WO2022140941A1 - 无人机 - Google Patents

无人机 Download PDF

Info

Publication number
WO2022140941A1
WO2022140941A1 PCT/CN2020/140263 CN2020140263W WO2022140941A1 WO 2022140941 A1 WO2022140941 A1 WO 2022140941A1 CN 2020140263 W CN2020140263 W CN 2020140263W WO 2022140941 A1 WO2022140941 A1 WO 2022140941A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
sub
drone
rotating shaft
unmanned aerial
Prior art date
Application number
PCT/CN2020/140263
Other languages
English (en)
French (fr)
Inventor
张立天
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/140263 priority Critical patent/WO2022140941A1/zh
Priority to CN202080069840.7A priority patent/CN114502462B/zh
Publication of WO2022140941A1 publication Critical patent/WO2022140941A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/293Foldable or collapsible rotors or rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography

Definitions

  • the present application relates to the technical field of unmanned aerial vehicles.
  • Unmanned aerial vehicles also known as unmanned aerial vehicles, are unmanned aircraft operated by radio remote control equipment or self-contained automatic flight control devices. At present, drones are widely used in various fields, such as shooting, transporting and placing materials, and competition. In order to facilitate the storage of drones, some drones are designed as foldable drones.
  • Embodiments of the present application provide a drone.
  • the drone of the embodiment of the present application includes a first arm, a second arm, and a plurality of visual sensors.
  • the second arm is connected to the first arm and can be rotated relative to the first arm to make the drone switch between the folded state and the unfolded state.
  • the first arm and the second The arms are at a first angle
  • the first arm and the second arm are at a second angle
  • the first angle is smaller than the second angle.
  • the first arm and the second arm are respectively provided with visual sensors, and the distance of at least two of the plurality of visual sensors when the drone is in the folded state is smaller than the distance when the drone is in the unfolded state.
  • the first arm and the second arm of the unmanned aerial vehicle according to the embodiment of the present application are respectively provided with visual sensors, and the distance of at least two visual sensors among the plurality of visual sensors is smaller than that of the unmanned aerial vehicle when the unmanned aerial vehicle is in the folded state.
  • the distance when the drone is in the unfolded state so that when the drone is limited in size, the perception range of the drone can be expanded by switching to the unfolded state to fly, thereby reducing the perception blind spot of the drone.
  • Embodiments of the present application provide another unmanned aerial vehicle.
  • the unmanned aerial vehicle includes a first machine arm and a second machine arm.
  • the second arm is connected to the first arm and can be rotated relative to the first arm to make the drone switch between the folded state and the unfolded state.
  • the first arm and the second The arms are at a first angle
  • the first arm and the second arm are at a second angle
  • the first angle is smaller than the second angle.
  • the first arm includes a first face and a second face opposite to each other, the first face is provided with a first power component, the second face is provided with a first vision sensor, and the second arm includes a third face opposite to and The fourth side, the third side is provided with a second power assembly, the fourth side is provided with a second visual sensor, and the orientation of the first visual sensor and the second visual sensor are different.
  • the first visual sensor and the first power assembly are disposed on the opposite first and second faces, and the second visual sensor and the second power assembly are disposed on the opposite first face and the second power assembly.
  • the sensing range of the UAV's visual sensor is not easily blocked by the power component, so as to expand the UAV's sensing direction and sensing range when the size of the UAV is limited.
  • Embodiments of the present application provide yet another drone, where the drone includes a first arm and a second arm.
  • the second arm is connected with the first arm through a rotating shaft, and both ends of the rotating shaft are provided with visual sensors.
  • the second arm can be rotated relative to the first arm to make the drone switch between the folded state and the unfolded state.
  • the first arm and the second arm are in the first Included angle
  • the first arm and the second arm form a second included angle
  • the first included angle is smaller than the second included angle.
  • the relative positions of the visual sensors at both ends of the rotating shaft will not change when the UAV of the embodiment of the present application is in a folded or expanded state, and the relative positions do not need to be re-calibrated when using the visual sensors at both ends of the rotating shaft for environmental perception or panoramic photography.
  • Embodiments of the present application provide yet another unmanned aerial vehicle.
  • the unmanned aerial vehicle includes a first arm, a second arm, and a first tripod.
  • the second arm is connected to the first arm and is rotatable relative to the first arm to switch the drone between a folded state and an unfolded state.
  • the first tripod is at least partially disposed on the first arm and the second arm, and when the drone changes from the folded state to the unfolded state, at least one of the first arm and the second arm drives the first arm
  • the foot stand is moved to cause the first foot stand to change from a folded state to an unfolded state.
  • the first tripod When the UAV of the embodiment of the present application is in a folded state, the first tripod is also in a folded state, so as to reduce the space required for accommodating the UAV; when the UAV is switched to the unfolded state, the first tripod can also be driven Switch to the unfolded state to provide stable support for the take-off and landing of the drone.
  • Embodiments of the present application also provide an unmanned aerial vehicle, which includes a first machine arm and a second machine arm.
  • the first arm includes two sub-arms.
  • the second arm includes two sub-arms. Wherein, the two sub-arms are located at the same first height, and the other two sub-arms are located at the same second height, and the first height is different from the second height.
  • the first arm and the second arm at least partially overlap; when the drone is switched from the folded state to the unfolded state, the angle between the sub-arms at the same height changes from the first arm to the unfolded state. The included angle switches to the second included angle.
  • the drone of the embodiment of the present application can switch between the folded and unfolded states.
  • the sub-arm at the first height and the sub-arm at the second height can be relatively rotated until the two overlap.
  • the more overlapping parts of the drone the higher the folding degree of the folded drone, which is more conducive to the storage of the drone.
  • the first arm and the second arm of the unmanned aerial vehicle of the present application can rotate relative to each other, so that the unmanned aerial vehicle can be switched between folded and unfolded states for easy storage.
  • FIG. 1 is a schematic diagram of a folded state of an unmanned aerial vehicle according to some embodiments of the present application.
  • Fig. 2 is a schematic diagram of the unfolded state of the UAV shown in Fig. 1;
  • FIG. 3 is a schematic diagram of the field of view of the unmanned aerial vehicle according to some embodiments of the present application.
  • FIG. 4 is a schematic diagram of the field of view of the unmanned aerial vehicle according to some embodiments of the present application.
  • Fig. 5 is the assembly schematic diagram of the unmanned aerial vehicle of some embodiments of the present application.
  • Fig. 6 is the exploded schematic diagram of the unmanned aerial vehicle shown in Fig. 5;
  • Fig. 7 is the assembly schematic diagram of the unmanned aerial vehicle of some embodiments of the present application.
  • Figure 8 is an exploded schematic view of the drone shown in Figure 5;
  • FIG. 9 is a schematic diagram of a folded state of the drone according to some embodiments of the present application.
  • Fig. 10 is a schematic diagram of the unfolded state of the UAV shown in Fig. 9;
  • FIG. 11 is an exploded schematic view of the UAV of some embodiments of the present application.
  • FIG. 12 is a schematic diagram of a drone of certain embodiments of the present application.
  • FIG. 13 is a schematic diagram of the folded state of the drone according to some embodiments of the present application.
  • Figure 14 is a schematic diagram of the unfolded state of the UAV shown in Figure 13;
  • 15 is a schematic diagram of a drone of certain embodiments of the present application.
  • orientation or positional relationship indicated by the terms “thickness”, “upper”, “top”, “bottom”, “inner”, “outer”, etc.
  • the orientation or positional relationship is only for the convenience of describing the application and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a limitation on the application .
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features.
  • features defined as “first”, “second” may expressly or implicitly include one or more features.
  • “plurality” means two or more, unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be mechanical connection, electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • the present application provides an unmanned aerial vehicle 100 .
  • the drone 100 includes a first arm 10 , a second arm 20 , and a plurality of vision sensors 30 .
  • the second arm 20 is connected to the first arm 10 and is rotatable relative to the first arm 10 to switch the drone 100 between the folded state and the unfolded state, when the drone 100 is in the folded state (eg, 1 ), the first arm 10 and the second arm 20 form a first included angle ⁇ , when the UAV 100 is in the unfolded state (for example, as shown in FIG. 2 ), the first arm 10 and the second The machine arm 20 forms a second included angle ⁇ , and the first included angle ⁇ is smaller than the second included angle ⁇ .
  • the first arm 10 and the second arm 20 are respectively provided with visual sensors 30, and the distance between at least two visual sensors 30 in the plurality of visual sensors 30 when the drone 100 is in a folded state is smaller than when the drone 100 is in an unfolded state distance in state.
  • the distance between at least two of the plurality of vision sensors 30 when the drone 100 is in the unfolded state is greater than the distance when the drone 100 is in the folded state.
  • the total field of view of the visual sensor 30 can be larger than the total field of view of the visual sensor 30 in the folded state.
  • the visual sensor 30 may be a common camera with a common field of view, or a camera with a larger field of view, such as a fisheye camera, which is not limited herein.
  • the visual sensor 30 can be used for capturing panoramic images, or for sensing the environment around the UAV 100 to achieve obstacle avoidance, which is not limited herein.
  • the plurality of visual sensors 30 may include two cameras for capturing panoramic images, which are respectively installed on the first arm 10 and the second arm 20 , and the two cameras cooperate to be able to capture a panoramic image of greater than or equal to 360°.
  • the plurality of visual sensors 30 may also include one or more common cameras.
  • the common camera may acquire multiple frames of images, and process the multiple frames of images to obtain images around the drone 100 .
  • the visual sensor 30 at the middle position of the first arm 10 and the visual sensor 30 at the middle position of the second arm 20 shown in FIG. 1 can be cameras for capturing panoramic images, and the combination of the two can capture images to obtain the UAV 100 360° panoramic image.
  • the two vision sensors 30 at both ends of the first machine arm 10 can be used as a binocular vision system, and can cooperate with imaging to jointly acquire environmental information around the drone 100 to achieve obstacle avoidance.
  • the two vision sensors 30 at both ends of the second machine arm 20 can also be used as a binocular vision system, which can cooperate with imaging to jointly acquire environmental information around the UAV 100 to achieve obstacle avoidance.
  • cameras arranged at both ends of the first arm 10 or at both ends of the second arm 20 may also be cameras for capturing panoramic images, and the cameras arranged in the middle can also sense the surrounding environment. Placing the two vision sensors used to form the binocular vision system at both ends of the machine arm helps to increase the baseline length, thereby improving the accuracy of the measurement. Accuracy can be further improved when a polyocular vision system is constructed using a vision sensor arranged in the middle.
  • the four visual sensors 30 of the drone 100 are all fisheyes lens.
  • the directions of the total field of view of the visual sensor 30 are approximately two spheres (the spheres in dotted lines only indicate the direction of the field of view), and the visual sensor 30 of the first arm 10 and the The visual fields of the visual sensors 30 of the two arms 20 have a large overlapping portion.
  • FIG. 3 in the folded state, the directions of the total field of view of the visual sensor 30 are approximately two spheres (the spheres in dotted lines only indicate the direction of the field of view), and the visual sensor 30 of the first arm 10 and the The visual fields of the visual sensors 30 of the two arms 20 have a large overlapping portion.
  • the drone 100 in the unfolded state, the total field of view of the visual sensor 30 is approximately four spheres, and the visual field of the visual sensor 30 of the first arm 10 and the visual sensor 30 of the second arm 20 are the same.
  • the overlap is small. Therefore, in the case where the size of the drone 100 is limited, the drone 100 can fly by switching to the unfolded state to expand the field of view of the drone 100 , that is, to expand the perception range of the drone 100 when flying, so as to reduce the The perception blind spot of UAV 100.
  • the first arm 10 and the second arm 20 form a first angle ⁇ , wherein when the first angle ⁇ is 0°, the first The overlapping portion of the first arm 10 and the second arm 20 is maximized, and the drone 100 is folded to a minimum state.
  • the first arm 10 and the second arm 20 form a second angle ⁇ , and the first angle ⁇ is smaller than the second angle ⁇ .
  • the distance between the adjacent visual sensors 30 can be as far as possible by adjusting the size of the second included angle ⁇ , so as to reduce the overlapping portion of the field of view of the adjacent visual sensors 30, so that the sensing range of the UAV 100 can be maximized. possibly expand.
  • the visual sensor 30 of the first arm 10 is adjacent to two visual sensors 30 of the second arm 20 .
  • the visual sensor 30 is far away from one visual sensor 30 of the adjacent second arm 20, it is bound to be close to the other visual sensor 30 of the second arm 20.
  • the second included angle ⁇ is 90°
  • the first arm 10 The visual sensor 30 is the same distance from the two visual sensors 30 of the adjacent second arm 20.
  • the overlapping portion of the field of view of the three visual sensors 30 is the smallest, and the sensing range of the drone 100 is expanded to the maximum state. .
  • the drone 100 of the embodiment of the present application can switch between the folded and unfolded states.
  • the first arm 10 and the second arm 20 of the drone 100 are respectively provided with visual sensors 30 , and at least two of the plurality of visual sensors 30 have visual sensors 30 .
  • the distance of the sensor 30 when the drone 100 is in the folded state is smaller than the distance when the drone 100 is in the unfolded state, so that when the drone 100 has a limited volume, it can fly by switching to the unfolded state to expand the unmanned aerial vehicle.
  • the sensing range of the drone 100 when it is flying can be reduced, so that the blind spot of perception of the drone 100 can be reduced.
  • the baseline between the visual sensors arranged at both ends of the first arm and the baseline between the visual sensors arranged at both ends of the second arm substantially overlap.
  • the baseline between the vision sensors arranged at both ends of the first machine arm and the baseline between the vision sensors arranged at both ends of the second machine arm form a certain angle.
  • the perceptual blind zone of the binocular vision system is located within a certain angle range of the extension lines on both sides of the baseline.
  • the baselines of the two vision sensors arranged at both ends of the first arm and the baselines of the two vision sensors arranged at both ends of the second arm basically overlap, and the perception blind area is also basically overlap each other.
  • the baselines of the two vision sensors arranged at both ends of the first arm and the baselines of the two vision sensors arranged at both ends of the second arm are at a certain angle, and the blind spot is perceived. Also from a substantially overlapping state to a staggered state.
  • the blind areas of perception of the two vision sensors disposed at both ends of the first arm can be at least partially covered by the sensing ranges of the two vision sensors disposed at both ends of the second arm, and the two vision sensors disposed at both ends of the second arm
  • the sensing blind area of the sensor can be at least partially covered by the sensing range of the two visual sensors arranged at both ends of the first arm, thereby reducing the sensing blind area as a whole and expanding the sensing range of the drone when flying.
  • the flight controller of the UAV is further configured to control the UAV to fly in the opposite direction toward the non-perceptual blind area. For example, if the user controls the UAV to fly in the direction of true north, and the direction of true north is currently within the blind spot of the UAV, the flight controller can control the UAV to rotate so that the direction of true north is within the perception of the UAV. Outside the blind area, the flight safety of the drone is improved. Since the drone is equipped with a visual sensor for shooting panoramic images, the flight safety of the drone is improved without affecting the user's shooting experience.
  • the first machine arm 10 and the second machine arm 20 are connected by a rotating shaft 40 , and the first machine arm 10 and the second machine arm 20 can rotate relatively around the rotating shaft 40 .
  • the first arm 10 can be rotated around the rotation axis 40 to make the first arm 10 rotate to form a first angle ⁇ with the second arm 20 to fold the UAV 100, or the first arm 10 can be folded.
  • the drone 100 can be deployed by rotating it to form a second angle ⁇ with the second arm 20; the second arm 20 can also be rotated around the rotation axis 40, so that the second arm 20 can be rotated to the first arm 10
  • the drone 100 is folded at the first angle ⁇ , or the second arm 20 is rotated to form the second angle ⁇ with the first arm 10 to unfold the drone 100; the first arm can also be rotated 10 and the second arm 20 are both rotated around the axis of rotation 40, so that the first arm 10 rotates relative to the second arm 20 until the first arm 10 and the second arm 20 form a first angle ⁇ , so that the drone is 100 is folded, or the first arm 10 is rotated relative to the second arm 20 until the first arm 10 and the second arm 20 form a second angle ⁇ , so that the drone 100 is unfolded.
  • the first arm 10 includes a first sub-arm 11 and a second sub-arm 12 that are connected to each other, and the second arm 20 includes a third sub-arm that is connected to each other. 21 and the fourth sub-arm 22, when the drone 100 is in the unfolded state, the first sub-arm 11, the second sub-arm 12, the third sub-arm 21, and the third sub-arm 21 surround no
  • the rotating shafts 40 of the man-machine 100 are evenly distributed, so that the unmanned aerial vehicle 100 is easier to maintain balance when flying.
  • the first sub-arm 11 and the second sub-arm 12 have the same height relative to the rotating shaft 40 and are located at the same first height;
  • the heights of the four sub-arms 22 relative to the rotating shaft 40 are the same, and are located at the same second height; the first height is different from the second height.
  • the first sub-arm 11 is linked with the second sub-arm 12 to rotate around the rotating shaft 40 together, and the third sub-arm 21 is linked with the fourth sub-arm 22 to rotate around the rotating shaft 40 together.
  • the angle between the first sub-arm 11 and the second sub-arm 12 is fixed, and the angle between the third sub-arm 21 and the fourth sub-arm 22 is fixed.
  • the included angle between the first sub-arm 11 and the second sub-arm 12 is 180°
  • the included angle between the third sub-arm 21 and the fourth sub-arm 22 is 180°.
  • the first sub-arm 11, the second sub-arm 12, the third sub-arm 21, and the fourth sub-arm 22 are evenly distributed around the rotating shaft 40, that is, two sub-arms
  • the included angle between them is 90°.
  • the first sub-arm 11 overlaps with the fourth sub-arm 22
  • the third sub-arm 21 overlaps with the second sub-arm 12 .
  • the heights of the first sub-arm 11 and the second sub-arm 12 relative to the rotating shaft 40 are different, and the third sub-arm 21 and the fourth sub-arm 22 are opposite to each other.
  • the heights of the rotating shafts 40 are different.
  • the first sub-arm 11 and the third sub-arm 21 have the same height relative to the rotating shaft 40 and are located at the same first height; The heights are the same, at the same second height; the first height is different from the second height.
  • the first sub-arm 11 is linked with the second sub-arm 12 to rotate around the rotating shaft 40 together, and the third sub-arm 21 is linked with the fourth sub-arm 22 to rotate around the rotating shaft 40 together.
  • the angle between the first sub-arm 11 and the second sub-arm 12 is fixed, and the angle between the third sub-arm 21 and the fourth sub-arm 22 is fixed. Further, the included angle between the first sub-arm 11 and the second sub-arm 12 is 180°, and the included angle between the third sub-arm 21 and the fourth sub-arm 22 is 180°.
  • the first sub-arm 11, the second sub-arm 12, the third sub-arm 21, and the fourth sub-arm 22 are evenly distributed around the rotating shaft 40, that is, two sub-arms The included angle between them is 90°.
  • the first sub-arm 11 overlaps with the fourth sub-arm 22
  • the third sub-arm 21 overlaps with the second sub-arm 12 .
  • the first sub-arm 11 and the second sub-arm 12 are at the same height relative to the rotating shaft 40 and are located at the same first height;
  • the heights of the four sub-arms 22 relative to the rotating shaft 40 are the same, and are located at the same second height; the first height is different from the second height.
  • both the first sub-arm 11 and the second sub-arm 12 can rotate around the rotating shaft 40 respectively so that the first sub-arm 11 and the second sub-arm 12 can rotate relative to each other, and the first sub-arm 11 and the second sub-arm 12 can rotate relative to each other.
  • the two sub-machine arms 12 can be clamped tightly, so that the first sub-machine arm 11 and the second sub-machine arm 12 can be linked together to rotate around the rotating shaft 40 together.
  • both the third sub-arm 21 and the fourth sub-arm 22 can rotate around the rotating shaft 40 respectively, so that the third sub-arm 21 and the fourth sub-arm 22 can rotate relative to each other, and the third sub-arm 21 and the fourth sub-arm 22 can rotate relative to each other.
  • the fourth sub-arm 22 can be clamped, so that the third sub-arm 21 and the fourth sub-arm 22 can be linked together to rotate around the rotating shaft 40 together.
  • the first sub-arm 11, the second sub-arm 12, the third sub-arm 21, and the fourth sub-arm 22 are evenly distributed around the rotating shaft 40, that is, two sub-arms
  • the angle between is 90°.
  • the first sub-arm 11 overlaps with any one of the third sub-arm 21 and the fourth sub-arm 22, and the second sub-arm 12 overlaps with the third sub-arm 12.
  • the arm 21 and the other of the fourth sub-arm 22 overlap.
  • the first arm 10 and the second arm 20 are located at different heights. At least one of the first arm 10 and the second arm 20 can be rotated relative to the other arm, and can be fixed at a preset deployment position.
  • the first arm 10 is fixed, and the second arm 20 can rotate relative to the rotating shaft 40 and can be fixed at a preset deployment position; or the second arm 20 is fixed, and the first arm 10 can rotate relative to the rotating shaft 40 and can be pre-set.
  • the set deployment position is fixed; or both the first arm 10 and the second arm 20 can rotate relative to the rotating shaft 40 and can be fixed at a preset deployment position.
  • the first arm 10 and the second arm 20 form 180°, that is, the preset unfolding position is 180° between the first arm 10 and the second arm 20 position to make it easier for the drone 100 to keep its balance while flying.
  • the first arm 10 overlaps the second arm 20 .
  • the first arm 10 includes a first The main body 13 and the first installation part 14, the second arm 20 includes a second main body 23 and a second installation part 24, the two ends of the rotating shaft 40 are rotatably connected to the first installation part 14 and the second installation part 24 respectively.
  • the first mounting portion 14 extends from the first body 13, and the second mounting portion 24 is fixedly mounted on the second body 23, so that the connection between the first mounting portion 14 and the first body 13 is firm, and the second mounting portion 24 is firmly connected to the first body 13.
  • the mounting part 24 can be disassembled and assembled as required.
  • the second mounting portion 24 extends from the second body 23 , and the first mounting portion 14 is fixedly mounted on the first body 13 .
  • first mounting portion 14 extends from the first body 13 and the second mounting portion 24 extends from the second body 23 , so that the first mounting portion 14 and the first body 13 and the second mounting portion 24 and The connection of the second body 23 is firm.
  • the first mounting portion 14 is fixedly mounted on the first body 13, and the second mounting portion 24 is fixedly mounted on the second body 23, so as to increase the modular parts on the drone 100, so that the drone
  • the 100 has more modules that can be customized to install, allowing users to install, configure, disassemble, and replace the required parts more flexibly according to their needs.
  • the rotating shaft 40 is integrally formed with the first mounting portion 14 or the second mounting portion 24 .
  • the rotating shaft 40 and the first mounting portion 14 are integrally constructed, and the second arm 20 can rotate relative to the rotating shaft 40 to make the second arm 20 rotate relative to the first arm 10; or the rotating shaft 40 and the second mounting portion 24 are integrally constructed , the first arm 10 can rotate relative to the rotating shaft 40 to make the first arm 10 rotate relative to the second arm 20 .
  • the first arm 10 includes a joint portion 15 , and the rotating shaft 40 passes through the joint portion 15 and has two ends extending from the two ends of the joint portion 15 . side exposed; the first sub-machine arm 11 and the second sub-machine arm 12 are symmetrically arranged on both sides of the joint part 15; the third sub-machine arm 21 is sleeved on the end of the rotating shaft 40 exposed from one side of the joint part 15; The sub-arm 22 is sleeved on the other end of the rotating shaft 40 exposed from the other side of the joint portion 15 .
  • the first arm 10 can rotate relative to the rotating shaft 40 so that the first arm 10 can rotate relative to the second arm 20 .
  • the first end 16 of the first arm 10 is provided with a first power assembly 17
  • the second end 25 of the second arm 20 is provided with a second power assembly 26 .
  • the first power assembly 17 and the second power assembly 26 include rotors 171/261 and motors (not shown in the figure).
  • the motors can drive the rotors 171/261 to rotate to provide the power required for the UAV 100 to fly.
  • the man-machine 100 rises and maintains the lift force of the drone 100 in the air and the propulsion force to change the flight direction of the drone 100 .
  • the rotor 171 of the first end 16 can rotate relative to the first end 16 to a state where the overlap between the two is the largest
  • the rotor 261 of the second end 25 can rotate relative to the second end 25 to the state where the overlap between the two is the largest.
  • the folded shape of the drone 100 can be made as sufficient as possible to facilitate storage; on the other hand, the rotors 171/261 in the folded state overlap the first arm 10 or the second arm 20 as much as possible, and the first arm 10 and the second arm 20 can protect the rotor 171/261 in the folded state to a certain extent, so as to prevent the rotor 171/261 from breaking.
  • the first sub-arm 11 and the second sub-arm 12 each have a first end 16 , and each first end 16 is provided with a first end 16 .
  • the first end 16 of the first arm 10 is provided with a first power assembly 17
  • the second end 25 of the second arm 20 is provided with a second power assembly 26.
  • the first arm 10 and the second arm 20 form an included angle of 180°, so that the first power assembly 17 and the second power assembly 26 are about the rotation axis 40 of the UAV 100 Evenly distributed to provide balanced power in all directions, so that the drone 100 can maintain balance when flying.
  • the first end 16 can be rotated to adjust the orientation of the first power assembly 17 ; the second end 25 can be rotated to adjust the second power assembly 26 orientation. Specifically, the first end 16 can be rotated relative to the first arm 10 to adjust the orientation of the first power assembly 17 , so that the paddle plane (paddle plate, the same below) of the rotor 171 is at a preset inclination angle relative to the first arm 10 , causing the drone 100 to change the flight direction.
  • the second end 25 can be rotated relative to the second arm 20 to adjust the orientation of the second power assembly 26, so that the paddle plane of the rotor 261 is at a preset inclination angle relative to the second arm 20, so that the UAV 100 changes flight direction.
  • the first power assembly 17 can be rotated to adjust the orientation of the first power assembly 17 ; the second power assembly 26 can be rotated to adjust the orientation of the second power assembly 26 .
  • the first power assembly 17 can be rotated relative to the first end 16 to adjust the orientation of the first power assembly 17, so that the paddle plane of the rotor 171 is at a preset inclination angle relative to the first arm 10, so that the drone 100 changes flight direction.
  • the second power assembly 26 can be rotated relative to the second end 25 to adjust the orientation of the second power assembly 26, so that the paddle plane of the rotor 261 is at a preset inclination angle relative to the second arm 20, so that the UAV 100 changes flight direction.
  • both the first end 16 and the first power assembly 17 can be rotated to adjust the orientation of the first power assembly 17 ; the second end 25 and the second power assembly 26 can be rotated to adjust the second power assembly 26 orientation.
  • the first end 16 can be rotated relative to the first arm 10
  • the first power assembly 17 can be rotated relative to the first end 16, so as to realize the stepwise adjustment of the orientation of the first power assembly 17, so as to improve the performance of the first power assembly. 17.
  • the adjustment accuracy of the orientation can be rotated relative to the second arm 20, and the second power assembly 26 can be rotated relative to the second end 25, so as to realize the stepwise adjustment of the orientation of the second power assembly 26, so as to improve the performance of the second power assembly 26 orientation adjustment accuracy.
  • the drone 100 includes a plurality of visual sensors 30 .
  • the first arm 10 is provided with at least one visual sensor 30
  • the second arm 20 is provided with at least one visual sensor 30 .
  • the first arm 10 and the second arm 20 are connected through a rotating shaft 40
  • a visual sensor 30 may be provided at either end of the rotating shaft 40 .
  • the plurality of visual sensors 30 may include a first type of visual sensor 30 and a second type of visual sensor 30.
  • the first type of visual sensor 30 is used to perceive the surrounding environment of the drone 100, and the second type of visual sensor 30 is used to take a panoramic view image.
  • the visual sensor 30 disposed on the rotating shaft 40 is the second type of visual sensor 30 .
  • the end of the rotating shaft 40 close to the first arm 10 is provided with the second type of visual sensor 30; or the end of the rotating shaft 40 close to the second arm 20 is provided with the second type of visual sensor 30; or the two ends of the rotating shaft 40 are respectively provided with one The second type of vision sensor 30 .
  • the panoramic image may be a panoramic image of greater than or equal to 360° obtained by stitching the images obtained by the two second-type visual sensors 30 at both ends of the rotating shaft 40 .
  • At least one end of the first machine arm 10 is provided with a first-type visual sensor 30
  • at least one end of the second machine arm 20 is provided with a first-type visual sensor 30 sensor 30
  • the first type of visual sensor 30 is arranged at the end of the first machine arm 10 and the second machine arm 20.
  • the first type of visual sensor 30 can be kept away from the rotating shaft 40 and the machine arm of the UAV 100, so as to reduce the rotating shaft 40 and the machine arm.
  • the distance between the first type visual sensors 30 is as far as possible, so as to reduce the field of view of the first type visual sensor 30.
  • the overlapping part expands the total field of view of the UAV 100.
  • the first type of visual sensor 30 of the first machine arm 10 and the first type of visual sensor 30 of the second machine arm 20 are jointly used for obstacle avoidance of the UAV 100 .
  • the first type of visual sensor 30 is not coplanar with the rotors 171/261, so as to reduce the occlusion of the visual sensor 30 by the rotors 171/261.
  • the first arm 10 includes a first surface 18 and a second surface 19 that are opposite to each other, the first surface 18 is provided with a first power assembly 17 , and the second surface 19 A first visual sensor 301 is provided, the second arm 20 includes a third surface 27 and a fourth surface 28 opposite to each other, the third surface 27 is provided with a second power assembly 26, and the fourth surface 28 is provided with a second visual sensor 302 .
  • the orientations of the first visual sensor 301 and the second visual sensor 302 are different, so as to reduce the overlapping portion of the field of view of the first visual sensor 301 and the field of view of the second visual sensor 302 in the unfolded state, thereby expanding the overall visual field of the UAV 100. field range.
  • At least one end of the first arm 10 is provided with a first visual sensor 301
  • at least one end of the second arm 20 is provided with a second visual sensor 302 .
  • the orientations of the first visual sensor 301 and the second visual sensor 302 are different, and both the first visual sensor 301 and the second visual sensor 302 are located at the end of the arm, so as to further reduce the field of view of the first visual sensor 301 and the first visual sensor 302 in the unfolded state.
  • the overlapping portion of the fields of view of the two vision sensors 302 thereby expanding the total field of view of the UAV 100 .
  • the first visual sensor 301 are respectively arranged at the ends of the first sub-machine arm 11 and the second sub-machine arm 12.
  • the first sub-machine arm 11 and the second sub-machine arm 12 are provided with the first power component 17.
  • the side of the arm 11 and the second sub-arm 12 on which the first visual sensor 301 is provided is the second side 19 .
  • the first face 18 may face in a direction facing the second arm 20 and the second face 19 may face away from the second arm 20 .
  • the first surface 18 and the second surface 19 may be any one of a flat surface, a curved surface, and a combination of a flat surface and a curved surface, which is not limited herein.
  • the second visual sensor 302 is disposed at the end of the third sub-arm 21 and the fourth sub-arm 22 respectively, and the side of the third sub-arm 21 and the fourth sub-arm 22 with the second power assembly 26 is
  • the third surface 27 , the third sub-arm 21 and the fourth sub-arm 22 are provided with the second visual sensor 302 as the fourth surface 28 .
  • the third face 27 may be oriented in a direction facing the first arm 10 and the fourth face 28 may face away from the first arm 10 .
  • the third surface 27 and the fourth surface 28 may be any one of a flat surface, a curved surface, and a combination of a flat surface and a curved surface, which is not limited herein.
  • the second surface 19 may face the direction facing the second machine arm 20, and the first surface 18 may face the direction away from the second machine arm 20; correspondingly, the third surface 27 may face away from the first machine arm 20.
  • the fourth surface 28 faces the direction of the first arm 10, which is not limited here.
  • the first face 18 faces the direction facing the second arm 20
  • the third face 27 faces the direction facing the first arm 10, that is, the first face 18 is opposite to the third face 27, so that the first power assembly 17 and the The second power components 26 may be located at the same height, so as to facilitate the balance of the drone 100 during flight.
  • the first power component 17 is provided on the first surface 18
  • the first visual sensor 301 is provided on the second surface 19
  • the first The face 18 is opposite the second face 19
  • the third surface 27 is provided with the first power assembly 17
  • the fourth surface 28 is provided with the second visual sensor 302
  • the third surface 27 is opposite to the fourth surface 28 .
  • the first face 18 may face away from the second arm 20 and the second face 19 faces towards the second arm 20; or the second face 19 may face away from the second arm 20 and the first face 18 faces Facing the direction of the second arm 20 .
  • the third face 27 may face away from the first arm 10 and the fourth face 28 faces away from the first arm 10; or the third face 27 may face away from the first arm 10 and the fourth face 28 faces Facing the direction of the first arm 10 .
  • the first surface 18 , the second surface 19 , the third surface 27 and the fourth surface 28 may be any one of a plane, a curved surface, and a combination of a flat surface and a curved surface, which is not limited herein.
  • the first face 18 faces the direction facing the second arm 20
  • the third face 27 faces the direction facing the first arm 10, that is, the first face 18 is opposite to the third face 27, so that the first power assembly 17 and the The second power components 26 can be located at the same height, so as to facilitate the balance of the drone 100 during flight.
  • the UAV 100 may further include a tripod structure 50 , and the tripod structure 50 is connected to the first arm 10 and/or the second arm 20 and is used for UAV 100 supports UAV 100 when taking off and landing.
  • the tripod structure 50 may include two first legs 51 , each of which is rotatably connected to the first arm 10 and the second arm 20 .
  • the first stand 51 can be selectively folded or unfolded.
  • the first tripod 51 includes a support member 511 for supporting the drone 100 when the drone 100 takes off and landing, and the distance from the support member 511 to the rotation axis 40 of the drone 100 when the drone 100 is in a folded state , which is smaller than the distance from the support 511 to the rotating shaft 40 when the UAV 100 is in the unfolded state.
  • the first leg stand 51 when the drone 100 changes from the folded state to the unfolded state, at least one of the first arm 10 and the second arm 20 drives the first leg 51 to move, so that the first leg 51 is moved from the folded state to the unfolded state.
  • the expanded state becomes the collapsed state.
  • the first leg stand 51 when the drone 100 is in the folded state after the drone 100 has landed, the first leg stand 51 can be unfolded to support the drone 100 in the folded state; when the drone 100 is flying in the unfolded state, the first leg stand 51 can be unfolded.
  • the frame 51 can be folded to avoid blocking the visual sensors 30 at both ends of the rotating shaft 40 .
  • the UAV 100 when the UAV 100 changes from the folded state to the unfolded state, at least one of the first arm 10 and the second arm 20 drives the first leg 51 to move so that the first leg 51 From collapsed state to expanded state.
  • the first tripod 51 when the drone 100 is landed in the unfolded state, the first tripod 51 can be kept in the unfolded state to support the drone 100; when the drone 100 is in the folded state, the tripod can be folded to facilitate the storage of Man-machine 100.
  • the supports 511 of the two first legs 51 are always kept symmetrical with respect to the rotation axis 40 of the UAV 100, so that the first legs 51 are in a folded state, an unfolded state, or between the folded state and the In any position state between the unfolded states, the support member 511 can maintain the balance, so as to maintain the balance of the drone 100 when the drone 100 is docked, when taking off and landing, and when flying.
  • the first tripod 51 can be set to unfold when the drone 100 is unfolded and folded when the drone 100 is folded; it can also be set to be folded when the drone 100 unfolds, unfolded when the drone 100 is folded, There is no restriction here.
  • the first tripod 51 may include a first link 512 and a second link 513 .
  • the first link 512 is rotatably mounted on the first arm 10 .
  • the second link 513 is rotatably attached to the second arm 20 .
  • a first link 512 and a second link 513 pass through the support member 511 , and the first link 512 and the second link 513 can rotate relative to each other to change the size of the third included angle ⁇ therebetween.
  • the third included angle ⁇ when the drone 100 is in the folded state is greater than the third included angle ⁇ when the drone 100 is in the unfolded state.
  • the second link 513 and the support 511 can be linked with the first link 512, and the first link 512 and the second link 513 rotate relative to each other to change the size of the third angle ⁇ between them.
  • the second arm 20 drives the second link 513 to rotate, the first link 512 and the support 511 can be linked with the second link 513, and the first link 512 and the second link 513 rotate relative to each other to change the size of the third angle ⁇ between them.
  • the two first links 512 are located at the same height
  • the two second links 513 are located at the same height
  • the two support members 511 are located at the same height
  • the two supports The dimensions of the parts 511 are the same, and the supporting parts 511 of the two first tripods 51 are always kept symmetrical with respect to the rotation axis 40 of the UAV 100, so that the first tripods 51 are in a folded state, an unfolded state, or between the folded state and the In any position state between the unfolded states, the support member 511 can stably support the UAV 100 .
  • the two first legs 51 are in the folded state.
  • the third included angle ⁇ gradually decreases, and the support member 511 gradually moves away from the rotating shaft 40 .
  • the third included angle ⁇ gradually increases, and the support member 511 gradually approaches the rotating shaft 40 .
  • the folding and unfolding method of the first tripod is not limited to the form of the connecting rod, but may also include the form of a rack and pinion or a form of rotation.
  • the above is only an embodiment of the present application and is not intended to limit it. this application.
  • the tripod structure 50 may include a second tripod 52, and at least one of the first arm 10 or the second arm 20 is provided with a pair of second legs 52, The second stand 52 is used to support the UAV 100 when the UAV 100 takes off and lands.
  • the second arm 20 is provided with a pair of second legs 52 and the second arm 20 is below the first arm 10 when the drone 100 is landed.
  • the second power assembly 26 is located on the third side 27, facing the direction facing the first arm 10, and the second vision sensor 302 and the second leg 52 are located on the fourth side 28, facing away from the first boom 10 directions.
  • the second tripod 52 may be closer to the rotating shaft 40 than the second visual sensor 302, so that the distance between the two second visual sensors 302 is further, so as to reduce the overlapping portion of the field of view of the two second visual sensors 302, The total field of view of the UAV 100 is expanded, or the second visual sensor 302 is farther away from the rotating shaft 40, so that the second tripod 52 can support the UAV 100 more stably, which is not limited herein.
  • the second leg 52 can be any one of a column structure, a pyramid structure, a combination structure of a column and a cone, for example, the second leg 52 can be a cylinder, a prism, a pyramid, a cylinder and a cone.
  • the combination, the combination of the cylinder and the pyramid, the combination of the prism and the pyramid, the combination of the prism and the cone, etc., are not limited here.
  • the cross section of the second tripod 52 gradually decreases along the direction away from the machine arm, and the cross section of the second tripod 52 has a hypotenuse , and the inclined edge is located on the side close to the visual sensor 30 , so that the side of the second tripod 52 close to the visual sensor 30 avoids the field of view of the visual sensor 30 to prevent the second tripod 52 from entering the field of view of the visual sensor 30 The vision sensor 30 is blocked.
  • At least one of the first arm 10 or the second arm 20 may be provided with multiple pairs of second legs 52 , for example, 2 pairs (shown in FIG. 15 ), 3 pairs, and 4 pairs of the second legs 52 are provided.
  • the bipods 52 are not listed one by one here.
  • the same pair of second tripods 52 can be disposed symmetrically with respect to the rotating shaft 40 , and multiple pairs of second tripods 52 jointly support the UAV 100 to further improve the stability of the support.
  • the tripod structure 50 may only include the first tripod 51, and the UAV 100 can be supported only by the first tripod 51; the tripod structure 50 may also only include the second tripod 52, the UAV 100 can be supported only by the second tripod 52; the tripod structure 50 can also include the first tripod 51 and the second tripod 52 (shown in FIG. 13 and FIG. 14 ).
  • the joint action of the first tripod 51 and the second tripod 52 realizes the support for the UAV 100 .
  • an adapter 60 is provided at the connection between the first arm 10 and the second arm 20 , and at least one end of the two ends of the adapter 60 is used to connect the function module 70 In order to make the functional module 70 mechanically and electrically connected with the drone 100 .
  • the functional module 70 may include any one of a gimbal camera, a handheld gimbal, or a visual sensor 30, which is not limited herein.
  • one end of the adapter 60 is the vision sensor 30, and the other end is the pan-tilt camera; for another example, one end of the adapter 60 is the vision sensor 30, and the other end is also the vision sensor 30;
  • One end is a gimbal camera, and the other end is empty, that is, it is not connected to the function module 70, etc., which are not listed here.
  • the adapter 60 can also be a power supply module, which supplies power to the drone and/or the functional module.
  • the adapter 60 may be disposed in the rotating shaft 40.
  • the rotating shaft 40 is provided with a receiving portion 80, the adapter 60 is disposed in the receiving portion 80, and both ends of the adapter 60 extend from the first The machine arm 10 and the second machine arm 20 are exposed for connecting to the external function module 70 .
  • the adapter 60 can be used as the rotating shaft 40 of the UAV 100 , and the first arm 10 and the second arm 20 are respectively pierced at both ends of the adapter 60 for connecting to external function modules. 70.
  • an accommodation portion 80 is provided at the connection between the first arm 10 and the second arm 20 , and the accommodation portion 80 is used for mechanical connection and electrical connection with the functional module 70 , for example, for mechanical connection and electrical connection.
  • the hand-held pan/tilt head is partially accommodated in the accommodating portion 80 .
  • the hand-held part of the hand-held pan/tilt head is accommodated inside the accommodating part 80 , and the pan/tilt camera of the hand-held pan/tilt head is exposed from one of the first arm 10 and the second machine arm 20 .
  • the handheld gimbal can not only be used independently, but also can be carried by a drone to take a stable picture during the flight.
  • the power supply module of the handheld gimbal can also be used to supply power to the drone, or the power supply module of the drone can also be used to power the handheld gimbal to achieve a basic balance of power.
  • the present application further provides an unmanned aerial vehicle 200 .
  • the unmanned aerial vehicle 200 includes a first machine arm 10 and a second machine arm 20 .
  • the second arm 20 is connected to the first arm 10 and can be rotated relative to the first arm 10 to switch the drone 200 between the folded state and the unfolded state.
  • the first The arm 10 and the second arm 20 form a first angle ⁇ .
  • the first arm 10 and the second arm 20 form a second angle ⁇ , and the first angle ⁇ is less than The second included angle ⁇ .
  • the first arm 10 includes a first surface 18 and a second surface 19 that are opposite to each other, the first surface 18 is provided with the first power assembly 17 , the second surface 19 is provided with a first visual sensor 301 , and the second arm 20 Including the opposite third surface 27 and fourth surface 28, the third surface 27 is provided with the second power assembly 26, the fourth surface 28 is provided with the second visual sensor 302, the first visual sensor 301 and the second visual sensor 302 Orientation is different.
  • the drone 200 can switch between the folded and unfolded states.
  • the first visual sensor 301 and the first power assembly 17 in the drone 200 are arranged on the first side 18 and the second side 19 opposite to each other.
  • the sensor 302 and the second power component 26 are arranged on the opposite first side 18 and the second side 19, so that the sensing range of the visual sensor 30 of the drone 200 is not easily blocked by the power components, so that the drone 200 has a limited volume. In this case, the sensing direction and sensing range of the UAV 200 are expanded.
  • the UAV 200 may further include the first visual sensor 301, the second visual sensor 302, the first power assembly 17, the second power assembly 26, the rotating shaft 40, and the tripod structure of any of the above embodiments 50, the adapter 60, and the accommodating part 80, and can achieve the same function, and will not be repeated here.
  • the UAV 200 may be any UAV 200 shown in FIGS. 1 to 4 and FIGS. 7 to 15 .
  • the UAV 200 has the same structure and function as the UAV 100 shown in the drawings. The corresponding structures and functions in the same figures are the same, and are not repeated here.
  • the present application further provides an unmanned aerial vehicle 300 .
  • the unmanned aerial vehicle 300 includes a first machine arm 10 and a second machine arm 20 .
  • the second arm 20 is connected with the first arm 10 through a rotating shaft 40 , and both ends of the rotating shaft 40 are provided with visual sensors 30 .
  • the second arm 20 can be rotated relative to the first arm 10 to make the drone 300 switch between the folded state and the unfolded state.
  • the first arm 10 and the second The arm 20 forms a first angle ⁇ .
  • the first arm 10 and the second arm 20 form a second angle ⁇ , and the first angle ⁇ is smaller than the second angle ⁇ .
  • the drone 300 of the embodiment of the present application can switch between the folded and unfolded states.
  • the relative positions of the visual sensors 30 at both ends of the rotating shaft 40 will not change. There is no need to re-calibrate the relative position for environmental awareness or panorama shooting.
  • the first arm 10 includes a first surface 18 and a second surface 19 that are opposite to each other, the first surface 18 is provided with the first power assembly 17, the second surface 19 is provided with the first visual sensor 301,
  • the second arm 20 includes a third surface 27 and a fourth surface 28 that are opposite to each other, the third surface 27 is provided with the second power assembly 26 , the fourth surface 28 is provided with a second visual sensor 302 , and the first surface of the second surface 19 is provided.
  • the orientations of the visual sensor 301 and the second visual sensor 302 of the fourth surface 28 are different.
  • first visual sensor 301 and the second visual sensor 302 are the first type of visual sensor 30, and the first type of visual sensor 30 is used to perceive the surrounding environment of the drone; the visual sensor 30 disposed at both ends of the rotating shaft 40 is the second type of visual sensor 30 Class vision sensor 30, the second type of vision sensor 30 is used to capture panoramic images.
  • the first type of visual sensor 30 and the second type of visual sensor 30 may be the first type of visual sensor 30 and the second type of visual sensor 30 in any of the foregoing embodiments.
  • the UAV 300 may further include the first power assembly 17 , the second power assembly 26 , and the tripod structure 50 of any of the above embodiments, and can achieve the same functions, which will not be repeated here. .
  • the UAV 300 may be any UAV 300 shown in FIGS. 1 to 6 and 9 to 14 .
  • the UAV 300 has the same structure and function as the UAV 100 as shown in the drawings.
  • the corresponding structures and functions in the same figures are the same, and are not repeated here.
  • the present application further provides an unmanned aerial vehicle 400 .
  • the unmanned aerial vehicle 400 includes a first arm 10 , a second arm 20 and a first tripod 51 .
  • the second arm 20 is connected to the first arm 10 and can be rotated relative to the first arm 10 to make the drone 400 switch between the folded state and the unfolded state.
  • the first tripod 51 is at least partially disposed on the first arm 10 and the second arm 20.
  • the drone 400 can switch between the folded and unfolded states.
  • the first tripod 51 is also in the folded state, so as to reduce the space required for accommodating the drone 400;
  • the first tripod 51 can also be driven to switch to the unfolded state, so as to provide stable support for the take-off and landing of the drone 400 .
  • the drone 400 may further include the first visual sensor 301 , the second visual sensor 302 , the first power assembly 17 , the second power assembly 26 , the rotating shaft 40 , and the adapter in any of the above embodiments 60.
  • the second tripod 52 and the accommodating portion 80 can achieve the same function, and will not be repeated here.
  • the UAV 400 may be any UAV 400 shown in FIGS. 1 to 4 and FIGS. 9 to 15 .
  • the UAV 400 has the same structure and function as the UAV 100 shown in the drawings. The corresponding structures and functions in the same figures are the same, and are not repeated here.
  • the present application further provides an unmanned aerial vehicle 500 .
  • the unmanned aerial vehicle 500 includes a first machine arm 10 and a second machine arm 20 .
  • the first arm 10 includes two sub-arms.
  • the second arm 20 includes two sub-arms. Wherein, the two sub-arms are located at the same first height, and the other two sub-arms are located at the same second height, and the first height is different from the second height.
  • the first arm 10 and the second arm 20 at least partially overlap; when the drone 500 is switched from the folded state to the unfolded state, the clip between the sub-arms located at the same height The angle switches from the first included angle ⁇ to the second included angle ⁇ .
  • the drone 500 of the embodiment of the present application can switch between the folded and unfolded states.
  • the sub-arm at the first height and the sub-arm at the second height can be relatively rotated until they overlap. , the more overlapping parts of the two, the higher the folding degree of the folded UAV 500, which is more conducive to the storage of the UAV 500.
  • the first arm 10 includes a first sub arm 11 and a second sub arm 12 connected to each other, and the second arm 20 includes a third arm connected to each other.
  • the sub-arm 21 and the fourth sub-arm 22 are connected to each other.
  • the heights of the first sub-arm 11 and the second sub-arm 12 relative to the rotating shaft 40 are different, and the third sub-arm 21 and the fourth sub-arm 22 are opposite to each other.
  • the heights of the rotating shafts 40 are different.
  • the first sub-arm 11 and the third sub-arm 21 have the same height relative to the rotating shaft 40 and are located at the same first height; The heights are the same, at the same second height; the first height is different from the second height.
  • the first sub-arm 11 and the second sub-arm 12 have the same height relative to the rotating shaft 40 and are located at the same first height;
  • the heights of the four sub-arms 22 relative to the rotating shaft 40 are the same, and are located at the same second height; the first height is different from the second height.
  • the drone 500 may further include the first visual sensor 301, the second visual sensor 302, the first power assembly 17, the second power assembly 26, the rotating shaft 40, and the tripod structure of any of the above embodiments 50, the adapter 60, and the accommodating part 80, and can achieve the same function, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Studio Devices (AREA)
  • Accessories Of Cameras (AREA)
  • Toys (AREA)

Abstract

一种无人机(100/200/300/400/500)。无人机(100)包括第一机臂(10)、第二机臂(20)、及多个视觉传感器(30)。无人机(200/300/500)包括第一机臂(10)及第二机臂(20)。无人机(400)包括第一机臂(10)、第二机臂(20)、及脚架结构(50)。无人机(100/200/300/400/500)能够切换折叠和展开状态。

Description

无人机 技术领域
本申请涉及无人机技术领域。
背景技术
无人机,也称无人驾驶飞行器,是利用无线电遥控设备或自备的自动飞行控制装置操纵的非载人飞机。目前,无人机在各领域被广泛应用,例如用于拍摄、运输及投放物资、竞技等。为便于无人机的收纳,一些无人机设计成可折叠式无人机。
发明内容
本申请的实施方式提供一种无人机。
本申请实施方式的无人机包括第一机臂、第二机臂、及多个视觉传感器。第二机臂与第一机臂连接并能够相对于第一机臂转动以使得无人机在折叠状态与展开状态之间切换,当无人机处于折叠状态时,第一机臂和第二机臂呈第一夹角,当无人机处于展开状态时,第一机臂和第二机臂呈第二夹角,第一夹角小于第二夹角。第一机臂和第二机臂分别设置有视觉传感器,多个视觉传感器中的至少两个视觉传感器在无人机处于折叠状态时的距离小于在无人机处于展开状态时的距离。
本申请实施方式的无人机的第一机臂和第二机臂分别设置有视觉传感器,多个视觉传感器中的至少两个视觉传感器在无人机处于折叠状态时的距离小于在无人机处于展开状态时的距离,以在无人机体积有限的情况下,能够通过切换至展开状态飞行扩大无人机飞行时的感知范围,从而能够减少无人机的感知盲区。
本申请实施方式提供另一种无人机,无人机包括第一机臂及第二机臂。第二机臂与第一机臂连接并能够相对于第一机臂转动以使得无人机在折叠状态与展开状态之间切换,当无人机处于折叠状态时,第一机臂和第二机臂呈第一夹角,当无人机处于展开状态时,第一机臂和第二机臂呈第二夹角,第一夹角小于第二夹角。其中,第一机臂包括相背的第一面和第二面,第一面设置有第一动力组件,第二面设置有第一视觉传感器,第二机臂包括相背的第三面和第四面,第三面设置有第二动力组件,第四面设置有第二视觉传感器,第一视觉传感器和第二视觉传感器的朝向不同。
本申请实施方式的无人机中,第一视觉传感器和第一动力组件设置在相背的第一面和第二面,第二视觉传感器和第二动力组件设置在相背的第一面和第二面,使无人机的视觉传感器的感知范围不易被动力组件阻挡,以在无人机体积有限的情况下扩大无人机的感知方向和感知范围。
本申请实施方式提供又一种无人机,无人机包括第一机臂及第二机臂。第二机臂与第一机臂通过转轴连接,转轴的两端设置有视觉传感器。其中,第二机臂能够相对于第一机臂转动以使得无人机在折叠 状态与展开状态之间切换,当无人机处于折叠状态时,第一机臂和第二机臂呈第一夹角,当无人机处于展开状态时,第一机臂和第二机臂呈第二夹角,第一夹角小于第二夹角。
本申请实施方式的无人机处于折叠或展开状态时转轴两端的视觉传感器的相对位置不会变化,在利用转轴两端的视觉传感器进行环境感知或者全景拍摄时无需重新标定相对位置。
本申请实施方式提供再一种无人机,无人机包括第一机臂、第二机臂及第一脚架。第二机臂与第一机臂连接并能够相对于第一机臂转动以使得无人机在折叠状态与展开状态之间切换。第一脚架至少部分地设置于第一机臂和第二机臂,当无人机从折叠状态变为展开状态时,第一机臂和第二机臂中的至少一个机臂带动第一脚架运动以使得第一脚架从折叠状态变为展开状态。
本申请实施方式的无人机处于折叠状态时第一脚架也处于折叠状态,以减小收纳无人机需要的空间;当无人机切换到展开状态时第一脚架也能被带动的切换到展开状态,以为无人机的起降提供稳定的支撑。
本申请实施方式还提供一种无人机,无人机包括第一机臂及第二机臂。第一机臂包括两个子机臂。第二机臂包括两个子机臂。其中,两个子机臂位于同一第一高度,另外两个子机臂位于同一第二高度,第一高度与第二高度不同。当无人机处于折叠状态时,第一机臂和第二机臂至少部分重叠;当无人机从折叠状态切换到展开状态时,位于同一高度的子机臂之间的夹角从第一夹角切换到第二夹角。
本申请实施方式的无人机能够切换折叠和展开状态,当无人机处于折叠状态时,位于第一高度的子机臂与位于第二高度的子机臂能够相对转动至二者重叠,二者重叠的部分越多,则折叠后的无人机的折叠程度越高,越利于无人机的收纳。
本申请的无人机的第一机臂和第二机臂之间能够相对转动,使无人机能够切换折叠和展开状态,以便于收纳。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的无人机的折叠状态示意图;
图2是图1所示的无人机的展开状态示意图;
图3是本申请某些实施方式的无人机的视场范围示意图;
图4是本申请某些实施方式的无人机的视场范围示意图;
图5是本申请某些实施方式的无人机的组装示意图;
图6是图5所示的无人机的分解示意图;
图7是本申请某些实施方式的无人机的组装示意图;
图8是图5所示的无人机的分解示意图;
图9是本申请某些实施方式的无人机的折叠状态的示意图;
图10是图9所示的无人机的展开状态的示意图;
图11是本申请某些实施方式的无人机的分解示意图;
图12是本申请某些实施方式的无人机的示意图;
图13是本申请某些实施方式的无人机的折叠状态示意图;
图14是图13所示的无人机的展开状态示意图;
图15是本申请某些实施方式的无人机的示意图。
具体实施方式
下面详细描述本申请的实施方式,实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“厚度”、“上”、“顶”、“底”、“内”、“外”、等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1及图2,本申请提供一种无人机100。无人机100包括第一机臂10、第二机臂20、及多个视觉传感器30。第二机臂20与第一机臂10连接并能够相对于第一机臂10转动以使得无人机100在折叠状态与展开状态之间切换,当无人机100处于折叠状态时(例如,图1所示),第一机臂10和第 二机臂20呈第一夹角α,当无人机100处于展开状态时(例如,图2所示),第一机臂10和第二机臂20呈第二夹角β,第一夹角α小于第二夹角β。第一机臂10和第二机臂20分别设置有视觉传感器30,多个视觉传感器30中的至少两个视觉传感器30在无人机100处于折叠状态时的距离小于在无人机100处于展开状态时的距离。
也即是说,多个视觉传感器30中的至少两个视觉传感器30在无人机100处于展开状态时的距离大于在无人机100处于折叠状态时的距离。如此,能够在无人机100处于展开状态飞行时视觉传感器30总的视场范围相对折叠状态下视觉传感器30总的视场范围更大。
其中,视觉传感器30可以是具有普通视场角的普通摄像头,也可以是具有较大视场角的摄像头,例如鱼眼摄像头,在此不作限制。视觉传感器30可用作拍摄全景图像,或用作感知无人机100周围的环境以实现避障,在此不作限制。多个视觉传感器30可以包括两个用于拍摄全景图像的摄像头,分别安装于第一机臂10和第二机臂20,两者配合以能够拍摄大于等于360°的全景图像。多个视觉传感器30还可以包括一个或多个普通摄像头,当多个视觉传感器30还包括一个普通摄像头时,该普通摄像头可以获取多帧图像,并处理多帧图像而获取无人机100周围的环境信息以实现避障;当多个视觉传感器30还包括多个普通摄像头时,多个普通摄像头可以两两一组,每组普通摄像头获取图像以共同获取无人机100周围的环境信息以实现避障。例如图1所示的第一机臂10中间位置的视觉传感器30与第二机臂20中间位置的视觉传感器30可为用于拍摄全景图像的摄像头,二者配合能够拍摄图像获取无人机100的360°的全景图像。第一机臂10两端的两个视觉传感器30可以作为双目视觉系统,能够配合成像以共同获取无人机100周围的环境信息以实现避障。第二机臂20两端的两个视觉传感器30也可以作为双目视觉系统,能够配合成像以共同获取无人机100周围的环境信息以实现避障。当然,第一机臂10两端或第二机臂20两端设置的也可以是用于拍摄全景图像的摄像头,中间位置设置的摄像头也可以感知周围环境。将用于构成双目视觉系统的两个视觉传感器设置在机臂的两端有助于增加基线长度,从而提高测量的精度。在利用设置在中间的视觉传感器构成多目视觉系统时,可以进一步提高精度。
请结合图3及图4,以无人机100的第一机臂10和第二机臂20分别至少包括两个视觉传感器30为例,无人机100的四个视觉传感器30均为鱼眼镜头。如图3所示,在折叠状态下,视觉传感器30总的视场范围的方向近似为两个球体(虚线的球体部分仅示意视场方向),且第一机臂10的视觉传感器30与第二机臂20的视觉传感器30的视场范围有较大的重叠部分。如图4所示,在展开状态向,视觉传感器30总的视场范围近似为四个球体,且第一机臂10的视觉传感器30与第二机臂20的视觉传感器30的视场范围的重叠部分较小。因此,在无人机100体积有限的情况下,无人机100能够通过切换至展开状态飞行以扩大无人机100的视场范围,即扩大了无人机100飞行时的感知范围,以减少无人机100的感知盲区。
请参阅图1及图2,当无人机100处于折叠状态时,第一机臂10和第二机臂20呈第一夹角α,其中,当第一夹角α为0°时,第一机臂10与第二机臂20能够重叠的部分达到最大,无人机100折叠至最 小状态。
请结合图3及图4,当无人机100处于展开状态时,第一机臂10和第二机臂20呈第二夹角β,第一夹角α小于第二夹角β。可以通过调整第二夹角β的大小使相邻的视觉传感器30之间的距离尽量远,以减小相邻的视觉传感器30的视场范围的重叠部分,使无人机100的感知范围尽可能地扩大。例如图4所示的无人机100中,第一机臂10的视觉传感器30相邻有两个第二机臂20的视觉传感器30,若改变第二夹角β使第一机臂10的视觉传感器30远离相邻的第二机臂20的一个视觉传感器30,则势必会靠近第二机臂20的另一个视觉传感器30,当第二夹角β为90°时,第一机臂10的视觉传感器30距离相邻的第二机臂20的两个视觉传感器30一样远,此时这三个视觉传感器30的视场范围的重叠部分最小,无人机100的感知范围扩大至最大状态。
本申请实施方式的无人机100能够切换折叠和展开状态,无人机100的第一机臂10和第二机臂20分别设置有视觉传感器30,多个视觉传感器30中的至少两个视觉传感器30在无人机100处于折叠状态时的距离小于在无人机100处于展开状态时的距离,以在无人机100体积有限的情况下,能够通过切换至展开状态进行飞行以扩大无人机100飞行时的感知范围,从而能够减少无人机100的感知盲区。
在一实施例中,在无人机处于折叠状态时,第一机臂两端设置的视觉传感器之间的基线与第二机臂两端设置的视觉传感器之间的基线基本重叠,在无人机处于展开状态时,第一机臂两端设置的视觉传感器之间的基线与第二机臂两端设置的视觉传感器之间的基线呈一定夹角。
双目视觉系统的感知盲区位于基线两侧延长线的一定角度范围内。本申请实施例中,在无人机处于折叠状态时,第一机臂两端设置的两个视觉传感器的基线和第二机臂两端设置的两个视觉传感器的基线基本重叠,感知盲区也基本相互交叠。当第一机臂和第二机臂相对转动时,第一机臂两端设置的两个视觉传感器的基线和第二机臂两端设置的两个视觉传感器的基线呈一定夹角,感知盲区也从基本相互交叠的状态转为相错的状态。如此,第一机臂两端置的两个视觉传感器的感知盲区可以至少部分的被第二机臂两端设置的两个视觉传感器的感知范围覆盖,第二机臂两端设置的两个视觉传感器的感知盲区可以至少部分的被第一机臂两端设置的两个视觉传感器的感知范围覆盖,从而整体减少感知盲区,扩大无人机飞行时的感知范围。
在一实施例中,在无人机飞行的过程中,无人机的飞行控制器还用于控制无人机朝非感知盲区的反向飞行。例如,用户操控无人机向正北方向飞行,而正北方向当前处于无人机的感知盲区范围内,则飞行控制器可以控制无人机转动,以使得正北方向处于无人机的感知盲区范围外,提高了无人机的飞行安全。由于无人机设置有用于拍摄全景图像的视觉传感器,在提高无人机飞行安全性的同时也不会影响用户的拍摄体验。
请参阅图1,第一机臂10与第二机臂20通过转轴40连接,第一机臂10与第二机臂20能够绕转轴40相对转动。例如,可以使第一机臂10绕转轴40转动,以使第一机臂10转动至和第二机臂20呈第一夹角α而使无人机100折叠,或使第一机臂10转动至和第二机臂20呈第二夹角β而使无人机100展开; 也可以使第二机臂20绕转轴40转动,以使第二机臂20转动至和第一机臂10呈第一夹角α而使无人机100折叠,或使第二机臂20转动至和第一机臂10呈第二夹角β而使无人机100展开;还可以使第一机臂10及第二机臂20均绕转轴40转动,以使第一机臂10相对第二机臂20转动至第一机臂10和第二机臂20呈第一夹角α而使无人机100折叠,或使第一机臂10相对第二机臂20转动至第一机臂10和第二机臂20呈第二夹角β而使无人机100展开。
请一并参阅图2,图5至图8,第一机臂10包括相接的第一子机臂11和第二子机臂12,第二机臂20包括相接的第三子机臂21和第四子机臂22,在无人机100处在展开状态时,第一子机臂11、第二子机臂12、第三子机臂21、及第三子机臂21环绕无人机100的转轴40均匀分布,以使无人机100在飞行时更容易保持平衡。
在如图1及图2所示的无人机100中,第一子机臂11与第二子机臂12相对转轴40的高度相同,位于同一第一高度;第三子机臂21与第四子机臂22相对转轴40的高度相同,位于同一第二高度;第一高度与第二高度不同。其中,第一子机臂11与第二子机臂12联动以一起绕转轴40转动,第三子机臂21与第四子机臂22联动以一起绕转轴40转动。具体地,第一子机臂11与第二子机臂12之间的夹角固定,第三子机臂21与第四子机臂22之间的夹角固定。进一步地,第一子机臂11与第二子机臂12之间的夹角为180°,第三子机臂21与第四子机臂22之间的夹角为180°。当无人机100处于展开状态时,第一子机臂11、第二子机臂12、第三子机臂21、及第四子机臂22环绕转轴40均匀分布,即两两子机臂之间的夹角为90°。当无人机100处于最小折叠状态时,第一子机臂11与第四子机臂22重叠,第三子机臂21与第二子机臂12重叠。
在如图5及图6所示的无人机100中,第一子机臂11与第二子机臂12相对转轴40的高度不同,第三子机臂21与第四子机臂22相对转轴40的高度不同。在某些实施方式中,第一子机臂11与第三子机臂21相对转轴40的高度相同,位于同一第一高度;第二子机臂12与第四子机臂22相对转轴40的高度相同,位于同一第二高度;第一高度与第二高度不同。其中,第一子机臂11与第二子机臂12联动以一起绕转轴40转动,第三子机臂21与第四子机臂22联动以一起绕转轴40转动。具体地,第一子机臂11与第二子机臂12之间的夹角固定,第三子机臂21与第四子机臂22之间的夹角固定。进一步地,第一子机臂11与第二子机臂12之间的夹角为180°,第三子机臂21与第四子机臂22之间的夹角为180°。当无人机100处于展开状态时,第一子机臂11、第二子机臂12、第三子机臂21、及第四子机臂22环绕转轴40均匀分布,即两两子机臂之间的夹角为90°。当无人机100处于最小折叠状态时,第一子机臂11与第四子机臂22重叠,第三子机臂21与第二子机臂12重叠。
在如图7及图8所示的无人机100中,第一子机臂11与第二子机臂12相对转轴40的高度相同,位于同一第一高度;第三子机臂21与第四子机臂22相对转轴40的高度相同,位于同一第二高度;第一高度与第二高度不同。其中,第一子机臂11与第二子机臂12均能分别绕转轴40转动以使第一子机臂11与第二子机臂12能够相对转动,且第一子机臂11与第二子机臂12之间能够卡紧,使第一子机臂 11与第二子机臂12能够联动以一起绕转轴40转动。类似地,第三子机臂21与第四子机臂22均能分别绕转轴40转动以使第三子机臂21与第四子机臂22能够相对转动,且第三子机臂21与第四子机臂22之间能够卡紧,使第三子机臂21与第四子机臂22能够联动以一起绕转轴40转动。当无人机100处于展开状态时,第一子机臂11、第二子机臂12、第三子机臂21、及第四子机臂22环绕转轴40均匀分布,即两两子机臂之间的角为90°。当无人机100处于最小折叠状态时,第一子机臂11与第三子机臂21和第四子机臂22中的任一子机臂重叠,第二子机臂12与第三子机臂21和第四子机臂22中的另一子机臂重叠。
在如图9及图10所示的无人机100中,第一机臂10与第二机臂20位于不同高度。第一机臂10与第二机臂20中至少一个机臂能够相对另一机臂转动,且能够在预设的展开位置固定。例如第一机臂10固定,第二机臂20能够相对转轴40转动且能够在预设的展开位置固定;或第二机臂20固定,第一机臂10能够相对转轴40转动且能够在预设的展开位置固定;或第一机臂10及第二机臂20均能够相对转轴40转动且能够在预设的展开位置固定。当无人机100处于展开状态时,第一机臂10与第二机臂20之间呈180°,即预设的展开位置为第一机臂10和第二机臂20之间呈180°的位置,以使无人机100在飞行时更容易保持平衡。当无人机100处于最小折叠状态时,第一机臂10与第二机臂20重叠。
请一并参阅图1、图2、图7、图8、及图11,在如图1、图2、图7及图8所示的无人机100中,第一机臂10包括第一本体13和第一安装部14,第二机臂20包括第二本体23和第二安装部24,转轴40的两端分别与第一安装部14与第二安装部24转动连接。
在一个实施例中,第一安装部14自第一本体13延伸,第二安装部24固定安装在第二本体23,以使第一安装部14与第一本体13的连接牢靠,使第二安装部24可根据需求拆装。
在另一个实施例中,第二安装部24自第二本体23延伸,第一安装部14固定安装在第一本体13。
在又一个实施例中,第一安装部14自第一本体13延伸,第二安装部24自第二本体23延伸,以使第一安装部14与第一本体13、第二安装部24与第二本体23的连接牢靠。
在再一个实施例中,第一安装部14固定安装在第一本体13,第二安装部24固定安装在第二本体23,以增加无人机100上可模块化的零件,使无人机100具有更多能够自定义安装的模块,使用户能够更灵活地根据需求安装、配置、拆卸、更换需要的零件。
在某些实施方式中,转轴40与第一安装部14或第二安装部24为一体结构。例如,转轴40与第一安装部14为一体结构,第二机臂20能够相对转轴40转动使第二机臂20相对第一机臂10转动;或者转轴40与第二安装部24为一体结构,第一机臂10能够相对转轴40转动使第一机臂10相对第二机臂20转动。
请参阅图5及图6,在如图5及图6所示的无人机100中,第一机臂10包括结合部15,转轴40穿设结合部15且两端从结合部15的两侧露出;第一子机臂11与第二子机臂12对称设置在结合部15的两侧;第三子机臂21套设在转轴40从结合部15的一侧露出的一端;第四子机臂22套设在转轴40从 结合部15的另一侧露出的另一端。第一机臂10能够相对转轴40转动使第一机臂10相对第二机臂20转动。
请参阅图2,在某些实施方式中,第一机臂10的第一末端16设置有第一动力组件17,第二机臂20的第二末端25设置有第二动力组件26。
第一动力组件17和第二动力组件26包括旋翼171/261及电机(图未示出),电机能够驱动旋翼171/261转动以提供无人机100飞行所需的动力,动力至少包括使无人机100上升及维持无人机100在空中飞行的升力及使无人机100改变飞行方向的推进力。
其中,当无人机100处于折叠状态时,第一末端16的旋翼171能够相对第一末端16转动至二者的重叠部分最大的状态,第二末端25的旋翼261能够相对第二末端25转动至二者的重叠部分最大的状态。一方面能够使无人机100的折叠状尽可能充分,以便于收纳;另一方面折叠状态的旋翼171/261与第一机臂10或第二机臂20尽可能地重叠,第一机臂10和第二机臂20能够对折叠状态的旋翼171/261起到一定的保护,以防止旋翼171/261折断。
具体地,在如图1至图8所示的无人机100中,第一子机臂11相和第二子机臂12各有一个第一末端16,每个第一末端16设置有第一动力组件17;第三子机臂21相和第四子机臂22各有一个第二末端25,每个第二末端25设置有第二动力组件26。当无人机100处于展开状态时,每个动力组件绕无人机100的转轴40均匀分布,以提供各方向均衡的动力,使无人机100在飞行时能保持平衡。
在如图9及图10所示的无人机100中,第一机臂10的第一末端16设置有第一动力组件17,第二机臂20的第二末端25设置有第二动力组件26。当无人机100处于展开状态时,第一机臂10与第二机臂20之间呈180°的夹角,使第一动力组件17及第二动力组件26绕无人机100的转轴40均匀分布,以提供各方向均衡的动力,使无人机100在飞行时能保持平衡。
在如图9及图10所示的无人机100中,在一个实施例中,第一末端16能够旋转以调整第一动力组件17的朝向;第二末端25能够旋转以调整第二动力组件26的朝向。具体地,第一末端16能够相对第一机臂10转动,以调整第一动力组件17的朝向,使旋翼171的桨平面(桨盘,下同)相对第一机臂10呈预设的倾角,使无人机100改变飞行方向。类似地,第二末端25能够相对第二机臂20转动,以调整第二动力组件26的朝向,使旋翼261的桨平面相对第二机臂20呈预设的倾角,使无人机100改变飞行方向。
在另一个实施例中,第一动力组件17能够旋转以调整第一动力组件17的朝向;第二动力组件26能够旋转以第二动力组件26的朝向。具体地,第一动力组件17能够相对第一末端16转动,以调整第一动力组件17的朝向,使旋翼171的桨平面相对第一机臂10呈预设的倾角,使无人机100改变飞行方向。类似地,第二动力组件26能够相对第二末端25转动,以调整第二动力组件26的朝向,使旋翼261的桨平面相对第二机臂20呈预设的倾角,使无人机100改变飞行方向。
在再一个实施例中,第一末端16及第一动力组件17均能够旋转以调整第一动力组件17的朝向; 第二末端25及第二动力组件26均能够旋转以调整第二动力组件26的朝向。具体地,第一末端16能够相对第一机臂10转动,第一动力组件17能够相对第一末端16转动,从而实现对第一动力组件17的朝向的分级调节,以提高对第一动力组件17的朝向的调节精度。类似地,第二末端25能够相对第二机臂20转动,第二动力组件26能够相对第二末端25转动,从而实现对第二动力组件26的朝向的分级调节,以提高对第二动力组件26的朝向的调节精度。
请参阅图12,无人机100包括多个视觉传感器30,具体地,第一机臂10设置有至少一个视觉传感器30,第二机臂20设置有至少一个视觉传感器30。在某些实施方式中,第一机臂10与第二机臂20通过转轴40连接,转轴40的任意一端可设置有视觉传感器30。
其中,多个视觉传感器30可包括第一类视觉传感器30及第二类视觉传感器30,第一类视觉传感器30用于感知无人机100的周围环境,第二类视觉传感器30用于拍摄全景图像。
在某些实施方式中,设置在转轴40的视觉传感器30为第二类视觉传感器30。例如,转轴40靠近第一机臂10的一端设置有第二类视觉传感器30;或者转轴40靠近第二机臂20的一端设置有第二类视觉传感器30;或者转轴40的两端分别设置一个第二类视觉传感器30。当转轴40的两端分别设置一个第二类视觉传感器30时,全景图像可以是转轴40两端的两个第二类视觉传感器30获取的图像经过拼接处理后获取的大于等于360°的全景图像。
请参阅图1至图10,在某些实施方式中,第一机臂10的至少一个末端设置有一个第一类视觉传感器30,第二机臂20的至少一个末端设置有一个第一类视觉传感器30。第一类视觉传感器30设置在第一机臂10和第二机臂20的末端,一方面能够使第一类视觉传感器30远离无人机100的转轴40和机臂,以减少转轴40和机臂对第一类视觉传感器30的遮挡;另一方面能够使无人机100处于展开状态时,第一类视觉传感器30之间的间距尽量远,以减少第一类视觉传感器30的视场的重叠部分,扩大无人机100总的视场范围。
第一机臂10的第一类视觉传感器30与第二机臂20的第一类视觉传感器30共同用于无人机100的避障。其中,第一类视觉传感器30与旋翼171/261不共面,以减少旋翼171/261对视觉传感器30的遮挡。
进一步地,请参阅图2,在某些实施方式中,第一机臂10包括相背的第一面18和第二面19,第一面18设置有第一动力组件17,第二面19设置有第一视觉传感器301,第二机臂20包括相背的第三面27和第四面28,第三面27设置有第二动力组件26,第四面28设置有第二视觉传感器302。第一视觉传感器301和第二视觉传感器302的朝向不同,以减少展开状态下第一视觉传感器301的视场和第二视觉传感器302的视场的重叠部分,从而扩大无人机100总的视场范围。
在某些实施方式中,第一机臂10的至少一个末端设置有一个第一视觉传感器301,第二机臂20的至少一个末端设置有一个第二视觉传感器302。第一视觉传感器301和第二视觉传感器302的朝向不同,且第一视觉传感器301和第二视觉传感器302均位于机臂的末端,以进一步减少展开状态下第一视觉传 感器301的视场和第二视觉传感器302的视场的重叠部分,从而扩大无人机100总的视场范围。
请结合图1、图2、图7、及图8,在如图1及图2所示的无人机100及如图7及图8所示的无人机100中,第一视觉传感器301分别设置在第一子机臂11和第二子机臂12的末端,第一子机臂11和第二子机臂12设有第一动力组件17的一面为第一面18,第一子机臂11和第二子机臂12设有第一视觉传感器301的一面为第二面19。例如,第一面18可以朝向面对第二机臂20的方向,第二面19朝向背离第二机臂20的方向。第一面18和第二面19分别可以为平面、曲面、平面和曲面的组合中的任意一种,在此不作限制。
类似地,第二视觉传感器302分别设置在第三子机臂21和第四子机臂22的末端,第三子机臂21和第四子机臂22设有第二动力组件26的一面为第三面27,第三子机臂21和第四子机臂22设有第二视觉传感器302的一面为第四面28。例如,第三面27可以朝向面对第一机臂10的方向,第四面28朝向背向第一机臂10的方向。第三面27和第四面28分别可以为平面、曲面、平面和曲面的组合中的任意一种,在此不作限制。
当然,在其他实施方式中,第二面19可以朝向面对第二机臂20的方向,第一面18朝向背离第二机臂20的方向;对应地,第三面27可以朝向背离第一机臂10的方向,第四面28朝向面向第一机臂10的方向,在此不作限制。
优选地,第一面18朝向面向第二机臂20的方向,第三面27朝向面向第一机臂10的方向,即第一面18与第三面27相对,使第一动力组件17和第二动力组件26可以位于同一高度,以利于无人机100在飞行时保持平衡。
请参阅图9及图10,在如图9及图10所示的无人机100中,第一面18设置有第一动力组件17,第二面19设置有第一视觉传感器301,第一面18与第二面19相背。第三面27设置有第一动力组件17,第四面28设置有第二视觉传感器302,第三面27与第四面28相背。第一面18可以朝向背离第二机臂20的方向,第二面19朝向面向第二机臂20的方向;或者第二面19可以朝向背离第二机臂20的方向,第一面18朝向面向第二机臂20的方向。第三面27可以朝向背离第一机臂10的方向,第四面28朝向面向第一机臂10的方向;或者第三面27可以朝向背离第一机臂10的方向,第四面28朝向面向第一机臂10的方向。第一面18、第二面19、第三面27及第四面28分别可以为平面、曲面、平面和曲面的组合中的任意一种,在此不作限制。
优选地,第一面18朝向面向第二机臂20的方向,第三面27朝向面向第一机臂10的方向,即第一面18与第三面27相对,使第一动力组件17和第二动力组件26能够位于同一高度,以利于无人机100在飞行时保持平衡。
请参阅图13及图14,在某些实施方式中,无人机100还可包括脚架结构50,脚架结构50与第一机臂10和/或第二机臂20连接,并用于在无人机100起降时支撑无人机100。
在某些实施方式中,脚架结构50可包括两个第一脚架51,每个第一脚架51均与第一机臂10及第 二机臂20转动连接。第一脚架51能够选择性地处于折叠或展开状态。
具体地,第一脚架51包括用于在无人机100起降时支撑无人机100的支撑件511,无人机100处于折叠状态时支撑件511至无人机100的转轴40的距离,小于无人机100处于展开状态时支撑件511至转轴40的距离。
在一个实施例中,当无人机100从折叠状态变为展开状态时,第一机臂10和第二机臂20中的至少一个带动第一脚架51运动以使得第一脚架51从展开状态变为折叠状态。如此,在无人机100降落后的无人机100处于折叠状态时第一脚架51能够展开,以支撑折叠状态的无人机100;在无人机100处于展开状态飞行时,第一脚架51能够折叠,以避免遮挡转轴40两端的视觉传感器30。
在另一个实施例中,当无人机100从折叠状态变为展开状态时,第一机臂10和第二机臂20中的至少一个带动第一脚架51运动以使得第一脚架51从折叠状态变为展开状态。如此,在无人机100以展开状态降落时,第一脚架51能保持在展开状态,以支撑无人机100;在无人机100处于折叠状态时,脚架能够折叠,以便于收纳无人机100。
在某些实施方式中,两个第一脚架51的支撑件511关于无人机100的转轴40始终保持对称,使第一脚架51无论处于折叠状态、展开状态、还是介于折叠状态和展开状态之间的任意位置状态,支撑件511均能够保持平衡,以在无人机100停靠放置时、起降时、及飞行时保持无人机100的平衡。其中,第一脚架51可以设置成在无人机100展开时展开,在无人机100折叠时折叠;也可以设置成在无人机100展开时折叠,在无人机100折叠时展开,在此不作限制。
具体地,请继续参阅图13及图14,第一脚架51可包括第一连杆512及第二连杆513。第一连杆512能够转动地安装在第一机臂10。第二连杆513能够转动地安装在第二机臂20。支撑件511穿设第一连杆512及第二连杆513,第一连杆512与第二连杆513能够相对转动以改变彼此之间的第三夹角γ的大小。其中,无人机100处于折叠状态时第三夹角γ,大于无人机100处于展开状态时第三夹角γ。
当第一机臂10带动第一连杆512转动时,第二连杆513和支撑件511能够与第一连杆512联动,且第一连杆512与第二连杆513之间发生相对转动以改变彼此之间的第三夹角γ的大小。当第二机臂20带动第二连杆513转动时,第一连杆512和支撑件511能够与第二连杆513联动,且第一连杆512与第二连杆513之间发生相对转动以改变彼此之间的第三夹角γ的大小。
例如,图13及图14所示的无人机100中,两个第一连杆512位于同一高度,两个第二连杆513位于同一高度,两个支撑件511位于同一高度,两个支撑件511的尺寸相同,且两个第一脚架51的支撑件511关于无人机100的转轴40始终保持对称,使第一脚架51无论处于折叠状态、展开状态、还是介于折叠状态和展开状态之间的任意位置状态,支撑件511均能够稳定地支撑无人机100。当无人机100处于折叠状态时,两个第一脚架51均处于折叠状态。当无人机100从折叠状态变为展开状态时,第三夹角γ逐渐减小,支撑件511逐渐远离转轴40。当无人机100从展开状态变为折叠状态时,第三夹角γ逐渐增大,支撑件511逐渐靠近转轴40。
需要说明的是,第一脚架的折叠、展开方式并不限于连杆的形式,还可以包括齿轮齿条的形式或者旋转的形式,以上所述仅为本申请的实施例,并不用以限制本申请。
请参阅图13及图14,在某些实施方式中,脚架结构50可包括第二脚架52,第一机臂10或第二机臂20的至少一个设置有一对第二脚架52,第二脚架52用于在无人机100起降时支撑无人机100。
下面以第二机臂20设置有一对第二脚架52,且无人机100降落时第二机臂20在第一机臂10下方为例进行说明。
在一个实施例中,第二动力组件26位于第三面27,朝向面向第一机臂10的方向,第二视觉传感器302和第二脚架52位于第四面28,朝向背离第一机臂10的方向。第二脚架52可以比第二视觉传感器302更靠近转轴40,以使两个第二视觉传感器302之间的间距更远,以减少两个第二视觉传感器302的视场范围的重叠部分,扩大无人机100总的视场范围,或者比第二视觉传感器302更远离转轴40,以使第二脚架52对无人机100的支撑更稳定,在此不作限制。
其中,第二脚架52可以是柱体结构、锥体结构、柱体和锥体的组合结构中的任意一种,例如,第二脚架52可以是圆柱、棱柱、棱锥、圆柱和圆锥的组合、圆柱和棱锥的组合、棱柱和棱锥的组合、棱柱和圆锥的组合等,在此不作限制。
进一步地,当第二脚架52和视觉传感器30位于同一面时,沿远离机臂的方向,第二脚架52的横截面逐渐减小,且第二脚架52的横截面具有一个斜边,且该斜边位于靠近视觉传感器30的一侧,使第二脚架52靠近视觉传感器30的一侧避让开视觉传感器30的视场,以避免第二脚架52进入视觉传感器30的视场遮挡视觉传感器30。
在某些实施方式中,第一机臂10或第二机臂20的至少一个可设置有多对第二脚架52,例如设置有2对(图15所示)、3对、4对第二脚架52,在此不一一列举。同一对第二脚架52可关于转轴40对称设置,多对第二脚架52共同支撑无人机100,以进一步提高支撑的稳定性。
在某些实施方式中,脚架结构50可以仅包括第一脚架51,仅通过第一脚架51即可实现对无人机100的支撑;脚架结构50也可以仅包括第二脚架52,仅通过第二脚架52即可实现对无人机100的支撑;脚架结构50还可以同时包括第一脚架51及第二脚架52(图13和图14所示),通过第一脚架51及第二脚架52的共同作用实现对无人机100的支撑。
请参阅图15,在某些实施方式中,第一机臂10与第二机臂20的连接处设置有转接件60,转接件60两端中的至少一端用于外接功能模组70以使功能模组70与无人机100机械连接和电连接。
其中,功能模组70可包括云台相机、手持云台、或视觉传感器30中的任意一种,在此不作限制。例如,转接件60的一端为视觉传感器30,另一端为云台相机;再例如,转接件60的一端为视觉传感器30,另一端同样为视觉传感器30;再例如,转接件60的一端为云台相机,另一端空置,即不与功能模组70连接,等等,在此不一一列举。
在一实施例中,转接件60还可以为供电模块,为无人机和/或功能模组供电。
在一个实施例中,转接件60可以设置在转轴40中,具体地,转轴40设置有收容部80,转接件60设置在收容部80内,转接件60的两端分别从第一机臂10和第二机臂20露出,以用于连接外界功能模组70。
在一个实施例中,转接件60可以作为无人机100的转轴40,转接件60的两端分别穿设第一机臂10和第二机臂20,以用于连接外界功能模组70。
在另一个实施方式中,第一机臂10与第二机臂20的连接处设置有收容部80,收容部80用于机械连接和电连接功能模组70,例如用于机械连接和电连接手持云台,手持云台部分收容在收容部80内部。具体地,手持云台的手持部收容在收容部80内部,手持云台的云台相机从第一机臂10和第二机臂20中的一个露出。如此,手持云台既可以独立使用,又可以由无人机搭载飞行,在飞行过程中拍摄稳定的画面。可选的,手持云台的供电模块还可用于给无人机供电,或者无人机的供电模块还可用于给手持云台供电,实现电量的基本均衡。
请参阅图1及图2,本申请还提供一种无人机200,无人机200包括第一机臂10及第二机臂20。第二机臂20与第一机臂10连接并能够相对于第一机臂10转动以使得无人机200在折叠状态与展开状态之间切换,当无人机200处于折叠状态时,第一机臂10和第二机臂20呈第一夹角α,当无人机200处于展开状态时,第一机臂10和第二机臂20呈第二夹角β,第一夹角α小于第二夹角β。其中,第一机臂10包括相背的第一面18和第二面19,第一面18设置有第一动力组件17,第二面19设置有第一视觉传感器301,第二机臂20包括相背的第三面27和第四面28,第三面27设置有第二动力组件26,第四面28设置有第二视觉传感器302,第一视觉传感器301和第二视觉传感器302的朝向不同。
本申请实施方式的无人机200能够切换折叠和展开状态,无人机200中第一视觉传感器301和第一动力组件17设置在相背的第一面18和第二面19,第二视觉传感器302和第二动力组件26设置在相背的第一面18和第二面19,使无人机200的视觉传感器30的感知范围不易被动力组件阻挡,以在无人机200体积有限的情况下扩大无人机200的感知方向和感知范围。
在某些实施方式中,无人机200还可包括上述任一实施方式的第一视觉传感器301、第二视觉传感器302、第一动力组件17、第二动力组件26、转轴40、脚架结构50、转接件60、及收容部80,并能够实现相同的功能,此处不再赘述。
具体地,无人机200可以是如图1至图4、及图7至图15所示的任意一种无人机200,无人机200与图示对应的结构和功能与无人机100在相同图示中对应的结构和功能一致,此处不再赘述。
请一并参阅图1、图2、及图12,本申请还提供一种无人机300,无人机300包括第一机臂10及第二机臂20。第二机臂20与第一机臂10通过转轴40连接,转轴40的两端设置有视觉传感器30。其中,第二机臂20能够相对于第一机臂10转动以使得无人机300在折叠状态与展开状态之间切换,当无人机300处于折叠状态时,第一机臂10和第二机臂20呈第一夹角α,当无人机300处于展开状态时,第一机臂10和第二机臂20呈第二夹角β,第一夹角α小于第二夹角β。
本申请实施方式的无人机300能够切换折叠和展开状态,在无人机300处于折叠或展开状态时转轴40两端的视觉传感器30的相对位置不会变化,在利用转轴40两端的视觉传感器30进行环境感知或者全景拍摄时无需重新标定相对位置。
在某些实施方式中,第一机臂10包括相背的第一面18和第二面19,第一面18设置有第一动力组件17,第二面19设置有第一视觉传感器301,第二机臂20包括相背的第三面27和第四面28,第三面27设置有第二动力组件26,第四面28设置有第二视觉传感器302,第二面19的第一视觉传感器301和第四面28的第二视觉传感器302的朝向不同。
进一步地,第一视觉传感器301及第二视觉传感器302为第一类视觉传感器30,第一类视觉传感器30用于感知无人机的周围环境;设置在转轴40两端的视觉传感器30为第二类视觉传感器30,第二类视觉传感器30用于拍摄全景图像。其中,第一类视觉传感器30和第二类视觉传感器30可以是上述任一实施方式的第一类视觉传感器30和第二类视觉传感器30。
在某些实施方式中,无人机300还可包括上述任一实施方式的第一动力组件17、第二动力组件26、及脚架结构50,并能够实现相同的功能,此处不再赘述。
具体地,无人机300可以是如图1至图6及图9至图14所示的任意一种无人机300,无人机300与图示对应的结构和功能与无人机100在相同图示中对应的结构和功能一致,此处不再赘述。
请一并参阅图1、图2、图13、及图14,本申请还提供一种无人机400,无人机400包括第一机臂10、第二机臂20及第一脚架51。第二机臂20与第一机臂10连接并能够相对于第一机臂10转动以使得无人机400在折叠状态与展开状态之间切换。第一脚架51至少部分地设置于第一机臂10和第二机臂20,当无人机400从折叠状态变为展开状态时,第一机臂10和第二机臂20中的至少一个机臂带动第一脚架51运动以使得第一脚架51从折叠状态变为展开状态。
本申请实施方式的无人机400能够切换折叠和展开状态,当无人机400处于折叠状态时第一脚架51也处于折叠状态,以减小收纳无人机400需要的空间;当无人机400切换到展开状态时第一脚架51也能被带动的切换到展开状态,以为无人机400的起降提供稳定的支撑。
在某些实施方式中,无人机400还可包括上述任一实施方式的第一视觉传感器301、第二视觉传感器302、第一动力组件17、第二动力组件26、转轴40、转接件60、第二脚架52及收容部80,并能够实现相同的功能,此处不再赘述。
具体地,无人机400可以是如图1至图4、及图9至图15所示的任意一种无人机400,无人机400与图示对应的结构和功能与无人机100在相同图示中对应的结构和功能一致,此处不再赘述。
请参阅图5至图8,本申请还提供一种无人机500,无人机500包括第一机臂10及第二机臂20。第一机臂10包括两个子机臂。第二机臂20包括两个子机臂。其中,两个子机臂位于同一第一高度,另外两个子机臂位于同一第二高度,第一高度与第二高度不同。当无人机500处于折叠状态时,第一机臂10和第二机臂20至少部分重叠;当无人机500从折叠状态切换到展开状态时,位于同一高度的子机臂之 间的夹角从第一夹角α切换到第二夹角β。
本申请实施方式的无人机500能够切换折叠和展开状态,当无人机500处于折叠状态时,位于第一高度的子机臂与位于第二高度的子机臂能够相对转动至二者重叠,二者重叠的部分越多,则折叠后的无人机500的折叠程度越高,越利于无人机500的收纳。
请继续参阅图5至图8,在某些实施方式中,第一机臂10包括相接的第一子机臂11和第二子机臂12,第二机臂20包括相接的第三子机臂21和第四子机臂22,
在如图5及图6所示的无人机500中,第一子机臂11与第二子机臂12相对转轴40的高度不同,第三子机臂21与第四子机臂22相对转轴40的高度不同。在某些实施方式中,第一子机臂11与第三子机臂21相对转轴40的高度相同,位于同一第一高度;第二子机臂12与第四子机臂22相对转轴40的高度相同,位于同一第二高度;第一高度与第二高度不同。
在如图7及图8所示的无人机500中,第一子机臂11与第二子机臂12相对转轴40的高度相同,位于同一第一高度;第三子机臂21与第四子机臂22相对转轴40的高度相同,位于同一第二高度;第一高度与第二高度不同。
在某些实施方式中,无人机500还可包括上述任一实施方式的第一视觉传感器301、第二视觉传感器302、第一动力组件17、第二动力组件26、转轴40、脚架结构50、转接件60、及收容部80,并能够实现相同的功能,此处不再赘述。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。

Claims (118)

  1. 一种无人机,其特征在于,包括:
    第一机臂;
    第二机臂,所述第二机臂与所述第一机臂连接并能够相对于所述第一机臂转动以使得所述无人机在折叠状态与展开状态之间切换,当所述无人机处于折叠状态时,所述第一机臂和所述第二机臂呈第一夹角,当所述无人机处于展开状态时,所述第一机臂和所述第二机臂呈第二夹角,所述第一夹角小于所述第二夹角;及
    多个视觉传感器,所述第一机臂和所述第二机臂分别设置有所述视觉传感器,多个所述视觉传感器中的至少两个所述视觉传感器在所述无人机处于折叠状态时的距离小于在所述无人机处于展开状态时的距离。
  2. 根据权利要求1所述的无人机,其特征在于,所述第一机臂与所述第二机臂通过转轴连接,所述第一机臂与所述第二机臂能够绕所述转轴相对转动。
  3. 根据权利要求1所述的无人机,其特征在于,所述第一机臂包括相接的第一子机臂和第二子机臂,所述第二机臂包括相接的第三子机臂和第四子机臂,在所述无人机处在展开状态时,所述第一子机臂、所述第二子机臂、所述第三子机臂、及所述第四子机臂环绕所述无人机的转轴均匀分布。
  4. 根据权利要求3所述的无人机,其特征在于,所述第一子机臂与所述第二子机臂联动,所述第三子机臂与所述第四子机臂联动。
  5. 根据权利要求4所述的无人机,其特征在于,所述第一机臂包括第一本体和第一安装部,所述第二机臂包括第二本体和第二安装部,所述转轴的两端分别与所述第一安装部与所述第二安装部转动连接。
  6. 根据权利要求5所述的无人机,其特征在于,所述转轴与所述第一安装部或所述第二安装部为一体结构。
  7. 根据权利要求4所述的无人机,其特征在于,所述第一机臂包括结合部,所述转轴穿设所述结合部且两端从所述结合部的两侧露出;所述第一子机臂与所述第二子机臂对称设置在所述结合部的两侧;所述第三子机臂套设在所述转轴从所述结合部的一侧露出的一端;所述第四子机臂套设在所述转轴从所述结合部的另一侧露出的另一端。
  8. 根据权利要求3所述的无人机,其特征在于,所述第一子机臂能够相对所述第二子机臂转动,所述第三子机臂能够相对所述第四子机臂转动。
  9. 根据权利要求3所述的无人机,其特征在于,所述第一子机臂与所述第二子机臂相对所述转轴的高度相同,所述第三子机臂与所述第四子机臂相对所述转轴的高度相同,所述第一子机臂与所述第三子机臂相对所述转轴的高度不同。
  10. 根据权利要求3所述的无人机,其特征在于,所述第一子机臂与所述第二子机臂相对所述转轴的高度不同,所述第三子机臂与所述第四子机臂相对所述转轴的高度不同,所述第一子机臂与所述第三子机臂相对所述转轴的高度相同,所述第二子机臂与所述第四子机臂相对所述转轴的高度相同。
  11. 根据权利要求1所述的无人机,其特征在于,所述第一机臂与所述第二机臂相对所述无人机的转轴的高度不同。
  12. 根据权利要求11所述的无人机,其特征在于,所述第一机臂的第一末端设置有第一动力组件,所述第二机臂的第二末端设置有第二动力组件;
    所述第一末端能够旋转以调整所述第一动力组件的朝向;所述第二末端能够旋转以调整所述第二动力组件的朝向;或
    所述第一动力组件能够旋转以调整所述第一动力组件的朝向;所述第二动力组件能够旋转以所述第二动力组件的朝向。
  13. 根据权利要求1所述的无人机,其特征在于,所述多个视觉传感器包括第一类视觉传感器及第二类视觉传感器,所述第一类视觉传感器用于感知所述无人机的周围环境,所述第二类视觉传感器用于拍摄全景图像。
  14. 根据权利要求13所述的无人机,其特征在于,所述第一机臂与所述第二机臂通过转轴连接,所述转轴的两端分别设置一个所述第二类视觉传感器,所述第一机臂的至少一个末端设置有一个所述第一类视觉传感器,所述第二机臂的至少一个末端设置有一个所述第一类视觉传感器。
  15. 根据权利要求1所述的无人机,其特征在于,所述第一机臂包括相背的第一面和第二面,所述第一面设置有第一动力组件,所述第二面设置有第一视觉传感器,所述第二机臂包括相背的第三面和第四面,所述第三面设置有第二动力组件,所述第四面设置有第二视觉传感器,所述第一视觉传感器和所述第二视觉传感器的朝向不同。
  16. 根据权利要求15所述的无人机,其特征在于,所述第一机臂的至少一个末端设置有一个所述第一视觉传感器,所述第二机臂的至少一个末端设置有一个所述第二视觉传感器。
  17. 根据权利要求1所述的无人机,其特征在于,所述无人机还包括脚架结构,所述脚架结构与所述第一机臂和/或所述第二机臂连接,并用于在所述无人机起降时支撑所述无人机。
  18. 根据权利要求17所述的无人机,其特征在于,所述脚架结构包括两个第一脚架,每个所述第一脚架均与所述第一机臂及所述第二机臂转动连接,当所述无人机从折叠状态变为展开状态时,所述第一机臂和所述第二机臂中的至少一个带动所述第一脚架运动以使得所述第一脚架从折叠状态变为展开状态。
  19. 根据权利要求18所述的无人机,其特征在于,所述第一脚架包括用于在所述无人机起降时支撑所述无人机的支撑件,所述无人机处于折叠状态时所述支撑件至所述无人机的转轴的距离, 小于所述无人机处于展开状态时所述支撑件至所述转轴的距离。
  20. 根据权利要求19所述的无人机,其特征在于,所述第一脚架还包括:
    第一连杆,所述第一连杆能够转动地安装在所述第一机臂;及
    第二连杆,所述第二连杆能够转动地安装在所述第二机臂;其中:
    所述支撑件穿设所述第一连杆及所述第二连杆,所述第一连杆与所述第二连杆能够相对转动以改变彼此之间的第三夹角的大小。
  21. 根据权利要求20所述的无人机,其特征在于,所述无人机处于折叠状态时所述第三夹角,大于所述无人机处于展开状态时所述第三夹角。
  22. 根据权利要求18所述的无人机,其特征在于,两个所述第一脚架的所述支撑件关于所述无人机的转轴始终保持对称。
  23. 根据权利要求17-22任意一项所述的无人机,其特征在于,所述脚架结构包括第二脚架,所述第一机臂或所述第二机臂的至少一个设置有一对所述第二脚架,所述第二脚架用于在所述无人机起降时支撑所述无人机。
  24. 根据权利要求23所述的无人机,其特征在于,沿远离机臂的方向,所述第二脚架的横截面逐渐减小,所述第二脚架的横截面具有一个斜边,且该斜边位于靠近所述无人机的视觉传感器的一侧。
  25. 根据权利要求23所述的无人机,其特征在于,同一对所述第二脚架关于所述无人机的转轴对称。
  26. 根据权利要求23所述的无人机,其特征在于,所述第二脚架为柱体结构或锥体结构。
  27. 根据权利要求1所述的无人机,其特征在于,所述第一机臂与所述第二机臂的连接处设置有转接件,所述转接件两端中的至少一端用于外接功能模组以使所述功能模组与所述无人机机械连接和电连接。
  28. 根据权利要求27所述的无人机,其特征在于,所述功能模组包括云台相机、手持云台、或所述视觉传感器中的任意一种。
  29. 根据权利要求1所述的无人机,其特征在于,所述第一机臂与所述第二机臂的连接处设置有收容部,所述收容部用于机械连接和电连接手持云台。
  30. 一种无人机,其特征在于,包括:
    第一机臂;
    第二机臂,所述第二机臂与所述第一机臂连接并能够相对于所述第一机臂转动以使得所述无人机在折叠状态与展开状态之间切换,当所述无人机处于折叠状态时,所述第一机臂和所述第二机臂呈第一夹角,当所述无人机处于展开状态时,所述第一机臂和所述第二机臂呈第二夹角,所述第一夹角小于所述第二夹角;
    其中,所述第一机臂包括相背的第一面和第二面,所述第一面设置有第一动力组件,所述第 二面设置有第一视觉传感器,所述第二机臂包括相背的第三面和第四面,所述第三面设置有第二动力组件,所述第四面设置有第二视觉传感器,所述第一视觉传感器和所述第二视觉传感器的朝向不同。
  31. 根据权利要求30所述的无人机,其特征在于,所述第一机臂与所述第二机臂通过转轴连接,所述第一机臂与所述第二机臂能够绕所述转轴相对转动。
  32. 根据权利要求30所述的无人机,其特征在于,所述第一机臂包括相接的第一子机臂和第二子机臂,所述第二机臂包括相接的第三子机臂和第四子机臂,在所述无人机处在展开状态时,所述第一子机臂、所述第二子机臂、所述第三子机臂、及所述第三子机臂环绕所述无人机的转轴均匀分布。
  33. 根据权利要32所述的无人机,其特征在于,所述第一子机臂与所述第二子机臂联动,所述第三子机臂与所述第四子机臂联动。
  34. 根据权利要求33所述的无人机,其特征在于,所述第一机臂包括第一本体和第一安装部,所述第二机臂包括第二本体和第二安装部,所述无人机的转轴的两端分别与所述第一安装部与所述第二安装部转动连接。
  35. 根据权利要求34所述的无人机,其特征在于,所述转轴与所述第一安装部或所述第二安装部为一体结构。
  36. 根据权利要求33所述的无人机,其特征在于,所述第一机臂包括结合部,所述转轴穿设所述结合部且两端从所述结合部的两侧露出;所述第一子机臂与所述第二子机臂对称设置在所述结合部的两侧;所述第三子机臂套设在所述转轴从所述结合部的一侧露出的一端;所述第四子机臂套设在所述转轴从所述结合部的另一侧露出的另一端。
  37. 根据权利要求36所述的无人机,其特征在于,所述第一子机臂相对所述第二子机臂转动,所述第三子机臂相对所述第四子机臂转动。
  38. 根据权利要求32所述的无人机,其特征在于,所述第一子机臂与所述第二子机臂相对所述转轴的高度相同,所述第三子机臂与所述第四子机臂相对所述转轴的高度相同,所述第一子机臂与所述第三子机臂相对所述转轴的高度不同。
  39. 根据权利要求32所述的无人机,其特征在于,所述第一子机臂与所述第二子机臂相对所述转轴的高度不同,所述第三子机臂与所述第四子机臂相对所述转轴的高度不同,所述第一子机臂与所述第三子机臂相对所述转轴的高度相同,所述第二子机臂与所述第四子机臂相对所述转轴的高度相同。
  40. 根据权利要求30所述的无人机,其特征在于,所述第一机臂与所述第二机臂相对所述无人机的转轴的高度不同。
  41. 根据权利要求40所述的无人机,其特征在于,所述第一机臂的第一末端设置有第一动力 组件,所述第二机臂的第二末端设置有第二动力组件;
    所述第一末端能够旋转以调整所述第一动力组件的朝向;所述第二末端能够旋转以调整所述第二动力组件的朝向;或
    所述第一动力组件能够旋转以调整所述第一动力组件的朝向;所述第二动力组件能够旋转以所述第二动力组件的朝向。
  42. 根据权利要求30所述的无人机,其特征在于,所述第一视觉传感器和/或所述第二视觉传感器包括第一类视觉传感器及第二类视觉传感器,所述第一类视觉传感器用于感知所述无人机的周围环境,所述第二类视觉传感器用于拍摄全景图像。
  43. 根据权利要求42所述的无人机,其特征在于,所述第一机臂与所述第二机臂通过转轴连接,所述转轴的两端分别设置一个所述第二类视觉传感器,所述第一机臂的至少一个末端设置有一个所述第二类视觉传感器,所述第二机臂的至少一个末端设置有一个所述第二类视觉传感器。
  44. 根据权利要求30所述的无人机,其特征在于,所述无人机还包括脚架结构,所述脚架结构与所述第一机臂和/或所述第二机臂连接,并用于在所述无人机起降时支撑所述无人机。
  45. 根据权利要求44所述的无人机,其特征在于,所述脚架结构包括两个第一脚架,每个所述第一脚架均与所述第一机臂与所述第二机臂转动连接,当所述无人机从折叠状态变为展开状态时,所述第一机臂和所述第二机臂中的至少一个带动所述第一脚架运动以使得所述第一脚架从折叠状态变为展开状态。
  46. 根据权利要求45所述的无人机,其特征在于,所述第一脚架包括用于在所述无人机起降时支撑所述无人机的支撑件,所述无人机处于折叠状态时所述支撑件至所述无人机的转轴的距离,小于所述无人机处于展开状态时所述支撑件至所述转轴的距离。
  47. 根据权利要求46所述的无人机,其特征在于,所述第一脚架还包括:
    第一连杆,所述第一连杆能够转动地安装在所述第一机臂上;及
    第二连杆,所述第二连杆能够转动地安装在所述第二机臂上;其中:
    所述支撑件穿设所述第一连杆及所述第二连杆,所述第一连杆与所述第二连杆能够相对转动以改变彼此之间的第三夹角的大小。
  48. 根据权利要求47所述的无人机,其特征在于,所述无人机处于折叠状态时所述第三夹角,大于所述无人机处于展开状态时所述第三夹角。
  49. 根据权利要求45所述的无人机,其特征在于,两个所述第一脚架的所述支撑件关于所述无人机的转轴始终保持对称。
  50. 根据权利要求44-49任意一项所述的无人机,其特征在于,所述脚架结构包括第二脚架,所述第一机臂或所述第二机臂的至少一个设置有一对所述第二脚架,所述第二脚架用于在所述无人机起降时支撑所述无人机。
  51. 根据权利要求50所述的无人机,其特征在于,沿远离机臂的方向,所述第二脚架的横截面逐渐减小,所述第二脚架的横截面具有一个斜边,且该斜边位于靠近所述无人机的视觉传感器的一侧。
  52. 根据权利要求50所述的无人机,其特征在于,同一对所述第二脚架关于所述无人机的转轴对称。
  53. 根据权利要求50所述的无人机,其特征在于,所述第二脚架为柱体结构或锥体结构。
  54. 根据权利要求30所述的无人机,其特征在于,所述第一机臂与所述第二机臂的连接处设置有转接件,所述转接件两端中的至少一端用于外接功能模组以使所述功能模组与所述无人机机械连接和/或电连接。
  55. 根据权利要求54所述的无人机,其特征在于,所述功能模组包括云台相机、手持云台、或所述视觉传感器中的任意一种。
  56. 根据权利要求30所述的无人机,其特征在于,所述第一机臂与所述第二机臂的连接处设置有收容部,所述收容部机械连接和/或电连接手持云台。
  57. 一种无人机,其特征在于,包括:
    第一机臂;
    第二机臂,所述第二机臂与所述第一机臂通过转轴连接,所述转轴的两端设置有视觉传感器;
    其中,所述第二机臂能够相对于所述第一机臂转动以使得所述无人机在折叠状态与展开状态之间切换,当所述无人机处于折叠状态时,所述第一机臂和所述第二机臂呈第一夹角,当所述无人机处于展开状态时,所述第一机臂和所述第二机臂呈第二夹角,所述第一夹角小于所述第二夹角。
  58. 根据权利要求57所述的无人机,其特征在于,所述第一机臂包括相接的第一子机臂和第二子机臂,所述第二机臂包括相接的第三子机臂和第四子机臂,在所述无人机处在展开状态时,所述第一子机臂、所述第二子机臂、所述第三子机臂、及所述第三子机臂环绕所述无人机的转轴均匀分布。
  59. 根据权利要求58所述的无人机,其特征在于,所述第一子机臂与所述第二子机臂联动,所述第三子机臂与所述第四子机臂联动。
  60. 根据权利要求59所述的无人机,其特征在于,所述第一机臂包括第一本体和第一安装部,所述第二机臂包括第二本体和第二安装部,所述无人机的转轴的两端分别与所述第一安装部与所述第二安装部转动连接。
  61. 根据权利要求60所述的无人机,其特征在于,所述转轴与所述第一安装部或所述第二安装部为一体结构。
  62. 根据权利要求59所述的无人机,其特征在于,所述第一机臂包括结合部,所述转轴穿设所述结合部且两端从所述结合部的两侧露出;所述第一子机臂与所述第二子机臂对称设置在所述 结合部的两侧;所述第三子机臂套设在所述转轴从所述结合部的一侧露出的一端;所述第四子机臂套设在所述转轴从所述结合部的另一侧露出的另一端。
  63. 根据权利要求59所述的无人机,其特征在于,所述第一子机臂相对所述第二子机臂转动,所述第三子机臂相对所述第四子机臂转动。
  64. 根据权利要求59所述的无人机,其特征在于,所述第一子机臂与所述第二子机臂相对所述转轴的高度相同,所述第三子机臂与所述第四子机臂相对所述转轴的高度相同,所述第一子机臂与所述第三子机臂相对所述转轴的高度不同。
  65. 根据权利要求59所述的无人机,其特征在于,所述第一子机臂与所述第二子机臂相对所述转轴的高度不同,所述第三子机臂与所述第四子机臂相对所述转轴的高度不同,所述第一子机臂与所述第三子机臂相对所述转轴的高度相同,所述第二子机臂与所述第四子机臂相对所述转轴的高度相同。
  66. 根据权利要求57所述的无人机,其特征在于,所述第一机臂与所述第二机臂相对所述转轴的高度不同。
  67. 根据权利要求66所述的无人机,其特征在于,所述第一机臂的第一末端设置有第一动力组件,所述第二机臂的第二末端设置有第二动力组件;
    所述第一末端能够旋转以调整所述第一动力组件的朝向;所述第二末端能够旋转以调整所述第二动力组件的朝向;或
    所述第一动力组件能够旋转以调整所述第一动力组件的朝向;所述第二动力组件能够旋转以所述第二动力组件的朝向。
  68. 根据权利要求57所述的无人机,其特征在于,所述第一机臂包括相背的第一面和第二面,所述第一面设置有第一动力组件,所述第二面设置有第一视觉传感器,所述第二机臂包括相背的第三面和第四面,所述第三面设置有第二动力组件,所述第四面设置有第二视觉传感器,所述第二面的第一视觉传感器和所述第四面的第二视觉传感器的朝向不同。
  69. 根据权利要求68所述的无人机,其特征在于,
    所述第一视觉传感器及所述第二视觉传感器为第一类视觉传感器,所述第一类视觉传感器用于感知所述无人机的周围环境;
    设置在所述转轴两端的视觉传感器为第二类视觉传感器,所述第二类视觉传感器用于拍摄全景图像。
  70. 根据权利要求57所述的无人机,其特征在于,所述无人机还包括脚架结构,所述脚架结构与所述第一机臂和/或所述第二机臂连接,并用于在所述无人机起降时支撑所述无人机。
  71. 根据权利要求70所述的无人机,其特征在于,所述脚架结构包括两个第一脚架,每个所述第一脚架均与所述第一机臂与所述第二机臂转动连接,当所述无人机从折叠状态变为展开状态 时,所述第一机臂和所述第二机臂中的至少一个带动所述第一脚架运动以使得所述第一脚架从折叠状态变为展开状态。
  72. 根据权利要求71所述的无人机,其特征在于,所述第一脚架包括用于在所述无人机起降时支撑所述无人机的支撑件,所述无人机处于折叠状态时所述支撑件至所述无人机的转轴的距离,小于所述无人机处于展开状态时所述支撑件至所述转轴的距离。
  73. 根据权利要求72所述的无人机,其特征在于,所述第一脚架还包括:
    第一连杆,所述第一连杆能够转动地安装在所述第一机臂上;及
    第二连杆,所述第二连杆能够转动地安装在所述第二机臂上;其中:
    所述支撑件穿设所述第一连杆及所述第二连杆,所述第一连杆与所述第二连杆能够相对转动以改变彼此之间的第三夹角的大小。
  74. 根据权利要求73所述的无人机,其特征在于,所述无人机处于折叠状态时所述第三夹角,大于所述无人机处于展开状态时所述第三夹角。
  75. 根据权利要求70所述的无人机,其特征在于,两个所述第一脚架的所述支撑件关于所述无人机的转轴始终保持对称。
  76. 根据权利要求70-75任意一项所述的无人机,其特征在于,所述脚架结构包括第二脚架,所述第一机臂或所述第二机臂的至少一个设置有一对所述第二脚架,所述第二脚架用于在所述无人机起降时支撑所述无人机。
  77. 根据权利要求76所述的无人机,其特征在于,沿远离机臂的方向,所述第二脚架的横截面逐渐减小,所述第二脚架的横截面具有一个斜边,且该斜边位于靠近所述无人机的视觉传感器的一侧。
  78. 根据权利要求76所述的无人机,其特征在于,同一对所述第二脚架关于所述无人机的转轴对称。
  79. 根据权利要求76所述的无人机,其特征在于,所述第二脚架为柱体结构或锥体结构。
  80. 根据权利要求57所述的无人机,其特征在于,所述第一机臂与所述第二机臂的连接处设置有转接件,所述转接件两端中的至少一端用于外接功能模组以使所述功能模组与所述无人机机械连接和/或电连接。
  81. 根据权利要求80所述的无人机,其特征在于,所述功能模组包括云台相机、手持云台、或所述视觉传感器中的任意一种。
  82. 根据权利要求57所述的无人机,其特征在于,所述第一机臂与所述第二机臂的连接处设置有收容部,所述收容部机械连接和/或电连接手持云台。
  83. 一种无人机,其特征在于,包括:
    第一机臂;
    第二机臂,所述第二机臂与所述第一机臂连接并能够相对于所述第一机臂转动以使得所述无 人机在折叠状态与展开状态之间切换;
    第一脚架,所述第一脚架至少部分地设置于所述第一机臂和所述第二机臂,当所述无人机从折叠状态变为展开状态时,所述第一机臂和所述第二机臂中的至少一个机臂带动所述第一脚架运动以使得所述第一脚架从折叠状态变为展开状态。
  84. 根据权利要求83所述的无人机,其特征在于,所述无人机包括两个所述第一脚架,每个所述第一脚架均与所述第一机臂与所述第二机臂转动连接,当所述无人机从折叠状态变为展开状态时,所述第一机臂和所述第二机臂中的至少一个带动所述第一脚架运动以使得每个所述第一脚架从折叠状态变为展开状态。
  85. 根据权利要求84所述的无人机,其特征在于,所述第一脚架包括用于在所述无人机起降时支撑所述无人机的支撑件,所述无人机处于折叠状态时所述支撑件至所述无人机的转轴的距离,小于所述无人机处于展开状态时所述支撑件至所述转轴的距离。
  86. 根据权利要求85所述的无人机,其特征在于,所述第一脚架还包括:
    第一连杆,所述第一连杆能够转动地安装在所述第一机臂上;及
    第二连杆,所述第二连杆能够转动地安装在所述第二机臂上;其中:
    所述支撑件穿设所述第一连杆及所述第二连杆,所述第一连杆与所述第二连杆能够相对转动以改变彼此之间的第三夹角的大小。
  87. 根据权利要求86所述的无人机,其特征在于,所述无人机处于折叠状态时所述第三夹角,大于所述无人机处于展开状态时所述第三夹角。
  88. 根据权利要求84所述的无人机,其特征在于,两个所述第一脚架的所述支撑件关于所述无人机的转轴始终保持对称。
  89. 根据权利要求83-88任意一项所述的无人机,其特征在于,所述无人机还包括第二脚架,所述第一机臂或所述第二机臂的至少一个设置有一对所述第二脚架,所述第二脚架用于在所述无人机起降时支撑所述无人机。
  90. 根据权利要求89所述的无人机,其特征在于,沿远离机臂的方向,所述第二脚架的横截面逐渐减小,所述第二脚架的横截面具有一个斜边,且该斜边位于靠近所述无人机的视觉传感器的一侧。
  91. 根据权利要求89所述的无人机,其特征在于,同一对所述第二脚架关于所述无人机的转轴对称。
  92. 根据权利要求89所述的无人机,其特征在于,所述第二脚架为柱体结构或锥体结构。
  93. 根据权利要求83所述的无人机,其特征在于,所述第一机臂与所述第二机臂通过转轴连接,所述第一机臂与所述第二机臂能够绕所述转轴相对转动。
  94. 根据权利要求83所述的无人机,其特征在于,所述第一机臂包括相接的第一子机臂和第二子机臂,所述第二机臂包括相接的第三子机臂和第四子机臂,在所述无人机处在展开状态时, 所述第一子机臂、所述第二子机臂、所述第三子机臂、及所述第三子机臂环绕所述无人机的转轴均匀分布。
  95. 根据权利要求94所述的无人机,其特征在于,所述第一子机臂与所述第二子机臂联动,所述第三子机臂与所述第四子机臂联动。
  96. 根据权利要求95所述的无人机,其特征在于,所述第一机臂包括第一本体和第一安装部,所述第二机臂包括第二本体和第二安装部,所述无人机的转轴的两端分别与所述第一安装部与所述第二安装部转动连接。
  97. 根据权利要求96所述的无人机,其特征在于,所述转轴与所述第一安装部或所述第二安装部为一体结构。
  98. 根据权利要求95所述的无人机,其特征在于,所述第一机臂包括结合部,所述转轴穿设所述结合部且两端从所述结合部的两侧露出;所述第一子机臂与所述第二子机臂对称设置在所述结合部的两侧;所述第三子机臂套设在所述转轴从所述结合部的一侧露出的一端;所述第四子机臂套设在所述转轴从所述结合部的另一侧露出的另一端。
  99. 根据权利要求94所述的无人机,其特征在于,所述第一子机臂相对所述第二子机臂转动,所述第三子机臂相对所述第四子机臂转动。
  100. 根据权利要求94所述的无人机,其特征在于,所述第一子机臂与所述第二子机臂相对所述转轴的高度相同,所述第三子机臂与所述第四子机臂相对所述转轴的高度相同,所述第一子机臂与所述第三子机臂相对所述转轴的高度不同。
  101. 根据权利要求94所述的无人机,其特征在于,所述第一子机臂与所述第二子机臂相对所述转轴的高度不同,所述第三子机臂与所述第四子机臂相对所述转轴的高度不同,所述第一子机臂与所述第四子机臂相对所述转轴的高度相同,所述第二子机臂与所述第三子机臂相对所述转轴的高度相同。
  102. 根据权利要求83所述的无人机,其特征在于,所述第一机臂与所述第二机臂相对所述无人机的转轴的高度不同。
  103. 根据权利要求102所述的无人机,其特征在于,所述第一机臂的第一末端设置有第一动力组件,所述第二机臂的第二末端设置有第二动力组件;
    所述第一末端能够旋转以调整所述第一动力组件的朝向;所述第二末端能够旋转以调整所述第二动力组件的朝向;或
    所述第一动力组件能够旋转以调整所述第一动力组件的朝向;所述第二动力组件能够旋转以所述第二动力组件的朝向。
  104. 根据权利要求83所述的无人机,其特征在于,所述无人机还包括多个视觉传感器,所述第一机臂和所述第二机臂分别设置有所述视觉传感器,所述视觉传感器包括第一类视觉传感器及 第二类视觉传感器,所述第一类视觉传感器用于感知所述无人机的周围环境,所述第二类视觉传感器用于拍摄全景图像。
  105. 根据权利要求104所述的无人机,其特征在于,所述第一机臂与所述第二机臂通过转轴连接,所述转轴的两端分别设置一个所述第二类视觉传感器,所述第一机臂的至少一个末端设置有一个所述第二类视觉传感器,所述第二机臂的至少一个末端设置有一个所述第二类视觉传感器。
  106. 根据权利要求83所述的无人机,其特征在于,所述第一机臂包括相背的第一面和第二面,所述第一面设置有第一动力组件,所述第二面设置有第一视觉传感器,所述第二机臂包括相背的第三面和第四面,所述第三面设置有第二动力组件,所述第四面设置有第二视觉传感器,所述第一视觉传感器和所述第二视觉传感器的朝向不同。
  107. 根据权利要求106所述的无人机,其特征在于,所述第一机臂的至少一个末端设置有一个所述第一视觉传感器,所述第二机臂的至少一个末端设置有一个所述第二视觉传感器。
  108. 根据权利要求83所述的无人机,其特征在于,所述第一机臂与所述第二机臂的连接处设置有转接件,所述转接件两端中的至少一端用于外接功能模组以使所述功能模组与所述无人机机械连接和/或电连接。
  109. 根据权利要求108所述的无人机,其特征在于,所述功能模组包括云台相机、手持云台、或所述视觉传感器中的任意一种。
  110. 根据权利要求83所述的无人机,其特征在于,所述第一机臂与所述第二机臂的连接处设置有收容部,所述收容部机械连接和/或电连接手持云台。
  111. 一种无人机,其特征在于,所述无人机能够在折叠状态和展开状态之间切换,所述无人机包括:
    第一机臂,所述第一机臂包括两个子机臂;
    第二机臂,所述第二机臂包括两个子机臂;
    其中两个所述子机臂位于同一第一高度,另外两个所述子机臂位于同一第二高度,所述第一高度与所述第二高度不同;
    当所述无人机处于折叠状态时,所述第一机臂和所述第二机臂至少部分重叠;当所述无人机从折叠状态切换到展开状态时,位于同一高度的子机臂之间的夹角从第一夹角切换到第二夹角。
  112. 根据权利要求111所述的无人机,其特征在于,所述第一机臂包括相接的第一子机臂和第二子机臂,所述第二机臂包括相接的第三子机臂和第四子机臂,所述第一子机臂与所述第二子机臂位于所述第一高度,所述第三子机臂与所述第四子机臂位于所述第二高度。
  113. 根据权利要求112所述的无人机,其特征在于,所述无人机包括转轴,所述第一机臂与所述第二机臂通过所述转轴连接,所述第一机臂包括第一本体和第一安装部,所述第二机臂包括第二本体和第二安装部,所述转轴的两端分别与所述第一安装部与所述第二安装部转动连接。
  114. 根据权利要求112所述的无人机,其特征在于,所述第一机臂包括相背的第一面和第二面,所述第一面设置有第一动力组件,所述第二面设置有第一视觉传感器,所述第二机臂包括相背的第三面和第四面,所述第三面设置有第二动力组件,所述第四面设置有第二视觉传感器,所述第一视觉传感器和所述第二视觉传感器的朝向不同。
  115. 根据权利要求114所述的无人机,其特征在于,所述第一机臂的至少一个末端设置有一个所述第一视觉传感器,所述第二机臂的至少一个末端设置有一个所述第二视觉传感器。
  116. 根据权利要求111所述的无人机,其特征在于,所述第一机臂包括相接的第一子机臂和第二子机臂,所述第二机臂包括相接的第三子机臂和第四子机臂,所述第一子机臂与所述第四子机臂位于所述第一高度,所述第二子机臂与所述第三子机臂位于所述第二高度。
  117. 根据权利要求116所述的无人机,其特征在于,所述无人机包括转轴,所述第一机臂与所述第二机臂通过所述转轴连接,所述第一机臂包括结合部,所述转轴穿设所述结合部且两端从所述结合部的两侧露出;所述第一子机臂与所述第二子机臂对称设置在所述结合部的两侧;所述第三子机臂套设在所述转轴从所述结合部的一侧露出的一端;所述第四子机臂套设在所述转轴从所述结合部的另一侧露出的另一端。
  118. 根据权利要求116所述的无人机,其特征在于,所述第一子机臂包括相背的第一面和第二面,所述第一子机臂的第一面设置有第一动力组件,所述第一子机臂的第二面设置有第一视觉传感器,所述第四机臂包括相背的第一面和第二面,所述第四子机臂的第一面设置有第一动力组件,所述第四子机臂的第二面设置有第一视觉传感器;
    所述第三子机臂包括相背的第三面和第四面,所述第三子机臂的第三面设置有第二动力组件,所述第三子机臂的第四面设置有第二视觉传感器,所述第二子机臂包括相背的第三面和第四面,所述第二子机臂的第三面设置有第二动力组件,所述第二子机臂的第四面设置有第二视觉传感器;所述第一视觉传感器和所述第二视觉传感器的朝向不同。
PCT/CN2020/140263 2020-12-28 2020-12-28 无人机 WO2022140941A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/140263 WO2022140941A1 (zh) 2020-12-28 2020-12-28 无人机
CN202080069840.7A CN114502462B (zh) 2020-12-28 2020-12-28 无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/140263 WO2022140941A1 (zh) 2020-12-28 2020-12-28 无人机

Publications (1)

Publication Number Publication Date
WO2022140941A1 true WO2022140941A1 (zh) 2022-07-07

Family

ID=81491835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140263 WO2022140941A1 (zh) 2020-12-28 2020-12-28 无人机

Country Status (2)

Country Link
CN (1) CN114502462B (zh)
WO (1) WO2022140941A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101527544B1 (ko) * 2015-01-10 2015-06-10 최종필 접이식 무인비행기
CN205440849U (zh) * 2016-03-16 2016-08-10 安徽钰龙信息科技有限公司 一种可折叠的多旋翼无人机机臂
CN206141826U (zh) * 2016-09-21 2017-05-03 深圳市大疆创新科技有限公司 无人机
CN206914628U (zh) * 2017-06-13 2018-01-23 深圳市道通智能航空技术有限公司 无人机及其起落架
CN209427033U (zh) * 2018-10-11 2019-09-24 四川宇翔科技有限公司 一种矢量喷火器
CN209684000U (zh) * 2019-01-30 2019-11-26 广州中科云图智能科技有限公司 一种折叠无人机

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104260605A (zh) * 2014-10-16 2015-01-07 北京理工大学 一种基于变胞原理的陆空两栖球形变胞机器人
CN204998752U (zh) * 2015-01-04 2016-01-27 北京零零无限科技有限公司 一种可折叠的无人机
JP2017109603A (ja) * 2015-12-16 2017-06-22 株式会社Soken 飛行装置
EP3419894B1 (en) * 2016-02-22 2021-11-10 SZ DJI Technology Co., Ltd. Foldable multi-rotor aerial vehicle
CN106347625A (zh) * 2016-10-26 2017-01-25 成都市优艾维机器人科技有限公司 一种无人机联动折叠机构
CN206407119U (zh) * 2016-12-19 2017-08-15 昊翔电能运动科技(昆山)有限公司 带有起落架的可折叠式多旋翼无人机
CN108438202B (zh) * 2018-04-12 2020-07-03 华南智能机器人创新研究院 一种无人机
US10106252B1 (en) * 2018-05-29 2018-10-23 Spin Master Ltd. Collapsible flying device
CN110816818B (zh) * 2019-12-06 2021-07-13 航天时代飞鸿技术有限公司 轻型折叠式多旋翼机臂锁紧复用起落架及使用方法及无人机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101527544B1 (ko) * 2015-01-10 2015-06-10 최종필 접이식 무인비행기
CN205440849U (zh) * 2016-03-16 2016-08-10 安徽钰龙信息科技有限公司 一种可折叠的多旋翼无人机机臂
CN206141826U (zh) * 2016-09-21 2017-05-03 深圳市大疆创新科技有限公司 无人机
CN206914628U (zh) * 2017-06-13 2018-01-23 深圳市道通智能航空技术有限公司 无人机及其起落架
CN209427033U (zh) * 2018-10-11 2019-09-24 四川宇翔科技有限公司 一种矢量喷火器
CN209684000U (zh) * 2019-01-30 2019-11-26 广州中科云图智能科技有限公司 一种折叠无人机

Also Published As

Publication number Publication date
CN114502462B (zh) 2024-08-20
CN114502462A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
US11140322B2 (en) Stabilizing platform
CN108235702B (zh) 一种云台、无人机及其控制方法
US9485427B2 (en) Apparatus and methods for stabilization and vibration reduction
JP7265017B2 (ja) 無人飛行システム及び無人飛行システムに用いられる制御システム
EP3317576B1 (en) Gimbal for image capturing
WO2018090942A1 (zh) 一种带可收放起落架装置的无人飞机
CN104859857A (zh) 一种单镜头全景无人机系统
WO2019056865A1 (zh) 云台及具有此云台的无人机
WO2019100821A1 (zh) 无人飞行器
WO2019062139A1 (zh) 一种无人飞行器
KR101918407B1 (ko) 무인항공기
WO2019062140A1 (zh) 无人飞行器
KR20180099650A (ko) 능동형 안정화시스템
WO2007033033A2 (en) Apparatus and method for providing pointing capability for a fixed camera
KR101910819B1 (ko) 항공 촬영 무인 비행 장치
WO2019095822A1 (zh) 拍摄组件及具有此拍摄组件的无人飞行器
US11254444B2 (en) Gimbal, photographing apparatus having same, and unmanned aerial vehicle
WO2019100825A1 (zh) 无人飞行器
WO2022266807A1 (zh) 无人机
WO2022140941A1 (zh) 无人机
WO2019007129A1 (zh) 云台及具有此云台的摄像组件和无人机
WO2023237076A1 (zh) 一种拍摄机构、无人机及无人机的控制方法
WO2019100824A1 (zh) 无人飞行器
KR20180106603A (ko) 짐벌장치 및 이를 포함하는 드론
WO2019119939A1 (zh) 无人飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967293

Country of ref document: EP

Kind code of ref document: A1