选的,如图21所示,相邻的两个天线模组1的第一辐射臂101呈交趾型耦合,且相邻的两个天线模组1的第二辐射臂102呈交趾型耦合。具体的,沿第一方向呈阵列排布的两个天线模组1中的一个天线模组1的第一辐射臂101的边缘形成一个或多个第五缺口101e以及一个或多个第五延伸部101f,另一个天线模组1的第一辐射臂101的边缘形成一个或多个第六缺口101g以及一个或多个第六延伸部101h,该第五延伸部101f至少部分伸入于第六缺口101g内,第六延伸部101h至少部分伸入于第五缺口101e内,相邻的两个天线模组1的第一辐射臂101的边缘交叉但未接触,以形成交趾型耦合。沿第二方向呈阵列排布的两个天线模组1中的一个天线模组1的第二辐射臂102的边缘形成一个或多个第七缺口102e以及一个或多个第七延伸部102f,另一个天线模组1的第二辐射臂102的边缘形成一个或多个第八缺口102g以及一个或多个第八延伸部102h,该第七延伸部102f至少部分伸入于第八缺口102g内,第八延伸部102h至少部分伸入于第七缺口102e内,相邻的两个天线模组1的第二辐射臂102的边缘交叉但未接触,以形成交趾型耦合。
通过使相邻的两个天线模组1的第一辐射臂101相耦合、相邻的两个天线模组1的第二辐射臂102相耦合,可以形成紧耦合阵列天线,从而缩减天线阵列2的尺寸,提高天线阵列2的紧凑性。此外,还可以利用相邻的两个天线模组1的互耦效应实现宽带、超宽带特性。通过使相邻的两个天线模组1的第一辐射臂101呈交趾型耦合,相邻的两个天线模组1的第二辐射臂102呈交趾型耦合可增加射频电流的传输路径,从而增加天线阵列2的有效电长度,提高天线阵列2的辐射性能。
进一步地,如图22所示,天线阵列2还可以包括至少一对第一耦合枝节103和至少一对第二耦合枝节104。至少一对第一耦合枝节103沿第一方向设置,并与边缘的第一辐射臂101相耦合。至少一对第二耦合枝节104沿第二方向设置,并与边缘的第二辐射臂102相耦合。一实施例中,天线阵列2包括两个天线模组1,且两个天线模组1沿第一方向呈阵列排布。天线阵列2包括两对第一耦合枝节103和一对第二 耦合枝节104。两对第一耦合枝节103沿第一方向设置,并分别与天线阵列2沿第一方向的边缘的第一辐射臂101相耦合。一对第二耦合枝节104沿第二方向设置,并分别与天线阵列2沿第二方向的边缘的第二辐射臂102相耦合。通过设置第一耦合枝节103可以调节天线阵列2沿第一方向的边缘的第一辐射臂101的辐射效果,从而使边缘的第一辐射臂101与呈交趾型耦合的第一辐射臂101具有相同或相似的辐射效果,使得边缘的第一辐射臂101也具有相应的工作带宽、增益等。通过设置第二耦合枝节104可以调节天线阵列2沿第二方向的边缘的第二辐射臂102的辐射效果,从而使边缘的第二辐射臂102与呈交趾型耦合的第二辐射臂102具有相同或相似的辐射效果,使得边缘的第二辐射臂102也具有相同或相似的工作带宽、增益、效率等。可选的,第一耦合枝节103与天线阵列2沿第一方向的边缘的第一辐射臂101之间呈交趾型耦合。第二耦合枝节104与天线阵列2沿第二方向的边缘的第二辐射臂102之间呈交趾型耦合。第一耦合枝节103与天线阵列2沿第一方向的边缘的第一辐射臂101之间呈交趾型耦合,第二耦合枝节104与天线阵列2沿第二方向的边缘的第二辐射臂102之间呈交趾型耦合,与上述实施例中相邻的两个天线模组1的第一辐射臂101呈交趾型相耦合、相邻的两个天线模组1的第二辐射臂102呈交趾型相耦合具有相同的技术效果,此处不再赘述。
在一种实施方式中,天线模组1为支持20~45GHz频段范围的紧耦合双极化偶极子天线模组,其中心工作频率为30GHz。天线模组1的总厚度为最高工作频率对应波长的0.186倍。天线模组1用于承载辐射单元10的介质层40采用相对介电常数为ε=3.09,正切损耗角tanδ=0.0031,厚度H=0.326mm的板材。天线模组1用于承载馈电单元20的介质层40采用相对介电常数为ε=3.31,正切损耗角tanδ=0.0033,厚度H=0.635mm的板材。天线模组1用于承载接地组60的介质层40采用相对介电常数为ε=3.09,正切损耗角tanδ=0.0031,厚度H=0.326mm的板材。
图23为上述天线模组1的第一极化(第一方向线极化)驻波比仿真结果示意图。图23中,横轴表示频率,单位为GHz;纵轴表示天线模组1的电压驻波比(VSWR),也称为驻波比,或驻波系数。从图中可以看出,天线模组1的第一极化的驻波比小于3的频段范围包括24.03GHz~45.45GHz,该天线模组1覆盖了5G毫米波工作频带24.25GHz~29.5GHz、37GHz~42.5GHz。驻波比是衡量天线模组1的馈电效率的重要指标;驻波比越小,反射越少,匹配越好,驻波比小于3为较小的标准。本申请实施例提供的天线模组1的驻波比控制在较低的数值,一对第一辐射臂101馈电效果较好。
图24为上述天线模组1的第二极化(第二方向线极化)驻波比仿真结果示意图。图24中,横轴表示频率,单位为GHz;纵轴表示天线模组1的驻波比。从图中可以看出,天线模组1的第二极化的驻波比小于3的频段范围包括19.68GHz~33.34GHz、34.86GHz~51.67GHz,该天线模组1覆盖了5G毫米波工作频带24.25GHz~29.5GHz、37GHz~42.5GHz。天线模组1的驻波比控制在较低的数值,一对第二辐射臂102馈电效果较好。
图25为天线模组1在第一极化低频点28GHz处E面和H面的增益方向图。从图中可以看出,天线模组1的E面的增益方向图和H面的增益方向图具有较好的一致性,增益方向图没有产生畸变,天线模组1在第一极化的宽频带内有稳定宽辐射波束特性。
图26为天线模组1在第二极化低频点28GHz处E面和H面的增益方向图。从图中可以看出,天线模组1的E面的增益方向图和H面的增益方向图具有较好的一致性,增益方向图没有产生畸变,天线模组1在第二极化的宽频带内有稳定宽辐射波束特性。
图27为天线模组1在第一极化高频点40GHz处E面和H面的增益方向图。从图中可以看出,天线模组1的E面的增益方向图和H面的增益方向图具有较好的一致性,增益方向图没有产生畸变,天线模组1在第一极化的宽频带内有稳定宽辐射波束特性。
图28为天线模组1在第二极化高频点40GHz处E面和H面的增益方向图。从图中可以看出,天线模组1的E面的增益方向图和H面的增益方向图具有较好的一致性,增益方向图没有产生畸变,天线模组1在第二极化的宽频带内有稳定宽辐射波束特性。
图29为天线阵列2扫描角0°时随频率变化的第一极化的最大辐射方向图。图中,横轴为频率,单位为GHz,纵轴为增益值,单位为dB。从图中可以看出,天线阵列2在5G毫米波工作频段内可实现增益大于9.40dB,由此得到天线阵列在第一极化的工作状态良好。
图30为天线阵列2扫描角0°时随频率变化的第二极化的最大辐射方向图。图中,横轴为频率,单位为GHz,纵轴为增益值,单位为dB。从图中可以看出,天线阵列2在5G毫米波工作频段内可实现增益大于7.82dB,由此得到天线阵列在第二极化的工作状态良好。
图31为天线阵列2在低频点28GHz处扫描角为0°时随角度变化的第一极化的最大辐射方向图。图中,横坐标为方位角;纵坐标为增益值,单位为dB。从图中可以看出在方位角为0°时的可实现增益为11.07dB,且天线阵列2在宽频带内具有稳定的宽频带辐射波束特性。
图32为天线阵列2在低频点28GHz处扫描角为0°时随角度变化的第二极化的最大辐射方向图。图中,横坐标为方位角;纵坐标为增益值,单位为dB。从图中可以看出在方位角为0°时的可实现增益为9.69dB,且天线阵列2在宽频带内具有稳定的宽频带辐射波束特性。
图33为天线阵列2在低频点28GHz处扫描角为60°时随角度变化的第一极化的最大辐射方向图。图中,横坐标为方位角;纵坐标为增益值,单位为dB。从图中可以看出在方位角为0°时的可实现增益为9.27dB,且天线阵列2在宽频带内具有稳定的宽频带辐射波束特性。
图34为天线阵列2在低频点28GHz处扫描角为60°时随角度变化的第二极化的最大辐射方向图。图中,横坐标为方位角;纵坐标为增益值,单位为dB。从图中可以看出在方位角为0°时的可实现增益为9.00dB,且天线阵列2在宽频带内具有稳定的宽频带辐射波束特性。
图35为天线阵列2在高频点40GHz处扫描角为0°时随角度变化的第一极化的最大辐射方向图。图中, 横坐标为方位角;纵坐标为增益值,单位为dB。从图中可以看出在方位角为0°时的可实现增益为10.92dB,且天线阵列2在宽频带内具有稳定的宽频带辐射波束特性。
图36为天线阵列2在高频点40GHz处扫描角为0°时随角度变化的第二极化的最大辐射方向图。图中,横坐标为方位角;纵坐标为增益值,单位为dB。从图中可以看出在方位角为0°时的可实现增益为12.83dB,且天线阵列2在宽频带内具有稳定的宽频带辐射波束特性。
图37为天线阵列2在高频点40GHz处扫描角为60°时随角度变化的第一极化的最大辐射方向图。图中,横坐标为方位角;纵坐标为增益值,单位为dB。从图中可以看出在方位角为0°时的可实现增益为9.63dB,且天线阵列2在宽频带内具有稳定的宽频带辐射波束特性。
图38为天线阵列2在高频点40GHz处扫描角为60°时随角度变化的第二极化的最大辐射方向图。图中,横坐标为方位角;纵坐标为增益值,单位为dB。从图中可以看出在方位角为0°时的可实现增益为10.31dB,且天线阵列2在宽频带内具有稳定的宽频带辐射波束特性。
在另一种实施方式中,天线模组1为支持20~45GHz频段范围的紧耦合双极化偶极子天线模组,其中心工作频率为30GHz。天线模组1的总厚度为最高工作频率对应波长的0.164倍。天线模组1用于承载辐射单元10的介质层40采用相对介电常数为ε=3.09,正切损耗角tanδ=0.0031,厚度H=0.326mm的板材。天线模组1用于承载馈电单元20的介质层40采用相对介电常数为ε=3.31,正切损耗角tanδ=0.0033,厚度H=0.635mm的板材。天线模组1用于承载接地件30的介质层40采用相对介电常数为ε=3.09,正切损耗角tanδ=0.0031,厚度H=0.326mm的板材。
图39为上述天线模组1的第一极化(第一方向线极化)驻波比仿真结果示意图。图39中,横轴表示频率,单位为GHz;纵轴表示天线模组1的电压驻波比(VSWR),也称为驻波比,或驻波系数。从图中可以看出,天线模组1的第一极化的驻波比小于3的频段范围包括20.43GHz~53GHz,该天线模组1覆盖了5G毫米波工作频带24.25GHz~29.5GHz、37GHz~42.5GHz。驻波比是衡量天线模组1的馈电效率的重要指标;驻波比越小,反射越少,匹配越好,驻波比小于3为较小的标准。本申请实施例提供的天线模组1的驻波比控制在较低的数值,一对第一辐射臂101馈电效果较好。
图40为上述天线模组1的第二极化(第二方向线极化)驻波比仿真结果示意图。图40中,横轴表示频率,单位为GHz;纵轴表示天线模组1的驻波比。从图中可以看出,天线模组1的第二极化的驻波比小于3的频段范围包括23.99GHz~44.84GHz,该天线模组1覆盖了5G毫米波工作频带24.25GHz~29.5GHz、37GHz~42.5GHz。天线模组1的驻波比控制在较低的数值,一对第二辐射臂102馈电效果较好。
图41为天线模组1在第一极化低频点28GHz处E面和H面的增益方向图。从图中可以看出,天线模组1的E面的增益方向图和H面的增益方向图具有较好的一致性,增益方向图没有产生畸变,天线模组1在第一极化的宽频带内有稳定宽辐射波束特性。
图42为天线模组1在第二极化低频点28GHz处E面和H面的增益方向图。从图中可以看出,天线模组1的E面的增益方向图和H面的增益方向图具有较好的一致性,增益方向图没有产生畸变,天线模组1在第二极化的宽频带内有稳定宽辐射波束特性。
图43为天线模组1在第一极化高频点40GHz处E面和H面的增益方向图。从图中可以看出,天线模组1的E面的增益方向图和H面的增益方向图具有较好的一致性,增益方向图没有产生畸变,天线模组1在第一极化的宽频带内有稳定宽辐射波束特性。
图44为天线模组1在第二极化高频点40GHz处E面和H面的增益方向图。从图中可以看出,天线模组1的E面的增益方向图和H面的增益方向图具有较好的一致性,增益方向图没有产生畸变,天线模组1在第二极化的宽频带内有稳定宽辐射波束特性。
图45为天线阵列2扫描角0°时随频率变化的第一极化的最大辐射方向图。图中,横轴为频率,单位为GHz,纵轴为增益值,单位为dB。从图中可以看出,天线阵列2在5G毫米波工作频段内可实现增益大于9.06dB,由此得到天线阵列在第一极化的工作状态良好。
图46为天线阵列2扫描角0°时随频率变化的第二极化的最大辐射方向图。图中,横轴为频率,单位为GHz,纵轴为增益值,单位为dB。从图中可以看出,天线阵列2在5G毫米波工作频段内可实现增益大于5.75dB,由此得到天线阵列在第二极化的工作状态良好。
图47为天线阵列2在低频点28GHz处扫描角为0°时随角度变化的第一极化的最大辐射方向图。图中,横坐标为方位角;纵坐标为增益值,单位为dB。从图中可以看出在方位角为0°时的可实现增益为10.69dB,且天线阵列2在宽频带内具有稳定的宽频带辐射波束特性。
图48为天线阵列2在低频点28GHz处扫描角为0°时随角度变化的第二极化的最大辐射方向图。图中,横坐标为方位角;纵坐标为增益值,单位为dB。从图中可以看出在方位角为0°时的可实现增益为10.73dB,且天线阵列2在宽频带内具有稳定的宽频带辐射波束特性。
图49为天线阵列2在低频点28GHz处扫描角为60°时随角度变化的第一极化的最大辐射方向图。图中,横坐标为方位角;纵坐标为增益值,单位为dB。从图中可以看出在方位角为0°时的可实现增益为7.88dB,且天线阵列2在宽频带内具有稳定的宽频带辐射波束特性。
图50为天线阵列2在低频点28GHz处扫描角为60°时随角度变化的第二极化的最大辐射方向图。图中,横坐标为方位角;纵坐标为增益值,单位为dB。从图中可以看出在方位角为0°时的可实现增益为9.02dB,且天线阵列2在宽频带内具有稳定的宽频带辐射波束特性。
图51为天线阵列2在高频点40GHz处扫描角为0°时随角度变化的第一极化的最大辐射方向图。图中,横坐标为方位角;纵坐标为增益值,单位为dB。从图中可以看出在方位角为0°时的可实现增益为13.04dB,且天线阵列2在宽频带内具有稳定的宽频带辐射波束特性。
图52为天线阵列2在高频点40GHz处扫描角为0°时随角度变化的第二极化的最大辐射方向图。图中, 横坐标为方位角;纵坐标为增益值,单位为dB。从图中可以看出在方位角为0°时的可实现增益为10.92dB,且天线阵列2在宽频带内具有稳定的宽频带辐射波束特性。
图53为天线阵列2在高频点40GHz处扫描角为60°时随角度变化的第一极化的最大辐射方向图。图中,横坐标为方位角;纵坐标为增益值,单位为dB。从图中可以看出在方位角为0°时的可实现增益为10.63dB,且天线阵列2在宽频带内具有稳定的宽频带辐射波束特性。
图54为天线阵列2在高频点40GHz处扫描角为60°时随角度变化的第二极化的最大辐射方向图。图中,横坐标为方位角;纵坐标为增益值,单位为dB。从图中可以看出在方位角为0°时的可实现增益为10.69dB,且天线阵列2在宽频带内具有稳定的宽频带辐射波束特性。
上述在说明书、权利要求书以及附图中提及的特征,只要在本申请的范围内是有意义的,均可以任意相互组合。针对天线模组1所说明的优点和特征以相应的方式适用于天线阵列2及电子设备100。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种天线模组,包括:
    辐射单元,包括沿第一方向设置的一对第一辐射臂和沿第二方向设置的一对第二辐射臂,所述第一方向与所述第二方向相交;及
    馈电单元,包括间隔设置的第一馈电件和第二馈电件,所述第一馈电件包括依次相连的传输部、第一馈电部和第二馈电部,所述传输部用于电连接射频信号源,所述射频信号源用于产生射频电流,所述第一馈电部与一个所述第一辐射臂相对设置并耦合,所述第二馈电部与另一个所述第一辐射臂相对设置并耦合,所述第二馈电件包括第三馈电部、第四馈电部和巴伦馈电部,所述第三馈电部的一端电连接一个所述第二辐射臂,所述第四馈电部的一端电连接另一个所述第二辐射臂,所述巴伦馈电部包括第一馈电端口、第二馈电端口和第三馈电端口,所述第一馈电端口用于电连接所述射频信号源,所述第二馈电端口电连接所述第三馈电部的另一端,所述第三馈电端口电连接所述第四馈电部的另一端,所述巴伦馈电部用于传输所述射频电流并用于使所述第三馈电部的射频电流与所述第四馈电部的射频电流之间存在相位偏移。
  2. 根据权利要求1所述的天线模组,所述第一馈电件还包括导电连接部,所述导电连接部的一端电连接所述第一馈电部,所述导电连接部的另一端电连接所述第二馈电部,所述导电连接部用于传输所述射频电流并用于使所述第一馈电部的射频电流与所述第二馈电部的射频电流之间存在相位偏移。
  3. 根据权利要求2所述的天线模组,所述第一方向与所述第二方向正交。
  4. 根据权利要求1所述的天线模组,所述天线模组还包括设于所述馈电单元远离所述辐射单元一端的接地组,所述接地组包括层叠并间隔设置的第一接地件和第二接地件,所述第一接地件覆盖所述一对第一辐射臂和所述一对第二辐射臂,所述第二接地件覆盖所述一对第一辐射臂和所述一对第二辐射臂,至少部分所述巴伦馈电部位于所述第一接地件与第二接地件之间并与所述第一接地件、所述第二接地件间隔设置。
  5. 根据权利要求4所述的天线模组,所述第二接地件位于所述第一接地件背离所述辐射单元的一侧,所述传输部远离所述第一馈电部的一端贯穿所述第一接地件和所述第二接地件,所述第三馈电部的另一端贯穿所述第一接地件,所述第四馈电部的另一端贯穿所述第一接地件,所述巴伦馈电部包括相连的第一子巴伦部和第二子巴伦部,所述第一子巴伦部位于所述第一接地件与所述第二接地件之间并与所述第一接地件、所述第二接地件间隔设置,所述第一子巴伦部的两端分别形成所述第二馈电端口和所述第三馈电端口,所述第二子巴伦部远离所述第一子巴伦部的一端贯穿所述第二接地件并形成所述第一馈电端口。
  6. 根据权利要求1所述的天线模组,所述天线模组还包括设于所述馈电单元远离所述辐射单元一端的接地件,所述接地件覆盖所述一对第一辐射臂和所述一对第二辐射臂,至少部分所述巴伦馈电部位于所述接地件背离所述馈电单元的一侧并与所述接地件间隔设置。
  7. 根据权利要求6所述的天线模组,所述传输部远离所述第一馈电部的一端贯穿所述接地件,所述第三馈电部的另一端贯穿所述接地件,所述第四馈电部的另一端贯穿所述接地件,所述巴伦馈电部位于所述接地件背离所述馈电单元的一侧且皆与所述接地件间隔设置,所述巴伦馈电部包括相连的第三子巴伦部和第四子巴伦部,所述第三子巴伦部的两端分别形成所述第二馈电端口和所述第三馈电端口,所述第四子巴伦部远离所述第三子巴伦部的一端形成所述第一馈电端口。
  8. 根据权利要求2至7任意一项所述的天线模组,所述导电连接部、所述第一馈电部及所述第二馈电部共面。
  9. 根据权利要求2至7任意一项所述的天线模组,所述第一馈电部与所述第二馈电部沿所述第一方向相对设置,所述导电连接部沿所述第一方向延伸。
  10. 根据权利要求1至7任意一项所述的天线模组,所述天线模组还包括一对第一耦合贴片和一对第二耦合贴片,所述一对第一耦合贴片分别与所述一对第一辐射臂相对设置并耦合,所述一对第二耦合贴片分别与所述一对第二辐射臂相对设置并耦合。
  11. 根据权利要求10所述的天线模组,所述一对第一耦合贴片位于所述辐射单元朝向所述馈电单元的一侧。
  12. 根据权利要求11所述的天线模组,所述天线模组还包括至少一个第一耦合接地件和至少一个第二耦合接地件,所述至少一个第一耦合接地件的一端电连接一个所述第一耦合贴片,所述至少一个第一耦合接地件的另一端接地,所述至少一个第二耦合接地件的一端电连接另一个所述第一耦合贴片,所述至少一个第二耦合接地件的另一端接地。
  13. 根据权利要求10所述的天线模组,所述一对第二耦合贴片位于所述辐射单元朝向所述馈电单元的一侧。
  14. 根据权利要求13所述的天线模组,所述天线模组还包括至少一个第三耦合接地件和至少一个第四耦合接地件,所述至少一个第三耦合接地件的一端电连接一个所述第二耦合贴片,所述至少一个第三耦合接地件的另一端接地,所述至少一个第四耦合接地件的一端电连接另一个所述第二耦合贴片,所述至少一个第四耦合接地件的另一端接地。
  15. 一种天线阵列,包括多个如权利要求1至14任意一项所述的天线模组,所述多个天线模组沿所述第一方向呈阵列排布,且相邻的两个天线模组的第一辐射臂相耦合;和/或,所述多个天线模组沿所述第二方向呈阵列排布,且相邻的两个天线模组的第二辐射臂相耦合。
  16. 根据权利要求15所述的天线阵列,当所述多个天线模组沿所述第一方向呈阵列排布时,相邻的两个天线模组的第一辐射臂呈交趾型耦合;当所述多个天线模组沿所述第二方向呈阵列排布时,相邻的两 个天线模组的第二辐射臂呈交趾型耦合。
  17. 根据权利要求16所述的天线阵列,当所述多个天线模组沿所述第一方向呈阵列排布时,相邻的两个天线模组中的一个天线模组的第一辐射臂的边缘形成一个或多个第一缺口以及一个或多个第一延伸部,另一个天线模组的第一辐射臂的边缘形成一个或多个第二缺口以及一个或多个第二延伸部,所述第一延伸部至少部分伸入于所述第二缺口内,所述第二延伸部至少部分伸入于所述第一缺口内;当所述多个天线模组沿所述第二方向呈阵列排布时,相邻的两个天线模组中的一个天线模组的第二辐射臂的边缘形成一个或多个第三缺口以及一个或多个第三延伸部,另一个天线模组的第二辐射臂的边缘形成一个或多个第四缺口以及一个或多个第四延伸部,所述第三延伸部至少部分伸入于所述第四缺口内,所述第四延伸部至少部分伸入于所述第三缺口内。
  18. 根据权利要求15所述的天线阵列,所述天线阵列还包括沿所述第一方向设置的至少一对第一耦合枝节和沿所述第二方向设置的至少一对第二耦合枝节,所述第一耦合枝节与边缘的所述第一辐射臂耦合,所述第二耦合枝节与边缘的所述第二辐射臂耦合。
  19. 根据权利要求18所述的天线阵列,所述第一耦合枝节与边缘的所述第一辐射臂之间呈交趾型耦合,所述第二耦合枝节与边缘的所述第二辐射臂之间呈交趾型耦合。
  20. 一种电子设备,包括设备本体、如权利要求1至14任意一项所述的天线模组或者如权利要求15至19任意一项所述的天线阵列,所述设备本体用于承载所述天线模组或所述天线阵列。
PCT/CN2023/098336 2022-08-17 2023-06-05 天线模组、天线阵列及电子设备 WO2024037128A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210988916.7 2022-08-17
CN202210988916.7A CN117638467A (zh) 2022-08-17 2022-08-17 天线模组、天线阵列及电子设备

Publications (1)

Publication Number Publication Date
WO2024037128A1 true WO2024037128A1 (zh) 2024-02-22

Family

ID=89940565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098336 WO2024037128A1 (zh) 2022-08-17 2023-06-05 天线模组、天线阵列及电子设备

Country Status (2)

Country Link
CN (1) CN117638467A (zh)
WO (1) WO2024037128A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180040955A1 (en) * 2015-02-26 2018-02-08 Massachusetts, University Of Planar ultrawideband modular antenna array having improved bandwidth
CN108134197A (zh) * 2017-12-26 2018-06-08 上海安费诺永亿通讯电子有限公司 一体化四点差分馈电低剖面双极化振子单元及基站天线
US20190140364A1 (en) * 2017-07-18 2019-05-09 The Board Of Regents Of The University Of Oklahoma Dual-Linear-Polarized, Highly-Isolated, Crossed-Dipole Antenna and Antenna Array
CN109888486A (zh) * 2019-03-05 2019-06-14 深圳市信维通信股份有限公司 一种双极化毫米波天线单体及阵列天线
CN113540765A (zh) * 2021-09-07 2021-10-22 华南理工大学 双频双极化天线和双频双极化天线阵列

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180040955A1 (en) * 2015-02-26 2018-02-08 Massachusetts, University Of Planar ultrawideband modular antenna array having improved bandwidth
US20190140364A1 (en) * 2017-07-18 2019-05-09 The Board Of Regents Of The University Of Oklahoma Dual-Linear-Polarized, Highly-Isolated, Crossed-Dipole Antenna and Antenna Array
CN108134197A (zh) * 2017-12-26 2018-06-08 上海安费诺永亿通讯电子有限公司 一体化四点差分馈电低剖面双极化振子单元及基站天线
CN109888486A (zh) * 2019-03-05 2019-06-14 深圳市信维通信股份有限公司 一种双极化毫米波天线单体及阵列天线
CN113540765A (zh) * 2021-09-07 2021-10-22 华南理工大学 双频双极化天线和双频双极化天线阵列

Also Published As

Publication number Publication date
CN117638467A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
CN111403893B (zh) 一种基站天线的馈电网络,基站天线及基站
US20220255240A1 (en) Antenna module and electronic device
CN103915678B (zh) 全向式天线
US9142889B2 (en) Compact tapered slot antenna
CN110380193B (zh) 一种小型化多波段共口径圆极化天线
CN112397898B (zh) 天线阵列组件及电子设备
US8648762B2 (en) Loop array antenna system and electronic apparatus having the same
Psychoudakis et al. Dipole array for mm-wave mobile applications
WO2021244158A1 (zh) 双极化天线及客户前置设备
US20230011271A1 (en) Antenna module and electronic device
Kumar et al. A compact four-port high isolation hook shaped ACS fed Mimo antenna for dual frequency band applications
CN112886234B (zh) 一种基于嵌入式结构的微波毫米波共面共口径天线
CN115775971A (zh) 一种基于多模谐振的双频宽带高增益印刷全向天线
CN115207613B (zh) 一种宽带双极化天线单元及天线阵列
WO2024037128A1 (zh) 天线模组、天线阵列及电子设备
CN114243280B (zh) 超宽带宽波束双极化天线和无线通信设备
WO2024037129A1 (zh) 天线模组、天线阵列及电子设备
TWI451632B (zh) 高增益迴圈陣列天線系統及電子裝置
WO2024037124A1 (zh) 天线模组、天线阵列及电子设备
Malik et al. Extremely close integration of dual band sub-6 GHz 4G antenna with unidirectional mm-wave 5G antenna
Koul et al. Polycarbonate based flexible antennas for mmWave 5G devices
WO2023109868A1 (zh) 天线模组及电子设备
WO2024001072A1 (zh) 天线模组、天线阵列及电子设备
CN213071364U (zh) 准平面宽带对数周期天线
CN219801261U (zh) 一种宽带低剖面无线局域网偶极子天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854034

Country of ref document: EP

Kind code of ref document: A1