WO2022141193A1 - 一种基于无人车平台的作物多光谱采集分析系统 - Google Patents

一种基于无人车平台的作物多光谱采集分析系统 Download PDF

Info

Publication number
WO2022141193A1
WO2022141193A1 PCT/CN2020/141392 CN2020141392W WO2022141193A1 WO 2022141193 A1 WO2022141193 A1 WO 2022141193A1 CN 2020141392 W CN2020141392 W CN 2020141392W WO 2022141193 A1 WO2022141193 A1 WO 2022141193A1
Authority
WO
WIPO (PCT)
Prior art keywords
unmanned vehicle
fixedly connected
acquisition
scanning device
sample
Prior art date
Application number
PCT/CN2020/141392
Other languages
English (en)
French (fr)
Inventor
颜开
张鹤鸣
周晓宇
黄庆燊
李家兴
Original Assignee
广东视场科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东视场科技有限公司 filed Critical 广东视场科技有限公司
Priority to JP2021501328A priority Critical patent/JP7374511B2/ja
Priority to PCT/CN2020/141392 priority patent/WO2022141193A1/zh
Publication of WO2022141193A1 publication Critical patent/WO2022141193A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands

Definitions

  • the invention relates to a multi-spectral acquisition and analysis system, and relates to the technical field of agricultural information, in particular to a crop multi-spectral acquisition and analysis system based on an unmanned vehicle platform.
  • the crop multi-spectral acquisition and analysis system has the problem that the analysis is too single. Generally, only one quick scan is performed on the crop. Some crops are not fully scanned, which can easily lead to deviation and contingency in the final data;
  • the technical problem to be solved by the present invention is to provide a multi-spectral collection and analysis system for crops based on an unmanned vehicle platform, one of which is to automatically collect target samples and solve the problems of low efficiency and time-consuming and labor-intensive manual sample collection; wherein Another purpose is to solve the problem that the scanning is not comprehensive and thorough enough to achieve the effect of storing the samples inside the device for long-term multi-layer scanning. Another purpose is to have the function of data exchange to facilitate the acquisition of the latest and most comprehensive The standard information is beneficial to improve the accuracy of the final data results.
  • the technical scheme adopted in the present invention is:
  • a crop multispectral acquisition and analysis system based on an unmanned vehicle platform comprising a sample acquisition and scanning device, a data exchange and analysis device and a mobile unmanned vehicle, wherein the bottom of the sample acquisition and scanning device is movably connected to the top of the mobile unmanned vehicle, so the The bottom of the data exchange and analysis device is movably connected to the top of the sample collection and scanning device, and one end of the sample collection and scanning device is located outside the mobile unmanned vehicle.
  • the mobile unmanned vehicle includes a base, a roller, and a control switch.
  • the roller is movably installed inside the base
  • the bottom of the control switch is movably installed at one end of the base
  • the bottom of the engine is fixedly connected to the base
  • one end of the motor is movably connected to the inside of the roller
  • the terminal of the motor is electrically connected to the terminal of the control switch
  • one end of the transmission rod is movably connected to the inside of the motor.
  • the other end is movably connected to the inside of the connecting rod, the two ends of the connecting rod are movably connected to the inside of the roller, the bottom of the remote control room is fixedly connected to the upper surface of the base, and one end of the steering table is movably connected to the remote control Inside the chamber, the other end of the steering platform is movably connected to the top of the connecting rod.
  • a further improvement of the technical solution of the present invention is that: a collection head, a support rod, a rotating shaft, a transmission tube and a power chamber are installed at one end of the sample collection and scanning device, the top of the collection head penetrates the sample collection and scanning device, and the top of the collection head penetrates the sample collection and scanning device.
  • the bottom is movably installed inside the sample collection and scanning device, one end of the support rod is fixedly connected to the inner wall of the collection head, the other end of the support rod is fixedly connected to the outer wall of the rotating shaft, and one end of the transmission tube is fixedly connected to the Inside the rotating shaft, the other end of the transmission pipe is fixedly connected inside the power chamber.
  • a further improvement of the technical solution of the present invention is that a telescopic hose, a holding layer, a scanning head, a data cable, a general control room and an image storage room are installed at the other end of the sample acquisition and scanning device, and one end of the telescopic hose is fixed Connected inside the storage layer, the bottom of the storage layer is fixedly connected to the inner wall of the sample collection and scanning device, the scanning head is located directly above the storage layer, and one end of the data line is fixedly connected to the scanning head.
  • the other end of the data cable is fixedly connected to the interior of the general control room
  • the top of the general control room is fixedly connected to the inner wall of the sample acquisition and scanning device
  • one side of the image storage room is fixedly connected to the general control room
  • the top of the image storage chamber is fixedly connected to the inner wall of the sample acquisition and scanning device.
  • the data exchange and analysis device includes a wire, a data storage chamber, a conversion layer, an access layer, a signal rod and a signal enhancement wall, and one end of the wire is movably connected inside the data storage chamber, One end of the conversion layer is fixedly connected to one side of the data storage chamber, the other end of the conversion layer is fixedly connected to the bottom of the signal rod, and the bottom of the access layer is movably connected to the junction of the conversion layer and the data storage chamber , the top of the access layer is movably connected to the top of the data exchange and analysis device, and a signal enhancement wall is installed around the signal rod.
  • a further improvement of the technical solution of the present invention is that the collection head is located at the junction of the base, the top of the collection head is set in a shovel shape, and the bottom of the collection head is set in a triangular shape.
  • a further improvement of the technical solution of the present invention is that the other end of the telescopic hose is movably connected inside the collection head, and the general control room and the image storage room are located on the top of the sample collection and scanning device.
  • a further improvement of the technical solution of the present invention is that the other end of the wire is movably connected inside the general control room, and the terminal of the data storage room is electrically connected to the terminal of the image storage room.
  • the mobile unmanned vehicle is used to drive the sample collection and scanning device to move, and the device is remotely controlled to collect samples, so as to improve the efficiency of sample collection, and to perform sufficient multi-layer scanning on it to obtain more comprehensive data , and finally by comparing the latest data with the scan results, the accuracy of the result data is greatly improved.
  • the beneficial effects of the present invention are: the collected samples are transported to the holding layer for scanning at the first time, so that the first-hand uncontaminated specific data can be obtained, and the samples can be scanned for a long time to obtain the changes of the whole sample. process to solve the problem that the scan is not comprehensive and thorough enough to achieve the effect of storing the sample inside the device for long-term multi-layer scanning.
  • the beneficial effect of the present invention is that the latest and most comprehensive standard information is obtained from the terminal by using the signal rod, and compared with the scanning result, which is beneficial to improve the accuracy of the final data result, and the data structure can also be sent to the remote control terminal, saving energy
  • the operator can not only directly observe the information of the sample remotely, but also quickly obtain the comparison information of the sample, so as to quickly formulate countermeasures.
  • the unmanned vehicle with the remote joystick control function can prevent human beings from entering the detection area, avoid direct contact between some human bodies and crops, and keep the crop samples at high purity, which not only maintains the The ability to move quickly without contaminating the crop ensures that the scan results will not be disturbed.
  • FIG. 1 is a schematic diagram of an appearance provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a sample acquisition and scanning device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a data exchange and analysis apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a mobile unmanned vehicle according to an embodiment of the present invention.
  • the present invention provides a crop multispectral acquisition and analysis system based on an unmanned vehicle platform, including a sample acquisition and scanning device 1 , a data exchange and analysis device 2 and a mobile unmanned vehicle 3 .
  • the bottom is movably connected to the top of the mobile unmanned vehicle 3
  • the bottom of the data exchange and analysis device 2 is movably connected to the top of the sample collection and scanning device 1
  • one end of the sample collection and scanning device 1 is located outside the mobile unmanned vehicle 3 .
  • the mobile unmanned vehicle 3 is remotely controlled by the operator, which drives the sample collection and scanning device 1 to collect samples in the target area, and scans the collected samples, while the data exchange and analysis device 2 acquires the samples. After the standard information is obtained, it is compared with the scanning result to obtain the final comparison result.
  • a collection head 4 a support rod 5 , a rotating shaft 6 , a transmission tube 7 and a power chamber 8 are installed at one end of the sample collection and scanning device 1 ,
  • the top of the collection head 4 runs through the sample collection and scanning device 1, the bottom of the collection head 4 is movably installed inside the sample collection and scanning device 1, one end of the support rod 5 is fixedly connected to the inner wall of the collection head 4, and the other end of the support rod 5 is fixed
  • one end of the transmission pipe 7 is fixedly connected inside the rotating shaft 6
  • the other end of the transmission pipe 7 is fixedly connected inside the power chamber 8 .
  • a telescopic hose 9, a holding layer 10, a scanning head 11, a data cable 12, a general control room 13 and an image storage room 14 are installed at the other end of the sample acquisition and scanning device 1, and one end of the telescopic hose 9 is fixedly connected to the Inside the storage layer 10 , the bottom of the storage layer 10 is fixedly connected to the inner wall of the sample acquisition and scanning device 1 , the scanning head 11 is located directly above the storage layer 10 , and one end of the data line 12 is fixedly connected to the inside of the scanning head 11 , the other end of the data cable 12 is fixedly connected to the interior of the general control room 13 , the top of the general control room 13 is fixedly connected to the inner wall of the sample acquisition and scanning device 1 , and one side of the image storage room 14 is fixedly connected to the inner wall of the general control room 13 On one side, the top of the image storage chamber 14 is fixedly connected to the inner wall of the sample acquisition and scanning device 1 .
  • the collection head 4 is located at the junction of the base 21 , the top of the collection head 4 is set in a shovel shape, and the bottom of the collection head 4 is set in a triangle shape.
  • the other end of the telescopic hose 9 is movably connected inside the collection head 4 , and the general control room 13 and the image storage room 14 are located on the top of the sample collection and scanning device 1 .
  • the rotation shaft 6 cooperates with the support rod 5 to control the angle of the collection head 4, while the power chamber 8 controls the rotation shaft 6 through the transmission pipe 7, and the collection head 4 transports the collected samples through the telescopic hose 9 for the first time.
  • Go to the storage layer 10 use the scanning head 11 to scan the sample, obtain the first-hand uncontaminated specific data, keep scanning the sample for a long time, obtain the change process of the entire sample, and pass the scanning result data through
  • the data line 12 is transmitted to the general control room 13, and the image storage room 14 transmits the sample image back to the control terminal in real time.
  • the present invention provides a technical solution: preferably, the data exchange and analysis device 2 includes a wire 15 , a data storage chamber 16 , a conversion layer 17 , and an access layer. 18.
  • the bottom of the signal bar 19 and the bottom of the access layer 18 are movably connected at the junction of the conversion layer 17 and the data storage chamber 16 , and the top of the access layer 18 is movably connected to the top of the data exchange analysis device 2 , and the signal bar 19 is installed around the There are signal enhancement walls 20 .
  • the other end of the wire 15 is movably connected inside the general control room 13 , and the terminal of the data storage room 16 is electrically connected to the terminal of the image storage room 14 .
  • the above-mentioned embodiment provides that the signal pole 19 obtains the latest standard information from the Internet. During this process, since crops generally grow in farmland or deep mountains, the signal is not easy to capture.
  • the signal enhancement wall 20 can improve the strength of the signal received by the signal pole 19. And transfer it to the conversion layer 17 to convert it into specific data and store it in the data storage room 16, and then transmit the data to the general control room 13 through the wire 15 for data comparison, and the design of the access layer 18 can take out data at any time.
  • the storage compartment 16 is replaced to keep the data storage compartment 16 from becoming full.
  • the mobile unmanned vehicle 3 includes a base 21 , a roller 22 , a control switch 23 , an engine 24 , a transmission
  • the rod 25 , the connecting rod 26 , the remote control room 27 and the steering table 28 , the roller 22 is movably installed inside the base 21
  • the bottom of the control switch 23 is movably installed at one end of the base 21
  • the bottom of the engine 24 is fixedly connected to the base 21
  • one end of the motor 24 is movably connected inside the roller 22, the terminal of the motor 24 is electrically connected with the terminal of the control switch 23, one end of the transmission rod 25 is movably connected inside the motor 24, and the other end of the transmission rod 25 is movably connected to the inside of the motor 24.
  • One end of the connecting rod 26 is movably connected to the inside of the connecting rod 26, both ends of the connecting rod 26 are movably connected to the inside of the roller 22, the bottom of the remote control room 27 is fixedly connected to the upper surface of the base 21, and one end of the steering table 28 is movably connected to the remote control room. Inside 27 , the other end of the steering platform 28 is movably connected to the top of the connecting rod 26 .
  • control switch 23 is turned on, the engine 24 starts to operate, the roller 22 is driven to roll, and the roller 22 at the front end of the base 21 is driven by the transmission rod 25, and the operator can issue an instruction to the remote control room 27,
  • Control the steering table 28 to change the direction of the connecting rod 26, so as to realize the control of the mobile unmanned vehicle 3 to move, which can prevent humans from entering the detection area, avoid direct contact between some humans and crops, and keep the crop samples relatively high purity It maintains the function of fast movement without contaminating the crops, ensuring that the scanning results will not be disturbed.
  • the present invention includes a sample collection and scanning device 1, a data exchange and analysis device 2, and a mobile unmanned vehicle 3.
  • the collection head 4 transports the collected samples into the storage layer 10, and uses The scanning head 11 performs continuous multi-directional scanning on the sample, and then transmits the scanned data to the general control room 13.
  • the signal rod 19 obtains the latest standard information, and converts the signal into the signal through the conversion layer 17.
  • the specific data is transmitted to the general control room 13 for comparison with the scanned data, and finally the results are sent to the control terminal.
  • the engine 24 provides power for the mobile unmanned vehicle 3 , and the operator sends an instruction to the remote control room 27 Inside, the steering table 28 is controlled.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种基于无人车平台的作物多光谱采集分析系统,包括样本采集扫描装置(1)、数据交换分析装置(2)和移动无人车(3),样本采集扫描装置(1)的底部活动连接在移动无人车(3)的顶部,数据交换分析装置(2)的底部活动连接在样本采集扫描装置(1)的顶部,样本采集扫描装置(1)的一端位于移动无人车(3)的外部。通过利用移动无人车(3)带动样本采集扫描装置(1)进行移动,远程控制样本采集扫描装置(1)进行收集样本,便于提高样本采集的效率,并进行充分的多层扫描,获得更加全面的数据,最后通过获取最新数据与扫描结果进行对比,大幅度提高结果数据的准确性,获得第一手未被污染的数据,并保持对样本的长时间扫描,获取整个样本的变化过程。

Description

一种基于无人车平台的作物多光谱采集分析系统 技术领域
本发明涉及一种多光谱采集分析系统,涉及农业信息技术领域,具体涉及一种基于无人车平台的作物多光谱采集分析系统。
背景技术
随着农业信息的发展,现代农业越来越追求高产、优质和高效,农业设备作为农业生产的关键性载物,其作用更加重要,利用农业设备作为农作物相关数据的获取平台,是农业信息化发展的必由之路,其中依靠多光谱相机成像是实现精准农业的有效途径之一,通过多光谱相机成像,可以有效地识别作物上是否存在有害生物、疾病或杂草;计算并确定作物数量或种植间距,预估作物产量。
技术问题
针对现有技术存在以下问题:
1、作物多光谱采集分析系统存在分析方面过于单一的问题,一般只对作物进行一次快速扫描,一些作物未得到充分的扫描,很容易导致最终数据出现偏差和偶然性;
2、对一些分析系统来说,需要提前输入标准信息,然后与扫描到的信息进行比对,此方法很同一出现数据过时的情况,导致一些最新的数据没能够被及时发现,具有很大的局限性,进而达不到分析系统的使用初衷,该分析系统的适用性变差,因此需要进行结构创新来解决具体问题。
技术解决方案
本发明需要解决的技术问题是提供一种基于无人车平台的作物多光谱采集分析系统,其中一种目的是为了具备自动采集目标样本的,解决人工收集样本效率低下、费时费力的问题;其中另一种目的是为了解决扫描不够全面、彻底的问题,以达到将样本储存在设备内部进行长时间的多层扫描效果,其中再一种目的是为了具备数据交换的功能,方便获取最新最全面的标准信息,有利于提高最终数据结果的准确性。
为解决上述技术问题,本发明所采用的技术方案是:
一种基于无人车平台的作物多光谱采集分析系统,包括样本采集扫描装置、数据交换分析装置和移动无人车,所述样本采集扫描装置的底部活动连接在移动无人车的顶部,所述数据交换分析装置的底部活动连接在样本采集扫描装置的顶部,所述样本采集扫描装置的一端位于移动无人车的外部,其特征在于,所述移动无人车包括底座、滚轮、控制开关、发动机、传输杆、连接杆、远程控制室和转向台,所述滚轮活动安装在底座的内部,所述控制开关的底部活动安装在底座的一端,所述发动机的底部固定连接在底座的上表面,所述发动机的一端活动连接在滚轮的内部,所述发动机的接线端与控制开关的接线端之间电性连接,所述传输杆的一端活动连接在发动机的内部,所述传输杆的另一端活动连接在连接杆的内部,所述连接杆的两端活动连接在滚轮的内部,所述远程控制室的底部固定连接在底座的上表面,所述转向台的一端活动连接在远程控制室的内部,所述转向台的另一端活动连接在连接杆的顶部。
本发明技术方案的进一步改进在于:所述样本采集扫描装置的一端安装有采集头、支撑杆、转轴、传输管和动力室,所述采集头的顶部贯穿样本采集扫描装置,所述采集头的底部活动安装在样本采集扫描装置的内部,所述支撑杆的一端固定连接在采集头的内壁上,所述支撑杆的另一端固定连接在转轴的外壁上,所述传输管的一端固定连接在转轴的内部,所述传输管的另一端固定连接在动力室的内部。
本发明技术方案的进一步改进在于:所述样本采集扫描装置的另一端安装有伸缩软管、盛放层、扫描头、数据线、总控制室和图像储存室,所述伸缩软管的一端固定连接在盛放层的内部,所述盛放层的底部固定连接在样本采集扫描装置的内壁上,所述扫描头位于盛放层的正上方,所述数据线的一端固定连接在扫描头的内部,所述数据线的另一端固定连接在总控制室的内部,所述总控制室的顶部固定连接在样本采集扫描装置的内壁上,所述图像储存室的一侧固定连接在总控制室的一侧,所述,所述图像储存室的顶部固定连接在样本采集扫描装置的内壁上。
本发明技术方案的进一步改进在于:所述数据交换分析装置包括导线、数据储存室、转换层、存取层、信号杆和信号增强壁,所述导线的一端活动连接在数据储存室的内部,所述转换层的一端固定连接在数据储存室的一侧,所述转换层的另一端固定连接在信号杆的底部,所述存取层的底部活动连接在转换层和数据储存室的交接处,所述存取层的顶部活动连接在数据交换分析装置的顶部,所述信号杆的周围安装有信号增强壁。
本发明技术方案的进一步改进在于:所述采集头位于底座的交接处,所述采集头的顶部设置为铲型,所述采集头的底部设置为三角型。
本发明技术方案的进一步改进在于:所述伸缩软管的另一端活动连接在采集头的内部,所述总控制室和图像储存室位于样本采集扫描装置的顶部。
本发明技术方案的进一步改进在于:所述导线的另一端活动连接在总控制室的内部,所述数据储存室的接线端与图像储存室的接线端之间电性连接型。
有益效果
本发明的有益效果是:利用移动无人车带动样本采集扫描装置进行移动,远程控制此装置进行收集样本,便于提高样本采集的效率,并对其进行充分的多层扫描,获得更加全面的数据,最后通过获取最新数据与扫描结果进行对比,大幅度提高结果数据的准确性。
本发明的有益效果是:将采集到的样本第一时间运送到盛放层处进行扫描,可以获得第一手未被污染的具体数据,并保持对样本的长时间扫描,获取整个样本的变化过程,解决扫描不够全面、彻底的问题,以达到将样本储存在设备内部进行长时间的多层扫描效果。
本发明的有益效果是:利用信号杆从终端获取最新、最全面的标准信息,与扫描结果进行比对,有利于提高最终数据结果的准确性,还可以将数据结构发送动远程操控端,节省了传输数据的时间,操控人员不但可以远程直接观察到样本的信息,还可以快速获取到样本的对比信息,从而快速制定应对措施。
本发明的有益效果是:具备远程摇杆操控功能的无人车,可以避免人类进入到检测区域内部,避免了一些人体与作物发生直接接触,使作物样本保持较高的纯洁度,既保持了快速移动的功能,又不会对作物造成污染,确保扫描结果不会被干扰。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。本发明的具体实施方式由以下实施例及其附图详细给出。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
在附图中:
图1为本发明一实施例提供的一种外观示意图;
图2为本发明一实施例提供的一种样本采集扫描装置结构示意图;
图3为本发明一实施例提供的一种数据交换分析装置结构示意图。
图4为本发明一实施例提供的一种移动无人车结构示意图。
附图中,各标号所代表的部件列表如下:
图中:1、样本采集扫描装置;2、数据交换分析装置;3、移动无人车;4、采集头;5、支撑杆;6、转轴;7、传输管;8、动力室;9、伸缩软管;10、盛放层;11、扫描头;12、数据线;13、总控制室;14、图像储存室;15、导线;16、数据储存室;17、转换层;18、存取层;19、信号杆;20、信号增强壁;21、底座;22、滚轮;23、控制开关;24、发动机;25、传输杆;26、连接杆;27、远程控制室;28、转向台。
本发明的实施方式
下面结合实施例对本发明做进一步详细说明:
实施例1
如图1所示,本发明提供了一种基于无人车平台的作物多光谱采集分析系统,包括样本采集扫描装置1、数据交换分析装置2和移动无人车3,样本采集扫描装置1的底部活动连接在移动无人车3的顶部,数据交换分析装置2的底部活动连接在样本采集扫描装置1的顶部,样本采集扫描装置1的一端位于移动无人车3的外部。
在本实施例中,移动无人车3由操作人员进行远程控制,带动样本采集扫描装置1在目标区域进行样本采集,并对所采集到的样本进行扫描,而数据交换分析装置2则在获取到标准信息之后与扫描结果进行对比,从而获得最终的对比结果。
实施例2
如图2所示,在实施例1的基础上,本发明提供一种技术方案:样本采集扫描装置1的一端安装有采集头4、支撑杆5、转轴6、传输管7和动力室8,采集头4的顶部贯穿样本采集扫描装置1,采集头4的底部活动安装在样本采集扫描装置1的内部,支撑杆5的一端固定连接在采集头4的内壁上,支撑杆5的另一端固定连接在转轴6的外壁上,传输管7的一端固定连接在转轴6的内部,传输管7的另一端固定连接在动力室8的内部。
优选的,样本采集扫描装置1的另一端安装有伸缩软管9、盛放层10、扫描头11、数据线12、总控制室13和图像储存室14,伸缩软管9的一端固定连接在盛放层10的内部,盛放层10的底部固定连接在样本采集扫描装置1的内壁上,扫描头11位于盛放层10的正上方,数据线12的一端固定连接在扫描头11的内部,数据线12的另一端固定连接在总控制室13的内部,总控制室13的顶部固定连接在样本采集扫描装置1的内壁上,图像储存室14的一侧固定连接在总控制室13的一侧,图像储存室14的顶部固定连接在样本采集扫描装置1的内壁上。
具体的,采集头4位于底座21的交接处,采集头4的顶部设置为铲型,采集头4的底部设置为三角型。
具体的,伸缩软管9的另一端活动连接在采集头4的内部,总控制室13和图像储存室14位于样本采集扫描装置1的顶部。
上述实施例提供的,转轴6配合支撑杆5控制采集头4的角度,而动力室8通过传输管7对转轴6进行控制,采集头4将采集到的样本第一时间运送通过伸缩软管9到盛放层10处,利用扫描头11对样本进行扫描,可以获得第一手未被污染的具体数据,并保持对样本的长时间扫描,获取整个样本的变化过程,并将扫描结果数据通过数据线12传输到总控制室13内,图像储存室14则将样本图像实时传回到操控终端。
实施例3
如图3所示,在实施例1、实施例2的基础上,本发明提供一种技术方案:优选的,数据交换分析装置2包括导线15、数据储存室16、转换层17、存取层18、信号杆19和信号增强壁20,导线15的一端活动连接在数据储存室16的内部,转换层17的一端固定连接在数据储存室16的一侧,转换层17的另一端固定连接在信号杆19的底部,存取层18的底部活动连接在转换层17和数据储存室16的交接处,存取层18的顶部活动连接在数据交换分析装置2的顶部,信号杆19的周围安装有信号增强壁20。
具体的,导线15的另一端活动连接在总控制室13的内部,数据储存室16的接线端与图像储存室14的接线端之间电性连接。
上述实施例提供的,信号杆19从互联网上获取最新的标准信息,此过程中由于作物一般生长在农田或深山里,信号不易捕捉到,信号增强壁20可以提高信号杆19接收信号的强度,并将其传输到转换层17内转换为具体数据储存在数据储存室16内,再通过导线15将数据传输到总控制室13内进行数据比对,而存取层18的设计可以随时取出数据储存室16进行更换,保持数据储存室16不会出现内存已满的情况。
实施例4
如图4所示,在实施例1、实施例2、实施例3的基础上,本发明提供一种技术方案:移动无人车3包括底座21、滚轮22、控制开关23、发动机24、传输杆25、连接杆26、远程控制室27和转向台28,滚轮22活动安装在底座21的内部,控制开关23的底部活动安装在底座21的一端,发动机24的底部固定连接在底座21的上表面,发动机24的一端活动连接在滚轮22的内部,发动机24的接线端与控制开关23的接线端之间电性连接,传输杆25的一端活动连接在发动机24的内部,传输杆25的另一端活动连接在连接杆26的内部,连接杆26的两端活动连接在滚轮22的内部,远程控制室27的底部固定连接在底座21的上表面,转向台28的一端活动连接在远程控制室27的内部,转向台28的另一端活动连接在连接杆26的顶部。
上述实施例提供的,打开控制开关23,使发动机24开始运作,带动滚轮22进行滚动,并通过传输杆25对底座21前端的滚轮22进行驱动,而操作人员可以对远程控制室27发出指令,控制转向台28改变连接杆26的方向,从而实现控制此移动无人车3进行移动,可以避免人类进入到检测区域内部,避免了一些人体与作物发生直接接触,使作物样本保持较高的纯洁度,既保持了快速移动的功能,又不会对作物造成污染,确保扫描结果不会被干扰。
下面具体说一下该基于无人车平台的作物多光谱采集分析系统的工作原理。
如图1所示,本发明包括样本采集扫描装置1、数据交换分析装置2和移动无人车3,如图2所示,采集头4将所采集的样本运送到盛放层10内,利用扫描头11对样本进行持续性的多方位扫描,随后将扫描的数据传输到总控制室13内,如图3所示,信号杆19获取最新的标准信息,并通过转换层17将信号转换为具体数据,传输到总控制室13内与扫描数据进行对比,最后将结果发送到操控终端,如图4所示,发动机24为移动无人车3提供动力,操作人员发出指令到远程控制室27内,对转向台28进行控制。
以上所述,仅为本发明的较佳实施例而已,并非对本发明作任何形式上的限制;凡本行业的普通技术人员均可按说明书附图所示和以上所述而顺畅地实施本发明;但是,凡熟悉本专业的技术人员在不脱离本发明技术方案范围内,利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对以上实施例所做的任何等同变化的更动、修饰与演变等,均仍属于本发明的技术方案的保护范围之内。

Claims (7)

  1. 一种基于无人车平台的作物多光谱采集分析系统,包括样本采集扫描装置(1)、数据交换分析装置(2)和移动无人车(3),所述样本采集扫描装置(1)的底部活动连接在移动无人车(3)的顶部,所述数据交换分析装置(2)的底部活动连接在样本采集扫描装置(1)的顶部,所述样本采集扫描装置(1)的一端位于移动无人车(3)的外部,其特征在于,所述移动无人车(3)包括底座(21)、滚轮(22)、控制开关(23)、发动机(24)、传输杆(25)、连接杆(26)、远程控制室(27)和转向台(28),所述滚轮(22)活动安装在底座(21)的内部,所述控制开关(23)的底部活动安装在底座(21)的一端,所述发动机(24)的底部固定连接在底座(21)的上表面,所述发动机(24)的一端活动连接在滚轮(22)的内部,所述发动机(24)的接线端与控制开关(23)的接线端之间电性连接,所述传输杆(25)的一端活动连接在发动机(24)的内部,所述传输杆(25)的另一端活动连接在连接杆(26)的内部,所述连接杆(26)的两端活动连接在滚轮(22)的内部,所述远程控制室(27)的底部固定连接在底座(21)的上表面,所述转向台(28)的一端活动连接在远程控制室(27)的内部,所述转向台(28)的另一端活动连接在连接杆(26)的顶部。
  2. 根据权利要求1所述的一种基于无人车平台的作物多光谱采集分析系统,其特征在于,所述样本采集扫描装置(1)的一端安装有采集头(4)、支撑杆(5)、转轴(6)、传输管(7)和动力室(8),所述采集头(4)的顶部贯穿样本采集扫描装置(1),所述采集头(4)的底部活动安装在样本采集扫描装置(1)的内部,所述支撑杆(5)的一端固定连接在采集头(4)的内壁上,所述支撑杆(5)的另一端固定连接在转轴(6)的外壁上,所述传输管(7)的一端固定连接在转轴(6)的内部,所述传输管(7)的另一端固定连接在动力室(8)的内部。
  3. 根据权利要求1所述的一种基于无人车平台的作物多光谱采集分析系统,其特征在于,所述样本采集扫描装置(1)的另一端安装有伸缩软管(9)、盛放层(10)、扫描头(11)、数据线(12)、总控制室(13)和图像储存室(14),所述伸缩软管(9)的一端固定连接在盛放层(10)的内部,所述盛放层(10)的底部固定连接在样本采集扫描装置(1)的内壁上,所述扫描头(11)位于盛放层(10)的正上方,所述数据线(12)的一端固定连接在扫描头(11)的内部,所述数据线(12)的另一端固定连接在总控制室(13)的内部,所述总控制室(13)的顶部固定连接在样本采集扫描装置(1)的内壁上,所述图像储存室(14)的一侧固定连接在总控制室(13)的一侧,所述,所述图像储存室(14)的顶部固定连接在样本采集扫描装置(1)的内壁上。
  4. 根据权利要求1所述的一种基于无人车平台的作物多光谱采集分析系统,其特征在于,所述数据交换分析装置(2)包括导线(15)、数据储存室(16)、转换层(17)、存取层(18)、信号杆(19)和信号增强壁(20),所述导线(15)的一端活动连接在数据储存室(16)的内部,所述转换层(17)的一端固定连接在数据储存室(16)的一侧,所述转换层(17)的另一端固定连接在信号杆(19)的底部,所述存取层(18)的底部活动连接在转换层(17)和数据储存室(16)的交接处,所述存取层(18)的顶部活动连接在数据交换分析装置(2)的顶部,所述信号杆(19)的周围安装有信号增强壁(20)。
  5. 根据权利要求2所述的一种基于无人车平台的作物多光谱采集分析系统,其特征在于,所述采集头(4)位于底座(21)的交接处,所述采集头(4)的顶部设置为铲型,所述采集头(4)的底部设置为三角型。
  6. 根据权利要求3所述的一种基于无人车平台的作物多光谱采集分析系统,其特征在于,所述伸缩软管(9)的另一端活动连接在采集头(4)的内部,所述总控制室(13)和图像储存室(14)位于样本采集扫描装置(1)的顶部。
  7. 根据权利要求4所述的一种基于无人车平台的作物多光谱采集分析系统,其特征在于,所述导线(15)的另一端活动连接在总控制室(13)的内部,所述数据储存室(16)的接线端与图像储存室(14)的接线端之间电性连接。
PCT/CN2020/141392 2020-12-30 2020-12-30 一种基于无人车平台的作物多光谱采集分析系统 WO2022141193A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021501328A JP7374511B2 (ja) 2020-12-30 2020-12-30 自動運転車プラットフォームに基づく作物マルチスペクトル採取分析システム
PCT/CN2020/141392 WO2022141193A1 (zh) 2020-12-30 2020-12-30 一种基于无人车平台的作物多光谱采集分析系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/141392 WO2022141193A1 (zh) 2020-12-30 2020-12-30 一种基于无人车平台的作物多光谱采集分析系统

Publications (1)

Publication Number Publication Date
WO2022141193A1 true WO2022141193A1 (zh) 2022-07-07

Family

ID=82258758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141392 WO2022141193A1 (zh) 2020-12-30 2020-12-30 一种基于无人车平台的作物多光谱采集分析系统

Country Status (2)

Country Link
JP (1) JP7374511B2 (zh)
WO (1) WO2022141193A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030227626A1 (en) * 2002-04-09 2003-12-11 Dobbs Michael E. Multispectral active remote sensing without narrowband optical filters
CN101923319A (zh) * 2010-04-16 2010-12-22 江苏大学 一种基于高光谱遥感技术的设施栽培作物智能监控系统
CN102507457A (zh) * 2011-11-18 2012-06-20 江苏大学 一种快速无损检测作物营养元素的装置及方法
CN106403820A (zh) * 2016-11-09 2017-02-15 中国科学院植物研究所 田间作物表型数据高通量采集系统
CN108414454A (zh) * 2018-01-25 2018-08-17 北京农业信息技术研究中心 一种植物三维结构及光谱信息的同步测量系统及测量方法
CN111443048A (zh) * 2020-05-13 2020-07-24 塔里木大学 农作物叶片光谱数据采集小车及采集系统
CN212180636U (zh) * 2020-02-28 2020-12-18 南京慧瞳作物表型组学研究院有限公司 一种田间作物表型五维数据采集车
CN112129725A (zh) * 2020-09-04 2020-12-25 浙江大学 一种基于光谱校正的车载植物养分光谱检测仪

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106687877A (zh) * 2014-07-16 2017-05-17 株式会社理光 系统,机械,控制方法和程序
JP7076969B2 (ja) * 2017-09-06 2022-05-30 株式会社トプコン 施肥を行う装置、施肥を行う方法およびプログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030227626A1 (en) * 2002-04-09 2003-12-11 Dobbs Michael E. Multispectral active remote sensing without narrowband optical filters
CN101923319A (zh) * 2010-04-16 2010-12-22 江苏大学 一种基于高光谱遥感技术的设施栽培作物智能监控系统
CN102507457A (zh) * 2011-11-18 2012-06-20 江苏大学 一种快速无损检测作物营养元素的装置及方法
CN106403820A (zh) * 2016-11-09 2017-02-15 中国科学院植物研究所 田间作物表型数据高通量采集系统
CN108414454A (zh) * 2018-01-25 2018-08-17 北京农业信息技术研究中心 一种植物三维结构及光谱信息的同步测量系统及测量方法
CN212180636U (zh) * 2020-02-28 2020-12-18 南京慧瞳作物表型组学研究院有限公司 一种田间作物表型五维数据采集车
CN111443048A (zh) * 2020-05-13 2020-07-24 塔里木大学 农作物叶片光谱数据采集小车及采集系统
CN112129725A (zh) * 2020-09-04 2020-12-25 浙江大学 一种基于光谱校正的车载植物养分光谱检测仪

Also Published As

Publication number Publication date
JP7374511B2 (ja) 2023-11-07
JP2023513975A (ja) 2023-04-05

Similar Documents

Publication Publication Date Title
JP6707606B2 (ja) 移動可能な生産システムのための自律的な移動式ロボット
CN109099925B (zh) 一种无人农机导航路径规划与作业质量评估方法与装置
CN109220227A (zh) 一种名优茶采摘机器人
CN104954746A (zh) 一种智能化移动车载式远程作物数字图像采集系统及其方法
CN102608675A (zh) 一种农田环境小气候的监测系统、装置及方法
CN114080905B (zh) 基于数字双胞胎的采摘方法及云采摘机器人系统
KR102131941B1 (ko) 레일 이동형 작물 생육 측정장치
CN107830308A (zh) 自适应管径管道内窥爬行机器人
WO2020206936A1 (zh) 收割机远程遥控系统和收割机远程遥控装置
WO2022141193A1 (zh) 一种基于无人车平台的作物多光谱采集分析系统
CN213290258U (zh) 一种基于履带式多功能机器人
CN110091343A (zh) 一种用于农田环境信息监测的机器人
WO2022233307A1 (zh) 一种基于作物茎秆定位的锄草机器人及锄草方法
CN206182161U (zh) 全自动微小昆虫图像采集装置
WO2021077870A1 (zh) 一种用于田间作物表型分析的移动大棚系统及其运输轨道
CN107571236A (zh) 一种长寿命、低检修率巡检机器人
CN207429059U (zh) 一种基于扫地机器人的实时监控系统
CN210017334U (zh) 一种温室用风送式自动对靶授粉小车
CN212135231U (zh) 一种自走式智能农业监测装置
CN106878596B (zh) 一种穿戴式植保图像采集装置
CN108460820B (zh) 基于图像反馈的微型移动设备控制装置和方法
WO2020207225A1 (zh) 用于农割作业机器的图像采集装置及其处理方法
CN211073606U (zh) 一种用于农田环境信息监测的机器人
CN114756050A (zh) 一种应用于无人机遥感场景的自动巡航系统
CN210485112U (zh) 一种无线遥控式三轴旋转的摄像机云台

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021501328

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967534

Country of ref document: EP

Kind code of ref document: A1