WO2022140940A1 - 一种光学膜及使用该光学膜的led显示屏 - Google Patents

一种光学膜及使用该光学膜的led显示屏 Download PDF

Info

Publication number
WO2022140940A1
WO2022140940A1 PCT/CN2020/140258 CN2020140258W WO2022140940A1 WO 2022140940 A1 WO2022140940 A1 WO 2022140940A1 CN 2020140258 W CN2020140258 W CN 2020140258W WO 2022140940 A1 WO2022140940 A1 WO 2022140940A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optical film
light
photochromic
brightness enhancement
Prior art date
Application number
PCT/CN2020/140258
Other languages
English (en)
French (fr)
Inventor
王爱玲
徐梦梦
Original Assignee
深圳市艾比森光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市艾比森光电股份有限公司 filed Critical 深圳市艾比森光电股份有限公司
Priority to PCT/CN2020/140258 priority Critical patent/WO2022140940A1/zh
Publication of WO2022140940A1 publication Critical patent/WO2022140940A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/23Photochromic filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes

Definitions

  • the present application relates to the technical field of LED display screens, in particular to an optical film and an LED display screen using the optical film.
  • LED displays have the advantages of high luminous brightness, high luminous efficiency, bright colors, high contrast, wide operating temperature range, short response time, and low energy consumption. They are widely used in the display field, such as common Display of securities trading and financial information, airport flight dynamic information display, port and station passenger guidance information display, sports venue information display, road traffic information display, power dispatching and vehicle dynamic tracking and other dispatching command center information display, shopping malls and other services Business promotion information display and advertising media products in the field.
  • the LED display is generally composed of multiple LED display cabinets, and each LED display cabinet includes a cabinet frame and multiple display modules; wherein, each display module includes a light panel, a mask and a
  • each display module includes a light panel, a mask and a
  • the housing and other components, the mask and the housing are located on both sides of the light board, the light board includes a PCB board (printed circuit board, printed circuit board) and a surface mount technology (Surface Mounted Technology, SMT) soldered on the front of the PCB board.
  • PCB board printed circuit board, printed circuit board
  • SMT surface Mounted Technology
  • the LED display is affected by ambient light during use, and its contrast will decrease, especially in the daytime when the ambient light intensity is high.
  • the ambient light with high intensity shines on the LED display, it is reflected to the human eye through the LED display
  • the more visible light the more the human eye cannot see the screen clearly, and the more obvious the reduction in contrast.
  • a circular polarizing film is usually installed on the light-emitting surface of the display screen in the industry.
  • the circular polarizing film will also cause a lot of Light loss, significantly reducing the luminous brightness of the LED lamp beads of the LED display.
  • the present application provides an optical film that can improve contrast and an LED display screen using the optical film
  • the optical film includes a photochromic film
  • the photochromic film will not be discolored by visible light emitted by the LED display screen, It only changes color under the irradiation of strong ultraviolet light, and by absorbing most of the ambient light, the contrast ratio of the LED display screen under strong ambient light is significantly improved, and the brightness of the LED display screen under weak ambient light is not affected.
  • the present application provides an optical film, the optical film includes a photochromic film and an antireflection layer disposed on the photochromic film, the light transmittance of the photochromic film varies with the environment The intensity of ultraviolet light in the light increases and decreases.
  • the light transmittance of the photochromic film is greater than or equal to 80%; when the intensity of the external ambient light is strong, the photochromic film is excited by strong ultraviolet light. The color gets darker and the light transmittance drops to 30-50%.
  • the present application provides an optical film, the optical film includes a photochromic film and a brightness enhancement structure, and the brightness enhancement structure is arranged on one side surface of the photochromic film, or is arranged on the brightness enhancement structure On the surface of the film facing away from the photochromic film, the brightness enhancement film is located on the photochromic film; wherein, the light transmittance of the photochromic film decreases with the increase of ultraviolet light intensity in ambient light .
  • a third aspect of the present application further provides an LED display screen, the LED display screen is formed by splicing a plurality of display modules, and the light-emitting surface of each of the display modules is provided with the LED display according to the first aspect or the second aspect of the present application.
  • the photochromic film is close to the light emitting surface of the display module.
  • the optical film provided by the present application is used to be arranged on the light-emitting surface of the display module of the LED display screen, and the photochromic film is close to the light-emitting surface of the display module.
  • the external ambient light is dark, the ambient light has little effect on the contrast ratio of the LED display screen, and the overall light transmittance of the optical film is high, which does not affect the display brightness of the LED display screen, which can avoid the low light transmittance affecting the display.
  • the visibility of the screen when the external ambient light is strong, the ultraviolet light in the strong light environment can make the photochromic film in the optical film change color and the light transmittance is low, so as to avoid too much external strong light projected on the LED display screen , thereby improving the contrast of the LED display.
  • FIG. 1 is a schematic structural diagram of an LED display screen provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a common structure of a display module of an LED display screen
  • 3a-3d are schematic structural diagrams of a display module using an optical film that can improve contrast provided by some embodiments of the present application;
  • 3e-3f are schematic structural diagrams of using an optical film that can improve contrast provided by some embodiments of the present application.
  • 4a-4c are schematic structural diagrams of using an optical film that can improve contrast provided by other embodiments of the present application.
  • 5a-5b are schematic structural diagrams of using optical films that can improve contrast provided by further embodiments of the present application.
  • the structure of the LED display screen 1000 is first introduced.
  • the LED display screen 1000 is formed by splicing a plurality of display boxes 200, and each display box 200 includes a box frame (not shown in FIG. 1) and a plurality of display modules 100'.
  • the groups 100 ′ are regularly fixed on the box frame to form a complete display box 200 .
  • the display screen 1000 includes two display cabinets 200, each of which includes a cabinet frame and four display modules 100', and the cabinet frame of each display cabinet 200 is fixed on the The back of the module 100' is displayed.
  • each display module 100' includes a light board 11, and the light board 11 includes a PCB board (printed circuit board, printed circuit board) 10 and a plurality of LED lamp beads 20 and the like arranged on the PCB board 10 at intervals.
  • the light-emitting surface of the display module 100' is the side surface on which the LED lamp beads are arranged on the PCB board 10 (refer to the place indicated by the arrow in FIG. 2 ), which may also be referred to as the front surface of the light board 11 or the PCB board 10.
  • Each display module 100' may also include components such as a mask, a bottom case, and the like, wherein the mask and the bottom case are located on both sides of the light panel 11, wherein the mask covers the front of the light panel 11, and the bottom case is located on the back of the light panel 11 ( i.e., close to the PCB board).
  • a driving circuit is also provided on the back of the PCB board 10 to control the orderly lighting/extinguishing of the lamp beads.
  • an optical film that can improve the contrast ratio is mainly added on the display module.
  • the optical film and the display module, LED display screen, etc. using the optical film will be introduced in detail below.
  • the display module 100 includes a light board 11, the light board 11 includes a PCB board 10 and a plurality of LED lamp beads 20 arranged at intervals on the PCB board 10, and an optical film 3 that can improve contrast is provided on the light emitting surface of the display module 100,
  • the optical film 3 includes a photochromic film 30 and an antireflection layer 31 disposed on the photochromic film 30, wherein the photochromic film 30 is close to the light-emitting surface of the display module, and the light transmittance of the photochromic film 30 varies with the environment. The intensity of ultraviolet light in the light increases and decreases.
  • the photochromic film 30 is close to the LED lamp bead 20
  • the antireflection layer 31 is far away from the LED lamp bead 20 .
  • the optical film 3 can be fixed on the display module 100 by means of gluing and/or frame sticking.
  • the optical film 3 is fixed on the display module 100 by means of gluing.
  • an adhesive layer 4 is provided between the optical film 3 and the light-emitting surface of the display module 100 , and the adhesive layer 4 covers the side surface of the PCB board 10 where the LED lamp beads 20 are provided (ie, the lamps covering the lamp board 11 ) Bead side surface or light-emitting surface), and play a flat role.
  • the adhesive layer 4 can be pre-coated on the photochromic film 30 side of the optical film 3, and then pressed together with the light plate 11, or the adhesive layer 4 can be pre-coated on the light-emitting surface of the light plate 11, and then combined with the optical film. 3 Press together.
  • the display module in FIG. 3c is a COB or GOB package with glue on the surface, that is, the display module further includes an encapsulant 12, and the encapsulant 12 covers the side surface of the lamp bead of the lamp board 11, An adhesive layer 4 ′ is provided on the encapsulating adhesive 12 .
  • the materials of the encapsulation glue 12 and the glue layer 4 or 4' are generally different.
  • the material of the encapsulant 12 is usually silica gel or epoxy resin, and the material of the adhesive layer 4 and the adhesive layer 4' can be independently selected from transparent adhesive materials such as polyvinyl alcohol and acrylic acid.
  • the optical film 3 is fixed on the display module 100 by frame sticking.
  • the optical film 3 and the LED display module are fixed by the frame 5, and the optical film 3 and the LED display module can be stacked together, and then pressed and fixed by the frame 5.
  • the difference between FIG. 3d and FIG. 3b is that the display module in FIG. 3d is a COB or GOB package with glue on the surface, and the lamp board 11 further includes an encapsulant 12 covering the side surface of the lamp bead of the lamp board 11 .
  • the photochromic film 30 can change the light transmittance according to the intensity of ambient light, more precisely, the photochromic film 30 can change the light transmittance according to the intensity of ultraviolet light in the ambient light.
  • the intensity of the external ambient light is weak (such as indoors)
  • the intensity of ultraviolet light in the external light is also low, which is not enough to cause the molecular structure of the photochromic material in the photochromic film 30 to change, and the photochromic film 30 It is transparent, and the transmittance is greater than or equal to 80%. At this time, ambient light has little effect on the contrast ratio of the display module.
  • the photochromic film 30 becomes darker due to the excitation of the strong ultraviolet light in the external ambient light, and its light transmittance will vary with the environment.
  • the intensity of ultraviolet light in the light increases and decreases, and the light transmittance drops to 30-50%.
  • the photochromic film 30 after discoloration can significantly improve the contrast ratio of the display module by absorbing most of the high-intensity ambient light.
  • the discoloration process of the photochromic film 30 is reversible. When the photochromic film 30 is no longer irradiated by ultraviolet light, its molecular structure is restored to its original state, and its color is also restored to its original transparent state.
  • the photochromic material in the optical film 3 is only stimulated to change color under the irradiation of strong ultraviolet light, and the signal light emitted by the LED display screen is in the visible light range, so the optical film 3 will not be affected by the signal light of the display screen. Discoloration occurs.
  • the thickness of the photochromic film 30 is 50 ⁇ m-200 ⁇ m. This thickness can not only prevent the photochromic film 30 from being too thick and the light transmittance after discoloration is too low, which affects the display effect of the LED display module, but also avoid the photochromic film 30 having too thin a light transmittance after discoloration. Too high to effectively enhance contrast.
  • the thickness of the photochromic film 30 may be 60 ⁇ m, 80 ⁇ m, 100 ⁇ m, 120 ⁇ m, 150 ⁇ m, or 180 ⁇ m.
  • the photochromic film 30 includes a matrix material and a photochromic material uniformly distributed in the matrix material. Further, the mass of the photochromic material is 30%-70% of the mass of the photochromic film 30 . A suitable amount of the photochromic material can make the photochromic film 30 have excellent photochromic properties without affecting its transparency under weak light.
  • the photochromic material includes organic photochromic material and/or inorganic photochromic material.
  • the organic photochromic materials include one or more of spiropyrans, spirooxazines, fulgides, azobenzenes, diarylethenes, etc.
  • the inorganic photochromic materials Materials include one or more of transition metal oxides, metal halides, and the like.
  • the transition metal oxide one or more of tungsten oxide (WO 3 ), molybdenum oxide (MoO 3 ), zinc oxide (ZnO), titanium dioxide (TiO 2 ) and the like can be cited.
  • the metal halide silver chloride, cupric chloride, calcium fluoride doped with La, Ce, Gd, or Tb, and the like can be exemplified.
  • the particle size of the inorganic photochromic material is 1 ⁇ m-100 ⁇ m, which can have a good photochromic effect.
  • the light transmittance of the base material is a fixed value, and the light transmittance of the base material is relatively high.
  • the transmittance of different matrix materials is slightly different, but generally above 90%.
  • the base material may be PET (polyethylene terephthalate), PMMA (polymethyl methacrylate), PC (polycarbonate), PI (polyimide), PVC (vinyl chloride) , PP (polypropylene), OPP (oriented polypropylene), epoxy resin, one or more of silica gel. It is preferably a material with high light transmittance and excellent mechanical properties, such as PET, PMMA, and PC.
  • the light transmittance of the anti-reflection layer 31 is greater than or equal to 90%; the thickness of the anti-reflection layer 31 is 0.1 ⁇ m-10 ⁇ m.
  • the antireflection layer 31 reduces the surface reflectivity of the optical film 3 without reducing the transmittance of external light, and at the same time increases the light extraction efficiency of the light signal emitted by the display screen.
  • the thickness of the antireflection layer 31 may be 0.2 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 5 ⁇ m, 8 ⁇ m or 10 ⁇ m.
  • the material of the antireflection layer 31 may be magnesium fluoride, titanium dioxide, silicon dioxide, aluminum oxide, zirconium dioxide, zinc selenide, zinc sulfide, vinyl silsesquioxane, oxynitride
  • the antireflection layer 31 may be a stack of a silicon dioxide layer and a magnesium fluoride layer.
  • the antireflection layer 31 can be prepared on the photochromic film 30 by evaporation, sputtering or coating.
  • the optical film 3 applied to the display module 100 further includes a transparent base layer 32 , and the transparent base layer 32 is located between the antireflection layer 31 and the photochromic film 30 .
  • the transparent base layer 32 is a carrier for carrying the antireflection layer 31 .
  • the antireflection layer 31 is prepared on one surface of the transparent base layer 32 by evaporation, sputtering or coating, and then the other side of the transparent base layer 32 is formed.
  • a photochromic film 30 is arranged on the surface (for example, by hot pressing, or by spraying a mixed slurry containing the above-mentioned base material and photochromic material, etc.); it can also be prepared by the following method: coating the photochromic film 30 on the surface.
  • the material of the base layer 32 is coated to form the transparent base layer 32 , and then the antireflection layer 31 is prepared on the transparent base layer 32 .
  • the material of the transparent base layer 32 may be one or more of high light transmittance materials such as PET, PMMA, PC, PI, PVC, PP, OPP, epoxy resin, and silica gel.
  • the material of the transparent base layer 32 may be the same as or different from that of the base material of the photochromic film 30 .
  • the thickness of the transparent base layer 32 is 10 ⁇ m-100 ⁇ m, for example, 20 ⁇ m-60 ⁇ m.
  • the antireflection layer 31 may also be prepared on the photochromic film 30 by means of gluing.
  • the optical film 3 further includes a transparent base layer 32 and a transparent adhesive layer 33 located between the antireflection layer 31 and the photochromic film 30 , and the transparent adhesive layer 33 is close to the photochromic film 30 . That is, the optical film 3 includes a layered photochromic film 30 , a transparent adhesive layer 33 , a transparent base layer 32 and an antireflection layer 31 .
  • the antireflection layer 31 can be prepared on the transparent base layer 32 first, and then connected with the photochromic film 30 through the transparent adhesive layer 33 .
  • the thickness of the transparent adhesive layer 33 is 0.1 ⁇ m-30 ⁇ m. Specifically, it may include, but is not limited to, 0.5 ⁇ m, 1 ⁇ m, 5 ⁇ m, 8 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m or 25 ⁇ m. In some embodiments, the thickness of the transparent adhesive layer 33 is 1 ⁇ m-12 ⁇ m.
  • the material of the transparent adhesive layer 33 can be pressure-sensitive adhesive, and its light transmittance is ⁇ 80%.
  • the optical film 3 includes a photochromic film 30 and a brightness enhancement film 31' disposed on the photochromic film 30.
  • the surface of the brightness enhancement film 31' facing away from the photochromic film 30 has many A brightening structure 31'a.
  • the photochromic film 30 is disposed close to the light-emitting surface of the display module.
  • the brightness enhancement film 31' is far away from the light-emitting surface of the LED display module.
  • the material of the brightness enhancement film 31' can be high light transmittance organic substances such as PET, PMMA, PC, and PI.
  • the brightness enhancement film 31' can be prepared on the photochromic film 30 by means of evaporation, sputtering, coating, hot pressing and the like.
  • the brightness enhancement structure 31'a on the brightness enhancement film 31' can be prepared by roller transfer of precast microstructures, but the preparation method thereof is not limited thereto.
  • the brightness enhancement structure 31'a may be a prismatic structure, and the prismatic structure is striped, sawtooth or wavy.
  • the brightening structure 31'a can reuse the large-angle light that cannot be emitted in the original display module, gather the light in a smaller range, reduce the light loss rate, and thereby increase the light extraction efficiency of the display module.
  • the spacing of the brightness enhancement structures 31'a may be equal or unequal, and the heights of the brightness enhancement structures 31'a may be equal or unequal.
  • the height of the brightness enhancement structures 31'a is in the range of 5 ⁇ m-30 ⁇ m, and the spacing between the brightness enhancement structures 31'a is in the range of 10 ⁇ m-50 ⁇ m.
  • the brightening structure 31'a with these structural features can better perform the brightening effect.
  • the plurality of brightness enhancement structures include a plurality of prismatic strips adjacent to the first surface of the substrate in sequence, and an arc concave trough is formed at the intersection of any two adjacent prismatic strips.
  • the surface of the brightness enhancement structure 31'a also has a waterproof layer 35.
  • the morphology of the water-repellent layer 35 is consistent with that of the brightness enhancement structure 31'a.
  • the thickness of the waterproof layer 35 is 0.1 ⁇ m-10 ⁇ m, for example, 0.2 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 5 ⁇ m, 8 ⁇ m or 10 ⁇ m. Further, the thickness of the waterproof layer 35 is less than or equal to the height of the brightness enhancement structure 31'a.
  • the light transmittance of the waterproof layer 35 is also greater than or equal to 80%.
  • the waterproof layer 35 will not change the appearance of the brightness enhancement structure 31'a, affect the brightness enhancement effect, and the like.
  • the waterproof layer 35 contains low surface energy materials such as fluorine-containing polymers and silicone polymers.
  • the waterproof layer 35 can be formed on the surface of the brightening structure 31'a by spraying or brushing.
  • the optical film 3 further includes a transparent adhesive layer 33' between the brightness enhancement film 31' and the photochromic film 30. At this time, the brightness enhancement film 31' and the photochromic film 30 are bonded together by the transparent adhesive layer 33'.
  • the above descriptions about the thickness, light transmittance, material, etc. of the transparent adhesive layer 33 are also applicable to the transparent adhesive layer 33' here.
  • the optical film 3 may contain the above-mentioned waterproof layer 35 and the transparent adhesive layer 33' at the same time, and the present application does not further illustrate the structure.
  • the optical film 3 includes a photochromic film 30, and one side surface of the photochromic film 30 has a brightness enhancement structure 30a.
  • the optical film 3 is applied to the above-mentioned display module, the The optical film is arranged on the light-emitting surface of the display module, and the photochromic film 30 is close to the light-emitting surface of the display module.
  • the surface of the brightness enhancing structure 30a may also have a waterproof layer 35'. Further, the thickness of the waterproof layer 35' is less than or equal to the height of the brightness enhancement structure 30a. The features described above with respect to the waterproof layer 35 also apply to the waterproof layer 35' here. The topographical descriptions above with respect to the brightness enhancement structure 31'a also apply to the brightness enhancement structure 30a here.
  • the embodiment of the present application also provides an LED display screen, the LED display screen is formed by splicing a plurality of display modules, and the light-emitting surface of each display module is provided with any one of the above-mentioned improvements in the present application. Contrast optical film, and the photochromic film is close to the light emitting surface of the display module.
  • the above-mentioned optical film is provided on the light-emitting surface of the display module of the LED display screen.
  • the optical film has a high light transmittance, which does not affect the LED display.
  • the display brightness of the display screen can prevent the light transmittance from being too low and affect the visibility of the display screen; when the external ambient light is strong, the ultraviolet light in the strong ambient light can make the photochromic film in the optical film change color and the light transmittance Lower, to avoid too much external strong light cast on the LED display, thereby improving the contrast of the LED display.
  • a brightening film with a brightening structure or directly setting a brightening structure on the surface of the photochromic film can make up for part of the brightness loss caused by the photochromic film of the photochromic film and improve the display effect.
  • the waterproof layer arranged on the surface of the brightness enhancement structure can improve the protection level of the display screen.

Abstract

一种提高对比度的光学膜(3),包括光致变色膜(30)和设置在光致变色膜(30)一侧表面的减反层(31)、增亮膜(31')或增亮结构(30a),光致变色膜(30)的透光率随着环境光中紫外光强度的增高而降低。使用光学膜(3)的LED显示屏(1000)。光学膜(3)可设置在显示模组(100)的出光面上,且其中的光致变色膜(3)靠近显示模组(100)的出光面,光致变色膜(3)仅在强紫外光的照射下变色,通过吸收大部分的环境光从而显著提升LED显示屏(1000)在强光环境下的对比度,且不影响LED显示屏(1000)在弱环境光下的发光亮度。

Description

一种光学膜及使用该光学膜的LED显示屏 技术领域
本申请涉及LED显示屏技术领域,具体涉及一种光学膜及使用该光学膜的LED显示屏。
背景技术
发光二极管(light emitting diode,LED)显示屏具有发光亮度高、发光效率高、色彩鲜艳、对比度高、工作温度范围广、响应时间短、能耗低等优点,广泛应用在显示领域,例如比较常见的证券交易和金融信息显示、机场航班动态信息显示、港口和车站旅客引导信息显示、体育场馆信息显示、道路交通信息显示、电力调度和车辆动态跟踪等调度指挥中心信息显示、商场购物中心等服务领域的业务宣传信息显示以及广告媒体产品等。
LED显示屏一般由多个LED显示屏箱体拼接而成,而每个LED显示屏箱体均包括一个箱体框架和多个显示模组;其中,每个显示模组包括灯板、面罩和壳体等组件,面罩和壳体分别位于灯板的两侧,灯板包括PCB板(printed circuit board,印刷电路板)以及通过表面贴装技术(Surface Mounted Technology,SMT)焊接在PCB板正面的LED灯珠等。
LED显示屏在使用过程中受环境光的影响,其对比度会下降,特别是环境光强度较大的白天,当强度大的环境光照射到LED显示屏上,通过LED显示屏反射到人眼的可见光就越多,人眼不能够清楚地看清显示屏的画面,其对比度降低的也越明显。为提升对比度,行业内通常在显示屏的出光面上设置圆偏 光膜,但是,圆偏光膜在降低环境光对对比度的影响的同时,还会因其较低的光透光率而造成大量的光损失,显著降低LED显示屏的LED灯珠的发光亮度。
因此,有必要提供一种可提高显示屏对比度的光学膜,且不会明显降低LED显示屏的发光亮度。
发明内容
鉴于此,本申请提供了一种可提高对比度的光学膜及使用该光学膜的LED显示屏,该光学膜包括光致变色膜,光致变色膜不会受LED显示屏发出的可见光而变色,仅在强紫外光的照射下变色,通过吸收大部分的环境光从而显著提升LED显示屏在强环境光下的对比度,且不影响LED显示屏在弱环境光下的发光亮度。
第一方面,本申请提供了一种光学膜,所述光学膜包括光致变色膜和设置在所述光致变色膜上的减反层,所述光致变色膜的透光率随着环境光中紫外光强度的增高而降低。
可选地,在外界环境光的强度较弱时,光致变色膜的透光率大于或等于80%;在外界环境光的强度较强时,光致变色膜因受强紫外光的激发而颜色变深,透光率降至30-50%。
第二方面,本申请提供了一种光学膜,所述光学膜包括光致变色膜和增亮结构,所述增亮结构设置在所述光致变色膜的一侧表面,或者设置在增亮膜背离所述光致变色膜的表面上,所述增亮膜位于所述光致变色膜上;其中,所述光致变色膜的透光率随着环境光中紫外光强度的增高而降低。
本申请第三方面还提供了一种LED显示屏,所述LED显示屏通过多个显 示模组拼接而成,每个所述显示模组的出光面上设置有如本申请第一方面或第二方面所述的光学膜,且所述光致变色膜靠近所述显示模组的出光面。
本申请提供的光学膜用于设置在LED显示屏的显示模组的出光面上,其中的光致变色膜靠近所述显示模组的出光面。在外界环境光较暗时,环境光对LED显示屏对比度的影响不大,且光学膜整体的透光率较高,不影响LED显示屏的显示亮度,可避免透光率过低而影响显示画面的可见度;在外界环境光较强时,强光环境中的紫外光可使光学膜中的光致变色膜变色而透光率较低,避免过多的外部强光线投射在LED显示屏上,从而提高LED显示屏的对比度。
附图说明
图1是本申请实施例提供的LED显示屏的结构示意图;
图2是LED显示屏的显示模组的常见结构示意图;
图3a-图3d是本申请一些实施方式提供的使用可提高对比度的光学膜的显示模组的结构示意图;
图3e-图3f是本申请一些实施方式提供的使用可提高对比度的光学膜的结构示意图;
图4a-图4c是本申请另一些实施方式提供的使用可提高对比度的光学膜的结构示意图;
图5a-图5b是本申请又一些实施方式提供的使用可提高对比度的光学膜的结构示意图。
附图标记说明:LED显示屏-1000,显示箱体-200,现有显示模组-100’,光学膜-3,带光学膜的显示模组-100,灯板-11,PCB板-10上,LED灯珠-20, 封装胶-12,光致变色膜-30,减反层-31,透明基底层-32,透明胶粘层-33,增亮膜-31’,光致变色膜-30的增亮结构-30a,增亮膜上的增亮结构-31’a,防水层-35或35’,胶层-4或4’,边框-5。
具体实施方式
下面将结合本申请实施例的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
如图1所示,首先介绍LED显示屏1000的结构。一般地,LED显示屏1000由多个显示箱体200拼接而成,每个显示箱体200包括一个箱体框架(图1中未示出)和多个显示模组100’,多个显示模组100’规律地固定在箱体框架上组成一个完整的显示箱体200。图1中所示,显示屏1000包括两个显示箱体200,每个显示箱体200均包括一个箱体框架和四个显示模组100’,每个显示箱体200的箱体框架固定在显示模组100’的背面。
参见图2,每个显示模组100’包括灯板11,灯板11包括PCB板(printed circuit board,印刷电路板)10以及间隔设置在PCB板10上的多个LED灯珠20等。其中,显示模组100’的出光面为PCB板10上设置LED灯珠的一侧表面(参见图2中箭头所指处),也可称为灯板11或PCB板10的正面。每个显示模组100’还可以包括面罩、底壳等组件,面罩和底壳分别位于灯板11的两侧,其中,面罩覆盖在灯板11的正面,底壳位于灯板11的背面(即,靠近PCB板)。当然,PCB板10的背面还设置有驱动电路,以控制灯珠的有序点亮/熄灭。
本申请中主要是在显示模组上增设可提高对比度的光学膜。下面对该光学 膜及使用该光学膜的显示模组、LED显示屏等进行详细介绍。
请一并参见图3a-图3d,本申请一些实施方式提供了可提高对比度的光学膜在LED显示屏的显示模组中的应用场景示意图。显示模组100包括灯板11,灯板11包括PCB板10以及间隔设置在PCB板10上的多个LED灯珠20,显示模组100的出光面上设置有可提高对比度的光学膜3,光学膜3包括光致变色膜30和设置在光致变色膜30上的减反层31,其中光致变色膜30靠近显示模组的出光面,光致变色膜30的透光率随着环境光中紫外光强度的增高而降低。本申请实施方式中,该光致变色膜30靠近LED灯珠20,减反层31远离LED灯珠20。
光学膜3可以通过胶粘和/或框贴的方式固定在显示模组100上。图3a和图3c中,光学膜3均是通过胶粘的方式固定在显示模组100上。图3a中,在光学膜3与显示模组100的出光面之间设有胶层4,胶层4覆盖PCB板10设有LED灯珠20的一侧表面(即,覆盖灯板11的灯珠侧表面或出光面),并起平坦作用。胶层4可以预先涂覆在光学膜3的光致变色膜30侧,然后与灯板11压合在一起,也可以将胶层4预先涂覆在灯板11的出光面,然后与光学膜3压合在一起。图3c和图3a的区别在于:图3c中的显示模组是表面灌胶的COB或GOB封装,即,显示模组还包括封装胶12,封装胶12覆盖灯板11的灯珠侧表面,封装胶12上设有胶层4’。其中,封装胶12与胶层4或4’的材质一般不同。封装胶12的材质通常是硅胶或环氧树脂等,胶层4和胶层4’的材质可以独立地选自聚乙烯醇、丙烯酸等透明粘接材料。
图3b和图3d中,光学膜3均是通过框贴的方式固定在显示模组100上。光学膜3和LED显示模组通过边框5固定,可以将光学膜3和LED显示模组 叠合在一起,然后通过边框5压紧、固定。类似地,图3d和图3b的区别在于:图3d中的显示模组是表面灌胶的COB或GOB封装,灯板11还包括覆盖灯板11的灯珠侧表面的封装胶12。
本申请中,光致变色膜30可根据环境光强度改变透光率,更准确地说,光致变色膜30根据环境光中紫外光强度改变透光率。在外界环境光的强度较弱时(如室内),外界光中的紫外光强度也较低,不足以引发光致变色膜30中的光致变色材料的分子结构发生变化,光致变色膜30呈透明状,透光率大于或等于80%。此时,环境光对显示模组的对比度影响不大。而在外界环境光的强度较强时,外界光中的紫外光强度也较强,光致变色膜30因受外界环境光中强紫外光的激发而颜色变深,其透光率会随环境光中紫外光强度的增加而降低,透光率降至30-50%,变色后的光致变色膜30可通过吸收大部分的高强度环境光而显著提升显示模组的对比度。此外,光致变色膜30的变色过程是可逆的,当光致变色膜30不再受到紫外光照射时,其分子结构又恢复如初,颜色也恢复为原来的透明状。且,光学膜3中光致变色材料只在较强紫外光的照射下受激变色,而LED显示屏发出的信号光在可见光范围内,因此光学膜3不会受到显示屏信号光的影响而发生变色。
可选地,光致变色膜30的厚度为50μm-200μm。该厚度既可避免光致变色膜30因厚度过厚在变色后透光率太低、影响LED显示模组的显示效果,又可避免光致变色膜30因厚度过薄在变色后透光率太高而不能起到有效增强对比度的效果。在一些实施例中,光致变色膜30的厚度可以为60μm、80μm、100μm、120μm、150μm或180μm。
可选地,光致变色膜30包括基体材料和均匀分布在所述基体材料中的光 致变色材料。进一步地,所述光致变色材料的质量为光致变色膜30质量的30%-70%。合适用量的光致变色材料可使光致变色膜30在具有优异光致光色特性的同时,还不影响其在弱光下的透明性。
其中,所述光致变色材料包括有机光致变色材料和/或无机光致变色材料。其中,所述有机光致变色材料包括螺吡喃类、螺噁嗪类、俘精酸酐类、偶氮苯类、二芳基乙烯类等中的一种或多种,所述无机光致变色材料包括过渡金属氧化物、金属卤化物等中的一种或多种。对于过渡金属氧化物,可以列举氧化钨(WO 3)、氧化钼(MoO 3)、氧化锌(ZnO)、二氧化钛(TiO 2)等中的一种或多种。对于金属卤化物,可以列举氯化银、氯化铜、掺La、Ce、Gd或Tb的氟化钙等。可选地,所述无机光致变色材料的粒径为1μm-100μm,这样可具有良好的光致变色效果。
其中,所述基体材料的透光率为固定值,基体材料的透光率较高。不同基体材料的透光率略有不同,但一般在90%以上。具体地,基体材料可以为PET(聚对苯二甲酸乙二醇酯)、PMMA(聚甲基丙烯酸甲酯)、PC(聚碳酸酯)、PI(聚酰亚胺)、PVC(氯乙烯)、PP(聚丙烯)、OPP(定向聚丙烯)、环氧树脂、硅胶中的一种或多种。优选为PET、PMMA、PC等透光率高且机械性能较优异的材料。
可选地,减反层31的透光率大于或等于90%;减反层31的厚度为0.1μm-10μm。这样,减反层31在降低光学膜3的表面反射率的同时,还不会降低外界光线的透光率,同时增加显示屏发出的光信号的出光效率。具体地,减反层31的厚度可以为0.2μm、0.5μm、1μm、1.5μm、2μm、5μm、8μm或10μm。本申请实施方式中,减反层31的材质可以是氟化镁、二氧化钛、二氧 化硅、三氧化二铝、二氧化锆、硒化锌、硫化锌、乙烯基倍半硅氧烷、氮氧化硅(SiON)中的一种或多种,优选为其中的两种以上的叠层材料。例如,减反层31可以为二氧化硅层和氟化镁层的叠层。
图3a-图3d中,减反层31可以通过蒸镀、溅射或涂覆的方式制备在光致变色膜30上。在本申请另一些实施方式中,参见图3e,应用到显示模组100的光学膜3还包括透明基底层32,透明基底层32位于减反层31与光致变色膜30之间。此时,透明基底层32为承载减反层31的载体。图3e中的光学膜可以通过以下方法制备:先在透明基底层32的一侧表面上通过蒸镀、溅射或涂覆的方式制备减反层31,再在透明基底层32的另一侧表面上设置光致变色膜30(例如通过热压方式贴合,或者通过喷涂含上述基体材料和光致变色材料的混合浆料等);也可以通过以下方法制备:在光致变色膜30上涂覆基底层32的材料以形成透明基底层32,然后在透明基底层32上制备减反层31。其中,透明基底层32的材质可以为PET、PMMA、PC、PI、PVC、PP、OPP、环氧树脂、硅胶等高透光率材料中的一种或多种。透明基底层32的材质可以与光致变色膜30的基体材料的材质相同或不同。可选地,透明基底层32的厚度为10μm-100μm,例如为20μm-60μm。
参见图3f,在本申请其他实施方式中,减反层31还可以通过胶粘的方式制备在光致变色膜30上。此时,光学膜3还包括位于减反层31与光致变色膜30之间的透明基底层32和透明胶粘层33,且透明胶粘层33靠近光致变色膜30。即,光学膜3包括层叠设置的光致变色膜30、透明胶粘层33、透明基底层32和减反层31。图3f中,减反层31可以先制备在透明基底层32上,再通过透明胶粘层33与光致变色膜30连接在一起。可选地,透明胶粘层33的厚 度为0.1μm-30μm。具体地,可以包括但不限于为0.5μm、1μm、5μm、8μm、10μm、15μm、20μm或25μm。在一些实施例中,透明胶粘层33的厚度为1μm-12μm。透明胶粘层33的材质可以为压敏胶,其透光率≥80%。
本申请实施例还提供了其他可提高对比度的光学膜3。请一并参见图4a-图4c,光学膜3包括光致变色膜30和设置在光致变色膜30上的增亮膜31’,增亮膜31’背离光致变色膜30的表面具有多个增亮结构31’a。当该光学膜3设置到上述显示模组的出光面上时,光致变色膜30靠近显示模组的出光面设置。相应地,增亮膜31’远离LED显示模组的出光面。其中,图4a-图4c的光学膜3在应用到LED显示屏的显示模组中时,光学膜3也可以通过胶粘和/或框贴的方式固定在显示模组100上,具体可如上述图3a-图3d所示。
可选地,增亮膜31’的材质可以为PET、PMMA、PC、PI等高透光率有机物。增亮膜31’可以通过蒸镀、溅射、涂覆、热压等方式制备在光致变色膜30上。增亮膜31’上的增亮结构31’a可以通过预铸微结构的滚轮转印制得,但其制备方法不限于此。增亮结构31’a可以为棱镜结构,所述棱镜结构为条纹状、锯齿状或波浪状。增亮结构31’a可以将原本显示模组中无法出射的大角度光线重新利用,将光线聚集在一个较小的范围内,减小光损耗率,从而增加显示模组的出光效率。
其中,增亮结构31’a的间距可以相等或不等,各增亮结构31’a的高度可以相等或不等。可选地,增亮结构31’a的高度在5μm-30μm的范围,增亮结构31’a之间的间距在10μm-50μm的范围。具有这些结构特征的增亮结构31’a可以更好地发挥增亮作用。本申请一些实施方式中,多个增亮结构包括多条依序邻接在该基板的第一表面上的多个棱柱条,任意相邻两棱柱条的相交接处形 成一个弧凹形波谷。
如图4b所示,在一些实施方式中,增亮结构31’a的表面还具有防水层35。防水层35的形貌与增亮结构31’a的形貌一致。可选地,防水层35的厚度为0.1μm-10μm,例如为0.2μm、0.5μm、1μm、2μm、5μm、8μm或10μm。进一步地,防水层35的厚度小于或等于增亮结构31’a的高度。防水层35的透光率也大于或等于80%。这样,防水层35的设置不会改变增亮结构31’a的形貌、影响增亮效果等。可选地,防水层35含有含氟聚合物、有机硅聚合物等低表面能材料。防水层35可以通过喷涂或刷涂等方式成型在增亮结构31’a的表面。
如图4c所示,在一些实施方式中,光学膜3还包括位于增亮膜31’与光致变色膜30之间的透明胶粘层33’。此时,增亮膜31’与光致变色膜30之间通过透明胶粘层33’粘合在一起。上述关于透明胶粘层33的厚度、透光率、材质等描述也适用于这里的透明胶粘层33’。当然,在本申请其他实施方式中,光学膜3可以同时含有上述有防水层35和透明胶粘层33’,本申请不另外进行结构示意。
本申请实施例还提供了其他可提高对比度的光学膜。请一并参见图5a-图5b,光学膜3包括光致变色膜30,光致变色膜30的一侧表面具有增亮结构30a,当该光学膜3应用到上述显示模组中时,将光学膜用于设置在显示模组的出光面上,且光致变色膜30靠近显示模组的出光面。其中,图5a-图5b的光学膜3在应用到LED显示屏的显示模组中时,光学膜3也可以通过胶粘和/或框贴的方式固定在显示模组上,具体可如上述图3a-图3d所示。
在一些实施方式中,增亮结构30a的表面也可以具有防水层35’。进一步地,防水层35’的厚度小于或等于增亮结构30a的高度。上述关于防水层35 的特征描述也适用于这里的防水层35’。上述关于增亮结构31’a的形貌描述也适用于这里的增亮结构30a。
此外,本申请实施例还提供了一种LED显示屏,所述LED显示屏通过多个显示模组拼接而成,每个显示模组的出光面上设置有如本申请实施上述的任一种提高对比度的光学膜,且光致变色膜靠近显示模组的出光面。
LED显示屏的显示模组的出光面上设有上述光学膜,在外界环境光较暗时,环境光对LED显示屏对比度的影响不大,且光学膜的透光率较高,不影响LED显示屏的显示亮度,可避免透光率过低而影响显示画面的可见度;在外界环境光较强时,强环境光中的紫外光可使光学膜中的光致变色膜变色而透光率较低,避免过多的外部强光线投射在LED显示屏上,从而提高LED显示屏的对比度。
此外,在光致变色膜的表面设置减反层、具有增亮结构的增亮膜或直接设置增亮结构,可以弥补因光致变色膜的光致变色带来的部分亮度损失,提高显示效果。另外,在某些情况下,设置在增亮结构表面的防水层,可以提高显示屏的防护等级。
以上实施例仅表达了本申请的示例性实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种光学膜,其特征在于,所述光学膜包括光致变色膜和设置在所述光致变色膜上的减反层,所述光致变色膜的透光率随着环境光中紫外光强度的增高而降低。
  2. 如权利要求1所述的光学膜,其特征在于,在环境光的强度较弱时,光致变色膜的透光率大于或等于80%;在环境光的强度较强时,光致变色膜的透光率降至30-50%。
  3. 如权利要求1或2所述的光学膜,其特征在于,所述光致变色膜的厚度为50μm-200μm。
  4. 如权利要求1-3任一项所述的光学膜,其特征在于,所述光致变色膜包括基体材料和均匀分布在所述基体材料中的光致变色材料;所述光致变色材料的质量为所述光致变色膜的质量的30%-70%。
  5. 如权利要求1所述的光学膜,其特征在于,所述减反层的透光率大于或等于90%;所述减反层的厚度为0.1μm-10μm。
  6. 如权利要求1-5任一项所述的光学膜,其特征在于,所述光学膜还包括位于所述减反层与所述光致变色膜之间的透明基底层。
  7. 如权利要求6所述的光学膜,其特征在于,所述透明基底层与所述光致变色膜之间还设置有透明胶粘层。
  8. 一种光学膜,其特征在于,所述光学膜包括光致变色膜和增亮结构,所述增亮结构设置在所述光致变色膜的一侧表面,或者设置在增亮膜背离所述光致变色膜的表面上,所述增亮膜位于所述光致变色膜上;其中,所述光学膜用于设置在LED显示屏的显示模组的出光面上,且所述光致变色膜靠近所述 显示模组的出光面,所述光致变色膜的透光率随着环境光中紫外光强度的增高而降低。
  9. 如权利要求8所述的光学膜,其特征在于,所述增亮结构为多个棱镜结构,所述棱镜结构为条纹状、锯齿状或波浪状。
  10. 如权利要求9所述的光学膜,其特征在于,所述增亮结构的高度为5μm-30μm,所述增亮结构的间距为10μm-50μm。
  11. 如权利要求9或10所述的光学膜,其特征在于,所述光学膜还包括位于所述增亮膜与所述光致变色膜之间的透明胶粘层。
  12. 如权利要求8-11任一项所述的光学膜,其特征在于,所述增亮结构的表面还具有防水层。
  13. 如权利要求12所述的光学膜,其特征在于,所述防水层的厚度小于或等于所述增亮结构的高度。
  14. 一种LED显示屏,所述LED显示屏包括多个显示模组,所述显示模组的出光面上设置有如权利要求1-7任一项或如权利要求8-13任一项所述的光学膜,且所述光致变色膜靠近所述显示模组的出光面。
  15. 如权利要求14所述的LED显示屏,其特征在于,所述光学膜与所述显示模组之间通过边框和/或胶层固定。
PCT/CN2020/140258 2020-12-28 2020-12-28 一种光学膜及使用该光学膜的led显示屏 WO2022140940A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/140258 WO2022140940A1 (zh) 2020-12-28 2020-12-28 一种光学膜及使用该光学膜的led显示屏

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/140258 WO2022140940A1 (zh) 2020-12-28 2020-12-28 一种光学膜及使用该光学膜的led显示屏

Publications (1)

Publication Number Publication Date
WO2022140940A1 true WO2022140940A1 (zh) 2022-07-07

Family

ID=82258965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140258 WO2022140940A1 (zh) 2020-12-28 2020-12-28 一种光学膜及使用该光学膜的led显示屏

Country Status (1)

Country Link
WO (1) WO2022140940A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1457438A (zh) * 2001-02-19 2003-11-19 皇家菲利浦电子有限公司 光学器件和制造这样光学器件的方法
US20040096666A1 (en) * 2002-11-14 2004-05-20 Knox Carol L. Photochromic article
JP2008304634A (ja) * 2007-06-06 2008-12-18 Panasonic Corp 光学シート
CN102789014A (zh) * 2012-07-13 2012-11-21 北京康得新复合材料股份有限公司 一种增光膜和显示装置
US20140220352A1 (en) * 2013-02-05 2014-08-07 Kilolambda Technologies Ltd. Ultra violet enhanced response photochromic composition and device
CN104914498A (zh) * 2015-07-09 2015-09-16 上海和辉光电有限公司 光致变色偏光片以及有机发光显示装置
CN106164716A (zh) * 2014-02-14 2016-11-23 康宁股份有限公司 Oled显示系统及lcd系统中环境光减少的系统及方法
CN107422528A (zh) * 2017-07-28 2017-12-01 京东方科技集团股份有限公司 一种光学膜片、背光模组及显示装置
CN107845738A (zh) * 2017-11-01 2018-03-27 武汉华星光电半导体显示技术有限公司 柔性oled显示器及其制作方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1457438A (zh) * 2001-02-19 2003-11-19 皇家菲利浦电子有限公司 光学器件和制造这样光学器件的方法
US20040096666A1 (en) * 2002-11-14 2004-05-20 Knox Carol L. Photochromic article
JP2008304634A (ja) * 2007-06-06 2008-12-18 Panasonic Corp 光学シート
CN102789014A (zh) * 2012-07-13 2012-11-21 北京康得新复合材料股份有限公司 一种增光膜和显示装置
US20140220352A1 (en) * 2013-02-05 2014-08-07 Kilolambda Technologies Ltd. Ultra violet enhanced response photochromic composition and device
CN106164716A (zh) * 2014-02-14 2016-11-23 康宁股份有限公司 Oled显示系统及lcd系统中环境光减少的系统及方法
CN104914498A (zh) * 2015-07-09 2015-09-16 上海和辉光电有限公司 光致变色偏光片以及有机发光显示装置
CN107422528A (zh) * 2017-07-28 2017-12-01 京东方科技集团股份有限公司 一种光学膜片、背光模组及显示装置
CN107845738A (zh) * 2017-11-01 2018-03-27 武汉华星光电半导体显示技术有限公司 柔性oled显示器及其制作方法

Similar Documents

Publication Publication Date Title
CN108388050B (zh) 一种量子点膜导光组件的制备方法及其对应的背光模组
KR101604339B1 (ko) 광 변환 필름, 이를 포함하는 백라이트 유닛 및 표시장치
CN110543049B (zh) 背光模组及显示装置
US10571619B2 (en) Quantum dot protective film, quantum dot film using same, and backlight unit
TW201736915A (zh) 包括量子點膜和色彩純度增強薄膜的液晶顯示器
CN102628580A (zh) 导光板结构、背光模块及其制造方法
CN105074551A (zh) 调光投影屏板
CA2310465A1 (en) Luminous retroreflective sheeting and method for making same
JPH1115415A (ja) 自発光可能な再帰性反射シートおよびその製造方法
WO2022142425A1 (zh) 一种光学膜及使用该光学膜的led显示屏
JP2016194558A (ja) 量子ドットシート、バックライト装置、および表示装置
CN109001936A (zh) 光源模块及显示设备
CN215416207U (zh) 一种显示装置
WO2021047030A1 (zh) 一种背光模组及其制备方法、显示装置
CN109739051A (zh) 量子点液晶显示器
CN110673391A (zh) 背光模组
CN108269500A (zh) 一种显示面板及其制造方法
CN209182545U (zh) 一种量子点玻璃导光板和背光模组
JP6862814B2 (ja) 量子ドットシートを有するバックライト、及び該バックライトを備えた液晶表示装置
KR100676633B1 (ko) 접합 영상 패널 및 그 제조 방법
WO2022140940A1 (zh) 一种光学膜及使用该光学膜的led显示屏
CN209707723U (zh) 一种背光模组及液晶显示器
CN208818988U (zh) 一种减小厚度的直下式背光源
JP2007273254A (ja) 有機el表示装置及びその製造方法
US10861921B2 (en) Display panel, display device, and manufacturing method of display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967292

Country of ref document: EP

Kind code of ref document: A1