WO2022139061A1 - 휴대용 rt-pcr 장치 및 이를 이용한 rt-pcr 측정 방법 - Google Patents

휴대용 rt-pcr 장치 및 이를 이용한 rt-pcr 측정 방법 Download PDF

Info

Publication number
WO2022139061A1
WO2022139061A1 PCT/KR2021/000946 KR2021000946W WO2022139061A1 WO 2022139061 A1 WO2022139061 A1 WO 2022139061A1 KR 2021000946 W KR2021000946 W KR 2021000946W WO 2022139061 A1 WO2022139061 A1 WO 2022139061A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
chamber
lower heating
heating
temperature
Prior art date
Application number
PCT/KR2021/000946
Other languages
English (en)
French (fr)
Inventor
류성호
Original Assignee
순천향대학교 산학협력단
(주)진이어스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천향대학교 산학협력단, (주)진이어스 filed Critical 순천향대학교 산학협력단
Priority to EP21911131.7A priority Critical patent/EP4129483A4/en
Priority to JP2022565875A priority patent/JP7468935B2/ja
Priority to CN202180033184.XA priority patent/CN115515715A/zh
Publication of WO2022139061A1 publication Critical patent/WO2022139061A1/ko
Priority to US18/050,196 priority patent/US20230070652A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • B01L7/525Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples with physical movement of samples between temperature zones
    • B01L7/5255Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples with physical movement of samples between temperature zones by moving sample containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/18Transport of container or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • B01L2300/042Caps; Plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0663Whole sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/069Absorbents; Gels to retain a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks

Definitions

  • the present invention relates to a gene amplification (PCR) apparatus, and more particularly, to a portable real-time PCR (RT-PCR) apparatus and a RT-PCR measurement method using the same.
  • PCR gene amplification
  • RT-PCR portable real-time PCR
  • DNA amplification technology is widely used for R&D and diagnostic purposes in life sciences, genetic engineering, and medicine, and in particular, DNA amplification technology by polymerase chain reaction (PCR) is widely used. have.
  • PCR polymerase chain reaction
  • PCR Polymerase chain reaction
  • Polymerase chain reaction is a method that can amplify a large amount of DNA sandwiched between two primers in vitro.
  • DNA polymerase requires a primer for DNA synthesis, and this primer Using DNA synthesis in the 5′ ⁇ 3′ direction, 1 DNA denaturation to single strand ⁇ 2 primer binding ⁇ 3 complementary DNA synthesis by polymerase ⁇ 1 denaturation ⁇ 2 primer binding... By repeating the process, only the target gene region is propagated in vitro.
  • PCR first, denaturation of DNA is performed. Double-stranded DNA can be separated by heating. Each isolated DNA serves as a template.
  • annealing step is performed in PCR.
  • the primers bind to the template DNA.
  • Annealing temperature is an important factor in determining the accuracy of the reaction. If the temperature is too high, the primer binds too weakly to the template DNA, resulting in very few amplified DNA products. Also, if the temperature is too low, undesired DNA may be amplified because the primer binds non-specifically.
  • the elongation step is performed in PCR.
  • heat-resistant DNA polymerase creates new DNA from the template DNA.
  • real-time PCR Real-time polymerase chain reaction, real-time RCR, RT-PCR
  • qPCR quantitative polymerase chain reaction
  • real-time PCR allows quantitative observation of the amplification process of DNA molecules during PCR.
  • the reporter probe When real-time PCR is performed, the reporter probe binds to the DNA intermediate but still does not fluoresce. In the amplification stage of PCR, when Taq DNA polymerase extends the forward primer, it meets the reporter probe. At this time, when the reporter probe is decomposed by the 5'->3' degrading enzyme function possessed by the Taq DNA polymerase, the fluorescent label is separated from the fluorescence suppression label and fluorescence appears.
  • the degree of PCR can be measured by measuring fluorescence.
  • the reporter probes bind to new DNA that is created each time, and the fluorescence increases as the amplification cycle increases.
  • the specimen receiving container for accommodating the specimen is formed in the form of a tube extending long in the vertical direction, and a separate pipette is used to accommodate the specimen in the tube.
  • a separate pipette is used to accommodate the specimen in the tube.
  • an object of the present invention is to provide a portable real-time PCR apparatus and a PCR measurement method using the same, in which temperature control is easy and polymerization chain reaction can be smoothly performed.
  • an object of the present invention is to provide a portable real-time PCR device that can be easily used and a PCR measurement method using the same.
  • a portable real-time PCR apparatus includes: a plurality of lower heating units installed in the installation space of the base unit; a lower optical measurement unit installed in the base unit and disposed at a different position from the lower heating unit, providing measurement light or receiving the measurement light; and a plurality of chamber parts respectively seated in the lower heating part and the lower optical measuring part, wherein the chamber part is provided to be movable from one of the lower heating parts to the other lower heating part or the lower optical measuring part and a chamber assembly, wherein the chamber unit includes a chamber body for accommodating a chamber unit having a specimen unit accommodating space in which the specimen unit is accommodated, wherein the chamber unit includes the specimen unit accommodating space.
  • the chamber unit body is formed, and a cap unit for shielding the receiving space of the chamber unit body from above, wherein the specimen unit has an aspect ratio greater than 0 and less than 1, which is a ratio of a width to a height.
  • the chamber assembly may further include a chamber moving unit for moving the chamber unit, wherein the plurality of chamber units are spaced apart from each other at a predetermined interval based on a rotation center formed in the base unit, and the The chamber moving unit may simultaneously rotate the plurality of chamber units in one direction based on the rotation center.
  • the chamber moving unit includes a plurality of connecting brackets each having one end connected to the chamber unit, and a rotating shaft to which the other end of the connecting bracket is connected and rotatably provided at the center of rotation, and the chamber moves during a holding time
  • the rotation of the unit is stopped, the rotation of the chamber moving unit is performed during the moving time, and the holding time may be longer than the moving time.
  • a first guide unit for guiding the rotation of the chamber part is formed between any one of the lower heating part and the other one of the lower heating part or the lower optical measuring part, and the first guide unit comprises:
  • the chamber parts are formed to have a curvature corresponding to a radius of curvature of an imaginary circle formed by rotation, and a guide groove or a guide protrusion engaged with the first guide unit may be formed in a lower portion of the chamber part.
  • the lower heating unit and the lower optical measuring unit it is connected to the first guide unit, has the same radius of curvature as the first guide unit, and is selectively engaged with the guide groove or the guide protrusion of the chamber unit A second guide unit may be formed.
  • the lower heating unit includes a first lower heating unit operated at a first temperature, a second lower heating unit operating at a second temperature, and a third lower heating unit operating at a third temperature, and the first lower heating unit
  • the unit may be symmetrical with the third lower heating unit with respect to the rotation center, and the second lower heating unit may be symmetrical with the lower optical measuring unit with respect to the rotation center.
  • the first temperature is formed to be higher than the third temperature
  • the third temperature is formed to be higher than the second temperature
  • the first lower heating part, the second lower heating part, and the third lower heating part A state in which each temperature is set may be maintained.
  • the cover portion for covering the installation space; and a plurality of upper heating units disposed between the lower heating unit and the cover unit and selectively contacting an upper surface of the chamber unit; and an upper optical measuring unit facing the lower optical measuring unit and receiving the measurement light emitted from the lower optical measuring unit or providing the measuring light toward the lower optical measuring unit.
  • the plurality of distances between the upper heating part and the lower heating part are variably formed, and when the chamber part is disposed between the upper heating part and the lower heating part and does not move for a holding time, the upper heating part
  • the distance between the part and the lower heating part corresponds to the height of the chamber part, and when the holding time elapses and the chamber part is moved to the other upper heating part and the lower heating part side, the upper heating part and the lower heating part
  • the distance between the parts may be greater than the height of the chamber part.
  • the lower heating part is formed in a plate shape, the lower surface of the chamber part is completely in contact with the lower heating part, the chamber part body of the chamber part is formed with a chamber unit insertion space for inserting the chamber unit,
  • the width of the chamber unit insertion space may be formed to have a size corresponding to the width of the chamber unit.
  • the measurement solution is accommodated in the sample unit accommodation space of the chamber unit, the aspect ratio of the accommodation space is greater than 0 and smaller than 1, and the volume of the sample unit accommodation space is 20 ⁇ l to 100 ⁇ l. have.
  • sample unit may be formed of a membrane structure formed of a porous material.
  • a sample unit input step of accommodating the chamber units in which the sample unit is accommodated in the chamber unit; initiating a heating and measurement operation of heating or measuring the specimen unit in a state in which the specimen unit is inserted; a chamber assembly one-step moving step of moving the chamber unit by one step when the holding time of the heating and measuring operation initiation step is greater than a preset reference holding time; and a measurement result notification step of notifying a measurement result when the measurement cycle for the plurality of chamber units is greater than a preset reference cycle.
  • the upper heating unit and the lower heating unit disposed to face the lower heating unit increasing the interval between the heating units to increase the interval between the units; and, after the chamber assembly 1 step movement step is performed, reducing the interval between the heating units to reduce the interval between the upper heating unit and the lower heating unit, wherein in the increasing step between the heating units, the upper heating unit and a gap between the lower heating parts is formed to be greater than a height of the chamber part, and in the step of reducing the distance between the heating parts, a distance between the upper heating part and the lower heating part may correspond to a height of the chamber part.
  • one unit of the measurement cycle may be formed by moving the chamber part by 4 steps.
  • the chamber parts are rotated by a predetermined angle based on a rotation center formed in the base part, and the lower heating part includes a first lower heating part operated at a first temperature; a second lower heating unit operated at a second temperature and a third lower heating unit operating at a third temperature, wherein the upper heating unit facing the lower heating unit faces the first lower heating unit at the first temperature
  • a first upper heating unit operated by It includes an upper heating unit, and the portable PCR device may be controlled such that the temperature at which the plurality of the lower heating units and the upper heating units are operated is maintained.
  • the temperature control is easy because the temperature change of the sudden temperature rise and fall is not made, and the polymerization chain reaction can be smoothly performed.
  • the overall height of the PCR apparatus is reduced, and there is an advantage in that the sample unit can be more easily put into the PCR apparatus.
  • FIG. 1 is a view showing a portable real-time PCR apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view showing a process in which chamber parts of the portable real-time PCR apparatus of FIG. 1 are moved.
  • FIG. 3 is a view showing a state in which the portable real-time PCR apparatus of FIG. 1 is viewed from the III direction.
  • FIG. 4 is a view showing a state in which the upper heating part of the portable real-time PCR device of FIG. 3 is lifted upward.
  • FIG. 5 is a view showing a chamber unit and a sample unit of the portable real-time PCR apparatus of FIG. 1 .
  • FIG. 6 is a view showing a PCR measurement method using the portable real-time PCR apparatus of FIG. 1 .
  • FIG. 7 is a view showing a real-time PCR apparatus according to another embodiment of the present invention.
  • FIG. 1 is a diagram showing a portable real-time PCR apparatus according to an embodiment of the present invention
  • FIG. 2 is a diagram showing a process in which chamber parts of the portable real-time PCR apparatus of FIG. 1 are moved.
  • FIG. 3 is a view showing a state in which the portable real-time PCR apparatus of FIG. 1 is viewed from the III direction
  • FIG. 4 is a view showing a state in which the upper heating part of the portable real-time PCR apparatus of FIG. 3 is lifted upward.
  • FIG. 5 is a view showing a chamber unit and a sample unit of the portable real-time PCR apparatus of FIG. 1 .
  • the chamber parts in which the sample unit is accommodated are moved and heated in a plurality of heating parts having a fixed operating temperature, so that the heating part operates The temperature can be maintained more smoothly.
  • the chamber parts may be rotatably disposed about a rotation center formed in the portable real-time PCR apparatus 1 .
  • sample unit is formed in the form of a flat membrane (eg, in the form of a disk membrane), and the sample unit containing the DNA or RNA extracted from the portable nucleic acid extraction kit of the syringe type is simply put into the chamber unit containing the PCR solution.
  • a flat membrane eg, in the form of a disk membrane
  • the real-time PCR apparatus 1 enables PCR measurement to be performed stably and smoothly not only in a laboratory environment but also in an external environment requiring urgent virus measurement.
  • the portable PCR apparatus 1 includes a base unit 100, a lower heating unit 310, 320, 330, a lower optical measuring unit 500, and a cover unit 600, It includes upper heating units 410 and 420 and a chamber assembly 200 .
  • the base part 100 is formed with an installation space, and forms the lower outer shape of the portable PCR device (1). At this time, the base part 100 may be supported with respect to the bottom surface.
  • the lower heating unit 310 , 320 , 330 is installed in the installation space of the base unit 100 , and the lower heating unit 310 , 320 , 330 is a first lower portion operated at a first temperature T 1 . It includes a heating unit 310 , a second lower heating unit 320 operated at a second temperature T 2 , and a third lower heating unit 330 operating at a third temperature T 3 .
  • the first lower heating unit 310 is symmetrical with the third lower heating unit 320 with respect to the rotation center around which the chamber assembly 200 is rotated, and the second lower heating unit 320 is lowered based on the rotation center. It may be arranged to be symmetrical with the optical measuring unit 500 . In this case, the first lower heating unit 310 , the second lower heating unit 320 , the third lower heating unit 330 , and the lower optical measuring unit 500 are spaced apart from each other at a predetermined interval based on the rotation center. and placed
  • the first temperature T 1 is formed to be higher than the third temperature T 3
  • the third temperature T 3 is formed to be higher than the second temperature T 2 .
  • the temperature of each of the first lower heating unit 310 , the second lower heating unit 320 , and the third lower heating unit 330 is maintained. That is, during the PCR measurement process, the temperatures of the first lower heating unit 310 , the second lower heating unit 320 , and the third lower heating unit 330 are not changed.
  • the first temperature (T 1 ) may be, for example, formed at about 97°C
  • the second temperature (T 2 ) may be formed, for example, at about 60°C
  • the third temperature (T 3 ) may be formed at about 72 °C.
  • the lower optical measuring unit 500 is installed in the base unit 100 and is disposed at a different position from the lower heating units 310 , 320 , 330 , and provides measurement light or receives the measurement light.
  • the lower optical measuring unit 500 may measure the fluorescence of the specimen unit 250 by irradiating measurement light to the specimen unit 250 positioned in the measurement target region 510 .
  • the measurement target region 510 may be formed in plurality
  • the lower optical measurement unit 500 may be a light emitting device for emitting the measurement light or an optical sensor device for receiving the measurement light.
  • the light emitting device may be a device capable of emitting light of a preset wavelength band, such as a UV LED
  • the optical sensor device may be a device that generates an image by receiving light, such as CIS or CCD.
  • any one of the specimen units 250 containing the sample to be tested includes the first lower heating unit 310 , the second lower heating unit 320 , the third lower heating unit 330 , and the lower optical measuring unit. (500), and when the measurement step of the specimen unit 250 in the lower optical measurement unit 500 is finished, one measurement cycle for the specimen unit 250 is set to have ended.
  • a denaturation step of DNA may be performed, and the second temperature (T 2 )
  • the sample unit is heated by the second lower heating unit 320 operated by
  • the sample unit 250 is heated by the third lower heating unit 330 operated at the third temperature T 3 .
  • the sample unit 250 is heated for the holding time T m by the third lower heating unit 330 , the sample unit 250 is moved to the lower optical measuring unit 500 side, and PCR measurements are performed.
  • the chamber assembly 200 includes a plurality of chamber units 210 seated on the lower heating units 310 , 320 , 330 and the lower optical measuring unit 500 , respectively, and a chamber for moving the chamber unit 210 . It includes a moving unit 220 .
  • the chamber unit 210 is provided to be movable from one lower heating unit 310 , 320 , 330 to another lower heating unit 310 , 320 , 330 or a lower optical measuring unit 500 , and a plurality of The chamber unit 210 is disposed to be spaced apart from each other at a predetermined interval based on the rotation center formed in the base unit 100 .
  • the chamber moving unit 220 rotates the plurality of chamber units 210 in one direction based on the rotation center at the same time.
  • the chamber moving unit 220 may rotate the chamber units 210 in a clockwise direction, for example, the first lower heating unit 310 , the second lower heating unit 320 , and the third lower heating unit.
  • the unit 330 and the lower optical measuring unit 500 may be sequentially arranged in a clockwise direction.
  • the chamber unit 210 includes a chamber unit body 211 for accommodating the chamber unit 230 in which the specimen unit accommodating space in which the specimen unit 250 is accommodated is formed.
  • the chamber unit body 211 may be formed in a plate shape having a width greater than the vertical height, and the chamber unit insertion space 215 for inserting the chamber unit 230 is formed in the chamber unit body 211 .
  • the width of the chamber unit insertion space 215 is formed to have a size corresponding to the width of the chamber unit 230 . In a state in which the chamber unit 230 is inserted into the chamber unit insertion space 215 of the chamber unit 210 , the lower surface and side surfaces of the chamber unit 230 are completely in close contact with the inner wall of the chamber unit insertion space 215 .
  • the chamber unit 210 may be formed of a material having a high heat transfer coefficient, such as metal, in order to smoothly transfer heat to the chamber unit 230 .
  • the chamber unit 230 includes a chamber unit body 211 in which the specimen unit accommodating space 232 is formed, and a cap unit 233 that shields the specimen unit accommodating space 232 of the chamber unit body 211 from above.
  • the specimen unit 250 is formed to have an aspect ratio, which is a ratio of width to height, greater than 0 and less than 1.
  • the specimen unit 250 may be formed in a disk shape and may be formed in a membrane disk shape formed of a membrane structure formed of a porous material.
  • a measurement solution which is a PCR solution
  • the specimen unit accommodating space 231 of the chamber unit 230 is accommodated in the specimen unit accommodating space 231 of the chamber unit 230 , and an aspect ratio of the accommodating space 231 is greater than 0 and smaller than 1. That is, the specimen unit accommodating space 231 is formed to have a width greater than a height in the vertical direction.
  • the volume of the specimen unit accommodation space 231 is formed in a range of 20 ⁇ l to 100 ⁇ l.
  • about 50 ⁇ l of the measurement solution is accommodated in the sample unit accommodating space 231 , and the sample unit 250 is impregnated with the measurement solution.
  • the chamber moving unit 220 includes a plurality of connecting brackets 222 having one end connected to the chamber unit 210, respectively, and the other end of the connecting bracket 222 connected to each other, and a rotating shaft 221 rotatably provided at the center of rotation. ) is included.
  • the rotation of the chamber moving unit 220 is stopped during the holding time (T m ) in which the chamber units 210 are seated, respectively, and the lower heating unit (310, 320, 330) is seated, and after the holding time (T m ) is finished, The rotation of the chamber moving unit 220 is performed during the moving time T r until the other holding time T m . At this time, the holding time (T m ) is formed to be greater than the moving time (T r ).
  • the cover part 600 is disposed above the base part 100 , covers the installation space of the base part 100 from above, and forms an upper outer shape of the PCR apparatus 1 .
  • the upper heating units 410 and 420 are disposed between the lower heating units 310 , 320 , 330 and the cover unit 600 . At this time, it selectively contacts the upper surface of the chamber part 210 .
  • the upper heating units 410 and 420 are formed in shapes corresponding to the lower heating units 310 , 320 and 330 , and include a first lower heating unit 310 , a second lower heating unit 320 , and a third lower heating unit.
  • a first upper heating unit 410 , a second upper heating unit 420 , and a third upper heating unit (not shown) respectively corresponding to 330 are included.
  • the upper heating units 410 and 420 are heated to the same temperature as the corresponding lower heating units 310, 320, and 330, respectively, and the lower heating units 310, 320, 330 and the upper heating units 410 and 420 are heated. ) as the chamber unit 210 is disposed in close contact between the chamber unit 230 can be more stably heated.
  • the distance between the plurality of upper heating units (410, 420) and lower heating units (310, 320, 330) of the PCR apparatus 1 according to the present embodiment is formed to be variable. That is, when the state in which the chamber unit 210 is heated for each step is completed, it moves to the other heating units (410, 420, 310, 320, 330), and the heating units (410, 420, 310, 320, 330). The distance between the upper heating units 410 and 420 and the lower heating units 310 , 320 , 330 is varied so that movement between them can be made smoothly.
  • the chamber unit 210 when the chamber unit 210 is disposed between the upper heating units 410, 420 and the lower heating units 310, 320, and 330 and does not move during the holding time, the upper heating units 410, 420 and the lower The distance between the heating units 310 , 320 , and 330 corresponds to the height of the chamber unit 210 . That is, the chamber unit 210 is closely adhered between the upper heating units 410 , 420 and the lower heating units 310 , 320 , and 330 , so that stable heat supply to the chamber unit 230 can be performed.
  • the upper heating units 410, 420 and the lower heating units 310, 320, 330 are formed to be greater than the height of the chamber unit 210 . That is, the state in which the chamber unit 210 is in close contact between the upper heating units 410 , 420 and the lower heating units 310 , 320 , 330 is released, so that the chamber unit 210 can be moved more smoothly. .
  • the upper heating units 410 and 420 may be connected to the upper heating unit moving unit 450 arranged to be movable in the vertical direction, and may be formed to be movable in the vertical direction at the same time.
  • the configuration in which the lower heating unit 310, 320, 330 is moved in the vertical direction, the distance between the upper heating unit 410, 420 and the lower heating unit 310, 320, 330 is variable is also implemented according to the present invention Examples may be included.
  • the upper optical measurement unit faces the lower optical measurement unit 500 , and receives the measurement light emitted from the lower optical measurement unit 500 or provides the measurement light toward the lower optical measurement unit. That is, the upper optical measuring unit and the lower optical measuring unit 500 are provided as a pair corresponding to each other, and while emitting and receiving light, the chamber unit ( Fluorescence measurement is performed on the specimen unit 250 accommodated in the 230 .
  • the upper heating units 410 and 420 and the upper optical measuring unit may be provided in a configuration to be installed on the cover unit 600 .
  • FIG. 6 is a view showing a PCR measurement method using the portable real-time PCR apparatus of FIG. 1 .
  • the sample unit input step (S110) of accommodating the chamber units 230 in which the sample unit 250 is accommodated in the chamber unit 210 is performed. do.
  • a heating and measurement operation initiating step S120 of heating or measuring the sample unit 250 is performed.
  • the temperature at which the plurality of lower heating units 310 , 320 , 330 and the upper heating units 410 and 420 are operated is controlled to be maintained.
  • the first lower heating unit 310 and the first upper heating unit 410 are operated at a first temperature (T 1 )
  • the second lower heating unit 320 and the second upper heating unit 420 are the first 2 is operated at the temperature T 2
  • the third lower heating unit 330 and the third upper heating unit are operated at the third temperature T 3 .
  • a fluorescence measurement operation is performed on the chamber unit 210 disposed between the upper optical measurement unit and the lower optical measurement unit 500 .
  • the interval between the upper heating units 410 and 420 and the lower heating units 310 and 320 is formed to be greater than the height of the chamber unit 210 . Meanwhile, in the present embodiment, the upper heating units 410 and 420 are lifted so that the distance between the upper heating units 410 and 420 and the lower heating units 310 and 320 is increased.
  • the chamber assembly one step movement step (S150) of moving the chamber unit 210 by one step is performed.
  • the chamber parts 210 are rotated by a predetermined angle based on the rotation center formed in the base part 100, and in this embodiment is rotated clockwise by about 90° .
  • the interval reduction step (S160) between the heating units for reducing the interval between the upper heating units (410, 420) and the lower heating units (310, 320, 330) is performed.
  • the interval between the upper heating units 410 and 420 and the lower heating units 310 and 320 corresponds to the height of the chamber unit 210 .
  • the upper heating units 410 and 420 may be lowered.
  • the measurement result notification step (S180) of notifying the measurement result is performed.
  • one unit of the measurement cycle is set based on the movement of the chamber part by 4 steps.
  • the heating and measuring operation starting step (S120) is performed.
  • the heating and measurement operation start step (S120) is performed again.
  • temperature control is easy, so that the polymerization chain reaction can be smoothly performed.
  • a membrane-type sample unit having an aspect ratio of less than 1 the overall height of the PCR apparatus is reduced, and there is an advantage in that the sample unit can be more easily put into the PCR apparatus.
  • the chamber unit 210 is directly connected to the rotation shaft 221 and is described as being connected to the linearly formed connection bracket 222 , but the chamber unit 210 interconnects between the chamber units 210 .
  • a configuration in which the chamber unit 210 is rotatably disposed by the chamber connecting bracket and the connecting member connecting the chamber connecting bracket to the rotation shaft 221 is also included in the embodiment of the present invention.
  • one end of the rotating shaft 221 is rotatably connected to the base unit 100 , and the other end is detachably and rotatably connected to the cover unit 600 , so that the rotation of the rotating shaft 221 is more stable.
  • the configuration performed is also included in the embodiment of the present invention.
  • FIG. 7 is a view showing a real-time PCR apparatus according to another embodiment of the present invention.
  • the PCR apparatus 1 further includes a guide unit 700 for guiding the rotational movement of the chamber unit 210 .
  • the guide unit 700 is disposed between one of the lower heating units 310 , 320 , 330 and the other lower heating unit 310 , 320 , 330 or the lower optical measuring unit 500 , and the chamber
  • the first guide unit 710 for guiding the rotation of the unit 210 and the second guide unit 720 formed on the upper surface of the lower heating unit 310 , 320 , 330 and the lower optical measuring unit 500 . include
  • the first guide unit 710 is formed to have a curvature corresponding to a radius of curvature of a virtual circle formed by rotating the chamber parts 210 .
  • a guide groove or guide protrusion engaged with the first guide unit 710 is formed at a lower portion of the chamber part 210 .
  • the first guide unit 710 may be formed in the shape of the guide groove of the chamber part 210 or a protrusion or groove corresponding to the guide projection.
  • the second guide unit 720 is connected to the first guide unit 710 , has the same radius of curvature as the first guide unit 710 , and is optional with the guide groove or the guide protrusion of the chamber part 210 . formed in a shape that interlocks with
  • the present invention relates to a portable RT-PCR apparatus and a method for measuring RT-PCR using the same, and has repeatability and industrial applicability in portable RT-PCR apparatuses and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 휴대용 실시간 PCR 장치 및 이를 이용한 PCR 측정방법에 관한 것이다. 본 발명의 실시예에 따른 휴대용 실시간 PCR 장치는, 설치 공간이 형성되는 베이스부; 상기 베이스부의 상기 설치 공간에 설치되는 복수의 하부 가열부; 상기 베이스부에 설치되며 상기 하부 가열부와 다른 위치에 배치되고, 측정광을 제공하거나 상기 측정광을 수광하는 하부 광학 측정부; 상기 하부 가열부 및 상기 하부 광학 측정부에 각각 안착되는 복수의 챔버부를 포함하고, 상기 챔버부는 어느 하나의 상기 하부 가열부에서 다른 하나의 상기 하부 가열부 또는 상기 하부 광학 측정부로 이동 가능하게 마련되는, 챔버 어셈블리;를 포함하고, 상기 챔버부는, 내부에 검체 유닛이 수용되는 검체 유닛 수용 공간이 형성되는 챔버 유닛을 수용하기 위한 챔버부 몸체;를 포함하고, 상기 챔버 유닛은, 상기 검체 유닛 수용 공간이 형성되는 챔버 유닛 몸체와, 상기 챔버 유닛 몸체의 상기 수용 공간을 상방에서 차폐하는 캡 유닛을 포함하고, 상기 검체 유닛은, 폭 대비 높이의 비율인 종횡비가 0보다 크고 1보다 작게 형성된다.

Description

휴대용 RT-PCR 장치 및 이를 이용한 RT-PCR 측정 방법
본 발명은 유전자증폭(PCR) 장치에 관한 것으로, 보다 상세히 휴대용 실시간 PCR(RT-PCR) 장치 및 이를 이용한 RT-PCR 측정방법에 관한 것이다.
일반적으로, DNA 증폭기술은 생명과학, 유전공학 및 의학 분야 등의 연구개발 및 진단 목적으로 광범위하게 활용되고 있으며, 특히 중합효소 연쇄반응 (Polymerase Chain Reaction: PCR)에 의한 DNA 증폭기술이 널리 활용되고 있다.
중합효소 연쇄반응(PCR)은 유전체에 있는 특정 DNA서열을 필요한 만큼 증폭을 할 때 쓰인다.
중합효소 연쇄반응은, 2개의 시발체(primer)사이에 낀 DNA부분을 시험관내에서 대량으로 증폭시킬 수 있는 방법으로, DNA합성효소(DNA polymerase)가 DNA합성에 시발체를 필요로 하는 데, 이 시발체에서 5′→3′방향으로 DNA가 합성하는 것을 이용하여, ① DNA의 외가닥에의 변성 → ② 시발체의 결합 → ③ 중합효소에 의한 상보성DNA의 합성 → ① 변성 → ② 시발체 결합···이라는 회로를 반복하는 것으로서 목적인 유전자 영역만을 시험관내에서 증식시킨다.
이를 위하여, PCR에서 첫 번째로, DNA를 변성(Denaturation)를 수행한다. 두 가닥의 DNA는 가열함으로써 분리시킬 수 있다. 분리된 각각의 DNA는 주형(Template)으로서 역할을 하게 된다.
그 다음, PCR에서 결합(Annealing) 단계를 수행한다. 이 단계에서는 시발체(Primer)들이 주형 DNA에 결합을 하게 된다. 결합(Annealing) 온도는 반응의 정확성을 결정하는 중요한 요소인데 만약 온도를 너무 높게 하면 시발체가 주형 DNA에 너무 약하게 결합되어서 증폭된 DNA의 산물이 매우 적어진다. 또 만약 온도를 너무 낮게 하면 시발체가 비특이적으로 결합하기 때문에 원하지 않는 DNA가 증폭될 수 있다.
그 다음, PCR에서 신장(Elongation)단계가 수행된다. 이 단계에서 열에 강한 DNA 중합 효소가 주형 DNA에서 새로운 DNA를 만들게 된다.
한편, 실시간 PCR은(Real-time polymerase chain reaction, real-time RCR, RT-PCR)은, 정량중합효소연쇄반응(quantitative polymerase chain reaction, qPCR)이라고도 하며, 일반 PCR의 경우 반응이 완료된 후 최종산물의 양을 알 수 있는 반면에 실시간 PCR은 PCR이 진행하는 동안 DNA 분자가 증폭되는 과정을 정량적으로 관찰할 수 있다.
실시간 PCR을 수행하면 리포터 탐침이 DNA 중간에 결합하지만 여전히 형광을 나타내지 않는다. PCR의 증폭단계에서 Taq DNA 중합효소가 순방향프라이머를 연장하면 리포터탐침과 만나게 된다. 이때 Taq DNA 중합효소가 가지고 있는 5'->3' 분해효소 기능에 의해 리포터 탐침이 분해되면 형광표지가 형광억제표지로부터 분리되어 형광을 나타나게 된다.
이러한 과정은 형광을 측정하는 형광측정기 안에서 진행되므로 형광을 측정하면 PCR의 진행 정도를 측정할 수 있다. 충분한 양의 리포터 탐침이 존재하면 매번 만들어지는 새로운 DNA에 리포터 탐침이 결합하여 증폭 주기가 증가할수록 형광도 증가한다.
한편, 기존 PCR 장치의 경우, 각 단계마다 온도를 상승시켰다가 하강시키는 방식을 수행하여, 원하는 온도 제어를 수행하는 것이 용이하지 않으며, 이에 따라 중합연쇄반응이 원활하게 수행되지 못하는 제한이 있다.
또한, 검체를 수용하는 검체 수용 용기가 상하 방향으로 길게 연장 형성되는 튜브 형태로 형성되며, 상기 검체를 상기 튜브에 수용시키기 위해서는 별도의 파이펫(Pipette)을 사용해야함에 따라 외부의 검사 현장에서 바로 PCR 측정을 수행하는 것이 어려운 문제가 있다.
이에, 본 발명은 온도 제어가 용이하여, 중합연쇄반응이 원활하게 수행될 수 있는 휴대용 실시간 PCR 장치 및 이를 이용한 PCR 측정방법을 제공하고자 한다.
또한, 용이하게 사용할 수 있는 휴대용 실시간 PCR 장치 및 이를 이용한 PCR 측정 방법을 제공하고자 한다.
본 발명의 실시예의 일 측면에 따른 휴대용 실시간 PCR 장치는, 상기 베이스부의 상기 설치 공간에 설치되는 복수의 하부 가열부; 상기 베이스부에 설치되며 상기 하부 가열부와 다른 위치에 배치되고, 측정광을 제공하거나 상기 측정광을 수광하는 하부 광학 측정부; 상기 하부 가열부 및 상기 하부 광학 측정부에 각각 안착되는 복수의 챔버부를 포함하고, 상기 챔버부는 어느 하나의 상기 하부 가열부에서 다른 하나의 상기 하부 가열부 또는 상기 하부 광학 측정부로 이동 가능하게 마련되는, 챔버 어셈블리;를 포함하고, 상기 챔버부는, 내부에 검체 유닛이 수용되는 검체 유닛 수용 공간이 형성되는 챔버 유닛을 수용하기 위한 챔버부 몸체;를 포함하고, 상기 챔버 유닛은, 상기 검체 유닛 수용 공간이 형성되는 챔버 유닛 몸체와, 상기 챔버 유닛 몸체의 상기 수용 공간을 상방에서 차폐하는 캡 유닛을 포함하고, 상기 검체 유닛은, 폭 대비 높이의 비율인 종횡비가 0보다 크고 1보다 작게 형성된다.
또한, 상기 챔버 어셈블리는, 상기 챔버부를 이동 시키기 위한 챔버 이동부;를 더 포함하고, 복수의 상기 챔버부는, 상기 베이스부에 형성되는 회전 중심을 기준으로 기설정된 간격으로 상호 이격되어 배치되며, 상기 챔버 이동부는, 복수의 상기 챔버부를 동시에 상기 회전 중심을 기준으로 일방향으로 회전시킬 수 있다.
또한, 상기 챔버 이동부는, 일단이 상기 챔버부에 각각 연결되는 복수의 연결 브래킷 및 상기 연결 브래킷의 타단이 연결되며 상기 회전 중심에 회전 가능하게 마련되는 회전 샤프트를 포함하고, 유지 시간 동안 상기 챔버 이동부의 회전이 정지되며, 이동 시간 동안 상기 챔버 이동부의 회전이 수행되며, 상기 유지 시간은 상기 이동 시간 보다 크게 형성될 수 있다.
또한, 어느 하나의 상기 하부 가열부 및 다른 하나의 상기 하부 가열부 또는 상기 하부 광학 측정부 사이에는, 상기 챔버부의 회전을 가이드하기 위한 제1 가이드 유닛이 형성되며, 상기 제1 가이드 유닛은, 상기 챔버부들이 회전되며 이루는 가상의 원의 곡률 반경에 대응되는 곡률을 갖도록 형성되고 상기 챔버부의 하부에는 상기 제1 가이드 유닛과 맞물리는 가이드홈 또는 가이드돌기가 형성될 수 있다.
또한, 상기 하부 가열부 및 상기 하부 광학 측정부의 상면에는, 상기 제1 가이드 유닛과 연결되며, 상기 제1 가이드 유닛과 동일한 곡률 반경을 갖고, 상기 챔버부의 상기 가이드홈 또는 상기 가이드돌기와 선택적으로 맞물리는 제2 가이드 유닛이 형성될 수 있다.
또한, 상기 하부 가열부는, 제1 온도로 동작되는 제1 하부 가열부, 제2 온도로 동작되는 제2 하부 가열부 및 제3 온도로 동작되는 제3 하부 가열부를 포함하고, 상기 제1 하부 가열부는 상기 회전 중심을 기준으로 상기 제3 하부 가열부와 대칭되며, 상기 제2 하부 가열부는 상기 회전 중심을 기준으로 하부 광학 측정부와 대칭될 수 있다.
또한, 상기 제1 온도는 상기 제3 온도 보다 높게 형성되고, 상기 제3 온도는 상기 제2 온도 보다 높게 형성되며, 상기 제1 하부 가열부, 상기 제2 하부 가열부 및 상기 제3 하부 가열부는 각각의 온도가 설정된 상태가 유지될 수 있다.
또한, 상기 베이스부의 상방에 배치되며, 상기 설치 공간을 커버하는 커버부; 및 상기 하부 가열부 및 상기 커버부 사이에 배치되며, 상기 챔버부의 상면과 선택적으로 접촉되는 복수의 상부 가열부; 및 상기 하부 광학 측정부와 마주보며, 상기 하부 광학 측정부로부터 발산되는 상기 측정광이 수광되거나, 상기 하부 광학 측정부를 향하여 상기 측정광을 제공하는 상부 광학 측정부;를 더 포함할 수 있다.
또한, 복수의 상기 상부 가열부 및 상기 하부 가열부 사이의 거리가 가변 가능하게 형성되며, 상기 상부 가열부 및 상기 하부 가열부 사이에 상기 챔버부가 배치되어 유지 시간 동안 이동되지 않는 경우, 상기 상부 가열부 및 상기 하부 가열부 사이에 거리는 상기 챔버부의 높이에 대응되며, 상기 유지 시간이 도과되어, 상기 챔버부가 다른 상기 상부 가열부 및 상기 하부 가열부 측으로 이동되는 경우, 상기 상부 가열부 및 상기 하부 가열부 사이의 거리는 상기 챔버부의 높이보다 크게 형성될 수 있다.
또한, 상기 하부 가열부는 판상으로 형성되며, 상기 챔버부의 하면은 상기 하부 가열부에 완전하게 접촉되고, 상기 챔버부의 상기 챔버부 몸체에는 상기 챔버 유닛이 삽입되기 위한 챔버 유닛 삽입 공간이 형성되며, 상기 챔버 유닛 삽입 공간의 너비는 상기 챔버 유닛의 너비에 대응되는 크기로 형성될 수 있다.
또한, 상기 챔버 유닛의 상기 검체 유닛 수용 공간에는 측정 용액이 수용되며, 상기 수용 공간의 종횡비는 0 보다 크고 1보다 작게 형성되며, 상기 검체 유닛 수용 공간의 용적은 20 μl 내지 100 μl로 형성될 수 있다.
또한, 상기 검체 유닛은, 다공성 재질로 형성되는 멤브레인 구조체로 형성될 수 있다.
본 발명의 실시예의 다른 측면에 따른 휴대용 실시간 PCR 장치를 이용한 PCR 측정 방법에 있어서, 검체 유닛이 수용된 챔버 유닛들을 챔버부에 수용시키는 검체 유닛 투입 단계; 상기 검체 유닛이 투입된 상태에서, 상기 검체 유닛에 대한 가열 또는 측정 동작을 수행하는 가열 및 측정 동작 개시 단계; 상기 가열 및 측정 동작 개시 단계의 유지 시간이 기설정된 기준 유지 시간 보다 큰 경우, 상기 챔버부를 1 스텝 이동시키는 챔버 어셈블리 1 스텝 이동 단계; 및 복수의 상기 챔버부에 대한 측정 사이클이 기설정된 기준 사이클보다 크게 형성되는 경우, 측정 결과를 알림하는 측정 결과 알림 단계;를 포함한다.
또한, 상기 가열 및 측정 동작 개시 단계의 유지 시간이 기설정된 기준 유지 시간 보다 큰 경우, 상기 챔버 어셈블리 1 스텝 이동 단계를 수행하기 전에, 상기 하부 가열부와 마주보도록 배치되는 상부 가열부 및 상기 하부 가열부 간의 간격을 증가시키는 가열부간 간격 증가 단계; 및 상기 챔버 어셈블리 1 스텝 이동 단계가 수행된 다음, 상기 상부 가열부 및 상기 하부 가열부 간의 간격을 감소시키는 가열부간 간격 감소 단계;를 더 포함하고, 상기 가열부간 간격 증가 단계에서, 상기 상부 가열부 및 상기 하부 가열부 사이의 간격은 상기 챔버부의 높이보다 크게 형성되며, 상기 가열부간 간격 감소 단계에서, 상기 상부 가열부 및 상기 하부 가열부 사이의 간격은 상기 챔버부의 높이에 대응될 수 있다.
또한, 상기 측정 사이클의 1 단위는, 상기 챔버부가 4 스텝 이동된 것으로 형성될 수 있다.
또한, 상기 챔버 어셈블리 1 스텝 이동 단계에서, 상기 챔버부들은 상기 베이스부에 형성되는 회전 중심을 기준으로 기설정된 각도만큼 회전되며, 상기 하부 가열부는, 제1 온도로 동작되는 제1 하부 가열부, 제2 온도로 동작되는 제2 하부 가열부 및 제3 온도로 동작되는 제3 하부 가열부를 포함하고, 상기 하부 가열부와 마주보는 상부 가열부는, 상기 제1 하부 가열부와 마주보며 상기 제1 온도로 동작되는 제1 상부 가열부, 상기 제2 하부 가열부와 마주보며 상기 제2 온도로 동작되는 제2 상부 가열부, 및 상기 제3 하부 가열부와 마주보며 상기 제3 온도로 동작되는 제3 상부 가열부를 포함하고, 상기 휴대용 PCR 장치는, 복수의 상기 하부 가열부 및 상기 상부 가열부가 동작되는 온도가 유지되도록 제어할 수 있다.
제안되는 실시예에 의하면, 급격한 온도 오름과 내림의 온도 변화가 이루어지지 않아 온도 제어가 용이하여, 중합연쇄반응이 원활하게 수행될 수 있다.
또한, 종횡비가 1보다 작은 멤브레인 타입의 검체 유닛을 사용함으로써, PCR 장치의 전체적인 높이가 감소되며, 보다 용이하게 상기 검체 유닛을 PCR 장치에 투입시킬 수 있는 장점이 있다.
도 1은 본 발명의 실시예에 따른 휴대용 실시간 PCR 장치를 보여주는 도면이다.
도 2는, 도 1의 휴대용 실시간 PCR 장치의 챔버부들이 이동되는 과정을 보여주는 도면이다.
도 3은, 도 1의 휴대용 실시간 PCR 장치를 III 방향에서 바라본 상태를 보여주는 도면이다.
도 4는, 도 3희 휴대용 실시간 PCR 장치의 상부 가열부가 상방으로 리프팅된 상태를 보여주는 도면이다.
도 5는, 도 1의 휴대용 실시간 PCR 장치의 챔버 유닛 및 검체 유닛을 보여주는 도면이다.
도 6은, 도 1의 휴대용 실시간 PCR 장치를 이용한 PCR 측정 방법을 보여주는 도면이다.
도 7은, 본 발명의 다른 실시예에 따른 실시간 PCR 장치를 보여주는 도면이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하며, 당업자가 충분히 이해할 수 있듯이 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시 가능할 수도 있다.
한편, 본 발명의 명세서에서 구체적으로 언급되지 않은 본 발명의 기술적 특징에 의해 기대될 수 있는 잠정적인 효과는 본 명세서에 기재된 것과 같이 취급되며, 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공된 것인바, 도면에 도시된 내용은 실제 발명의 구현모습에 비해 과장되어 표현될 수 있으며, 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 구성의 상세한 설명은 생략하거나 간략하게 기재한다.
이하에서는 첨부되는 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다.
도 1은 본 발명의 실시예에 따른 휴대용 실시간 PCR 장치를 보여주는 도면이며, 도 2는, 도 1의 휴대용 실시간 PCR 장치의 챔버부들이 이동되는 과정을 보여주는 도면이다. 그리고, 도 3은, 도 1의 휴대용 실시간 PCR 장치를 III 방향에서 바라본 상태를 보여주는 도면이며, 도 4는, 도 3희 휴대용 실시간 PCR 장치의 상부 가열부가 상방으로 리프팅된 상태를 보여주는 도면이다. 그리고, 도 5는, 도 1의 휴대용 실시간 PCR 장치의 챔버 유닛 및 검체 유닛을 보여주는 도면이다.
도 1 내지 도 5를 참조하면, 본 발명의 실시예에 따른 휴대용 실시간 PCR 장치(1)는, 작동 온도가 고정된 복수의 가열부에 검체 유닛이 수용된 챔버부들이 이동되어 가열됨으로써, 가열부의 작동 온도가 보다 원활하게 유지될 수 있다. 예시적으로 챔버부들은 휴대용 실시간 PCR 장치(1) 내에 형성되는 회전 중심을 중심으로 회전 가능하게 배치될 수 있다.
또한, 상기 검체 유닛이 납작한 멤브레인 형태(예시적으로 원반 멤브레인 형태)로 형성되며, 주사기 방식의 포터블 핵산 추출 키트에서 추출한 DNA 혹은 RNA가 존재하는 상기 검체 유닛을, 단순히 PCR 용액이 수용된 챔버유닛에 투입시킴으로써, 용이하게 상기 검체 유닛을 PCR 장치에 투입할 수 있는 구성을 제공한다.
따라서, 본 발명의 실시예에 따른 실시간 PCR 장치(1)는 실험실 환경 뿐만 아니라, 긴급한 바이러스 측정이 필요한 외부 환경에서도 PCR 측정을 안정적이고 원활하게 수행될 수 있도록 한다.
본 발명의 실시예에 따른 휴대용 PCR 장치(1)는, 베이스부(100)와, 하부 가열부(310, 320, 330)와, 하부 광학 측정부(500)와, 커버부(600)와, 상부 가열부(410, 420)와, 챔버 어셈블리(200)를 포함한다.
베이스부(100)는 설치 공간이 형성되며, 휴대용 PCR 장치(1)의 하부 외형을 형성한다. 이때, 베이스부(100)는 바닥면에 대하여 지지될 수 있다.
하부 가열부(310, 320, 330)은, 베이스부(100)의 상기 설치 공간에 설치되며, 하부 가열부(310, 320, 330)는, 제1 온도(T1)로 동작되는 제1 하부 가열부(310), 제2 온도(T2)로 동작되는 제2 하부 가열부(320), 및 제3 온도(T3)로 동작되는 제3 하부 가열부(330)를 포함한다.
제1 하부 가열부(310)는 챔버 어셈블리(200)가 회전되는 회전 중심을 기준으로 제3 하부 가열부(320)와 대칭되며, 제2 하부 가열부(320)는 상기 회전 중심을 기준으로 하부 광학 측정부(500)와 대칭되도록 배치될 수 있다. 이때, 제1 하부 가열부(310), 제2 하부 가열부(320), 제3 하부 가열부(330) 및 하부 광학 측정부(500)는 상기 회전 중심을 기준으로 상호 간에 기설정된 간격으로 이격되어 배치된다.
제1 온도(T1)는 제3 온도(T3) 보다 높게 형성되고, 제3 온도(T3)는 제2 온도(T2) 보다 높게 형성된다. 그리고, 제1 하부 가열부(310), 제2 하부 가열부 (320) 및 제3 하부 가열부(330)는 각각의 온도가 설정된 상태가 유지된다. 즉, PCR 측정 과정 중, 제1 하부 가열부(310), 제2 하부 가열부 (320) 및 제3 하부 가열부(330)의 온도는 가변되지 않는다.
이때, 제1 온도(T1)는 예시적으로 약 97℃로 형성될 수 있으며, 제2 온도(T2)는 예시적으로 약 60℃로 형성될 수 있다. 마지막으로 제3 온도(T3)는 약 72℃로 형성될 수 있다.
한편, 하부 광학 측정부(500)는 베이스부(100)에 설치되며 하부 가열부(310, 320, 330)와 다른 위치에 배치되고, 측정광을 제공하거나 상기 측정광을 수광학이다. 하부 광학 측정부(500)는, 측정대상 영역(510)에 위치되는 검체 유닛(250)에 측정광을 조사하여, 검체 유닛(250)의 형광(fluorescence)을 측정할 수 있다. 이때, 측정대상 영역(510)은 복수개로 형성될 수 있으며, 하부 광학 측정부(500)는 상기 측정광을 발산하기 위한 발광 장치이거나, 상기 측정광을 수광하기 위한 광학 센서 장치일 수 있다. 이때, 상기 발광 장치는 UV LED와 같이 기설정된 파장 대역의 광을 발산할 수 있는 장치이며, 상기 광학 센서 장치는 CIS 또는 CCD 등과 같이 광을 수광하여 이미지를 생성하는 장치일 수 있다.
한편, 검사 대상 시료를 함유하고 있는 어느 하나의 검체 유닛(250)은, 제1 하부 가열부(310), 제2 하부 가열부(320), 제3 하부 가열부(330) 및 하부 광학 측정부(500) 순으로 이동하게 되며, 하부 광학 측정부(500)에서 검체 유닛(250)의 측정 단계가 종료되면, 검체 유닛(250)에 대한 1개의 측정 사이클이 종료된 것으로 설정된다.
제1 온도(T1)로 작동되는 제1 하부 가열부(310)에 의하여 검체 유닛(250)이 가열되는 경우, DNA의 변성(Denaturation)단계가 수행될 수 있으며, 제2 온도(T2)로 작동되는 제2 하부 가열부(320)에 의하여 상기 검체 유닛이 가열되는 경우, DNA의 결합(Annealing) 단계가 수행될 수 있다. 제3 온도(T3)로 작동되는 제3 하부 가열부(330)에 의하여 검체 유닛(250)이 가열되는 경우, DNA의 신장(Elongation)단계가 수행될 수 있다.
검체 유닛(250)이 제3 하부 가열부(330)에 의하여 유지 시간(Tm) 동안 가열된 다음, 검체 유닛(250)은 하부 광학 측정부(500) 측으로 이동되어, 검체 유닛(250)에 대한 PCR 측정이 수행된다.
한편, 챔버 어셈블리(200)는, 하부 가열부(310, 320, 330) 및 하부 광학 측정부(500)에 각각 안착되는 복수의 챔버부(210)와, 챔버부(210)를 이동시키기 위한 챔버 이동부(220)를 포함한다.
챔버부(210)는 어느 하나의 하부 가열부(310, 320, 330)에서 다른 하나의 하부 가열부(310, 320, 330) 또는 하부 광학 측정부(500)로 이동 가능하게 마련되며, 복수의 챔버부(210)는, 베이스부(100)에 형성되는 회전 중심을 기준으로 기설정된 간격으로 상호 이격되어 배치된다. 그리고, 챔버 이동부(220)는, 복수의 챔버부(210)들을 동시에 상기 회전 중심을 기준으로 일방향으로 회전시킨다. 본 실시예에서 챔버 이동부(220)는 챔버부(210)들을 예시적으로 시계 방향으로 회전시킬 수 있으며, 제1 하부 가열부(310), 제2 하부 가열부(320), 제3 하부 가열부(330) 및 하부 광학 측정부(500)는 시계 방향으로 순서대로 배치될 수 있다.
챔버부(210)는, 내부에 검체 유닛(250)이 수용되는 검체 유닛 수용 공간이 형성되는 챔버 유닛(230)을 수용하기 위한 챔버부 몸체(211)를 포함한다. 이때, 챔버부 몸체(211)는 상하 높이보다 폭이 큰 판상 형상으로 형성될 수 있으며, 챔버부 몸체(211)에는 챔버 유닛(230)이 삽입되기 위한 챔버 유닛 삽입 공간(215)이 형성된다. 그리고, 챔버 유닛 삽입 공간(215)의 너비는 챔버 유닛(230)의 너비에 대응되는 크기로 형성된다. 챔버부(210)의 챔버 유닛 삽입 공간(215)에 챔버 유닛(230)이 삽입된 상태에서, 챔버 유닛(230)의 하면과 측면은 완전하게 챔버 유닛 삽입 공간(215)의 내측 벽에 밀착된다. 챔버부(210)는 챔버 유닛(230) 측으로 열을 원활하게 전달하기 위하여 금속 등과 같이 열전달계수가 높은 재질로 형성될 수 있다.
챔버 유닛(230)은, 검체 유닛 수용 공간(232)이 형성되는 챔버 유닛 몸체(211)와, 챔버 유닛 몸체(211)의 검체 유닛 수용 공간(232)을 상방에서 차폐하는 캡 유닛(233)을 포함한다.
이때, 검체 유닛(250)은, 폭 대비 높이의 비율인 종횡비가 0보다 크고 1보다 작게 형성된다. 예시적으로 검체 유닛(250)은, 원반 형태로 형성되며 다공성 재질로 형성되는 멤브레인 구조체로 형성되는 멤브레인 디스크 형상으로 형성될 수 있다.
한편, 챔버 유닛(230)의 검체 유닛 수용 공간(231)에는 PCR 용액인 측정 용액이 수용되며, 수용 공간(231)의 종횡비는 0 보다 크고 1보다 작게 형성된다. 즉, 검체유닛 수용 공간(231)은, 상하 방향의 높이보다 폭이 더 크게 형성된다. 그리고, 검체 유닛 수용 공간(231)의 용적은 20 μl 내지 100 μl로 형성된다. 예시적으로, 본 실시예에서 검체 유닛 수용 공간(231)에는 약 50μl의 상기 측정 용액이 수용되며, 상기 측정 용액에 검체 유닛(250)이 함침된 상태로 배치된다.
챔버 이동부(220)는, 일단이 챔버부(210)에 각각 연결되는 복수의 연결 브래킷(222) 및 연결 브래킷(222)의 타단이 연결되며 상기 회전 중심에 회전 가능하게 마련되는 회전 샤프트(221)를 포함한다.
챔버부(210)들이 각각 하부 가열부(310, 320, 330)가 안착되는 유지 시간(Tm) 동안 챔버 이동부(220)의 회전이 정지되며, 유지 시간(Tm)이 종료된 이후, 다름 유지 시간(Tm)까지의 이동 시간(Tr) 동안 챔버 이동부(220)의 회전이 수행된다. 이때, 유지 시간(Tm)은 이동 시간(Tr) 보다 크게 형성된다.
도 3 및 도 4에는, 본 발명의 실시예에 따른 PCR 장치(1)의 커버부(600)가 베이스부(100)의 상기 설치 공간을 덮은 상태에서, PCR 장치(1)의 내부 구성이 측면 방향에서 도시된다.
보다 상세히, 커버부(600)는, 베이스부(100)의 상방에 배치되며, 베이스부(100)의 상기 설치 공간을 상방에서 커버하며, PCR 장치(1)의 상부측 외형을 형성한다.
상부 가열부(410, 420)들은, 하부 가열부(310, 320, 330) 및 커버부(600) 사이에 배치된다. 이때, 챔버부(210)의 상면과 선택적으로 접촉된다. 상부 가열부(410, 420)들은 하부 가열부(310, 320, 330)에 대응되는 형상으로 형성되며, 제1 하부 가열부(310), 제2 하부 가열부(320), 제3 하부 가열부(330)에 각각 대응되는 제1 상부 가열부(410), 제2 상부 가열부(420) 및 제3 상부 가열부(미도시)를 포함한다. 상부 가열부(410, 420)들은 각각 대응되는 하부 가열부(310, 320, 330)와 동일한 온도로로 가열되어 동작되며, 하부 가열부(310, 320, 330) 및 상부 가열부(410, 420) 사이에 챔버부(210)가 밀착되어 배치됨에 따라 보다 안정적으로 챔버 유닛(230)에 대한 가열이 이루어질 수 있다.
한편, 본 실시예에 따른 PCR 장치(1)의 복수의 상부 가열부(410, 420) 및 하부 가열부(310, 320, 330) 사이의 거리가 가변 가능하게 형성된다. 즉, 챔버부(210)가 각 스텝별로 가열된 상태가 완료되면, 다른 가열부(410, 420, 310, 320, 330) 측으로 이동하게 되는데, 가열부(410, 420, 310, 320, 330) 간의 이동이 원활하게 이루어질 수 있도록, 상부 가열부(410, 420) 및 하부 가열부(310, 320, 330) 사이의 거리가 가변된다.
보다 상세히, 상부 가열부(410, 420) 및 하부 가열부(310, 320, 330) 사이에 챔버부(210)가 배치되어 유지 시간 동안 이동되지 않는 경우, 상부 가열부(410, 420) 및 하부 가열부(310, 320, 330) 사이에 거리는 챔버부(210)의 높이에 대응된다. 즉, 상부 가열부(410, 420) 및 하부 가열부(310, 320, 330) 사이에 챔버부(210)가 밀착되어, 챔버 유닛(230)에 대한 안정적인 열 공급이 수행될 수 있다.
한편, 상기 유지 시간이 도과되어, 챔버부(210)가 다른 상부 가열부(410, 420) 및 하부 가열부(310, 320, 330) 측으로 이동되는 경우, 상부 가열부(410, 420) 및 하부 가열부(310, 320, 330) 사이의 거리는 챔버부(210)의 높이보다 크게 형성된다. 즉, 챔버부(210)가 상부 가열부(410, 420) 및 하부 가열부(310, 320, 330) 사이에 밀착된 상태가 해제되어, 챔버부(210)가 보다 원활하게 이동될 수 있도록 한다.
본 실시예에서는, 상부 가열부(410, 420)들을 상하 방향으로 이동 가능하게 배치되는 상부 가열부 이동유닛(450)에 연결되어, 동시에 상하 방향으로 이동 가능하게 형성될 수 있다. 한편, 하부 가열부(310, 320, 330)가 상하 방향으로 이동되어, 상부 가열부(410, 420) 및 하부 가열부(310, 320, 330) 사이의 거리가 가변되는 구성 또한 본 발명의 실시예에 포함될 수 있다.
한편, 상기 상부 광학 측정부는, 하부 광학 측정부(500)와 마주보며, 하부 광학 측정부(500)로부터 발산되는 상기 측정광이 수광되거나, 상기 하부 광학 측정부를 향하여 상기 측정광을 제공한다. 즉, 상기 상부 광학 측정부 및 하부 광학 측정부(500)는 상호 대응되는 한 쌍으로 마련되어, 광을 발산 및 수광하면서, 상기 상부 광학 측정부 및 하부 광학 측정부(500)에 배치되는 챔버 유닛(230)들에 수용되는 검체 유닛(250)에 대한 형광 측정을 수행한다.
본 실시예서, 상부 가열부(410, 420)들 및 상기 상부 광학 측정부는 커버부(600)에 설치되는 구성으로 마련될 수 있다.
이하에서는 본 발명의 실시예에 따른 휴대용 실시간 PCR 장치를 이용한 PCR 측정 방법을 보다 상세하게 설명한다.
도 6은, 도 1의 휴대용 실시간 PCR 장치를 이용한 PCR 측정 방법을 보여주는 도면이다.
도 6을 참조하면, 본 발명의 실시예에 따른 PCR 측정 방법에서, 먼저, 검체 유닛(250)이 수용된 챔버 유닛(230)들을 챔버부(210)에 수용시키는 검체 유닛 투입 단계(S110)가 수행된다.
그 다음, 검체 유닛(250)이 투입된 상태에서, 검체 유닛(250)에 대한 가열 또는 측정 동작을 수행하는 가열 및 측정 동작 개시 단계(S120)가 수행된다.
이때, 복수의 하부 가열부(310, 320, 330) 및 상부 가열부(410, 420)가 동작되는 온도가 유지되도록 제어된다. 이때, 제1 하부 가열부(310) 및 제1 상부 가열부(410)는 제1 온도(T1)로 동작되며, 제2 하부 가열부(320) 및 제2 상부 가열부(420)는 제2 온도(T2)로 동작되며, 제3 하부 가열부(330) 및 상기 제3 상부 가열부는 제3 온도(T3)로 동작된다. 그리고, 상기 상부 광학 측정부 및 하부 광학 측정부(500) 사이에 배치되는 챔버부(210)에 대해서는 형광 측정 동작이 수행된다.
그 다음, 가열 및 측정 동작 개시 단계(S120)의 유지 시간(Tm)이 기설정된 기준 유지 시간(Tm,r)보다 크거나 같은 경우(S130), 상부 가열부(410, 420) 및 하부 가열부(310, 320, 330) 간의 간격을 증가시키는 가열부간 간격 증가 단계(S140)가 수행된다.
가열부간 간격 증가 단계(S140)에서, 상부 가열부(410, 420) 및 하부 가열부 (310, 320)사이의 간격은 챔버부(210)의 높이보다 크게 형성된다. 한편, 본 실시예에서는 상부 가열부(410, 420)가 리프팅되어, 상부 가열부(410, 420) 및 하부 가열부 (310, 320)사이의 간격이 증가되도록 할 수 있다.
그 다음, 챔버부(210)를 1 스텝 이동시키는 챔버 어셈블리 1 스텝 이동 단계(S150)가 수행된다. 챔버 어셈블리 1 스텝 이동 단계(S150)에서, 챔버부(210)들은 베이스부(100)에 형성되는 회전 중심을 기준으로 기설정된 각도만큼 회전되며, 본 실시예에서는 약 90°만큼 시계 방향으로 회전된다.
챔버 어셈블리 1 스텝 이동 단계(S150)가 수행된 다음, 상부 가열부(410, 420) 및 하부 가열부(310, 320, 330) 간의 간격을 감소시키는 가열부간 간격 감소 단계(S160)가 수행된다. 가열부간 간격 감소 단계(S160)에서, 상부 가열부(410, 420) 및 하부 가열부 (310, 320)사이의 간격은 챔버부(210)의 높이에 대응된다. 본 실시예에서는 상부 가열부(410, 420)가 하강될 수 있다.
그 다음, 복수의 챔버부(210)에 대한 측정 사이클이 기설정된 기준 사이클보다 크거나 같게 형성되는 경우(S170), 측정 결과를 알림하는 측정 결과 알림 단계(S180)가 수행된다. 이때, 상기 측정 사이클의 1 단위는, 상기 챔버부가 4 스텝 이동된 것을 기준으로 설정된다.
한편, 가열 및 측정 동작 개시 단계(S120)의 유지 시간이 기설정된 기준 유지 시간보다 작은 경우(S130), 가열 및 측정 동작 개시 단계(S120)가 수행된다.
또한, 복수의 챔버부(210)에 대한 측정 사이클이 기설정된 기준 사이클보다 작게 형성되는 경우(S170), 다시 가열 및 측정 동작 개시 단계(S120)가 수행된다.
제안되는 실시예에 의하면, 온도 제어가 용이하여, 중합연쇄반응이 원활하게 수행될 수 있다. 또한, 종횡비가 1보다 작은 멤브레인 타입의 검체 유닛을 사용함으로써, PCR 장치의 전체적인 높이가 감소되며, 보다 용이하게 상기 검체 유닛을 PCR 장치에 투입시킬 수 있는 장점이 있다.
본 실시예에서는 챔버부(210)가, 회전 샤프트(221)와 직접 연결되며 선형으로 형성되는 연결 브래킷(222)과 연결되는 구성인 것으로 설명되고 있으나, 챔버부(210)들 간을 상호 연결시키는 챔버 연결 브래킷과 상기 챔버 연결 브래킷을 상기 회전 샤프트(221)와 연결시키는 연결 부재에 의하여, 챔버부(210)가 회전 가능하게 배치되는 구성 또한 본 발명의 실시예에 포함된다.
또한, 회전 샤프트(221)의 일단은 베이스부(100)에 회전 가능하게 연결되며, 타단은 커버부(600)에 탈착 가능하며 회전 가능하게 연결되어, 회전 샤프트(221)의 회전이 보다 안정적으로 수행되는 구성 또한 본 발명의 실시예에 포함된다.
도 7은, 본 발명의 다른 실시예에 따른 실시간 PCR 장치를 보여주는 도면이다.
본 실시예는, 챔버부의 움직임을 가이드하기 위한 가이드유닛이 배치되는 구성에 있어서 차이가 있을 뿐, 다른 구성에 있어서는 도 1 내지 도 6에서 도시된 휴대용 실시간 PCR 장치의 구성과 실질적으로 동일하므로, 이하에서는 본 실시예의 특징적인 부분을 중심으로 설명한다.
도 7을 참조하면, 발명의 실시예에 따른 PCR 장치(1)는, 챔버부(210)의 회전 움직임을 가이드 하기 위한 가이드부(700)를 더 포함한다.
보다 상세히, 가이드부(700)는, 어느 하나의 하부 가열부(310, 320, 330) 및 다른 하나의 하부 가열부(310, 320, 330) 또는 하부 광학 측정부(500) 사이에 배치되며 챔버부(210)의 회전을 가이드하기 위한 제1 가이드 유닛(710)과, 하부 가열부(310, 320, 330) 및 하부 광학 측정부(500)의 상면에 형성되는 제2 가이드 유닛(720)을 포함한다.
제1 가이드 유닛(710)은, 챔버부(210)들이 회전되며 이루는 가상의 원의 곡률 반경에 대응되는 곡률을 갖도록 형성된다. 그리고, 챔버부(210)의 하부에는 제1 가이드 유닛(710)과 맞물리는 가이드홈 또는 가이드돌기가 형성된다. 제1 가이드 유닛(710)은 챔버부(210)의 상기 가이드홈 또는 상기 가이드돌기에 대응되는 돌기 또는 홈의 형상으로 형성될 수 있다.
한편, 제2 가이드 유닛(720)은, 제1 가이드 유닛(710)과 연결되며, 제1 가이드 유닛(710)과 동일한 곡률 반경을 갖고, 챔버부(210)의 상기 가이드홈 또는 상기 가이드돌기와 선택적으로 맞물리는 형상으로 형성된다.
제안되는 실시예에 의하면, 가이드부(700)에 의하여 챔버부(210)의 회전이 가이드됨에 따라, 보다 안정적인 챔버부(210)의 회전이 이루어질 수 있는 장점이 있다.
상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.
발명의 실시를 위한 형태는 위의 발명의 실시를 위한 최선의 형태에서 함께 기술되었다.
본 발명에 따른 휴대용 RT-PCR 장치 및 이를 이용한 RT-PCR 측정 방법에 관한 것으로, 휴대용 RT-PCR 장치 등에서의 반복 가능성 및 산업상 이용 가능성이 있다.

Claims (16)

  1. 휴대용 실시간 PCR 장치에 있어서,
    설치 공간이 형성되는 베이스부;
    상기 베이스부의 상기 설치 공간에 설치되는 복수의 하부 가열부;
    상기 베이스부에 설치되며 상기 하부 가열부와 다른 위치에 배치되고, 측정광을 제공하거나 상기 측정광을 수광하는 하부 광학 측정부;
    상기 하부 가열부 및 상기 하부 광학 측정부에 각각 안착되는 복수의 챔버부를 포함하고, 상기 챔버부는 어느 하나의 상기 하부 가열부에서 다른 하나의 상기 하부 가열부 또는 상기 하부 광학 측정부로 이동 가능하게 마련되는, 챔버 어셈블리;를 포함하고,
    상기 챔버부는, 내부에 검체 유닛이 수용되는 검체 유닛 수용 공간이 형성되는 챔버 유닛을 수용하기 위한 챔버부 몸체;를 포함하고,
    상기 챔버 유닛은, 상기 검체 유닛 수용 공간이 형성되는 챔버 유닛 몸체와, 상기 챔버 유닛 몸체의 상기 수용 공간을 상방에서 차폐하는 캡 유닛을 포함하고,
    상기 검체 유닛은, 폭 대비 높이의 비율인 종횡비가 0보다 크고 1보다 작은 것을 특징으로 하는 휴대용 실시간 PCR 장치.
  2. 제1 항에 있어서,
    상기 챔버 어셈블리는, 상기 챔버부를 이동 시키기 위한 챔버 이동부;를 더 포함하고,
    복수의 상기 챔버부는, 상기 베이스부에 형성되는 회전 중심을 기준으로 기설정된 간격으로 상호 이격되어 배치되며,
    상기 챔버 이동부는, 복수의 상기 챔버부를 동시에 상기 회전 중심을 기준으로 일방향으로 회전시키는 것을 특징으로 하는 휴대용 실시간 PCR 장치.
  3. 제2 항에 있어서,
    상기 챔버 이동부는, 일단이 상기 챔버부에 각각 연결되는 복수의 연결 브래킷 및 상기 연결 브래킷의 타단이 연결되며 상기 회전 중심에 회전 가능하게 마련되는 회전 샤프트를 포함하고,
    유지 시간 동안 상기 챔버 이동부의 회전이 정지되며, 이동 시간 동안 상기 챔버 이동부의 회전이 수행되며,
    상기 유지 시간은 상기 이동 시간 보다 크게 형성되는 것을 특징으로 하는 휴대용 실시간 PCR 장치.
  4. 제3 항에 있어서,
    어느 하나의 상기 하부 가열부 및 다른 하나의 상기 하부 가열부 또는 상기 하부 광학 측정부 사이에는, 상기 챔버부의 회전을 가이드하기 위한 제1 가이드 유닛이 형성되며,
    상기 제1 가이드 유닛은, 상기 챔버부들이 회전되며 이루는 가상의 원의 곡률 반경에 대응되는 곡률을 갖도록 형성되고
    상기 챔버부의 하부에는 상기 제1 가이드 유닛과 맞물리는 가이드홈 또는 가이드돌기가 형성되는 것을 특징으로 하는 휴대용 실시간 PCR 장치.
  5. 제4 항에 있어서,
    상기 하부 가열부 및 상기 하부 광학 측정부의 상면에는, 상기 제1 가이드 유닛과 연결되며, 상기 제1 가이드 유닛과 동일한 곡률 반경을 갖고, 상기 챔버부의 상기 가이드홈 또는 상기 가이드돌기와 선택적으로 맞물리는 제2 가이드 유닛이 형성되는 것을 특징으로 하는 휴대용 실시간 PCR 장치.
  6. 제2 항에 있어서,
    상기 하부 가열부는, 제1 온도로 동작되는 제1 하부 가열부, 제2 온도로 동작되는 제2 하부 가열부 및 제3 온도로 동작되는 제3 하부 가열부를 포함하고,
    상기 제1 하부 가열부는 상기 회전 중심을 기준으로 상기 제3 하부 가열부와 대칭되며, 상기 제2 하부 가열부는 상기 회전 중심을 기준으로 하부 광학 측정부와 대칭되는 것을 특징으로 하는 휴대용 실시간 PCR 장치.
  7. 제6 항에 있어서,
    상기 제1 온도는 상기 제3 온도 보다 높게 형성되고, 상기 제3 온도는 상기 제2 온도 보다 높게 형성되며,
    상기 제1 하부 가열부, 상기 제2 하부 가열부 및 상기 제3 하부 가열부는 각각의 온도가 설정된 상태가 유지되는 것을 특징으로 하는 휴대용 실시간 PCR 장치.
  8. 제6 항에 있어서,
    상기 베이스부의 상방에 배치되며, 상기 설치 공간을 커버하는 커버부; 및
    상기 하부 가열부 및 상기 커버부 사이에 배치되며, 상기 챔버부의 상면과 선택적으로 접촉되는 복수의 상부 가열부; 및
    상기 하부 광학 측정부와 마주보며, 상기 하부 광학 측정부로부터 발산되는 상기 측정광이 수광되거나, 상기 하부 광학 측정부를 향하여 상기 측정광을 제공하는 상부 광학 측정부;를 더 포함하는 휴대용 실시간 PCR 장치.
  9. 제8 항에 있어서,
    복수의 상기 상부 가열부 및 상기 하부 가열부 사이의 거리가 가변 가능하게 형성되며,
    상기 상부 가열부 및 상기 하부 가열부 사이에 상기 챔버부가 배치되어 유지 시간 동안 이동되지 않는 경우, 상기 상부 가열부 및 상기 하부 가열부 사이에 거리는 상기 챔버부의 높이에 대응되며,
    상기 유지 시간이 도과되어, 상기 챔버부가 다른 상기 상부 가열부 및 상기 하부 가열부 측으로 이동되는 경우, 상기 상부 가열부 및 상기 하부 가열부 사이의 거리는 상기 챔버부의 높이보다 크게 형성되는 것을 특징으로 하는 휴대용 실시간 PCR 장치.
  10. 제1 항에 있어서,
    상기 하부 가열부는 판상으로 형성되며,
    상기 챔버부의 하면은 상기 하부 가열부에 완전하게 접촉되고,
    상기 챔버부의 상기 챔버부 몸체에는 상기 챔버 유닛이 삽입되기 위한 챔버 유닛 삽입 공간이 형성되며,
    상기 챔버 유닛 삽입 공간의 너비는 상기 챔버 유닛의 너비에 대응되는 크기로 형성되는 휴대용 실시간 PCR 장치.
  11. 제1 항에 있어서,
    상기 챔버 유닛의 상기 검체 유닛 수용 공간에는 측정 용액이 수용되며, 상기 수용 공간의 종횡비는 0 보다 크고 1보다 작게 형성되며,
    상기 검체 유닛 수용 공간의 용적은 20 μl 내지 100 μl로 형성되는 것을 특징으로 하는 휴대용 실시간 PCR 장치.
  12. 제1 항에 있어서,
    상기 검체 유닛은, 다공성 재질로 형성되는 멤브레인 구조체로 형성되는 것을 특징으로 하는 휴대용 실시간 PCR 장치.
  13. 제1 항의 휴대용 실시간 PCR 장치를 이용한 PCR 측정 방법에 있어서,
    검체 유닛이 수용된 챔버 유닛들을 챔버부에 수용시키는 검체 유닛 투입 단계;
    상기 검체 유닛이 투입된 상태에서, 상기 검체 유닛에 대한 가열 또는 측정 동작을 수행하는 가열 및 측정 동작 개시 단계;
    상기 가열 및 측정 동작 개시 단계의 유지 시간이 기설정된 기준 유지 시간 보다 큰 경우, 상기 챔버부를 1 스텝 이동시키는 챔버 어셈블리 1 스텝 이동 단계; 및
    복수의 상기 챔버부에 대한 측정 사이클이 기설정된 기준 사이클보다 크게 형성되는 경우, 측정 결과를 알림하는 측정 결과 알림 단계;를 포함하는 휴대용 실시간 PCR 장치를 이용한 PCR 측정 방법.
  14. 제13 항에 있어서,
    상기 가열 및 측정 동작 개시 단계의 유지 시간이 기설정된 기준 유지 시간 보다 큰 경우, 상기 챔버 어셈블리 1 스텝 이동 단계를 수행하기 전에, 상기 하부 가열부와 마주보도록 배치되는 상부 가열부 및 상기 하부 가열부 간의 간격을 증가시키는 가열부간 간격 증가 단계; 및
    상기 챔버 어셈블리 1 스텝 이동 단계가 수행된 다음, 상기 상부 가열부 및 상기 하부 가열부 간의 간격을 감소시키는 가열부간 간격 감소 단계;를 더 포함하고,
    상기 가열부간 간격 증가 단계에서, 상기 상부 가열부 및 상기 하부 가열부 사이의 간격은 상기 챔버부의 높이보다 크게 형성되며,
    상기 가열부간 간격 감소 단계에서, 상기 상부 가열부 및 상기 하부 가열부 사이의 간격은 상기 챔버부의 높이에 대응되는 것을 특징으로 하는 휴대용 실시간 PCR 장치를 이용한 PCR 측정 방법.
  15. 제13 항에 있어서,
    상기 측정 사이클의 1 단위는, 상기 챔버부가 4 스텝 이동된 것을 특징으로 하는 휴대용 실시간 PCR 장치를 이용한 PCR 측정 방법.
  16. 제13 항에 있어서,
    상기 챔버 어셈블리 1 스텝 이동 단계에서,
    상기 챔버부들은 상기 베이스부에 형성되는 회전 중심을 기준으로 기설정된 각도만큼 회전되며,
    상기 하부 가열부는, 제1 온도로 동작되는 제1 하부 가열부, 제2 온도로 동작되는 제2 하부 가열부 및 제3 온도로 동작되는 제3 하부 가열부를 포함하고,
    상기 하부 가열부와 마주보는 상부 가열부는, 상기 제1 하부 가열부와 마주보며 상기 제1 온도로 동작되는 제1 상부 가열부, 상기 제2 하부 가열부와 마주보며 상기 제2 온도로 동작되는 제2 상부 가열부, 및 상기 제3 하부 가열부와 마주보며 상기 제3 온도로 동작되는 제3 상부 가열부를 포함하고,
    상기 휴대용 PCR 장치는, 복수의 상기 하부 가열부 및 상기 상부 가열부가 동작되는 온도가 유지되도록 제어하는 것을 특징으로 하는 PCR 측정 방법.
PCT/KR2021/000946 2020-12-22 2021-01-25 휴대용 rt-pcr 장치 및 이를 이용한 rt-pcr 측정 방법 WO2022139061A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21911131.7A EP4129483A4 (en) 2020-12-22 2021-01-25 TRANSPORTABLE RT-PCR DEVICE AND RT-PCR MEASUREMENT METHOD USING SAME
JP2022565875A JP7468935B2 (ja) 2020-12-22 2021-01-25 携帯用rt-pcr装置およびこれを用いたrt-pcr測定方法
CN202180033184.XA CN115515715A (zh) 2020-12-22 2021-01-25 便携式实时聚合酶链式反应装置及利用该装置的实时聚合酶链式反应测量方法
US18/050,196 US20230070652A1 (en) 2020-12-22 2022-10-27 Portable rt-pcr device and rt-pcr measurement method using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0181069 2020-12-22
KR1020200181069A KR102277241B1 (ko) 2020-12-22 2020-12-22 휴대용 rt-pcr 장치 및 이를 이용한 rt-pcr 측정 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/050,196 Continuation US20230070652A1 (en) 2020-12-22 2022-10-27 Portable rt-pcr device and rt-pcr measurement method using same

Publications (1)

Publication Number Publication Date
WO2022139061A1 true WO2022139061A1 (ko) 2022-06-30

Family

ID=76889318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/000946 WO2022139061A1 (ko) 2020-12-22 2021-01-25 휴대용 rt-pcr 장치 및 이를 이용한 rt-pcr 측정 방법

Country Status (6)

Country Link
US (1) US20230070652A1 (ko)
EP (1) EP4129483A4 (ko)
JP (1) JP7468935B2 (ko)
KR (1) KR102277241B1 (ko)
CN (1) CN115515715A (ko)
WO (1) WO2022139061A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102661255B1 (ko) * 2021-12-30 2024-04-29 한국전자기술연구원 휴대용 열블록 모듈
KR20240022694A (ko) 2022-08-12 2024-02-20 주식회사 에이아이바이오틱스 소켓형 pcr 카트리지, 이를 구비하는 회전형 실시간 pcr 디바이스 및 소켓형 pcr 카트리지를 구비하는 회전형 실시간 pcr 디바이스의 작동 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100773561B1 (ko) * 2006-11-07 2007-11-05 삼성전자주식회사 다중 pcr에서 비특이적 증폭을 감소시키는 장치 및 방법
KR20100008476A (ko) * 2008-07-16 2010-01-26 연세대학교 산학협력단 실시간 모니터링이 가능한 pcr 장치 및 이를 이용한pcr 모니터링 방법
KR20120031188A (ko) * 2012-01-17 2012-03-30 한국과학기술원 회전 pcr 장치 및 이를 이용한 회전 rt-pcr 방법
KR20140029142A (ko) * 2012-08-30 2014-03-10 주식회사 메디센서 회전형 pcr 장치 및 pcr 칩
KR20140128671A (ko) * 2013-04-29 2014-11-06 (주)미코엠에스티 Pcr 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033396A1 (en) * 2008-12-18 2012-03-15 Universiti Sains Malaysia A disposable multiplex polymerase chain reaction (pcr) chip and device
KR102046943B1 (ko) 2017-04-19 2019-11-20 주식회사 넥서스비 휴대용 실시간 pcr 측정기기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100773561B1 (ko) * 2006-11-07 2007-11-05 삼성전자주식회사 다중 pcr에서 비특이적 증폭을 감소시키는 장치 및 방법
KR20100008476A (ko) * 2008-07-16 2010-01-26 연세대학교 산학협력단 실시간 모니터링이 가능한 pcr 장치 및 이를 이용한pcr 모니터링 방법
KR20120031188A (ko) * 2012-01-17 2012-03-30 한국과학기술원 회전 pcr 장치 및 이를 이용한 회전 rt-pcr 방법
KR20140029142A (ko) * 2012-08-30 2014-03-10 주식회사 메디센서 회전형 pcr 장치 및 pcr 칩
KR20140128671A (ko) * 2013-04-29 2014-11-06 (주)미코엠에스티 Pcr 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4129483A4 *

Also Published As

Publication number Publication date
JP2023523991A (ja) 2023-06-08
CN115515715A (zh) 2022-12-23
KR102277241B1 (ko) 2021-07-15
EP4129483A1 (en) 2023-02-08
JP7468935B2 (ja) 2024-04-16
EP4129483A4 (en) 2024-04-17
US20230070652A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
WO2022139061A1 (ko) 휴대용 rt-pcr 장치 및 이를 이용한 rt-pcr 측정 방법
US11966086B2 (en) Determining temperature-varying signal emissions during automated, random-access thermal cycling processes
WO2020209638A1 (ko) 중합효소 연쇄반응 시스템
KR20130092185A (ko) 생체시료의 자동 분석 장치 및 방법
WO2020004999A1 (en) Thermal block
WO2012036341A1 (ko) 비접촉 가열식 유전자 증폭시스템
AU2013202808A1 (en) System and method for performing multiplex thermal melt analysis
WO2022010238A1 (ko) 특정 인공 뉴클레오타이드 서열을 이용한 위양성 판단용 조성물 및 이를 이용한 위양성 판단 방법
WO2020027565A1 (ko) 복수의 열 블록을 구비한 핵산 증폭 장치
WO2016143995A1 (ko) 멀티플렉스 pcr 칩 및 이를 포함하는 멀티플렉스 pcr 장치
CN117402731B (zh) Pcr仪用温控装置及pcr仪
CN110904198A (zh) 基于恒温扩增与基因编辑的核酸一步检测方法
WO2012002597A1 (ko) Β형 간염 바이러스 진단용 프라이머, 프로브, 이를 포함하는 키트 및 상기 키트를 이용한 β형 간염 바이러스 진단 방법
WO2023063545A1 (ko) 복수 개의 독립된 챔버가 구비되는 멀티 파이펫
JP2004531233A (ja) Dna重合の検出方法
WO2020101194A1 (ko) 카바페넴아제 생성 장내세균 진단을 위한 루프 매개 등온증폭 반응용 프라이머 세트 및 이의 용도
JP2018046806A (ja) 二段階作動の核酸反応検出管
CN114989970A (zh) 微流控芯片与微流控检测装置
WO2022092823A1 (ko) 현미부수체 불안정성 진단용 마커 조성물 및 프라이머 세트
WO2021154042A2 (ko) 결핵균 및 비결핵항산균을 동시에 감별하여 검출할 수 있는 고감도 다중 등온증폭반응용 프라이머 세트
WO2012002594A1 (ko) C형 간염 바이러스 진단용 프라이머, 프로브, 이를 포함하는 키트 및 상기 키트를 이용한 c형 간염 바이러스 진단 방법
WO2021075912A1 (ko) 결핵균 및 비결핵항산균을 동시에 감별하여 검출할 수 있는 고감도 다중 등온증폭반응용 프라이머 세트
WO2013165038A1 (ko) 엡스타인-바 바이러스 검출용 키트 및 이를 이용한 엡스타인-바 바이러스의 검출방법
WO2012070863A2 (ko) 핵산효소-분자비콘을 이용한 핵산의 검출방법
WO2021201636A1 (ko) 분리 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565875

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021911131

Country of ref document: EP

Effective date: 20221027

NENP Non-entry into the national phase

Ref country code: DE