WO2022139089A1 - 고체산화물 연료전지 및 고체산화물 연료전지 활용 시스템 - Google Patents

고체산화물 연료전지 및 고체산화물 연료전지 활용 시스템 Download PDF

Info

Publication number
WO2022139089A1
WO2022139089A1 PCT/KR2021/008071 KR2021008071W WO2022139089A1 WO 2022139089 A1 WO2022139089 A1 WO 2022139089A1 KR 2021008071 W KR2021008071 W KR 2021008071W WO 2022139089 A1 WO2022139089 A1 WO 2022139089A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
solid oxide
oxide fuel
unit
exhaust gas
Prior art date
Application number
PCT/KR2021/008071
Other languages
English (en)
French (fr)
Inventor
이기태
박한빛
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Publication of WO2022139089A1 publication Critical patent/WO2022139089A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2100/00Exhaust gas
    • C21C2100/06Energy from waste gas used in other processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Definitions

  • the present invention relates to a solid oxide fuel cell and a system for utilizing a solid oxide fuel cell, and more particularly, to a solid oxide fuel cell and solid oxide fuel cell that can utilize by-product gas generated in a steelmaking process and exhibit high energy efficiency. It's about the system.
  • blast furnace gas BGF
  • coke oven gas COG
  • converter gas Linz-Donawitz gas, LDG
  • finex off gas FOG
  • Each of these by-products generates millions of tons to tens of millions of tons per year, so it is preferable to use the by-products in terms of preventing energy waste or environmental pollution.
  • the by-product gas generated in the steelworks was burned and used for combined power generation of a gas turbine and a steam turbine, or used to produce hydrogen from COG gas containing a large amount of hydrogen.
  • the solid oxide fuel cell can produce a high emission efficiency of up to 70%, and it can use various fuels such as biogas as well as hydrocarbon fuels such as natural gas, LPG, propane and butane as well as hydrogen. there is free
  • the by-product gas generated in the steelmaking process can be used as a fuel for a solid oxide fuel cell without a separate reforming process, it is expected to have an advantageous position in the energy-producing industry.
  • Patent Document 1 KR10-2019-0021832 A
  • an object of the present invention is to solve the conventional problems, and to provide a solid oxide fuel cell and a solid oxide fuel cell utilization system capable of exhibiting high energy efficiency by utilizing by-product gas generated in the steelmaking process. .
  • a fuel cell unit having a fuel electrode, an air electrode and an electrolyte unit; and a converter gas supply unit supplying the converter gas generated in the ironmaking process to the anode as it is.
  • the converter gas supply unit may add water to the converter gas and supply it to the anode.
  • the anode may be formed of a NiO-GDC composite material in which NiO and Gadolinium doped Ceria (GDC) powder are mixed.
  • GDC Gadolinium doped Ceria
  • the cathode may be made of a BSCF-GDC composite material in which BSCF (Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3- ⁇ ) and GDC (Gadolinium doped Ceria) powder are mixed.
  • BSCF Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3- ⁇
  • GDC Gadolinium doped Ceria
  • the cathode may be made of a PBSCF (PrBaSrCoFeO) material having a double-perovskite structure.
  • the support of the electrolyte part may be made of LSGM ((La, Sr)(Ga, Mg)O 3 ) material.
  • the above-described solid oxide fuel cell comprising: and an exhaust gas utilization unit configured to separate exhaust gas generated from the anode of the solid oxide fuel cell.
  • the exhaust gas utilization unit, CO, CO 2 and N 2 by adding water to the exhaust gas separation unit that separates CO and CO 2 separately from the exhaust gas containing CO 2, and the CO separated in the exhaust gas separation unit, CO 2 And H 2 It may be provided with an effective gas production unit for separately producing.
  • the effective gas production unit may use heat generated in the electrolyte unit of the solid oxide fuel cell.
  • the exhaust gas utilization unit, CO, CO 2 and a second exhaust gas separation unit that separates CO and CO 2 from the exhaust gas containing N 2 separately, and the second exhaust gas separation unit H 2 in CO separated by the separation unit It may be provided with a chemical production unit for producing a chemical material consisting of C, O and H elements by adding the.
  • the chemical production unit may use H 2 of the by-product gas generated in the iron making process.
  • the converter gas as a fuel for the solid oxide fuel cell, energy efficiency can be increased and the environment can be prevented from being polluted by the converter gas.
  • a solid oxide fuel cell using a converter gas as a fuel may exhibit a power density similar to that in a case where H 2 is used as a fuel.
  • the solid oxide fuel cell utilization system of the present invention energy waste or environmental pollution can be prevented by using converter gas generated in the steelmaking process as a fuel of the solid oxide fuel cell, and exhaust gas generated from the solid oxide fuel cell In addition, it can be utilized to maximize the above-described effect.
  • FIG. 1 is a schematic configuration diagram of a solid oxide fuel cell according to the present invention.
  • 4 and 5 are schematic configuration diagrams of a solid oxide fuel cell utilization system according to the present invention.
  • FIG. 1 is a schematic configuration diagram of a solid oxide fuel cell 10 according to the present invention.
  • the solid oxide fuel cell 10 includes a fuel cell unit 100 and a converter gas supply unit 200 .
  • the fuel cell unit 100 includes a fuel electrode 110 , an air electrode 120 , and an electrolyte unit 130 .
  • oxidation occurs in the fuel and electrons are emitted.
  • the electrons move to the cathode 120 through the external conductor to generate a direct current.
  • Air containing oxygen is supplied to the cathode 120 , and oxygen reacts with electrons to generate oxygen negative ions.
  • the oxygen anions move to the anode 110 through the electrolyte unit 130 .
  • the electrolyte unit 130 is made of a solid oxide electrolyte capable of permeating ions.
  • the fuel cell unit 100 may be formed of an electrolyte support type.
  • the converter gas supply unit 200 supplies the converter gas generated in the ironmaking process to the anode 110 as it is.
  • the converter gas contains 68 wt% CO, 12 wt% CO 2 , 2 wt% H 2 , and 18 wt% N 2 .
  • oxygen anions are generated by the following reaction.
  • the solid oxide fuel cell 10 of the present invention by using the converter gas as the fuel of the solid oxide fuel cell 10, energy efficiency can be increased and the environment can be prevented from being polluted by the converter gas.
  • the solid oxide fuel cell 10 using a converter gas as a fuel may exhibit a power density similar to that in the case where H 2 is used as a fuel.
  • FIG. 2 shows the power density experiment result of the solid oxide fuel cell 10 using H 2 as a fuel (FIG. 2(a)) and the power density experiment of the solid oxide fuel cell 10 using the converter gas imitation gas as a fuel. The results (Fig. 2(b)) are shown. In each experiment, an electrolyte-supported single cell using Ni-GDC as a material of the anode 110 was used.
  • the solid oxide fuel cell 10 using the replica gas of the converter gas as a fuel exhibits the highest power density of 336.6 mW/cm 2 at 850° C., and 371.1 mW/cm 2 at 850° C. Since there is no significant difference from the solid oxide fuel cell using H 2 as a fuel, which exhibits the highest power density of
  • the solid oxide according to the present invention can be achieved by the energy, time and manpower required in the process of reforming the converter gas.
  • the economical efficiency of the fuel cell 10 does not deteriorate.
  • converter gas is used as a fuel
  • carbon deposition (Boudouard reaction) occurring in the anode 110 hardly occurs when a carbon compound-based fuel such as CH 4 is used.
  • FIG 3 shows the experimental results regarding the carbon deposition phenomenon of the raw material powder of the anode 110 under a gas atmosphere simulating the CO/CO 2 fraction of the converter gas.
  • the experiment was conducted through TGA, and in the experiment, the raw material powder of the anode 110 was made of Ni-GDC.
  • the theoretical value of the weight % (wt%) increased when Ni-GDC is oxidized with air is 15.07 wt%, and the error range is less than 1 wt%.
  • the wt% increases are 14.80 wt% at 750°C, 14.94 wt% at 800°C, 14.93 wt% at 850°C, and 900°C was found to be 14.89 wt%. That is, when the converter gas is used as the fuel, the difference between the theoretical value and the error range occurs at 750° C. or higher, so that carbon deposition by the fuel in the anode 110 can be expected to hardly occur.
  • the converter gas supply unit 200 may supply the anode 110 by adding water to the converter gas.
  • Water added to the converter gas generates hydrogen as shown in the following reaction formula by a water-gas shift reaction, so that hydrogen can be used as a fuel of the solid oxide fuel cell 10 in addition to the converter gas.
  • the hydrogen fraction in the converter gas may increase so that the reaction may proceed more actively in the anode 110 .
  • the anode 110 may be formed of a NiO-GDC composite material in which NiO and Gadolinium doped Ceria (GDC) powder are mixed. Since the anode 110 made of the NiO-GDC composite material hardly occurs carbon deposition, the output of the solid oxide fuel cell 10 can be maintained high.
  • the NiO-GDC powder may be manufactured as a paste and the anode 110 may be formed by screen printing on one surface of the electrolyte unit 130 .
  • the cathode 120 may be made of a BSCF-GDC composite material in which BSCF (Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3- ⁇ ) and GDC (Gadolinium doped Ceria) powder are mixed. Since the BSCF-GDC composite material has high ionic conductivity and electronic conductivity, superior electrical properties are imparted to the cathode 120 .
  • the BSCF-GDC powder may be prepared as a paste and the cathode 120 may be formed by screen printing on the other side of the electrolyte unit 130 .
  • the cathode 120 may be made of a PBSCF (PrBaSrCoFeO) material having a double-perovskite structure.
  • the PBSCF (PrBaSrCoFeO) material has excellent catalytic activity, thereby increasing the maximum power density of the solid oxide fuel cell 10 .
  • the support of the electrolyte unit 130 may be made of LSGM ((La, Sr)(Ga, Mg)O 3 ) material. Since the LSGM has low resistance, it has excellent ionic conductivity and can improve the output of the solid oxide fuel cell 10 .
  • LSGM (La, Sr)(Ga, Mg)O 3 ) material. Since the LSGM has low resistance, it has excellent ionic conductivity and can improve the output of the solid oxide fuel cell 10 .
  • solid oxide fuel cell utilization system 1 will be described. While describing the system 1 for utilizing the solid oxide fuel cell according to the present invention, detailed descriptions of parts mentioned in the description of the solid oxide fuel cell 10 according to the present invention may be omitted.
  • FIG 4 and 5 are schematic diagrams of the solid oxide fuel cell utilization system 1 according to the present invention.
  • the solid oxide fuel cell utilization system 1 includes the solid oxide fuel cell 10 and the exhaust gas utilization unit 20 described above.
  • the solid oxide fuel cell 10 includes a fuel cell unit 100 and a converter gas supply unit 200 , and the converter gas supply unit 200 converts the converter gas generated in the steelmaking process as it is the anode 110 of the fuel cell unit 100 . ) is supplied to
  • the exhaust gas utilization unit 20 separates the exhaust gas generated from the anode 110 of the solid oxide fuel cell 10 for each component.
  • the exhaust gas generated from the anode 110 of the solid oxide fuel cell 10 may include CO, CO 2 and N 2 , among which CO and CO 2 may be utilized.
  • the solid oxide fuel cell utilization system 1 of the present invention it is possible to prevent energy waste or environmental pollution by using the converter gas generated in the iron making process as the fuel of the solid oxide fuel cell 10 , and also solid oxide fuel cell 10 .
  • the exhaust gas generated from the fuel cell 10 can also be utilized, so that the above-described effect can be maximized.
  • the exhaust gas utilization unit 20 may include an exhaust gas separation unit 21 and an effective gas production unit 22 as shown in FIG. 4 .
  • the exhaust gas separation unit 21 separates CO and CO 2 from the exhaust gas containing CO, CO 2 and N 2 .
  • the exhaust gas separation unit 21 may separate CO and CO 2 from the exhaust gas through, for example, a gas separation membrane (GSM) 21a.
  • GSM gas separation membrane
  • the effective gas production unit 22 water is added to the separated CO to produce CO 2 and H 2 separately.
  • the effective gas production unit 22 may, for example, be equipped with a water gas shift membrane reactor (WGS-MR) 22a to produce hydrogen through a water gas conversion reaction of CO.
  • WGS-MR water gas shift membrane reactor
  • CO 2 and H 2 made through the water gas shift reaction can be separated separately through a hydrogen separation membrane (H 2 -separation membrane) (22b).
  • CO 2 produced by the effective gas production unit 22 is made of high purity by condensing water vapor, and then compressed and stored together with the CO 2 separated by the exhaust gas separation unit 21 .
  • the effective gas production unit 22 may use heat generated in the electrolyte unit 130 of the solid oxide fuel cell 10 . Heat can make the water gas shift reaction proceed more actively in WGS-MR.
  • the exhaust gas utilization unit 20 may include a second exhaust gas separation unit 23 and a chemical substance production unit 24 .
  • the second exhaust gas separation unit 23 separates CO and CO 2 separately from the exhaust gas containing CO, CO 2 and N 2 .
  • the second exhaust gas separation unit 23 may separate CO and CO 2 from the exhaust gas through, for example, the GSM 23a.
  • H 2 is added to the CO separated by the second exhaust gas separation unit 23 to produce a chemical substance composed of C, O, and H elements.
  • Chemicals produced by the chemical production unit 24 may include, for example, high value-added chemicals such as methanol, ethylene, propylene, and olefin.
  • the CO 2 separated by the second exhaust gas separation unit 23 may be compressed and stored.
  • the chemical substance production unit 24 may produce a chemical substance by using H 2 of the by-product gas generated in the ironmaking process.
  • fuel cell unit 110 fuel electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)

Abstract

본 발명은 고체산화물 연료전지 및 고체산화물 연료전지 활용 시스템에 관한 것으로서, 본 발명에 따른 고체산화물 연료전지는, 연료극, 공기극 및 전해질부를 구비하는 연료전지부; 및 상기 연료극에 제철 공정에서 발생한 전로 가스를 그대로 공급하는 전로 가스 공급부;를 포함하는 것을 특징으로 한다. 이에 따라, 제철 공정에서 발생하는 부생가스를 활용하여 높은 에너지 효율러 전기를 생산할 수 있다.

Description

고체산화물 연료전지 및 고체산화물 연료전지 활용 시스템
본 발명은 고체산화물 연료전지 및 고체산화물 연료전지 활용 시스템에 관한 것으로서, 보다 상세하게는 제철 공정에서 발생하는 부생가스를 활용할 수 있고 높은 에너지 효율을 발휘할 수 있는 고체산화물 연료전지 및 고체산화물 연료전지 활용 시스템에 관한 것이다.
제철 공정의 각 공정에서는 고로 가스(Blast furnace gas, BGF), 코크스로 가스(Coke oven gas, COG), 전로 가스(Linz-Donawitz gas, LDG) 및 파이넥스오프 가스(Finex off gas, FOG) 등의 부생가스가 발생한다.
이러한 부생가스 각각은 연간 수백만 톤에서 수천만 톤이 발생하므로 부생가스를 활용하는 것은 에너지 낭비나 환경 오염을 방지하는 측면에서 바람직하다.
기존에는 제철소에서 발생하는 부생가스를 연소시켜 가스터빈과 스팀터빈의 복합발전에 이용하거나, 많은 양의 수소를 포함하는 COG 가스에서 수소를 생산하는 데 이용하였다.
한편, 고체산화물 연료전지는 최대 70%에 가까운 높은 발절효율을 낼 수 있고, 수소는 물론 천연가스, LPG, 프로판, 부탄 등의 탄화수소 연료뿐만 아니라 바이오가스 등의 다양한 연료를 사용할 수 있어 연료 선택에 있어 자유롭다.
그러나 다양한 연료를 사용할 수 있다는 장점이 있음에도 불구하고 현재 개발되고 있는 고체산화물 연료전지 기술은 대부분 수소 기반이다. 그리고 고체산화물 연료전지의 연료로서 천연가스를 사용하기도 하지만, 이 경우 개질기를 사용하기 때문에 탈황기를 포함한 복잡한 연료처리 시스템이 필수적으로 요구된다.
따라서, 제철 공정에서 발생하는 부생가스를 별도의 개질과정 없이 고체산화물 연료전지의 연료로 사용할 수 있다면, 에너지를 생산하는 산업 분야에서 유리한 지위를 가질 수 있을 것으로 기대된다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) KR10-2019-0021832 A
따라서, 본 발명의 목적은 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 제철 공정에서 발생하는 부생가스를 활용하여 높은 에너지 효율을 발휘할 수 있는 고체산화물 연료전지 및 고체산화물 연료전지 활용 시스템을 제공함에 있다.
본 발명이 해결하고자 하는 과제는 위에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 목적은, 본 발명에 따라, 연료극, 공기극 및 전해질부를 구비하는 연료전지부; 및 상기 연료극에 제철 공정에서 발생한 전로 가스를 그대로 공급하는 전로 가스 공급부;를 포함하는 고체산화물 연료전지에 의해 달성된다.
상기 전로 가스 공급부는 전로 가스에 물을 첨가하여 상기 연료극에 공급할 수 있다.
상기 연료극은 NiO와 GDC(Gadolinium doped Ceria) 분말을 혼합한 NiO-GDC 복합 재료로 이루어질 수 있다.
상기 공기극은 BSCF(Ba0.5Sr0.5Co0.8Fe0.2O3-δ)와 GDC(Gadolinium doped Ceria) 분말을 혼합한 BSCF-GDC 복합 재료로 이루어질 수 있다.
상기 공기극은 이중 페로브스카이트(double-perovskite) 구조를 가지는 PBSCF(PrBaSrCoFeO) 재료로 이루어질 수 있다.
상기 전해질부의 지지체는 LSGM((La, Sr)(Ga, Mg)O3) 재료로 이루어질 수 있다.
본 발명의 또 다른 실시예에 의하면, 상기한 고체산화물 연료전지; 및 상기 고체산화물 연료전지의 상기 연료극에서 발생하는 배출가스를 분리하는 배출가스 활용부;를 포함하는 고체산화물 연료전지 활용 시스템이 제공된다.
상기 배출가스 활용부는, CO, CO2 및 N2를 포함하는 배출가스에서 CO와 CO2를 별도로 분리해내는 배출가스 분리부, 및 상기 배출가스 분리부에서 분리된 CO에 물을 첨가하여 CO2와 H2를 별도로 생산하는 유효가스 생산부를 구비할 수 있다.
상기 유효가스 생산부는, 상기 고체산화물 연료전지의 상기 전해질부에서 발생하는 열을 이용할 수 있다.
상기 배출가스 활용부는, CO, CO2 및 N2를 포함하는 배출가스에서 CO와 CO2를 별도로 분리해내는 제2 배출가스 분리부, 및 상기 제2 배출가스 분리부에서 분리된 CO에 H2를 첨가하여 C, O 및 H 원소로 이루어지는 화학물질을 생산하는 화학물질 생산부를 구비할 수 있다.
상기 화학물질 생산부는, 제철 공정에서 발생한 부생가스의 H2를 이용할 수 있다.
본 발명의 고체산화물 연료전지에 의하면, 전로 가스를 고체산화물 연료전지의 연료로 사용하여, 에너지 효율을 높일 수 있고 전로 가스에 의해 환경이 오염되는 것을 방지할 수 있다.
또한, 전로 가스를 연료로 하는 고체산화물 연료전지는 H2를 연료로 사용한 경우와 유사한 출력 밀도를 발휘할 수 있다.
본 발명의 고체산화물 연료전지 활용 시스템에 의하면, 고체산화물 연료전지의 연료로 제철 공정에서 발생한 전로 가스를 이용하여 에너지 낭비나 환경 오염을 방지할 수 있을 뿐만 아니라, 고체산화물 연료전지에서 발생하는 배출가스 또한 활용할 수 있어 상기한 효과를 극대화할 수 있다.
도 1은 본 발명에 의한 고체산화물 연료전지의 개략적인 구성도,
도 2는 본 발명에 의한 고체산화물 연료전지의 출력 밀도 실험 결과 그래프,
도 3은 본 발명에 의한 고체산화물 연료전지를 구성하는 연료극의 탄소 침적 현상에 관한 실험 결과 그래프,
도 4 및 도 5는 본 발명에 의한 고체산화물 연료전지 활용 시스템의 개략적인 구성도이다.
이하에서는 본 발명의 구체적인 실시예에 대하여 도면을 참고하여 자세하게 설명하도록 한다.
도 1에는 본 발명에 의한 고체산화물 연료전지(10)의 개략적인 구성도가 도시되어 있다.
본 발명에 의한 고체산화물 연료전지(10)는 연료전지부(100)와 전로 가스 공급부(200)를 포함하여 이루어진다.
연료전지부(100)는 연료극(110), 공기극(120) 및 전해질부(130)를 구비한다. 연료극(110)에서는 연료에 산화작용이 일어나 전자가 방출된다. 전자는 외부 도선을 통해 공기극(120)으로 이동하면서 직류 전류를 발생시킨다. 공기극(120)에는 산소를 포함하는 공기가 공급되고, 산소가 전자와 반응하여 산소 음이온이 발생한다. 산소 음이온은 전해질부(130)를 통해 연료극(110)으로 이동한다. 전해질부(130)는 이온을 투과시킬 수 있는 고체산화물 전해질로 이루어진다. 연료전지부(100)는 전해질 지지체형으로 이루어질 수 있다.
전로 가스 공급부(200)는 제철 공정에서 발생한 전로 가스를 그대로 연료극(110)에 공급한다. 전로 가스에는 CO가 68 중량%, CO2가 12 중량%, H2가 2 중량%, N2가 18 중량% 포함된다.
이러한 전로 가스가 연료극(110)에 공급되면 연료극(110)에서는 아래와 같은 반응에 의해 전자가 생성된다.
H2 + CO + 2O2- → H2O + CO2 + 4e-
그리고 공기극(120)에서는 아래와 같은 반응에 의해 산소 음이온이 발생한다.
O2 + 4e- → 2O2-
이러한 본 발명의 고체산화물 연료전지(10)에 의하면, 전로 가스를 고체산화물 연료전지(10)의 연료로 사용하여, 에너지 효율을 높일 수 있고 전로 가스에 의해 환경이 오염되는 것을 방지할 수 있다.
또한, 전로 가스를 연료로 하는 고체산화물 연료전지(10)는 H2를 연료로 사용한 경우와 유사한 출력 밀도를 발휘할 수 있다.
도 2에는 H2를 연료로 사용한 고체산화물 연료전지(10)의 출력 밀도 실험결과(도 2의 (a))와 전로 가스의 모사 가스를 연료로 사용한 고체산화물 연료전지(10)의 출력 밀도 실험결과(도 2의 (b))가 도시되어 있다. 각 실험에서는 Ni-GDC를 연료극(110)의 재료로 하는 전해질 지지형 단전지를 사용하였다.
도 2에 도시되어 있는 바와 같이, 전로 가스의 모사 가스를 연료로 사용한 고체산화물 연료전지(10)는 850℃에서 336.6mW/cm2의 최고 출력 밀도를 발휘하여, 850℃에서 371.1mW/cm2의 최고 출력 밀도를 발휘하는 H2를 연료로 사용한 고체산화물 연료전지와 큰 차이가 없으므로, 고체산화물 연료전지(10)의 직접 연료로 전로 가스를 사용 가능하다는 것을 알 수 있다.
이러한 본 발명에 의한 고체산화물 연료전지(10)의 출력 밀도는 전로 가스를 별도로 개질하지 않고도 발휘될 수 있으므로, 전로 가스를 개질하는 과정에서 소요되는 에너지, 시간 및 인력에 의해 본 발명에 의한 고체산화물 연료전지(10)의 경제성이 떨어지지 않는다.
그리고 전로 가스를 연료로 이용하므로 CH4와 같은 탄소화합물 계열의 연료를 사용할 시 연료극(110)에서 발생하는 탄소 침적(Boudouard reaction) 현상이 거의 발생하지 않는다.
도 3에는 전로 가스의 CO/CO2 분율을 모사한 가스 분위기 하에서 연료극(110) 원료 분말의 탄소 침적 현상에 관한 실험 결과가 도시되어 있다. 실험은 TGA를 통해 이루어졌으며, 실험에서 연료극(110) 원료 분말은 Ni-GDC로 이루어진 것을 사용하였다.
에어(air)로 Ni-GDC를 산화시켰을 때 증가하는 중량%(wt%)의 이론값은 15.07wt%이고 오차 범위는 1wt% 미만이다. 도 3에 도시되어 있는 바와 같이, 전로 가스의 모사 가스로 Ni-GDC를 산화시켰을 때 증가하는 wt%는 750℃에서 14.80wt%, 800℃에서 14.94wt%, 850℃에서 14.93wt%, 900℃에서 14.89wt%로 나타났다. 즉, 전로 가스를 연료로 이용하는 경우 750℃ 이상에서 이론값과 오차 범위 내의 차이가 발생하는 것을 통해, 연료극(110)에서 연료에 의한 탄소 침적이 거의 발생하지 않을 것으로 예상할 수 있다.
이에 따라, 탄소화합물 계열의 연료를 사용하는 경우에 탄소 침적 현상을 방지하기 위해 높은 Steam/Carbon 분율을 유지할 수 있도록 많은 양의 물을 사용하여야 하는 것과는 달리, 본 발명에서는 물을 사용할 필요가 없기 때문에 수분에 의해 고체산화물 연료전지(10)의 내구성이 저하되는 것을 방지할 수 있다.
전로 가스 공급부(200)는 전로 가스에 물을 첨가하여 연료극(110)에 공급할 수 있다.
전로 가스에 첨가된 물은 수성가스전이반응(water-gas shift reaction)에 의해 아래 반응식과 같이 수소를 발생시켜, 전로 가스 외에 수소를 고체산화물 연료전지(10)의 연료로 사용하는 것이 가능하다. 또한, 전로 가스에서 수소 분율이 증가하여 연료극(110)에서 반응이 보다 활발하게 진행될 수 있다.
CO + H2O → CO2 + H2
전로 가스에 물이 첨가되더라도 상기한 수성가스전이반응에 의해 이산화탄소와 수소로 변환되므로 물에 의해 고체산화물 연료전지(10)의 내구성이 저하될 염려는 없다.
연료극(110)은 NiO와 GDC(Gadolinium doped Ceria) 분말을 혼합한 NiO-GDC 복합 재료로 이루어질 수 있다. NiO-GDC 복합 재료로 이루어지는 연료극(110)은 탄소 침적 현상이 거의 발생하지 않아 고체산화물 연료전지(10)의 출력을 높게 지속할 수 있다. NiO-GDC 분말은 페이스트(paste)로 제작하여 전해질부(130)의 한쪽 면에 스크린 프린팅(screen printing)함으로써 연료극(110)을 형성할 수 있다.
공기극(120)은 BSCF(Ba0.5Sr0.5Co0.8Fe0.2O3-δ)와 GDC(Gadolinium doped Ceria) 분말을 혼합한 BSCF-GDC 복합 재료로 이루어질 수 있다. BSCF-GDC 복합 재료는 높은 이온 전도도와 전자 전도성을 가지므로 공기극(120)에 보다 우수한 전기적 성질을 부여하게 된다. BSCF-GDC 분말은 페이스트로 제작하여 전해질부(130)의 다른쪽 면에 스크린 프린팅함으로써 공기극(120)을 형성할 수 있다.
공기극(120)은 이중 페로브스카이트(double-perovskite) 구조를 가지는 PBSCF(PrBaSrCoFeO) 재료로 이루어질 수도 있다. PBSCF(PrBaSrCoFeO) 재료는 촉매 활성이 우수하여, 고체산화물 연료전지(10)의 최고 출력 밀도를 증가시킬 수 있다.
전해질부(130)의 지지체는 LSGM((La, Sr)(Ga, Mg)O3) 재료로 이루어질 수 있다. LSGM은 저항이 낮기 때문에 이온전도도가 우수하고 고체산화물 연료전지(10)의 출력을 향상시킬 수 있다.
이하에서는 본 발명에 의한 고체산화물 연료전지 활용 시스템(1)에 대하여 설명하도록 한다. 본 발명에 의한 고체산화물 연료전지 활용 시스템(1)에 대해 설명하면서, 본 발명에 의한 고체산화물 연료전지(10)의 설명시 언급한 부분에 대해서는 자세한 설명을 생략할 수 있다.
도 4와 도 5에는 본 발명에 의한 고체산화물 연료전지 활용 시스템(1)의 개략적인 구성도가 도시되어 있다.
본 발명에 의한 고체산화물 연료전지 활용 시스템(1)은 상기한 고체산화물 연료전지(10)와 배출가스 활용부(20)를 포함한다.
고체산화물 연료전지(10)는 연료전지부(100)와 전로 가스 공급부(200)를 포함하며, 전로 가스 공급부(200)는 제철 공정에서 발생한 전로 가스를 그대로 연료전지부(100)의 연료극(110)에 공급한다.
배출가스 활용부(20)는 고체산화물 연료전지(10)의 연료극(110)에서 발생하는 배출가스를 성분별로 분리한다. 고체산화물 연료전지(10)의 연료극(110)에서 발생하는 배출가스에는 CO, CO2 및 N2가 포함될 수 있으며, 이 중에서 CO와 CO2가 활용될 수 있다.
이러한 본 발명의 고체산화물 연료전지 활용 시스템(1)에 의하면, 고체산화물 연료전지(10)의 연료로 제철 공정에서 발생한 전로 가스를 이용하여 에너지 낭비나 환경 오염을 방지할 수 있을 뿐만 아니라, 고체산화물 연료전지(10)에서 발생하는 배출가스 또한 활용할 수 있어 상기한 효과를 극대화할 수 있다.
배출가스 활용부(20)는 보다 구체적으로, 도 4에 도시되어 있는 바와 같이 배출가스 분리부(21)와 유효가스 생산부(22)를 구비할 수 있다.
배출가스 분리부(21)는 CO, CO2 및 N2를 포함하는 배출가스에서 CO와 CO2를 별도로 분리한다. 배출가스 분리부(21)는 예를 들어, GSM(gas separation membrane)(21a)을 통해 배출가스로부터 CO와 CO2를 별도로 분리할 수 있다.
유효가스 생산부(22)에서는 분리된 CO에 물을 첨가하여 CO2와 H2를 별도로 생산한다. 유효가스 생산부(22)는 예를 들어, WGS-MR(water gas shift membrane reactor)(22a)을 구비하여 CO의 수성가스전환반응을 통해 수소를 생산할 수 있다. 수성가스전환반응을 통해 만들어진 CO2와 H2는 수소 분리막(H2-separation membrane)(22b)을 통해 별도로 분리될 수 있다.
유효가스 생산부(22)에서 생산된 CO2는 수증기를 응축시킴으로써 고순도로 만든 후, 배출가스 분리부(21)에서 분리된 CO2와 함께 압축 및 저장될 수 있다.
유효가스 생산부(22)는 고체산화물 연료전지(10)의 전해질부(130)에서 발생하는 열을 이용할 수 있다. 열은 WGS-MR에서 수성가스전환반응이 보다 활발하게 진행되도록 할 수 있다.
이에 따라, 고체산화물 연료전지 활용 시스템(1)의 에너지 효율을 보다 높여주는 것이 가능하다.
배출가스 활용부(20)는 도 5에 도시되어 있는 바와 같이, 제2 배출가스 분리부(23)와 화학물질 생산부(24)를 구비할 수 있다.
제2 배출가스 분리부(23)는 CO, CO2 및 N2를 포함하는 배출가스에서 CO와 CO2를 별도로 분리한다. 제2 배출가스 분리부(23)는 예를 들어, GSM(23a)을 통해 배출가스로부터 CO와 CO2를 별도로 분리할 수 있다.
화학물질 생산부(24)에서는 제2 배출가스 분리부(23)에서 분리된 CO에 H2를 첨가하여 C, O 및 H 원소로 이루어지는 화학물질을 생산한다. 화학물질 생산부(24)에서 생산되는 화학물질에는 예를 들어, 메탄올, 에틸렌, 프로필렌, 올레핀 등의 고부가가치 화학물질이 있을 수 있다.
제2 배출가스 분리부(23)에서 분리된 CO2는 압축 및 저장될 수 있다.
화학물질 생산부(24)는 제철 공정에서 발생한 부생가스의 H2를 이용하여 화학물질을 생산할 수 있다.
이에 따라, 별도로 H2를 공급할 필요가 없으므로 화학물질을 경제적으로 생산하는 것이 가능하다.
본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.
[부호의 설명]
1 : 고체산화물 연료전지 활용 시스템
10 : 고체산화물 연료전지 20 : 배출가스 활용부
21 : 배출가스 분리부 22 : 유효가스 생산부
23 : 제2 배출가스 분리부 24 : 화학물질 생산부
100 : 연료전지부 110 : 연료극
120 : 공기극 130 : 전해질부
200 : 전로 가스 공급부

Claims (11)

  1. 연료극, 공기극 및 전해질부를 구비하는 연료전지부; 및
    상기 연료극에 제철 공정에서 발생한 전로 가스를 그대로 공급하는 전로 가스 공급부;를 포함하는 고체산화물 연료전지.
  2. 제1항에 있어서,
    상기 전로 가스 공급부는 전로 가스에 물을 첨가하여 상기 연료극에 공급하는 것을 특징으로 하는 고체산화물 연료전지.
  3. 제1항에 있어서,
    상기 연료극은 NiO와 GDC(Gadolinium doped Ceria) 분말을 혼합한 NiO-GDC 복합 재료로 이루어지는 것을 특징으로 하는 고체산화물 연료전지.
  4. 제1항에 있어서,
    상기 공기극은 BSCF(Ba0.5Sr0.5Co0.8Fe0.2O3-δ)와 GDC(Gadolinium doped Ceria) 분말을 혼합한 BSCF-GDC 복합 재료로 이루어지는 것을 특징으로 하는 고체산화물 연료전지.
  5. 제1항에 있어서,
    상기 공기극은 이중 페로브스카이트(double-perovskite) 구조를 가지는 PBSCF(PrBaSrCoFeO) 재료로 이루어지는 것을 특징으로 하는 고체산화물 연료전지.
  6. 제1항에 있어서,
    상기 전해질부의 지지체는 LSGM((La, Sr)(Ga, Mg)O3) 재료로 이루어지는 것을 특징으로 하는 고체산화물 연료전지.
  7. 제1항 내지 제6항 중 어느 한 항에 의한 고체산화물 연료전지; 및
    상기 고체산화물 연료전지의 상기 연료극에서 발생하는 배출가스를 분리하는 배출가스 활용부;를 포함하는 고체산화물 연료전지 활용 시스템.
  8. 제7항에 있어서,
    상기 배출가스 활용부는,
    CO, CO2 및 N2를 포함하는 배출가스에서 CO와 CO2를 별도로 분리해내는 배출가스 분리부, 및
    상기 배출가스 분리부에서 분리된 CO에 물을 첨가하여 CO2와 H2를 별도로 생산하는 유효가스 생산부를 구비하는 것을 특징으로 하는 고체산화물 연료전지 활용 시스템.
  9. 제8항에 있어서,
    상기 유효가스 생산부는, 상기 고체산화물 연료전지의 상기 전해질부에서 발생하는 열을 이용하는 것을 특징으로 하는 고체산화물 연료전지 활용 시스템.
  10. 제7항에 있어서,
    상기 배출가스 활용부는,
    CO, CO2 및 N2를 포함하는 배출가스에서 CO와 CO2를 별도로 분리해내는 제2 배출가스 분리부, 및
    상기 제2 배출가스 분리부에서 분리된 CO에 H2를 첨가하여 C, O 및 H 원소로 이루어지는 화학물질을 생산하는 화학물질 생산부를 구비하는 것을 특징으로 하는 고체산화물 연료전지 활용 시스템.
  11. 제10항에 있어서,
    상기 화학물질 생산부는, 제철 공정에서 발생한 부생가스의 H2를 이용하는 것을 특징으로 하는 고체산화물 연료전지 활용 시스템.
PCT/KR2021/008071 2020-12-22 2021-06-28 고체산화물 연료전지 및 고체산화물 연료전지 활용 시스템 WO2022139089A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200180712A KR102480268B1 (ko) 2020-12-22 2020-12-22 고체산화물 연료전지 및 고체산화물 연료전지 활용 시스템
KR10-2020-0180712 2020-12-22

Publications (1)

Publication Number Publication Date
WO2022139089A1 true WO2022139089A1 (ko) 2022-06-30

Family

ID=82158050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008071 WO2022139089A1 (ko) 2020-12-22 2021-06-28 고체산화물 연료전지 및 고체산화물 연료전지 활용 시스템

Country Status (2)

Country Link
KR (1) KR102480268B1 (ko)
WO (1) WO2022139089A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010173985A (ja) * 2009-01-30 2010-08-12 Jfe Steel Corp 炭化水素系燃料の製造方法および炭化水素系燃料製造設備
KR20100093122A (ko) * 2007-12-28 2010-08-24 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 연료 전지 시스템
KR20180036277A (ko) * 2016-09-30 2018-04-09 주식회사 엘지화학 고체 전해질 연료전지용 연료극 그린시트 및 고체 산화물 연료전지
KR101948991B1 (ko) * 2016-12-21 2019-02-15 주식회사 포스코 제철공정-고체 산화물 전기분해전지-고체산화물 연료전지 복합시스템

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4003553B2 (ja) * 2002-06-26 2007-11-07 Jfeスチール株式会社 副生ガスを用いた発電方法および発電設備
KR101675301B1 (ko) * 2014-08-28 2016-11-22 한국생산기술연구원 단일상 페롭스카이트계 고체전해질과 이를 포함한 고체산화물연료전지 및 그 제조방법
KR102191620B1 (ko) 2017-08-24 2020-12-15 한국에너지기술연구원 개질된 프로판 가스를 이용한 원통형 고체산화물 연료전지 스택

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100093122A (ko) * 2007-12-28 2010-08-24 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 연료 전지 시스템
JP2010173985A (ja) * 2009-01-30 2010-08-12 Jfe Steel Corp 炭化水素系燃料の製造方法および炭化水素系燃料製造設備
KR20180036277A (ko) * 2016-09-30 2018-04-09 주식회사 엘지화학 고체 전해질 연료전지용 연료극 그린시트 및 고체 산화물 연료전지
KR101948991B1 (ko) * 2016-12-21 2019-02-15 주식회사 포스코 제철공정-고체 산화물 전기분해전지-고체산화물 연료전지 복합시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI MENG, CHEN KONGFA, HUA BIN, LUO JING-LI, RICKARD WILLIAM D. A., LI JIAN, IRVINE JOHN T. S., JIANG SAN PING: "Smart utilization of cobaltite-based double perovskite cathodes on barrier-layer-free zirconia electrolyte of solid oxide fuel cells", JOURNAL OF MATERIALS CHEMISTRY A, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 4, no. 48, 1 January 2016 (2016-01-01), GB , pages 19019 - 19025, XP055946793, ISSN: 2050-7488, DOI: 10.1039/C6TA08396J *

Also Published As

Publication number Publication date
KR102480268B1 (ko) 2022-12-22
KR20220090623A (ko) 2022-06-30

Similar Documents

Publication Publication Date Title
WO2011138988A1 (ko) Lng 운반선의 전기 생산 장치 및 방법
US4532192A (en) Fuel cell system
US5492777A (en) Electrochemical energy conversion and storage system
WO2021230562A1 (ko) 암모니아 기반 고체산화물 연료전지(sofc) 시스템
US20200014046A1 (en) Solid-oxide fuel cell systems
US8257563B2 (en) High purity hydrogen and electric power co-generation apparatus and method
WO2013085216A1 (ko) 연료 전지 시스템과 그 구동 방법
CA2817108C (en) A solid oxide fuel cell system and a method of operating a solid oxide fuel cell system
KR20150020463A (ko) 연료전지장치
EP0958630A2 (en) Method of operating a molten carbonate fuel cell, a fuel cell, a fuel cell stack and an apparatus provided therewith
WO2017222253A1 (ko) 연료극 가스 또는 연료극 배가스를 이용한 열교환기를 포함하는 연료전지 시스템
WO2022139089A1 (ko) 고체산화물 연료전지 및 고체산화물 연료전지 활용 시스템
WO2017003089A1 (ko) 외부열원에 의하여 가열되는 고체산화물 연료전지 시스템
KR100641125B1 (ko) 충전부를 구비한 연료전지
WO2013100711A1 (ko) 복합발전시스템 및 복합발전시스템의 이산화탄소 포집방법
WO2019135451A1 (ko) 전기화학적 수소화 반응기 및 이것을 이용한 수소화물의 제조방법
WO2020145453A1 (ko) 발전 및 합성가스 동시 생산에 의한 이산화탄소 발생 저감 고체산화물 연료전지, 그 제조 방법 및 운전 조건
WO2016003011A1 (ko) 우수한 연료 효율을 갖는 직접탄소 연료전지 시스템
WO2016052966A1 (ko) 전해질막, 이를 포함하는 연료 전지, 상기 연료 전지를 포함하는 전지 모듈 및 상기 전해질막의 제조방법
WO2020138668A1 (ko) 이산화탄소를 이용하여 수소를 생산하는 이차전지 및 이를 구비하는 복합 발전 시스템
WO2020085594A1 (ko) 수중용 연료전지 시스템
WO2023234553A1 (ko) Soe-sofc-ccs 하이브리드 시스템
JP3837662B2 (ja) 燃料電池発電装置および燃料電池発電装置の運転方法
WO2023033294A1 (ko) 바이오 오일을 전자파 플라스마 토치로 개질 하여 합성가스를 생산하는 장치와 방법
CN114852963B (zh) 一种碳基燃料向氢燃料转化的零碳排放加热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21911159

Country of ref document: EP

Kind code of ref document: A1